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1  Summary

ACTIVE SUPPRESSION OF FLUTTER ON A PLANE WING

USING LQR CONTROL

This document describes the practical and theoretical implications of the
research corresponding to the design of an optimal LQR control (Linear
Quadratic Regulator) on the aeroelastic phenomenon of flutter in the wing of
the A320 aircraft (previously modelled).

For the development of this project, Matlab software has been used, where
the wing of the A320 aircraft with its corresponding elastic, aerodynamic and
inertial characteristics has been modelled using the Finite Differential Method
(FDM). The aeroelastic model is used in order to find the critical speed at

which the flutter occurs.

Subsequently, and through this same program, a LQR control system has
been developed that is capable of absorbing the vibrations originated on the

wing.

Finally, the model is used to study more deeply the phenomenon of flutter,
through the variation of some relevant parameters in its formation and the
subsequent study of the consequences of these changes.

KEY WORDS: Aircraft; Aeroelasticity;
Aerodynamics; Flutter; LQR control; Finite Differential Method.
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Podsumowanie

AKTYWNE TLUMIENIE TRZEPOTANIA NA SKRZYDLE

SAMOLOTU PRZY UZYCIU STEROWANIA LQR

Niniejszy dokument opisuje praktyczne i teoretyczne implikacje badan
odpowiadajacych projektowi optymalnej kontroli LQR (Linear Quadratic
Regulator) na aeroelastyczne zjawisko trzepotania w skrzydle samolotu A320

(wezesniej modelowane).

Do opracowania tego projektu wykorzystano oprogramowanie Matlab, w
ktorym skrzydlo samolotu A320 z odpowiadajacymi mu wladciwosciami
sprezystymi, aerodynamicznymi i bezwladnosciowymi modelowano za pomoca
metody skonczonej réznicy. Model aeroelastyczny jest wykorzystywany w celu

znalezienia predkosci krytycznej, przy ktorej wystepuje trzepotanie.

Nastepnie, dzieki temu samemu programowi, opracowano system kontroli

LQR, ktéry jest w stanie pochtania¢ wibracje powstajace na skrzydle.

Wreszcie, model jest wykorzystywany do glebszego badania zjawiska
trzepotania, poprzez zmiang niektérych istotnych parametréw w jego tworzeniu
i pézniejsze badanie konsekwencji tych zmian.

SELOWA KLUCZOWE: samoloty; aeroelastycznosé; trzepotanie; kontrola
LQR; metoda réznic skonczonych.
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2 Introduction

A type of oscillation of airplane wings and control surfaces has been
observed since the early days of flight. It was shown that in some situations, if a
wing or wing-aileron was structurally restrained to a certain position of

equilibrium, instabilities might appear under some particular conditions.

This phenomenon, that afterwards was called flutter, caused many
problems in the beginnings of aviation due to its sudden nature. The vibrations
developed very quickly, and destruction of the wing appeared just after a couple
oscillation cycles, usually in a fraction of the second. For this reason the study

of aeroelasticity and control of vibrations became necessary.

But the global vision that is required for its analysis makes it a complex
subject, since in aeroelasticity different topics are united. Also, the non-
stationary aerodynamic forces are very difficult to model. That is why, during

the history, experimental results and trials have been necessary in real cases.

3 Objectives

During the development of this project we will try to describe the most
representative phenomenon of aeroelasticity: the flutter. The main objective is
to put in common the different forces that get inside the game in a vibratory
problem: elastic forces, inertial forces and aerodynamic forces. To facilitate the
study of this phenomenon, we will use the model of a slender wing, modelled by
the finite differential method in Matlab, of the wing of the A320 aircraft, which
will help us understand the numerical resolution and subsequent physical
interpretation of the event.

As it will be seen, the flutter problem is a problem of dynamic instability
and therefore its solution is based on the analysis of eigenvalues of a certain
homogeneous problem.

The study of these eigenvalues will be used during the project to get an
approach to the physical phenomenon of the flutter: its creation, characteristic
speeds, parameters on which it depends on and, finally, the control of its
damping.



With this last objective an active Lineal Quadratic Regulator control will

be developed.

4 Overview

4.1 The concept of aeroelasticity

4.1.3 Introduction to aeroelasticity

When a fluid flow contacts an elastic body, it appears an interreaction
between the flexible behaviour of the body and aerodynamics. Aeroelasticity is
the branch, usually applied to aeronautics, of physics and engineering that
studies these interactions between inertial forces, elastic forces, aerodynamic

forces and control system dynamics.

Typically, the study of aeroelasticity is classified into two fields,
depending on the nature of such interactions. They can be static (which
concerns steady responses) or dynamic (which implicates variations with time

and concerns vibrational responses).

Inertial Forces

Structural Dynamics Flight Dynamics
Dynamic
Aeroelasticity

Structural Aerodynamic

. . Forces
Forces Static Aeroelasticity

Figure 1: Aeroelasticity triangle (Author)

One of the problems studied in dynamic aeroelasticity that concerns
specially the field of aeronautics is the stability of a structure exposed to wind.
If the stiffness of a given elastic body is independent of the wind, the
aerodynamic force can increase rapidly with the wind speed, until it reaches a
critical wind speed that leads to instability of the structure. Such instability
may be responsible of excessive deformations, and even the complete destruction
of the structure.

Aerodynamic flutter is the dangerous phenomenon in flexible structures
subjected to aerodynamic forces caused when the speed of the wind reaches a

2



point at which structural damping is insufficient to damp out the instable
motion, which increases due to the aerodynamic energy that is added to the
structure. This is considered a major problem since structures such as airplanes
or suspension bridges can be affected by nature small disturbances that,

fortuitously, may produce oscillations of varying intensity.

The appearance of these phenomena is called a problem of dynamic
aeroelastic instability. And the static aeroelastic instability would be the
particular case of dynamic aeroelastic instability with zero frequency and

neglectable inertia force.

Generally, elasticity studies the stress and deformation caused by known
external forces or displacements on an elastic body (deformation is assumed
small enough so that external forces remain unaffected and thus, known).
Nevertheless, the situation changes when facing aeroeslasticity, because the
attitude of the body relative to the flow affects strongly the aerodynamic forces.
As the deformation influences the external loading, it cannot be known until the
elastic problem itself is solved. That is to say, the response of an aeroelastic

system to an externally applied load is to be found.

This response may be in the form of displacement, motion or stress state;
and thus the response problems may be classified into static or dynamic
problems, depending on whether the inertia forces can or cannot be neglected.

Therefore, it can be observed a close relationship between stability and
response problems. Although most stability problems can be modelled using
homogeneous equations, while response problems are described by
nonhomogeneous systems, a response problem usually associates with a stability
problem. When a finite disturbance generates a finite response, the structure
will remain stable. If, on the contrary, a finite disturbance creates an indefinite
response, the structure will be unstable. In unstable inertial (dynamic)
structures flutter phenomenon, buffeting (if the external excitation is harmonic)
or gusts will occur, while if the problem is static and unstable, the phenomena
involved are called divergence (if the modification of the angle of attack can be
stabilized or that can explode in function of velocity) or control reversal (if
deflection of the wing increases the lift, but there is also an increase in the
moment. This decreases the angle of attack, which in turn decreases the lift.
The command loses effectiveness.). If the aircraft reaches the critical velocity (a
specific sufficiently high speed), quick oscillations may be created on the
airplane rapidly, and the wing structure will often be destroyed.

Collar triangle (Figure 2) of aeroelastic forces shows the relations
between the different actions and the phenomena under study.



Inertial Forces

F: Flutter

B: Buffeting

R: Control Reversal
D: Divergence

Structural
Forces

\|] Aerodynamic
Forces

Figure 2: Collar Triangle (Author)

All aeroelastic phenomena are very famous, important and dangerous in
aviation, but we will deepen on flutter motion, thus it is the motion that will be

studied in the present analysis.

Flutter occurs when the profile starts to oscillate. If the aerodynamic
forces draw energy from the system, the system is damped. If they deliver power
to the system, then, if the system can dissipate it, it will be damped, but if it
cannot dissipate the energy, the system will became instable. If during the
oscillation the non-linear zone is reached, during part of the cycle stall will

occur.

4.1.2 First approach to the modelling of aeroelastic phenomena

In all branches of engineering, models are made in order to be able to study
and better understand the behaviour of physical systems. These models ideally
represent their behaviour and allow expressing it mathematically. Aeroelasticity
is not different in this sense. Since its birth, scientists have created models that
allow us to study the interaction between the different forces that appear in the
Collar triangle.

With that objective, the wing is the element that serves as a starting point
for the aeroelastic analysis because it is the element that receives the largest
component of the lift (vertical force), and also because it is the most deformable
component. Besides, it has the advantage that all the forces are relatively
simple to evaluate. This allows the scholars to obtain analytical results that

permit to draw relevant conclusions from it.



But before starting with the study of the forces that the wing of an airplane
suffers, it is important to establish the conditions (assumptions) that will be

taken about the body and the environment in which it is located.

A real fluid is viscous and compressible. But if the speed of flow is clearly
below Mach number, the relative motion between a body and the flow causes a
variation of density small enough so that the fluid can be considered
incompressible. In addition, in the case of fluids like water or air, viscosity
causes an influence only in the boundary layer (next to the solid wall of the
body); outside this layer the fluid can be considered nonviscous. A nonviscous

and incompressible fluid is called a perfect fluid.

Many times in aeroelasticity it is possible to regard the fluid as a perfect
fluid. Nevertheless, there are cases in which the viscosity of the flow affects
evidently the problem under study, as it controls the boundary layer, and then

the nonviscous hypothesis must be ignored.

Generally, when modelling an aeroelastic system, two main parts are
taken into account when defining the equations: the structural part (elastic and
inertial forces) and the flow (aerodynamic) part. In addition, at least two
degrees of freedom are required in order to create a condition of instability, as it
has been known that vibrations of a single degree of freedom are damped out
simply by the air forces.

The aerodynamic force suffered by the body as a result of its interaction
with the fluid depends on the relative velocity between body and fluid flow. The
force consists of two components: the pressure force normal to the surface of the
body and the shearing force, tangential to the surface.

The parameters on which depends the force that acts on a body in a flow
are, among others, the geometry of the body and its attitude relative to the flow
(these can be characterized by a typical length and angle), the density of the
fluid, the viscosity of the fluid, the speed of flow, the compressibility of the fluid
(which can be expressed as a function of the speed of propagation of sound in
the fluid), and the non-stationary characteristics of the flow (in a periodic
oscillation, it is characterized by the frequency).

Then it is shown that, for an oscillating flow of a compressible fluid, the
force experienced by a body may be expressed as:

= Ulp ol U\ 1y2)2
F—f(a,u ’U’C)szl [1]

In aeroelasticity there are two components of force and one component of
moment that have a high impact on a body: Lift (force perpendicular to the
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direction of motion), Drag (force in the direction of motion with opposite
orientation), and Pitching moment (moment about an axis perpendicular to the
direction of motion and the lift vector, positive when it tends to raise the
leading edge of the body). These three parameters lead to the three primary
airplane coefficients: lift coefficient, drag coefficient and pitching-moment

coefficient.

Finally, according to the theory of thin airfoils in a two-dimensional
noncompressible fluid, the center of pressure of the additional lift due to change

of a is located at i or the chord. This point is called the aerodynamic center.

4.2 Modelling of flutter

We begin in this chapter the description of the flutter. The study will be

supported in the Lagrange equations of movement.

We are going to develop different methods of flutter modelling, to gradually
approach the model with which we have decided to carry out the

approximation: the finite differencial method.

4.2.1 Semi-rigid model

In the semi-rigid approach to wing flutter and related problems a reference
section of the wing is selected to represent the entire three-dimensional wing.
This simplification works quite well for slender wings, that is, wings of high-

aspect ratio.

In this first approach to the model of the mechanism of flutter, no
particular type or shape of airfoil shall be of concern. The treatment of the
phenomenon will be restricted to primary effects. The differential equations for
the several degrees of freedom will be put down considering only small

oscillations about the position of equilibrium.

To introduce the phenomenon we will use the problem of two d.o.f. shown in
Figure 3, which will help us in its numerical resolution and physical

interpretation. The degrees of freedom are the vertical displacement h(t),
positive downward, and the rotation of the airfoil around the elastic axis 6(t)
with the positive sense as shown. h(t) and 6(t) represent, then, the phenomena

of flexion and elastic torsion in real wings.
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Figure 3: Semi-rigid Model (Author)

Where the parameters a and d are dimensionless parameters.

