

TRABAJO FIN DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL "EL MAIGMÒ", TIBI (ALICANTE)

AUTORA: AMPARO LEON VINET

TUTOR: JOSE MIGUEL MONTALVA SUBIRATS

Curso Académico: 2018-19

RESUMEN

El presente Trabajo Fin de Grado trata el cálculo y diseño estructural de una nave industrial con dos pórticos adosados a dos aguas destinada al tintado y almacenamiento de productos textiles de algodón. El edificio posee 3000 metros cuadrados de superficie construida, con 75 metros de longitud y pórticos de 20 metros de luz, localizado en el polígono industrial de Tibi (Alicante).

Para el desarrollo de este trabajo se emplea principalmente el programa de cálculo de estructuras CYPE, junto al programa de dibujo AutoCAD y el software de generación de presupuestos Arquímedes.

Palabras clave: Nave industrial, Estructura metálica, Industria textil

RESUM

Aquest Treball Final de Grau tracta el càlcul y disseny estructural d'una nau industrial amb dos pòrtics adossats a dos aigües destinada al tintat i emmagatzemament de productes tèxtils de cotó. L'edifici posseïx 3000 metres quadrats de superfície construïda, amb 75 metres de longitud i pòrtics de 20 metres de llum, localitzat en el polígon industrial de Tibi (Alacant).

Per al dessenvolupament d'aquest treball, s'utilitza principalment el programa de càlcul d'estructures CYPE, junt amb el programa de dibuix AutoCAD i el software de generació de pressupostos Arquímedes.

Paraules clau: Nau industrial, Estructura metàl·lica, Indústria tèxtil

ABSTRACT

The present TFG calculation and structural design of and industrial plant, with two gable roofs, dedicated to the dyeing and storage of cotton threads and fabrics. The building has 3000 square meters of constructed area, is 75 meters long and has porticoes of 20 meters. It's located in the industrial park "El Maigmò", Tibi (Alicante).

For the development of this project, there's a main use of the structural building calculation program CYPE, along with the computer-aided design software AutoCAD and the budget calculation software Arquimedes.

Keywords: Industrial plant, Metalic structure, Textil industry

Documentos Contenidos en el TFG

• Documento I: Memoria

Anexo I: Cálculo Estructural

Documento II: PDocumento III: P

Índice Memoria

1	(OBJI	ΕΤΟ [DEL PROYECTO	. 1
2	I	NTF	ODU	CCIÓN AL PROYECTO	. 1
	2.1		Ante	ecedentes	. 1
	2.2		Mot	ivaciones	. 1
3	F	PRO	CESO	PRODUCTIVO	. 1
	3.1		Desc	cripción del Proceso	. 1
	3.2		Supe	erficie Necesaria	. 3
4	F	POS	IBLES	EMPLAZAMIENTOS	. 4
	4.1		Parc	Sagunt 1, Sagunt	. 4
	4.2		El M	aigmò fase 1, Tibi	. 5
	4.3		Nue	vo Tollo fase 1, Utiel	. 6
5	9	SITU	ACIÓ	N Y EMPLAZAMIENTO SELECCIONADO	. 6
6	1	NOR	MAT	IVA APLICADA	. 7
7	[DES	CRIPO	CIÓN DE LA PARCELA	. 7
8	[DES	CRIPC	CIÓN DE LA SOLUCIÓN ADOPTADA	. 9
	8.1		Mat	eriales	. 9
	8.2		Actu	aciones Previas	10
	8.3		Cime	entación	10
	8	3.3.2	L	Zapatas	11
	8	3.3.2	2	Vigas de atado	12
	8	3.3.3	3	Placas de anclaje	12
	8.4		Estr	uctura Metálica	13
	8	3.4.2	L	Pórtico Interior	13
	8	3.4.2	2	Pórtico de Fachada	14
	8	3.4.3	3	Arriostramientos	14
	8	3.4.4	1	Viga Perimetral	15
	8	3.4.5	5	Correas	15
	8.5		Colis	sos	16
	8.6		Elen	nentos Constructivos	16

Proyecto Estructural de Edificio Industrial Dedicado al Teñido y Almacenamiento de Hilos y Telas de Algodón de 3000m² Situado en el Polígono Industrial "El Maigmò", Tibi (Alicante)

	8.6.1	Cerramientos de Fachada	16
	8.6.2	Cerramiento de Cubierta	17
	8.6.3	Solera	17
9	RESUME	N DEL PRESUPUESTO	17
10	CONC	LUSIONES	18
11	BIBLIC	OGRAFÍA	18

1 OBJETO DEL PROYECTO

Esta es la memoria escrita del Trabajo de Fin de Grado de la alumna Amparo León Vinet, matriculada en el Grado en Ingeniería en Tecnologías Industriales.

En el presente documento se aborda el estudio, cálculo y diseño de una nave industrial destinada al tintado de hilos y telas con una superficie construida de 3000 m². Se emplean diversos programas propios del sector, como son CYPE y AutoCAD, durante el desarrollo del trabajo, con el fin último de demostrar los conocimientos adquiridos durante el Grado.

2 INTRODUCCIÓN AL PROYECTO

2.1 Antecedentes

El impulsor del proyecto es una empresa ficticia. Esta empresa solicita la construcción de un edificio industrial para empezar la producción del teñido de hilos y telas. El cliente entrega de antemano tres posibles emplazamientos que le resultan de interés.

2.2 Motivaciones

El Trabajo Fin de Grado presente ha sido seleccionado por diversos motivos:

El primero de ellos es el aprendizaje de primera mano del desarrollo de un proyecto, tanto por el manejo de programas de gran importancia en la profesión como por el proceso y planificación necesarios para alcanzar a realizar un trabajo de semejante magnitud.

Por otro lado, el llevar a la práctica los conocimientos teóricos aprendidos durante el Grado resulta interesante a nivel personal, en especial aquellos estudiados en las asignaturas de Proyectos y Tecnología de la Construcción.

Finalmente, el desarrollo del TFG es uno de los momentos más importantes en la carrera del estudiante, y resulta imprescindible realizarlo con un tutor atento y responsable y en unas condiciones dignas, con acceso gratuito y sin restricciones a las herramientas de trabajo básicas. Es por este motivo por el cual se ha solicitado como tutor a un miembro del Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil.

3 PROCESO PRODUCTIVO

3.1 Descripción del Proceso

La elaboración del producto requiere de una transformación: el tinte. La Figura 1 muestra el esquema productivo:

LEYENDA					
Operación de producción (proceso o fabricación)					
Control					
Almacenaje					

Tabla 1. Leyenda esquema productivo

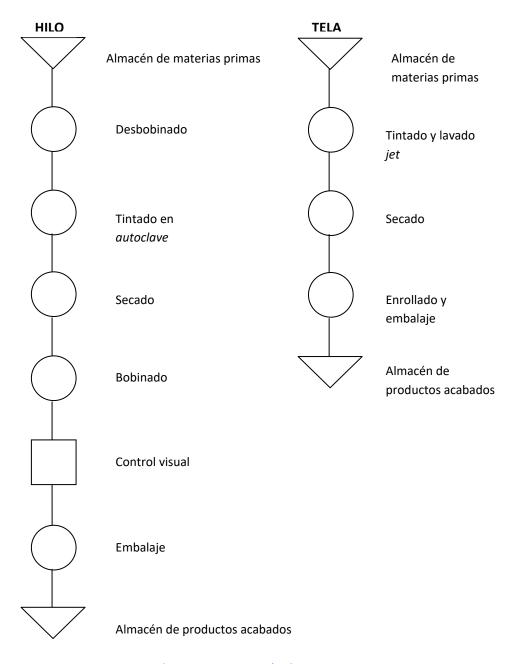


Figura 1. Esquema productivo

Los diferentes hilos y telas son recibidos y depositados en el almacén de materias primas, lugar desde el cual cada producto seguirá distintos caminos:

Por un lado, los hilos son desbobinados y preparados para el tinte. Una vez tintados, pasan por el proceso de secado y, finalmente, de bobinado. Se realiza un control visual al producto final antes de ser embalado y almacenado en el almacén de productos acabados.

Por otro lado, las telas pasan por el tintado y lavado *jet*. Terminada esta fase, se elimina el agua del producto empleando la secadora y es enrollado y embalado para finalmente guardarse en el almacén de productos acabados.

3.2 Superficie Necesaria

Cada uno de los procesos a realizar necesita su espacio correspondiente. Para poder calcularlo de la forma más objetiva posible se ha empleado el Método de Guerchet, el cual tiene en cuenta, además de la superficie física, la superficie necesaria para los operarios.

La fórmula de cálculo para la superficie mediante Guerchet es:

$$S_{total} = S_{es} + S_g + S_{ev} = S_{es} + (S_{es} \times n) + (S_{es} + S_{es} \times n) \times k$$

Donde:

- S_{es}: Superficie estática, la que ocupa la máquina.
- S_g: Superficie gravitatoria, la que utilizan los empleados y el material procesado.
- S_{ev}: Superficie de evolución, para el transporte y movimiento de materiales.

Actividad	Superficie (m²)
Almacén de materias primas	400
Almacén de productos acabados	600
Laboratorio de colorantes	100
Área de embalaje	100
Vestuarios y servicios WC.	50
Depuradora	50
Sala de herramientas	100
Dirección y administración	300

Tabla 2. Superficie necesaria actividades básicas

Actividad	Ses	n	Sg	k	Sev	S total	Ud.	S final
Bobinadora	2	1	2	0.25	1	5	24	120
Máquina de teñir Autoclave	1,378	1	1,378	0.25	0,689	3,444	30	103,313
Máquina de teñir <i>jet</i>	1,071	2	2,141	1	3,212	6,424	18	115,625
Secadora	3,268	1	3,268	1	6,536	13,072	26	339,872

Tabla 3. Superficie necesaria actividades de proyecto

Quedando así una superficie total de 2.378,809 m². Para permitir el paso con facilidad de personal y materiales y teniendo en cuenta posibles ampliaciones de compra de maquinaria o una reorganización de la planteada, se añaden 500 m² a la superficie anterior. Redondeado, se decide finalmente realizar la nave de 3.000 m².

4 POSIBLES EMPLAZAMIENTOS

Se va a estudiar la mejor localización de entre las ofrecidas por el cliente: Parc Sagunt (Sagunto, Castellón), El Maigmò (Tibi, Alicante) y Nuevo Tollo (Utiel, Valencia).

4.1 Parc Sagunt 1, Sagunt

El Parc Sagunt se encuentra a 24 kilómetros de Valencia, próximo al puerto de Sagunto. Es uno de los mayores parques empresariales de Europa, con más de tres millones de metros cuadrados (3.033.646 m²) de terreno, un millón de ellos (1.022.587 m²) dedicados al sector industrial.

Según la información obtenida en el documento *Homologación del área Parc Sagunt y plan parcial del sector Parc Empresarial Sagunt 1 del suelo urbanizable*, Artículo 22, tiene una exigencia de superficie mínima de parcela de 6.000 m², con un coeficiente de ocupación sobre parcela del 70%. La normativa pide retranqueos respecto a la vía principal de 10 metros y respecto a los laterales y parte trasera de 6 metros. Además, por cada 150 metros cuadrados de superficie edificada ha de haber una plaza de aparcamiento.

PARC SAGUNT, SAGUNT				
Coeficiente de ocupación sobre parcela (%)	70			
Coeficiente de edificabilidad (m²/m²)	1.05			
Retranqueos respecto vial principal (m)	10			
Retranqueos a linde lateral/trasero (m)	6			
Altura máxima de cornisa (m)	15			
Aparcamiento (exigencia mínima)	1/150 m ²			
Superficie mínima de parcela	6000 m ²			

Tabla 4. Información básica Parc Sagunt

4.2 El Maigmò fase 1, Tibi

El polígono industrial El Maigmò se halla a 29 km de Alicante y 160 km de Valencia. Cuenta con una buena conexión a ambas ciudades gracias a la autovía del Mediterráneo (A-7) y está diseñado para "acoger principalmente a pequeñas y medianas empresas de la comarca" de diversos sectores, incluido el textil.

En el documento *Plan parcial industria. Promoción pública. Término municipal de Tibi* hallamos la información básica de mayor interés. Cada parcela debe tener una superficie mínima de 1000 m² (Art. 2), con un coeficiente de edificabilidad de 1m²/m² y un coeficiente de ocupación sobre parcela limitado únicamente por los retranqueos mínimos (Art. 5) que son de 2,50 metros mínimo en todo el perímetro y de 5,00 metros en los lados que den a la vía pública (Art. 9). En la modificación del 2 de febrero de 2016 se introducen los nuevos valores oficiales de altura máxima de edificación, siendo de 10 metros medidos desde la primera calle paralela a la autovía (Art. 7), y un mínimo de una plaza de aparcamiento por cada 200 m² de ocupación (Art. 11).

EL MAIGMÒ, TIBI				
Coeficiente de ocupación sobre parcela (%)	-			
Coeficiente de edificabilidad (m²/m²)	1			
Retranqueos respecto vial principal (m)	5			
Retranqueos a linde lateral/trasero (m)	2.5			
Altura máxima de cornisa (m)	10			
Aparcamiento (exigencia mínima)	1/200 m ²			
Superficie mínima de parcela	1000 m ²			

Tabla 5. Información básica El Maigmò

4.3 Nuevo Tollo fase 1, Utiel

Nuevo Tollo se encuentra en Utiel, a 83 km de Valencia y 267 km de Madrid, con conexión directa gracias a la autovía A-3.

En el documento *Plan parcial industrial "Nuevo Tollo"*, *Utiel* obtenemos la información necesaria para la edificación de nuestra nave. La superficie mínima de parcela es de 800 m2 (Art. 4.4.2), con un coeficiente de edificabilidad de 1m²/m². El coeficiente de ocupación de parcela resulta el más restrictivo entre la aplicación de los retiros, siendo de mínimo 10 metros en la alineación exterior, 5 metros en esquinas y chaflanes y 3 metros en los lindes laterales y traseros (Art. 4.5.1), y la aplicación de un porcentaje máximo de ocupación del 75% (Art. 4.5.2). Las plazas de aparcamiento tendrán como mínimo la dimensión de 2,50 x 5,00 metros (Art. 2.10.2) y debe existir mínimo una por cada 100 m² de actividad productiva, o fracción superior a 50 m2 (Art. 2.6.5). La altura máxima de cornisa será de 14 metros (Art. 4.6.1).

NUEVO TOLLO, UTIEL				
Coeficiente de ocupación sobre parcela (%)	75			
Coeficiente de edificabilidad (m²/m²)	1			
Retranqueos respecto vial principal (m)	10			
Retranqueos a linde lateral/trasero (m)	3			
Altura máxima de cornisa (m)	14			
Aparcamiento (exigencia mínima)	1/100 m ²			
Superficie mínima de parcela	800 m ²			

Tabla 6. Información básica Nuevo Tollo

5 SITUACIÓN Y EMPLAZAMIENTO SELECCIONADO

Cada uno de los tres polígonos industriales posee sus ventajas y desventajas.

El polígono Parc Sagunt posee la ventaja de la proximidad a la ciudad de Valencia y al puerto de Sagunto, innovaciones tecnológicas y el ser apto para el sector textil. Por contra, nuestras necesidades superficiales de la nave son 3.000 metros cuadrados, muy inferior a los 6.000 metros cuadrados mínimos de parcela.

El polígono El Maigmò parte con la ventaja de no exigir un máximo de parcela ocupada, retranqueos inferiores a las otras opciones y el ser foco del sector textil. Se encuentra cerca del puerto de Alicante y junto a la A-7, aportándole buenas conexiones que, sin embargo, no son comparables a las que tiene el Parc Sagunt. Valencia se encuentra a 160 km.

El polígono Nuevo Tollo halla un punto intermedio entre Valencia y Madrid, a 83 y 267 kilómetros respectivamente, gracias a la conexión con la autovía A-3. Los retranqueos que pide

la normativa son menores a los del polígono Parc Sagunt y el coeficiente de ocupación sobre parcela mayora éste. A pesar de ello, la ausencia de puerto y el no encontrarse en un lugar conocido por el sector textil son una desventaja de este polígono frente a los anteriores.

Comparando las tres posibilidades, el polígono industrial que suple las necesidades de la nave a construir es El Maigmò, Tibi. A pesar de no poseer tan buenas conexiones como el Parc Sagunt ni encontrarse cerca de Valencia como el resto, el hallarse en un polígono con una industria textil conocida, tener el puerto de Alicante cerca y unas condiciones de edificación menos restrictivas que el resto, lo hacen el polígono ideal para nuestra nave.

Figura 2. Localización del polígono industrial

6 NORMATIVA APLICADA

Para la realización de este proyecto se ha considerado y empleado los siguientes documentos:

- Código Técnico de la Edificación (CTE), aprobado por el Real Decreto 314/2006 el 17 de marzo. Se encuentra dividido en diversos Documentos Básicos, de los cuales se han empleado los siguientes:
 - Documento Básico de Seguridad Estructural de Acciones en la Edificación (DB SE-AE).
 - o Documento Básico de Seguridad Estructural de Estructuras de Acero (DB SE-A).
 - o Documento Básico de Seguridad Estructural de Cimentaciones (DB SE-C).
- Instrucción de Hormigón Estructural (EHE-08), aprobado por el Real Decreto 1247/2008 el 18 de julio
- Plan parcial industrial. Promoción pública. Término municipal de Tibi, y sus modificaciones, publicado en el Boletín Oficial de la Provincia de Alicante.

7 DESCRIPCIÓN DE LA PARCELA

Conociendo la superficie mínima necesaria y el emplazamiento de la nave se pueden seleccionar el número de parcelas necesarias, sabiendo que cada una de ellas tiene una superficie de 1.018,32m² (50,22 x 20,27), sin contar con los retranqueos necesarios. Teniendo en cuenta esto, se deduce que el número mínimo de parcelas es cuatro en paralelo, quedando

así una superficie edificable de 3.250,14 m². Por motivos de espaciado, se ha decidido añadir una quinta parcela, facilitando así la entrada y salida de vehículos.

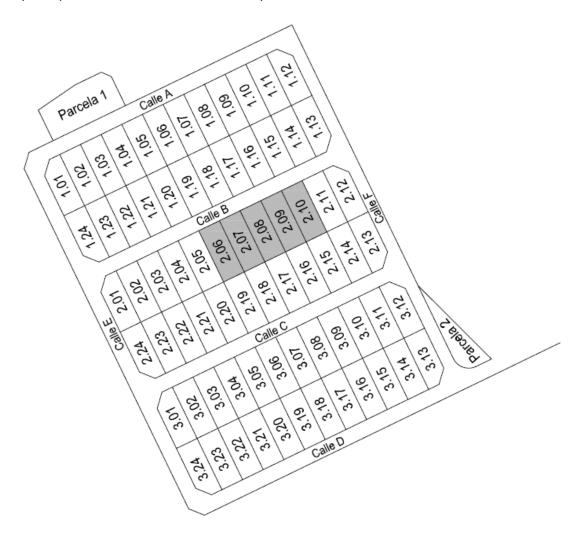


Figura 3. Parcelas seleccionadas

La normativa del polígono exige una fachada mínima de 20 metros, cumplida por exceso con el diseño de la nave de 75 x 40 metros. Estos 3.000 metros cuadrados de superficie fuerzan a la creación de 15 plazas de aparcamiento para turismos, realizándose éstas de 5 x 2,5 metros para mayor comodidad del usuario.

Por último, pero no menos importante, se impone la plantación de un árbol por cada 5 metros lineales de fachada, exceptuando justificación por entrada de vehículos, situados todos ellos en la zona de retranqueo respecto a la vía principal.

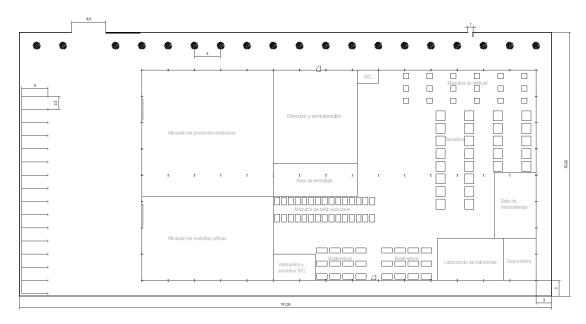


Figura 4. Parcela final. Plano 2

8 DESCRIPCIÓN DE LA SOLUCIÓN ADOPTADA

8.1 Materiales

Antes de proceder a la descripción de la solución adoptada, se nombra el listado de materiales empleado para cada una de sus partes estructurales. Los datos de cada uno de ellos han sido obtenidos del DB-SE correspondiente o de la EHE-08.

ACEROS					
Denominación	Usos	Límite elástico (MPa)	Tensión de rotura (MPa)		
S235 JR	Correas de cubierta	235	360		
S275 JR	Correas laterales, pilares, jácenas	275	410		
B500 S	Armado de zapatas, pernos de placas de anclaje, vigas de atado	500	550		

Tabla 7. Características de los aceros empleados

	HORMIGÓN					
Denominación	Usos	Resistencia (N/mm²)	Consistencia	Tamaño máximo del árido (mm)	Clase de exposición	Dosificación mínima (kg/m³)
HA- 25/B/20/IIa	Zapatas, vigas de atado	25	Blanda	20	lla	-
HL-150/B/20	Hormigón de limpieza	-	-	20	-	150

Tabla 8. Características de los cementos empleados

8.2 Actuaciones Previas

Escogidas la localización y distribución en planta, se realiza la limpieza y desbroce del terreno. Por motivos de alcance del proyecto, no se ha podido realizar un estudio geotécnico, el cual resultaría indispensable en un caso real.

Realizado el desbroce, se añade una capa de zahorra artificial caliza de espesor 20 cm con la intención de preparar el terreno para nuestra nave.

Por último, se procede a la excavación de las cimentaciones, teniendo en cuenta añadir el volumen que ocupará el hormigón de limpieza a la cantidad extraída total.

No se ha de olvidar el transporte de residuos, los cuales serán trasladados mediante camión al lugar que les corresponda.

8.3 Cimentación

El objetivo final de la cimentación es repartir las cargas de la estructura, en este caso una nave industrial, al terreno. Para este proyecto se han utilizado zapatas aisladas y vigas centradoras.

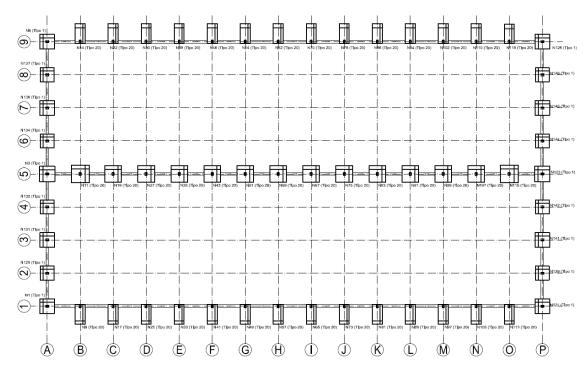


Figura 5. Planta de cimentaciones. Plano 3

En la cimentación se ha empleado hormigón armado HA-25/B/20/IIa con el acero B500 S (γ_s = 1,15).

Una vez finalizada la excavación del terreno nombrada en al apartado anterior, teniendo en cuenta la EHE-08, se realiza un hormigonado de limpieza de 10 centímetros en las zonas superior e inferior de las zapatas y en las zonas superior e inferior de las vigas de atado. Como se hormigona contra el terreno, el recubrimiento lateral de las zapatas ha de ser de al menos 8 centímetros.

8.3.1 Zapatas

Para las zapatas se ha seguido el criterio de ahorro de material. Mientras que para las zapatas excéntricas muy pocas de ellas sufren variaciones con respecto a la norma general, las zapatas centradas existen hasta cinco tipos distintos, variando desde los 210 x 210 x 50 hasta los 270 x 270 x 65, dependiendo de su posición.

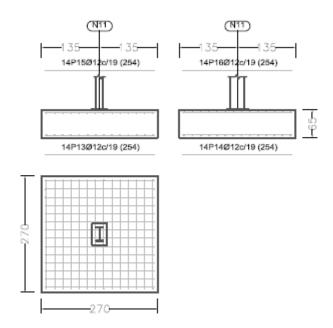


Figura 6. Ejemplo zapata cuadrada. Plano 4.1

8.3.2 Vigas de atado

En las vigas de atado, como la separación entre pilares y pórticos es la misma (5 metros), solamente existe un tipo, de dimensiones 40 x 40 cm.

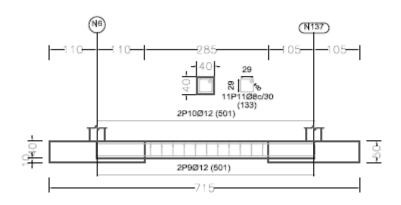


Figura 7. Vigas de atado. Plano 4.2

8.3.3 Placas de anclaje

Las placas de anclaje, como nombran los Apuntes de la Asignatura de Tecnología de la Construcción, "son el nexo de unión de la estructura superficial (Pilares) con los elementos de cimentación". Para este proyecto existen de dos tipos. Ambos tipos poseen pernos roscados, con un anclaje al hormigón por patilla a 90º para reducir la profundidad de inserción.

8.4 Estructura Metálica

Hay diversas opciones para el diseño de la estructura metálica, todas ellas teniendo en cuenta el ancho de 40 metros de la nave. Las dos a considerar han sido la colocación de cerchas y el situar dos pórticos a dos aguas adosados. Al no existir problemas de pilares intermedios en el interior, se ha seleccionado la opción de los dos pórticos adosados a dos aguas.

