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ABSTRACT 

The method of moments occupies a special place among the theoretical methods 

dedicated to the study of systems with Coulomb interaction between particles. Its essence 

lies in the fact that the system linear response function is parameterized as a fractional-

linear transformation of a (Nevanlinna) parameter function (NPF) with certain 

mathematical properties. The zero-frequency approximation is applied to determine the 

latter which permitted to relate it, on the basis of justified physical considerations, to the 

moments themselves. This NPF static approximation is shown to be consistent within the 

Shannon entropy maximization method. 

In the present work, the self-consistent version of the method of moments is 

applied to the investigation of the dynamic local field correction and other dynamic 

characteristics of classical strongly coupled one-component systems, such as dense 

Coulomb and Yukawa plasmas. The self-consistency of the approach means that the 

dynamic properties are obtained without any data input from simulations so that the 

dielectric function satisfies the first five sum rules automatically. Moreover, the dynamic 

structure factor, dispersion and the dynamic local-field correction are determined using 

exclusively the static structure factor calculated from the hypernetted chain 

approximation. A good quantitative agreement with molecular dynamics simulation data 

is achieved. 

In addition, little discrepancy is observed in the plasma dynamic characteristics 

calculated with the static structure factors, obtained within various methods of calculation 

of the static structure factor, namely, the hyper-netted chain approximation (HNC), the 

modified HNC (MHNC) and the variational modified HNC (VMHNC). This stability 

implies the robustness of the present approach. 

Possibilities to abandon the NPF static approximation are analyzed as well. 

  



RESUMEN 

El método de los momentos ocupa un lugar especial entre los métodos teóricos dedicados 

al estudio de los sistemas con interacción de Coulomb entre partículas. Lo más importante 

y característico es el hecho de que la función de respuesta lineal del sistema está 

parametrizada a semejanza de una transformación lineal fraccionaria de una función de 

Nevanlinna (NPF, Nevanlinna Parameter Function) bajo ciertas propiedades 

matemáticas. La aproximación de frecuencia cero se aplica para determinar la última que 

permitió relacionarla con su momento, teniendo en cuenta aspectos físicos que lo 

justifiquen. Se muestra que esta aproximación estática NPF es consistente con el método 

de maximización de entropía de Shannon. 

El presente trabajo constituye una versión autoconsistente del método de los 

momentos para su aplicación a la investigación de la corrección dinámica de campo local, 

entre otras características dinámicas, de los sistemas clásicos fuertemente acoplados de 

un componente, como son los plasmas densos de Coulomb y Yukawa. El modelo es 

autoconsistente ya que las propiedades dinámicas se obtienen sin ninguna introducción 

de datos obtenidos en las simulaciones, de modo que la función dieléctrica satisface las 

primeras cinco reglas de suma automáticamente. Además, tanto el factor de estructura 

dinámico, como la dispersión y la corrección dinámica del campo local, se determinan 

utilizando exclusivamente el factor de estructura estático calculado a partir de la 

aproximación de la cadena hiper enlazada. Se muestra que se logra un buen ajuste 

cuantitativo con los datos de simulaciones de dinámica molecular. 

De igual manera, se observa poca discrepancia entre las características dinámicas 

del plasma calculadas a través de los factores de estructura estática, frente a los obtenidos 

por otros métodos de cálculo de ese factor de estructura estática, como son la 

aproximación de cadena hiper enlazada (HNC, Hiper-Netted Chain), la HNC modificada 

(MHNC, Modified Hiper-Netted Chain) y la HNC modificada variacionalmente 

(VMHNC, Variational Modified Hiper-Netted Chain). Esta estabilidad implica la 

robustez del enfoque que se presenta. 

Asimismo, se analizan las posibilidades de abandonar la aproximación estática 

NPF. 

  



RESUM 

El mètode dels moments ocupa un lloc especial entre els mètodes teòrics dedicats a 

l'estudi dels sistemes amb interacció de Coulomb entre partícules. El més important i 

característic és el fet que la funció de resposta lineal del sistema està parametritzada a 

semblança d'una transformació lineal fraccionària d'una funció de Nevanlinna (NPF, 

Nevanlinna Parameter Function) sota certes propietats matemàtiques. L'aproximació de 

freqüència zero s'aplica per a determinar l'última que va permetre relacionar-la amb el seu 

moment, tenint en compte aspectes físics que ho justifiquen. Es mostra que aquesta 

aproximació estàtica NPF és consistent amb el mètode de maximització d'entropia de 

Shannon. 

El present treball constitueix una versió autoconsistente del mètode dels moments 

per a la seua aplicació a la investigació de la correcció dinàmica de camp local, entre 

altres característiques dinàmiques, dels sistemes clàssics fortament acoblats d'un 

component, com són els plasmes densos de Coulomb i Yukawa. El model és 

autoconsistent ja que les propietats dinàmiques s'obtenen sense cap introducció de dades 

obtingudes en les simulacions, de manera que la funció dielèctrica satisfà les primeres 

cinc regles de suma automàticament. A més, tant el factor d'estructura dinàmic, com la 

dispersió i la correcció dinàmica del camp local, es determinen utilitzant exclusivament 

el factor d'estructura estàtic calculat a partir de l'aproximació de la cadena hiper enllaçada. 

Es mostra que s'aconsegueix un bon ajust quantitatiu amb les dades de simulacions de 

dinàmica molecular. 

D'igual manera, s'observa poca discrepància entre les característiques dinàmiques 

del plasma calculades a través dels factors d'estructura estàtica, enfront dels obtinguts per 

altres mètodes de càlcul d'aqueix factor d'estructura estàtica, com són l'aproximació de 

cadena hiper enllaçada (HNC, Hiper-NettedChain), la HNC modificada (MHNC, 

Modified Hiper-Netted Chain) i la HNC modificada variacionalmente (VMHNC, 

Variational Modified Hiper-Netted Chain). Aquesta estabilitat implica la robustesa de 

l'enfocament que es presenta. 

Així mateix, s'analitzen les possibilitats d'abandonar l'aproximació estàtica NPF. 
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1. INTRODUCTION 
 

1.1. Motivation. One of the challenges of the contemporary applied sciences 

is the scarceness of sources of energy for the growing necessities of the 

humanity. The answer, as of today, is the controlled nuclear fusion, which 

employs as the fuel the hydrogen and its isotopes, the most abundant element 

in the Universe. Besides, contrary to the fission, the fusion is much less 

dangerous from the point of view of contamination and explosiveness.  

The problem is that the physical conditions (temperature and density) 

of the working body of the future inertial fusion reactors, where a target made 

of the isotopes of hydrogen (deuterium and tritium) which exist in Nature, is 

strongly compressed by external laser radiation or heavy-ion jets to the 

densities up to 5 order higher than that of metals. Certainly, under such 

extreme conditions traditional physical theories based on expansions in some 

small parameters, fail and to diagnose and control the processes in the 

working body, one needs alternative non-perturbative physical theories.  