These degrees of freedom can be grouped in a dimensionless vector:

u(t) = E , HT .

The vector represents the amplitudes of oscillation of the system with
respect to a certain position of equilibrium. Forces whose magnitudes do not
depend on the degrees of freedom (for example, the weight of the profile, the
aerodynamic moment due to the curvature of the airfoil or the stationary lift
due to a geometric torsional angle) are not interesting because they will be
placed as independent terms in the equation of motion. Thus, h=0 and =0

represent a horizontal profile without aerodynamic forces acting.

It is considered that the flexor and torsion stiffness are concentrated in a
point of the profile called the elastic axis E and located in the coordinate

XE = ab . The stiffness are represented by elastic and linear springs k, and k.

The general case of a profile will be considered, whose centre of gravity is
located at xG =db, and moment of inertia IG is located around the centre of

gravity.



The equations of motion of the problem will be Lagrange’s equations, based

in an energetic treatment of the problem. From the equation it appears a
differential equation system in time.

i(a_T_jJrQJr@:Q“)

dt\ou/) ou ou [3]
The matrices that take place in the analysis of free vibrations in a mechanic

system are mass matrix, stiffness matrix and damping matrix. Mass and

stiffness matrices are extracted from the kinetic and potential energy associated
with the deformation.

From kinetic energy it can be obtained the mass matrix, which has the form

M b’m  bS,
bS. I,

[4]

Where:

b

m:'[dm
-b
b

l. = I(x—xE)zdm
b
b

S, =j(x—xE)dm
b

[5]

From the deformation energy of the system it is deduced the stiffness

matgix.
K — khb2 0
ok, 6

Assuming that there are not aerodynamic forces, the equation of
movement without damping takes the form [7]

i(ﬂj+@+%: Mu+Ku =0
dt\ ou ou  adu



E

fK o,
Now, we introduce the parameters @, =K,/m, @, = I_e , n=—)
@,

: I S Xg — X
i, = d rp="t=-"S_"F
*TVmpz T Y T b b

adimensional radius of the section, r, is the distance between the elastic axis

, r=r,/i,. Physically, i, represents the

and the centre of gravity,®, would be the frequency of the system if it cannot

turn, and @, would be the frequency in the case that the airfoil has a fixed joint
in XE=ab.

From the equations of movement, and getting the harmonic solutions, we

obtain the natural frequencies, which are the roots of the equation.

2
2 Z(ﬁj =1+772+\/77"'—2772 +4n°r* +1

o, 2(1-r?)
A = @, 2=1+772—\/774—2772+4772r2+1
o, 2(1—r?) )

These frequencies are the modes of vibration associated with the problem.
Both of them are composed by displacement and torsion, that is to say, there is
a coupling bending-torsion. The parameter r leads the degree of coupling, while

n represents the relation between the frequencies of bending and torsion that

are not coupled.

It is possible to calculate the components of the vector of generalized

forces Q(t) from the virtual work of the resultant (lift) and the moment. The

two generalized forces associated to our problem are Q,, =—-Lb and Q,=M,.

And we can obtain an analytic solution of the lift and moment on one point.
L= 27zpwab{ﬁ +Uw9+b(%—aj9}-c+7szbz (H+Uw9—abé)

M, =27p,U,b? (%hﬂ{h +Uw9+b(%—aj9]©+7rpxbz {abﬁ—uwb@—ajé—bz (%+a2jd}

9]

In order to investigate flutter, it is necessary to analyse the stability of

the solutions to the equations of flutter’s model.



Assuming the harmonic form of bending and torsional vibrations:

h(t) = he'* o, =Im(w) h(t) = hye " sin(axgt) [10]
o(t) = 6,e'* o, =Im(w) O(t) = 6,e " sin(wgt + D) (1]

These mathematical expressions can be interpreted and used, then, for
the understanding of the physical phenomenon. This is achieved with the

analysis of the imaginary parts of the roots:
If @, >0 the motion is stable.
If @, =0 the motion is neutrally stable.
If w, <0 the motion is unstable. That is to say, flutter occurs.

Since @, depends on the velocity of the flow (@, =@, (U,)), the condition
@, =0 can be used in order to determine the critical velocity of flutter: V_, .

The matrix form of the flutter equations is:

Alw,U)g =0
a=1.4]
[12]
And the condition that must be met for the flutter to occur is [13].

From the previous expression it is derived one of the Pines rules.

If the mass center G is placed in front of the elastic center E, flutter will

never occur.

If the ratio of bending and torsional frequencies of vibrations is small,

,
— « 1, the critical velocity can be approximated to:
Wy

10



MG+ Kq = f(a)
f(q)= MAq+CAq+ KAq
M-M,)G-C,q+(K-K,)q=0
q(t) = ge**

2 H —
det(-e*(M —=M,) —iaC, + (K -K,))=0 14
From the previous expression we can infer that the critical velocity of flutter

decreases when m decreases, r,decreases, pincreases, E moves backward or G

moves backward.

From here we can go to deepen in the different treatments that can be

given to the flutter according to the particularities used in its modelling.

4.2.2 Beam model of bending and torsional vibrations

The beam model approaches the problem of modelling a wing assuming
that due to its characteristics it can be treated as a beam.

The beam model includes the front and rear spar, as well as the upper
and lower skin between the two spars. The engines are taken into account too.
Ribs as well as all other components (e.g. leading/trailing edges) are neglected.
For the beam model, the theory of bending according to Euler and Bernoulli
and the theory of torsion according to St. Vénant for thin-walled closed section
beams is used for the calculation of the displacements and stresses.

The Bernoulli assumptions for beams are as follows:
-It is a slender beam (the length is much bigger than all other dimensions).

-The beam cross section, which was rectangular to the beam axis before

bending, remains rectangular to the beam axis after bending.
-The cross sections remains planar after bending.

The beam model of flutter enables one to determine the critical velocity
of flutter for nonuniform wings with nonuniform aerodynamic loads. Usually,
the accuracy of this model is higher than the semi-rigid model, but it is more

complex computationally.
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Figure 4: Wing Structure beam model (Shubov, Holt, & Wineberg, 2010)

The equations of motion of the wing are:

mﬁ'<y,t)—syé(y,t)—d7(El( y 0.0 t)j L(y.t)

S ()1, di(y.1) - (Ga(y) 400, t)) M, (.0
v [15]
The aerodynamic loads derived from the strip model of the wing;:
Lift force:
L(y,t) =@’L,h+hL', h+o’L,0+ol’, 16
Aerodynamic moment:
M, (y,t) = @’M,h+ oM h+&’M,0+ oM, 0 17

The approximate displacement and twist of the wing are assumed in the

form:

(Y0 = 360 ()

By = M)t (y)
i=r+l1 [18]

Now the application of the Galerkin’s method (See APPENDICES: 9.1
Galerkin method) to the equations of wing’s motion leads to the

equations of motion.

<) S———
T

[ S——
T

82 aZh . . :
mh - SH‘J(E'@/] L(h,h,ﬁ,ﬁ)}fhi(y)dy=0 I=L.r [19]

o( .. 00 o .
SHIE 9—5[63 Ej—My(h,h,H,H)}fgﬁ(y)dy:O i=r+1..n 20]
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That can be expressed in the matrix form.
M+ Ka = f(q) [21]
Where the aerodynamic loads have the matrix form [22].

f(g)=M A0+C0+K,q [22]

Equations of the wing flutter are then:

M-M,)G-C,a+(K-K,)q=0

23]
We assume again the wing’s motion in the harmonic form [24].
q(t) = g [24]
And finally we get the flutter determinant, that is:
det(-o’(M —M,) —iaC, + (K -K,))=0 25]

4.2.3 Strip quasi-steady aerodynamic model

Usually, it is very complex to model a real structure (especially if we are
talking about aircrafts). An aircraft is a complex structure in terms of
geometry, mass distribution and stiffness distribution. In addition, in real
designs small reparations are performed very often when hysteresis and
backlashes occur, and therefore it is frequent to find elements riveted or glued.

Since the equations describing the motion of a vibrating wing are difficult
to solve analytically, the dynamic properties of these structures are often
described in terms of what are called modal parameters: natural frequency,
damping factor, modal mass, and mode shape. This technique is called modal
analysis, and can be implemented mathematically by attempting to uncouple
the structural equations of motion so that the resulting equations can then be
solved individually. From a model of an aircraft treated as a continuous system,
these equations cannot be solved exactly. Consequently, a single equation of the
theory of elasticity is impossible to derive, and numerical approximations are
generally implemented.

That is why discretization is used. Discretization permits the model of a
structure to be derived, by the use of the division of the structure onto
elements, which can be easily modelled.

13



The strip quasi-steady aerodynamic model of a wing is a discrete model.
In the strip quasi-steady aerodynamic model the wing is sub-divided into a set
of small spanwise strips. The lift and pitching moment on each strip is modelled
following 2D sectional lift and moment theories, in this case the quasi-steady

o1ne.

The basic principle of strip theory is that the portion of the airfoil, wing
or craft submerged into the flow is divided into finite number of strips and then
2D hydrodynamic coefficients for added mass can be computed for each strip
and after integrated over the length of the body to yield the 3D coefficients.

The engines are not taken into account.

The equation of motion of the wing modelled as typical section are:

mh +S,6 + ma?h :—EpUiSE o+
2 00 U,
. [26]
.. .. 1 1 oC, h
Sgh-l- |99+ |90)920:§,0U£S(E+ajb 20 [94‘@]
And the flutter determinant for harmonic vibrations is:
det[ -0’ A+ioC(U,)+B(U,)]=0 27]
cud=l 4 % . 28]
——pUiS ~+alb—%= 0
2 2 00

In the quasi-steady model, the total force on the wing is summation of
the forces on a set of chordwise strips, or blade elements.

The total number of strips used in the work is chosen. For each chord
strip, the translational velocity, rotational velocity, and angle of attack are
obtained from the reconstructed wing kinematics. The total force on each strip
is composed of three components: the translational force, the rotational force,
and the added-mass effect (or the acceleration effect).

There is no aerodynamic interaction between strips, so there is limited or no

aerodynamic influence between elements.
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4.2.4 FDM

The discretization of a structure can be implemented in different levels,
depending on the grade of simplification used. As more detailed is the
discretization, a larger number of degrees of freedom will be taken into account.
The dynamic characteristics of discretized models are determined by

approximate numerical methods.

Although the most commonly used method is the Finite Element Method,
we will focus on a slightly different approximate numerical method: the Finite
Differential Method. In engineering practice the finite difference methods are of
very limited applicability, as only simplest geometries can be treated by this

kind of discretisation.

FDM consists of breaking down the object into a large number of
smaller, more manageable (finite) elements. Then the complex equations that
describe the behaviour of a structure can often be reduced to a set of linear

matrix equations which can be solved using standard matrix algebra techniques.

3
15 \\
10 e /‘/5
5 \/f 0
0 -10

Figure 5: Wing devided with FDM (from program)

Let’s suppose that it is necessary to apply Finite Differential Method to
estimate the first derivative of function u(x) at some point X;, where the value

of the function at the neighbouring points is known.
Xj = U(Xj)’uj+1’uj—1

xj=jh

[29]
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According to the direct definition of the first derivative:

dul . u(x;+h)-u(x)
im

j !
X " h 130]

The first derivative of the points can be approximated to the following

algebraic formulas.

u.,—Uu;
u,'~ % Forward finite difference.
Uj—Uj, o
u's ——— Backward finite difference.
o disa Tl inite di i
u;'~ ~n Central finite difference (the average of the first two).

4.3 Critical velocity

The critical velocity in an aeroelastic phenomenon refers to the least

velocity of the flow at which the aeroelastic phenomenon may occur.

In this project, we will call critical velocity the velocity at which flutter

phenomenon occurs.

In general, it is desired that the critical velocity is as large as possible,
because the higher the critical velocity the more range of speeds are possible for
the airplane without compromising its integrity and that of its passengers.

The critical velocity of flutter can be determined from the flutter

determinant.

det A(w,U) =0

Classically, such problems are solved with the algorithm of the V-g

method. The algorithm is solves using the following steps.
1. Assume the value of the artificial damping coefficient ¢;.