Como se ha nombrado anteriormente, la nave posee unas dimensiones de 40 metros de ancho y 75 metros de largo, con una altura de pilar de 7 metros y de cumbrera de 7,875 metros. Los pilares de fachada están divididos a una distancia de 5 metros y entre pórtico y pórtico existe una separación de 5 metros. En la siguiente figura (Figura 8) se observa el modelado de la nave y sus partes:

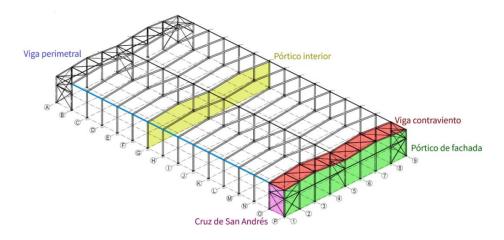


Figura 8. Partes de la nave

8.4.1 Pórtico Interior

De los 16 pórticos nombrados anteriormente, 14 de ellos son interiores. Poseen tres pilares de perfil IPE 330 y cuatro jácenas del mismo perfil, siendo todos ellos iguales por poseer cargas similares. Las uniones realizadas son soldadura para aquella entre pilar y jácena, con una pendiente del 5°, y mediante placas de anclaje entre pilar y zapata.

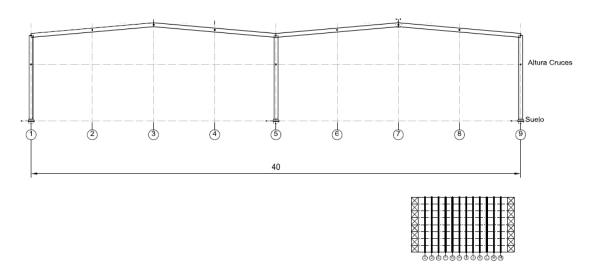


Figura 9. Pórtico interior. Plano 5.3

8.4.2 Pórtico de Fachada

Los dos pórticos restantes son pórticos de fachada, formados por un total de 9 pilares de perfil IPE 330 y cuatro jácenas de perfil IPE 240. Posee arriostramientos en forma de Cruz de San Andrés con tirantes de perfil L 75x75x4, calculado mediante el criterio de esbeltez reducida al ser un elemento de tracción. A causa de su elevada altura, el pórtico se encuentra dividido en dos a una distancia de 4,63 metros con respecto al suelo mediante un montante de perfil #80x3. La altura es suficiente para la entrada de vehículos de carga y descarga, siendo por normativa de la DGT su altura máxima de 4,5 metros.



Figura 10. Pórtico de fachada. Plano 5.1

8.4.3 Arriostramientos

8.4.3.1 Arriostramiento lateral

Su función básica es resistir las acciones del viento y enviarlas a la cimentación. La selección de perfiles ha sido un #80x3 para los montantes y dos perfiles tipo L distintos para las diagonales: un L 60x60x4 para la diagonal superior y un L 80x80x3 para la diagonal inferior.

8.4.3.2 Arriostramiento de cubierta

Su función básica es resistir las acciones del viento y enviarlas al arriostramiento lateral, que se encargará de llevarlas hasta la cimentación. De entre los diversos tipos que hay, se ha elegido finalmente colocar una viga contraviento tipo Pratt con las diagonales dobladas, cumpliendo así que las diagonales reciben los esfuerzos de tracción y los montantes los esfuerzos de compresión. El perfil de las diagonales empleado ha sido un L 75x75x4, mientras que para los montantes el elegido finalmente ha sido un #80x3.

8.4.4 Viga Perimetral

Tal y como se nombra en los Apuntes de la Asignatura de Tecnología de la Construcción, la viga perimetral es "una barra de arriostramiento (atado) que trabaja a tracción", cuya función es canalizar cualquier empuje movilizado por intento de pandeo de los pórticos interiores a la Cruz de San Andrés y garantizar que los pórticos trabajan en el plano. Para esta nave se ha empleado un perfil IPE 120.

8.4.5 Correas

Las correas son el nexo de unión entre los cerramientos y cubierta con la estructura metálica. Hay de dos tipos: correas de cubierta y correas laterales.

Para las correas de cubierta se ha empleado un perfil ZF-180x2,0 con una separación de 1,89 metros entre ellas.

Las correas laterales tienen una separación de 1,6 metros y se han realizado mediante un perfil IPE 100.

Nº correas	Separación correas (m)	Perfil	Peso por correa lineal (kg/m)	Peso lineal (kg/m)
		CF - 180x2.0	5.12	122.88
24	1.89	ZF - 180x2.0	4.96	119.04
	1.57	CF - 160x2.0	4.80	134.40
28		ZF - 160x2.0	4.65	130.20
	1.35	CF - 160x2.0	4.80	153.60
32		ZF - 160x2.0	4.65	148.80
	1.18	CF - 160x2.0	4.80	172.80
36		ZF - 160x2.0	4.65	167.40

Tabla 9. Opciones correas de cubierta

8.5 Colisos

Por motivos de normativa, al tener la nave una longitud superior a 40 metros se ha de colocar un sistema que la proteja de los efectos de dilatación y contracción causados por la temperatura. Para ello, se han instalado unas juntas de dilatación en las correas, denominadas colisos, que permiten su movimiento sin generar problemas en la estructura.

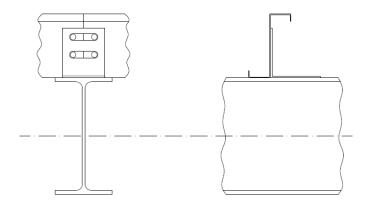


Figura 11. Detalle de colisos. Plano 5.6

8.6 Elementos Constructivos

8.6.1 Cerramientos de Fachada

El cerramiento de fachada está compuesto de dos materiales: paneles de hormigón pretensado hasta una altura de 3,5 metros y, desde esa altura hasta la parte superior, paneles tipo sándwich de acero. Esta composición se realiza tanto como disuasorio y protección ante robos como por motivos estéticos. Además, al ser ambos tipos ya prefabricados, tienen una instalación rápida.

Los paneles de hormigón serán colocados directamente sobre los pilares, mientras que los de tipo sándwich de acero irán fijados a las correas.

5,5 4 16 4

Figura 12. Cerramiento de fachada. Plano 6

Cerramiento de fachada derecho

8.6.2 Cerramiento de Cubierta

La cubierta se encuentra protegida mediante paneles sándwich aislantes de acero con aislante de lana de roca. Estos paneles son aptos para la categoría de uso correspondiente, que se trata de G1, es decir, cubiertas accesibles únicamente para conservación, cubiertas ligeras sobre correas (sin forjado), aplicada en las cuatro aguas.

El aislante interior seleccionado de estos paneles, lana de roca, es un material ligero y con baja conductividad térmica, ofreciendo así una gran protección ante el clima mientras cumple con las necesidades de peso del tipo de cubierta.

8.6.3 Solera

La solera es una capa de hormigón en masa tipo HM-15/B/20/I de unos 10 centímetros de espesor situada sobre la superficie de la nave. Realiza la función de nivelación del terreno, como suelo previo al pavimento a utilizar en el interior del edificio industrial.

9 RESUMEN DEL PRESUPUESTO

CAPÍTULO	RESUMEN	IMPORTE	
01	ACONDICIONAMIENTO DEL TERRENO DE LA NAVE	64,591.41	
02	ACONDICIONAMIENTO DEL TERRENO DE LA PARCELA	66,459.71	
03	CIMENTACIONES	36,316.01	
04	ESTRUCTURAS	147,031.15	
05	FACHADAS Y CUBIERTAS	250,301.24	
06	CARPINTERÍA METÁLICA	8,639.42	
07	URBANIZACIÓN INTERIOR DE LA PARCELA	20,056.96	
	PRESUPUESTO DE EJECUCIÓN MATERIAL	593,395.90	
	13.00% Gastos generales 77,141.47		
	6.00% Beneficio industrial 35,603.76		
	Suma	112,745.23	
	PRESUPUESTO BASE DE LICITACIÓN SIN IVA	706,141.13	
	21% IVA		
	PRESUPUESTO BASE DE LICITACIÓN	854,430.77	

Asciende el presupuesto a la expresada cantidad de OCHOCIENTOS CINCUENTA Y CUATRO MIL CUATROCIENTOS TREINTA con SETENTA Y SIETE CÉNTIMOS

Tibi, 22 de junio de 2019

10 CONCLUSIONES

Durante la realización del proyecto se han extraído diversas conclusiones.

En primer lugar, observando los resultados, se ha conseguido diseñar una nave industrial apta para su construcción, objetivo principal del proyecto. A pesar de la falta de instalaciones tales como la eléctrica o climatización, éstas no eran el objetivo principal del trabajo académico, pero podría ampliarse en caso de tomar la especialidad en el Máster de Construcción.

Seguidamente, con la información obtenida durante el desarrollo, en caso de volver a comenzar desde un principio se podría mejorar diversos aspectos. Entre ellos, como se ha nombrado anteriormente, la inclusión de instalaciones, pluviales y de iluminación. También sería posible optimizar el tiempo, sabiendo cuánto consume cada parte del desarrollo y conociendo los posibles errores a cometer y evitarlos.

Por último, decir que este proyecto ha sido una parte vital de la formación como futura Ingeniera, aprendiendo a emplear los conocimientos adquiridos durante la carrera y obteniendo nuevos durante su desarrollo.

11 BIBLIOGRAFÍA

- Código Técnico de la Edificación (CTE) (26/05/2019). https://www.codigotecnico.org/
 - Documento Básico de Seguridad Estructural (CTE DB-SE)
 - Documento Básico de Seguridad Estructural, Acciones en la edificación (DB-SE-AE)
 - o Documento Básico de Seguridad Estructural, Cimientos(DB-SE-C)
 - o Documento Básico de Seguridad Estructural, Acero (DB-SE-A)
- Prontuarios de Ingeniería Civil. Consultado el 26 de mayo de 2019 http://prontuarios.info/
- Seguridad y Promoción Industrial Valenciana (26/05/2019). http://www.sepiva.es/
- Parque en comercialización, Parc Sagunt (26/05/2019)
 https://www.parcsagunt.com/es/home.html
- Parque en comercialización, Maigmò Fase I Tibi (26/05/2019)
 http://www.sepiva.es/parques_comercializacion/el_maigmo_f
- Homologación del área Parc Sagunt y plan parcial del sector Parc Empresarial Sagunt 1 del suelo urbanizable redactado por la Sociedad Estatal de Participaciones Industriales (SEPI) en fecha 14 de noviembre de 2002
- Plan parcial industrial. Promoción pública. Término municipal de Tibi en fecha 31 de mayo de 1999
- Modificación del documento *Plan parcial industrial. Promoción pública. Término municipal de Tibi* a fecha 8 de febrero de 2008
- Modificación del documento *Plan parcial industrial. Promoción pública. Término municipal de Tibi* a fecha 2 de febrero de 2016
- Plan parcial industrial "Nuevo Tollo", Utiel en fecha 8 de julio de 2003

- Dirección General de Tráfico, 2015. Reglamentación sobre vehículos pesados, prioritarios, especiales, de transporte, de personas y mercancías y tramitación administrativa. Consultado el 11 de junio de 2019. http://www.dgt.es/es/
- Francisco Mejía Azcárate, 2015. Programa de Textilización Ciencias Textiles. Capítulo 10 - La maquinaria de tintorería (teñido). Consultado el 13 de junio de 2019. https://programadetextilizacion.blogspot.com/2015/02/capitulo-10-la-maquinaria-de-tintoreria.html
- Unidad Docente de Construcciones Industriales, 2018. Apuntes de la Asignatura de Tecnología de la Construcción, de la Escuela Técnica Superior de Ingenieros Industriales de la Universitat Politècnica de València.
- Departamento de Proyectos de Ingeniería, 2018. Diapositivas de la asignatura Proyectos, de la Escuela Técnica Superior de Ingenieros Industriales de la Universitat Politècnica de València.
- Generador de precios CYPE. Consultado el 13 de junio de 2019. http://www.generadordeprecios.info/

in-europe-best-practice

 Steel buildings in Europe: Guías de diseño para edificios de una sola planta y varias plantas. Consultado el 22 de junio de 2019.
 https://constructalia.arcelormittal.com/es/noticias/articulos-tecnicos/steel-buildings-

Índice Anexo I: Cálculo Estructural

1	I	DESC	RIPO	CIÓN GENERAL DE LA ESTRUCTURA	1
2	1	MAT	ERIA	LES EMPLEADOS	1
3	,	ACCI	ONE	S	2
	3.1	_	Acci	ones Permanentes (G)	2
	3.2	<u>)</u>	Acci	ones Variables (Q)	2
	;	3.2.1		Sobrecarga de Uso	2
	;	3.2.2		Viento	3
	:	3.2.3		Nieve	4
4	(COM	IBINA	ACIONES	6
	4.1	_	Norr	mas consideradas	6
	4.2	2	Esta	dos límite	6
	4.3	3	Situa	aciones de proyecto	6
	4	4.3.1		E.L.U. de rotura. Hormigón en cimentaciones: EHE-08	7
	4	4.3.2		E.L.U. de rotura. Acero laminado: CTE DB SE-A	7
	4	4.3.3		Tensiones sobre el terreno	8
		4.3.4		Desplazamientos	8
5	1	ESTR	UCT	URA METÁLICA	9
	5.1	_	Refe	rencias y notaciones previas	9
		5.1.1		Descripción	9
	!	5.1.2		Resistencia	9
	į	5.1.3		Flechas	10
	!	5.1.4		Comprobaciones E.L.U.	10
	5.2	2	Cime	entaciones	11
		5.2.1		Zapatas	12
		5.2.2		Viga de atado	16
	!	5.2.3		Placas de anclaje	17
	5.3	3	Pórt	ico interior	21
	!	5.3.1		Descripción	21
	!	5.3.2		Comprobación de resistencia	22

	5.3.3	Flechas	22
	5.3.4	Comprobaciones E.L.U.	22
5.	4 F	Pórtico de fachada	23
	5.4.1	Descripción	23
	5.4.2	Comprobación de resistencia	23
	5.4.3	Flechas	23
	5.4.4	Comprobaciones E.L.U.	24
5.	5 5	Sistema de arriostramiento	24
	5.5.1	Descripción	24
	5.5.2	Comprobación de resistencia	25
	5.5.3	Flechas	25
	5.5.4	Comprobaciones E.L.U.	25
5.	6 ١	/iga contraviento	26
	5.6.1	Descripción	26
	5.6.2	Comprobación de resistencia	26
	5.6.3	Flechas	26
	5.6.4	Comprobaciones E.L.U.	27
5.	7 <i>A</i>	Arriostramiento lateral	27
	5.7.1	Descripción	27
	5.7.2	Comprobación de resistencia	28
	5.7.3	Flechas	28
	5.7.4	Comprobaciones E.L.U.	28
5.	8 \	/iga perimetral	28
	5.8.1	Descripción	28
	5.8.2	Comprobación de resistencia	29
	5.8.3	Flechas	29
5.	9 (Correas	29
	5.9.1	Correas de cubierta	29
	5.9.2	Correas laterales	31

1 DESCRIPCIÓN GENERAL DE LA ESTRUCTURA

En el presente Trabajo Fin de Grado se diseña un edificio industrial de dimensiones 40x75, con dos pórticos a dos aguas de 20 metros de luz cada uno. Su longitud de 75 metros es debida a sus 16 pórticos con una separación de 5 metros entre ellos.

Todos los pórticos poseen una altura de pilar de 7 metros y una altura de cumbrera de 7,875 metros, generando así con los 20 metros de luz un ángulo de 5°. La clasificación de los pórticos se divide en pórticos de facha y pórticos interiores, habiendo un total de 2 y 14 pórticos respectivamente. Todos los pilares se han diseñado con un perfil IPE 330.

Con respecto a los pórticos de fachada, poseen un total de 9 pilares (5 pilares por pórtico) y la jácena está formada por perfiles IPE 240. Debido a la longitud de los pilares, se coloca un montante a la altura de 4,63 metros de perfil #80x3. El arriostramiento de fachada está formado por perfiles L 75x75x4 en forma de Cruz de San Andrés y dividido en dos cruces a causa del montante nombrado anteriormente.

Los pórticos interiores, tanto el pilar como la jácena son pilares IPE 330 para facilitar su unión.

En los laterales y zona central de la nave se halla el arriostramiento lateral en forma de Cruz de San Andrés de perfiles L 60x60x4 y L 80x80x3 en la parte superior e inferior, respectivamente, causadas por un montante intermedio a la misma altura que el que se halla en los pórticos de fachada (4,63 metros) de perfil #80x3. Como unión de todos los pórticos, se ha empleado una viga perimetral de perfil IPE 120.

En la cubierta se ha diseñado un sistema contraviento empleando el diseño Pratt para la colocación de las vigas contraviento, duplicado para su utilidad en ambos sentidos. El perfil empleado para los montantes es #80x3, mientras que para las diagonales es el L 75x75x4.

Finalmente, por motivo de la existencia de cerramientos, se emplean correas laterales y correas de cubierta. Las correas laterales tienen una separación de 1,6 metros y perfil IPE 100. Las correas de cubierta se hallan separadas 1,89 metros y diseñadas con el perfil ZF-180x2,0.

2 MATERIALES EMPLEADOS

Para la elaboración de este proyecto se han empleado tres tipos de aceros distintos y dos diferentes hormigones.

De los aceros, el más empleado ha sido el S275, utilizado para la mayor parte de los elementos de la estructura, como son los pilares y jácenas.

El acero S235 ha visto su mayor uso en las 24 correas de cubierta con el perfil ZF-180x2,0.

El último de los aceros, el B500, ha sido utilizado como elemento de la cimentación, formando parte de las zapatas y vigas de atado.

De los hormigones, el hormigón armado ha sido parte vital para la estructura de las zapatas y vigas de atado, mientras que el hormigón de limpieza ha visto su mayor uso como vertido previo para nivelación.

3 ACCIONES

Las acciones nombradas a continuación son descritas en el Documento Básico de Seguridad Estructural y en el Documento Básico de Seguridad Estructural de Acciones en la Edificación.

3.1 Acciones Permanentes (G)

Tal y como se describe en el Documento Básico de Seguridad Estructural, las acciones permanentes "son aquellas que actúan en todo instante sobre el edificio con posición constante". Para el cálculo de la nave se tendrán en cuenta las acciones permanentes causadas por el peso propio.

3.2 Acciones Variables (Q)

En el CTE DB-SE se denominan acciones variables a "aquellas que pueden actuar o no sobre el edificio". Para el proyecto se han calculado tres de las acciones variables.

3.2.1 Sobrecarga de Uso

El CTE DB SE-AE denomina la sobrecarga de uso como "el peso de todo lo que puede gravitar sobre el edificio por razón de su uso". En este mismo documento, la tabla 3.1 (Tabla 1) detalla los valores característicos de las sobrecargas de uso dependiendo de su categoría y subcategoría:

Tabla 3.1. Valores característicos de las sobrecargas de uso Carga Carga uniforme concentrada Categoría de uso Subcategorías de uso [kN/m²] [kN] Viviendas y zonas de habitaciones en, hospi-Α1 2 2 Zonas residenciales tales y hoteles A2 Trasteros 3 2 B Zonas administrativas C1 Zonas con mesas y sillas 3 4 C2 4 4 Zonas con asientos fiios Zonas sin obstáculos que impidan el libre Zonas de acceso al público (con la excepmovimiento de las personas como vestíbulos C3 5 4 de edificios públicos, administrativos, hoteles; ción de las superficies salas de exposición en museos; etc. pertenecientes a las categorías A, B, y D) Zonas destinadas a gimnasio u actividades C4 7 físicas Zonas de aglomeración (salas de conciertos, C5 5 4 estadios, etc) D1 Locales comerciales 5 4 Zonas comerciales Supermercados, hipermercados o grandes 7 D₂ 5 superficies 20 (1) Zonas de tráfico y de aparcamiento para vehículos ligeros (peso total < 30 kN) 2 Cubiertas transitables accesibles sólo privadamente (2 Cubiertas con inclinación inferior a 20º Cubiertas accesibles G1⁽⁷⁾ 0.4 únicamente para con-servación (3) Cubiertas ligeras sobre correas (sin forjado Cubiertas con inclinación superior a 40º

Tabla 1. Valores característicos de las sobrecargas de uso. Tabla 3.1 del CTE DB SE-AE

Con toda la información disponible, se concluye que la categoría de uso es G y que la subcategoría de uso resulta ser G1, cubiertas ligeras sobre correas (sin forjado).

3.2.2 Viento

Para estar del lado de la seguridad, "la acción del viento se calcula en todas direcciones, independientemente de la existencia de construcciones contiguas" (CTE DB SEAE). A la hora de calcular esta acción se utiliza la expresión:

$$q_e = q_b \times c_e \times c_p$$

Figura 1. Fórmula presión estática, qe

- q_b Presión dinámica del viento. Depende del emplazamiento geográfico.
- c_e Coeficiente de exposición. Depende de la altura y el grado de aspereza.
- c_p Coeficiente eólico o de presión. Depende de la forma y orientación respecto al viento.

Conocido el emplazamiento geográfico, en este caso Tibi (Alicante), se procede al cálculo de la presión estática. Para ello, se emplea el programa CYPE y se introducen, además de las dimensiones de la nave, la zona eólica y el grado de aspereza, que se obtienen del documento CTE SE-AE en la Figura D.1 y Tabla D.2 respectivamente.

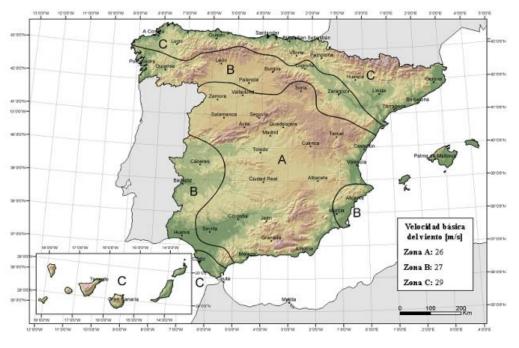


Figura 2. Valor básico de la velocidad del viento, v_b. Figura D.1 del CTE DB SE-AE

	Grada da senarara dal anterna	Parámetro			
	Grado de aspereza del entorno	k	L (m)	Z (m)	
ī	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	0,156	0,003	1,0	
II	Terreno rural Ilano sin obstáculos ni arbolado de importancia	0,17	0,01	1,0	
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	0,19	0,05	2,0	
IV	Zona urbana en general, industrial o forestal	0,22	0,3	5,0	
v	Centro de negocios de grandes ciudades, con profusión de edificios en altura	0,24	1,0	10,0	

Tabla 2. Coeficientes para tipo de entorno. Tabla D.2 del CTE DB SE-AE

Con la información anterior, los datos finalmente introducidos en el CYPE en lo referente a acciones variables de viento son:

Zona eólica: B

Grado de aspereza: IV

3.2.3 Nieve

Para el cálculo de las acciones variables causadas por la nieve, se tendrá el supuesto de que ésta ha sido depositada de forma natural sobre la superficie.

Como bien se indica en el DB SE-AE, "la distribución y la intensidad de la carga de nieve sobre un edificio, o en particular sobre una cubierta, depende del clima del lugar, del tipo de precipitación, del relieve del entorno, de la forma del edificio o de la cubierta, de los efectos del viento, y de los intercambios térmicos en los parámetros exteriores".

A la hora de calcular esta acción, se utiliza la expresión:

$$q_n = \mu \times s_k$$

Figura 3. Fórmula carga de nieve por unidad de superficie en proyección horizontal

- μ Coeficiente de forma de la cubierta.
- s_k Valor característico de la carga de nieve sobre un terreno horizontal.

Realizando el mismo proceso que en apartado de Viento, se introducen la zona climática invernal y la altitud del emplazamiento de nuestra nave industrial en el programa CYPE.

Figura 4. Zonas climáticas de invierno. Figura E.2 del CTE DB SE-AE

Altitud (m)			Zona de clim	a invernal, (se	egún figura E.2	igura E.2)				
Altitud (m)	1	2	3	4	5	6	7			
0	0,3	0,4	0,2	0,2	0,2	0,2	0,2			
200	0,5	0,5	0,2	0,2	0,3	0,2	0,2			
400	0,6	0,6	0,2	0,3	0,4	0,2	0,2			
500	0,7	0,7	0,3	0,4	0,4	0,3	0,2			
600	0,9	0,9	0,3	0,5	0,5	0,4	0,2			
700	1,0	1,0	0,4	0,6	0,6	0,5	0,2			
800	1,2	1,1	0,5	0,8	0,7	0,7	0,2			
900	1,4	1,3	0,6	1,0	0,8	0,9	0,2			
1.000	1,7	1,5	0,7	1,2	0,9	1,2	0,2			
1.200	2,3	2,0	1,1	1,9	1,3	2,0	0,2			
1.400	3,2	2,6	1,7	3,0	1,8	3,3	0,2			
1.600	4,3	3,5	2,6	4,6	2,5	5,5	0,2			
1.800	-	4,6	4,0	-	-	9,3	0,2			
2.200	-	8,0	-	-	-	-				

Tabla 3. Sobrecarga de nieve en un terreno horizontal (kN/m²). Tabla E.2 del CTE DB SE-AE

Donde, teniendo en cuenta la información de la Figura 4 y de la Tabla 3, finalmente se han introducido los siguientes valores para el cálculo de las acciones variables debidas a la nieve:

Zona climática de invierno: 6

Altitud topográfica: 700 m

4 COMBINACIONES

4.1 Normas consideradas

Cimentación: EHE-08

Aceros laminados y armados: CTE DB SE-A

Categoría de uso: G1. Cubiertas accesibles únicamente para mantenimiento. No concomitante con el resto de acciones variables.