This is exactly the aim of the present work where we have employed 

the classical method of moments, namely, the Hamburger problem of 

moments that possesses two infinite families of solutions, complemented by 

some physical considerations. Precisely, a specific non-canonical solution is 

used to construct a physically motivated unique solution of a truncated 

problem of reconstruction of a Nevanlinna (called in Statistical Physics, 

response) function, whose power moments are known in Statistical Physics 

as the sum rules. Such a self-consistent version of the moment approach has 

led to the quantitative description of important dynamical and optical 

properties of model physical systems known as the one-component plasmas 

under the conditions similar to those of future fusion devices. There are four 

advantages of the present theoretical construction: (i) all dynamic 

characteristics are expressed in terms of the static ones which are much easier 



to compute; (ii) the approach admits an expansion to partly degenerate 

systems (like the electron gas), (iii) other exact relations and mathematical 

methods like, e.g., the Shannon entropy maximization are also employed, 

(iv) all calculations do not require very high numerical performance and can 

be carried out with a medium-quality laptop, i.e., the method permits to 

diagnose the body of the fusion device in the on-line regime.  

1.2. Actuality. The method of moments occupies a special place 

among the theoretical methods dedicated to the study of systems with 

Coulomb interaction between particles. Its essence lies in the fact that the 

system linear response function is parameterized as a fractional-linear 

transformation of a parameter function with certain mathematical properties. 

The coefficients of the transformation are the orthogonal polynomials 

calculated from the first converging power moments of the imaginary part of 

the response function. The moments can be calculated independently, within 

the Kubo linear reaction theory. Our self-consistent approach allows to 

reconstruct the dynamic characteristics of the physical system that we study 

in terms of the static ones.  

1.3. Novelty. Based on the moments method, a theoretical approach is 

constructed that allows to calculate the electrodynamic properties of plasmas 

using its static characterisitcs. 

1.4. Thesis structure. In the first section, in the Introduction, the 

applicability of the chosen research topic, the aims, the method are generally 

motivated. The second section presents the mathematical background of the 

method of moments. The third section gives the information about the 

applicability of method of moments to classical one-component plasmas. 

The fourth chapter provides description of the calculation of the dynamic 

characteristics of classical one-component plasmas. The fifth section deals 

with the analysis of schemes for the calculation of static structure factor and 

also contains some additional results. The sixth section presents several ways 



for the calculation of Nevanlinna parameter function. The seventh section 

contains the Conclusions. In the Appendix there is the list of publications 

and international conferences. The thesis is ended by the Bibliography. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. METHOD OF MOMENTS. THE MATHEMATICAL 

BACKGROUND. 

 

2.1. Nevanlinna (response) functions and their mathematical properties. 

Definition 1 The Nevanlinna class of functions ℜ:  

A function F (z) ∈ ℜ if 

1. F (z) is analytic in Im z > 0; 

2. Im F (z) ≥ 0 in Im z > 0. 

Definition 2 Let t ∈ ℝ be a random variable with a distribution function σ(t). 

If 

 
( ) ( )

t

t f s ds


  , 
(2.1) 

the function f(t) is called the probability density function, p.d.f. Since σ(t) is, 

by definition, a non-decreasing function, f(t) ≥ 0 for any real t. 

Claim 3. The Nevanlinna functions are determined by the Riesz – Herglotz 

transform: 

 
2

1
( ) ( )

1

t
F z az b dg t

t z t





 
    

  
 , 

(2.2) 

where {a,b} ∈ ℝ , a ≥ 0 and g(t) is a non-decreasing bounded function 

(distribution) such that 

 
2

( )

1

dg t

t




 

 . 
 

Claim 4 Notice that we can always choose the function g(t) so that 

a = 0 and b was equal to 

 
2

( )

1

tdg t
b

t






 . 
 



   

Definition 5 The class of functions ℜ0:  

A function G(z) ∈ ℜ0 if G(z) ∈ ℜ and 

 ( )
lim 0
z

G z

z
 , Im 0z  , 

 (2.3) 

so that for such functions from (2.3) we have: 

 ( )
( )

dg t
G z ih

t z




 

 , 0h  , 
(2.4) 

where the non-negative parameter h does not depend on z, but might depend 

on other parameters, e.g., in Physics, on the wavenumber. 

2.2. The classical Hamburger problem of moments 

Definition 6 The real numbers 

 
( )m

m t d t 




  , 0,1,2,...m   
(2.5) 

are the (power) moments of the distribution σ(t). If the distribution σ(t) is 

differentiable and f(t) = σ′(t) is symmetric, all odd-order moments (2.5) 

vanish. 

Let us summarize some notions and results of the classical theory of 

moments [1-3]. The Hamburger problem is formulated in the following way. 

Problem 7 Given a set of real numbers {µ0,µ1,µ2,...}, find all 

distributions σ(t) such that 

 
( )m

mt d t 




 , 0,1,2,...m   
(2.6) 

 

The Hamburger moment problem is solvable, i.e., there exists at least one 

distribution (p.d.f.) which satisfies (2.6), if and only if the given set of 



numbers  is non-negative, i.e., if the Hankel matrix . 

If the problem is solvable, it can have a unique solution (a determinate 

problem) or an infinite number of solutions (an indeterminate problem). 

Definition 8. Notice that if σ(t < 0) ≡ const (i.e., if f(t < 0) ≡ 0), we have the 

Stieltjes moment problem, and if σ(t) ≡ const (f(t) ≡ 0) for t < a, t > b, a,b ∈ 

ℝ, we deal with the Hausdorff problem finite interval moment problem. 

Theorem 9 [4] A Hamburger moment problem (2.6) is solvable if  

 
, 0det( ) 0m

m i j i j     , 0,1,2,...m    

The problem has an infinite number of solutions if and only if 

 
, 0det( ) 0m

m i j i j     , 0,1,2,...m    

The problem (2.6) is determinate if and only if 

 
0 0,..., 0k    , 1 2 ... 0k k      .  

Claim 10. The set of solutions of an indeterminate problem is in a one-to 

one correspondence with a certain subset of the class of Nevanlinna 

functions [1]; this correspondence is described by the Nevanlinna formula, 

see below. 

Claim 11. A truncated Hamburger moment problem [5], i.e., a moment 

problem with a finite set of given numbers, i.e., {𝜇𝑚}𝑚=0
2𝜈 , 𝜈 = 0,1,2  is 

solvable if the Hankel matrix (𝜇𝑚+𝑛)𝑚,𝑛=0 
𝜈 > 0,  [6], see also [7] and [8]. 

In the degenerate case of a singular Hankel matrix (𝜇𝑚+𝑛)𝑚,𝑛=0 
𝜈  the 

problem of moments (under some special conditions established in [9]) has 

a unique solution. 

Theorem 12 [10] A sufficient condition that the Hamburger moment 

problem (2.6) be determinate is that (Carleman’s criterion) 



 1/2

2

1

m

m

m








  . 
 

 

Example 13. The p.d.f 

 
 

1/

( ; ) exp
1

2

f t t







 



 
 

 
 

, , 0    
(2.7) 

where Γ(z) is the Euler Γ function, has an infinite number of 

moments for any positive α: 

 

2

2
2 /

2 1

( ; ) ( )
1

m

m
m

m

t f t dt



  








 
 
  

 
 
 

 , 

2 1( ; ) 0m    , 0,1,2,...m   

(2.8) 

but the Hamburger moment problem for the set of numbers 

 

2/ 4/

3 5

1,0, ,0, ,0,...
1 1 

 

 
 

    
         

 
        

     

, 

 

(2.9) 

has, as it stems from the Carleman criterion, a unique solution, which is the 

p.d.f. (1.7), if α > 1, in particular the Gaussian density , and 

an infinite number of solutions if α ≤ 1. In this latter case, all solutions of the 

moment problem are described by the Nevanlinna formula ([2]), see below. 

