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Summary
This thesis focuses on mitigation techniques for SRAM-based FPGAs and how they
improve design reliability. The FPGA implemented design is a basic AVR CPU run-
ning a matrix multiplication workload. The process followed starts with faults being
injected into the basic design to obtain a reliability baseline. Mitigation techniques
are then used, in the form of basic TMR and hamming code EDAC, to improve the
reliability of the design. Then an iterative process of mitigation techniques and fault
injection is carried out to optimise resources and maximise design reliability. This is
all done in hopes of presenting a realistic approximation of space system design and
the margins this area of engineering is limited by.

The mitigation techniques where all developed for the purpose of the thesis, using
state of the art techniques as reference. The CPU was obtained from OpenCores
alongside with the tool-chain required to program the custom workload. The fault
injection methods where provided by David de Andrés and Ilya Tuvoz, from UPV’s
department of computer engineering.
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Preface
A symphony of Space, Radiation and Electronics
Space has always been a mysterious field for science and technology, so naturally,
I felt tremendously attracted to it. This attraction consisted mostly of the kind
of infantile curiosity that characterises any endeavor with lots of promise and an
unsuspected difficulty. The reasons I use this two words to describe what I experienced
while working in this thesis, is because through the course of the project there was a
recurring theme of fascination, followed by frustration at how complicated bringing
the theory to practice was. This was something I overlooked when I first proposed a
broad idea for a Thesis to my supervisor David de Andrés. At the time I just wanted
to work with FPGAs and if possible get a head start at what I hoped one day would
become a successful space career. David was the one to propose the topic of fault
tolerance in FPGAs, offering his supervision and mentoring. I promptly accepted
and started looking for supervisors at DTU Space, since I was certain I wanted to
carry out the project in a department specialized in space research. Eventually Jose
M.G Merayo was the one to show interest in the nature of my thesis and he offered to
become the DTU supervisor. With a full team of supervisors, also including Carlos
Dominguez, a computer science professor at UPV, I started work on this thesis.

DTU Space, June 20, 2019

Gabriel Cobos Tello
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CHAPTER 1
Introduction

Several developments through out the years have placed FPGAs in an interesting spot
in relation to space applications. One such development, shared by most electronic
devices, is the trend of constant increasing density of logic resources. This trend,
paired with the significant improvements in the clock speeds at which this devices can
operate, has allowed for higher performance and lower power consumption in FPGAs
when compared to microprocessors or application specific integrated circuits (ASICs)
[11]. These events see FPGAs being used in the place of ASICs in many systems.
This being the case in space applications as well, where FPGA’s re-programmability
would in theory be of most use. Either for long space or short near earth missions,
this re-programmability grants FPGAs and the systems within which they operate,
great flexibility in the form of system updates that can be implemented at a hardware
level, or the ability of fixing design issues once the mission has already started.

Of course all these advantages come at a cost. The reason why FPGAs stand in
an interesting spot in relation to space applications is because their biggest strengths
are also their biggest weakness. Both their great logic density and field programma-
bility make FPGAs extremely sensible to radiation effects, specially in radiation rich
environments like space. FPGAs that try to amend this issue exist and are known
as Space-Grade FPGAs but they also come with some disadvantages. Normal FP-
GAs, known as commercial of the shelf (COTS) FPGAs, can have up to 2.5 times
the logic resources of a Space-Grade, faster switch time, less power consumption and
the support of modern design tools [5]. This leaves system designers at a cross roads,
in which they have to decide whether to prioritize reliability at the cost of higher
performance rates, or prioritize more modern COTS devices and invest in expensive
testing to apply fault tolerant technology.

The topic hereby presented will assume the latter option is chosen and will be a
detailed analysis of fault tolerance techniques for SRAM-based FPGAs employed in
space applications.
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CHAPTER 2
Overview on Space

Radiation in
Electronics

This overview will focus on the theory related to the general space radiation environ-
ment and the effect of radiation on electronics as a whole. Yet, types of radiation do
not change throughout the entire region of space in our known solar system, with only
the quantities and spectrum of these varying depending on the location being studied
[9]. Hence, the thesis will be focused on the near-Earth radiation environment, since
it provides a milder radiation environment and good sources of data from ESA and
NASA, without limiting the types of radiation to be discussed. It is important to
understand the general concepts behind the topic of space radiation on electronics
before progressing on to the focus of the thesis, as this very understanding is the
justification for the subjects explained in detail in chapter 3.

2.1 Near-Earth Radiation Environment
The near-Earth radiation environment can be divided into a trapped radiation envi-
ronment and a transient radiation environment [9], with some secondary sources of
radiation also appearing occasionally. The trapped radiation environment consists of
charged particles that are confined to certain regions due to Earth’s magnetic field.
These regions are denominated Van Allen Belts and normally there are one proton
and two electron belts, although this can change due to strong solar events. The
transient radiation environment is composed of solar wind, solar flares and Galactic
Cosmic Radiation (GCR), which are not only present in the near-Earth region but
also in the interplanetary space regions.

Trapped Radiation Environments The trapped radiation belts extend from ap-
proximately 500 km to about 12 Earth radii (roughly 76,000 km) [9]. It is within this
range that the previously mentioned electron and proton bands are located. These
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bands are populated with electrons, protons and small amounts of low energy heavy
ions that are trapped by the Earth’s magnetic field, above the dense atmosphere.
These particles gyrate around, bounce along magnetic field lines and are reflected
back and forth between pairs of regions with maximum magnetic field strength along
their trajectory through opposite hemispheres[15].

Given how trapped radiation is so heavily dependent on the Earth’s magnetic
field lines, there is a special phenomenon that has to be taken into account, the
South Atlantic Anomaly (SAA). The Earth’s magnetic field axis does not point to
the geographic north and does not pass directly through the center of the Earth, this
causes a deformation in the magnetic field over the South Atlantic and over Southeast
Asia, with the net effect of an increase in radiation harshness from trapped particles
in this regions [9]. The effects of the SAA are so severe that they are always factored
into the calculations of the orbits of satellites.

Transient Radiation Environments Solar wind is composed of low energy elec-
trons and protons and its considered to be negligible when compared to other sources
of radiation, with the exception of externally mounted spacecraft components where
it can sometimes be energetically significant. Solar flares are the other source of
radiation originating from our sun, in particular when a magnetic disruption in the
solar photosphere occurs, causing a variety of radiation types and energies to erupt
[9]. These eruptions can produce energetic protons and heavy ions that when impact-
ing on electronic devices will cause unwanted effects. The last of the three transient
radiation sources are GCRs, these are composed of electrons, protons and heavy ions,
all of which are believed to have an origin outside the solar system and to be omni-
directional [9]. Just like solar flares GCRs can cause unwanted effects in electronic
components.

Solar flares and GCRs always have to be taken into consideration alongside the
Earth’s magnetic field. The magnetic forces originating from the Earth also act on
the charged particles contained in these sources of radiation, meaning that for a given
magnetic field strength only a certain number of sufficiently energetic particles will
penetrate without being reflected along the magnetic field lines.

The radiation sources described will, in general terms, produce ionizing particles
that might impact electronic system causing unwanted effects. The amount and
frequency by which this particles may impact has to be estimated based on the sce-
nario where the electronic system will be deployed. It is in this estimation where
an advanced understanding of space physics and weather is required. Without good
approximations to the radiation harshness of the scenario, the system designers might
implement either too much or too little robustness into their system. Thus causing
problems in the long run, such as production delays or even system failures during
real missions.

On top of a good understanding of the scenario, knowledge on the general effects
of ionizing radiation in electronics (semiconductor devices) is required in order to
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Figure 2.1: Ionizing particle colliding with silicon semiconductor surface [10].

successfully predict the behaviour of radiation on any specific system.

2.2 Semiconductors: Single Event Effects
Just like the radiation environment is narrowed down to that of the low-Earth orbit,
the effects of radiation on electronic devices will also be narrowed down to Single event
effects, without taking into consideration cumulative effects. The reason being that
the techniques deployed in later chapters only protect against the effects of particle
impacts, also known as Single Event Upsets (SEU), and not the Total Ionising Dose
(TID) responsible for some of the possible permanent errors within the device.

When studying the effects of ionizing particles colliding with electronic devices
its important to focus on their most basic component, the transistor. In specific
Metal Oxide Semiconductor Field-Effect Transistors (MOSFET), which have been
dominant in the fabrication of integrated digital circuits. When an ionizing particle
impacts the semiconductor region of the transistor it loses energy via the production
of free electron-hole pairs in its trajectory [10], figure 2.1. The number of electron-hole
pairs is proportional to the deposited energy by the particle and thus the effects are
proportional to the particle energy too. Depending on the orientation of the electrons
or holes produced, the electrical current in the transistor might start flowing or be
stopped. This might cause the originally intended behaviour of the transistor to
change, in turn affecting the electronic device’s behaviour at a digital level too. This
phenomenon is referred to as a SEU.