4.2 Estados límite

E.L.U. de rotura. Hormigón en cimentaciones	CTE
E.L.U. de rotura. Acero laminado	Cota de nieve: Altitud inferior o igual a 1000 m
Tensiones sobre el terreno Desplazamientos	Acciones características

4.3 Situaciones de proyecto

Para las distintas situaciones del proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Con coeficientes de combinación

$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i>1} \gamma_{Qi} \Psi_{ai} Q_{ki}$$

- Sin coeficientes de combinación

$$\sum_{i\geq 1} \gamma_{Gi} G_{kj} + \gamma_P P_k + \sum_{i\geq 1} \gamma_{Qi} Q_{ki}$$

- Donde:

G_k Acción permanente

P_k Acción de pretensado

Qk Acción variable

γ_G Coeficiente parcial de seguridad de las acciones permanentes

γ_P Coeficiente parcial de seguridad de la acción de pretensado

 $\gamma_{Q,1}$ Coeficiente parcial de seguridad de la acción variable principal

 $\gamma_{Q,i}$ Coeficiente parcial de seguridad de las acciones variables de acompañamiento

 $\psi_{\text{p,1}}$ Coeficiente de combinación de la acción variable principal

 $\psi_{a,i}$ Coeficiente de combinación de las acciones variables de acompañamiento

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

4.3.1 E.L.U. de rotura. Hormigón en cimentaciones: EHE-08

Persistente o transitoria						
	Coeficientes parciales de seguridad (γ) Favorable Desfavorable F		Coeficientes	s de combinación (ψ)		
			Principal (ψ _p)	Acompañamiento (ψ _a)		
Carga permanente (G)	1.000	1.350	-	-		
Sobrecarga (Q)	0.000	1.500	0.000	0.000		
Viento (Q)	0.000	1.500	1.000	0.600		
Nieve (Q)	0.000	1.500	1.000	0.500		

Persistente o transitoria (G1)						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable Desfavorable		Principal (ψ _p)	Acompañamiento (ψ_a)		
Carga permanente (G)	1.000	1.350	-	-		
Sobrecarga (Q)	0.000	1.500	1.000	0.000		
Viento (Q)	0.000	1.500	0.000	0.000		
Nieve (Q)	0.000	1.500	0.000	0.000		

4.3.2 E.L.U. de rotura. Acero laminado: CTE DB SE-A

Persistente o transitoria						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable Desfavorable F		Principal (ψ _p)	Acompañamiento (ψ _a)		
Carga permanente (G)	0.800	1.350	-	-		
Sobrecarga (Q)	0.000	1.500	0.000	0.000		
Viento (Q)	0.000	1.500	1.000	0.600		
Nieve (Q)	0.000	1.500	1.000	0.500		

Persistente o transitoria (G1)						
	Coeficientes parciales de seguridad (γ) Favorable Desfavorable F		Coeficientes	s de combinación (ψ)		
			Principal (ψ _p)	Acompañamiento (ψ _a)		
Carga permanente (G)	0.800	1.350	-	-		
Sobrecarga (Q)	0.000	1.500	1.000	0.000		
Viento (Q)	0.000	1.500	0.000	0.000		
Nieve (Q)	0.000	1.500	0.000	0.000		

4.3.3 Tensiones sobre el terreno

Característica						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable Desfavorable		Principal (ψ_p)	Acompañamiento (ψ _a)		
Carga permanente (G)	1.000	1.000	-	-		
Sobrecarga (Q)	0.000	1.000	0.000	0.000		
Viento (Q)	0.000	1.000	1.000	1.000		
Nieve (Q)	0.000	1.000	1.000	1.000		

Característica						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable Desfavorable		Principal (ψ_p)	Acompañamiento (ψ _a)		
Carga permanente (G)	1.000	1.000	-	-		
Sobrecarga (Q)	0.000	1.000	1.000	1.000		
Viento (Q)	0.000	1.000	1.000	1.000		
Nieve (Q)	0.000	1.000	1.000	1.000		

4.3.4 Desplazamientos

1							
Integridad -G1							
	Coeficientes parciales de seguridad (γ) Favorable Desfavorable		Coeficientes	s de combinación (ψ)			
			Principal (ψ _p)	Acompañamiento (ψ _a)			
Carga permanente (G)	0.001	0.001	-	-			
Sobrecarga (Q)	0.000	1.000	0.000	0.000			
Viento (Q)	0.000	1.000	1.000	0.600			
Nieve (Q)	0.000	1.000	1.000	0.500			

Integridad +G1						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable	Desfavorable	Principal (ψ_p)	Acompañamiento (ψ _a)		
Carga permanente (G)	0.001	0.001	-	-		
Sobrecarga (Q)	0.000	1.000	1.000	1.000		
Viento (Q)						
Nieve (Q)						

Aparciencia						
		es parciales de ıridad (γ)	Coeficientes	s de combinación (ψ)		
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ_a)		
Carga permanente (G)	1.000	1.000	-	-		
Sobrecarga (Q)						
Viento (Q)						
Nieve (Q)						

5 ESTRUCTURA METÁLICA

Se procede a mostrar los cálculos realizados mediante el programa CYPE. Como el documento obtenido posee un número de páginas muy superior al máximo aceptable para un TFG, se procede a mostrar una selección de los cálculos en los elementos más significativos.

5.1 Referencias y notaciones previas

5.1.1 Descripción

Notación:

Ni: Nudo inicial

Nf: Nudo final

b_{xy}: Coeficiente de pandeo en el plano 'XY'

b_{xz}: Coeficiente de pandeo en el plano 'XZ'

Lb_{Sup.}: Separación entre arriostramientos del ala superior

Lb_{Inf.}: Separación entre arriostramientos del ala inferior

5.1.2 Resistencia

Referencias:

N: Esfuerzo axil (kN)

Vy: Esfuerzo cortante según el eje local Y de la barra. (kN)

Vz: Esfuerzo cortante según el eje local Z de la barra. (kN)

Mt: Momento torsor (kN·m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de

la barra). (kN·m)

Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de

la barra). (kN·m)

Los esfuerzos indicados son los correspondientes a la combinación pésima, es decir, aquella que demanda la máxima resistencia de la sección.

Origen de los esfuerzos pésimos:

- G: Sólo gravitatorias

- GV: Gravitatorias + viento

- GS: Gravitatorias + sismo

– GVS: Gravitatorias + viento + sismo

h: Aprovechamiento de la resistencia. La barra cumple con las condiciones de resistencia de la norma si se cumple que $h \le 100 \%$.

5.1.3 Flechas

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

5.1.4 Comprobaciones E.L.U.

Notación:

I: Limitación de esbeltez

l_w: Abolladura del alma inducida por el ala comprimida

N_t: Resistencia a tracción

N_c: Resistencia a compresión

M_Y: Resistencia a flexión eje Y

M_z: Resistencia a flexión eje Z

V_z: Resistencia a corte Z

V_Y: Resistencia a corte Y

M_YV_z: Resistencia a momento flector Y y fuerza cortante Z combinados

M_zV_y: Resistencia a momento flector Z y fuerza cortante Y combinados

NM_YM_Z: Resistencia a flexión y axil combinados

NM_YM_ZV_YV_Z: Resistencia a flexión, axil y cortante combinados

M_t: Resistencia a torsión

 M_tV_Z : Resistencia a cortante Z y momento torsor combinados

M_tV_y: Resistencia a cortante Y y momento torsor combinados

x: Distancia al origen de la barra

h: Coeficiente de aprovechamiento (%)

N.P.: No procede

Comprobaciones que no proceden (N.P.):

- (1) La comprobación no procede, ya que no hay momento torsor.
- (2) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
- (3) La comprobación no procede, ya que no hay esfuerzo cortante.
- (4) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
- (5) La comprobación no procede, ya que no hay axil de tracción.
- (6) La comprobación no procede, ya que no hay momento flector.
- ⁽⁷⁾ La comprobación no procede, ya que no hay axil de compresión.
- ⁽⁸⁾ No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
- (9) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

5.2 Cimentaciones

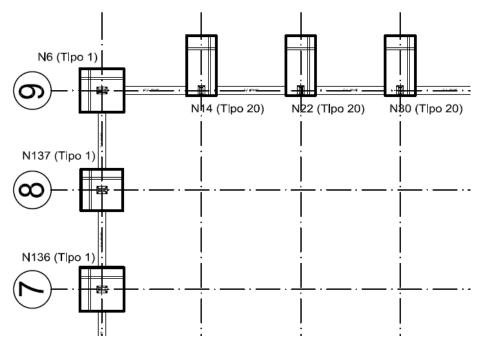


Figura 5. Planta de cimentaciones (Plano 4). Ampliación a nudos seleccinados.

5.2.1 Zapatas

5.2.1.1 Zapata cuadrada

5.2.1.1 Zapata cuaaraaa		
Referencia: N6		
Dimensiones: 220 x 220 x 50	F	
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/2	1	
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0184428 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0202086 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0260946 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 69.8 %	Cumple
- En dirección Y:	Reserva seguridad: 28.2 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: -12.98 kN⋅m	Cumple
-En dirección Y:	Momento: -12.78 kN⋅m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 15.21 kN	Cumple
-En dirección Y:	Cortante: 15.11 kN	Cumple
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 59.2 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: -N6:	Mínimo: 40 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima:		, , , ,
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
-Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
-Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
-Armado inferior dirección X:	Mínimo: 0.0001	Cumple

Referencia: N6							
Dimensiones: 220 x 220 x 50							
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/2	25 Valores	Estado					
- Armado inferior dirección Y:	Mínimo: 0.0001						
-Armado superior dirección X:	Mínimo: 0.0001	Cumple Cumple					
-Armado superior dirección Y:	Mínimo: 0.0002	Cumple					
Diámetro mínimo de las barras:	7 111111101 0.0002	Cumple					
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm						
- Parrilla inferior:	Calculado: 12 mm	Cumple					
-Parrilla superior:	Calculado: 12 mm	Cumple					
Separación máxima entre barras:							
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm						
-Armado inferior dirección X:	Calculado: 25 cm	Cumple					
-Armado inferior dirección Y:	Calculado: 25 cm	Cumple					
-Armado superior dirección X:	Calculado: 25 cm	Cumple					
- Armado superior dirección Y:	Calculado: 25 cm	Cumple					
Separación mínima entre barras:							
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm						
-Armado inferior dirección X:	Calculado: 25 cm	Cumple					
-Armado inferior dirección Y:	Calculado: 25 cm	Cumple					
-Armado superior dirección X:	Calculado: 25 cm	Cumple					
-Armado superior dirección Y:	Calculado: 25 cm	Cumple					
Longitud de anclaje:							
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm						
-Armado inf. dirección X hacia der:	Calculado: 48 cm	Cumple					
-Armado inf. dirección X hacia izq:	Calculado: 48 cm	Cumple					
-Armado inf. dirección Y hacia arriba:	Calculado: 40 cm	Cumple					
-Armado inf. dirección Y hacia abajo:	Calculado: 40 cm	Cumple					
-Armado sup. dirección X hacia der:	Calculado: 48 cm	Cumple					
-Armado sup. dirección X hacia izq:	Calculado: 48 cm	Cumple					
-Armado sup. dirección Y hacia arriba:	Calculado: 40 cm	Cumple					
-Armado sup. dirección Y hacia abajo:	Calculado: 40 cm	Cumple					
Se cumplen todas las compre	obaciones						

5.2.1.2 Zapata excéntrica

5.2.1.2 Zapata excentrica		
Referencia: N22		
Dimensiones: 150 x 300 x 85	60/26	
Armados: Xi:Ø16c/26 Yi:Ø16c/26 Xs:Ø16c/26 Ys:Ø1 Comprobación	Valores	Estado
Tensiones sobre el terreno:	valores	LStado
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa	
·	Calculado: 0.0287433 MPa	Cumple
-Tensión máxima en situaciones persistentes sin	Máximo: 0.249959 MPa	
viento:	Calculado: 0.0396324 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0543474 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 12827.5 %	Cumple
-En dirección Y:	Reserva seguridad: 3.8 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 6.73 kN·m	Cumple
-En dirección Y:	Momento: -113.52 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 0.00 kN	Cumple
- En dirección Y:	Cortante: 66.81 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 68.2 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 85 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 40 cm	
-N22:	Calculado: 77 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0001	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0005	Cumple

Referencia: N22 Dimensiones: 150 x 300 x 85		
Dimensiones: 150 x 300 x 85 Armados: Xi:Ø16c/26 Yi:Ø16c/26 Xs:Ø16c/26 Ys:Ø1	16c/26	
Comprobación	Valores	Estado
- Armado superior dirección X:	Mínimo: 0.0001	Cumple
- Armado superior dirección Y:	Mínimo: 0.0005	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 16 mm	Cumpl
- Parrilla superior:	Calculado: 16 mm	Cumpl
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 26 cm	Cumpl
- Armado inferior dirección Y:	Calculado: 26 cm	Cumpl
- Armado superior dirección X:	Calculado: 26 cm	Cumpl
- Armado superior dirección Y:	Calculado: 26 cm	Cumpl
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 26 cm	Cumpl
- Armado inferior dirección Y:	Calculado: 26 cm	Cumpl
- Armado superior dirección X:	Calculado: 26 cm	Cumpl
- Armado superior dirección Y:	Calculado: 26 cm	Cumpl
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 16 cm	
	Calculado: 16 cm	Cumpl
- Armado inf. dirección X hacia izq:	Mínimo: 16 cm Calculado: 16 cm	Cumpl
- Armado inf. dirección Y hacia arriba:	Mínimo: 16 cm	Cumpi
7 made min direction i nacia ambai	Calculado: 193 cm	Cumpl
- Armado inf. dirección Y hacia abajo:	Mínimo: 0 cm	
	Calculado: 0 cm	Cumpl
- Armado sup. dirección X hacia der:	Mínimo: 19 cm Calculado: 19 cm	Cumpl
- Armado sup. dirección X hacia izq:	Mínimo: 19 cm	Cumpl
Armado Sap. dirección A nacia 124.	Calculado: 19 cm	Cumpl
- Armado sup. dirección Y hacia arriba:	Mínimo: 20 cm	
	Calculado: 196 cm	Cumpl
- Armado sup. dirección Y hacia abajo:	Mínimo: 0 cm Calculado: 0 cm	Cumpl
Longitud mínima de las patillas:	Mínimo: 16 cm	
- Armado inf. dirección X hacia der:	Calculado: 16 cm	Cumpl

Referencia: N22							
Dimensiones: 150 x 300 x 85							
Armados: Xi:Ø16c/26 Yi:Ø16c/26 Xs:Ø16c/26 Ys	:Ø16c/26						
Comprobación	Valores	Estado					
- Armado inf. dirección X hacia izq:	Calculado: 16 cm	Cumple					
-Armado inf. dirección Y hacia arriba:	Calculado: 16 cm	Cumple					
- Armado inf. dirección Y hacia abajo:	Calculado: 16 cm	Cumple					
-Armado sup. dirección X hacia der:	Calculado: 19 cm	Cumple					
- Armado sup. dirección X hacia izq:	Calculado: 19 cm	Cumple					
-Armado sup. dirección Y hacia arriba:	Calculado: 19 cm	Cumple					
- Armado sup. dirección Y hacia abajo: Calculado: 19 cm Cumple							
Se cumplen todas las	comprobaciones						

5.2.2 Viga de atado		
Referencia: C.1 [N6-N137] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos:	Mínimo: 3.7 cm	
Artículo 69.4.1 de la norma EHE-08	Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal:		
Artículo 69.4.1 de la norma EHE-08	Mínimo: 3.7 cm	
-Armadura superior:	Calculado: 26 cm	Cumple
- Armadura inferior:	Calculado: 26 cm	Cumple
Separación máxima estribos:		
-Sin cortantes:	Máximo: 30 cm	
Artículo 44.2.3.4.1 de la norma EHE-08	Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal:		
Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
-Armadura superior:	Calculado: 26 cm	Cumple
- Armadura inferior:	Calculado: 26 cm	Cumple
Se cumplen todas las comprobacione	S	

5.2.3 Placas de anclaje

5.2.3.1 *Comprobaciones en placas de anclaje*

En cada placa de anclaje se realizan las siguientes comprobaciones (asumiendo la hipótesis de placa rígida):

- 1. Hormigón sobre el que apoya la placa
- 2. Se comprueba que la tensión de compresión en la interfaz placa de anclaje-hormigón es menor a la tensión admisible del hormigón según la naturaleza de cada combinación.

3. Pernos de anclaje

- a) Resistencia del material de los pernos: Se descomponen los esfuerzos actuantes sobre la placa en axiles y cortantes en los pernos y se comprueba que ambos esfuerzos, por separado y con interacción entre ellos (tensión de Von Mises), producen tensiones menores a la tensión límite del material de los pernos.
- b) Anclaje de los pernos: Se comprueba el anclaje de los pernos en el hormigón de tal manera que no se produzca el fallo de deslizamiento por adherencia, arrancamiento del cono de rotura o fractura por esfuerzo cortante (aplastamiento).
- c) Aplastamiento: Se comprueba que en cada perno no se supera el cortante que produciría el aplastamiento de la placa contra el perno.

4. Placa de anclaje

- a) *Tensiones globales*: En placas con vuelo, se analizan cuatro secciones en el perímetro del perfil, y se comprueba en todas ellas que las tensiones de Von Mises sean menores que la tensión límite según la norma.
- b) Flechas globales relativas: Se comprueba que en los vuelos de las placas no aparezcan flechas mayores que 1/250 del vuelo.
- c) Tensiones locales: Se comprueban las tensiones de Von Mises en todas las placas locales en las que tanto el perfil como los rigidizadores dividen a la placa de anclaje propiamente dicha. Los esfuerzos en cada una de las subplacas se obtienen a partir de las tensiones de contacto con el hormigón y los axiles de los pernos. El modelo generado se resuelve por diferencias finitas.

5.2.3.2 Placas de anclaje en el pórtico de fachada

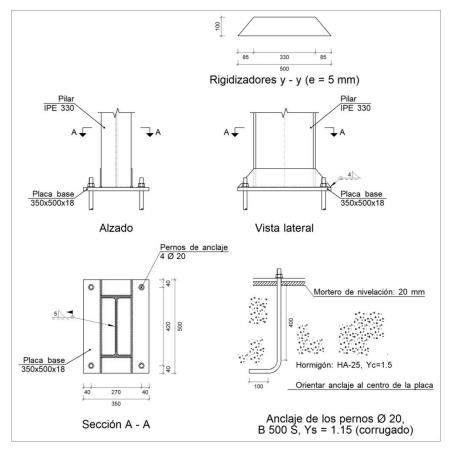


Figura 6. Placas de anclaje en el pórtico de fachada. Unión tipo 1

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 60 mm	
3 diámetros	Calculado: 270 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 50 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 40 mm	Cumple
Esbeltez de rigidizadores:	Máximo: 50	
-Paralelos a Y:	Calculado: 45.5	Cumple
Longitud mínima del perno:	Mínimo: 22 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 40 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 88.9 kN	
	Calculado: 62.11 kN	Cumple
- Cortante:	Máximo: 62.23 kN	
	Calculado: 11.18 kN	Cumple

Proyecto Estructural de Edificio Industrial Dedicado al Teñido y Almacenamiento de Hilos y Telas de Algodón de 3000m² Situado en el Polígono Industrial "El Maigmò", Tibi (Alicante)

Referencia:		
Comprobación	Valores	Estado
-Tracción + Cortante:	Máximo: 88.9 kN	
	Calculado: 78.08 kN	Cumple
Tracción en vástago de pernos:	Máximo: 99.86 kN	
	Calculado: 62.95 kN	Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 476.19 MPa	
	Calculado: 203.875 MPa	Cumple
Aplastamiento perno en placa:	Máximo: 188.57 kN	
Límite del cortante en un perno actuando contra la placa	Calculado: 11.18 kN	Cumple
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa	
-Derecha:	Calculado: 92.2736 MPa	Cumple
-Izquierda:	Calculado: 93.0857 MPa	Cumple
- Arriba:	Calculado: 147.114 MPa	Cumple
-Abajo:	Calculado: 147.109 MPa	Cumple
Flecha global equivalente:		
Limitación de la deformabilidad de los vuelos	Mínimo: 250	
-Derecha:	Calculado: 1656.09	Cumple
-Izquierda:	Calculado: 1646.66	Cumple
-Arriba:	Calculado: 7778.22	Cumple
-Abajo:	Calculado: 7778.46	Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa	
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 0 MPa	Cumple
Se cumplen todas las cor	nprobaciones	

5.2.3.3 Placas de anclaje en el pórtico interior

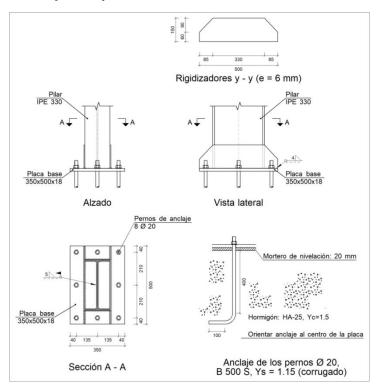


Figura 7. Placa de anclaje en el pórtico interior. Unión tipo 20

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 60 mm	
3 diámetros	Calculado: 135 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 45 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 40 mm	Cumple
Esbeltez de rigidizadores:	Máximo: 50	
-Paralelos a Y:	Calculado: 49.8	Cumple
Longitud mínima del perno:	Mínimo: 22 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 40 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 88.9 kN	
	Calculado: 76.07 kN	Cumple
-Cortante:	Máximo: 62.23 kN	
	Calculado: 4.98 kN	Cumple
-Tracción + Cortante:	Máximo: 88.9 kN	
	Calculado: 83.19 kN	Cumple
Tracción en vástago de pernos:	Máximo: 99.86 kN	
	Calculado: 77.94 kN	Cumple

Referencia:	
Comprobación	Valores Estado
Tensión de Von Mises en vástago de pernos:	Máximo: 476.19 MPa
	Calculado: 250.168 MPa Cumple
Aplastamiento perno en placa:	Máximo: 188.57 kN
Límite del cortante en un perno actuando contra la placa	Calculado: 5.08 kN Cumple
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa
-Derecha:	Calculado: 107.68 MPa Cumple
-Izquierda:	Calculado: 107.68 MPa Cumple
- Arriba:	Calculado: 123.513 MPa Cumple
-Abajo:	Calculado: 123.499 MPa Cumple
Flecha global equivalente:	
Limitación de la deformabilidad de los vuelos	Mínimo: 250
- Derecha:	Calculado: 1024.57 Cumple
-Izquierda:	Calculado: 1024.69 Cumple
-Arriba:	Calculado: 13801.6 Cumple
-Abajo:	Calculado: 13802 Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 222.201 MPa Cumple
Se cumplen todas las co	mprobaciones

5.3 Pórtico interior

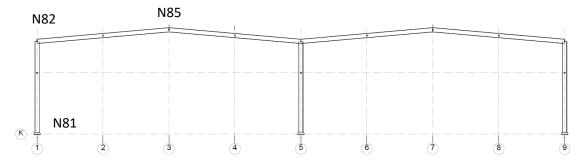


Figura 8. Pórtico interior. Nudos seleccionados

5.3.1 Descripción

	Descripción										
Material		Barra	Pieza	Perfil(Serie)	Longitud (m)		0	0	Lb _{Sup.}	Lb _{Inf.}	
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perii(Serie)	Indeformable origen	Deformable	Indeformable extremo	β _{xy}	β _{xz}	(m)	(m)
Acero laminado	S275	Pilar	N81/N82	IPE 330 (IPE)	-	4.632	0.152	0.70	1.35	-	-
		Jácena	N82/N85	IPE 330 (IPE)	0.166	9.872	-	0.00	1.99	-	-

5.3.2 Comprobación de resistencia

	Comprobación de resistencia									
	Esfuerzos pésimos									
Barra	η (%)	Posición (m)	N	Vy	Vz	Mt	Му	Mz	Origen	Estado
	(70)	(111)	(kN)	(kN)	(kN)	(kN·m)	(kN·m)	(kN·m)		
Pilar	56.74	6.848	-44.781	-0.028	-27.808	0.00	113.30	-0.08	G	Cumple
Jácena	56.00	0.166	-31.466	0.002	-40.603	0.00	-110.72	0.02	G	Cumple

5.3.3 Flechas

				Flechas					
	Flecha m	náxima absoluta	Flecha má	xima absoluta	Flecha a	ctiva absoluta	Flecha ac	tiva absoluta	
		xy		XZ		ху	XZ		
Crupo	Flecha n	náxima relativa	Flecha má	xima relativa	Flecha	activa relativa	Flecha activa relativa		
Grupo	Grupo			XZ		ху	XZ		
=	Pos.	Flecha	Pos. Flecha		Pos.	Flecha	Pos.	Flecha	
	(m)	(mm)	(m) (mm)		(m)	(mm)	(m)	(mm)	
Pilar	6.848	1.89	5.992	17.28	6.848	3.52	6.848	31.13	
Filai	6.848	L/(>1000)	5.992	L/396.3	6.848	L/(>1000)	6.848	L/426.4	
Jácen	n 3.949 0.0		5.923 12.15		3.949	0.08	5.923	16.97	
а	3.949 L/(>1000) 6.4		6.417	L793.3	3.949	L/(>1000)	6.417	L/794.1	

5.3.4 Comprobaciones E.L.U.

	•											
			cc	OMPROBACION	IES (CTE DB SE-	-A)						
Barras	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	V _z	V_{Y}				
	$\bar{\lambda}$ < 2.0 Cumple	λ _w ≤λ _{w,máx} Cumple	x: 6.847 m η = 2.0	x: 0 m η = 10.1	x: 6.848 m η = 53.8	x: 0 m η = 1.2	x: 0 m η = 8.7	η< 0.1				
Pilar	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_Z	M_tV_Y	Estado				
	η< 0.1	x: 0 m η< 0.1	x: 6.848 m η = 56.7	η< 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 56.7				
	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y				
	$\bar{\lambda}$ < 2.0 Cumple	λ _w ≤λ _{w,máx} Cumple	x: 10.038 m η = 1.6	x: 0.166 m η = 6.3	x: 0.166 m η = 52.6	x: 0.166 m η = 0.1	x: 0.166 m η = 8.7	η< 0.1				
Jácena	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_Z	M_tV_Y	Estado				
	η< 0.1	x: 0.166 m η< 0.1	x: 0.166 m η = 56.0	η< 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 56.0				