Other examples of sets {𝜇𝑚}𝑚=0
∞   which generate indeterminate 

moment problems are provided in [3]. 

In (solvable) problems where we already have at least one p.d.f. with 

a set of moments, like the problems we are interested in here, the only 



question which arises is the one of uniqueness of the solution of the problem 

of reconstruction of a (one-dimensional) p.d.f. by its power 

moments, {𝜇𝑚}𝑚=0
𝜈 . 

2.3. Orthogonal polynomials and the Nevanlinna formula 

Theorem 14. (Nevanlinna) There is a one-to-one correspondence 

between all solutions of the Hamburger problem (2.6), or all complex 

Nevanlinna functions 
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(2.10) 

and all Nevanlinna functions R(z) ∈ ℜ0 such that 
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(2.11) 

This last formula is called the Nevanlinna formula. 

Definition 15 Here {𝐷𝑙(𝑧)}𝑙=0
∞   are orthonormalized polynomials with 

respect to the measure dσ [3]: 
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and En (z) are their conjugate polynomials: 
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Precisely, we can write 
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(2.15) 

Let us point out the properties of these orthonormalized polynomials. 

Claim 16. It can be easily seen that both sets of polynomials do not depend 

on the distribution we seek; they are determined by the moments only: 
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(2.16) 

 



In addition: 

1. The zeros of the polynomials Dl(t) and El(t), l ∈ ℕ, are all real; 

2. The zeros of the polynomials Dl(t) and Dl-1(t), l ∈ ℕ, alternate.  

3. The zeros of the polynomials Dl(t) and El(t), l ∈ ℕ, alternate; 

4. The polynomials Dl(t) and El(t), l ∈ ℕ, can be expressed in terms 

of each other: 
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(2.17) 
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where the coefficients can be written as 
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5. They satisfy the Liouville-Ostrogradsky (or Schwarz-

Christoffel) formula: 
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(2.19) 

Claim 17. The latter relation permits to define these polynomials in the 

recurrent way. Indeed, since 
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we have that 
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and so on. This procedure can be easily programmed. 

Claim 18. It can be easily checked that the polynomials Dℓ(z), ℓ = 0,1,2 are 

all normalized to unity and mutually orthogonal. 

Claim 19. The set of orthogonal (but not normalized) polynomials  

can be constructed from the canonical basis of the Hilbert vector space of 

polynomials, 

  21, , ,...t t ,  

but with the scalar product and the norm defined as 
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by means of the standard Gram-Schmidt procedure. Then, 
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(2.20) 

where the coefficients A and B have the form 
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An important observation mentioned above can be deduced from the 

expressions (1.14) and (1.20): both sets of orthogonal polynomials do not 

depend on the distribution we seek; they are determined by the moments 

only. In other words, these polynomials are known as soon as the moments 

are. 

2.4. Canonical and degenerate solutions of a solvable truncated 

Hamburger moment problem 

Claim 20. It is clear that, at least, due to numerical and measurement 

problems, we never know a large number of moments. Besides, as we will 

see, in certain physically important problems, this number is limited by 

physical phenomena. 

In order to satisfy the moment conditions 

 
( ) ( )m m

m t d t t f t dt 
 

 

   , 0,1,2,...,2m  , 0,1,2,...  , 
(2.21) 



 

one can first consider a step-like distribution 
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(2.22) 

with the density which actually consists of 2ν + 1 point masses located at 

some distinct points of the real axis  . This is the so called canonical 

solution of the problem. Then the assumption (2.22) can be substituted into 

the conditions (2.21) and the masses  can be obtained directly from 

the system with the determinant which is the Van der Monde determinant 

of an arbitrary set of distinct numbers : 
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(2.23) 

In other words, we obtain an infinite number of canonical solutions 

parametrized by the latter set of points of the real axis. 

Example 21. Gaussian distribution exp(−t2). Consider a truncated 

problem generated by the moments 
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Then the system (2.23) becomes: 
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Its solution is just: 
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Claim 22. Nevertheless, for the moment set {µ0, 0, µ2}, there exists the 

following canonical solution of the moment problem where 
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Claim 23. While, for the moment set {µ0, 0, µ2, 0, µ4}, there exists the 

following canonical solution of the moment problem 
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where we can write 
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This solution will be interpreted later, dedicated to the investigation of one-

component plasmas. The positivity of the central feature intensity follows 

from the Cauchy-Schwarz inequality. 

Example 24. Degenerate case. Consider now a degenerate truncated 

problem generated by the moments  

 
0 1  , 1 2  , 2 2  , (2.24) 

  

whose Hankel matrix 
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is obviously singular (detH1 = 0). In this case the solution of the problem is 

unique, it can be found in the following way. Find the null-space basis of the 

matrix H1, in our case it is a vector  
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with ξ1 ≠ 0, construct the 

polynomial 
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calculate its zeros (in our case we have only one zero t0 = √2), these are the 

locations  of the masses in the degenerate solution 
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and determine the corresponding masses from the moment conditions (2.21). 

Particularly, for the moments (1.24) we have 



  ( ) 2d t t dt   ,  

which automatically satisfies the conditions 
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Claim 25. Certainly, in physical problems we are basically interested in 

noncanonical, continuous solutions Nevertheless, some physical 

interpretation of the canonical solutions will be discussed as well. To show 

how the moment method works in this case, let us consider dynamical 

properties of the intrinsically classical one - and two - component 

completely ionized hydrogen - like plasmas in thermal equilibrium. 

2.5. Non-canonical solutions of a truncated Hamburger problem. 

Application of the Nevanlinna formula 

In physical problems we deal with further, we are interested in continuous 

solutions of truncated Hamburger problems generated by positive sets of 

power moments 
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basically, with ν = 2 and with the so called immaterial elements µ2ν+1 and 

µ2ν+2. Let us see how the Nevanlinna formula in this case provides a 

continuous, non-canonical, solution of the problem: construct the 

probability density function f (t) such that 
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The Nevanlinna formula in this case takes the following form: 
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Claim 26. Observe that the Nevanlinna parameter function Rν(z) ∈ ℜ0 

effectively depends on the number of moments involved. Nevertheless, the 

asymptotic expansion of the Cauchy transform of the density in question 

will satisfy the moment conditions (2.25) independently of our choice of 

this parameter function. 