There are two types of SEU, destructive or non-destructive, based on the damage
they cause to the element at impact. Destructive SEU will lead to hard errors that
will permanently affect the element until it is repaired or replaced. Non-destructive
SEU will lead to transient faults that might ripple through the device where the
element resides, this is known as a soft error. Non-destructive SEU are more common
and depending on the device their effects will vary greatly. For instance SEUs in
FPGAs have very particular effects that make this type of devices very interesting to
study, hence the focus of the thesis as presented in the next chapter.
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CHAPTER 3
FPGAs in Space

Applications
As mentioned in the introduction, there is a general interest within the space industry
to see COTS FPGAs achieve high levels of reliability. This is the core principle behind
the focus of the thesis and the reason why the device of choice throughout the project
will be an SRAM-based FPGA, specifically the zybo-z7020. This kind of FPGAs grant
performance, flexibility and scheduling benefits to system designers, when compared
to other more robust FPGAs such as the fuse or flash based FPGAs [6]. Yet, like
all static memory cells, SRAM-based configuration cells used in SRAM FPGAs are
susceptible to data corruption from high-energy radiation [19]. Furthermore, given
how the number of configuration cells in FPGAs are increasing due to logic resources
density, as previously mentioned, upsets within the configuration memory are also
increasing. This kind of upsets, when occurring in re-configurable systems like FPGAs,
are especially troublesome since these cells specify the operation of the re-configurable
fabric and thus the architecture of the digital circuit designed. Based on this concepts,
a variety of fault tolerance techniques will be discussed in section 3.1, with special
consideration been taken for the effects of SEU in FPGAs as described in detail in
section 3.2.

3.1 Dependability and Security in the Face of SEU
State-of-the-Art Technological advancements in fabrication technologies, follow-
ing Moore’s law, are progressively making electronic devices more sensible to external
disturbances [3]. From these, ionizing radiation is of special interest to us. Normally
and for many years, shielding was the main prevention security measure for space-
craft systems, as this solution was enough to avoid errors from radiation effects [10].
Nowadays, due to the aforementioned technological advancements, shielding is no
longer sufficient as a single means of dependability. This is why mitigation and re-
moval techniques are being developed in order to avoid faults in the electronic devices
aboard spacecrafts. A classification methodology from [2] is used in order to organise
these state-of-the-art techniques:
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1. Fault prevention, such as:

a) Epitaxial CMOS processes
b) Advanced process such as Sillicon on Insulator (SOI).
c) Shielding

2. Fault Tolerance, such as:

a) Detection techniques:
i. Hardware redundancy
ii. Time redundancy
iii. Error Detection code (EDC)
iv. Self-checker techniques

a) Mitigation techniques:
i. Triple Modular Redundancy (TMR)
ii. Multiple redundancy with voting
iii. Error Detection and Correction Code (EDAC)
iv. Hardened memory cells

3. And Recovery Techniques (applied to programmable logic only), such as:

a) Reconfiguration
b) Partial configuration
c) Reallocating design

The first of these groups, the fault prevention techniques, is outside the scope of
this thesis as it implies either fabrication process-based techniques or shielding. We
will focus on COTS FPGAs, as mentioned earlier, so any technology that implies
fabrication will not be discussed. Shielding is an external measure and as such will
not be discussed either. The second category of fault tolerant techniques, specifically
mitigation, will be the main focus of the thesis. Lastly, the fault removal techniques
are also of great interest to us. This kind of methodology is only available to FPGA
like devices and plays a great role in the long term robustness of any programmable
logic based design.

Fault tolerant techniques are broadly used for ASIC design due to how they can
target design architecture without requiring special fabrication methods. As such,
many of the fault tolerant techniques are made for non re-programmable devices, like
ASICs and do not take into account the special effects of radiation in FPGAs. Fault
tolerance techniques can be employed for fault detection (detection techniques) but
normally they are applied to both detect and correct system errors in the presence
of SEUs or SETs (mitigation techniques). The main principle behind these tech-
niques is that of redundancy, in the form of hardware redundancy, meaning extra
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components or in the form of time redundancy, which implies extra execution time or
different sampling rates for data. Most frequently a combination of both these types
of redundancies is applied for optimal results, yet we will focus solely in hardware
redundancy.

3.1.1 Full Hardware Redundancy
Mitigation techniques are, as their name implies, techniques that take effect once the
SEU has already happen, preventing it from disturbing the normal functioning of the
circuit. As such they tend to be applied with a focus on efficiency, by protecting
only critical elements and saving resources, full hardware redundancy is no exception.
This type of redundancy can be summarised as logic redundancy, meaning extra logic
components or extra paths that allow a design to continue operation even when some
of the logic fails. In order to protect a design from the effects of both SEUs and
SETs one of the techniques applied is that of TMR. In TMR the logic is triplicated
and voters are placed in the output to identify and select the correct value. The
most basic form of TMR is that of device TMR, as seen in figure 3.1. This kind
of implementation is not resource optimised and allows only for mitigation of any
number of faults in a single replica.

In figure 3.2 a better implementation of TMR is shown. Here the solution is
applied more efficiently by focusing on a sensitive element of the design, in this case a
memory cell, a FF. This type of implementation protects the design, specifically the
sequential logic, from the accumulation of SEUs. The way this is intended to work
is for the majority voters (MAJ) to detect any errors happening in the FFs between
clock cycles, correct them and send them back to the FFs for them to be latched.
This method only allows for one upset per FF at a time.

In [10] a TMR design is proposed to protect both combinational and sequential
logic while still preventing the accumulation of upsets, figure 3.3. The combinational

Figure 3.1: Device Protected by TMR [10].
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Figure 3.2: Sequential Counter Protected by TMR [10].

logic is triplicated and fed to Multiplexers (MUX) that will ensure the FFs latch the
correct value. The MUXs select between the output of the voters or the combinational
logic by means of a select input line controlled by a clock frequency established by the
designer. This prevents errors that happen between clock cycles from accumulating,
since the FFs will have either a new value from the combinational logic or the previous
correct value from the voter. Yet again this type of TMR has some limitations and
will only prevent failure as long as only one of the branches presents errors at the
same time.

Figure 3.3: TMR for Combinational and Sequential Logic [10].
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3.1.2 EDAC

EDACs are another form of mitigation techniques targeted at sequential memory
elements. Their purpose is to encode the input of the memory element generating
parity bits. These parity bits are then compared to a second group of parity bits
generated at the output of the memory element. By doing this several check bits are
produced that allow the EDAC to detect if there was an error in the data stored at
the memory element. Based on these check bits the EDAC can decide which data bit
needs correction, changing its value to the originally intended. A simple EDAC can
detect and correct one error at a time within the memory element.

The theory behind the EDAC described is based on the idea of Hamming codes [13].
These codes use the aforementioned parity bits to represent the data bits contained
by the memory element. The amount of parity bits required depends on the number
of data bits to protect, with a relation shown in the following equation:

2P
n ≥ Dn + Pn + 1 (3.1)

Where (Dn) represents the number of data bits and (Pn) the number of parity bits.
The combination of parity and data bits forms what is referred to as the code word.
This code word follows a certain structure, with parity bits placed in location numbers
based on the power of 2 (20,21,...,2Pn), with the least significant parity bit, (P0) being
placed at 20 and the most significant, (Pn), at 2Pn . Thus the structure of a 12 bit code
word protecting an 8 bit register, which needs 4 parity bits (24 ≥ 8+4+1 = 16 ≥ 13),
will be like the one shown in figure 3.4.

Each of the parity bits represents a certain number of data bits based on its
position. For instance parity bit (P0) will represent data bits (D0, D1, D3, D4, D6...).
The way of looking at this logically is by starting at the position of bit (P0) skipping
a number of bits equal to its position and then taking into account a number of bits
also equal to its position. So in the case of bit (P0) being in position 1 we would skip
1 bit, then take 1 bit, then skip 1 bit,...etc, until the end of the code word is reached.
Once again using the 12 bit code word in figure 3.4, the bits represented by parity
bits (P0−3) will be as shown in figure 3.5.