5.4 Pórtico de fachada

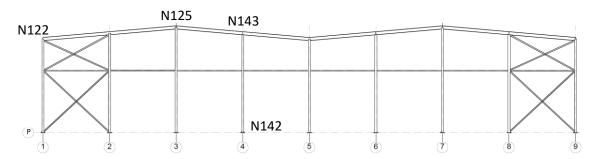


Figura 9. Pórtico de fachada. Nudos seleccionados

5.4.1 Descripción

	Descripción												
Mate	erial	Barra Pieza		Perfil(Serie)		Longitud (m)		0	0	Lb _{Sup.}	Lb _{Inf.}		
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Periii(Serie)	Indeformable origen	Deformable	Indeformable extremo	β _{xy}	β _{xz}	(m)	(m)		
Acero laminado	S275	Pilar	N142/N143	IPE 330 (IPE)	-	4.632	-	0.70	1.19	-	-		
	Jácena N122/N125 IP		IPE 240 (IPE)	0.041	4.937	0.041	0.00	1.00	ı	-			

5.4.2 Comprobación de resistencia

	Comprobación de resistencia											
		Posición			Esfuerzos	pésimos						
	η (%)	(m)	N	Vy	Vz	Mt	Му	Mz	Origen	Estado		
	(/0)	(111)	(kN)	(kN)	(kN)	(kN·m)	(kN·m)	(kN·m)				
Pilar	19.48	0.000	5.265	-0.238	-19.611	0.01	-39.74	-0.11	GV	Cumple		
Jácena 12.16 0.041 -46.003 0.246 6.709 0.00 6.72 0.13								GV	Cumple			

5.4.3 Flechas

	Flechas												
	Flecha m	áxima absoluta	Flecha m	axima absoluta	Flecha a	ctiva absoluta	Flecha activa absoluta						
		ху		XZ		ху	XZ						
Cruno	Flecha n	náxima relativa	Flecha n	náxima relativa	Flecha	activa relativa	Flecha	activa relativa					
Grupo		ху		XZ		xy		XZ					
	Pos.	Flecha	Pos. Flecha		Pos. Flecha		Pos.	Flecha					
	(m)	(mm)	(m)	(mm)	(m)	(mm)	(m)	(mm)					
Pilar	3.763	1.80	4.053	1.67	3.763	3.41	4.342	3.07					
Filai	3.763	L/(>1000)	4.053	L/(>1000)	3.763	L/(>1000)	4.342	L/(>1000)					
Jácen	2.715 0.90		1.975 0.85		2.962	1.51	2.222	1.50					
а	8.681	L/(>1000)	2.222	L/(>1000)	8.681	L/(>1000)	2.469	L/(>1000)					

5.4.4 Comprobaciones E.L.U.

0.1.1	domprobaciones Eleion										
			СС	MPROBACION	IES (CTE DB SE-	A)					
Barras	$\overline{\lambda}$	λ_{w}	N _t	N _c	M_Y	Mz	V _z	V_{Y}			
	$\bar{\lambda}$ < 2.0	λ _w ≤λ _{w,máx}	x: 4.632 m	x: 0 m	x: 0 m	x: 4.632 m	x: 0 m	0.1			
	Cumple	Cumple	η = 0.7	η = 2.5	η = 18.9	η = 3.2	η = 4.2	η = 0.1			
Pilar	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_Z	M_tV_Y	Estado			
			x: 0 m		$M_{Ed} = 0.00$	(2)	(2)	CUMPLE			
	η< 0.1	η< 0.1	η = 19.5	η< 0.1	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	η = 56.6			
	$\bar{\lambda}$	λ_{w}	N_{t}	N _c	M _Y	Mz	V _z	V_{Y}			
	$\bar{\lambda}$ < 2.0	$\lambda_w \leq \lambda_{w,máx}$	x: 4.977 m	x: 0.041 m	x: 0.041 m	x: 4.978 m	x: 0.041 m	x: 0.041 m			
	Cumple	Cumple	η = 2.9	η = 5.0	η = 7.0	η = 2.3	η = 2.3	η = 0.1			
Jácena	M_YV_Z	M _z V _y	NM _Y M _Z	$NM_YM_ZV_YV_Z$	M _t	M_tV_Z	M_tV_Y	Estado			
			x: 0.041 m			x: 0.041 m	x: 0.041 m	CUMPLE			
	η< 0.1	η< 0.1	η = 12.2	η< 0.1	η = 0.1	η = 2.3	η = 0.1	η = 12.2			

5.5 Sistema de arriostramiento

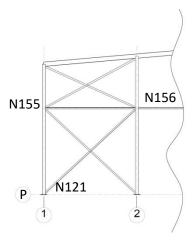


Figura 10. Sistema de arriostramiento. Nudos seleccionados

5.5.1 Descripción

	Descripción											
Mat	Material Barra Pieza (Ni/Nf) (Ni/Nf)		Pieza	Doufil/Conic)		Longitud (m)		0	0	Lb _{Sup.}	Lb _{Inf.}	
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perfil(Serie)	Indeformable origen	Deformable	Indeformable extremo	βху	β _{xz}	(m)	(m)	
Acero laminado	S275	Montante	N155/N156	#80x3 (Huecos cuadrados)	0.040	4.960	-	1.00	1.00	1	-	
		Diagonal	N121/N156	L 75 x 75 x 4 (L)	-	6.757	0.059	0.00	0.00	-	-	

5.5.2 Comprobación de resistencia

	Comprobación de resistencia										
		Posición		E							
Barra	Barra '		N	Vy	Vz	Mt	Му	Mz	Origen	Estado	
	(70)	(m) (kN) (kN) (kN) $(kN+m)$ $(kN+m)$									
Montante	29.04	5.000	-10.570	-0.003	0.352	0.02	-0.51	0.03	GV	Cumple	
Diagonal 15.91 0.000 24.710 0.000 0.000 0.00 0.00 0.00										Cumple	

5.5.3 Flechas

				Flechas					
	Flecha m	aáxima absoluta	Flecha m	aáxima absoluta	Flecha a	ictiva absoluta	Flecha activa absoluta		
		ху		XZ		ху		XZ	
Crupo	Flecha n	náxima relativa	Flecha n	náxima relativa	Flecha	activa relativa	Flecha	activa relativa	
Grupo	Grupo			XZ		xy		XZ	
	Pos. Flecha		Pos.	Flecha	Pos.	Flecha	Pos.	Flecha	
	(m)	(mm)	(m)	(mm)	(m)	(mm)	(m)	(mm)	
Montant	1.860	0.60	1.860	1.30	1.860	1.00	1.240	1.42	
е	1.860	L/(>1000)	3.410	L/(>1000)	1.550	L/(>1000)	3.720	L/(>1000)	
Diagona	3.801	0.00	5.490	0.00	5.912	0.00	5.490	0.00	
I	-	L/(>1000)	-	L/(>1000)	-	L/(>1000)	ı	L/(>1000)	

5.5.4 Comprobaciones E.L.U.

			cc	OMPROBACION	IES (CTE DB SE-	-A)						
Barras	$\bar{\lambda}$	λ_{w}	N_{t}	N _c	M _Y	Mz	V _z	V _Y				
	$\bar{\lambda}$ < 2.0 Cumple	λ _w ≤λ _{w,máx} Cumple	η = 2.7	η = 21.0	x: 0.04 m η = 8.4	x: 0.04 m η = 2.2	x: 0.04 m η = 0.6	η = 0.1				
Montante	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_Z	M_tV_Y	Estado				
	η< 0.1	η< 0.1	x: 5 m η = 29.0	η< 0.1	η= 0.5	x: 0.04 m η = 0.6	η= 0.1	CUMPLE η = 29.0				
	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	V _z	V _Y				
	$\bar{\lambda}$ < 4.0 Cumple	-	η = 15.9	N _{Ed} : 0.00 N.P. ⁽¹⁾	M _{Ed} : 0.00 N.P. ⁽²⁾	M _{Ed} : 0.00 N.P. ⁽²⁾	V _{Ed} : 0.00 N.P. ⁽³⁾	V _{Ed} : 0.00 N.P. ⁽³⁾				
Diagonal	M _Y V _Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M _t	M_tV_Z	M_tV_Y	Estado				
	N.P. ⁽⁴⁾	N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	M _{Ed} =0.00 N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	N.P. ⁽⁸⁾	CUMPLE η = 15.9				

5.6 Viga contraviento

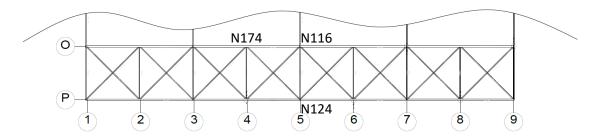


Figura 11. Viga contraviento. Nudos seleccionados

5.6.1 Descripción

	Descripción											
Mat	terial Barra Pieza (Ni/Nf) (Ni/Nf)		Pieza	Perfil(Serie)		Longitud (m)		0	0	Lb _{Sup.}	Lb _{Inf.}	
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Periii(Serie)	Indeformable origen	Deformable	Indeformable extremo	β _{xy}	β _{xz}	(m)	(m)	
Acero laminado	S275	Montante	N116/N124	#80x3 (Huecos cuadrados)	-	4.835	0.165	1.00	1.00	1	-	
		Diagonal	INI 14/NI 14	L 75 x 75 x 4 (L)	-	7.085	-	0.00	0.00	-	-	

5.6.2 Comprobación de resistencia

	Comprobación de resistencia											
		Posición		E								
Barra	Barra (%)		N	Vy	Vz	Mt	Му	Mz	Origen	Estado		
	(70)	(m)	(kN)	(kN)	(kN)	(kN·m)	(kN·m)	(kN·m)				
Montante	94.31	2.418	-45.477	0.000	0.000	0.00	0.27	0.00	GV	Cumple		
Diagonal 21.01 0.000 32.624 0.000 0.000 0.00 0.00 0.00								0.00	G	Cumple		

5.6.3 Flechas

	Flechas														
	Flecha m	axima absoluta	Flecha m	áxima absoluta	Flecha a	activa absoluta	Flecha a	ctiva absoluta							
		ху		XZ		ху	XZ								
Cruno	Flecha n	náxima relativa	Flecha m	náxima relativa	Flecha	activa relativa	Flecha activa relativa								
Grupo		ху		XZ		ху	XZ								
	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha							
	(m)	(mm)	(m)	(mm)	(m)	(mm)	(m)	(mm)							
Montant	3.928	0.00	2.418	2.71	3.928	0.00	4.834	0.00							
е	ı	L/(>1000)	2.418	L/(>1000)	-	L/(>1000)	-	L/(>1000)							
Diagona	5.756	0.00	4.428	0.00	5.756	0.00	4.428	0.00							
I	-	L/(>1000)	-	L/(>1000)	-	L/(>1000)	-	L/479.2							

5.6.4 Comprobaciones E.L.U.

			cc	OMPROBACION	IES (CTE DB SE-	A)		
Barras	$\overline{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y
	$\bar{\lambda}$ < 2.0 Cumple	$x: \ 0.302m \ \lambda_w \leq \lambda_{w,máx} \ Cumple$	N _{Ed} : 0.00 N.P. ⁽¹⁾	η = 10.1	x: 2.418 m η = 4.1	M _{Ed} : 0.00 N.P. ⁽²⁾	x: 0 m η = 0.3	V _{Ed} : 0.00 N.P. ⁽³⁾
Montante	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_Z	M_tV_Y	Estado
	x: 0.302 m η< 0.1	m N.P. ⁽⁴⁾		x: 0.302 m η< 0.1	M _{Ed} = 0.00 N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	N.P. ⁽⁶⁾	CUMPLE η = 94.3
	$\overline{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y
	$\bar{\lambda}$ < 4.0 Cumple	-	η = 21.0	N _{Ed} = 0.00 N.P. ⁽¹⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	$M_{Ed} = 0.00$ $N.P.^{(2)}$	V _{Ed} = 0.00 N.P. ⁽³⁾	V _{Ed} = 0.00 N.P. ⁽³⁾
Diagonal	M_YV_Z	M_zV_y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_z	M_tV_Y	Estado
	N.P. ⁽⁴⁾	N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	M _{Ed} =0.00 N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	N.P. ⁽⁸⁾	CUMPLE η = 21.0

5.7 Arriostramiento lateral

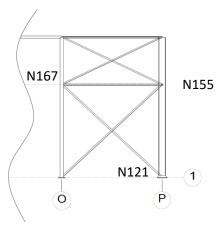


Figura 12. Arriostramiento lateral. Nudos seleccionados

5.7.1 Descripción

	Descripción												
Mat	erial	Barra	Perf			Longitud (m)		O	o	Lb _{Sup.}	Lb _{Inf.}		
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perfil(Serie)	Indeformable origen	Deformable	Indeformable extremo	β _{xy}	β _{xz}	(m)	(m)		
Acero laminado	S275	Montante	N167/N155	#80x3 (Huecos cuadrados)	-	5.000	0.004	0.00	0.00	-	-		
		Diagonal	N121/N167 L 75 x 75 4 (L)		0.225	6.532	0.059	0.00	0.00	-	-		

5.7.2 Comprobación de resistencia

	Comprobación de resistencia														
		Posición		Е											
Barra	η (%)	(%) (m)	N	N Vy Vz Mt My Mz			Origen	Estado							
	(/0)	(111)	(kN)	(kN)	(kN)	(kN·m)	(kN·m)	(kN·m)							
Montante	53.63	0.00	-25.179	-0.026	-0.193	-0.01	-0.25	-0.02	GV	Cumple					
Diagonal	22.08	0.225	34.290	0.000	0.000	0.00	0.00	0.00	GV	Cumple					

5.7.3 Flechas

	Flechas														
	Flecha m	aáxima absoluta	Flecha m	áxima absoluta	Flecha a	ctiva absoluta	Flecha a	ctiva absoluta							
		ху		XZ		xy		XZ							
Cruno	Flecha n	náxima relativa	Flecha n	náxima relativa	Flecha	activa relativa	Flecha activa relativa								
Grupo		ху		XZ		xy	XZ								
	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha							
	(m)	(mm)	(m)	(mm)	(m)	(mm)	(m)	(mm)							
Montant	3.022	0.78	2.115	0.62	3.022	1.21	0.907	0.35							
е	3.022	L/(>1000)	3.022	L/(>1000)	3.022	L/(>1000)	0.907	L/(>1000)							
Diagona	5.715	0.00	4.082	0.00	6.124	0.00	4.899	0.00							
- 1	-	L/(>1000)	-	L/(>1000)	ı	L/(>1000)	-	L/(>1000)							

5.7.4 Comprobaciones E.L.U.

		COMPROBACIONES (CTE DB SE-A)												
Barras	$\overline{\lambda}$	λ_{w}	N _t	N_c	M_{Y}	Mz	Vz	V_{Y}						
	$\bar{\lambda}$ < 2.0 Cumple	λ _w ≤λ _{w,máx} Cumple	η< 0.1	η = 48.4	x: 0 m η = 4.8	x: 4.835 m η = 2.3	x: 0 m η = 0.4	η = 0.1						
Montante	M_YV_Z	M_zV_y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_t	M_tV_Z	M_tV_Y	Estado						
	η< 0.1 η< 0.1		x: 0 m η = 53.6	η< 0.1	$\eta = 0.6$	x: 0 m η = 0.4	$\eta = 0.1$	CUMPLE η = 53.6						
	$\overline{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y						
	$\bar{\lambda}$ <4.0 Cumple	_	η = 22.1	N _{Ed} = 0.00 N.P. ⁽¹⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	V _{Ed} = 0.00 N.P. ⁽³⁾	V _{Ed} = 0.00 N.P. ⁽³⁾						
Diagonal	M_YV_Z	M_zV_y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_{t}	M_tV_z	M_tV_Y	Estado						
	N.P. ⁽⁴⁾	N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	$M_{Ed} = 0.00$ N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	N.P. ⁽⁸⁾	CUMPLE η = 22.1						

5.8 Viga perimetral

5.8.1 Descripción

	Descripción													
Material		Barra	Pieza	Perfil(Serie)	Longitud	0	0	Lb _{Sup.}	Lb _{Inf.} (m)					
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perii(Serie)	(m)	Бху	β_{xz}	(m)						
Acero laminado	S275	Viga Perimetral	V. Perimetral	IPE 120 (IPE)	4.840	0.00	0.00	-	-					

5.8.2 Comprobación de resistencia

	Comprobación de resistencia													
Barra	η (%)	Posición	(m) N Vy Vz Mt My M					Mz	Origen	Estado				
Viga Perimetral 7.51 4.920 18.833 -0.001 0.350 0.00 -0.32 0.00								GV	Cumple					

5.8.3 Flechas

		Flechas														
		ab	ha máxima soluta xy	ab	na máxima soluta xz	ab	cha activa soluta xy	abs	cha activa soluta xz							
	Grupo	Flecha m	náxima relativa xy	Flecha m	xz xz	Flecha a	xy xy	Flecha a	xz							
		Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)							
Ī	Viga	3.630	0.04	2.723	0.25	3.630	0.08	3.933	0.13							
	Perimetral	3.630	L/(>1000)	2.723	L/(>1000)	3.630	L/(>1000)	3.933	L/(>1000)							

Comprobaciones E.L.U.

	COMPROBACIONES (CTE DB SE-A)													
Barras	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	V _z	V_{Y}						
	$\bar{\lambda}$ < 2.0 Cumple	λ _w ≤λ _{w,máx} Cumple	η = 5.4	η = 3.5	x: 0.08 m η = 2.9	x: 4.92 m η = 0.3	x: 0.08 m η = 0.4	η< 0.1						
Viga Perimetral	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$	M_t	M_tV_Z	M_tV_Y	Estado						
remiletiai	η< 0.1	x: 0.08 m η< 0.1	x: 4.92 m η = 7.5	η< 0.1	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.6						

5.9 Correas

5.9.1 Correas de cubierta

Las correas de cubierta han sido diseñadas con un perfil tipo ZF-180x2.0 y acero S235. Entre ellas hay una separación de 1.89 metros, haciendo así un total de 24 correas.

Para los cálculos, se ha introducido las condiciones de tres vanos, tipo de fijación rígida y límite de flecha de L/300.

Perfil:	ZF-	18	0x2.0
Materi	al:	S2	35

Nuc	dos			C	aract	erístic	as me	cánic	as	
Inicial	Final	Longit ud (m)	Área (cm			I _{vz} ⁽⁴⁾ (cm4		(m	(m	(grado
			-))	4))	4)	m)	m)	S)
0.941, 75.000, 7.082	0.941, 70.000, 7.082	5.000	6.32	301. 54	40.8 1	- 80.4 8	0.08	1.4 2	2.6 5	15.8

Notas:

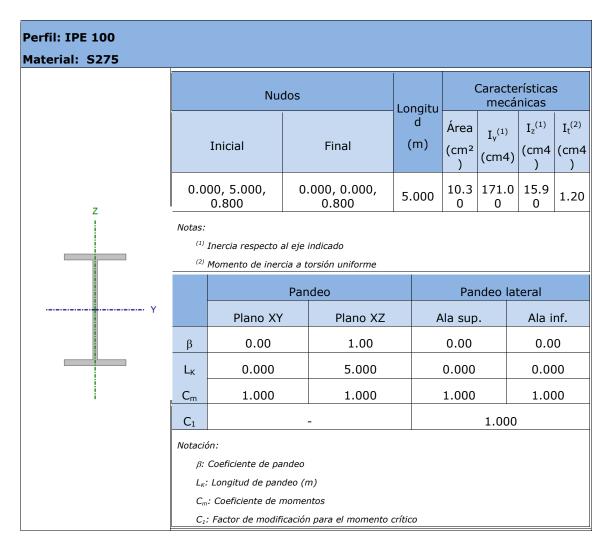
- (1) Inercia respecto al eje indicado
- (2) Momento de inercia a torsión uniforme
- (3) Coordenadas del centro de gravedad
- ⁽⁴⁾ Producto de inercia
- ⁽⁵⁾ Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario.

	Pan	ideo	Pandeo lateral				
	Plano XY	Plano XZ	Ala sup.	Ala inf.			
β	0.00	1.00	0.00	0.00			
L _K	0.000	5.000	0.000	0.000			
C ₁		-	1.00	00			

Notación:

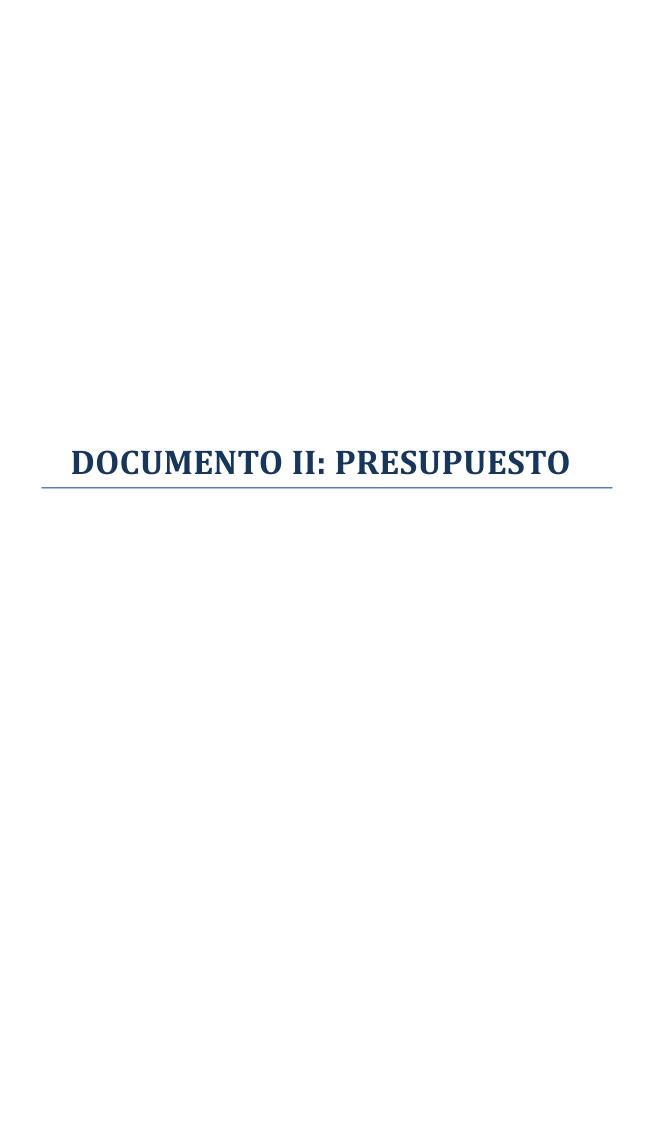
 β : Coeficiente de pandeo

 L_K : Longitud de pandeo (m)


C1: Factor de modificación para el momento crítico

		COMPROBACIONES (CTE DB SE-A)												
Barra	b / t	$\bar{\lambda}$	N _t	N _c	M _y	M _z	M_yM_z	V _y	V _z			, - ,	$M_tNM_yM_zV_y$ V_z	Estado
pésima en cubierta	b / t ≤ (b / t) _{Máx} .	N.P. ⁽	N.P. ⁽	N.P. ⁽	x: 5 m η =	N.P. ⁽	N.P. ⁽	N.P. ⁽	x: 5 m η =	N.P. ⁽⁷	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	N.P. ⁽¹⁰⁾	CUMPL E
	Cumple				91.8				21.8					η = 91.8

El perfil seleccionado cumple con todas las comprobaciones de resistencia y de flecha, con un aprovechamiento en la de resistencia del 91.77% y en la de flecha del 83.94%


5.9.2 Correas laterales

Las correas laterales se han calculado con un perfil tipo IPE 100 y acero S275. Existe una separación de 1.60 metros entre ellas, habiendo un total de 6, pues en la mitad inferior se encuentran los cerramientos de paneles de hormigón, los cuales se unen directamente al pilar y no necesitan de éstas.

Barra	īλ	λ_{w}	N _t	N _c	M _Y	COMPRO M _Z	DBACION V _Z	NES (CTE I		M _Z V _Y		NM _Y M _Z V _Y V _Z	Mt	M_tV_Z	M_tV_Y	Estado
pésima en lateral	N.P. ⁽	$x{:} \ 0 \ m$ $\lambda_w \leq \\ \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽²⁾	N _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 41.7	M _{Ed} = 0.00	x: 0 m η = 6.7	V _{Ed} = 0.00 N.P. ⁽⁵⁾	x: 0 m η < 0.1	N.P. ⁽	N.P. ⁽⁷	N.P. ⁽⁸⁾	M _{Ed} = 0.00	N.P. ⁽¹	N.P. ⁽¹	CUMPL Ε η = 41.7

El perfil seleccionado cumple todas las comprobaciones, tanto de flecha como de resistencia, con un aprovechamiento del 41.72% y del 99.02% respectivamente.

Índice Presupuesto

1	MEDICIONES	1
2	CUADRO DE PRECIOS	3
3	PRESUPUESTO	16
4	RESUMEN DEL PRESUPUESTO	32

1 MEDICIONES

Este documento, según la Norma UNE 157001 publicada en junio de 2014, tiene como misión "definir y determinar las unidades de cada partida o unidad de obra que configuran la totalidad del producto, obra, edificio, instalación y servicios objeto del Proyecto, basándose en la información contenida en el documento Planos".

Para redactarlo, se van a obtener parte de los datos del apartado Listados de CYPE, en concreto los relacionados con los materiales empleados para la estructura y la cimentación, y el resto mediante medición directa de los planos.