2
2. Define the new variable z = (&J (1+ig).
@

2
o, :
3. Introduce the new variable to the flutter equation z = (—ej (1+ig,).
1)

4. Assume the value of the reduced frequency K.

16



5. Determine the aerodynamic loads L(k) and M (k).
u 1

6. Determine the damping ¢ and the value of il
@

7. Repeat these calculations for various K and plot the function g(%) .
10

8. Determine the critical velocity from the intersection of the plot with line

g:gs'

4.5 LQR control

__,,,.--Ruddef

Elevator

/
Trimmable honzontal
stabilizer

T~ Speed hrakes
~~._  Roll spoilers

Lift dumpers

Load alleviation function
{onty for A320)

Figure 6: A320 Flight Control Surfaces (Modern Airliners)

The Linear Quadratic Regulator (LQR) is a well-known optimal control
method that provides optimally controlled feedback gains. It is a modern
multivariable control action that is characterized by its robustness both in
discrete and continuous time to enable closed-loop stability and high
performance designed systems.

It is called optimum control strategy because the proportional controller
uses a mathematical algorithm that minimizes the cost function. The minimum

cost is pursued when the dynamic system is operating.
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For the derivation of the linear quadratic regulator it is necessary to
consider a linear system state-space representation. The state equations of the
system (of order n) that is going to be controlled are of the form [31].

(%) =[] [, + (B, [,
(900 = (€1 €] [P, 1], -

Where the feedback gain is a matrix [K] and the feedback control action

is essentially a proportional control action, which takes the form:

u=—[K®)][x®]

-1 T

K®]=[R][8] [PO] "

But before deepen in the definition and performance of the LQR control,
three concepts must be introduced: stability, controllability and observability.
The concepts of controllability and observability first presented by Kalman play
an important role in the theoretical and practical aspects of modern control.
The conditions on controllability and observability govern the existence of a
solution to an optimal control problem.

The stability is the warranty that the system is stable (the output won’t
be infinite) in close-loop. This condition occurs when the uncontrollable states of
the system are stable.

In a controllable system it is possible to build r control signals without
any restriction that converge an initial state to any other finite state in a finite
interval of time. Any control action that is applied to the system is capable of
bringing the process states to a reference value in a determined time. As the
states are affected by the inputs, the control is executed employing the system
inputs.

In a controllable system every state must be affected by the inputs. It
must exist an input or control function that transforms the states from a value
to a different one in a finite time. If all the states are controllable, it is said that
the system is completely controllable.

In order to ascertain the completely controllability of a system, it is
necessary and sufficient that the expression [33] is fulfilled.

[S],..=[B AB A’B .. A"'B]

18



range[s]nxnr = n
Where S is called the controllability matrix.

Essentially, a system is fully observable if each state variable of the
system affects an output at each instant of time, that is, there is a coupling
between states and outputs. If any of the states cannot be observed from the
measurements of the outputs, it is said that the state is not observable, and the

system is not completely observable, or simply not observable.

Observability can be checked using the expression [34], that must be
fulfilled.

C
CA
[V ]nxnp - CA2

Range[V ]nxnp =n 34]

Being V the observability matrix.

Now we can continue with the derivation of the LQR control. LQR
control is calculated by minimizing the cost function J [35]. In this case, cost
function J is expressed in the situation of a permanent (controllable and
observable) regime.

3= [T [QI[X]+[u] [R][uDet
0 [35]

What is called algebraic Ricatti equation. From equation [32], [P(t)]is

the Ricatti equation matrix, and it is found following equation [36].
[P]=[A] [Pl+[PIA Q- PIBIRI BT 7]

Ricatti equation can be solved only if the system is controllable and
observable, therefore before applying the LQR control law, it must be verified
that the process to control complies with these two conditions and thus the
existence of the matrix [K(t)]for optimal control.
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Once the matrices [Q] (weighted error matrix) and [R](weighted

control matrix) have been defined, the cost function is determined and then the

LQR technique minimizes J from the control variables.

4.5 Matlab

MATLAB (abbreviation of MATrix LABoratory) is a numerical
computation system that offers an integrated development environment (IDE)
with its own programming language (M language). It is available for Unix,
Windows, Mac OS X and GNU/Linux platforms. It was developed by
MathWorks.

Among its basic features are: the manipulation of matrices, the
representation of data and functions, the implementation of algorithms, the
creation of user interfaces (GUI) and communication with programs in other

languages and with other hardware devices.

It is a software widely used in universities and research and development
centers. In recent years the number of features has increased, such as

programming directly digital signal processors or creating VHDL code.

5 Implementation

5.1 Matlab code

In order to model the control system and aeroelastic phenomena
previously defined, it has been used the software Matlab. The program used for
the model is called wing flutter, and it is divided in five main parts:
aeroelasticity (in which we can find scripts that model aerodynamics and
elasticity), control, general information, mathematical developments and

plotting.

Several scripts are dedicated to each of these parts of the program. None
of them will be deeply explained here, but they will be named, and the general
structure of the program will be shown. (For more detailed information about
the program, go to APPENDICES).
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The "skeleton" of the main program used is shown schematically in the
image below. All the functions that make up the main program are shaded,

divided according to their function in it.

AEROELASTICITY

AERODYNAMICS — wing_AerodynamicModel.m
wing_AE_Model.m <

wing_BendStifMatr.m
ELASTICITY <
wing_TorsnStifMatr.m

CONTROL Igr.m
/ wing_Atmosphere.m
wing_flutter.m{— GENERAL < wing_wingA320data.m
wing_engnA320data.m
MATHEMATICAL L L
DESCRIPTIONS wing_sort_vec.m

wing_plotEngine.m
PLOTTING -<
wing_plotWing.m
Figure 7: Scheme of wing_ flutter.m (Author)

It is important to state that from now on the variable of the vertical
displacement will be called w. (During the theoretical part it has been replaced
by h so that it does not create confusion with the frequencies ). Thus, the

two degrees of freedom will be w(y,t) and 8(y,t).

5.2 Airbus A320 Specifications

As has already been mentioned, for the modelling of the aeroelastic
phenomena the specifications of a base plane wing will be used. For this

purpose, it has been chosen to use the wing of the aircraft Airbus A320.

The basic characteristics of the base case are presented below, since some
of the parameters established here will be used soon to discuss the consequences

of the variation of certain parameters in the appearance of the flutter.
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Wing span 35,8 m
Wing leading edge 21,72
sweep angle
Wing area 124 m?
Wing aspect ratio 10,3
Payload 16,6 tons
Length 37,57 m
Height 11,76 m
Range 6100 Km
Engine position x0 e = 0,0m;
(See Figure 11) y0_e = 3,35m;
z0 e = -1,0m;
Dihedral Angle 6,88
Torsional Stiffness 9.5¢4-06 IZT";Z;
Bending Stiffness 7.0e+06 Nm?;

Table 1: Specifications of Wing A320 (Author)

6 Results

Modelling a system as a set of concentrated masses joined by elastic
elements produces a characteristic matrix. This type of matrix equation is well
known in algebra, and contains a lot of information about the possible natural
ways of vibrating a multi-mass system. A system with n masses (n number of
wing sections in the FDM) has n natural vibration forms and frequencies. The
vibration frequencies are the eigenvalues of the matrix and can be obtained by
diagonalizing said matrix. For each form or mode of vibrating, the amplitudes
have a characteristic distribution, which is given by the eigenvectors of the
matrix. That is to say, each own frequency has an associated vector that

informs us about the basic amplitudes of each mass in the mode or frequency.

In this section we run the simulation and analyse the results obtained.
The results collected are in the form of vibration modes of the system and

eigenvalues of the matrix [A]nxn. First 50 eigenvalues correspond to vertical

displacement of the elastic centre W(Yy,t), while from 51 to 100 correspond to

twist 6(Yy,t).
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It is possible to find the critical speed of flutter through the real part of
the eigenvalues, because at the moment when the value equals 0, the system
becomes unstable and therefore the flutter is happening. In the case of the
controlled system, the real part of the eigenvalues will never exceed the value -

1, which means that the system will remain stable.

The vibration modes characterize the pattern or shape in which both
degrees of freedom, the displacement and the twist, are affected by the
perturbations of the system. They show the deformed wing.

In order to carry out a complete study of the flutter phenomenon,
simulations of the base wing (wing of the A320 aircraft) will be carried out with
and without activated control, in order to establish the critical speed in this

base case.

Subsequently, some parameters will be varied, such as the position of the
motors in the wing or its length, and the simulations will be repeated. In this
way we can establish a relationship between the variation of the parameters and

the critical speed at which the flutter appears.

6.1 Variation of control parameter

We start with the base case, using the wing model of the A320 with the

control deactivated and activated.

Base Case

Engine position x0_ e = 0,0m;
(See Figure 11) y0_e = 3,35m;
z0 e = -1,0m;
Dihedral Angle 6,882
Torsional Stiffness 9.564-06 N_";z;
Bending Stiffness 7.0e+06 Nm?;
Wing leading edge 21,7°
sweep angle

Table 2: Specifications of Base Case (Author)
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6.1.1 Uncontrolled wing

With the control disabled, the simulation is run. The results

shown.

Critical Velocity
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Figure 8: Eigenvalues Uncontrolled Wing (from program)
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Figure 9: Modes Uncontrolled Wing (from program)
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The flutter modes show how the vertical displacement generated by the

flutter are more remarkable than the twist.

Base Case | [m/s] | [km/h]‘ Mach

Critical Flutter Velocity | 346,789 | 1248.4 | 1,126
Table 3: Base Case. Critical velocity (Author)

6.1.2 Controlled wing

Now the control is activated. In the mathematical simulation of the
control, it is modelled simply using an LQR control, but it is important to note
that in the case of an actual airplane, the same vibration control could be done
through different control surfaces. In our concrete case we will suppose that the
control is done by aileron. Therefore, when modelling the wing, the model will

consist of the wing plus the aileron.

It must be stated that the system was satisfactorily damped without need
of control by structural damping, thus in the mathematical model the structural
(bending and torsional) damping was set to 0. For later work, it is interesting to
get some knowledge concerning the condition of absence of the internal friction,
as this case constitutes a sort of lower limit, which it is not always desirable to
exceed.

Critical Velocity
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Figure 10: Eigenvalues Controlled Wing (from program)
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It can be observed that controlled wing presents a maximum value of the
real part of the eigenvalues smaller than zero, whereas the maximum real part

of the eigenvalues of uncontrolled wing crosses zero at flutter speed.

6.2 Variation of other parameters

6.2.1 Variation of position of engines

The model used for the simulation of the flutter takes into account the
position of the motors in the wing. In the model, the position of the motors is
given by three coordinates: x0 e, yO e, z0_ e. These coordinates indicate the
position of the engine with respect to the point where the wing joins the body of
the airplane by the part of the nose. As indicated in the figure, the x-axis is
parallel to the longitudinal axis of the airplane, the y-axis follows the direction

of the span and the z-axis indicates the height.

|

\

\

\
ENGINE

Figure 11: Position of Engines (Author)

The engines of the A320 aircraft are located following the following

coordinates.
Base case
x0_ e = 0,0m;
y0_ e = 3,35m;
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z0 e = -1,0m;

The first variation of the base case is carried out in the y axis in a

positive direction and keeping the rest of the coordinates invariable.

Case 1
x0 e = 0,0m;
y0_ e = 14,0m;
z0 e = -1,0m;
Critical flutter mode
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Figure 12: Variation of engine position. Modes Case 1 (from program)
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Critical Velocity
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Figure 13: Variation of engine position. Eigenvalues Case 1 (from program)

U_ crit=227,328 m/s.

The critical speed is lower in this case. That is, the flutter appears faster.
Also, flutter modes show that vertical displacement of the wing behaves in a
sharper way, thus the ranges of the upper and lower limit of the eigenvectors
are higher.

For the second case, the variation is made again on the y-axis, but this

case in the negative sense.

Case 2
x0_e = 0,0m;
y0_e = 0,5m;
z0_ e = -1,0m;
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Modes
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Figure 14: Variation of engine position. Modes Case 2 (from program)
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Figure 15: Variation of engine position. Eigenvalues Case 2 (from program)

U_ crit=354,276 m/s.
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The critical speed is in this case, greater than the speed of the base case.

That is, the flutter will take longer to produce. Bending modes are smoother.
Now we change the values in the x-axis.
Case 3
x0_ e = 2,0m;
y0 e = 3,35m;

z0 e = -1,0m;

«10°2 Critical flutter mode
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Figure 16: Variation of engine position. Modes Case 3 (from program)
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Critical Velocity
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Figure 17: Variation of engine position. Eigenvalues Case 3 (from program)

U_ crit=333,981m/s.