This relation between parity bits and data bits is characterised as Exclusive OR
(XOR) behaviour. So the equations for each of the parity bits in the 12 bit code word

Figure 3.4: Code Word for an EDAC(12,8).
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Figure 3.5: Data Bits represented by Parity Bits in an EDAC(12,8).

are as follows:

P0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6

P1 = D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6

P2 = D1 ⊕ D2 ⊕ D3 ⊕ D7

P3 = D4 ⊕ D5 ⊕ D6 ⊕ D7

Once the parity bits are generated at both the input and the output of the memory
element, they are compared to generate the check bits. This comparison also follows
XOR behaviour.

Cn = Pn(in) ⊕ Pn(out) (3.2)

Using the check bits, the EDAC can detect errors in the data bits following the truth
table shown in figure 3.6. This is then used to decide which data bits need correction.
A full diagram representing the entire system can be seen in figure 3.7.

Figure 3.6: Errors in Data Bits Detected by Check Bits in an EDAC(12,8).
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Figure 3.7: Flow diagram for an EDAC(12,8).

3.1.3 Reconfiguration and Reallocation
Recovery techniques follow a completely different approach to increasing robustness
when compared to mitigation techniques. Recovery, as the name implies, describes
any technique that takes place once the error has occurred and subsequently allows
the system to recover from it. In the case of none field-programmable devices recovery
would imply replacing damaged parts or components for new ones, but in the case of
devices such as FPGAs , techniques like reallocation can be deployed. Reallocation
is a technique that targets the design implemented in any FPGA like device, with
intentions of re-implementing it on another part of the device that has not been
affected by permanent faults. Another similar technique that can be applied for
system recovery in FPGA like devices, is that of reconfiguration. Here the device
would be reprogrammed in order to fix errors that can’t be mitigated and are not
permanent. The details on recovery techniques will be described in section 3.4.3, after
a more in-depth background on FPGAs has been provided for proper understanding
of such techniques.

3.2 The Peculiar Effect of Radiation on SRAM-based
FPGAs

Unlike in ASICs, SEUs have a peculiar effect in FPGAs. When a particle hits the
combinational logic in an ASIC, it is interpreted as a transient pulse and depending
on its duration it might or might not be latched by a storage cell. When the fault
occurs in the sequential logic, it is referred to as a bit-flip and will remain in the
storage cells affected until their next load [10]. The difference within FPGAs lies in
all the sequential and combinational logic being implemented in Configurable Logic
Blocks (CLB) by customizable logic memory cells, SRAM cells. This is known as the
configuration memory. A way of looking at this is by segmenting the FPGA in three
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Figure 3.8: Conceptual Layers of an FPGA [8].

layers, the application layer, the configuration layer and the fabric, as seen in figure 3.8.
Both the application layer and the configuration layer are abstractions of the fabric,
the first being the design described in Hardware Description Language (HDL) and the
second the configuration establishing this design in the fabric. The fabric is the only
real physical layer, containing the CLBs plus all the other elements characteristic of
an FPGA architecture. When an upset occurs in the combinational or sequential logic
designed in the application layer, it will in reality affect the fabric. Since this physical
layer is controlled by the configuration memory, the vast majority of the errors that
happen will permanently reconfigure the design until the bitstream is updated and
the values of the configuration memory are reestablished to the intended ones.

In figure 3.9 we can see the configuration layer. Here an arrangement of logic bits

Figure 3.9: Routing and Logic Before Upset [4].
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Figure 3.10: Routing and Logic After Upset[4].

in the SRAM cells are configuring the routing and functioning of the fabric, in order
to achieve the design specified in the application layer. The design shown here is that
of a simple AND gate. If an upset was to occur in the routing logic within the fabric,
it might affect the configuration bits establishing the connections. This in turn could
result in one of the inputs of the AND gate getting disconnected. Furthermore, if
an upset happened within the Look Up Table (LUT) responsible for the AND gate
behaviour, its configuration bits could change and the physical LUT in the fabric
could start behaving as a XOR, or any other gate. In this case this would happen by
permanently updating the results for the input combinations of the LUT. Both this
events can drastically change the functioning of the digital circuit, as can be seen in
figure 3.10.

Not all impacts from radiation will actually affect the design. If a SEU takes place
in the part of the fabric where none of the elements are being used, the effects of the
SEU will still be felt by the FPGA but the design wont be affected and will continue

Figure 3.11: Classification of Configuration Bits by Criticality.
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functioning as normal. Furthermore, even in the case that the part of the fabric
affected is being used by the design, the configuration bit affected by the SEU, in this
case known as Essential Bits (EB), could still not disturb the normal operation of the
design. Configuration bits that disturb the functioning of the design when affected
by SEUs are called Critical Bits (CB). A relationship that explains the concept of
bit importance can be seen in figure 3.11.

3.3 Architectural overview of 7-series Xilinx FPGAs
Given the insight into the effects of SEUs in FPGAs presented in the last section, some
clarifications as to what the fabric of the FPGA is actually composed of are required.
The architecture of the 7-series FPGAs can be described as a column based Advanced
Silicon Modular Block (ASMBL) architecture [20]. This architecture changes from
family to family, yet the differences are minor and reserved to only some changes in
the column fabric related to the number and type of columns available. For simplicity
purposes we will use a simplified model of the Xilinx FPGA architecture in order to
describe its main components, figure 3.12.

In the figure we can observe the center of the chip being surrounded by Input
and Output Blocks (IOB), this elements of the fabric are what allow the chip to
communicate with the external world. At the center of the chip the CLBs can be
found. These blocks are the main logic resource for implementation of sequential as
well as combinational circuits and thus essentially contain the designed digital circuit.
Both the IOBs and CLBs are connected by customizable routing resources, commonly
referred to as the Interconnect Resources (IR), generally consisting of wire segments
and Switch Matrices (SM) made up by Programmable Interconnect Points (PIP) [12].
The fabric will also have other silicone based elements such as Block RAMs (BRAM)
or Clock Management Tiles (CMT) that will still be managed by the configuration
memory, just like the IRs, the IOBs and CLBs. A more detailed view of the complex
7- series architecture can be observed in figure 3.13.

Figure 3.12: Simplified FPGA Fabric[1].
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Figure 3.13: 7 series FPGA Fabric.

IR in Xilinx 7-series FPGAs As mentioned before the IR structure is mostly
composed of wire segments and SMs. The SMs are considered a key routing structure
between the CLBs [12]. It is through these SMs that the FPGA can achieve flexibility
in its implementation of the design. The SMs are composed of PIPs consisting of one
or several transmission gates separately controlled by configuration bits. There are
three types of PIPs present in FPGAs, seen in figure 3.14, the Break-point PIP, the
Cross-point PIP and the multiplexers (MUXs) [16]. Another element present in the
IR is the buffer. Buffers are similar to PIPs with the exception that they only connect
elements in a specific direction. The totality of the IRs can take up to 80% of the
available space depending on the FPGA and is referred to as the global IRs. The
individual SM connecting to each CLB, as seen in figure 3.15, are considered local
IRs.

CLB in Xilinx 7-series FPGAs Each of the Xilinx 7-series CLBs is composed
of two slices and connected to a SM for access to the global IRs, figure 3.15. Both
slides individually consist of four 6-input LUTs plus their eight FFs, multiplexers and
arithmetic carry logic. The LUTs as well as the FFs can carry out different functions
depending on their configuration bits and the arrangement of all the elements within
the CLB depends on the configuration memory. The only exception would be that

Figure 3.14: Types of PIPs. (a)Break-point PIP.(b)Cross-point PIP.(c)MUX..
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Figure 3.15: Slices within CLB.

of the internal state of the FFs, which are independent, with their values changing
based on the design and its clock cycles.

Xilinx’s System on a Chip (SOC) devices Given our board of choice, the zybo-
z7020 with a ZYNQ SoC FPGA, a brief explanation of the particular architecture
of SOC FPGA devices has to be given. These FPGA chips are composed of two
different parts, the Programmable System (PS) and the Programmable Logic (PL).
The PS is a silicon implemented microcontroller, in our case an ARM. The PL is
the part of the chip characteristic of any FPGA and in our case it is equivalent to
the Artix7 family of FPGAs. The combination of this to parts is what constitutes
a SOC, as can be seen in figure 3.16. The PS in the zybo-z7020 is responsible for
UART communication with the computer, meaning that all designs implemented in
the zybo that use UART will have to be connected to the ARM by means of a block
design. With the ARM itself being programmed in C through Xilinx’s SDK platform

Figure 3.16: Xilinx SoC Architecture.
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[14].