	Resumen de medición												
Mat	erial					gitud Volumen					Peso		
Tipo	Designación	Serie	Perfil	Perfil (m)	Serie (m)	Material (m)	Perfil (m³)	Serie (m³)	Material (m³)	Perfil (kg)	Serie (kg)	Material (kg)	
			IPE 330	989.140			6.192			48607.31			
			IPE 240	80.306			0.314			2464.86			
			IPE 120	195.000			0.257			2020.59			
		IPE			1264.445			6.763			53092.76		
			L 75 x 75 x 4	363.023			0.215			1689.89			
			L 60 x 60 x 4	66.389			0.031			245.46			
		L			429.412			0.247			1935.35		
			#80x3	200.000			0.178			1396.89			
		Huecos cuadrados			200.000			0.178			1396.89		
Acero laminado	S275					1893.857			7.188			56425.00	

Tabla 1. Medición de la estructura metálica

	В 500	S, Ys=1.15	(kg)	Hormigón (m³)	
Elemento	Ø12	Ø16	Total	HA-25, Yc=1.5	Limpieza
Referencias: N6, N136, N126, N148, N141, N121, N1 y N131	8x71.72		573.76	8x2.42	8x0.48
Referencias: N137, N134, N146, N144, N142, N139, N129 y N132	8x60.63		485.04	8x2.20	8x0.44
Referencias: N3 y N123	2x83.60		167.20	2x2.91	2x0.53
Referencias: N11 y N115	2x138.91		277.82	2x4.74	2x0.73
Referencias: N19, N27, N35, N43, N51, N59, N67, N75, N83, N91, N99 y N107	12x109.69		1316.28	12x3.75	12x0.63
Referencias: N14, N22, N30, N38, N46, N54, N62, N70, N78, N86, N94, N102 y N110		13x118.81	1544.53	13x3.82	13x0.45
Referencia: N118		114.44	114.44	3.53	0.41
Referencias: N113, N105, N97, N89, N81, N73, N65, N57, N49, N41, N33, N25, N17 y N9		14x118.81	1663.34	14x3.82	14x0.45
Totales	2820.10	3322.31	6142.41	204.10	29.98

Tabla 2. Medición de la cimentación, zapatas

	B 500 S, Ys=1.15 (kg)			Hormigón (m³)	
Elemento	Ø8	Ø12	Total	HA-25, Yc=1.5	Limpieza
Referencias: C [N6-N137], C [N136-N137], C [N136-N134], C [N134-N3], C [N3-N132], C [N132-N131], C [N131-N129], C [N129-N1], C [N6-N14], C [N14-N22], C [N22-N30], C [N30-N38], C [N38-N46], C [N46-N54], C [N54-N62], C [N62-N70], C [N70-N78], C [N78-N86], C [N86-N94], C [N94-N102], C [N102-N110], C [N110-N118], C [N118-N126], C [N126-N146], C [N146-N148], C [N148-N144], C [N144-N123], C [N123-N142], C [N142-N141], C [N141-N139], C [N139-N121], C [N121-N113], C [N113-N105], C [N105-N97], C [N97-N89], C [N89-N81], C [N81-N73], C [N73-N65], C [N65-N57], C [N57-N49], C [N49-N41], C [N41-N33], C [N33-N25], C [N25-N17], C [N17-N9], C [N9-N1], C [N3-N11], C [N11-N19], C [N19-N27], C [N27-N35], C [N35-N43], C [N43-N51], C [N51-N59], C [N59-N67], C [N67-N75], C [N75-N83],		61x19.58	1581.73	61x0.46	61x0.11
C [N83-N91], C [N91-N99], C [N99-N107], C [N107-N115] y C [N115-N123] Totales	387.35	1194.38	1581.73	27.82	6.95

Tabla 3. Medición de la cimentación, vigas de atado

Cerramientos	Altura (m)	Longitud (m)	Huecos (m²)	Superficie (m²)	Superficie neta (m²)
Fachada frontal	7	75	1.6	525	523.4
Fachada trasera	7	75	1.6	525	523.4
Fachada izquierda	7.875	40	0	315	315
Fachada derecha	7.875	40	32	315	283

Tabla 4. Medición de superficie de los cerramientos de fachada

	Longitud (m)	Anchura (m)	Superficie por agua (m²)	Número de aguas (Ud)	Superficie total (m²)
Cubierta	75	10.038	752.85	4	3011.4

Tabla 5. Medición de superficie de los cerramientos de cubierta

	Longitud (m)	Anchura (m)	Superficie por parcela (m2)	Número de parcelas	Superficie total (m2)
Parcela	20.27	50.22	1017.96	5	5089.80

Tabla 6. Medición de superficie de la parcela

2 CUADRO DE PRECIOS

CÓDIGO	UD RESUMEN	PRECIO
01	ACONDICIONAMIENTO DEL TERRENO DE LA NAVE	
01.01	m ² Desbroce y limpieza del terreno	
	Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión.	
	Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión.	
	Mano de obra	0.14
	Maquinaria	0.84
	Costes directos complementarios	0.02
	TOTAL PARTIDA	1.00
01.02	m ³ Zahorra artificial caliza para base de pavimento	
	Base de pavimento realizada mediante relleno a cielo abierto, con zahorra artificial caliza, y compactación en tongadas sucesivas de 30 cm de espesor máximo con bandeja vibrante de guiado manual, hasta alcanzar una densidad seca no inferior al 95% de la máxima obtenida en el ensayo Proctor Modificado, realizado según UNE 103501.	
	Incluye: Transporte y descarga del material de relleno a pie de tajo. Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Compactación.	
	Mano de obra	1.07
	Maquinaria	2.29
	Materiales	20.83
	Costes directos complementarios	0.48
	TOTAL PARTIDA	24.67

CÓDIGO	UD	RESUMEN	PRECIO
01.03	m²	Solera de hormigón	
	fabri vibra med	ra de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-15/B/20/l cado en central y vertido desde camión, extendido y vibrado manual mediante regla ante, sin tratamiento de su superficie con juntas de retracción de 5 mm de espesor, iante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm spesor, para la ejecución de juntas de dilatación.	
	cons o re perir horn	ye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de trucción y de dilatación. Tendido de niveles mediante toques, maestras de hormigón glas. Riego de la superficie base. Formación de juntas de construcción y de juntas metrales de dilatación. Vertido, extendido y vibrado del hormigón. Curado del nigón. Replanteo de las juntas de retracción. Corte del hormigón. Limpieza final de las as de retracción.	
		Mano de obra	4.15
		Maquinaria	1.17
		Materiales	7.03
		Costes directos complementarios	0.25
		TOTAL PARTIDA	12.60
01.04	m²	Excavación de zanjas para cimentaciones	
		vación de zanjas para cimentaciones hasta una profundidad de 2 m, en suelo de la semidura, con medios mecánicos, y carga a camión.	
	las c horiz	ye: Replanteo general y fijación de los puntos y niveles de referencia. Colocación de amillas en las esquinas y extremos de las alineaciones. Excavación en sucesivas franjas zontales y extracción de tierras. Refinado de fondos y laterales a mano, con extracción is tierras. Carga a camión de los materiales excavados.	
		Mano de obra	4.37
		Maquinaria	18.54
		Costes directos complementarios	0.46
		TOTAL PARTIDA	23.37
01.05	m³	Transporte de residuos inertes con camión	
	cons resid	sporte con camión de mezcla sin clasificar de residuos inertes producidos en obras de trucción y/o demolición, a vertedero específico, instalación de tratamiento de luos de construcción y demolición externa a la obra o centro de valorización o inación de residuos, situado a 20 km de distancia.	
		Maquinaria	2.99
		Costes directos complementarios	0.06
		TOTAL PARTIDA	3.05

CÓDIGO	UD RESUMEN	PRECIO
02	ACONDICIONAMIENTO DEL TERRENO DE LA PARCELA	
02.01	m ² Desbroce y limpieza del terreno	
	Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión.	
	Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión.	
	Mano de obra	0.14
	Maquinaria	0.84
	Costes directos complementarios	0.02
	TOTAL PARTIDA	1.00
02.02	m ³ Zahorra artificial caliza para base de pavimento	
	Base de pavimento realizada mediante relleno a cielo abierto, con zahorra artificial caliza, y compactación en tongadas sucesivas de 30 cm de espesor máximo con bandeja vibrante de guiado manual, hasta alcanzar una densidad seca no inferior al 95% de la máxima obtenida en el ensayo Proctor Modificado, realizado según UNE 103501.	
	Incluye: Transporte y descarga del material de relleno a pie de tajo. Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Compactación.	
	Mano de obra	1.07
	Maquinaria	2.29
	Materiales	20.83
	Costes directos complementarios	0.48
	TOTAL PARTIDA	24.67

CÓDIGO UD RESUMEN PRECIO

02.03 m² Pavimento continuo de hormigón impreso realizado con hormigón HM-20/B/20/I

Pavimento continuo de hormigón impreso, con juntas, de 10 cm de espesor, realizado con hormigón HM-20/B/20/I fabricado en central y vertido desde camión; coloreado y endurecido superficialmente mediante espolvoreo con mortero decorativo de rodadura para pavimento de hormigón color blanco, compuesto de cemento, áridos de sílice, aditivos orgánicos y pigmentos, rendimiento 4,5 kg/m²; acabado impreso en relieve mediante estampación con moldes de goma, previa aplicación de desmoldeante en polvo color burdeos. Incluso p/p de colocación y retirada de encofrados, ejecución de juntas de construcción; emboquillado o conexión de los elementos exteriores (cercos de arquetas, sumideros, botes sifónicos, etc.) de las redes de instalaciones ejecutadas bajo el pavimento; extendido, regleado y aplicación de aditivos. Limpieza final del hormigón mediante proyección de agua a presión y sellado final mediante aplicación de resina impermeabilizante. Sin incluir la ejecución de la base de apoyo ni la de las juntas de dilatación y de retracción.

Incluye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de construcción, de dilatación y de retracción. Colocación de encofrados. Tendido de niveles. Riego de la superficie base. Vertido, extendido y vibrado del hormigón. Nivelado y fratasado manual del hormigón. Curado del hormigón. Aplicación manual del mortero coloreado endurecedor. Aplicación del desmoldeante hasta conseguir una cubrición total. Impresión del hormigón mediante moldes. Retirada de encofrados. Limpieza de la superficie de hormigón, mediante máquina hidrolimpiadora de agua a presión. Aplicación de la resina de acabado.

TOTAL PARTIDA	24.94
Costes directos complementarios	0.49
Materiales	11.52
Maquinaria	0.76
Mano de obra	12.17

Costes directos complementarios TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra 15 Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.	CÓDIGO	UD RESUMEN	PRECIO
Capa de hormigón de limpieza y nivelado de fondos de cimentación, de 10 cm de espesor, de hormigón HL-150/8/20, fabricado en central y vertido desde camión, en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Mano de obra Materiales Costes directos complementarios TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m². Incluso alambre de atar y separadores.	03	CIMENTACIONES	
de hormigón HL-150/B/20, fabricado en central y vertido desde camión, en el fondo de la excavación previamente realizada. Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón. Mano de obra Materiales Costes directos complementarios TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales 118 Costes directos complementarios TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.	03.01	m ² Hormigón de limpieza HL-150/B/20	
compactación del hormigón. Coronación y enrase del hormigón. Mano de obra Materiales Costes directos complementarios TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales 118 Costes directos complementarios 7 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		de hormigón HL-150/B/20, fabricado en central y vertido desde camión, en el fondo de la	
Materiales Costes directos complementarios TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra 15 Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.			
TOTAL PARTIDA 7 03.02 m³ Hormigón armado HA-25/B/20/lla para zapatas Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		Mano de obra	0.52
TOTAL PARTIDA 7 7 7 7 7 7 7 7 7 7 7 7 7		Materiales	6.86
Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra 15 Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 137 138 139 130 130 130 130 130 130 130		Costes directos complementarios	0.15
Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales 118 Costes directos complementarios TOTAL PARTIDA 137 137 138 139 130 130 130 130 131 132 133 134 135 136 137 137 138 139 139 130 130 130 130 130 130		TOTAL PARTIDA	7.53
fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y separadores. Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales 118 Costes directos complementarios 2 TOTAL PARTIDA 137 137 138 139 130 130 130 130 130 130 130	03.02	m ³ Hormigón armado HA-25/B/20/IIa para zapatas	
estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Mano de obra Materiales Costes directos complementarios TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/Ila para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/Ila fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 43 kg/m³. Incluso armaduras de espera del pilar, alambre de atar y	
Costes directos complementarios TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/IIa para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/IIa fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos.	
Costes directos complementarios 2 TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/IIa para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/IIa fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		Mano de obra	15.42
TOTAL PARTIDA 137 03.03 m³ Hormigón armado HA-25/B/20/lla para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/lla fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		Materiales	118.94
03.03 m³ Hormigón armado HA-25/B/20/IIa para vigas de atado Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/IIa fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		Costes directos complementarios	2.69
Viga de atado de hormigón armado, realizada con hormigón HA-25/B/20/IIa fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.		TOTAL PARTIDA	137.05
central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 56,9 kg/m³. Incluso alambre de atar y separadores.	03.03	m³ Hormigón armado HA-25/B/20/IIa para vigas de atado	
Jackey Coloratión de la consedica con consedica homologida y		central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada	
compactación del hormigón. Coronación y enrase. Curado del hormigón.		Incluye: Colocación de la armadura con separadores homologados. Vertido y compactación del hormigón. Coronación y enrase. Curado del hormigón.	
Mano de obra 18		Mano de obra	18.63
Materiales 126		Materiales	126.68
Costes directos complementarios 2		Costes directos complementarios	2.91
TOTAL PARTIDA 148		TOTAL PARTIDA	148.22

CÓDIGO	UD RESUMEN		PRECIO
04	ESTRUCTURAS		
04.01	kg Acero UNE-EN 10025 S275JR estructura me	etálica	
	Acero UNE-EN 10025 S275JR, en estructura m laminados en caliente de la serie Huecos cuadra obra.		
	Incluye: Limpieza y preparación del plano de ap Colocación y fijación provisional de las piezas. A uniones		
		Mano de obra	0.93
		Maquinaria	0.05
		Materiales	0.96
		Costes directos complementarios	0.04
		TOTAL PARTIDA	1.98
04.02	kg Acero UNE-EN 10025 S275JR correas metál	licas	
	Acero UNE-EN 10025 S275JR, en correas metálica laminados en caliente de las series IPN, IPE, imprimación antioxidante, fijadas a las cerchas co	HEB, HEA, HEM o UPN, acabado con	
	Incluye: Replanteo de las correas sobre las cerch cerchas. Aplomado y nivelación definitivos. Ejecuc		
		Mano de obra	0.89
		Materiales	0.86
		Costes directos complementarios	0.04
		TOTAL PARTIDA	1.79
04.03	kg Acero UNE-EN 10162 S235JRC correas met	álicas	
	Acero UNE-EN 10162 S235JRC, en correas met perfiles conformados en frío de las series omega, a las cerchas con uniones atornilladas en obra.		
	Incluye: Replanteo de las correas sobre las cerch cerchas. Aplomado y nivelación definitivos. Ejecuc		
		Mano de obra	0.89
		Materiales	0.98
		Costes directos complementarios	0.04
		TOTAL PARTIDA	1.91

CÓDIGO	UD	RESUMEN	PRECIO
04.04	Ud	Placa de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y taladro central biselado	
	tala	a de anclaje de acero UNE-EN 10025 S275JR en perfil plano, con rigidizadores y dro central biselado, de 350x500 mm y espesor 18 mm, con 4 pernos soldados de co corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 93,2248 cm de longitud l.	
		uye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. ocación y fijación provisional de la placa. Aplomado y nivelación.	
		Mano de obra	51.81
		Maquinaria	0.07
		Materiales	69.14
		Costes directos complementarios	2.42
		TOTAL PARTIDA	123.44

CÓDIGO	UD	RESUMEN	PRECIO
05	FACI	HADAS Y CUBIERTAS	
05.01	m ²	Cerramiento de fachada formado por paneles alveolares prefabricados de hormigón pretensado	
	pret bord con alve sobr cabe	amiento de fachada formado por paneles alveolares prefabricados de hormigón ensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, con los des machihembrados, acabado liso, de color gris, dispuestos en posición horizontal, inclusión o delimitación de huecos. Incluso colocación en obra de los paneles olares con ayuda de grúa autopropulsada, apuntalamientos, resolución del apoyo de la superficie superior de la cimentación, enlace de los paneles alveolares por las exas a las vigas de la estructura mediante conectores, y por los extremos a los pilares de estructura y sellado de juntas con silicona neutra. Totalmente montado.	
	Posi de la	uye: Replanteo de los paneles alveolares. Colocación del cordón de caucho adhesivo. cionado de los paneles alveolares en su lugar de colocación. Aplomo y apuntalamiento os paneles alveolares. Soldadura de los elementos metálicos de conexión. Sellado de as y retacado final con mortero de retracción controlada.	
		Mano de obra	1.84
		Maquinaria	2.14
		Materiales	18.11
		Costes directos complementarios	0.44
		TOTAL PARTIDA	22.53
05.02	m ²	Cerramiento de fachada de paneles sándwich aislantes, de acero galvanizado y alma aislante de lana de roca de 100kg/m³ de densidad	
	form 0,5 dens fijac pane	nada de paneles sándwich aislantes, de 50 mm de espesor y 1100 mm de anchura, nados por doble cara metálica de chapa lisa de acero galvanizado, de espesor exterior mm y espesor interior 0,5 mm y alma aislante de lana de roca de 100 kg/m³ de sidad media, colocados en posición vertical y fijados mecánicamente con sistema de ión oculta a una estructura portante o auxiliar. Incluso accesorios de fijación de los eles y cinta flexible de butilo, adhesiva por ambas caras, para el sellado de nqueidad de los solapes entre paneles sándwich.	
		uye: Replanteo de los paneles. Corte, preparación y colocación de los paneles. Sellado untas. Fijación mecánica de los paneles.	
		Mano de obra	8.13
		Materiales	60.72
		Costes directos complementarios	1.38
		TOTAL PARTIDA	70.23

CÓDIGO	UD RESUMEN	PRECIO
05.03	m ² Cobertura de paneles sándwich aislantes, de acero	
	Cobertura de paneles sándwich aislantes de acero, con la superficie exterior grecada y la superficie interior lisa, de 30 mm de espesor y 1150 mm de anchura, formados por doble cara metálica de chapa estándar de acero, acabado prelacado, de espesor exterior 0,5 mm y espesor interior 0,5 mm y alma aislante de lana de roca de densidad media 145 kg/m³, y accesorios, colocados con un solape del panel superior de 200 mm y fijados mecánicamente sobre entramado ligero metálico, en cubierta inclinada, con una pendiente mayor del 10%. Incluso accesorios de fijación de los paneles sándwich, cinta flexible de butilo, adhesiva por ambas caras, para el sellado de estanqueidad de los solapes entre paneles sándwich y pintura antioxidante de secado rápido, para la protección de los solapes entre paneles sándwich.	
	Incluye: Limpieza de la superficie soporte. Replanteo de los paneles por faldón. Corte, preparación y colocación de los paneles. Fijación mecánica de los paneles. Sellado de juntas. Aplicación de una mano de pintura antioxidante en los solapes entre paneles.	
	Mano de obra	2.97
	Materiales	48.20
	Costes directos complementarios	1.02
	TOTAL PARTIDA	52.19
05.04	m Esquina exterior para fachada metálica	
	Esquina exterior para fachada metálica, con chapa plegada de acero galvanizado, de 0,8 mm de espesor, 30 cm de desarrollo y 5 pliegues. Incluso accesorios de fijación de las piezas a los paneles.	
	Incluye: Replanteo y colocación del remate. Fijación mecánica.	
	Mano de obra	7.03
	Materiales	7.65
	Costes directos complementarios	0.29
	TOTAL PARTIDA	14.97
05.05	m Cumbrera metálica para cubierta inclinada con chapa plegada de acero galvanizado	
	Cumbrera para cubierta inclinada con chapa plegada de acero galvanizado, de 0,8 mm de espesor, 60 cm de desarrollo y 3 pliegues, con junta de estanqueidad. Incluso accesorios de fijación de las piezas a las placas.	
	Incluye: Replanteo y colocación del remate. Fijación mecánica. Colocación de la junta de estanqueidad.	
	Mano de obra	7.03
	Materiales	9.78
	Costes directos complementarios	0.34
	TOTAL PARTIDA	17.15

CÓDIGO	UD	RESUMEN	PRECIO
05.06	m	Borde perimetral para cubierta inclinada	
	de d	le perimetral con chapa plegada de acero galvanizado, de 0,8 mm de espesor, 40 cm esarrollo y 3 pliegues, con junta de estanqueidad. Incluso accesorios de fijación de las as a las placas y masilla de base neutra monocomponente, para sellado de juntas.	
		ye: Replanteo y colocación del remate. Fijación mecánica. Colocación de la junta de nqueidad.	
		Mano de obra	8.44
		Materiales	9.91
		Costes directos complementarios	0.37
		TOTAL PARTIDA	18.72

CÓDIGO	UD	RESUMEN	PRECIO
06	CAR	PINTERÍA METÁLICA	
06.01	Ud	Puerta seccional automática industrial, de paneles de sándwich aislantes con núcleo de espuma de poliuretano, de acero, de 4x4m	
	de d lacac miril de p guías de to y cie evita rotu cone pues	ta seccional industrial, de 4x4 m, formada por panel sándwich, de 45 mm de espesor, oble chapa de acero zincado con núcleo aislante de espuma de poliuretano, acabado do de color RAL 9016 en la cara exterior y de color RAL 9002 en la cara interior, con la central de 610x180 mm, formada por marco de material sintético y acristalamiento polimetilmetacrilato (PMMA), juntas entre paneles y perimetrales de estanqueidad, si laterales de acero galvanizado, herrajes de colgar, equipo de motorización, muelles porsión, cables de suspensión, cuadro de maniobra con pulsador de control de apertura perre de la puerta y pulsador de parada de emergencia, sistema antipinzamiento para per el atrapamiento de las manos, en ambas caras y sistemas de seguridad en caso de ra de muelle y de rotura de cable. Incluso limpieza previa del soporte, material de exionado eléctrico y ajuste y fijación en obra. Totalmente montada, conexionada y sita en marcha por la empresa instaladora para la comprobación de su correcto ionamiento.	
	Insta	rye: Limpieza y preparación de la superficie soporte. Replanteo. Montaje de la puerta. elación de los mecanismos. Conexionado eléctrico. Ajuste y fijación de la puerta. eta en marcha.	
		Mano de obra	535.90
		Materiales	3225.82
		Costes directos complementarios	75.23
		TOTAL PARTIDA	3836.95
06.02	Ud	Puerta cortafuegos de acero galvanizado de 800x2000mm	
	800x chap con cerco ancla	ta cortafuegos pivotante homologada, EI2 60-C5, de una hoja de 63 mm de espesor, £2000 mm de luz y altura de paso, acabado lacado en color blanco formada por 2 has de acero galvanizado de 0,8 mm de espesor, plegadas, ensambladas y montadas, £2000 cámara intermedia de lana de roca de alta densidad y placas de cartón yeso, sobre de acero galvanizado de 1,5 mm de espesor con junta intumescente y garras de £2000 ajea a obra, incluso cierrapuertas para uso moderado. Elaborada en taller, con ajuste y sión en obra. Totalmente montada y probada.	
	para	ye: Marcado de puntos de fijación y aplomado del cerco. Fijación del cerco al mento. Sellado de juntas perimetrales. Colocación de la hoja. Colocación de herrajes derre y accesorios.	
		Mano de obra	16.39
		Materiales	333.55
		Costes directos complementarios	7.00

TOTAL PARTIDA

356.94

CÓDIGO	UD	RESUMEN	PRECIO
07	URB	ANIZACIÓN INTERIOR DE LA PARCELA	
07.01	Ud	Plantación de Jacaranda (Jacaranda mimosifolia) de 14 a 16 cm de perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm	
	m d	tación de Jacaranda (Jacaranda mimosifolia) de 14 a 16 cm de perímetro de tronco a 1 el suelo, en hoyo de 60x60x60 cm realizado con medios mecánicos; suministro en tenedor. Incluso tierra vegetal cribada y substratos vegetales fertilizados.	
		ye: Laboreo y preparación del terreno con medios mecánicos. Abonado del terreno. tación. Colocación de tutor. Primer riego.	
		Mano de obra	8.02
		Maquinaria	2.77
		Materiales	41.44
		Costes directos complementarios	1.04
		TOTAL PARTIDA	53.27
07.02	m	Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	
	espe resis espe sumi de ju	nación de vallado de parcela con muro de 1 m de altura, continuo, de 10 cm de esor de fábrica, de bloque CV de hormigón, liso hidrófugo, color gris, 40x20x10 cm, etencia normalizada R10 (10 N/mm²), con juntas horizontales y verticales de 10 mm de esor, junta rehundida, recibida con mortero de cemento industrial, color gris, M-5, inistrado a granel. Incluso limpieza y preparación de la superficie de apoyo, formación untas, ejecución de encuentros, pilastras de arriostramiento y piezas especiales. Sin uir revestimientos.	
	prim	uye: Limpieza y preparación de la superficie de apoyo. Replanteo. Asiento de la nera hilada sobre capa de mortero. Colocación y aplomado de miras de referencia. dido de hilos entre miras. Colocación de las piezas por hiladas a nivel.	
		Mano de obra	27.53
		Maquinaria	0.01
		Materiales	7.38
		Costes directos complementarios	0.70
		TOTAL PARTIDA	35.62
07.03	m	Vallado de parcela de malla de simple torsión, acabado galvanizado y 1 m de altura	
	de d 1 m	ado de parcela mediante malla de simple torsión, de 8 mm de paso de malla y 1,1 mm iámetro, acabado galvanizado y postes de acero galvanizado de 48 mm de diámetro y de altura. Incluso replanteo, apertura de huecos, relleno de hormigón para recibido os postes, colocación de la malla y accesorios de montaje y tesado del conjunto.	
	torn Vert	lye: Replanteo de alineaciones y niveles. Marcado de la situación de los postes y apuntas. Apertura de huecos para colocación de los postes. Colocación de los postes ido del hormigón. Aplomado y alineación de los postes y tornapuntas. Colocación de sorios. Colocación de la malla y atirantado del conjunto.	
		Mano de obra	5.11
		Materiales	7.46
		Costes directos complementarios	0.38
			12.95

CÓDIGO	UD	RESUMEN	PRECIO
07.04	Ud	Puerta cancela metálica de carpintería metálica, de hoja corredera, dimensiones	

650x200 cm, para acceso de vehículos, apertura manual

Puerta cancela metálica de carpintería metálica, de hoja corredera, dimensiones 650x200 cm, perfiles rectangulares en cerco zócalo inferior realizado con chapa grecada de 1,2 mm de espesor a dos caras, para acceso de vehículos. Apertura manual. Incluso pórtico lateral de sustentación y tope de cierre, guía inferior con UPN 100 y cuadradillo macizo de 25x25 mm sentados con hormigón HM-25/B/20/I y recibidos a obra; ruedas para deslizamiento, con rodamiento de engrase permanente, elementos de anclaje, herrajes de seguridad y cierre, acabado con imprimación antioxidante y accesorios. Totalmente montada y probada por la empresa instaladora.