Proof. Indeed, along any ray within the upper half-plane Imz > 0, 
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(2.27) 

In other words, the contribution related to the Nevanlinna parameter 

function Rν (z), due to the (2.3), will appear in the asymptotic expansion 

(2.27) only in the correction of excessive order 2ν + 2. Now, by definition, 

on the real axis Imz = 0, 
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P.V standing for the principal value of the integral. Let 
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and observe that, also by definitions (2.14) and (2.15), we have: 
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so that the algebraic minor, (subdeterminant) of the Dν+1 (t) polynomial 

leading term is just the Hankel determinant 
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Hence 
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where { P 𝑙(𝑡)}𝑙=0
𝜈+1   are orthogonal monic polynomials with respect to the 

measure density f (t), see the Claim 19. Thus, due to the Liouville-

Ostrogradsky equality, the “problem” is that the determinant ∆ν+1 (see 

(2.28)) contains the “immaterial” moments µ2ν+1 and µ2ν+2, which we do not 



know. They might even diverge! This spurious contradiction is 

immediately resolved by taking into account the normalization of the 

orthonormalized polynomials { P (𝑡)}𝑙=0
𝜈+1: use instead the monic 

polynomials{ P 𝑙(𝑡)}𝑙=0
2𝜈  : 
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(2.30) 

where 
1 1( ) ( ) .Q t R t  

 



  



  

Notice that due to the positivity of the moment sequence (2.25), the 

Hankel determinants ∆ν-1 and ∆ν are all strictly positive. Thus, the 

immaterial members of the moment sequence are eliminated due to the 

renormalization procedure. What matters for the physical applications is 

that the poles of the reconstructed density f(z), Imz < 0 are the roots of the 

“polynomial” equation 

 
1P ( ) ( )P ( ) 0z Q z z      (2.31) 

which “starts” from zv+1, i.e., if, in accordance with the ℜ0-version of the 

Riesz-Herglotz formula (2.4), we approximate the Nevanlinna parameter 

function (NPF) qv (z) by its static value 

 ( ) ( 0)Q z Q z ih     (2.32) 

equation (2.31) acquires the form of the genuine polynomial equation of 

the order v+1, which can be easily solved at least numerically.  



Generally speaking, the moment approach is originally based on the 

canonical or Nevanlinna’s [11,12] non-canonical solutions of the 

(truncated) Hamburger moment problem consisting in the reconstruction 

of a non-negative nondecreasing distribution density by a finite number of 

its power moments.  

The background of the moment approach is certainly purely 

mathematical with the specifics of a physical system involved only in the 

moments; in this sense the approach is model-free. The infinite set of 

canonical solutions is constructed by placing certain point "masses" at 

some points of the real axis. The values of the masses are determined by 

the moments while the location points can be chosen arbitrarily. 

Nevertheless, they can be specified by physical considerations. 

On the other hand, the non-canonical solutions are parametrized by 

the Nevanlinna parameter function (NPF) of a certain mathematical class 

(see below), which, certainly, cannot be determined within the moment 

problem formalism. The simplest mathematically admissible 

approximation for the NPF is to substitute it by its static (purely imaginary) 

value. In the next chapter we will show, how one can use the method of 

moments for the strongly-coupled plasmas (SCP) investigation.  

 

 

 

 

 

 

 

 

 



3. APPLICATION OF THE CLASSICAL METHOD OF MOMENTS 

TO THE INVESTIGATION OF DYNAMICAL PROPERTIES OF 

STRONGLY COUPLED PLASMAS 

 

Strongly coupled plasmas (SCPs) appear in various settings in nature (e.g., 

in dense astrophysical matter in white dwarfs and neutron stars [13]), as well 

as in the laboratory (in ultracold plasmas [14], electrolytes and charged 

stabilized colloids [15], laser-cooled ions in cryogenic traps [16], and dusty 

plasmas [17]). SCPs and warm dense matter are highly relevant model 

systems for inertial fusion devices [18]. The common property of SCPs is 

that the interparticle potential energy dominates over the thermal energy.  

We deal with one component model (OCP) of SCPs. Two main types 

of potentials are of interest in OCPs. The Coulomb potential describes 

systems where the background of the oppositely charged species is not 

polarizable (e.g., a degenerate electron liquid embedding positive ions) - 

systems with this property are further referred to as Coulomb OCPs 

(COCPs), while the Yukawa OCPs (YOCPs) are characterized by a 

screened-Coulomb (Debye, or Yukawa) potential between the “primary” 

species, where the screening is established by “secondary” species. 

The standard (electron) coupling and degeneracy parameters 

defined, respectively, as  

 
2= / , = ,Fe a D E   (3.1) 

span in strongly coupled plasmas (SCPs) two or even three orders of 

magnitude from about 1 to hundreds or thousands. Respectively, the 

Brueckner parameter = /s Br a a  might vary from about 
310
 to 

310  or even 

more. Here, Ba , FE , and en  are the electron Wigner-Seitz and Bohr radii, 



the Fermi energy, and the number density of (free) electrons; besides, the 

temperature  
1

= BT k 


, and 

2

39
= =1.842 .

2 4
sr

D D

  
 
 

 

We observe that the common property of SCPs is that the interparticle 

potential energy can dominate over the thermal energy while the system 

temperature might be comparable or exceed significantly its Fermi 

temperature. Despite the lack of small parameters (  or D  or sr  or 
1

sr


), 

static structural and even kinetic characteristics of strongly coupled plasmas 

are relatively easy to determine numerically, see, e.g., [19, 20]. Currently 

there are no first-principle physical approaches capable of producing reliable 

results on dynamic properties of such systems within the above gaps between 

ideal-gas and solid-state conditions, see nevertheless [21] and references 

therein. Good agreement between the numerical and theoretical results in a 

relatively wide realm of variation of   and/or D  is finally achieved using 

up to four adjustable parameters [22]. Simulation data on the dynamic local-

field corrections remains unexplained theoretically [23]. 

The keystone of our approach is the plasma (inverse) dielectric 

function (IDF), 
1 
(k, z = ω + iδ) (δ ≥ 0), which is the genuine response 

function for any wavenumber, and the even non-negative loss function (LF): 

 

 2 1( , ) Im ( , ) / .L k x k       (3.2) 

We will show how on the rigorous mathematical basis complemented by 

simple physical considerations, the knowledge of these dynamic 

characteristics can be reduced to that of the static ones, precisely, the static 

structure factors (SSFs). The approach construction blocks are the system 

sum rules or the loss function frequency power moments 
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(3.3) 

Notice that the odd-order moments vanish due to the symmetry of the loss 

function. The moments {C0 (k), C2, C4 (k)} and the characteristic frequencies 
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are known independently, they are determined by the system composition, 

degeneracy, and thermodynamics. It should be noted, that for any pair of 

distribution densities, for example, f( ) and g( ), the next expression is 

correct: 

 2

2 2
( ) ( ) ( ) ( ) .f g d f d g d      

  

  

     

(3.5) 

This inequality is a particular case of the Hölder inequality in L2, or the 

Cauchy-Schwarz-Bunyakovsky inequality. If we choose  as 

( ) ( , ) /g L k    and 2( ) ( , ) /f L k    , we will get 

2

2 4 0( ) ( )C C k C k , or we can wtite this equation as (where ωp is, of course, 

the system plasma frequency): 
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(3.6) 

This relation can help in the analysing of the static structure 

calculations SSF schemes, as we will show later. 

The zero sum rule C0 stems from the Kramers-Kronig relations, this 

result does not depend on the nature of the system: 
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(3.7) 



The second moment is the f-sum rule: 
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The loss function fourth power moment 
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(3.9) 

for OCPs has been studied first by Kugler and Pathak and Vashishta [24]. 