The speed is somewhat lower than in the base case.

If, on the other hand, the position of the motors is delayed:

Case 4
x0_ e = -2,0m;
y0_ e = 3,35m;
z0_e = -1,0m;
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Figure 18: Variation of engine position. Modes Case 4 (from program)
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Figure 19: Variation of engine position. Eigenvalues Case 4 (from program)

U_ crit=155,169m//s.



The critical speed is even lower.

And finally the position on the z axis is varied.

Case 5
x0 e = 0,0m;
y0 e = 3,35m;
z0 e = 2,0m;
«10°2 Critical flutter mode
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Figure 20: Variation of engine position. Modes Case 5 (from program)



Critical Velocity
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Figure 21: Variation of engine position. Eigenvalues Case 5 (from program)
U_ crit=353,559 m/s.

By increasing the height of the motors, we also increase the critical
flutter speed.

Case 6
x0 e = 0,0m;
y0_ e = 3,35m;
z0 e = -3,0m;
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Figure 22: Variation of engine position. Modes Case 6 (from program)
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Figure 23: Variation of engine position. Eigenvalues Case 6 (from program)
U_ crit=367,464m/s.

With a lower engine height, an increase in critical speed is again

achieved.
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6.2.2 Variation of dihedral angle

The dihedral angle of a wing is the upward angle of an aircraft's wing,
from the wing root to the wing tip. The amount of dihedral determines the

amount of inherent stability along the roll axis.

Now we will check how this wing parameterization angle affects the

appearance of the flutter.
Base case:

We calculate the dihedral angle of the base case from the wing span and

the vertical distance between the wing root and the wing tip:
dihedral = tan( 1.82 / 15.07 )=6,8862 degrees;
From here four changes in the dihedral are performed.
Case 1

dihedral = 0.0 degrees;

. 1072 Critical flutter mode
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Figure 24: Variation of Dihedral angle. Modes Case 1 (from program)
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Figure 25: Variation of Dihedral angle. Eigenvalues Case 1 (from program)

U_ crit= 346,789m/s.

If the wing is modelled completely horizontally, no change in the critical

flutter speed occurs.
Case 2

Diedral=15 degrees;
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Figure 26: Variation of Dihedral angle. Modes Case 2 (from program)
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Figure 27: Variation of Dihedral angle. Eigenvalues Case 2 (from program)

U_ crit=346,789m/s.

By increasing the dihedral angle by almost double, again no variations

are observed in the flutter.



Case 3

Dihedral =60 degrees;

For this case, and given that previously no change has been made in the

phenomenon under study, the dihedral angle is drastically increased.

103 Critical flutter mode
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Figure 28: Variation of Dihedral angle. Modes Case 3 (from program)
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Critical Velocity
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Figure 29: Variation of Dihedral angle. Eigenvalues Case 3 (from program)

U_ crit=346,789m/s.

angle.

Again the same results are obtained.

To finish it is tested with the model of a wing with negative dihedral

Case 4

Dihedral=-15 degrees;
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Critical flutter mode
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Figure 31: Variation of Dihedral angle. Eigenvalues Case 4 (from program)

U_ crit=346,789m/s.

And as expected, we are again unchanged.
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6.2.3 Variation of wing sweep angle

The sweep angle in a wing refers to the angle between a horizontal line in

the span direction and the quarter chord line.

Base Case

We calculate the sweep angle of the base case from the wing span and

the distance between the pointP, =0,25-chord,, and the
R =0,25-chord,, .
sweep = tan( 6.0 / 15.07 )=21,7096 degrees
Case 1
Sweep=0 degrees;
i Critical flutter mode
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Figure 32: Variation of Sweep angle. Modes Case 1 (from program)

point
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Critical Velocity
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Figure 33: Variation of Sweep angle. Eigenvalues Case 1 (from program)

U_ crit=248,530m/s.

The flutter occurs after the base case, but the value of the eigenvectors of
the vibration modes is much higher than in the base case, that is, the deformed

is much more pronounced.
Case 2

Sweep=6 degrees;
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Figure 34: Variation of Sweep angle. Modes Case 2 (from program)
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Figure 35: Variation of Sweep angle. Eigenvalues Case 2 (from program)

U_ crit=367,059m/s.

In this case, the critical speed is even greater than that of the base case.

We are, then, close to an optimum in terms of avoidance of flutter.
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Case 3

Sweep=12 degrees;
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Figure 36: Variation of Sweep angle. Modes Case 3 (from program)
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Figure 37: Variation of Sweep angle. Eigenvalues Case 3



U_ crit=363,347 m/s.

Now the wing behaves very similar to the previous one, both in terms of

critical speed and vibration modes.

Case 4

Sweep=30 degrees;

Critical flutter mode
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Figure 38: Variation of Sweep angle. Modes Case 4 (from program)
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Critical Velocity

10 T T Y d
\ — & — Real Part Eigenvalues
81\ — ¥ — Imaginary Part Eigenvalues
\
6 \ 7
\
ar \ 1
\
L \ ¥
2 % \ /
o )
Z 0P N e R i e S B <
© - /
2 [ Shro /
w ot e - N8 it
2 Ty 2 {
O i s
- e \ /
4 F ~ - \ / 1
©
\ ]
6 \ / 1
X |
8F \CI 5
10 L s L L L "
0 50 100 150 200 250 300 350
V [m/s]

Figure 39: Variation of Sweep angle. Eigenvalues Case 4 (from program)
U_ crit=339,822m/s.

In this last section we find that, from a certain point, to continue

increasing the sweep angle worsens the vibrational conditions.

6.2.4 Variation of wing bending stiffness distribution

The bending stiffness (K) is the resistance of a member against bending
deformation. It is a function of the Young's modulus (E), and the area moment

of inertia (I).

In our model, the bending stiffness distribution of the wing is considered

constant.

In the last two sections the flutter modes become more important, as we
can see how the deformation varies in displacement and in torsion by varying
the bending stiffness distribution first, and the torsional stiffness distribution

afterwards.
Base case
EI(i) = 7.0e+06 Nm?;

Case 1
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EI(i) = 7.0e4+07 Nm?;

Critical flutter mode
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Figure 40: Variation of Bending stiffness. Modes Case 1 (from program)

Critical Velocity

25 T T T T
— ©& — Real Part Eigenvalues
£ — ¥ — Imaginary Part Eigenvalues
20 K\ E
\
\
\
15 \
o \
§ \
c 10 \ _
2 \
2
w \
\
5r \ 1
(]
\ /
) Z
0F — . Xmmm e e — e — — X — - — X
- O _
o /
) , | R, O
0 50 100 150 200 250 300
V [m/s]

Figure 41: Variation of Bending stiffness. Eigenvalues Case 1 (from program)

U_ crit=277,318m/s.
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The critical flutter speed is lower than the base case. That is, flutter

happens before. In addition, we see an increase in the modes of displacement.
Case 2

EI(i) = 7.0e+05 Nm?;

+ 1073 Critical flutter mode
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Figure 42: Variation of Bending stiffness. Modes Case 2 (from program)
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Critical Velocity
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Figure 43: Variation of Bending stiffness. Eigenvalues Case 2 (from program)

U_ crit=338,735m/s.

By reducing the bending stiffness with respect to the previous case, the
critical speed of flutter increases. And what is more interesting, the modes
corresponding to the vertical displacement present, for the first time, more than

one peak.
Case 3

EI(i) = 7.0c+04 Nm?;
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Figure 45: Variation of Bending stiffness. Eigenvalues Case 3 (from program)

U_ crit=327,540m/s.
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We keep reducing the rigidity, and the modes each time have more

number of peaks.
Case 4
EI(i) = 7.0e+03 Nm?;

Critical flutter mode
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Figure 46: Variation of Bending stiffness. Modes Case 4 (from program)
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Figure 47: Variation of Bending stiffness. Eigenvalues Case 4 (from program)
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U_ crit=172,656m/s.

With even less stiffness the flutter occurs at a very low speed, and the

peaks in the vibration modes are concentrated on the right side of the plot.

6.2.5 Variation of torsional stiffness

The torsional stiffness refers to the resistance of a member against torsion
deformation. Again, in the model torsional stiffness has been considered

constant over the wing.

Base Case

QI(i) = 9.5e+06 12

Case 1

GJ(i) = le+0T7 IXT"::;

«1073 Critical flutter mode
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Figure 48: Variation of Torsional stiffness. Modes Case 1 (from program)
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Figure 49: Variation of Torsional stiffness. Eigenvalues Case 1 (from program)

U_ crit=347,936m/s.

Increasing torsional stiffness, critical velocity increases.

Case 2

GI(i) = 9.5e+07 Y,
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Figure 50: Variation of Torsional stiffness. Modes Case 2 (from program)
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Figure 51: Variation of Torsional stiffness. Eigenvalues Case 2 (from program)

U_ crit=2236,994m/s.

If we increase torsion stiffness in one order of magnitude, the critical

velocity increases and reaches the biggest value until now.
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Figure 52: Variation of Torsional stiffness. Modes Case 3 (from program)
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Figure 53: Variation of Torsional stiffness. Eigenvalues Case 3 (from program)
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U_ crit=112,505m/s.

On the other hand, decreasing torsional stiffness the conditions for the

appearance of the flutter aggravate.

Case 4

GI() = 9.5e+04 M2

Critical Velocity
180 T T T T L] T

— & — Real Part Eigenvalues
160 — ¥ — Imaginary Part Eigenvalues 7

140

120

100

Eigenvalue
(o]
Q

D
o

F=S
(=]

0 s o A e e oo s ol e Ko gt ot e ahes e ahar s ks s g st ok gt ahar s s s o s es skt o
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

V [m/s]
Figure 54: Variation of Torsional stiffness. Eigenvalues Case 4 (from program)

No u crit

Finally, with a lower torsional stiffness we reach a point in which the
conditions for the simulation are not fulfilled, and we can’t get a value of

critical velocity.

7 Conclusions

Firstly, we must bear in mind that aircraft designers must reach a
compromise between all the needs presented to them (stability, price, vibrations

...). Therefore, in some cases we verify that the parameters used in the design of
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the wing of the A320 are not optimal in terms of preventing the occurrence of

flutter.

It should be noted too that analysis exhibits that the effect of vertical

displacement modes stands out above the degree of torsional displacement in all

cases. That is why, although the deformed shape in vertical displacement shows

sometimes more than one peak,

displacement.

it never happens in the case of torsional

Here there are all the results obtained summarized in a table:

Flutter Velocity

Flutter Modes

Critical \1, Vertical Displacement Torsional
Velocity | From Displacement
[m/s] base Range Number Range
case Eigenvectors | Peaks/ | Eigenvectors
Valleys
Base Case 346,789 - | [0;10]-10°° 1 [0;0,5]-10°°
Variation | y=14 |227,328 | WV |[-3210]-10° 1 |[015]-10°
Engines | y—5 | 354,276 [-8;3]-10° 1 |[007]-10°
[m] x=2 333,981 | ¥ |[-7;2]-10° 1 |[00,8]-10°
x=-2 | 155,169 v | [-124]-107 1 [0,7;1,7]-10°°
z=2 | 353,559 [-3,5;10]-10°° 1 [0;-0,2]-10°°
z=-3 | 367,464 [-8;1]-107° 2 [0;0,7]-107°
Variation | 0 | 346,789 - | [-7:2]-107 1 [0;0,5]-10°°
Dihedral |15 346,789 | - |[[-7;2]-107 1 |[0,0,5]-10°
Aigle 60 |346,789 | - | [-7;2]-10° 1 |[00,5]-20°
s 15 | 346789 | - | [-7:2]-10° 1 |[0:05]-107
Variation | 0 | 248,530 [0;280]-10°° 1 [0;0,7]-107°
Sweep 6 | 367,059 [-7,5;2]-10° 1 |[0;0,5]-10°
Angle T 363,347 [-82]-10° 1 |[0:05]10°
s 30 |33982 | ¥ |[-7.7:2510° | 1 |[0,0,5]-107
Variation | 7.10" | 227,318 | ¥ |[0;80]-107 1 |[0;5]-10°
Bending | 7.10° | 338,735 | ¥ |[-82]-10° 3 |[0;700]-107
S[t;\fiif]ss 7.10° |327540 | ¥ | [-135]-10° 5 | [0:0,5]10°
7.10° 172,656 | ¥ | [-1530]-107 4 |[0,01]-10°
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Variation
Torsional
Stiffness

[

Nm?

rad

]

9,5-10" | 2236,994 [-6;2]-10° 3 [0;0,5]-10°°
9,5-10° | 112,505 | | [0;180]-10° 1 [0;10]-10°°
9,5-10" - - - - -

1-10" | 347,936 [-2,7]-107 1 [0;0,5]-10°°

Table 4: Final comparison (Author)

The final analysis of the variation of parameters has shown that:

The most gravely vertical displacement deformed shape of the wing
appears when the sweep angle is reduced to 0 and the when the value
of the torsion stiffness is reduced in one order of magnitude.
Curiously, the eigenvectors show a bigger range of vertical
displacement when the torsional stiffness is reduced than when it is
reduced the bending stiffness.