Incluye: Replanteo. Colocación y fijación de los perfiles guía. Instalación de la puerta cancela. Vertido del hormigón. Montaje del sistema de apertura. Montaje del sistema de accionamiento. Repaso y engrase de mecanismos y guías.

Mano de obra	254.19
Materiales	3598.94
Costes directos complementarios	77.06

TOTAL PARTIDA 3930.19

07.05 Ud Puerta cancela en vallado de parcela de malla metálica

Puerta cancela constituida por cercos de tubo de acero galvanizado de 40x20x1,5 mm y 30x15x1,5 mm, bastidor de tubo de acero galvanizado de 40x40x1,5 mm con pletina de 40x4 mm y por malla de simple torsión, de 8 mm de paso de malla y 1,1 mm de diámetro, acabado galvanizado, fijada a los cercos y atirantada, para acceso peatonal en vallado de parcela de malla metálica. Incluso replanteo, apertura de huecos en el terreno, relleno de hormigón HM-20/B/20/I para recibido de los postes, colocación y aplomado de la puerta sobre los postes, elementos de anclaje, herrajes de seguridad y cierre y accesorios de fijación y montaje. Totalmente montada.

Incluye: Replanteo de alineaciones y niveles. Apertura de huecos en el terreno. Colocación de los postes. Vertido del hormigón. Montaje de la puerta. Fijación del bastidor sobre los postes. Colocación de los herrajes de cierre. Ajuste final de la hoja.

TOTAL PARTIDA	170.35
Costes Directos Complementarios	3.34
Materiales	134.02
Mano de obra	32.99

3 PRESUPUESTO

CÓDIGO	RESUMEN UDS LONGITUD ANCHURA ALTURA	CANTIDAD	PRECIO	IMPORTE					
01	ACONDICIONAMIENTO DEL TERRENO DE LA NAVE								
01.01	m ³ Desbroce y limpieza del terreno								
	Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión.								
	Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión.								
	Superficie de la 1 75 40 nave	3,000							
		3,000	1.00						
		3,000	3% de 1.00						
				3,090.00					
01.02	m ³ Zahorra artificial caliza para base de pavimento								
	Base de pavimento realizada mediante relleno a cielo abierto, con zahorra artificial caliza, y compactación en tongadas sucesivas de 30 cm de espesor máximo con bandeja vibrante de guiado manual, hasta alcanzar una densidad seca no inferior al 95% de la máxima obtenida en el ensayo Proctor Modificado, realizado según UNE 103501.								
	Incluye: Transporte y descarga del material de relleno a pie de tajo. Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Compactación.								
	Superficie de la 1 75 40 0.2 nave	600							
		600	24.67						
		600	3% de 24.67						

15,246.00

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE			
01.03	m² Solera de	hormige	ón								
	hormigón HM-15/t extendido y vibrad de su superficie con corte con disco de	Solera de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-15/B/20/I fabricado en central y vertido desde camión, extendido y vibrado manual mediante regla vibrante, sin tratamiento de su superficie con juntas de retracción de 5 mm de espesor, mediante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm de espesor, para la ejecución de juntas de dilatación.									
	Incluye: Preparació de las juntas de mediante toques, r base. Formación de dilatación. Vertido hormigón. Replant Limpieza final de la	construcci maestras de juntas de , extendio eo de las	de niveles a superficie metrales de Curado del								
	Superficie de la nave	1	75	40		3,000					
						3,000	12.60				
						3,000	3% de 12.60				
								38,940.00			
	2										
01.04			s para ciment								
	Excavación de zanj m, en suelo de a camión.	-		•							
	Incluye: Replanted referencia. Colocad alineaciones. Excav de tierras. Refinado tierras. Carga a can										
	Vigas de atado	1	27.820	1	1	27.820					
	Vigas de atado, hormigón de limpieza		6.950	1	1	6.950					
	Zapatas	1	204.100	1	1	204.100					
	Zapatas, hormigón de limpieza	1	29.980	1	1	29.980					
						268.850	23.37				
						268.850	3% de 23.37				
								6,471.22			

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE	
01.05	m ³ Transporte	de resid	uos inertes co	n camión					
	Transporte con camión de mezcla sin clasificar de residuos inertes producidos en obras de construcción y/o demolición, a vertedero específico, instalación de tratamiento de residuos de construcción y demolición externa a la obra o centro de valorización o eliminación de residuos, situado a 20 km de distancia.								
	Vigas de atado	1	27.820	1	1	27.820			
	Vigas de atado, hormigón de limpieza	1	6.950	1	1	6.950			
	Zapatas	1	204.100	1	1	204.100			
	Zapatas, hormigón de limpieza	1	29.980	1	1	29.980			
						268.850	3.05		
						268.850	3% de 3.05		
								844.19	
	тот	AL 01						64,591.41	

CÓDIGO	RESUMEN		UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE		
02	ACONDICIONAMIENTO DEL TERRENO DE LA PARCELA										
02.01	m ² Desbroce y limpieza del terreno										
	Desbroce y limpieza del terreno, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión. Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto										
	de desbroce.										
	Superficie parcela	de la	1	101.35	50.22		5,089.797				
	Superficie nave	de la	-1	75	40		-3,000				
							2,089.797	1.00			
							2,089.797	3% de 1.00			

2,152.49

02.02 m³ Zahorra artificial caliza para base de pavimento

Base de pavimento realizada mediante relleno a cielo abierto, con zahorra artificial caliza, y compactación en tongadas sucesivas de 30 cm de espesor máximo con bandeja vibrante de guiado manual, hasta alcanzar una densidad seca no inferior al 95% de la máxima obtenida en el ensayo Proctor Modificado, realizado según UNE 103501.

Incluye: Transporte y descarga del material de relleno a pie de tajo. Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Compactación.

Superficie de la parcela	1	101.35	50.22	0.2	1,017.959	
Superficie de la nave	-1	75	40	0.2	-600	
					417.959	24.67
					417.959	3% de 24.67

10,620.34

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE		
02.03	m ² Pavimento continuo de hormigón impreso realizado con hormigón HM-20/B/20/I									
	Pavimento contin espesor, realizado vertido desde o mediante espolv pavimento de ho de sílice, aditivo acabado impreso goma, previa aplincluso p/p de col de construcción; (cercos de arquel instalaciones ejecaplicación de aditi de agua a presi impermeabilizante las juntas de dilata	o con horm amión; co oreo con rmigón colo s orgánico: en relieve ilicación de ocación y remboquillacas, sumide cutadas baj vos. Limpie ón y sella e. Sin inclui	igón HM-20/B/: loreado y eno mortero decolo r blanco, compo s y pigmentos, e mediante est desmoldeante etirada de enco do o conexión d ros, botes sifón jo el paviment za final del horr do final media r la ejecución d	20/I fabricado e durecido super rativo de roda puesto de ceme, rendimiento ampación con en polvo colo frados, ejecució le los elementos icos, etc.) de la lo; extendido, nigón mediante aplicación	en central y ficialmente adura para ento, áridos 4,5 kg/m²; moldes de or burdeos. n de juntas s exteriores as redes de regleado y proyección de resina					
	Incluye: Preparaci de las juntas de c de encofrados. Te extendido y vibra hormigón. Curad coloreado endure una cubrición tota de encofrados. I máquina hidrolim acabado.	onstrucción ndido de ni ado del hor o del hor cedor. Apli al. Impresión Limpieza de	Colocación se. Vertido, manual del el mortero a conseguir es. Retirada , mediante							
	Superficie de l parcela	a 1	101.35	50.22		5,089.797				
	Superficie de l nave	a -1	75	40		-3,000				
						2,089.797	24.94			
						2,089.797	3% de 24.94			
								53,686.88		

TOTAL 02

66,459.71

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
03	ACONDICIONAN	MIENTO D	EL TERRENO D	E LA PARCELA	\			
03.01	m ² Hormigór	de limpie	eza HL-150/B/	20				
	Capa de hormigór 10 cm de espeso vertido desde ca realizada.	r, de horm	igón HL-150/B/	'20, fabricado e	n central y			
	Incluye: Replante Vertido y comp hormigón.							
	Superficie zapatas	1	300.16			300.16		
	Superficie viga de atado	is 1	74.52			74.52		
						374.680	7.53	
						374.680	3% de 7.53	
								2,907.52
03.02	m ³ Hormigón	armado I	HA-25/B/20/II	a para zapata	s			
	Zapata de ciment HA-25/B/20/IIa fa UNE-EN 10080 B Incluso armaduras	abricado er 500 S, co	n central y vert n una cuantía	tido con cubilo aproximada de	te, y acero 43 kg/m³.			
	Incluye: Replanteo y trazado de las zapatas y de los pilares u otros elementos estructurales que apoyen en las mismas. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón.							
	Volumen zapatas	1	204.398			204.398		
						204.398	137.05	
						204.398	3% de 137.05	
								28,852.82

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE		
03.03	m³ Horr	m ³ Hormigón armado HA-25/B/20/IIa para vigas de atado								
	25/B/20/IIa 10080 B 50	ado de hormigó fabricado en cen 00 S, con una cu atar y separadoro	itral y vertido co uantía aproxima	n cubilote, y ac	ero UNE-EN					
	Incluye: Colocación de la armadura con separadores homologados. Vertido y compactación del hormigón. Coronación y enrase. Curado del hormigón.									
	Volumen de atado	Vigas 1	29.840			29.840				
						29.840	148.22			
						29.840	3% de 148.22			
								4,555.67		
		TOTAL 03						36,316.01		

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE			
04	ESTRUCTURAS										
04.01	kg Acero UN	E-EN 1002	25 S275JR esti	ructura metál	ica						
	simples de perfi	Acero UNE-EN 10025 S275JR, en estructura metálica con piezas simples de perfiles laminados en caliente de la serie Huecos cuadrados, colocado con uniones soldadas en obra.									
	Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional de las piezas. Aplomado y nivelación. Ejecución de las uniones										
	Perfiles serion huecos cuadrados	e 1	1,396.80			1,396.8					
	Perfiles serie IPE	1	53,093.11			53,093.11					
	Perfiles laminados serio L	1	1,935.48			1,935.48					
						56,425.39	1.98				
						56,425.39	3% de 1.98				
							1.50				

115,107.79

04.02	kg Acero UN	IE-EN 10025 S	275JR correas met	álicas		
	simples de perfil	es laminados er , acabado con i	correas metálicas for n caliente de las seri mprimación antioxid en obra.	es IPN, IPE, HEB,		
	, ,	esentación de las nitivos. Ejecución				
	Correas	3	150	8.1	3,645	
					3,645	1.79

6,706.80

3,645

3% de 1.79

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
04.03	kg Acero l	JNE-EN 1016	S2 S235JRC co	rreas metálica	as			
	piezas simples	de perfiles co bado galvaniz	IRC, en correas nformados en f zado, fijadas a	río de las serie	s omega, L,			
		as cerchas. Ap	reas sobre las ce lomado y nivela					
	Correas	24	75		4.96	8,928		
						8,928	1.91	
						8,928	3% de 1.91	
								17,588.16
04.04			25 S275JR pla lores y taladro					
	Placa de anclaj rigidizadores y mm, con 4 peri de 20 mm de d	taladro centra nos soldados c	espesor 18					
	•	os ejes. Coloc	ación del pland ación y fijación		•			
	Placa base	60				60		
						60	123.44	
						60	3% de 123.44	
								7,628.40
			147,031.15					

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE	
05	FACHADAS Y CUBIE	RTAS							
05.01	m ² Cerramiento alveolares p			ormado po migón preter					
	Cerramiento de facha de hormigón pretensa de longitud máxima, o color gris, dispuestr delimitación de huecalveolares con ayud resolución del apoyo enlace de los panele estructura mediante de estructura y sellado de locaucho adhesivo. Posi colocación. Aplomo Soldadura de los elem retacado final con mor								
	Lateral	2	75		3.5	525			
	Frontal	2	73	40					
					3.5	280 -24.5			
	Puertas grandes	-2		3.5	3.5				
	Puertas pequeñas	-2		0.8	2.0	-3.2			
						777.3	22.53		
						777.3	3% de 22.53		
								18,041.13	
05.02		vaniza	do y alma ais	eles sándwic lante de lana					
	Fachada de paneles s mm de anchura, forn acero galvanizado, de mm y alma aislante d colocados en posición fijación oculta a una de fijación de los pane caras, para el sellado sándwich.	nados per espeso e lana o vertica estructo eles y co o de es							
	Incluye: Replanteo de los paneles. Corte, preparación y colocación de los paneles. Sellado de juntas. Fijación mecánica de los paneles.								
	Lateral	2	75		3.5	525			
	Frontal	2		40	4.375	350			

Puertas

-2

4

63,008.14

0.5

-4 871

871

70.23

3% de 70.23

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
05.03	m ² Coberto	ura de pan	eles sándwich	aislantes, de	acero			
	Cobertura de pa exterior grecada 1150 mm de ai estándar de ace espesor interior media 145 kg/n superior de 200 metálico, en cu Incluso accesorio butilo, adhesiva los solapes entra rápido, para la p	y la superf nchura, forn ro, acabado 0,5 mm y a n³, y acceso mm y fijado bierta inclin os de fijaciór por ambas e paneles sá	e espesor y a de chapa r 0,5 mm y e densidad e del panel mado ligero or del 10%. I flexible de queidad de de secado					
	Incluye: Limpiez por faldón. Cort mecánica de los pintura antioxida	te, preparac paneles. Sel	es. Fijación					
		4	75	10.038		3,011.4		
						3,011.4	52.19	
						3,011.4	3% de 52.19	
								161,892.86

05.04 m Esquina exterior para fachada metálica

Esquina exterior para fachada metálica, con chapa plegada de acero galvanizado, de 0,8 mm de espesor, 30 cm de desarrollo y 5 pliegues. Incluso accesorios de fijación de las piezas a los paneles.

Incluye: Replanteo y colocación del remate. Fijación mecánica.

4

4.375 _____ 17.5

17.5 24.97 17.5 3% de 24.97

269.85

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
05.05			netálica para da de acero ga		nada con			
	galvanizado,	de 0,8 mm (junta de e	nclinada con d de espesor, 6 estanqueidad. placas.	0 cm de desa	rrollo y 3			
			cación del rem estanqueidad	•	mecánica.			
		2	75			150		
						150	17.15	
						150	3% de 17.15	
								2,649.00
05.06	m	Borde perim	etral para cul	oierta inclinac	la			
	Borde perime 0,8 mm de es de estanqueid las placas y sellado de jur							
	Incluye: Repla Colocación de	mecánica.						
	Lateral	2	75			150		
	Frontal	8	10.038			80.304		
						230.304	18.72	
						230.304	3% de 18.72	
								4,440.26
	то1	AL 05						250,301.24

CÓDIGO	RESUMEN	JDS LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
06	CARPINTERÍA METÁ	LICA					
06.01	sándwich ais	nal automática in slantes con núc e acero, de 4x4m		aneles de ouma de			
	Puerta seccional indust 45 mm de espesor, o aislante de espuma de en la cara exterior y d central de 610x180 m acristalamiento de poli y perimetrales de esta herrajes de colgar, equ de suspensión, cuadr apertura y cierre de la sistema antipinzamient ambas caras y sistemas rotura de cable. Inclu conexionado eléctrico conexionada y puesta comprobación de su co	de doble chapa de poliuretano, acabado e color RAL 9002 en m, formada por mai metilmetacrilato (PN nqueidad, guías lateripo de motorización, o de maniobra cor a puerta y pulsador to para evitar el atrajo de seguridad en casuso limpieza previa y ajuste y fijación en en marcha por la el	acero zincado o lacado de colo la cara interior, co de material MMA), juntas en rales de acero gomuelles de tora pulsador de de parada de espamiento de las o de rotura de la del soporte, robra. Totalment mpresa instalad	con núcleo r RAL 9016 con mirilla sintético y tre paneles alvanizado, sión, cables control de mergencia, manos, en muelle y de naterial de e montada,			
	Incluye: Limpieza y pr Montaje de la puerta eléctrico. Ajuste y fijaci	Instalación de los	mecanismos. Co	-			
		2			2		
					2	3,836.95	
					2	3% de 3,836.95	
							7,904.12
06.02	Ud Puerta cort 800x2000mm	afuegos de ac	ero galvani:	ado de			
	Puerta cortafuegos piv 63 mm de espesor, 80 lacado en color blanco 0,8 mm de espesor, p intermedia de lana de sobre cerco de acero intumescente y garras moderado. Elaborada Totalmente montada y	Dox2000 mm de luz formada por 2 chap legadas, ensamblada roca de alta densida galvanizado de 1,5 de anclaje a obra, inc en taller, con aj	y altura de pas as de acero galv s y montadas, o d y placas de c mm de espeso luso cierrapuert	o, acabado ranizado de con cámara artón yeso, con junta as para uso			
	Incluye: Marcado de p del cerco al paramento la hoja. Colocación de l	o. Sellado de juntas p	erimetrales. Co	-			
		2			2		
					2	356.94	
					2	3% de 356.94	
							735.30

TOTAL 06

8,639.42

UDS LONGITUD ANCHURA ALTURA CANTIDAD

PRECIO

IMPORTE

CÓDIGO

RESUMEN

URBANIZACIÓN INTERIOR DE LA PARCELA 107.01 Ud Plantación de Jacaranda (Jacaranda mimosifolia) de 14 a 16 cm de perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm Plantación de Jacaranda (Jacaranda mimosifolia) de 14 a 16 cm de perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm realizado con medios mecánicos; suministro en contenedor. Incluso tierra vegetal cribada y substratos vegetales fertilizados. Incluye: Laboreo y preparación del terreno con medios mecánicos. Abonado del terreno. Plantación. Colocación de tutor. Primer riego. 16 16 17.02 m Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	1616	53.27 3% de 53.27	1,042.53
16 cm de perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm Plantación de Jacaranda (Jacaranda mimosifolia) de 14 a 16 cm de perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm realizado con medios mecánicos; suministro en contenedor. Incluso tierra vegetal cribada y substratos vegetales fertilizados. Incluye: Laboreo y preparación del terreno con medios mecánicos. Abonado del terreno. Plantación. Colocación de tutor. Primer riego. 16 Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	16	3% de	1,042.53
perímetro de tronco a 1 m del suelo, en hoyo de 60x60x60 cm realizado con medios mecánicos; suministro en contenedor. Incluso tierra vegetal cribada y substratos vegetales fertilizados. Incluye: Laboreo y preparación del terreno con medios mecánicos. Abonado del terreno. Plantación. Colocación de tutor. Primer riego. 16 Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	16	3% de	1,042.53
Abonado del terreno. Plantación. Colocación de tutor. Primer riego. 16 77.02 m Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	16	3% de	1,042.53
07.02 m Muro de fábrica para vallado de parcela de 1 m de altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	16	3% de	1,042.53
altura, continuo, de 10 cm de espesor, de bloque CV de hormigón		3% de	1,042.53
altura, continuo, de 10 cm de espesor, de bloque CV de hormigón	16		1,042.53
altura, continuo, de 10 cm de espesor, de bloque CV de hormigón			1,042.53
altura, continuo, de 10 cm de espesor, de bloque CV de hormigón			
Paramentés de cellede de marcele con constant de colonidade de			
Formación de vallado de parcela con muro de 1 m de altura, continuo, de 10 cm de espesor de fábrica, de bloque CV de hormigón, liso hidrófugo, color gris, 40x20x10 cm, resistencia normalizada R10 (10 N/mm²), con juntas horizontales y verticales de 10 mm de espesor, junta rehundida, recibida con mortero de cemento industrial, color gris, M-5, suministrado a granel. Incluso limpieza y preparación de la superficie de apoyo, formación de juntas, ejecución de encuentros, pilastras de arriostramiento y piezas especiales. Sin incluir revestimientos.			
Incluye: Limpieza y preparación de la superficie de apoyo. Replanteo. Asiento de la primera hilada sobre capa de mortero. Colocación y aplomado de miras de referencia. Tendido de hilos entre miras. Colocación de las piezas por hiladas a nivel.			
2 101.350	202.7		
2 50.22	100.44		
Puerta vehículos -1 6.5	-6.5		
Puerta personas -1 1	1		
	295.640	35.62	
	295.640	3% de 35.62	
			10,847.03

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
07.03	m Vallado de p galvanizado y		, acabado					
	Vallado de parcela me de malla y 1,1 mm de galvanizado de 48 mr apertura de huecos, colocación de la malla	diámetr n de diá relleno d	o, acabado gal metro y 1 m de de hormigón pa	vanizado y post e altura. Inclusc ara recibido de	es de acero replanteo, los postes,			
	Incluye: Replanteo de de los postes y tornar postes. Colocación de alineación de los po Colocación de la malla	ación de los aplomado y						
		2	101.350			202.7		
		2	50.22			100.44		
	Puerta vehículos	-1	6.5			-6.5		
	Puerta personas	-1	1			-1		
						295.640	12.95	
						295.640	3% de 12.95	

3,943.84

07.04 Ud Puerta cancela metálica de carpintería metálica, de hoja corredera, dimensiones 650x200 cm, para acceso de vehículos, apertura manual

Puerta cancela metálica de carpintería metálica, de hoja corredera, dimensiones 650x200 cm, perfiles rectangulares en cerco zócalo inferior realizado con chapa grecada de 1,2 mm de espesor a dos caras, para acceso de vehículos. Apertura manual. Incluso pórtico lateral de sustentación y tope de cierre, guía inferior con UPN 100 y cuadradillo macizo de 25x25 mm sentados con hormigón HM-25/B/20/I y recibidos a obra; ruedas para deslizamiento, con rodamiento de engrase permanente, elementos de anclaje, herrajes de seguridad y cierre, acabado con imprimación antioxidante y accesorios. Totalmente montada y probada por la empresa instaladora.

Incluye: Replanteo. Colocación y fijación de los perfiles guía. Instalación de la puerta cancela. Vertido del hormigón. Montaje del sistema de apertura. Montaje del sistema de accionamiento. Repaso y engrase de mecanismos y guías.