These results were further generalized [25] within the Kubo linear-reaction 

theory and using the second-quantization technique, see [26, 27].  It was 

established that in multicomponent electron-ion Coulomb system with the 

pairwise interaction energy Fourier transform the second characteristic 

frequency contains four contributions: 

  2 2

2 ( ) ( ) ( ) ( ) .p eek k K k U k H       (3.10) 

 

The kinetic contribution K(q) consists of two parts 
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and the 
0

( )
exp( ) 1

t
F dt

t



 





   is the order-µ Fermi integral, and η is the 

dimensionless chemical potential of the electronic subsystem, which 

should be determined by the normalization condition 
3/2

1/2

2
( ) .

3
F D   

The coupling contribution U(q) and correlation contribution H have 

the forms: 
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(3.12) 

where Z is a special function, which is dependent from the system, via the 

ab - factor: 

 
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               

Notice that the contribution H is k -independent, it is determined by 

the partial static structure factor corresponding to the coupling of the electron 

subsystem with the lightest ion species. It is obvious that in one-component 

plasmas, either classical or not, the electron-ion correction H = 0.  

Notice also that in the hydrodynamic limiting case 

 2 2

2 ( 0) (1 )pk H   , (3.13) 

while at short distances we recover the single-particle behavior: 
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(3.14) 

The frequencies ω1(k ) and ω2(k ) are the construction blocks of our 

approach. In order to find the dynamic characteristics of Coulomb systems 

and to relate them to the static ones, we use the solutions of the truncated 

Hamburger moment problem corresponding to five convergent frequency 

moments {C0 (k ) , 0, C2, 0, C4 (k )}. 

Note also that the r.h.s. of the Nevanlinna formula can be presented as 

a truncated continuous fraction: 
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(3.15) 

or we can write as: 
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(3.16) 

which establishes a one-to-one correspondence (a bijection) between the 

Nevanlinna parameter functions R (k ,z) and the non-canonical solutions of 

the moment problem for the loss function. For the case of z → ∞ we have 
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On the other hand, we can write an equation 
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(3.18) 

 

So, we have that 
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(3.19) 

The dielectric function itself has a form: 
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(3.20) 

The simplest is to model the NPF R by its static value, like it was done 

in [28]: 

 ( , ) ( ,0) ( ),R k z R k ih k   ( ) 0h k  . (3.21) 

The function R (k, z) should additionally satisfy the limiting condition: 
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Using the static approximation of NPF, we have 
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(3.22) 

The main problem is to derive the expression for the NPF. In [28] the 

NPF was approximated by the form R = i
1 

, where   is the relaxation time. 

This time was selected to reproduce an exact static value of the dynamic 

structure factor, in other words, there was a connection with simulation data. 

In the present work we derive another representation of NPF, without any 

connection with simulation data. 

Consider the Fourier transform of the loss function, Λ(k,t), whose 

behavior at long times, by virtue of the Tauber or Abel theorems, will be 

similar to that of the DSF Fourier transform. The function Λ(k,t) is bounded, 

decreasing exponentially and becomes essentially zero for long times. 

Taking into account the physical time scales of the problem, for time t larger 

than the longest relaxation time of the system collective modes and in 

compliance with Bogolyubov’s principle of weakening of correlations, Λ(k,t) 

has a finite (zero) limit as t → ∞. Then L(k, ω) like the DSF, also has a finite 

zero-frequency limiting value. Hence, for very low frequencies, due to the 

same theorems, the values of the loss function need to be weakly dependent 

on ω. Besides, since the loss function is an odd function of frequency, all of 

its odd-order frequency derivatives vanish at ω = 0. Therefore, the second 

derivative of L(k, ω) with respect to ω (or the first derivative with respect to 

ω2) should be negligible in the limit of very low frequencies: 
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The above qualitative physical justification of the semi-empirical 

observation: the loss function as an even function of frequency or as a 

function of x = ω2 possesses a relatively broad extremum at ω = 0.  

We can rewrite (3.22) as: 

 
2 2 2 2

1 2 1

0

( , )
: ( ) ( ; )

( )
Q ih

L k
h h

C k


   




   . 
(3.24) 

Due to the symmetry of the loss function, the auxiliary function Φ (ω2; h) 

depends only on frequency squared and the function Φ (x = ω2; h) exhibits 

an extremum at x = 0 if 
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(3.25) 

If we solve this equation, we will get a new value for the h: 
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(3.26) 

which is the main result of the present work. This value transform the 

classical method of moments to the self-consistent moments method. In 

addition, the Nevanlinna parameter h can be determined by the procedure of 

maximization of the Shannon entropy: 
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(3.27) 

We have found, that h0 is quite close to the true maximization value of the 

Shannon entropy parameter. In other words, the substitution of the free 

parameter h by its physically motivated value h0 does not contradict the 

Shannon entropy maximization principle, see Fig. 3.1. In this graph we used 

dimensionless wavenumber q=ka. 

 



 

 

Figure 3.1. The COCP Shannon entropy as a function of the Nevanlinna 

parameter h(q) for different wavenumber values. Squares stand for S(h0(q)) 

value. 

 

 

 

 

 

 

 

 

 

 

 



The sign of the second derivative at x = 0 for h = h0: 
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(3.28) 

In other words, the sign of parameter 
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determines the nature of the extremum at ω = 0: a positive θ (k) corresponds 

to a minimum, and a negative value to a maximum. But beside the minimum 

that occurs for the positive θ (k), there is a shifted maximum and that in non- 

or slightly degenerate systems its psition on the wave axes is determined by 

following relation 
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(3.30) 

The important result (3.26) leads to the following simple form for the 

loss function: 
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(3.31) 

Thus, we observe that the Nevanlinna theorem permits to reduce the 

search for the loss function to the study of the NPF or only of the static 

parameter function h(k ). 

In the next chapter we will theoretically calculate the OCP dynamic 

structure factors, find the dispersion relation and describe the molecular-

dynamics (MD) data for the local field corrections. 

 

 



4. SOLUTION OF PHYSICAL PROBLEMS BY THE SELF-

CONSISTENT METHOD OF MOMENTS 

 

4.1. Dynamic structure factors  

Here we demonstrate that the method of moments theoretical approach is 

able to predict the form and structure of the DSF of the classical OCP, 

based on static data only, i.e., the static structure factor (SSF). The SSF can 

be obtained theoretically within the hypernetted chain (HNC) 

approximation and its modifications including the bridge function. The 

present approach provides a purely theoretical access to the full DSF and a 

full quantitative description of the collective modes, including their decay 

and other characteristics, without the necessity to use simulation data as 

input. 

The dynamic structure factor "charge-charge" (DSF), which is the 

central quantity of collective and dynamic effects, is determined by the loss 

function via the classical fluctuation-dissipation theorem (FDT): 
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(4.1) 

so that the moments of DSF are proportional, for a given value of the wave 

number, to the corresponding moments of the loss function (2.3) in the 

following way: 
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(4.2) 

The zero-order moment is, obviously, the SSF, S0 = S(k), while the second 

moment is the f-sum rule 
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(4.3) 

 

 

The fourth moment of DSF equals to 
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(4.4) 

The characteristics frequencies are, therefore 
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where q = ka, and f(p) function equals to 
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Therefore, the DSF can be wtitten in the 
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(4.7) 

It implies that we can calculate the DSF and the collective mode 

characteristics entirely in terms of the static structure factor (SSF), this fact 

defines the self-consistency of the method of moments. The static 

characteristics are to be calculated independently, e.g., in the hypernetted 

chain HNC approximation, or fitting of HNC-results [29-31]. Later we will 

analyze several shemes for SSF calculation. 