The deformed shape in torsion shows the biggest range when
decreasing in one order of magnitude the bending stiffness.

That can be due to the coupling of the torsional and bending modes
of vibrations. In fact, the energy inflow from the air flow, that creates
the flutter, is controlled by the coupling.

Nevertheless, the shape is more “deformed” in the sense that it shows
more peaks when the bending stiffness is reduced. That makes sense,
because if the bending stiffness is less, the resistance of the wing
against bending is decreased, and therefore the whole wing will
deform in more directions.

There is an inverse relation between the number of peaks that appear
in the mode shape and the value of the critical flutter velocity. But it
does not exist such relation between the range of the modes and the
velocity, or the range of the modes and the number of peaks.

The variation of the dihedral angle does not derive any changes in the
flutter conditions.

Smaller sweep angles show better conditions for the flutter, because
the critical velocity of flutter increases always that the sweep angle
decreases, and decreases when the sweep angle is bigger than the base

case.
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About the position of the engines, depending on the direction of the
change of the position and its sense different results are shown. In
general, moving the engines in the x axis always impair the flutter
conditions. Moving engines in z direction from the base case improves
the behaviour and in the y axis it depends on the sense of the
displacement. If the engines are approached to the tip of the wing, the
vibration will increase more quickly and the flutter will appear before.
Otherwise, if the engines are approached to the body of the plane, the

vibrations will take longer to appear.
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Appendices

9.1 Galerkin method

Orthogonality of the equations against the basis functions f

r(w,0) L f.(y) i=1..,n

jr(W,H)fi(y)dy=O i=1..n

0

9.2 Matlab code

9.2.1 wing_ flutter

Aeroelastic model of swept slender wing
Bending-torsional structural model of the swept wing.

()" - d/dy, spatial derivative
d()/dt - time derivative

State variables:

w(t,y) - vertical displacement of the EA line of the wing
theta(t,y) - twisting angle of the wing [rad].
y - spanwise coordinate [m]

Equations of motion

m*d"2w/dt"2 + S*d*2theta/dt"2 + cw*dw/dt +  kw*w =

1)

S*d"2w/dt”2 + I*d"2theta/dt"2 + ct*dtheta/dt + kt*theta
u (2)

L - 1ift force per unit span [N/m]
My - aerodynamic moment per unit span [Nm/m]
u - control: aileron's moment

Bending equation (1)
Boundary conditions: w(0) = w'(0) = 0; w'' (SemiSpan) =
"' (SemiSpan) = 0;

clear

My



1l - on

0 - LQR turned off,

0;

control

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o

[m/s]

[m]
critical velocity U crit

4

Undisturbed velocity

Altitude of flight

(or divergence)

°

wing engnA320data( wingA320
wing Atmosphere( Altitude );

400.0

o
Q

]

]
.0

)

(or divergence)

50

wingA320
Temp

4

wing wingA320data();

.0

8000.0;
0
:100

]

'Computing flutter

0;
1

a_sound

1;

4

wingA320
engnA320
Air data
Computing flutter

Altitude
rho
$for U inf

sprintf (
by bisection method\n'

[
bisect
iter
for ii

o
o

o° .

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

oo -

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

oo -

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

oo -

o°
o°
o

ii

4

U inf

d->eigenvalues
max (real (diag(d)));

4

B
-> eigenvectors,

) ;
)

n
o

iMaxRealEig ]

1
lgr( A ,

]
eig(d);
imag(diag(d(iMaxRealEig, iMaxRealEiq))) ;

size(B);

size A(1);

wingA320.n;
wingA320.A;
B = wingA320.B;
size A=size (A);
zeros( m ,
A-B*Ku;

size B
[Ku, Su]

A
end
[ MaxRealEig ,

format long
diag(d)
ImagEig

[v,d]

°

m = size B(2);

Q = 1.0*eye(n);
R = 1.0*eye (m) ;

if ( control

nw
A
n
Ku
o
o



U inf t(iter) = U _inf;

MaxRealEig t(iter) = MaxRealEig;

ImagEig t(iter) = ImagEig;

sprintf( ' U inf = %$15.11f [m/s] MaxRealEig =%20.15f ImagEig
=%18.12f it= %4d\n' , U_inf , MaxRealEig , ImagEig , iter );

if( bisect == )

if ( MaxRealEig * MaxRealEig 1 <= 0.0 )
U inf 2 = U _inf;
MaxRealEig 2 = MaxRealEig;
U _inf = 0.5*%( U inf 1 + U inf 2 );
U inf = U inf 1 - ( U inf 2 - U inf 1 ) * MaxRealEig 1 / (

MaxRealEig 2 - MaxRealEig 1 );

elseif ( MaxRealEig * MaxRealEig 2 <= 0.0 )
U inf 1 = U _inf;
MaxRealEig 1 = MaxRealEig;
U _inf = 0.5*%( U inf 1 + U inf 2 );

U inf = U inf 1 - ( U inf 2 - U inf 1 ) * MaxRealEig 1 / (
MaxRealEig 2 - MaxRealEig 1 );
end

end

if( iter > 3 && bisect ~= 1 )
if ( MaxRealEig t(iter) * MaxRealEig t(iter-1) <= 0.0 )
U crit = U _inf t(iter-1) - ( U inf t(iter) - U _inf t(iter-1) )
* MaxRealEig t(iter-1) / ( MaxRealEig t(iter) - MaxRealEig t(iter-1)
) ;
Mach = U crit / a_sound;
U kmh = U crit * 3.6;

sprintf( '\nU crit = %15.11f [m/s] Mach =%5.3f U_kmh
=%7.2f\n\n"' , U crit , Mach , U kmh );

vr w = real( v(l:nw,iMaxRealEiqg) );
vi w = imag( v(l:nw,iMaxRealEiqg) );
vr_t = real( v(nw+l:2*nw,iMaxRealEig) );
vi t = imag( v(nw+l:2*nw, iMaxRealEig) );

lam r = MaxRealEig;
lam i = ImagEig;
x_axis=linspace (1,nw,nw);

plot(x axis, vr w , 'b--o' ,x axis, vi w , 'b--x', x axis,
vr t , 'r--o' ,x axis, vi t , 'r--x' );
axis( [ 1 n ] );

title( 'Critical flutter mode');
legend('Real part w','Imaginary part w', 'Real part
theta', 'Imaginary part theta');

xlabel ('[-1");

ylabel ('Modes') ;

grid on

pause

o\°

U inf 1 = U inf - d U inf;
U inf 2 U inf;

iii



MaxRealEig 1 = MaxRealEig t(iter-1);
MaxRealEig 2 MaxRealEig t(iter);

U inf = 0.5*( U inf 1 + U inf 2 );
bisect = 1;

$bisect = 2;
end
end
$printf( 'U_inf = $15.11f [m/s] MaxRealEig =%20.15f ImagEig

=%18.12f\n' , U inf , MaxRealEig , ImagEig );

o\

iter=iter+1;

o
°

[v,d] = eig( A - B*Ku );
MaxRealEigLoop = max (real (diag(d)))

o\

fflush( stdout );

if( bisect ~= 1)
U inf = U inf + d U inf;

end
if( bisect == 1 && abs( U inf 2 - U inf 1 ) < 1.e-10 )
break
end
end
[ U inf t , MaxRealEig t , ImagEig t ] = wing sort vec( U _inf t ,

MaxRealEig t , ImagEig t , iter-1 );

4

plot( U _inf t , MaxRealEig t , 'r--o' , U inf t , 0.001*ImagEig t
Tb--x' ) ;

legend ('Real Part Eigenvalues', 'Imaginary Part Eigenvalues');
title('Critical Velocity');

xlabel ('V [m/s]'");

ylabel ('Eigenvalue') ;

grid on;

pause

% U inf = U inf + 1.0;

o 9;99999999;999999999999999999999999999999999999999999999999999999
c} OO0OO0OO0OOOOOOODODOOODODOODODOOODODOODODODOODODOODODODODODODODODODOOODODOODODODODODODODODODODOODOOOOOOODO™ O
% [ wingA320 ] = wing AE Model ( wingA320 , U inf , rho , a sound );
o 9999999999999999999;99;9999999999999999999;9999999999999;99999999
c} OO0OO0OO0OOOOOOODODOOODODOODODOOODODOODODODOODODOODODODODODODODODODOOODODOODODODODODODODODODODOODOOOOOOODO™ O
% A = wingA320.A;

% B = wingA320.B;

% nw = wingA320.n;

o©

Simulation and plotting
dt = 0.005;

T max = 100.0;
it max = T max / dt;
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[rad]

)

’

Max aileron deflection

/T

u max )

dtheta/dt
dtheta/dt
)
/ T
)

theta
dw/dt
dw/dt

)

e}

(e}

e}

(e}

e}

o
e}

%

4

) /T;
r
u

pi

/ T
( -u + uo
)

7
7
-u + u0

Euler integration parameter
)

-u + u0
-u_max

°

1.0e-3
1.0e-3
1.0e-2

1.0e-1
1.0e-1
1.0e-3
0.0;
0.0;

it max
> u max

’

th scale *

10000.0
-u + u0
(un - u )/dt =

un = u + dt*(
30.0 * pi/180.0

0.0;

(

1

0.505
inv( eye(n)/dt - beta*( A - B*Ku )

iflag = 1;

zeros(n,1)
if ( abs (u)
end

dx = Ai*( A*x - B*u

Initial conditions
X = x + dx;

Su = u + dt*(

u = ul;

iflag = 0;

u max

u = min( max(

w scale

%th scale

beta

Ai

$x (1l*nw-1)
$x (2*nw-1)
$x (3*nw-1)
$x (3*nw-10)
$x (4*nw-10)
$x (4*nw-1)
azimuth
azimuth = 70.0;
elev = 20.0;
th scale

$w scale
for it
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th scale
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w_scale
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- oo

axis( [ x min x max y min y max -3.0 5.0 1 ); %,
linewidth' , 2 );

o\

En = x'*x;

% En = 0.5*x(2*nw+1l:4*nw) '*wingA320.M*x (2*nw+1l:4*nw) +
0.5*x(1:2*nw) '*wingA320.K*x (1:2*nw) ;

% txt = sprintf( 'Airbus A320 wing U inf = %7.3f [m/s]
Mach = %5.3f Alt = %7.1f [m] LOR control = %$1d\n\n u =
$8.4f En = %12.5e' , U _inf , U inf/a sound , Altitude , control

u*180.0/pi , En );
title( txt , "fontname", "Helvetica", "fontsize" , 18 );
view ([ azimuth elev ] );

%axis off

o

o

$fflush( stdout );

% Controlling plot by keyboard
key = kbhit (1) ;

o°

o\

o)

% Turn control on/off

o\

% if( key == '1' )

% control = 1;

% [Ku,Su] = lgr( A, B, Q, R);
% end

% if( key == '0"' )

% control = 0;

% Ku = 0*Ku;

% end

o\

o)

% Exciting bending
if( key == '3" )

x(3*nw-1) = -1.e-3;
end

o® o° o o oP

o\

% Exciting torsion

% if( key == '5" )
% $x(4*n-1) = 1l.e-3;
% x (3*nw—floor (nw/2)) = 1l.e-3;
% end
% Setting view
% if( key == "'4"' )
% azimuth = azimuth - 5.0;
% end
% if( key == '6"' )
% azimuth = azimuth + 5.0;
% end
% if( key == '8'" )
% elev = elev - 1.0;
% end
% if( key == '2" )
% elev = elev + 1.0;
% end
% if( key == "'i' )
% elev = 90.0;
% end
% if( key == 'o' )
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o

elev = 0.0;

S end

% if( key == 'p' )
S elev = -90.0;