Based on this general description of the Xilinx 7-series architecture, the contents
of the configuration data for an SRAM FPGA define the values held in LUTs and
RAMs, the interconnection between resources, and the modes of the resources [7].
With the exception of the internal state of FFs and the PS

3.4 SEU Mitigation and Recovery for FPGAs
When design based mitigation techniques are applied to digital circuits inside FPGAs,
we say the mitigation is being implemented at the High-Level description. Referring
back to figure 3.8 this high level description is the application layer, so any mitigation
technique applied here will inevitably be implemented in the fabric by the configu-
ration memory, just as usual. This poses a great problem for FPGA designs with
SEU mitigation, due to mitigation techniques only preventing errors as long as their
configuration bits are not affected by ionizing radiation, something that is bound to
happen in aggressive environments such as space. In order to supplement mitigation
techniques applied in FPGA designs, recovery techniques have to be deployed along-
side them. Recovery techniques make sure that the configuration bitstream remains
the same as the originally intended, fixing any errors in the configuration bits. A
flowchart analysis of the different mitigation and recovery techniques can be seen in
figure 3.17.

Figure 3.17: Top Down Flowchart for Fault Tolerant Techniques.
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The flowchart shows a top-down classification of the different fault tolerant tech-
niques that can be used. Given the nature of FPGAs and their configuration memo-
ries, the first important distinction is that of the elements from the fabric that don’t
depend on the configuration layer. In the case of Xilinx 7 series FPGAs the only
elements not dependent on the configuration memory are the Flip Flops (FF), partic-
ularly their internal state. Once the physical element distinction has been made the
type of fault tolerance methodology to be followed has to be selected. When follow-
ing the recovery methodology it is critical to consider the type of error, as they will
require different treatments. When following the mitigation methodology the most
important distinction lays in the design elements, as the way to mitigate errors in
them will differ. In order to know which techniques to apply depending on the design
its important to know the physical elements used by the FPGA when implementing
the design, as mentioned in section 3.3.

3.4.1 TMR in FPGAs
In the case of following a mitigation methodology for FPGA designs implemented
by the configuration memory, TMR is the most common technique to be applied.
The ways TMR is applied vary in each design, but a general classification of the
design elements where it will be deployed at a small scale can still be made and
extrapolated to general designs. This classification encompasses three basic types of
design elements that are present in most, somewhat complex, FPGA designs. These
design elements are Throughput Logic, State-Machine Logic and Input-Output Logic.
The first describes any circuit where the output only depends on the inputs and has no
feedback loop. The second describes circuits that have loops and depend on different
stages of a pipeline. The third describes the connections to the physical inputs and
outputs of the FPGA.

In order to demonstrate the differences in TMR, a simple design was carried out
to encapsulate the mitigation of SEUs in Throughput Logic and State-Machine Logic,
figure 3.18. The design here would be a real application of the theoretical concept
presented in section 3.1.1 figure 3.3. With the addition of a TMR clock divider, figure
3.19, following the theory represented in figure 3.2.

The functioning of this TMR design can be observed in the simulation presented
in figure 3.20. Here the waveform shows the behaviour of the different signals. The
first signal of interest is that of the DATA signal, this signal is fed directly to the
combinational logic blocks which alter it based on typical AND behaviour. The second
signal of interest is the output of the FFs which update every clock cycle. During the
simulation the impact of a SEU in one of the FFs is replicated by setting the value
of its output to ’0’ when it should be ’1’. This kind of SEU induced error is caught
by the voters and corrected, as can be seen in the final output, since it shows the
correct ”111” result. When two of these errors happen at once, in two different FFs,
the voter is unable to cope with it and the result signal is driven to zero. A similar
behaviour can be seen when simulating a fault in the combinational blocks. When
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Figure 3.18: TMR Design for a Combinational Block and a FF with Feedback.

Figure 3.19: TMR Clock Divider.

one of the data lines is forced to a ’0’, the result signal still maintains its intended
”111” value, yet if two data lines experience faults simultaneously the result will be
driven to zero as well.

The simulation shows that two errors cannot happen simultaneously in two dif-
ferent lines, no matter if at the combinational or sequential stage, if the result is
to be corrected by the voters. Yet in reality this system is capable of dealing with
multiple errors due to the MUX select lines feeding the correct value from the voter
at a specific frequency. If for instance 2 errors where to occur in the combinational
logic while the MUX select line is active, the system will simply just load the previous
correct values, hence mitigating the errors. So ultimately the most sensible part of
the design are the FFs, since they can only hold one error at a time, independently
of the MUX.
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Figure 3.20: Waveform Showing TMR Error Mitigation.

3.4.2 EDAC in FPGAs
In the case of the internal state of FFs or block RAMs all together, implementing
an EDAC into their design is the best way to ensure some mitigation. Based on the
theory presented in section 3.1.2, a simple design for a 16 register is proposed in figure
3.21.

The design is composed of two encoders that generate the parity bits by means
of XOR gates, two registers, the main one being the 16 bit register where the data
is stored and the second one holding the values of the first parity bits generated and
a correction block composed of MUXs and NOT gates. The purpose of the encoders
is to generate a pair of 5 parity bits, one at the input of the 16 bit register and one
at the output, in order to allow for comparison and error detection in the correction
block. The correction block follows a behaviour that can be described by means of
a truth table with the check-bits as its inputs. This truth table shows which bit
of the code-word has the error based on the values of the check-bits, following an

Figure 3.21: EDAC for a 16 Bit Register.
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incremental progression where ”00001” represents position ’0’ in the code word and
”10101” represents position ’20’ in the code-word. Based on the specific value of the
check-bits the affected bit is restored to its intended value, as can be seen in the
waveform shown in figure 3.22.

In the waveform we can observe how an initial SEU impacts the register changing
one of its bits from a ’0’ to a ’1’. This is detected by comparing the parity bits thus
generating the specific check-bits that in turn are used to correct the output. As can
be seen in the waveform during the initial SEU the output of the design remains equal
to the input, thus ensuring the correct functioning of the system during the upset.
The same cannot be said for the second SEU simulated, since in this case two SEUs
are happening at the same time, the EDAC is unable to cope with it and the output
changes according to the bits that are affected.

3.4.3 Scrubbing in FPGAs
From the two previous sections it is easy to see that mitigation will only work as long
as faults do not happen in multiple lines at the same time, in the case of TMR, or as
long as they do not affect several bits of a register or a combinational block, in the
case of an EDAC. So in order to remove this faults before more occur and eventually
accumulate, techniques related to the recovery methodology such as scrubbing can
be applied.

But, before diving into the specifics of scrubbing it is essential to understand how
the FPGA is configured each time we upload a design, as the same method will be also
used when scrubbing the FPGA. The most critical part of the FPGA configuration

Figure 3.22: Waveform Showing EDAC Error Mitigation.
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process is a file generated by the Electronic Design Automation (EDA) tools, known
as the bitstream. This file contains all the information necessary to program the
specific elements inside the fabric that will be a part of the design described in the
application layer. This information encompasses all of the elements described by
the end of section 3.3 and represents them by means of one or more bits within the
bitstream.

In the case of Xilinx FPGAs the bitstream itself is divided into groups of 32-bit
words that are known as frames and are the smallest addressable unit of the config-
uration memory [22]. These frames have addresses that specify their location within
the FPGA that can be broken down into specific segments, figure 3.23. A segment of
special importance within the frame address is the block type. It contains the three
top bits of the frame address and deals with the different resource components of the
FPGA, including the CLBs, CLKs, IOBs and more.

The bitstream itself is organized following a general composition shared by every
Xilinx FPGA, with a header, a big chunk of configuration data and a footer. The
header is a small section containing commands that prepare the FPGA for receiving
the configuration data. The footer comes after the data has been transmitted and
sends the FPGA into its startup sequence. The size of the bitstream changes depend-
ing on the number of frames it contains, which in turn depends on the number of
CLBs in the FPGA.

A specific process has to be followed to load the bitstream into the FPGA. This
process is carried out by the configuration module, the sole gateway into the previously
described configuration memory layer. In general terms, the configuration module
evaluates the bitstream and places its data into the configuration memory. It is
through this configuration module that any scrubbing technique will take place.

Scrubbing is normally carried out by specific elements designed for that purpose,
either processors or finite state machines implemented in FPGA logic. This elements
are referred to as scrubbers and are normally composed of three basic components,
figure 3.24: a configuration interface that grants them access to the configuration
module, some type of processing logic that is capable of both generating read and
write commands as well as interpreting data returned by the configuration module

Figure 3.23: Frame Address Registers [22].
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and a golden memory module containing the correct bitstream [4]. Scrubbers tend
to work in a deterministic manner, meaning they will scan the configuration memory
frame by frame following a specific order. In the case of a SEU in any element linked
to the configuration memory, its correspondent bits will be affected and this will be
detected by the scrubber while it is doing its scan. The scrubber will then reload the
original bitstream stored in its own memory into the FPGA configuration module
that will in turn reprogram the FPGA. This will remove any non permanent faults
in the physical elements whose internal values, modes or arrangements are controlled
by the configuration memory.