In Figs. 4.1 – 4.10  we display results for the dynamic structure factor 

(DSF) of the COCP and YOCP, compared to the MD data [32,33]. In graphs 

we used dimensionless wavenumber q = ka. These and other results 

displayed here were obtained using the SSF calculated within the HNC 

approximation, or fitting models. The molecular dynamics (MD) code in [32] 

simulates the motion of N = 10 000 pointlike particles within a cubic cell. 

For the COCP case they used the particle-particle particle-mesh method to 

account for the long range of the Coulomb potential, while for the YOCP the 

fast decay of the interaction forces makes it possible to introduce a cutoff 

distance, beyond which the interaction of particle pairs can be neglected. The 

integration of the equations of motion is performed with the velocity-Verlet 

scheme. At the initialization of the simulations the positions of the particles 

are set randomly, while their initial velocity vectors are sampled from a 

Maxwellian distribution corresponding to a specified system temperature. 

During the first phase of the simulations the particle velocities are rescaled 

in each time step, in order to reach the desired temperature.  

Our results displayed here were obtained using the SSF calculated 

within the HNC approximation. We have studied the dependence of the 

quality of our dynamic results on the method of precalculation of the SSF. 

Several different static approaches were analyzed, we will discuss them in 

the third chapter. 

 

 

 

 



 

 

 

 

Figure 4.1. The comparison of COCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 



 

 

 

 

Figure 4.2. The comparison of COCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 

 

 

 

 

 

 

 



 

 

 

 

Figure 4.3. The comparison of COCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 

 

 

 

 

 



 

 

 

 

 

Figure 4.4. The comparison of COCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 

 

 

 

 

 



 

 

 

 

 

Figure 4.5. The comparison of COCP DSFs, calculated as eq. (4.7) (solid 

lines) and obtained from MD simulations [33] (squares),  

at a) Γ = 1, q = 1.02;  b) Γ = 10, q = 0.64;  

c) Γ = 50, q = 2.32;  d) Γ = 120, q = 1.39.  

 

 



 

 

 

 

 

Figure 4.6. The comparison of YOCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 

 

 

 

 

 



 

 

 

 

 

Figure 4.7. The comparison of YOCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 
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Figure 4.8. The comparison of YOCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 
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Figure 4.9. The comparison of YOCP DSFs, calculated as eq. (4.7) (lines) 

and obtained from MD simulations [32] (lines with symbols). 
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Figure 4.10. The comparison of YOCP DSFs, calculated as eq. (4.7) (solid 

lines) and obtained from MD simulations [33] (squares),  

at κ = 1 and q = 0.85 and a) Γ = 1, b) Γ = 10, c) Γ = 50, d) Γ = 120.  

 

 

 

 

 

 



4.2. Dispersion equation 

Here we will show, how the self-consistent method of moments can be used 

for the investigation of collective mode propogation. In order to do this, one 

has to solve the dispersion equation: 

 2 2 2 2 2

2 1( ( )) ( , )( ( )) 0q R q q         , (4.8) 

or, if we use the approximation (2.21) with (2.26), we will get: 

 2 2 2 2 2

2 0 1( ( )) ( )( ( )) 0q h q q        . (4.9) 

The complex zeros of the dispersion equation (4.9) can be derived in the 

form:  

 2

0( ) ( ) ( ) / 3,sh q shq q q wX w Y ih         

0( ) ( ) / 3.us usq q X Y ih        

(4.10) 

These roots provide direct information on the system diffusion (unshifted) 

and acoustic-roton (shifted) modes. Here, we use w = exp(2πi/3) and 
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(4.11) 

In Figs. 4.11 – 4.13  we display results for the dispersion relation of 

the COCP and YOCP, compared to the MD data (Fig. 4.14). These and other 

results displayed here were obtained using the SSF calculated within the 

HNC approximation, or fitting models. Notice that no limitation on the 

values of Γ (except that the system must be fluid) exists in this approach. 

Also, the modes can be weakly/strongly decaying or merge, they might be 

even non-propagating.   



 

 

 

 

 

 

 

Figure 4.11. Dispersion relation for the COCP mode. Solid lines represent 

the exact solution of (4.9), dashed lines represent the exact solution of 

(4.9), but with moments, calculated from MD DSFs of [32]. 

 

 

 

 



 

 

 

 

 

 

 

Figure 4.12. Dispersion relation for the YOCP mode. Solid lines represent 

the exact solution of (4.9), dashed lines represent the exact solution of 

(4.9), but with moments, calculated from MD DSFs of [32]. 

 

 

 

 



 

 

 

 

 

 

 

Figure 4.13. Dispersion relation for the YOCP mode. Solid lines represent 

the exact solution of (4.9), dashed lines represent the exact solution of 

(4.9), but with moments, calculated from MD DSFs of [32]. 

 

 

 

 



 

 

 

 

 

 

Figure 4.14. Dispersion relation for the YOCP quasiacoustic mode, 

compared to MD data [32] (dots) at Γ = 100 and κ = 2.  

1 stands for the exact solution of (4.9); 2 represents ω2(q; κ);  3 is the 

acoustic part of the mode, ω = csq, where cs is the sound speed at these 

conditions. 
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4.3. Dynamic local field corrections.  

We have seen that the NPF plays a significant if not crucial role in the present 

approach. Generally speaking, it is a non-phenomenological component of 

the latter. In OCPs it is, additionally, directly related to the dynamic local-

field correction (DLFC). 

On the other hand, by the definition of the DLFC  ,G k  , 
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where  0 ,k   is the RPA polarization operator. Then [34],  
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 (4.13) 

so that any model of the NPF implies a model for the one-component plasma 

DLFC, and vice versa. Particularly, we have: 
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 (4.14) 

The following relation between the static LFC and the zero-frequency 

moment of the loss function follows: 
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(4.15) 

 

which implies that the static LFC is real and is equivalent to the frequency 

 2

1 k  only. Notice also that the DLFC is a response function: it is analytic 

in the upper half-plane of frequency where  , 0ImG k   . 

 



 

Last three expressions are statistics-free, but in a classical system  
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(4.16) 

 

with = 2 /Tv m  being the thermal velocity of the particles. So, as it is well 

known [35], q = ka: 
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(4.17) 

 

The above Ansatz leads to a reasonable agreement between the DLFC 

 0 ,G k   from (4.14) and the simulation data of [33], see Figs. 4.15-4.22. 

The dots there represent the data of [33] As far as we know, no agreement 

has been achieved with these data before. 