1 1 1 3,930.19 1 3% de 3,930.19

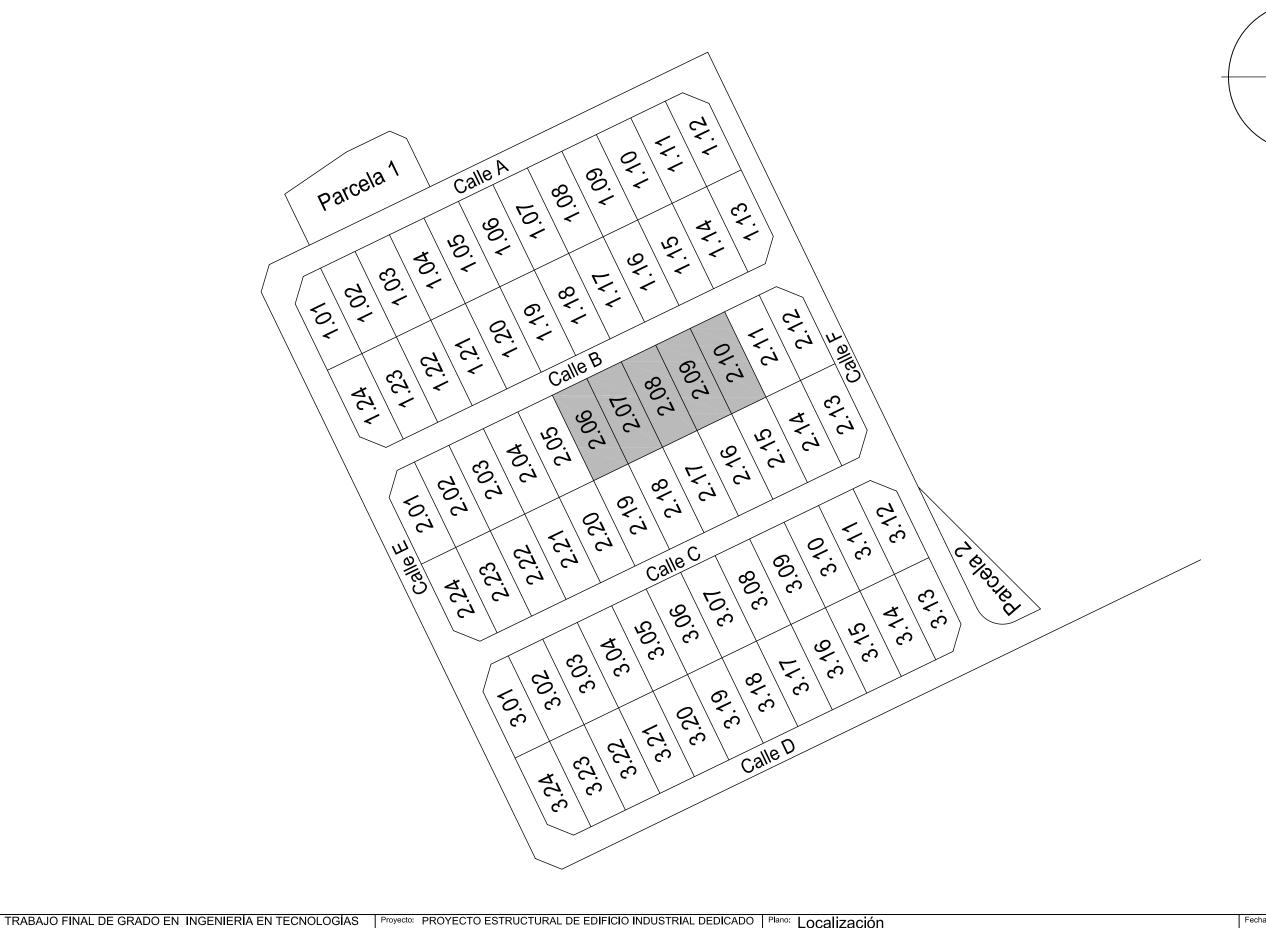
4,048.10

CÓDIGO	RESUMEN	UDS	LONGITUD	ANCHURA	ALTURA	CANTIDAD	PRECIO	IMPORTE
07.05	Ud Puerta ca	ncela en v	allado de par	cela de malla	metálica			
	Puerta cancela co 40x20x1,5 mm y de 40x40x1,5 m torsión, de 8 mn galvanizado, fijad vallado de parce huecos en el terr de los postes, co elementos de an fijación y montaje	30x15x1,5 nm con plet m con plet n de paso c da a los cero la de malla ceno, relleno plocación y nclaje, herra	nm, bastidor de ina de 40x4 m de malla y 1,1 i cos y atirantada metálica. Inclu de hormigón F aplomado de la jes de segurida	tubo de acero im y por malla mm de diámet a, para acceso p iso replanteo, a HM-20/B/20/I p a puerta sobre	galvanizado n de simple ro, acabado peatonal en apertura de ara recibido los postes,			
	Incluye: Replante terreno. Colocaci puerta. Fijación herrajes de cierre	ontaje de la						
		1				1		
						1	170.35	
						1	3% de 170.35	
								175.46
	T(OTAL 07						20.056.96

4 RESUMEN DEL PRESUPUESTO

CAPÍTULO	RESUMEN	IMPORTE
01	ACONDICIONAMIENTO DEL TERRENO DE LA NAVE	64,591.41
02	ACONDICIONAMIENTO DEL TERRENO DE LA PARCELA	66,459.71
03	CIMENTACIONES	36,316.01
04	ESTRUCTURAS	147,031.15
05	FACHADAS Y CUBIERTAS	250,301.24
06	CARPINTERÍA METÁLICA	8,639.42
07	URBANIZACIÓN INTERIOR DE LA PARCELA	20,056.96
	PRESUPUESTO DE EJECUCIÓN MATERIAL	593,395.90
	13.00% Gastos generales 77,141.47	
	6.00% Beneficio industrial 35,603.76	
	Suma	112,745.23
	PRESUPUESTO BASE DE LICITACIÓN SIN IVA	706,141.13
	21% IVA	148,289.64
	PRESUPUESTO BASE DE LICITACIÓN	854,430.77

Asciende el presupuesto a la expresada cantidad de OCHOCIENTOS CINCUENTA Y CUATRO MIL CUATROCIENTOS TREINTA con SETENTA Y SIETE CÉNTIMOS


Tibi, 22 de junio de 2019

Índice Planos

1		Localización		1						
2		Distribución en ¡	parcela	3						
3		Replanteo								
4	4 Planta de cimentaciones									
	4.1	L Detalles za	patas cuadradas	6						
	4.2	2 Detalles za	patas rectangulares y vigas de atado	7						
	4.3	B Detalles placa	as de anclaje	8						
5		Estructura 3D		9						
	5.1	L Pórtico de 1	fachada	10						
	5.2	2 Pórtico inte	erior. Alineaciones B y O	11						
	5.3	B Pórtico inte	erior. Alineaciones C a N	12						
	5.4	1 Estructura	de fachadas laterales	13						
	5.5	Situación c	correas. Detalle colisos	14						
	5.6	Estructura	de cubierta	15						
6		Cerramientos		16						
7		Distribución en i	nlanta	17						

UNIVERSITAT POLITECNICA DE VALENCIA

INDUSTRIALES
T
A
SUPERIOR INGENIEROS
INDUSTRIALES VALENCIA

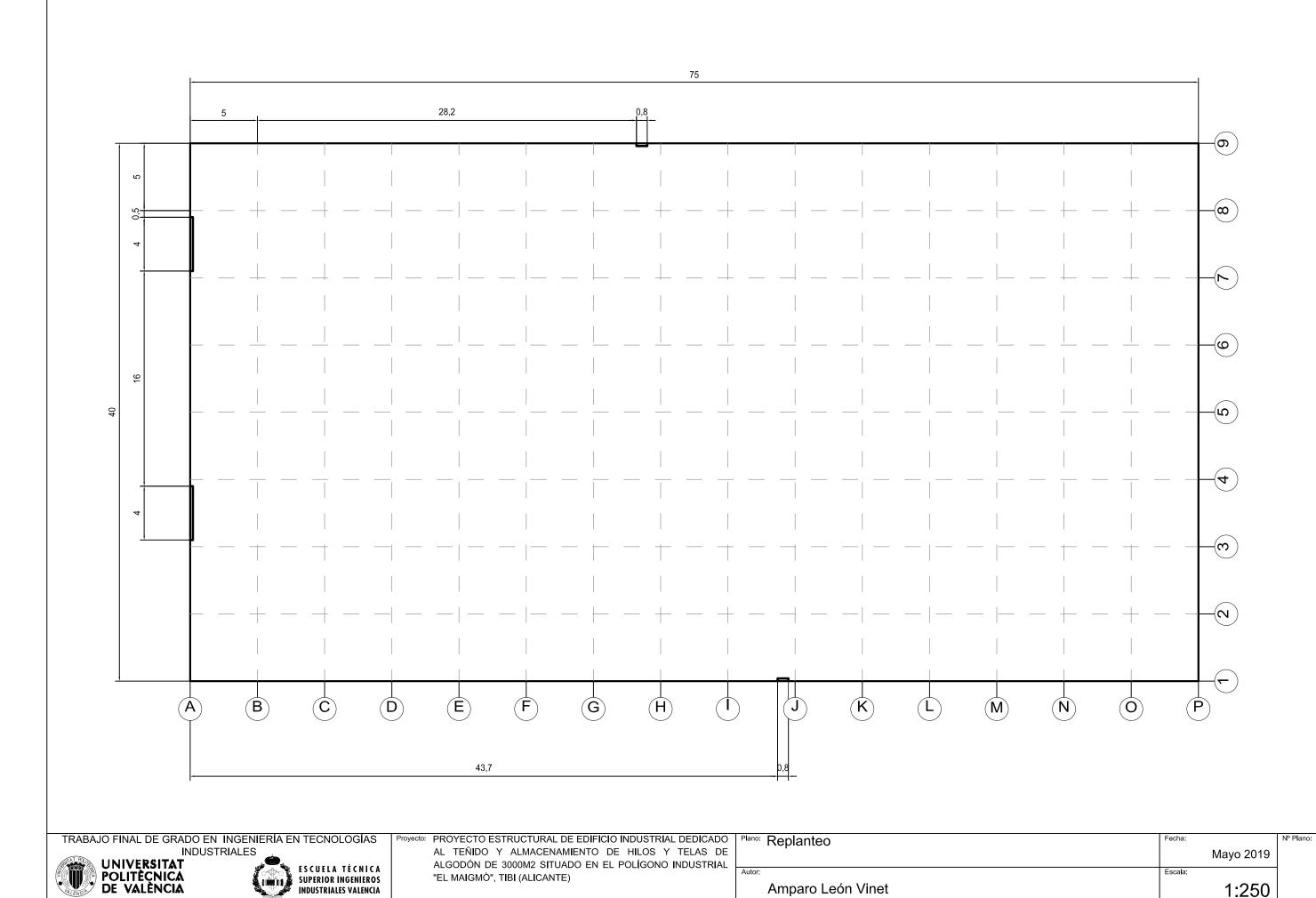
Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO
AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE
ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL
"EL MAIGMÒ", TIBI (ALICANTE)

Plano: Localización

Autor:

Amparo León Vinet

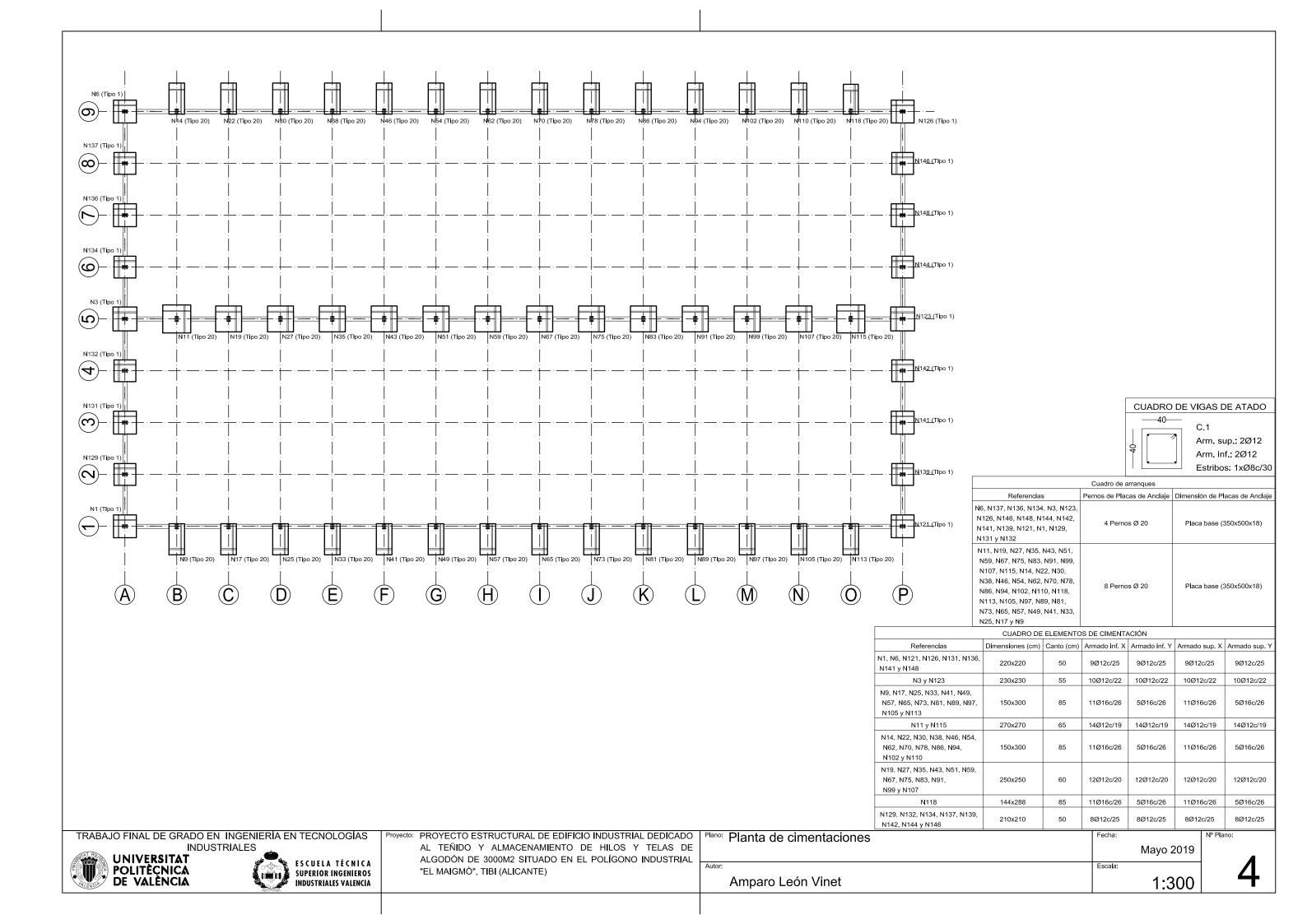
Fecha:

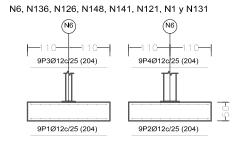

Mayo 2019

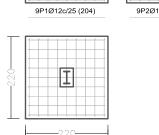
Escala:

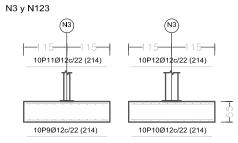
1:2000

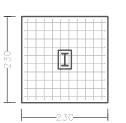
Ν

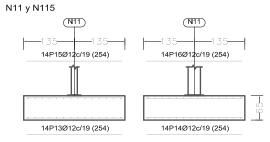

Vía principal 6,5 Máquina de teñir jet WC. Dirección y administración Almacén de productos acabados Área de embalaje Sala de herramientas Almacén de materias primas Depuradora Laboratorio de colorantes Vestuarios y servicios WC. 101,35 Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO | Plano: Distribución en parcela TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS **INDUSTRIALES** AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE Mayo 2019 UNIVERSITAT POLITECNICA DE VALENCIA ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA "EL MAIGMÒ", TIBI (ALICANTE) Amparo León Vinet 1:300

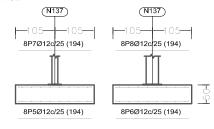


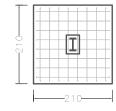

Amparo León Vinet

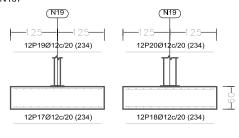

1:250

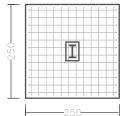

"EL MAIGMÒ", TIBI (ALICANTE)







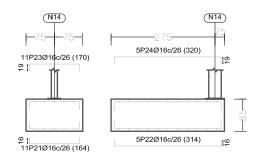


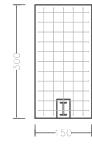

N137, N134, N146, N144, N142, N139, N129 y N132

N19, N27, N35, N43, N51, N59, N67, N75, N83, N91, N99 y N107

N6=N136=N146=N148=N141	Elemento	Pos.	Diám.	No.	Long. (cm)	Total (cm)	B 500 S, Ys=1.15 (kg)
N13FN134=N146=N144=N142							
A Ø12 9 Z04 1836 16.3	N121=N1=N131			_			
N137=N134=N146=N144=N142				_			
N137=N134=N146=N144=N142		4	Ø12	9	204	1836	16.3
N137=N134=N146=N144=N142					Tot	al+10%:	71.7
N139=N129=N132						(x8):	573.6
Total+10%;							
R	N139=N129=N132	_					
N3=N123 9 Ø12 10 214 2140 19.0 10 Ø12 10 214 2140 19.0 11 Ø12 10 214 2140 19.0 Total+10%: (x2): 167.2 N11=N115 13 Ø12 14 254 3556 31.6 14 Ø12 14 254 3556 31.6 15 Ø12 14 254 3556 31.6 16 Ø12 14 254 3556 31.6 17 Ø12 14 254 3556 31.6 18 Ø12 14 254 3556 31.6 19 Ø12 14 254 3556 31.6 11 Ø12 14 254 3556 31.6 12 14 254 3556 31.6 13 Ø12 14 254 3556 31.6 15 Ø12 14 254 3556 31.6 16 Ø12 14 254 3556 31.6 17 Ø12 12 234 2808 24.9 N67=N75=N83=N91=N99=N107 18 Ø12 12 234 2808 24.9 19 Ø12 12 234 2808 24.9 20 Ø12 12 234							
N3=N123		8	Ø12	8	194	1552	13.8
N3=N123 9					Tot	al+10%:	60.7
10						(8x)	485.6
11	N3=N123	9		10	214	2140	19.0
12							
N11=N115							
N11=N115		12	Ø12	10	214	2140	19.0
N11=N115 13					Tot	al+10%:	83.6
14						(x2):	167.2
15	N11=N115	13	Ø12	14	254	3556	31.6
16 Ø12		14	Ø12	14	254	3556	31.6
Total+10%: (x2): 278.0 N19=N27=N35=N43=N51=N59 N67=N75=N83=N91=N99=N107 18		15		14		3556	31.6
N19=N27=N35=N43=N51=N59		16	Ø12	14	254	3556	31.6
N19=N27=N35=N43=N51=N59 N67=N75=N83=N91=N99=N107 18					Tot	al+10%:	
N67=N75=N83=N91=N99=N107 18 Ø12 12 234 2808 24.9 19 Ø12 12 234 2808 24.9 20 Ø12 12 234 2808 24.9 Total+10%: 109.6 (x12): 1315.2 N14=N22=N30=N38=N46=N54 N62=N70=N78=N86=N94=N102 N110 21 Ø16 11 164 1804 28.5 22 Ø16 5 314 1570 24.8 23 Ø16 11 170 1870 29.5 24 Ø16 5 320 1600 25.3 Total+10%: (x13): 1545.7						(x2):	278.0
19							The state of the s
20 Ø12 12 234 2808 24.9	N67=N75=N83=N91=N99=N107						
Total+10%:							
N14=N22=N30=N38=N46=N54		20	Ø12	12			
N14=N22=N30=N38=N46=N54 N62=N70=N78=N86=N94=N102 N110 21 Ø16 11 164 1804 28.5 22 Ø16 5 314 1570 24.8 23 Ø16 11 170 1870 29.5 24 Ø16 5 320 1600 25.3 Total+10%: (x13): 1545.7					Tot		
N62=N70=N78=N86=N94=N102			T				
N110 23 Ø16 11 170 1870 29.5 24 Ø16 5 320 1600 25.3 Total+10%: 118.9 (x13): 1545.7							
24 Ø16 5 320 1600 25.3 Total+10%: 118.9 (x13): 1545.7				_			
Total+10%: 118.9 (x13): 1545.7	N110						
(x13): 1545.7		24	16	5			
					Tot		
						(x13):	1545.7
						Ø12:	2819.6
Ø16: 1545.7							
Total: 4365.3						Total:	4365.3

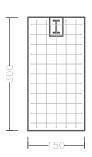
TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS
INDUSTRIALES

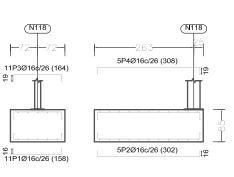

UNIVERSITAT POLITECNICA DE VALENCIA

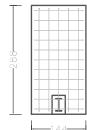

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

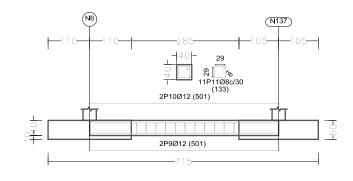
Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO
AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE
ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL
"EL MAIGMÒ", TIBI (ALICANTE)

Detalles zapatas cuadradas	Fecha: Mayo	2019
utor:	Escala:	
Amparo León Vinet	1:10	


N14, N22, N30, N38, N46, N54, N62, N70, N78, N86, N94, N102 y N110


N113 N113 275 275 5P8Ø16c/26 (320) PP 5P6Ø16c/26 (314) PP 11P5Ø16c/26 (164)


N113, N105, N97, N89, N81, N73, N65, N57, N49, N41,

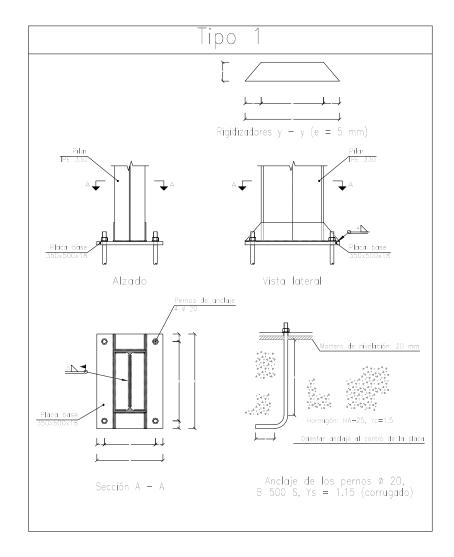

N33, N25, N17 y N9

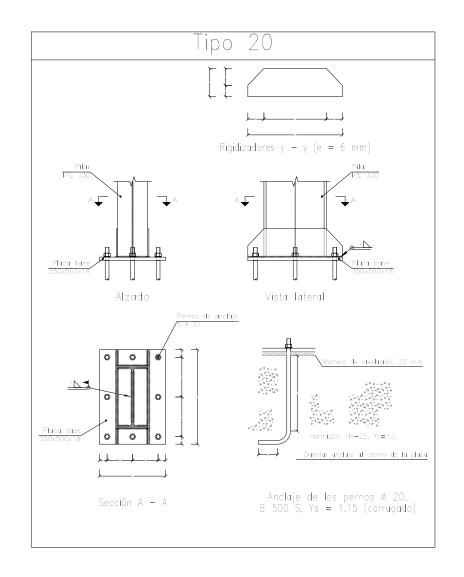
N118

C [N6-N137], C [N136-N137], C [N136-N134], C [N134-N3], C [N3-N132], C [N132-N131], C [N131-N129], C [N129-N1], C [N6-N14], C [N14-N22], C [N22-N30], C [N30-N38], C [N38-N46], C [N46-N54], C [N54-N62], C [N62-N70], C [N70-N78], C [N78-N86], C [N86-N94], C [N94-N102], C [N102-N110], C [N110-N118], C [N118-N126], C [N126-N146], C [N146-N148], C [N148-N144], C [N144-N123], C [N123-N142], C [N142-N141], C [N141-N139], C [N139-N121], C [N121-N113], C [N113-N105], C [N105-N97], C [N97-N89], C [N89-N81], C [N81-N73], C [N73-N65], C [N65-N57], C [N57-N49], C [N49-N41], C [N41-N33], C [N33-N25], C [N25-N17], C [N17-N9], C [N9-N1], C [N3-N11], C [N11-N19], C [N19-N27], C [N27-N35], C [N35-N43], C [N43-N51], C [N51-N59], C [N59-N67], C [N67-N75], C [N75-N83], C [N83-N91], C [N91-N99], C [N99-N107], C [N107-N115] y C [N115-N123]

Elemento	Pos.	Diám.	No.	Long. (cm)	Total (cm)	B 500 S, Ys=1.15 (kg)
N118	1 2 3	Ø16 Ø16 Ø16	11 5 11	158 302 164	1738 1510 1804	27.4 23.8 28.5
	4	Ø16	5	308	1540 al+10%:	24.3 114.4
N113=N105=N97=N89=N81 N73=N65=N57=N49=N41=N33 N25=N17=N9	5 6 7 8	Ø16 Ø16 Ø16 Ø16	11 5 11 5	164 314 170 320	1804 1570 1870 1600	28.5 24.8 29.5 25.3
				Tot	al+10%: (x14):	118.9 1664.6
C [N6-N137]=C [N136-N137] C [N136-N134]=C [N134-N3] C [N3-N132]=C [N132-N131] C [N131-N129]=C [N129-N1] C [N6-N14]=C [N14-N22] C [N22-N30]=C [N30-N38] C [N38-N46]=C [N46-N54] C [N54-N62]=C [N62-N70] C [N70-N78]=C [N78-N86] C [N86-N94]=C [N94-N102] C [N102-N110]=C [N110-N118] C [N118-N126]=C [N126-N146] C [N146-N148]=C [N148-N144] C [N144-N123]=C [N123-N142] C [N139-N121]=C [N121-N113] C [N139-N121]=C [N121-N113] C [N139-N121]=C [N105-N97] C [N97-N89]=C [N89-N81] C [N81-N73]=C [N73-N65] C [N65-N57]=C [N57-N49] C [N49-N41]=C [N41-N33] C [N13-N12]=C [N11-N19] C [N3-N11]=C [N11-N19] C [N35-N43]=C [N27-N35] C [N35-N43]=C [N43-N51] C [N51-N59]=C [N59-N67] C [N67-N75]=C [N75-N83] C [N83-N91]=C [N91-N99]	9 10 11	Ø12 Ø12 Ø8	2 2 11	501 501 133	1002 1002 1463	8.9 8.9 5.8
C [N99-N107]=C [N107-N115] C [N115-N123]		1		Tot	al+10%: (x61):	26.0 1586.0
					Ø8: Ø12: Ø16: Total:	390.4 1195.6 1779.0 3365.0