% end

% if( key == 'qgq' )
% azimuth = 0.0;
% end

% if( key == 'w' )
% azimuth = 90.0;
% end

% if( key == 'e' )
% azimuth = 180.0;
% end

%azimuth = azimuth + 0.50;

if( azimuth >= 360 )
azimuth = 0.0;

end

key = 0.0;

t =t + dt;

end

return;

9.2.2 wing_ wingA320data

unction [ wingA320 ] = wing wingA320data( n )

rad2deg = 180.0/pi;

A320 y = [ 594 595 495 270 270 498 494 533
A320 x = [ 182 316 316 383 350 233 156 156
A320 y = A320 y - 594;

A320 x = A320 x - 182;

A320 y = A320 y * -1;

A320 x = A320 x * -1;

A320 y = A320 y / 325;

A320 x = A320 x / 325;

A320 y = A320 y * 15.07;

A320 x = A320 x * 15.07;

A320 x = A320 x + 2.5;

sweep atan( 6.0 / 15.07 )*rad2deg;
% sweep = 30.0;

shold off

534
216

594
182

594
182
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splot ( A3
Saxis ( [
%grid
%pause

0

O N

A320_ y
340 3
A320 z
63 3

£
40
_f
9 1;

A320 y f
A320 z f =
A320 y f
A320 y f
A320 z_f
A320 y f =
A320 z_f

dihedral =
radians

$ dihedral =

$ dihedral

Splot ( A320
Saxis( [ O
%grid
%pause

x0 w= 2.5
x1l w = -3.7
vyl w= 4.6
x2 w = -5.3
x3 w = -6.8
y2 w = 15.
SemiSpan =

A32

A320 y f
A320 z_f
A320 y f
A320 y f
A320 z_f
A320 y f
A320 z_f

atan( 1

-60;
= atan(

0_x);

’

64 264

53 53

340;
51;
-1;
324;
324;

* ok SN |

.82 / 15.07 )*rad2deg; %atan

283 278 258

32 15 4

15.07;
15.07;

1.82 / 15.07 )*rad2deg

A320 z £ );

_y £,
15.1 1 );

0;

2;
0;

0;
0;
0;

y2_W;

’

dy = SemiSpan/ (n-1);

i 1 = floor( yl w / dy );

% Number of wing sections

240

15

% Section width

der le = (%2 w - x0 w ) / y2 w;
der te = (%3 w-x1w) / (y2w-ylw);
%pause
for 1 =1 il
eta = (i-1)*dy/SemiSpan;
y (i) = (i-1)*dy;
x le(i) = der le * y(i) + x0 w;
X te(i) = x1 w;
$b(i) = b0 - 1.973*eta;
chord(i) = x le(i) - x te(i);
end
for i =11+ 1 n

235

30

254

56

16

88

16

92

237

70

= inverse tangent in

[m]



eta =
y(i) =

(i-1) *dy/SemiSpan;
(i-1) *dy;
) = der le * y(i)
x te(i) = min( x1 w ,
= b0 - 1.973*%eta;
=x le(i) - x te(i);

+ x0 w;

%hold off
splot( vy ,
Saxis( [ O
%grid
%pause

AileronSpan = 3.
[m]

n alrn =
aileron's section
%pause

c alrn =0

0;

.37

o)

% Structural data

x1l w + der _te * (

floor( n * AileronSpan / SemiSpan ) %

y(i) - yl w )

Q

% Aileron's span

5 Number of

mass = 0.0;
for i =1 :n

eta = (i-1)*dy/SemiSpan;

psi = chord(i)/chord(1);

a(i) = -0.15; % Elastic center (EC)
position w.r.t. chord center, + backward (dimensionless)

$xcg (i) = 0.135 - 0.25*eta; % Position of gravity
center w.r.t. elastic center (EC), + backward [m]

xcg(i) = 0.060 * psi; % Position of gravity
center w.r.t. elastic center (EC), + backward [m]

m(i,i) = 100.0 * psi; % Mass distributions of
the wing (constant) [kg/m]

I(i,i) = 200.0 * psi~2; % Moment of inertia of the
wing [kg*m"2/m]

S(i,1) = -m(i,1i) * xcg(i); % Static moment [kg*m/m]

SETI (1) = 7.0e+06 * (1.0 - 0.05*eta ); % Bending stiffness
distributions of the wing (constant) [N*m™2];

$GJ (1) = 1.0e+07 * (1.0 - 0.05*eta ); % Torsional stiffness
[N*m~2/rad]

EI (1) = 7.0e+06 * psi; % Bending stiffness
distributions of the wing (constant) [N*m"2];

GJ (1) = 9.5e+06 * psi; % Torsional stiffness
[N*m~2/rad]

cw(i,i) = 0.0; % Bending structural
damping

ct(i,i) = 0.0; % Torsion structural
damping

mass = mass + m(i,1i);
end



mass
spause

wingA320.n
wingA320.x le
wingA320.x te
wingA320.SemiSpa
wingA320.y
wingA320.dy
wingA320.chord
wingA320.sweep
wingA320.dihedra
wingA320.a
wingA320.m
wingA320.S
wingA320.1I
wingA320.EI
wingA320.GJd
wingA320.cw
wingA320.ct
wingA320.n alrn
wingA320.c_alrn

n

1 =

n;

X
X

le;
te;

SemiSpan;

Yy

dy;

chord;
sweep;

dihedral;

a;
m;
S;
I;

EI;
GJ;
Ccw;
ct;
n_alrn;
c _alrn;

9.2.3 wing__eig_ sort

wing eig sort( eig , vec )

function [ eig , vec ] =
size eig=size (eiq);
n = size eig(1l);
do
ip = 0;
for i =1 : n-1
if( eig(i) > eig(i+l) )
eigt = eig(i+l);
eig(i+l) = eig(i);
eig(i) = eigt;
vect = vec(:,1i+1);
vec(:,1+1) = vec(
vec(:,1) = vect;
ip = 1;
end
end
until ( ip == )

9.2.4 wing_sort_ vec

function [ x ,

o
- Q
(@]

a v

b

] =

wing sort vec( x , a , b , n)

xi



bt
b(:,i+1) = b(:,1);
b(:,1) = bt;

Il
o

-
’_l.
+
=

~.

ip = 1;
end
end
% until ( ip == 0 )
9.2.5 Iqr

function [k,s]=lqgr(a,b,q, r,nn)

J = Integral {x'QOx + u'Ru} dt
subject to the constraint equation:
x = AxX + Bu
algebraic Riccati equation:

-1

0 SA + A'S - SBR B'S + Q

[K,S] = LOR(A,B,Q,R,N) includes the cross-term N that relates
u to x in the cost function.

A0 A o° O O O A° A° A A° A O° o° A° o° N o° oe

J.N. Little 4-21-85
Revised 8-27-86 JNL
Copyright (c) 1985, 1986 by the MathWorks, Inc.

o\

o° oo

%error (nargchk (4,5, nargin)) ;
%error (abcdchk (a,b)) ;

[m,n] = size(a);
[mb,nb] = size(b);
[mg,ng] = size(q);
if (m ~=mg) || (n ~= nQq)
error ('A and Q must be the same size')
end
[mr,nr] = size(r);
if (mr ~= nr) || (nb ~= mr)
error ('B and R must be consistent')
end

if nargin ==
[mn,nnn] = size (nn);
if (mn ~= m) || (nnn ~= nr)
error ('N must be consistent with Q and R')
end
Add cross term
= g - nn/r*nn';
= a - b/r*nn';

o

o Q

else
nn = zeros (m,nb);

LOR Linear quadratic regulator design for continuous-time systems.
[K,S] = LOR(A,B,Q,R) calculates the optimal feedback gain matrix

such that the feedback law u = -Kx minimizes the cost function:

Also returned is S, the steady-state solution to the associated



end

% Check if g is positive semi-definite and symmetric
if any(eig(g) < 0) || (norm(g'-qg,1l)/norm(qg,l) > eps)
error ('Q must be symmetric and positive semi-definite')
end
% Check if r is positive definite and symmetric
if any(eig(r) <= 0) || (norm(r'-r,1)/norm(r,1l) > eps)
error ('R must be symmetric and positive definite')
end

Q

% Start eigenvector decomposition by finding eigenvectors of
Hamiltonian:

[v,d] = eig([a b/r*b';q, -a'l);

d = diag(d);

[d,index] = sort(real(d)); % sort on real part of eigenvalues

$if (~( (d(n)<0) && (d(n+1)>0) ))
if (~( (d(n)<l.e-15) && (d(n+l)>-1.e-15) ))
printf('Can''t order eigenvalues, (A,B) may be uncontrollable.
Checking rank C = [B A*B ... A™(n-1)*B ]\n")
C = zeros(m,n*nb) ;
c = b;
C(:,1:nb) = c;
for i =1 : n-1,
c = a*c;
C(:,i*nb+1:i*nb+nb) = c;
end
%C
rank C = rank(C);
if( rank C < n )
rank C
error('rank C < n , (A,B) are uncontrollable.')
else
error('rank C = n (OK), but there is something wrong with
ordering - check it out!")

end
end
chi = v(l:n,index(1:n)); % select vectors with negative
eigenvalues
lambda = v ((n+1l):(2*n),index(1:n));
s = -real (lambda/chi) ;

k = r\(nn'+b'*s);

end
9.2.6 wing  AE_ Model
function [ wing ] = wing AE Model( wing , U inf , rho , a sound )
kw = wing BendStifMatr( wing.EI , wing.dy , wing.n , wing.m );

kt = wing TorsnStifMatr( wing.GJ , wing.dy , wing.n , wing.I );
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[ Ka , Ca , M alrn ] = wing AerodynamicModel( U _inf , rho , a sound

o\

% | m S |
% M= | |
% | S I |
% | Ccw 0 |
% c = |
% | 0 ct |
% | kw 0 |
% K = | |
% | 0 kt |

o

o

L dwdt L dthetadt |

% Ca = | |
% | My dwdt My dthetadt |
% | L dwdy L theta

% Ka = | |
% | My dwdy My theta |
% | 0 I

% Bu = | |

% | M alrn |

% x = [ w , theta ]

o° o

o

M*d2xdt2 + C*dxdt + Kx = Ca*dxdt + Ka*x + M alrn*u

o\

o° oo

| 0 1
% A = | |
% |  -M\K -M\C |
% | 0 I
% B = | |
% | M\M alrn |
n = wing.n;
M= [ wing.m -wing.S ;
-wing.S wing.I 1;
C= [ wing.cw zeros (n) ;
zeros (n) wing.ct 17
K = [ kw zeros (n) ;
zeros (n) kt 1
Bu = [ zeros(n,1l) ;
M alrn' ]; % Adileron on the n alrn*dy sections of the wing

Xiv



A = [ zeros(2*n) eye (2*n) ;

-M\ (K-Ka) -M\ (C-Ca) 17
B = [ zeros(2*n,1) ; M\Bu ]:
wing.M = M;
wing.C = C;
wing.K = K;
wing.Bu = Bu;

wing.A = A;
wing.B =

9.2.7 wing_ AerodynamicModel

function [ Ka , Ca , M alrn ] = wing AerodynamicModel( U inf , rho ,
a_sound , wing )

o\

% Aerodynamic model: strip, quasi-steady

a = wing.a;
chord = wing.chord;
sweep = wing.sweep;
n = wing.n;

n alrn = wing.n_alrn;
c _alrn = wing.c_alrn;

o

AOA - angle of attack [rad]

% alpha = ( theta - dw/dy * tan(Lambda) + b/U inf*( 0.5-a
) *dtheta/dt - (dw/dt)/U inf ) * cos (Lambda)

o\

L =0.5* rho * U inf*2 * ¢ * dCzdAlpha * alpha
My = 0.5 * rho * U inf"2 * ¢ * e * dCzdAlpha * alpha +
/(8*U_inf) *dtheta/dt

o\

c*pi

% L = 0.5*rho*U_inf"2*c*dCzdAlpha* ( theta*cos (Lambda) -
dw/dy*sin (Lambda) + b/U inf*( 0.5-a )*dtheta/dt*cos (Lambda) -
(dw/dt) /U _inf*cos (Lambda) )

% My = 0.5*rho*U_inf"2*c*e*dCzdAlpha* ( theta*cos (Lambda) -
dw/dy*sin (Lambda) + b/U inf*( 0.5-a )*dtheta/dt*cos (Lambda) -
(dw/dt) /U _inf*cos (Lambda) )