The quantity directly computed in MD simulations of [33] was the 

intermediate scattering function, F(k; t), which is the DSF frequency Fourier 

transform. The F(k; t) data permitted the authors of [33] to calculate both the 

DSF and the DLFC, and it was pointed out in [33] that the DLFC was more 

difficult to compute from the F(k; t) MD data, than the DSF. The difficulty 

of determination of the F(k; t) long-time asymptotic form is reflected in the 

accuracy of the results of [33] near the zero frequency. Three starting 

positions are employed to analyze here exactly the DLFC low-frequency 

behavior: (i) Both the NPF and the DLFC are analytic and holomorphic 

functions of the complex frequency z = ω + iδ in the half-plane δ > 0. We 

assume that they admit Maclaurin expansions at ω = 0; (ii) Due to the Riesz-

Herglotz formula for the (Nevanlinna) response functions, the correct zero-



frequency value of the NPF is purely imaginary, say, ih, with h > 0; (iii) The 

systems studied in [33] are classical, hence 
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(4.18) 

Thus, we can write 
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(4.19) 

or, in the another form, 

 𝐺(𝑞, 𝜔 → 0) ≈ 𝐺(𝑞, 0) − 𝑖𝜔𝑝(𝑞) + 𝑂(𝜔2). (4.20) 

Then, after some simple calculations, we obtain for the NPF the 

following limitting form: 
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3
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− 𝑝(𝑞))

= 𝑖ℎ(𝑞). 
(4.21) 

These values are, certainly, different from h0. We have processed the 

graphical material of [33] with respect to the DLFCs and have found that this 

value of h is quite close to h0, and gives satisfactory results for the DSF, see 

Fig. 4.23. Notice that the expressions for the DSF are depending on h and on 

h0 separately. 

 



 

 

 

 

Figure 4.15. Real part of the expression (4.14) for the dynamic local field 

correction (solid line), compared to the MD results [33] (squares),  

at q = 1.02 and Γ = 10. 

 



 

 

 

Figure 4.16. Imaginary part of the expression (4.14) for the dynamic local 

field correction (solid line), compared to the MD results [33] (squares),  

at q = 1.02 and Γ = 10. 

 

 

 

 

 

 

 



 

 

 

Figure 4.17. Real part of the expression (4.14) for the dynamic local field 

correction (solid line), compared to the MD results [33] (squares),  

at q = 1.02 and Γ = 50. 

 

 



 

 

 

 

 

Figure 4.18. Imaginary part of the expression (4.14) for the dynamic local 

field correction (solid line), compared to the MD results [33] (squares), 

at q = 1.02 and Γ = 50. 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 4.19. Real part of the expression (4.14) for the dynamic local field 

correction (solid line), compared to the MD results [33] (squares), 

at q = 1.02 and Γ = 120. 

 

 



 

 

 

 

 

 

Figure 4.20. Imaginary part of the expression (4.14) for the dynamic local 

field correction (solid line), compared to the MD results [33] (squares), 

at q = 1.02 and Γ = 120. 
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Figure 4.21. Real part of the expression (4.14) for the dynamic local field 

correction (solid line), compared to the MD results [33] (squares), 

at q = 1.02 and Γ = 160. 

 

 



 

 

 

 

 

Figure 4.22. Imaginary part of the expression (4.14) for the dynamic local 

field correction (solid line), compared to the MD results [33] (squares), 

at q = 1.02 and Γ = 160. 

 

 

 



 

 

 

 

 

Figure 4.23. Dynamic structure factor (4.7) (lines), normalized to the 

shifted maxima values in COCPs. Red solid lines - DSFs with h0(q), blue 

dashed lines - DSFs with h from the procedure (4.21), squares -  MD 

results [33].  All graphs are at q = 1.02 and a) Γ = 10; b) Γ = 50; c) Γ = 120; 

d) Γ = 160. 

 

 

  

 

 



We have shown, how the dynamic characteristics of strongly coupled 

plasmas could be obtained within the non-perturbative model-free moment 

approach without any data input from simulations so that the inverse 

dielectric function satisfies the first three nonvanishing sum rules 

automatically. 

The dynamic structure factor and dispersion relation were determined 

using exclusively the static structure factor calculated from various 

theoretical approaches.  

The expression for the dynamic local field corrections in Coulomb 

one-component plasmas was obtained in the framework of the algorithm, 

suggested in [34]. A quantitative agreement is achieved with available 

simulation data.  

In general, the suggested mathematical approach is perfectly 

applicable in any physical system described by a response function like the 

inverse dielectric function. 

If we employ this approach to study the plasma dielectric function or 

the dynamic structure factor, the latter are actually the sum rules [35] valid 

irrespectively of the small-parameter expansions. In this sense, the moment 

approach is non-perturbative and thus it is auspicious for the determination 

of dynamic properties of the above crossover systems. Especially, if it is 

complemented by physically motivated considerations, simplifications or 

asymptotic considerations. 

Though the NPF is not a measurable quantity, it can be determined on 

the basis of some external, physical arguments or from a NPF corresponding 

to a broader set of moments. In any case, the quality of such approximations 

can be finally justified by the quality of the corresponding results compared 

to the experimental or simulation data. Observe also that the moment 

approach is equivalent to the continued-fraction method by M.H. Lee and 

others [36]. 



A new development of the method of moments was suggested recently 

in [34], (see also the corresponding Supplemental Material [34] (b)), where 

it was favorably applied to determine various dynamic properties of one-

component classical strongly coupled Coulomb and Yukawa systems in 

terms of their static characteristics, without any adjustment to the dynamic 

simulation data. The validity of the approach was confirmed by a favorable 

comparison with available simulation data. The robustness of the method 

was confirmed by applying several schemes of calculation of the plasma 

static structure factor, which provided results in good agreement with each 

other, within the precision of the simulations themselves. The main idea of 

method in [34] was to determine the dynamic characteristics of plasma via 

its static ones, without any additional parameters. 

In next chapter we will analyze several schemes for the calculations 

of staic characteristics of OCP. 

 

 

 

 

 

 

 

 

 

 

 

 



5. ANALYSIS OF SCHEMES FOR THE CALCULATION OF 

PLASMA STATIC CHARACTERISTICS 

 

As it is laid out in the text, the method of moments complemented by the 

additional empirical information on the behavior of the plasma dynamic 

structure factor (DSF), S(q, ω; κ), near the origin ω = 0 permitted in both 

cases we considered, Coulomb and Yukawa classical one-component 

plasmas, COCPs and YOCPs, respectively, to determine the (static) non-

phenomenological (Nevanlinna) parameter function and thus reduce the 

calculation of the plasma dynamic characteristics to the knowledge of the 

system static structure factor (SSF).  

Certainly, the precision of the SSF data influences the level of 

quantitative agreement of our results with the DSF simulation data. Here we 

analyze the influence on our results of seven different approaches to the 

calculation of plasma SSFs and/or the pair distribution function (PDF), 

including both theoretical (the hyper-netted chain approximation (HNC) 

[29,30], the modified HNC (MHNC) [31] and the variational modified HNC 

(VMHNC) [37-39] and those based on the fitting of precalculated data [31].  

In what follows we present graphical material which demonstrates that 

except for the higher wavenumber values, little discrepancy is observed for 

the plasma dynamic characteristics calculated with the SSF data obtained 

within these approaches or using the method of molecular dynamics (MD), 

see Figs. 5.1-5.4. This stability implies the robustness of the present model.  

 

 



 

 

 

Figure 5.1. Static and dynamic structure factors in COCPs, compared to the 

MD results (dots) [32]. The static structure factors were calculated using 

the following schemes: 1 – [30], 2 – [37], 3 – [38,39], 4 – [31]. 

 

 

 

 

 



 

 

 

Figure 5.2. Static and dynamic structure factors in COCPs, compared to the 

MD results (dots) [32]. The static structure factors were calculated using 

the following schemes: 1 – [30], 2 – [37], 3 – [38,39], 4 – [31]. 