The process of scrubbing is much more complex and detailed that the one de-
scribed here and as such it escapes the scope of this thesis. This is the reason why no
scrubbing techniques will be deployed in the application described in the next chapter.
Yet, scrubbing is a crucial aspect of FPGA dependability and had to be discussed
nevertheless.

3.4.4 Design Reallocation in FPGAs
Design reallocation is another recovery technique that can be implemented to cope
with permanent faults within the FPGA fabric. It follows a similar process to that
of scrubbing with the principal difference being the bitstream that is uploaded into
the FPGA. In reallocation, the module responsible for detecting a fault in the con-
figuration memory will also have to detect whether this fault is permanent or not.
This could be done by seeing what faults persist after an initial scrubbing process.
Once a permanent fault is detected, the module would recognise the configuration
memory frame affected. Using the block type data contained in the affected frame,
the reallocation module will be able to find out which logic element is permanently
damaged. Knowing this the module will then proceed to rewrite the bitstream, with
the intention of implementing the design in a different section of the fabric, where no

Figure 3.24: Basic Scrubbing Components [4].
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damage has been taken.
This is an even more complex process that scrubbing and as such it will not be

implemented in the application either. It is also worth commenting that there is a
lot of research being done for advanced reallocation techniques that can maximise
the efficiency of the process, so the information presented in this section is a vast
simplification meant as an introduction to the concept and nothing more.



CHAPTER 4
Making and Testing a

Dependable and
Secure CPU

When considering the subject of dependability for FPGA platforms the idea of pro-
tecting an application or design was the intended final outcome. After all, the purpose
of any FPGA deployed in space is that of carrying out a specific arrangement of tasks.
Yet, this thesis does not present a particular space application, such as image pro-
cessing or a communication system, in hopes of simplifying the project’s approach
while maintaining a realistic outlook. In fact, what is presented in this thesis is a
basic micro-controller that works with C applications and could in theory carry out
all manner of tasks. Furthermore, micro-controllers implemented in FPGAs are fully
customizable bringing more and more advantages to the table in the form of improved
performance, flexibility and time to market when considering them as SOC devices
[10]. Making the choice of a microcontroller as the target design a sensible one.

4.1 A simple CPU
In order to cut on development time and avoid overstretching the scope of the thesis, it
was decided that an already existing micro-controller design will be used, rather than
developing one from the grounds up. The design chosen was a basic CPU developed
in a lecture by Dr. Juergen Sauermann [14]. The CPU has a similar instruction set
to that of the 8-bit CPUs developed by Atmel, specifically an AVR. The instruction
set implemented in the CPU is sufficient to run most C programs, meaning that it
can execute our custom workloads. The selection process for the CPU was mostly
based on the documentation available and the toolchain provided for generating the
memory contents of CPU’s program memory. On the technical aspect, priority was
given to simple CPUs that had a well known instruction set and were at least 8-bit
in size.

The chosen CPU consists of the CPU core and a external input/output unit (INO)
at the design top level, with the CPU core being the actual AVR. This CPU core
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Figure 4.1: Block Diagram of CPU Core [14].

is a three stage pipeline formed by an opcode fetch, an opcode decoding and an
execution stage, figure 4.1. The fetch stage contains the program memory and drives
the Program Counter (PC) and opcodes alongside other signal to the decoder stage.
This second stage decodes the opcodes and generates control signal accordingly for
the execution stage.

Some changes had to be made when implementing the CPU in our zybo-z7020
FPGA. For instance, the reset signal for the AVR was also used as the control input
for the MUXs, meaning some synchronization errors were intrinsic to the design. In
order to avoid these meta-stability and synchronization errors, a register was added
at the reset input. Another register was also added at the AVR output in order to
hold the data going out. Since the CPU was initially designed for a Spartan 3 FPGA
some special considerations had to be made with regards to the ARM CPU in our
zybo-z7020 FPGA, since it is through this PS that the UART is driven. The ARM’s
GPIO was connected to the inputs and outputs of the AVR, with the intention of
using this SOC as a control unit. It is through the ARM that the communication
with the AVR and the external world is carried out. In figure 4.2 we can see the
design including the ARM CPU (Zynq7 PS) and other blocks.

4.1.1 Preparing a Workload
Having a functioning CPU is not of much use if there is no application to run on it,
specially if the reason to get it running in the first place is to test its dependability.
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Figure 4.2: Block Diagram of Design Top-Level with ARM CPU.

This is why a workload was designed to represent a realistic use of most of the CPU’s
resources, with results that can be tested and compared. The workload chosen for
the AVR was a basic matrix multiplication, an operation that is representative image
processing, a common application in space systems. The workload sends the result
from the matrix multiplication to the arm through the outputs of the AVR. The result
should always be the same since it was pre-calculated and the matrices never change.
The workload was programmed in C and was loaded into the program memory of the
AVR by means of a tool-chain provided in [14].

With the workload configured into the AVR’s program memory the functioning of
the AVR could be tested by running a behavioral simulation in the Vivado suit [14].
Through this simulation it was possible to find out the number of clock cycles that the
workload required for completion as well as if the calculations where done correctly
by checking the results within the AVR’s data memory. Once the functioning of the
AVR was demonstrated through simulation it was implemented and simulated post-
implementation to ensure it will run perfectly on the zybo-z7020. It was through the
completion of this tests that the basic AVR design, before any fault tolerance, was
fully developed.

4.2 Fault Injection in the CPU
With the basic AVR design complete with a running workload, it would be possible to
test its robustness by means of a method called fault injection. Two different models
were used to test the device’s robustness, statistical fault injection, for the CLBs and
block RAM and simulation based injection, for the internal state of the FFs. These
models where both provided by my supervisor Dr. David de Andrés Martínez and
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his PhD student Ilya Tuzov.

4.2.1 FPGA-Based Statistical Injection Method
The statistical injection model is based on the process of drawing conclusions for an
entire population after conducting a study for a sample taken from that population
[17]. In the case of fault injection the conclusions would be the probability of the
device failing when injecting faults into its population. The population itself would
consist of all the EBs from the configuration memory representing it. Since the
two main groups of elements controlled by the configuration memory are the CLBs
and BRAMs, these are the two populations that will be tested by the statistical
injection method. Since the faults are only injected into the EBs representing the
specific population being tested (either CLBs or BRAMs), the probability of failure
obtained will represent the percentage of faults within that population that disrupt
the functioning of the general design. In our basic AVR design we have 279850
essential bits just for the CLBs alone, so in order to test our entire population we
would have to inject faults in each of these bits for each clock cycle, meaning a total
of 3917900000 tests to find the exact probability of the design failing according to the
CLBs. This would take an unfathomable amount of time and as such the statistical
approach is preferred. In order to reduce the amount of tests while maintaining a
sensible error margin, the injector is executed with a fixed margin and tests will be
carried out until the result is within the pre-established margin. Normally an error
margin of ±0.1 will be set and the injector will run until the probability of the device
is within this margin. The statistical injection of faults adds more complexity to
a model that in itself is already quite complex. Normal fault injection requires a
deep understanding of both FPGA architecture and software programming in order
to understand and develop successful models. The model used here was developed

Figure 4.3: Architecture of the fault injector at the software and hardware layers
(as provided by the developers).
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by Ilya Tuvoz and David de Andrés and consists of a high performance fault injector
that targets Xilinx Zynq SoC FPGAs, this being the main reason why the device used
in the thesis is a zybo-z7020 FPGA. The fault injector can be fully deployed on-chip
and presents many advantages regarding accuracy and minimization of interference
with the Design Under Test (DUT).

The fault injector, as explained by the developers, consists of three main compo-
nents: i) a set of hardware targets (board side) connected to the Xilinx’s hardware
server (host side), ii) a standalone fault injection application executed on these tar-
gets (board side), and iii) an experimentation management application run by the
host (host side). The two different sides refer to the platforms needed by the injector,
the board being the FPGA where it is implemented and the host being the computer
running the scripts and communicating with the FPGA by UART. This complex
layout can be seen in figure 4.3.