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

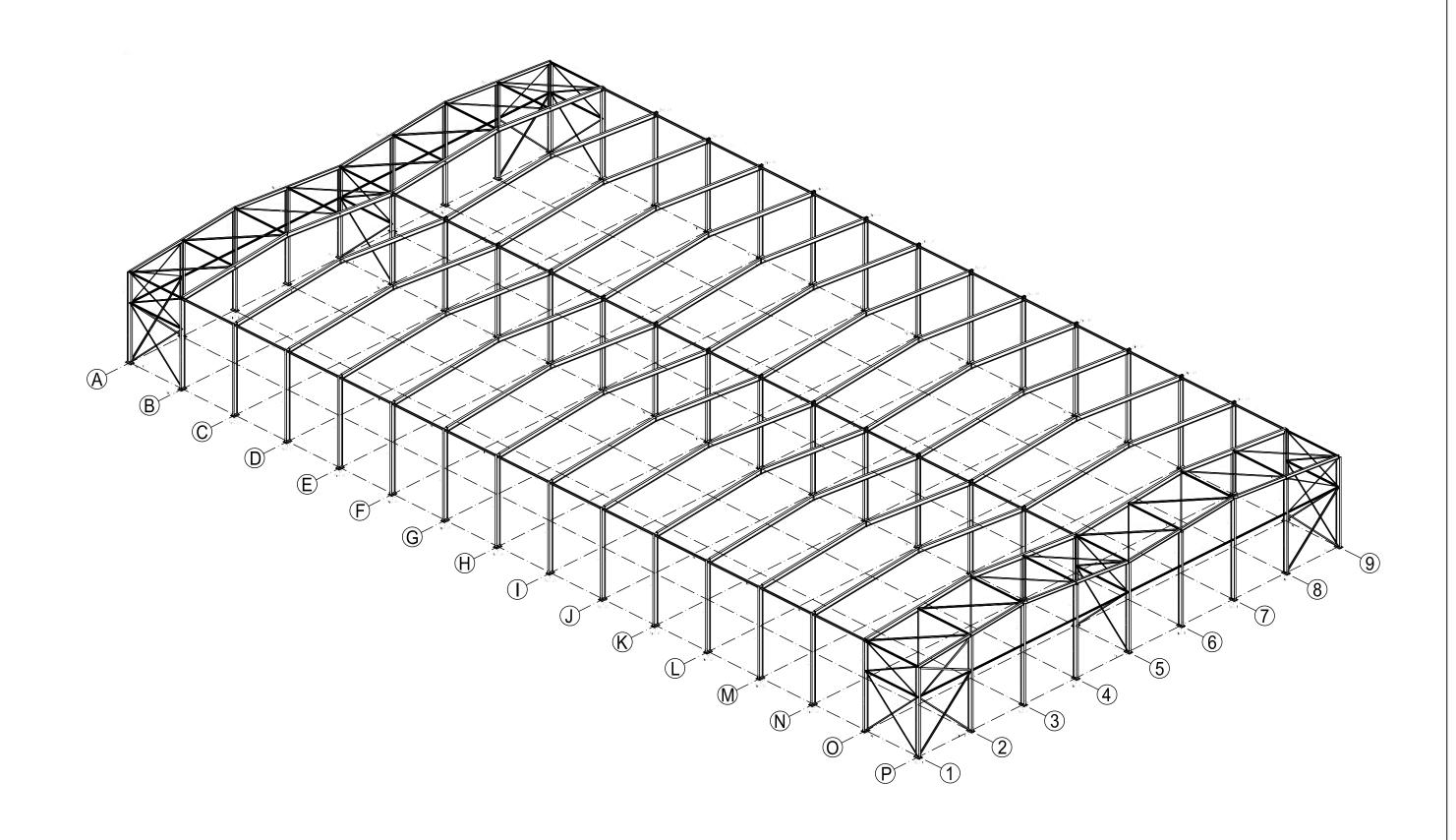

UNIVERSITAT
POLITECNICA
DE VALENCIA


ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL "EL MAIGMÒ", TIBI (ALICANTE)

Detalles zapatas re	ctangulares y vigas de atado	Fecha:	
•	<i>5</i> , <i>6</i>		Mayo 2019
r:		Escala:	
Amparo León Vinet	t	1:10	

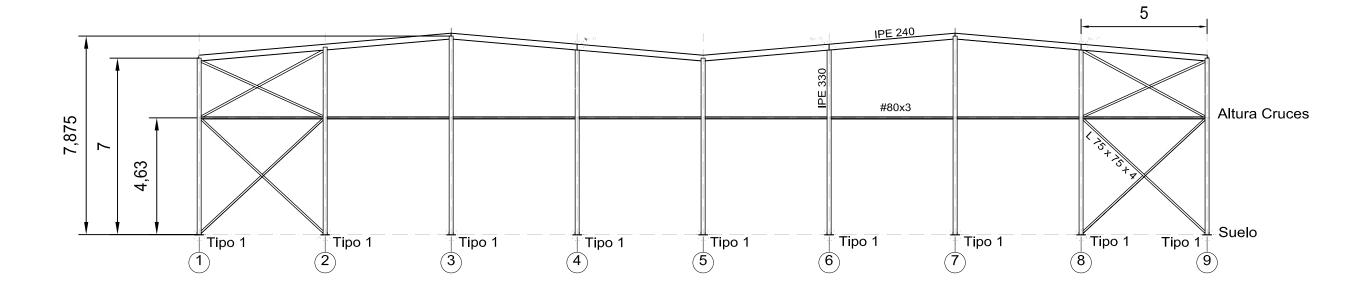
4.2

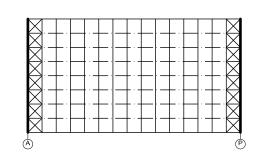
T 1 1 D 500 0 X



ES CUELA TÉCNICA ALSUPERIOR INGENIEROS "EL
INDUSTRIALES VALENCIA

Plano: Detalles placas de anclaje	Fecha:	Mayo 2019
Autor:	Escala:	
Amparo León Vinet	1:20	
		<u>.</u>

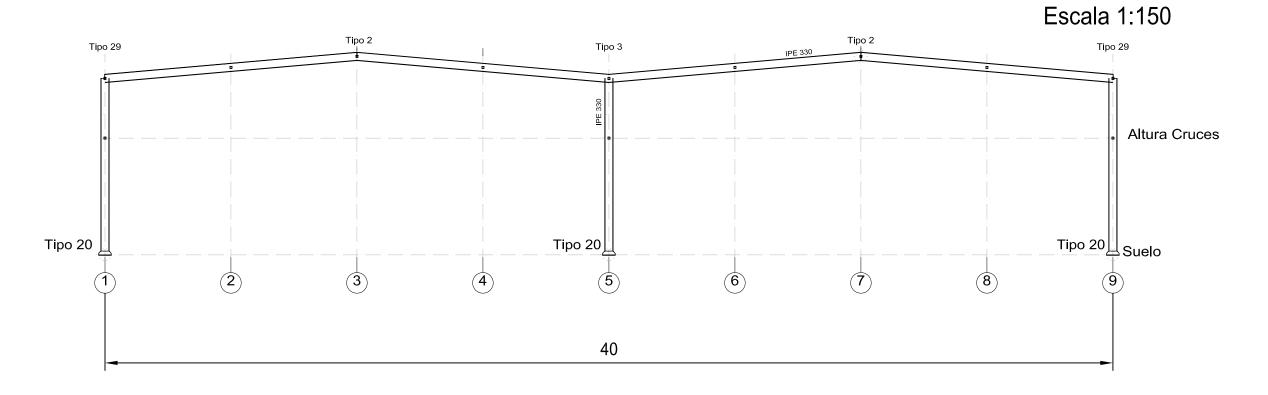


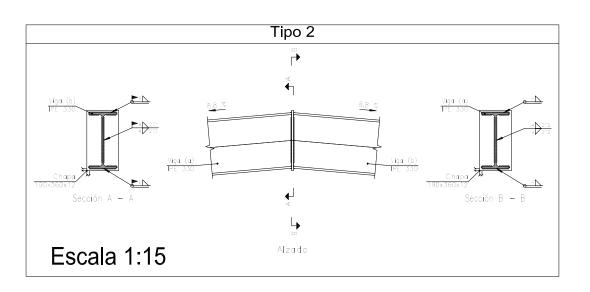

UNIVERSITAT POLITECNICA DE VALENCIA

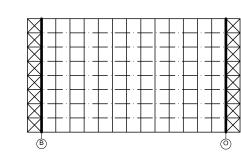
ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

)	Plano: Estructura 3D	Fecha:	Nº Plano:
:		Mayo 2019	
	Autor:	Escala:	
	Amparo León Vinet	1:250	•

Alineaciones A y P


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

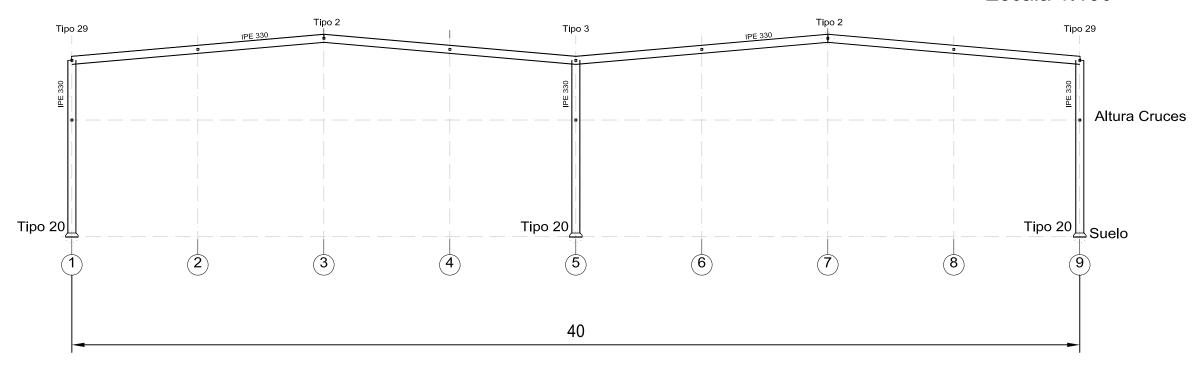

UNIVERSITAT POLITECNICA DE VALENCIA ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

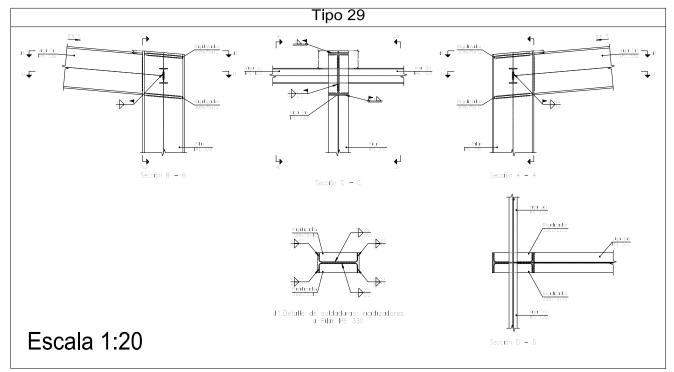

yecto:	PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICAD
	AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS D
	ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIA
	"EL MAIGMÒ", TIBI (ALICANTE)

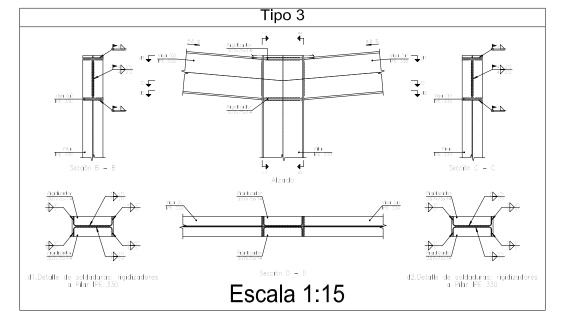
Plano: Pórtico de fachada	Fecha:	T۱
1 ordeo do Idonada	Mayo 2019	
Autor:	Escala:	1
Amparo León Vinet	1:150	

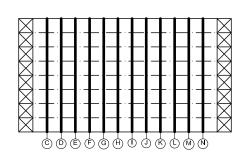
Alineaciones B y O

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES




ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA


Plano: Pórtico interior. Alineaciones B y O	Fecha: Mayo 2019
Autor:	Escala:
Amparo León Vinet	1:150

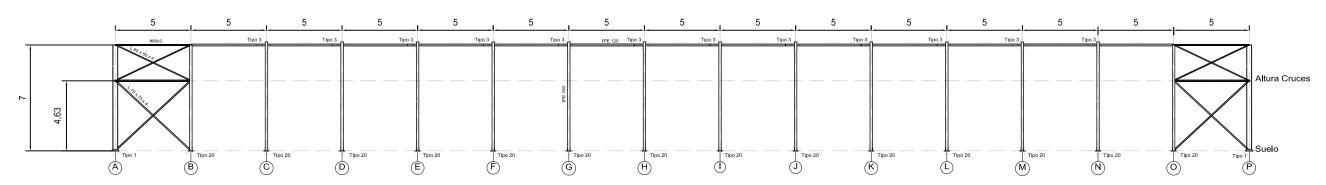

Alineaciones C a N

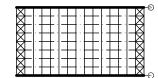
Escala 1:150

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

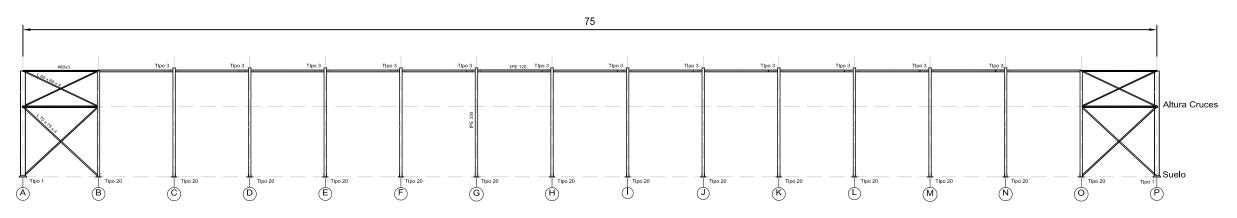
UNIVERSITAT POLITECNICA DE VALENCIA

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO
AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE
ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL
"EL MAIGMÒ", TIBI (ALICANTE)


Plano:	Pórtico interior.	Alineaciones C a N
Autor:		

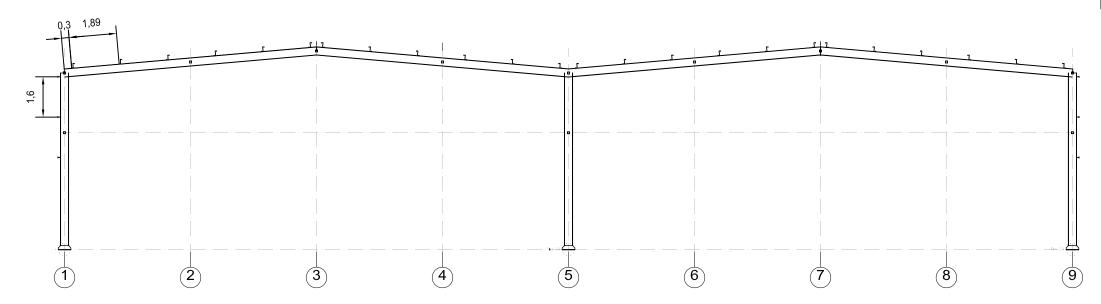

Amparo León Vinet

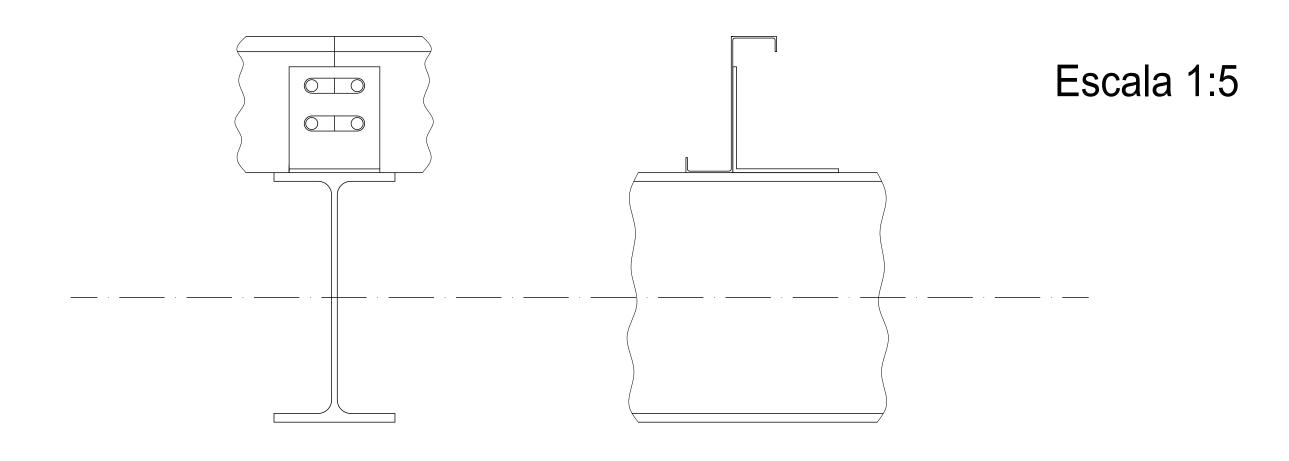
Mayo 2019


Varias

Alineación de fachada 1, 9

Sección alineación 5


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES


UNIVERSITAT POLITECNICA DE VALENCIA

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL "EL MAIGMÒ", TIBI (ALICANTE)

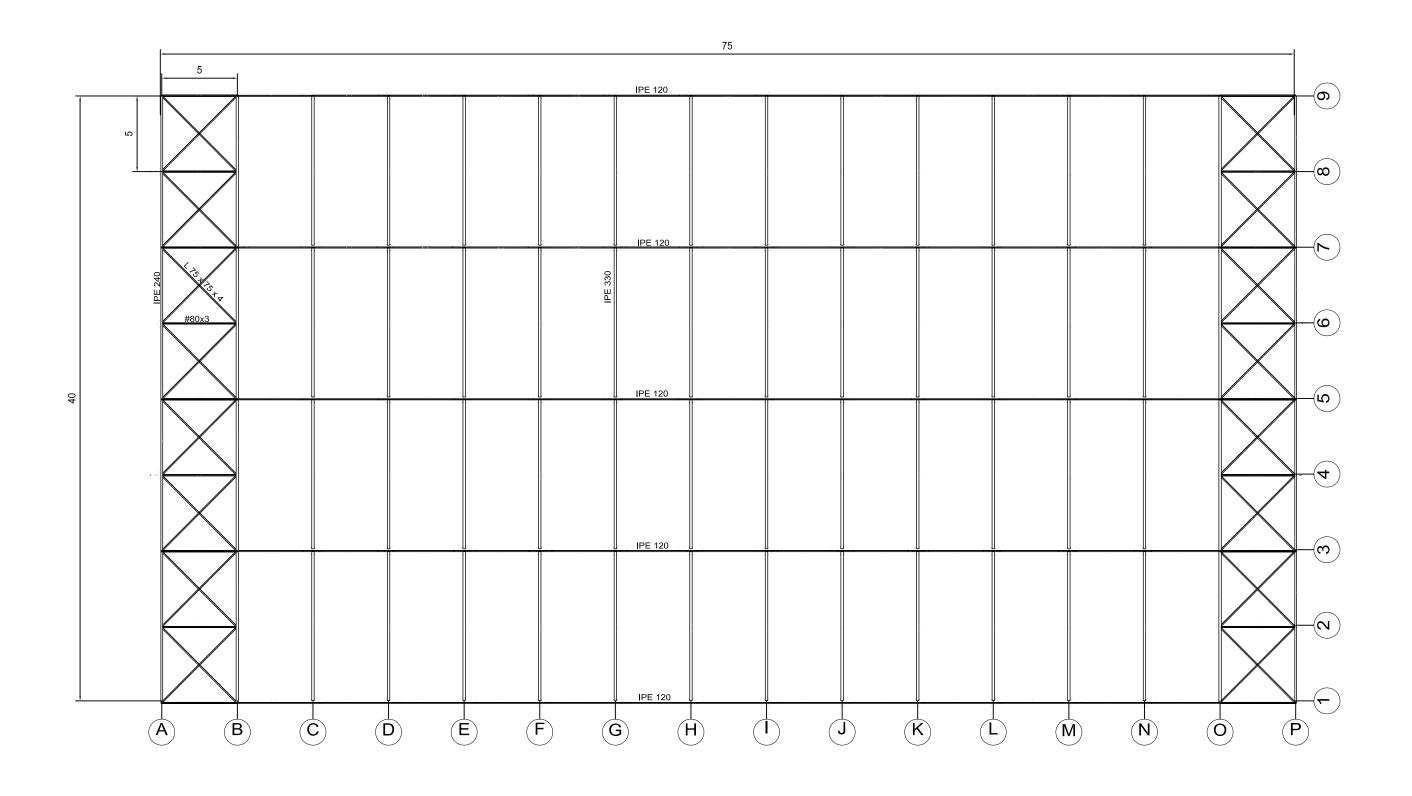
Plano: Estructura de fachadas laterales	Fecha: Mayo 2019
Autor:	Escala:
Amparo León Vinet	1:250

Escala 1:150

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

UNIVERSITAT POLITECNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

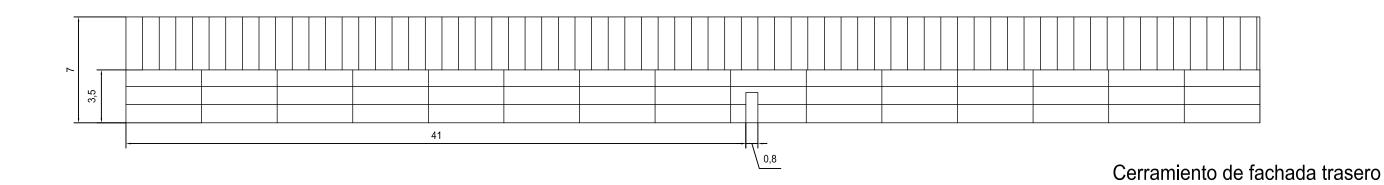

Proyecto: PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DEDICADO AL TEÑIDO Y ALMACENAMIENTO DE HILOS Y TELAS DE ALGODÓN DE 3000M2 SITUADO EN EL POLÍGONO INDUSTRIAL "EL MAIGMÒ", TIBI (ALICANTE)

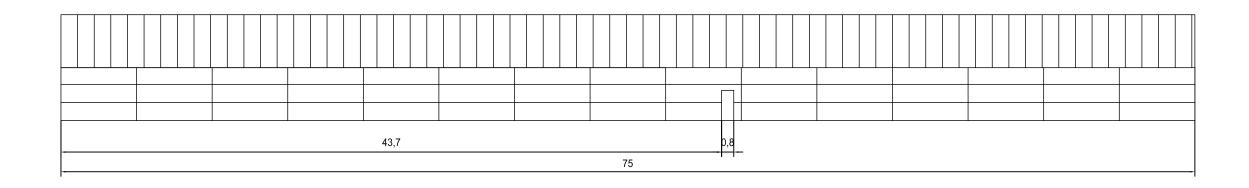
lano:	Situación correas. Detalle colisos	
utor:		

Mayo 2019

Varias

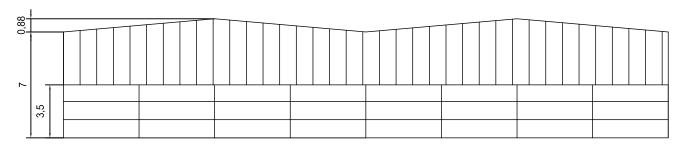
Amparo León Vinet

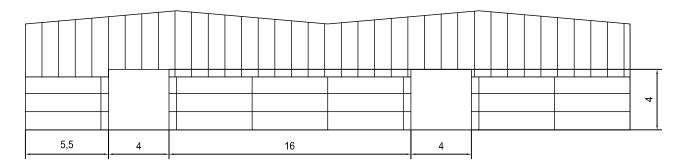



ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

UNIVERSITAT POLITECNICA DE VALENCIA

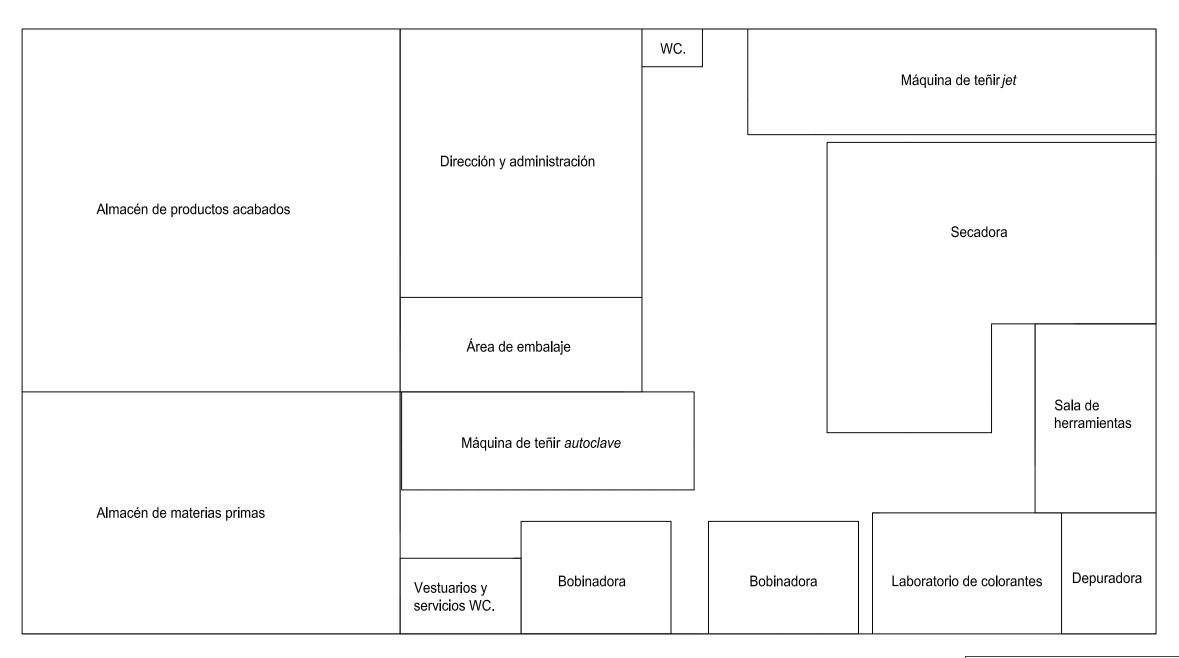
Plano: Estructura de cubierta	Mayo 2019
Autor:	Escala:
Amparo León Vinet	1:250


Cerramiento de fachada frontal



Cerramiento de fachada izquierdo

Cerramiento de fachada derecho



TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

UNIVERSITAT
POLITECNICA
DE VALENCIA

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

Plano: Cerramientos	Fecha:
	Mayo 2019
Autor:	Escala:
Amparo León Vinet	1:250
·	

Área	Superficie (m2)
Almacén de materias primas	400
Almacén de productos acabados	600
Laboratorio de colorantes	100
Área de embalaje	100
Vestuarios y servicios WC.	50
Depuradora	50
Sala de herramientas	100
Dirección y administración	300
Bobinadora	120
Máquina de teñir autoclave	103.313
Máquina de teñir <i>jet</i>	115.625
Secadora	339.872

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

UNIVERSITAT
POLITECNICA
DE VALENCIA

	3 3 3 3 3 3 3 3		
Plano: Distribución en planta		Fecha:	Nº F
·		Mayo 2019	
Autor:		Escala:	1
Amparo León Vinet		1:250	