% L theta = 0.5*rho*U_inf”2*c*dCzdAlpha*cos (Lambda) * theta

% L dwdt = -0.5*rho*U_inf*c*dCzdAlpha*cos (Lambda) * dw/dt

% My theta = 0.5*rho*U inf"2*c*e*dCzdAlpha*cos (Lambda) * theta
% My dwdt = -0.5*rho*U inf*c*e*dCzdAlpha*cos (Lambda) * dw/dt

% L dwdy = -0.5*rho*U inf"2*c*dCzdAlpha*sin (Lambda) * dw/dy

$ My dwdy = -0.5*rho*U inf"2*c*e*dCzdAlpha*sin (Lambda) * dw/dy

$dy = 15.0/(n-1);

Lambda = sweep * pi/180.0;



dCzdAlpha O 4.
dCzddelta alrn O

Mach = U _inf / a
Prandtl = min( 4
dCzdAlpha =

dCzddelta alrn

%L _total = 0.0;

$for Mach = 0.0

% Mach

% tanh( Mach”"3

send

spause

for i =1 :n
e(i) = 0.25;

elastic center (EC

%e (i) = 0.25 *
qg= 0.5 * rho

L theta(i, i)

My theta (i, i)

L dwdt (i,1)

My dwdt (i,1)

L dthetadt (i, i

My dthetadt (i,
chord (i) *pi/8.0 );

%L _total

Lt

M alrn (i) 0.
if( 1 > n-n_a
chord alrn
M alrn (i)
dCzddelta alrn * c
%M alrn (i)
%My theta (i,
end
end

%L _total
for i =2 :
L dwdy (i, 1)
L dwdy(i,i-1)
My dwdy (i, 1)
.5*rho*U_inf"2*ch
My dwdy(i,i-1)
end

n

0; % Lift slope [1/rad]
= 2.0; % Aileron derivative [1/rad]

__sound;

.0, 1.0/sgrt( abs( 1.0 - Mach”2 ) ) );

dCzdAlpha 0 * Prandtl;

dCzddelta alrn 0 * Prandtl;

)

Q

% Aerodynamic center (AC)
), + forward (dimensionless)
(1.0 - tanh( Mach”2.5 ) );

position w.r.t.

* U inf * chord(i)
g * U _inf;

g * U inf * e(1);
-q;

-q * e(i);

* dCzdAlpha * cos (Lambda) ;

) = 1*g * 0.5*chord(i)*( 0.5 - a(i) );

i) = 1*g * ( —-e(i)*0.5*chord(i)*( 0.5 - a(i) )
otal + L theta(i,i) * dy;

0;

lrn )

c_alrn*chord(i);

-0.5 * rho * U _inf”2 * chord alrn * (0.25) *

os (Lambda) ;
0.0001 * M alrn(i);
i) My theta(i,i) + M alrn(i);

-L dwdy(i,1);

ord (i) *e (i) *dCzdAlpha*sin (Lambda) ;
-My dwdy (i, 1i);

L dwdy(1,1) = L dwdy(2,2);

My dwdy(1,1) = My dwdy(2,2);

Ca = [ L dwdt L dthetadt ;
My dwdt My dthetadt ];

Ka = [ L dwdy L theta ;
My dwdy My theta 1;

-0.5*rho*U_inf"2*chord (i) *dCzdAlpha*sin (Lambda) ;
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9.2.8 wing_ BenStifMatr

function kw = wing BendStifMatr( EI , dy , n , m )

% FD (Finite difference) discretization of bending stiffness
operator d"4 (w)/dy™4

dy4 = dy"4;
for i =2 : n-1
if i >= 3,
kw(i,i-2) = EI(i-1) / dy4;
end
if i >= 2,
kw(i,i-1) = -2.0*( EI(i-1) + EI(1i) ) / dy4;
end
kw(i,i) = ( EI(i-1) + 4.0*EI(i) + EI(i+1) ) / dy4;
if i <= n-1 ,
kw(i,i+1l) = -2.0%( EI(i) + EI(i+1) ) / dy4;
end
if i <= n-2 ,
kw(i,1i+2) = EI(i+1) / dvy4;
end
end
$ w(0) =0, w'(0) =0
kw(l,1) = 6.0 * EI(1) / dy4;
kw(2,2) = kw(2,2) + EI(1) / dy4;
% w''(SemiSpan) = 0 , w'''(SemiSpan) = 0
kw(n-1,n-1) = ( EI(n-2) + 4.0*EI(n-1) ) / dy4;
kw (n-1,n) = -2.0*EI(n-1) / dy4;
kw (n,n-2) = ( EI(n-1) + EI(n) ) / dy4;
kw (n,n-1) = -( 2.0*EI(n-1) + 2.0*EI(n) ) / dy4;
kw (n, n) = ( EI(n-1) + EI(n) ) / dy4;
$format bank
Skw
S[vw,d] = eig(kw,m);
%dw = diag(d);
%[dw,vw] = wing eig sort( dw , vw );
Sfor 1 =1 n
% printf( 'i = %2d eig = %25.10f\n"' , 1 , dw(i) )
$end

%% Plot bending mode shapes
$hold off

Siw = 0;

$plot ( vw(:,iw+l) , 'r-' , vw(:,iw+2) , 'g-' , vw(:,iw+t3) , 'b-' ,
vw(:,iw+4) , 'm-' );

Saxis( [ 1 n -1 171 );

$title( 'Bending mode shapes 1-4', "fontname", "Helvetica",
"fontsize"™ , 18 );

%grid;

%omega = sqgrt (sort(diag(d))):;
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%omega (1) ;

$Tw = 2*pi/omega (1) ;

$Freq w = 1/Tw;

$%printf ( 'Bending: Omega= %8.4f [rad/s] f =%8.4f [Hz]\n' ,

omega (l) , Freg w );

9.2.9 wing_ TorsnStifMatr

function kt = wing TorsnStifMatr( GJ , dy , n , I );

d/\

vt

dy2 = dy"2;
for i =2 :n
kt(i,i) = 0.0;
if i >1,
kt(i,i-1) = -GJ(i-1) / dy2;
end
kt(i,i) = ( GJ(i-1) + GJ(i) ) / dy2;
if i <n,
kt(i,i+1) = -GJ(i) / dy2;
end
end
kt(1,1) = 2*GJ(1) / dy2; % theta(0) = 0

kt(n,n-1) = -GJ(n-1) / dy2; % theta' (SemiSpan) = 0
kt(n,n) = GJ(n-1) / dy2;

Skt

%pause

o

Torsional equation
Boundary conditions: theta(0) = 0; theta' (SemiSpan) = 0;

o° o

o

Finite Difference discretization of torsional stiffness operator
2 (theta) / dy”2

$format short

$[vt,d] = eig( kt , I );

%$dte = diag(d);

%[dte,vt] = wing eig sort( dte , vt );
$for 1 =1 : n

o\°

printf( 'i = %2d eig = %25.10f\n' , 1 , dte(i) )
end

o\

o\°

Plot torsional mode shapes
hold off
iw = 0;
$plot ( vt(:,iw+l) , 'r-' , vt(:,iw+2) , 'g-' , vt(:,iw+3) , 'b-' ,
(:piwtd) , 'm=" );
Saxis( [ 1 n -1 11 );
%title( 'Torsional mode shapes 1-4', "fontname", "Helvetica",

o\

o

"fontsize" , 18 );

%grid;
%pause

somega = sqrt (sort(diag(d))):;
Somega (1) ;
Tt = 2*pi/omega(l);
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$Freqg t = 1/Tt;

$printf ( 'Torsion: Omega= %8.4f [rad/s] f =%8.4f [Hz]\n'

omega (l) , Freg t );
9.2.10wing__ Atmosphere
function [ rho , a sound , Temp ] = wing Atmosphere( Altitude )
rho 0 = 1.225;
rho = rho 0 * ( 1.0 - abs( Altitude)/44300.0 )"4.256;
Temp = max( 273.0 - 56.5 , 288.0 - 0.0065 * Altitude );
a_sound = 20.05 * sqgrt( Temp );
9.2.11wing_ plotWing

function [ wing ] = wing plotWing( u , x , w_scale , th scale , wing )
n = wing.n;
x le = wing.x le;
x_te = wing.x te;
y = wing.y;
chord = wing.chord;
a = wing.a;
dihedral = wing.dihedral;
sweep = wing.sweep;
n _alrn = wing.n_alrn;
c alrn = wing.c_alrn;
$Am = 5.e-3;
%lam i = abs( lam i );
$fi = 0.0;
%arg = lam i*t + fi;
Dihedral = dihedral * pi/180.0;
Lambda = sweep * pi/180.0;
for i =1 : n-1

swl = Am*exp( lam r*t ) * ( vr w(l) sin( arg ) + vi w(l) cos (
arg ) )i

$thl = Am*exp( lam r*t ) * ( vr_ t(l) sin( arg ) + vi t(1l) cos (
arg ) )i

w2 = Am*exp( lam r*t ) * ( vr w(i) sin( arg ) + vi w(i) cos (
arg ) )i

$th2 = Am*exp( lam r*t ) * ( vr_ t(i) sin( arg ) + vi t(i) cos (
arg ) )i

wl = x(1i);

thl = x(n+i);

wl = wl * w scale;

thl = thl * th scale;

w2 = x(i+l);

th2 = x(n+i+l);
w2 w2 * w_scale;
th2 = th2* th scale;
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zl = y(i) * ta

z2 = y(i+1l) *

xw(l,1) x le
xw(2,1) = x_le
xw(3,1) = x_te
xw(4,1) = x_te
xw(5,1) = xw(l
yw(l,i) = y (1)
yw(2,1) = y(i+
yw(3,1) = y(i+
yw(4,1) = y (1)
yw(5,1) = yw(l
x0 (1) *

Yy
x1l = y(i+l) *

n( Dihedral );

tan( Dihedral );

(1) * cos( thl );
(i+1) * cos( th2 );
(i+1) * cos( th2 );
(1) * cos( thl );
1)

1);

1);

tan( Lambda );
tan( Lambda );

zw(l,i) = z1 + wl + sin( thl ) * ( xw(l,i) - x0
zw(2,1) = z2 + w2 + sin( th2 ) * ( xw(2,1i) - x1
zw(3,1) = z2 + w2 + sin( th2 ) * ( xw(3,1i) - x1
zw(4,i) = z1 + wl + sin( thl ) * ( xw(4,i) - x0
zw(5,1) = zw(l,1);
delta = u;
delta = delta * th scale * 0.1;
$1if( 0 )
if( i >= n-n_alrn )
if( i > n-n_alrn-2 )
w(3,1) = x te(i+l) + c_alrn*chord(i);
xw(4,1) = x _te(i) + 0.5;
zw(3,1) = z2 + w2 + sin( th2 ) ( xw(3,1)
zw(4,i) = z1 + wl + sin( thl ) * ( xw(4,1)
end
ca = 1.0; % Aileron chord
il =1 - ( n-n_alrn ) + 1;
xw _al(1l,il) = xw(3,1);
xw al(2,1il) = (4,1);
xw_al(3,1il) = x_te(i+l);
xw_al(4,il) = x_te (1)
xw_al(5,1i1) = xw_al(1l,il);
yw al(l,il) = y(i);
yw al(2,1i1l) = y(i+l);
yw al(3,11) = y(i+l);
yw al(4,il) = y(i);
yw al(5,11) = yw al(1l,il)

zw_al(1l,il)
zw_al(2,1il)
zw_al(3,1i1)
ca*sin(delta);
zw_al(4,1il)
ca*sin(delta);
zw_al(5,1i1)

=z1 + wl + sin( thl ) * ( xw(3,1
= 2z2 + w2 + sin( th2 ) * ( xw(4,1
= z2 + w2 + sin( th2 ) * ( x te(i

=z1 + wl + sin( thl ) * ( x te(i

= zw al(1l,1il);

~. o e

—_— — — —
~

~.