Board side The board is responsible for running the fault injection, meaning that it
is the one executing the workload for the DUT, monitoring and verifying the DUT’s
responses and toggling essential bits to emulate SEUs. The board also resets the
bitstream after each injection, traces de state of the DUT’s writable memory and
collects the results, reporting the corresponding statistics back to the host. In our
case, with the zybo-z7020, all the infrastructure required to execute this tasks is
present in the PS.

Host side The host side runs a python script developed by Ilya Tuvoz. This script
builds the design in Vivado obtaining the bitstream and corresponding hardware files
as well as the essential bits and the logic allocation files. The script also determines the
location of the logic cells that should be traced and recovered after injection. These
files are used to build an experiment description file that contains all the information
required to create a customized template for the DUT. Having the template the script
executes SDK and compiles the injector app, which will then be loaded to the device
and launched. While the injector runs in the device, the host will start monitoring
duties, receiving data and storing it in the database. When the host detects the error
margin has been met it will send a command and the injector will stop.

The statistical injector is capable of injecting faults in either the CLBs or the
block RAMs, meaning that two tests will have to be carried out in order to obtain
accurate results for the DUT’s probability of failure. The way to choose where in
the configuration memory to inject the faults, as well as other customizable aspects
of the injector, is by editing the job description in the python script written by Ilya
Tuvoz, shown in Listing 4.1.

1 raw_input("Preconditions fixed, press any key to run the injector >")
2 jdesc = JobDescriptor(1)
3 jdesc.UpdateBitstream = 1
4 jdesc.Blocktype = 1
5 jdesc.Essential_bits = 1
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6 jdesc.CheckRecovery = 1
7 jdesc.LogTimeout = 5000
8 jdesc.StartIndex = 0
9 jdesc.Masked = 0

10 jdesc.Failures = 0
11 jdesc.sample_size_goal = 0
12 jdesc.error_margin_goal = float(0.1)
13 jdesc.FaultMultiplicity = 1
14 jdesc.PopulationSize = float(14000)*Injector.

EssentialBitsPerBlockType[jdesc.Blocktype]
15 jdesc.Mode = 100 #Very custom injection mode (without callbacks)
16 jdesc.SamplingWithoutRepetition = 0
17

18 res = Injector.run(OperatingModes.SampleUntilErrorMargin , jdesc,
False)

Listing 4.1: Job Description Variables in the Python Script.

The Blocktype variable refers to the first address type from the configuration memory
frames. By changing this variable we can control which resource to inject faults at.
The Esssential_bits variable controls whether the injector will introduce faults into
all the bits of the configuration memory or only those used by the design. The
error_margin_goal establishes the margin towards which the injector will aim, the
lower we set this value the more tests the injector will carry out. Finally, another
important variable is the FaultMultiplicity, this variable controls the number of bit-
flips that will take place at the same time, meaning the number of SEUs simulated
on the same instant in time. By increasing this variable we can simulate harsher
radiation environments.

4.2.1.1 The Difficulties of Statistical Fault Injection

The statistical injection model presented above works at the theoretical level, yet when
implemented into the FPGA things change. Xilinx does not provide any information
regarding the correlation between the bitstream and the elements of the fabric, making
it hard to know what is being changed when a bit from the bitstream is flipped. The
only exception being the LUTs and BRAMs, as these two elements can be located
due to the mask provided in the logic allocation file generated by Vivado. The PIPs
on the other hand remain a complete mystery, making changes in the bitstream really
hard to trace.

Furthermore, the BRAMS have a silicon-implemented register at the output that
resets its value every time the configuration memory is read or written to access the
contents of the BRAM. This means that the CPU will read a ”00..00” instead of
the actual value intended, in turn causing the probability of failure in the BRAMs
to increase drastically, as most faults injected will cause multiple errors that do not
correspond to reality. This problem is intensified when triplicating elements contain-
ing BRAMs. BRAMs from different instances can often share the same frame in the
configuration memory after being allocated into the same column by Vivado’s imple-
mentation. When the injector locates a BRAM within a frame and executes a bit-flip,
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the effects of this could also be observed in the other BRAMs sharing the same frame.
When one of the frames is read or written with hopes of accessing the contents of
a specific BRAM, the registers in all of the BRAMs sharing the same frame will be
reset, causing the probability of failure to increase far beyond the real measure due
to all TMR replicas being read incorrectly by the CPU.

As a result of this problem the BRAM’s probability of failure after fault tolerance
techniques have been implemented cannot be tested according to the margins estab-
lished. A simple manual floor-plan can be carried out to ensure that no BRAMs share
any frames at all, preventing the number of errors from cascading from one BRAM
to another. Yet the problem of the register reset has no apparent solution at the
moment of writing this paper, meaning that the results from fault injection will not
be accurate for the BRAMs even if they do not share any frames. As an alternative
simulation-based fault injection will be used for these elements too.

4.2.2 Post-Implementation Simulation Based Injection
Simulation is a less direct, less intrusive method of finding out the probability of
failure of certain elements from the device. By controlling certain signals within the
design it is possible to emulate the bit-flips that would occur from SEUs on specific
elements. Furthermore, when it comes to finding out the probability of failure for
the elements of the fabric that do not depend on the configuration memory, like the
internal state of the FFs, simulation is the only option given how the bit-flips in the
bitstream from the statistical injection method will not affect the internal state of
the FFs. The simulation based injection method provided by David de Andrés and
Ilya Tuvoz is basically a collection of custom Python scripts that process incoming
XML configuration files and HDL models, to in turn generate the scripts for an off-
the-shelf simulator that will: i) run the required fault injection experiments, and ii)
generate the required trace files [18]. Given how it takes a considerable amount of
computational power to execute the simulations, this process was carried out by the
developers (David de Andrés and Ilya Tuvoz) using the university’s computer cluster
for each of the DUT prepared. This means that the tool did not have to be deployed
for the purpose of this thesis, but rather it was used as an external way of testing
the designs and as such it will not be described in detail, rather its results will be
presented and commented in later sections.

4.3 Assessing the CPU’s Dependability
In order to properly asses the CPU’s dependability a few things have to be determined,
the first being the scenario where the CPU would actually be deployed at. In the
same way as matrix multiplication was chosen as a workload representative of what
could be a real space application, a scenario will also have to be chosen to represent
a realistic near Earth radiation Environment. A good way of doing this will be by
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classifying scenarios based on radiation harshness. On general terms two types of
scenarios will be discussed, a baseline low radiation scenario where SEUs normally
happen in a one at a time basis (simple faults) and a high radiation environment
where multiple SEUs can take place in one single instant. The baseline scenario
presents faults during the execution of the workload as single events in terms of both
space and time, meaning that only one fault will take place during each clock cycle
and it will only affect one bit. Whereas the high radiation scenario implies multiple
faults occurring in the same clock cycle and affecting several bits. The concept of
multiple faults in time was not considered for the purpose of this thesis. Knowing the
approximate amount of particles that will impact the DUT allows us to obtain the
second element required for assessing the dependability of the CPU, the Probability
of Failure (PoF). This measure is obtained from calculations based on fault injection
results, and it represents the probability of the DUT failing to operate when faults
are injected. In order to obtain a general PoF for the entire DUT the values obtained
from the fault injection in each element have to be normalized following equation 4.1.

PoFElement = Fault injection result for specific element ∗ EBElement

EBDUT
(4.1)

The value obtained from equation 4.1 will represent the part of the total PoF that
element is responsible for. So in order to obtain the DUT’s PoF, the contributions of
the CLBs, BRAMs and FFs have to be added.

PoFDUT = PoFCLB + PoFBRAM + PoFF F (4.2)

The DUT’s PoF is used to obtain the Failure in Time (FIT) expressed in FIT units.
One FIT equals 1 failure per 1000 million device hours. So for example, 5 failures
expected out of 1 million components operating for 1,000 hours have 5 FIT [21].
Normally the FITs are expressed in terms of FIT per megabite, as this would represent
the FITs based on the DUT’s size. In order to obtain the value for the FITs in units
of FIT per Mb, the DUT’s PoF has to be multiplied by the Rate of Faults (RoF).
The RoF is variable that depends on the target device and the external sources of
radiation, specifying the number of faults that will happen for a unit of time (normally
hours). The calculation of a DUT’s FIT is shown in equation 4.3.

FITDUT (FIT

Mb
) = PoFDUT (EBDUT

Mb
) ∗ RoF (h) ∗ (1 ∗ 109) (4.3)

The FITs in units of ( F IT
Mb ) are normally employed by Xilinx in their dependability

assessment documentation, as such all results presented in the following sections will
be converted to this units.