 

 

 

 

 



 

 

 

Figure 5.3. Static and dynamic structure factors in YOCP, compared to the 

MD results (dots) [32]. The static structure factors were calculated using 

the following schemes: 1 – [30], 2 – [37], 3 – [38,39], 4 – [31]. 

 

 

 



 

 

 

 

Figure 5.4. Static and dynamic structure factors in YOCP, compared to the 

MD results (dots) [32]. The static structure factors were calculated using 

the following schemes: 1 – [30], 2 – [37], 3 – [38,39], 4 – [31]. 

 

 

 

 

 



The Fig. 5.5 provides the values of the discrimination parameter ( )k , 

which was introduced in the second chapter: 
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We have shown that in case of θ(k) > 0 the collective mode propagates 

in the system, while the dissipation processes quench it when θ(k) < 0. 

 

 

 

 

 

Figure 5.5. The discrimination parameters θ(q) and b(q) for COCP. The 

static structure factors were calculated using the following schemes: 1a – 

[29], 1b – [30], 2 – [37], 3 – [38,39], 4 – [31]. 

 



There is an inserted graph of Cauchy-Schwarz inequality in Fig. 5.5, 

which we also introduced in the second chapter: 
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We used this condition for the static schemes analyzing. At higher 

values of the coupling parameter Γ we have probed to use the HNC method 

corrected by the bridge function [30]. This was found, however, to lead to 

the violation of the Cauchy inequality manifested by the relation between the 

fourth and the lower-order DSF frequency moments. Notice that the DSF is 

proportional to the parameter b(k), and only in this case, when b(k) > 0, by 

virtue of Nevanlinna 's theorem [26], it satisfies the involved sum rules 

automatically.  

         We analyzed several well-known schemes for the calculation of SSFs. 

The overall conclusion is that for our aims the HNC SSFs are quite sufficient, 

and this is why in the present work we basically employ exactly this classical 

method. Indeed, relative deviations of the DSF peak position calculated 

within three different theoretical methods of evaluation of the SSF, from 

those provided by the dynamic MD calculations. It is observed that the 

discrepancies between the values of the collective mode frequencies (~5%) 

is comparable to the precision of the dynamic MD data.  

Besides, even using sophisticated computers we cannot avoid 

significant prolongation of calculations within the MHNC and VMHNC 

schemes, especially, for higher values of Γ, while the HNC immediately and 

consistently leads to quite satisfactory agreement for both systems we deal 

with here. Nevertheless, further progress in the determination of the SSF and 

other static characteristics in both systems is needed to determine the realm 

of applicability of the present model. 



6. NEVANLINNA PARAMETER FUNCTION INVESTIGATION 

 

As we have seen, the self-consistent moment approach is quantitatively 

suitable for the description of dynamic properties of classical OCPs. It is 

shown in [40] how the method can be successfully extended to the partially 

or completely degenerate electron gases. Nevertheless, the simplification 

(33) effectively limits the applicability of the method in the low-coupling 

regime where the Landau collisionless damping is usually described within 

the RPA. In other words, we wish to choose a model expression for the 

NPF capable of incorporating the low-Γ RPA-like behavior into the 

moment scheme. 

Here, we consider three different model expressions for the dynamic 

renormalized NPF Qν = Q2(ω;q), both for classical and partially degenerate 

systems.  

We start observing that the loss function effectively depends only on 

dimensionless variables 
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I. This implies that the dimensionless NPF can be written as 
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where x0 is the characteristic value of the new variable equal to k2vth
2 = 

2q2/3Γ or k2vF
2 = q2vF

2 /a2, respectively, in the classical and quantum-

mechanical cases, vth and vF being, certainly, the thermal and Fermi 

velocities. Indeed, then the frequency-dependent part of the r.h.s. of (5.2) can 

be written as a function of y = x/x0 and from the condition of the loss function 

extremum at the point y = 0 we obtain: 
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Observe that if W1 = 1, W0 = 0, W2 = 0, we return to the “static” 

approximation 2
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II. Presume first that the NPF is the plasma dispersion function [26]: 
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(6.4a) 

 

where 2( 0 ) i exp( ) 2 ( )Z i F         , with the Dawson integral 
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A simple variable substitution leads to the following  representation of h: 
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Alternatively, we might introduce an adjustable parameter and 

redefine: 
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(6.4b) 

Somewhat more cumbersome but straightforward calculations lead in this 

case to 
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which tends to h0 when α → 1. Notice that the parameter α, generally 

speaking, can be fixed by the Shannon-entropy maximization procedure 

[26]. The numerical data with respect to the above frequency-dependent 

NPFs is presented below, see Figs. 6.1 – 6.4. 

 

 

 



 

 

 

Figure 6.1. Dynamic structure factor fot the COCP presenting the method 

of moments (MM) data vs. the MD data (dots) [32].  

1 – MM with 𝑄2(𝑞)/𝜔𝑝 = 𝑖ℎ0,  2 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4b), with 

𝛼 = 0.5, 3 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4a), 4 – RPA theory. 

 

 



 

 

 

Figure 6.2. Dynamic structure factor fot the COCP presenting the method 

of moments (MM) data vs. the MD data (dots) [32].  

1 – MM with 𝑄2(𝑞)/𝜔𝑝 = 𝑖ℎ0,  2 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4b), with 

𝛼 = 0.5, 3 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4a), 4 – RPA theory. 

 

 

 



 

 

 

Figure 6.3. Dynamic structure factor fot the COCP presenting the method 

of moments (MM) data vs. the MD data (dots) [32].  

1 – MM with 𝑄2(𝑞)/𝜔𝑝 = 𝑖ℎ0,  2 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4b), with 

𝛼 = 0.5, 3 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4a), 4 – RPA theory. 

 

 

 



 

 

 

Figure 6.4. Dynamic structure factor fot the COCP presenting the method 

of moments (MM) data vs. the MD data (dots) [32].  

1 – MM with 𝑄2(𝑞)/𝜔𝑝 = 𝑖ℎ0,  2 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4b), with 

𝛼 = 0.5, 3 – MM with 𝑄2(𝑞)/𝜔𝑝 from (6.4a), 4 – RPA theory. 

 

 

 

 

 

 

 



7. CONCLUSIONS 

 

Dynamic characteristics of dense plasmas are obtained within the non-

perturbative model-free moment approach without any data input from 

simulations so that the inverse dielectric function satisfies the first three non-

vanishing sum rules automatically.  

The dynamic structure factor, the collective mode dispersion and 

decay, the sound speed and even the dynamic local-field correction are 

determined using exclusively the static structure factor calculated from 

various theoretical approaches or the molecular dynamics. A quantitative 

agreement is achieved with available simulation data. In general, the 

suggested mathematical approach is perfectly applicable in any physical 

system described by a response function like the inverse dielectric function. 

It was observed, that the Cauchy-Schwarz inequality yields a simple 

criterion for validity of the static characteristics. Several different schemes 

for evaluating the static structure factor of strongly coupled one-component 

classical plasmas have been tested using the mentioned criterion and some 

of them have failed to pass.  

Several extensions for the NPF representations were investigated. 

Though the self-consistent method of moments with a static NPF has proven 

to work very well in warm dense matter, our preliminary results demonstrate 

that the suggested model NPFs provide a satisfactory agreement with the 

simulation data in low-density Coulomb plasmas, when the Landau decay 

plays a significant role. 
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