- x1 )
- x0);

) - x1 )7

) - x0 )7
+1) - x1

) - x0
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end
%en

end

wing.
wing.
wing.
wing.
wing.
wing.

d

XW
yw
zZw
xw_al
yw_al
zw_al

9.2.12wing_ plotEngine

XW;
yw;
ZW;
xw_al;
yw_al;
zw_al;

function [ engn ] =
nw )
w e = w_scale*x( engn.j e );
th e =
n e = engn.n_e;
xp el = engn.xp el;
yp el = engn.yp el;
zp_el = engn.zp el;
fori=1:ne,
xp eal(i,1l) = xp_e
xp eal (i, 2) Xp e
xp eal(i,3) = xp_e
xp eal(i,4) Xp e
yp_eal(i,1) = yp e
yp_eal(i,2) = yp e
yp_eal(i,3) = yp e
yp_eal(i,4) = yp e
zp_eal(i,1) = w e
zp_eal(i,2) = w_ e
zp_eal(i,3) = w_ e
zp_eal(i,4) = w e
end
engn.x eal = xp eal;
engn.y eal = yp eal;
engn.z eal = zp eal;
Xp e2 = engn.xp e2;
yp_e2 = engn.yp e2;
Zp_e2 = engn.zp e2;
fori=1:ne,
xp ea2(i,1l) =
xp ea2 (i, 2)
xp ea2 (i, 3)

wing plotEngine (

th scale*x( nw + engn.j e );

xp e2(i,1l)*cos( th_

) - zp_el(
) - zp_el(
) — zp el
) — zp_ el(
( th e ) +
( th e ) +
( th e ) +
( th e ) +

X , w_scale , th scale , engn ,
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xp ea2 (i, 4)

yp_ea2(i,l) = yp e2(i,1);
yp ea2(i,2) = yp e2(i,2);
yp ea2(i,3) = yp e2(i,3);
yp ea2(i,4) = yp e2(i,4);
zp eaZ2(i,1l) = w e + xp e2(i,1)*sin( th e ) zp_e2(i, 1) *cos(
) ;
zp_eaZ2(i,2) = w e + xp e2(i,2)*sin( th e ) zp_e2(1i,2) *cos(
) ;
zp eaZ2(i,3) = w e + xp e2(i,3)*sin( th e ) zp_e2 (i, 3) *cos(
);
zp eaZ2(i,4) = w e + xp e2(i,4)*sin( th e ) zp_e2(i,4)*cos(
);
end
engn.x ea2 Xp eaz;
engn.y eaz = yp_eaz;
engn.z ea2 = zp ea2;
xp e3 engn.xp_e3;
yp_e3 = engn.yp _e3;
zZzp_e3 = engn.zp e3;
fori=1:ne,
xp ea3(i,1l) = xp e3(i,1l)*cos( th e ) - zp e3(i,1)*sin( th e )
xp ea3 (i, 2) Xxp e3(i,2)*cos( th e ) - zp e3(i,2)*sin( th e )
xp ea3(i,3) = xp_e3(i,3)*cos( th e ) - zp e3(i,3)*sin( th e )
xp ea3 (i, 4) xp e3(i,4)*cos( th e ) - zp e3(i,4)*sin( th e )
yp_ea3(i,1) = yp_e3(i,1);
yp_ea3(i,2) = yp_e3(i,2);
yp ea3(i,3) = yp e3(i,3);
yp ea3(i,4) = yp e3(i,4);
zp ea3(i,1) = w e + xp e3(i,1)*sin( th e ) + zp e3(i,1)*cos(
zp_ea3(i,2) = w e + xp_e3(i,2)*sin( th e ) + zp e3(i,2)*cos(
zp ea3(i,3) = w e + xp_e3(i,3)*sin( th e ) + zp e3(i,3)*cos(
zp _ea3(i,4) = w e + xp e3(i,4)*sin( th e ) + zp e3(i,4) *cos(
end
engn.x _ea3 = xp_ea3;
engn.y ea3 = yp_ea3;
engn.z_ea3 = zp_ea3;
Xp _epn = engn.xp_epn;
yp_epn = engn.yp_epn;
Zp_epn = engn.zp_epn;
n_pn = engn.n_pn;
for i =1 :npn,
xp eapn(i,l) = xp epn(i,l)*cos( th e ) - zp epn(i,1l)*sin( th_
xp eapn(i,2) = xp epn(i,2)*cos( th e ) - zp epn(i,2)*sin( th_
xp eapn(i,3) = xp epn(i,3)*cos( th e ) - zp epn(i,3)*sin( th_
xp eapn(i,4) = xp epn(i,4)*cos( th e ) - zp epn(i,4)*sin( th_
yp_eapn(i,1l) = yp epn(i,1);

xp e2(i,4)*cos( th e )

- zp e2(i,4)*sin( th e );

th

th

th

th
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yp_eapn (i, 2)
yp_eapn (i, 3)
yp_eapn (i, 4)

= yp_epn(i,2);

yp_epn (i, 3);
yp_epn(i,4);

zp_eapn(i,l) = w e + xp epn(i,1l)*sin( th e ) + zp epn(i,1)*cos(
) ;

zp_eapn(i,2) = w e + xp epn(i,2)*sin( th e ) + zp epn(i,2)*cos(
) ;

zp_eapn(i,3) = w e + xp epn(i,3)*sin( th e ) + zp epn(i,3)*cos(
) ;

zp_eapn(i,4) = w e + xp epn(i,4)*sin( th e ) + zp epn(i,4)*cos(
) ;
end
engn.x _ean = Xp_eapn;
engn.y ean = yp_eapn;
engn.z_ean = zp_eapn;

9.2.13wing__engnA320data

function [ engnA320 , wing ] = wing engnA320data( wing )
n = wing.n;
SemiSpan = wing.SemiSpan;
m = wing.m;
S = wing.S;
I = wing.I;
A320 x eng = [ 45 45 77 120 120 160 160 119 118 80 45
45 45 1,
A320 z eng = [ 102 82 79 84 90 9¢ 108 115 119 129 122
103 102 ];
A320 x eng = A320 x eng + -80;
A320 z eng = A320 z eng + -102;
A320 x eng = A320 x eng / 23;
A320 z eng = A320 z eng / 23;
A320 x eng = A320 x eng * 1.1;
A320 z eng = A320 z eng * 1.1;

shold off

splot ( A320 x eng , A320 z eng );

%grid

%pause

Le = 5.50;
x el = 1.70;
R el = 0.95;
x e0 = 0.0;
R e0 = 1.10;
x e2 = -1.50;
R e2 = 0.90;

th e
th e
th e

th e
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x e3 =

-2.80; % -3.8

R e3 = 0.40;
% Original
x0 e = 0.0;
y0 e = 3.35;
z0 e = -1.0;
$x0 e = -1.0;
$y0 e = 7.35;
5z0 e = -0.5;
$ x0 e = 0.0;
$ y0 e = 35;
$ z0 e = -3.0;
j e = floor( n * yO e / SemiSpan )
j_e*(SemiSpan/ (n-1))
y0 e = j e*(SemiSpan/(n-1));
%pause
n e = 20;
dalf = 2*pi/(n_e-1);
alfl = 0.50*pi;
alf2 = alfl - dalf;
fori=1:ne,
xp el (i, 1) x0 e + x el;
xp el(i,2) = x0 e + x e0;
xp el(i,3) = x0 e + x e0;
xp el(i,4) = x0 e + x el;
xp el (i,5) = xp el(i,1);
yp el(i,1) = y0 e + R el * cos
yp el(i,2) = y0 e + R e0 * cos
yp el(i,3) = y0 e + R e0 * cos
yp el(i,4) = y0 e + R el * cos
yp el(i,5) = yp el(i,1);
zp el(i,1) = z0 e + R el * sin
zp el(i,2) = z0 e + R e0 * sin
zp el(i,3) = z0 e + R e0 * sin
zp el(i,4) = z0 e + R el * sin
zp el(i,5) = zp el(i,1);

alfl = alf2;
= alfl - dalf;

Q

=

H
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|

dalf = 2*pi/(n _e-1);

alfl 0.50*pi;

alf2 alfl - dalf;

for i=12:ne,
xp e2(i,1) = x0 e + x e0;
xp e2(i,2) = x0 e + x e2;

alfl
alfl
alf2
alf2

alfl
alfl
alf2
alf2
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xp e2(i,3) = x0 e + x e2;

xp e2(i,4) = x0 e + x e0;

xp e2(i,5) = xp e2(i,1);

yp e2(i,1) = y0 e + R e0 * cos
yp e2(i,2) = y0 e + R e2 * cos
yp e2(i,3) = y0 e + R e2 * cos
yp e2(i,4) = y0 e + R e0 * cos
yp_e2(i,5) = yp_e2(i,1);

zp_ e2(i,1) = z0 e + R e0 * sin
zp e2(i,2) = z0 e + R e2 * sin
zp e2(i,3) = z0 e + R e2 * sin
zp e2(i,4) = z0 e + R e0 * sin
zp _e2(i,5) = zp e2(i,1);

alfl = alf2;

QL
=
H
N
Il

alfl = 0.50*pi;
alf2 = alfl - dalf;

alfl - dalf;

for i=1:ne,
xp e3(i,1) = x0 e + x e2 + 1.
xp e3(i,2) = x0 e + x e3;
xp e3(i,3) = x0 e + x e3;
xp e3(i,4) = x0 e + x e2 + 1.
xp e3(i,5) = xp e3(i,1);
yp e3(i,1) = y0 e + R e2 * cos
yp e3(i,2) = y0 e + R e3 * cos
yp e3(i,3) = y0 e + R e3 * cos
yp e3(i,4) = y0 e + R e2 * cos
yp e3(i,5) = yp e3(i,1);
zp_e3(i,1) = z0 e + R e2 * sin
zp_e3(i,2) = z0 e + R e3 * sin
zp_e3(i,3) = z0 e + R e3 * sin
zp_e3(i,4) = z0 e + R e2 * sin
zp_e3(i,5) = zp e3(i,1);
alfl = alf2;
alfz2 = alfl - dalf;
end
pn = 2;
xp epn(l,1) = x0 e x e0 + 1.6
xp epn(l,2) = x0 e x e0 - 0.4
xp epn(l,3) = x0 e x e2 - 0.4
xp epn(l,4) = x0 e X e2;
xp _epn(l,5) = xp epn(l,1);
yp_epn(l,1) = y0_e;
yp_epn(l,2) = y0_e;
yp epn(l,3) = y0 e;
yp_epn(l,4) = y0_e;
yp_epn(l,5) = yp_epn(l,1);

alfl
alfl
alf2
alf2

alfl
alfl
alf2
alf2

alfl
alfl
alf2
alf2

alfl
alfl
alf2
alf2
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zp epn(l,1) = z0 e + 0.9;
zp epn(l,2) = z0 e + 1.47;
zp epn(l,3) = z0 e + 1.47;
zp epn(l,4) = z0 e + 0.9;
zp_epn(l,5) = zp epn(l,1);
xp epn(2,1) = x0 e + x e0;
xp epn(2,2) = x0 e + x e2;
xp epn(2,3) = x0 e + x e2;
xp epn(2,4) = x0 e + x e0 - 0.4;
Xp epn(2,5) = xp _epn(2,1);
yp_epn(2,1) = y0_e;
yp_epn(2,2) = y0_e;
yp_epn(2,3) = y0_e;
yp_epn(2,4) = y0_e;
yp_epn(2,5) = yp_epn(2,1);
zp epn(2,1) = z0 e + 0.9;
zp epn(2,2) = z0 e + 0.9;
zp_epn(2,3) = z0 e + 1.47;
zp_epn(2,4) = z0 e + 1.47;
zp_epn(2,5) = zp_epn(2,1);
me = 2270.0;

wing.m(j e,j e) = wing.m(j e,j e) + m_e;

sm(j,j-1) = m(j,j-1) - me * z e*2 / (2.0*dy)"2;

sm(j,j+1l) = m(J,j+l) + m e * z "2 / (2.0*dy)"2;

sm(j _e,Jj e) =m(j e, j e) tme * z e"2 / (dy"2);

sm(j _e,j etl) =m(j e,j etl) - me * z e"2 / (dy"2);
wing.S(j e,j e) = wing.S(j e,j e) - m e * x0 e;

wing.I(j e,j e) = wing.I(j e,j e) + me * ( x0 2.0 + z0 e72.0 );

engnA320.xp el = xp el;
engnA320.yp el = yp el;
engnA320.zp el = zp el;
engnA320.xp_e2 = xp e2;
engnA320.yp_e2 = yp e2;
engnA320.zp _e2 = zp e2;
engnA320.xp_e3 = xp e3;
engnA320.yp_e3 = yp e3;
engnA320.zp_e3 = zp e3;
engnA320.n e =n e;

engnA320.xXp_epn = Xp_epn;
engnA320.yp_epn = yp_epn;
engnA320.zp_epn = zp_ epn;
engnA320.n _pn = n pn;

engnA320.j e =7 e;

engnA320.m e =m e;
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