If the intended objective is to maximise the designs dependability in any of the
scenarios presented, it would be possible to combine several fault tolerant techniques
to reduce the FITs to the lowest possible value. Yet, dependability often comes
at a cost in FPGA resources and power consumption. So a balance has to be struck
between dependability, FPGA resources, power consumption and operating frequency
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in order to present the most balanced design for each of the scenarios. In the following
sections several techniques will be applied depending on each of the scenarios, always
comparing the results with that of the basic AVR design in all of the categories
previously mentioned. This will be the methodology followed in this thesis to asses
the impact and effectiveness of fault tolerant techniques.

4.3.1 Simple Faults: Low Radiation Environment
The basic AVR has a total of 354038 EB, an on chip power consumption of 1.55 W
and a maximum operation frequency of 50 MHz. When injecting simple faults into it
a combined PoF of 9.21% ± 0.19 is obtained. The breakdown of this PoF is as follows:
i) PoF_CLB = 8.38% ± 0.08, ii) PoF_BRAM = 0.81% ± 0.11, and iii) PoF_FF =
0.018% ± 0.001. The differences in the PoF come from the breakdown of essential
bits in the DUT, i) CLBs have 279850 EB, ii) BRAMs have 73728 EB, and iii) FF
have 460 EB.

PoFCLB = 10.6 ∗ 279850
354038

± 0.1 ∗ 279850
354038

(4.4)

PoFBRAM = 3.88 ∗ 73728
354038

± 0.54 ∗ 73728
354038

(4.5)

PoFF F = 14.08 ∗ 460
354038

± 0.98 ∗ 460
354038

(4.6)

In units of FIT per Mb the DUT’s FITs equate (3.259 ±0.068) ∗ RoF FIT
Mb .

FITDUT (FIT
Mb

) = (9.21 ∗ 354038
1000000

± 0.19 ∗ 354038
1000000

) ∗ RoF (4.7)

Where RoF remains an unknown that would have to be obtained based on the en-
vironment where the design would carry the workload, as well as the target device
where the design would be implemented.

Device TMR The FITs for the basic AVR obtained from simple faults can be
easily improved by means of mitigation techniques. The first technique that can be
used to increase dependability is the simple device TMR. This kind of technique does
not require a prior study of the most radiation sensible internal elements of the DUT,
since it just triplicates the entire design. The design encompassing this technique has
1017034 EB, an on chip power consumption of 1.57 W and a maximum operation
frequency of 50 MHz. This technique aims to reduce the FITs of the design to 0,
since we are assuming only one fault happening for each clock cycle (simple fault)
and the entire device is triplicated. TMR is applied to the CPU core and three MAJs
are used to vote on the 8-bit data out signals to avoid any single point of failure.
These three signal are then fed to the ARM, responsible for reading and choosing the
correct signal as well as executing the injector app. The entire design can be seen in
figure 4.4.
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Figure 4.4: CPU Design with Device TMR and Three Voters.

The expected results are met, with 0 ±0FIT
Mb FITs. Yet, this technique implies

an increase in area overhead that most systems might not be able to afford (2.87
times the essential bits of the original design), since most professional designs use
much more resources than the simple CPU presented here and might run into size
restrictions with their devices. This means that triplicating the entire design might
not be always an option, or even more importantly it might not always be the most
efficient option. The Device TMR will most assuredly also have an effect in the
maximum clock frequency of the AVR. As such a few specific instances of TMR can
be applied at critical parts of the design, such as the Arithmetic Logic Unit (ALU)
or the control unit (OPC_DECO), to in theory achieve similar FITs with much less
area overhead, thus increasing the efficiency of the solution.

Simulation based injection is used to asses the radiation sensitivity of different
parts of the design for targeted mitigation techniques. Due to the problems with
the mapping of the elements of the bitstream, statistical fault injection does not
give us any information on the most vulnerable parts of the DUT relating to CLBs.
This leaves us with speculation based on the AVR’s architecture as the only tool to
asses the radiation sensitivity of design elements. Nevertheless, with simulation it
is possible to break down the PoFs of the BRAMS and FFs of each DUT to the
signals representing them. This in turn allows us to trace our design and see which
parts contribute most to the FITs. A breakdown of the FF specific PoF in the basic
AVR can be seen in figure 4.5. The percentages shown in the figure represent the
number of times the design failed when injecting faults in the FFs alone. Using the



4.3 Assessing the CPU’s Dependability 37

Figure 4.5: FF specific PoF Distribution in Basic AVR.

information presented by the figure we can identify a few critical elements within the
design: i) the register file inside the DATAPATH, ii) the registers inside OPC-FETCH
responsible for updating the PC, and iii) the OPC-DECO which can be triplicated
for maximum results. Yet, when taking the EBs into consideration it is easy to see
that any mitigation applied for the FFs will have minimal impact on the PoF of
the DUT due to FFs having a basic PoF of 0.018% ± 0.001. Nevertheless, it will
still be interesting to see the resource consumption from applying Hamming-based
EDAC in this locations. When it comes to the BRAMs the assessment prior to the
implementation of fault tolerance is quite straightforward. Since the BRAMS are
pre-packaged IP-cores there is no need to speculate or study where mitigation will be
more effective, EDACs can just be directly applied to the generated BRAMs.

In order to properly asses the impact each of the mitigation techniques designed
can have on the FITs of the three basic elements, the techniques are segmented
by their mitigation methodology. Furthermore techniques that target CLBs will be
isolated in hopes of tracing the effect they have on the DUT’s PoF more clearly.

EDAC in Registers and BRAMs i) Starting with the register file; this element
resides inside the DATAPATH and features 16 16-Bit registers as well as a status
register. The 16-Bit registers use an enable signal to choose between updating the
upper or lower part of the signal, so they can be split into separate 8-Bit registers,
each with its own EDAC. This way the system will be able to tolerate 2 faults per
16-Bit register, one in each 8-Bit EDAC register. The 8-Bit EDACs follow the same
structure as presented in figure 3.21, with an 8-Bit register for the data bits and
a 4-Bit register for parity bits. The inputs and outputs of the EDAC registers are
paired to form the final 16-Bit register. The status register is left unprotected for
the moment, since its impact on the DUT’s PoF was 0.1%. The DATAPATH also
includes the ”data_mem” BRAM, this memory element is responsible for storing the
results of the workload among other data. Since it is a pre-generated IP-core, Xilinx
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provides error correction code as an option when customizing it. In the case of the
”data_mem” BRAM built in error correction code was used.

ii) The OPC-FETCH component has a register ”LPC” responsible for updating
the PC ”L_PC” and controlling the wait instruction ”L_T0”. The same 16 bit
EDAC used for the register file can be used here to provide double protection to
the ”L_PC” signal, while a simple TMR can be used to protect the ”L_T0” bit.
The two ”prog_mem” BRAMs also reside inside the OPC-FETCH, yet unlike the
”data_mem”, these BRAM IP-cores are generated as dual port 16 bit ROMs and
have no possibility for built in error correction. In order to provide the ROMs with
protection, custom EDAC has to be designed and implemented. Since ROMs have no
data input, the design previously used for EDAC cannot be applied, rather two dual
port ROMs with the same addresses as the ”prog_mems” and 5 bit data outputs will
be generated, storing the parity for each memory location. The final design has 4
ROMs total, 4 parity encoders (1 for each port of the ”prog_mems”) and 4 correction
blocks. The ”prog_mem” file where the instances of the BRAMs are created also holds
a register that updates the PC within the file, as well as two other signals. The PC
signal is protected with EDAC and the other two have TMR applied.

Both i) and ii) present mitigation techniques that target registers and BRAMs,
with in theory no positive effect on the CLB’s contribution to the DUT’s PoF. A
design encompassing all of these mitigation techniques has a total of 627405 EBs, with
405615 belonging to the CLBs, 221184 to the BRAMs and 606 to the FFs. There is
a noticeable increase in the EBs of the BRAMs, reaching the same value as that of
the Device TMR. This is due to the addition of the 2 ROMs for parity bits and the
error correction in the ”data_mem” BRAM. The FFs also see an increase due to the
amount of registers generated during synthesis to implement the EDAC designs. The
combined PoF obtained from fault injection is 5.47% ± 0.06, with CLBs contributing
5.47% ± 0.06, BRAMs contributing 0% ± 0 and FFs contributing 0.0022% ± 0.0009.
The decrease in the CLB’s contribution to the DUT’s PoF was unexpected, since in
theory the addition of logic to mitigate faults in the registers and BRAMs should have
increased it. Unfortunately the specifics as to why this could happen are untraceable
due to the bitstream mapping. As for the BRAMs the result was as expected, since
they where all protected simple faults should be totally mitigated. A few failures
remain from the FFs, this is due to some of the registers left unprotected and the
OPC_DECO, which will be triplicated in another design. In units of FIT per Mb the
combined FITs are 3.435 ±0.041FIT

Mb , with the CLB contributing the most. When
comparing the FITs with those of the basic AVR, we can see that error mitigation
in the FF actually makes the design less robust. Since their original contribution
to DUT’s PoF was so low to start with, the addition of extra resources (.ergo EBs)
just increases the possibility of particle impact without much extra robustness being
added, as can be seen in CLB’s contribution to the FITs.

TMR in the OPC-DECO iii) The OPC-DECO has both combinational logic
and registers, so mitigation techniques targeting it will affect both the contributions
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of the CLBs and the FFs to the DUT’s PoF. Since TMR has to be applied in the
entire component in order to mitigate faults in the combinational logic, there is really
no point in designing EDAC for the individual registers as these will be protected
against simple faults by the TMR too. The TMR for the OPC-DECO follows a simple
structure were the component itself is triplicated and each output is voted on by a
single majority voter. In the theory discussed for the TMR as well as in the device
TMR designed, the voters where triplicated to avoid single points of failure. Yet
based on the results obtained from the TMR in the ALU, table 4.6, where one voter
was compared against 3 voters, it became clear that the 3 voters did not improve
the PoF enough to justify the extra resources. As such it was decided that one voter
would be enough for each signal in the OPC-DECO too. The resulting design has
three instances of the original OPC-DECO plus a total of 16 voters, all inside a
TMR wrapper that substitutes the original file to maintain a clear hierarchy. The
results for the DUT’s PoF and FITs can be seen in table 4.6. Even thought the
TMR in the OPC-DECO didn’t protect any BRAMs it still has an effect on their
contribution to the DUT’s PoF, since now their percentage in the DUT’s EBs is
smaller. The contribution to the DUT’s PoF of both the CLBs and FFs is smaller,
as was expected. Yet when observing the FITs we can see that the improvement on
the original design is not too big.

TMR in the ALU This last mitigation technique focuses only on improving the
contribution of CLBs to the DUT’s PoF by implementing TMR in the ALU within
the DATAPATH. The TMR designed follows the standard methodology also applied
in the OPC-DECO. The only difference being that this design was also tested with
3 voters, as mentioned in the last paragraph. The CLB’s contribution to the DUT’s
FITs with one voter was 2.454±0.045 FIT

Mb , whereas the one for 3 voters was 2.467
±0.045 FIT

Mb . The design with three voters had more EBs for the CLBs and this can
be seen in the bigger number of FITs. It is clear from this comparison that the use of
3 voters is counterproductive and as such the design implemented will only have one
voter per ALU output signal. The design with one voter has a total of 521690 EBs,
with 447502 belonging to the CLBs, 73728 to the BRAMs and 460 to the FFs. Since
the TMR didn’t target any BRAMs or registers, the EBs related to the BRAMs and
FFs remain the same as in the basic AVR. When injecting faults the total PoF will
be 5.53% ±0.20, with its value in FIT per Mb being 2.885 ±0.104 FIT

Mb FITs. Just
by protecting the ALU we can already see results close to half of the original FITs,
with an increase in resources of 1.45 times the original EBs.

TMR and EDAC None of the individual fault tolerant designs achieve the results
of the device TMR. Yet, this was an expected outcome, the real question lays in
whether the combination of all these designs in to one single overhaul of mitigation
techniques will match the device TMR in FITs while consuming less resources. All
of the mitigation techniques previously discussed where self contained designs that
maintained the same port structure, so they can easily be merged into one single fault
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tolerant AVR design. The results from this design, including the EBs, can be seen
in table 4.6. Improvement can be observed in the FITs of the design, yet once again
the increase in CLB resources to protect the FFs ends up undermining the efforts
to reduce the CLB’s contribution to the FITs. In the end a much more efficient
implementation of fault tolerance would have targeted the BRAMs and CLBs, since
their presence in the AVR’s design is much bigger in comparison to that of the FFs.

Comparing the Results for Simple Faults Based on the results shown in table
4.6 the FF’s contribution to the FITs in all of the designs is extremely small. Yet,
the same cannot be said for the effect of utilizing resources to protect the FFs, as
it has tremendous impact on the CLB’s contribution to the FITs. In general the
designs that for the most part, implement mitigation in the registers, like the TMR
DECO and the EDACs, show either very little improvement on the baseline FITs or
in the case of the EDACs, reduced design robustness with a higher number of FITs.
Looking at the results it is clear that choosing where to apply mitigation based on
element-specific PoF, like the one shown in figure 4.5, can be misleading. Rather
the number of EBs in each population should be compared as the initial indicator of
where to apply mitigation techniques. For example in our AVR the CLBs have the
most EBs, so techniques targeting these elements will be more effective in reducing
the DUT’s FITs, since CLB’s are its greatest contributors. Yet, this cannot be the
only means of measuring where to apply mitigation. If an element can be protected at
very little resource expense, the FIT will improve without consequences. Also in the
case of FFs, even if protecting them affects the FITs, they still should be protected
as best as possible since scrubbing wont be able to remove their faults periodically.

The maximum operating frequency is the same for all designs because the timing
constraints where not pushed in order to achieve the fastest operating frequency
possible in each design due to lack of time. As for the on chip power consumption,
most designs have the same with only the two bigger designs consuming a bit more
due to the increase in resources used.

Figure 4.6: Comparison of Resources, PoFs and FITs for the Different Designs (Sim-
ple Faults).
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4.3.2 Multiple Faults: High Radiation Environment
All the results presented previously were obtained from simple fault injection, simu-
lating what would be a low radiation environment. But in order to test the design’s
performance in what would be a high radiation environment, more faults have to be
injected in the same clock cycle. The number of faults to be injected would normally
be estimated based on the environment where the device would execute the work-
load. But since there is no specific data for any environment, 4 faults will be injected
per clock cycle to simulate harsh radiation. This of course will increase the FITs of
the designs previously presented, obtaining uninteresting findings from most of them.
Yet, a few of the designs use techniques that in theory should hold up to more than
just simple faults, these are the designs that will be injected with 4 faults.

Device TMR Given the harshness of the scenario the basic AVR will show a
catastrophic number of FITs, so rather than using this as the baseline design the
device TMR will be used instead, as it was the most robust design when injecting
simple faults. The results from injecting 4 faults can be seen in table 4.7, where the
increase in FITs for the device TMR is quite harsh. The contribution of the CLBs
to the FITs is still the biggest, yet since now the 6 BRAMs are affected by more
than simple faults, their contribution is also quite important. The FFs still have a
minuscule contribution. If EDACs where to be implemented in the BRAMs, their
contribution to the FITs would decrease drastically.

TMR and EDAC In order to test the theory about the implementation of EDAC
in the BRAMs being able to decrease their contribution to the FITs, the design
encompassing all of the targeted mitigation techniques is tested with 4 faults too.
The results can be observed in table 4.7, where our predictions are confirmed. The
EDAC for the BRAMs are composed of two individual EDAC registers, as previously
explained, and as such they can tolerate 2 faults per BRAM. Since only 4 faults
are injected the probability of more than 2 faults affecting the same word in the
same BRAM is extremely small, given their number of EBs. Yet, even when the
contribution of the BRAMs is zero, this design still employs a considerable number
of resources in protecting registers, thus increasing the contribution of the CLBs and
in turn yielding a number of FITs worse than that of the device TMR.

Device TMR for a CPU Core with TMR and EDAC With hopes of reverting
the negative effect of protecting the registers in the previous design, the entire CPU
core encompassing the TMR and EDAC designs was triplicated. This would yield
the most resource expensive design, but in theory it should be more robust, since
it triplicates elements that were already internally triplicated. Yet, from the results
in table 4.7, it can be seen that in fact the opposite is true. Starting with the
CLB’s contribution to the PoF, we can already see that design does not gain much
robustness. When time is brought into the equation, in the form of FITs, the results
are catastrophic, with the highest number of FITs of all the designs.
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Comparing the Results for 4 Faults From the results obtained it is clear that
aimlessly triplicating elements will not necessarily improve robustness, rather it might
affect negatively due to the increase in surface area. In the case of the device TMR for
the AVR the most effective mitigation would have been adding EDAC to the BRAMs
and TMR to the ALU, while leaving the registers unprotected. Of course this is due
to the nature of FPGAs with their SRAM-based configuration memory composing
the majority of the population, FFs only being a minor concern based on their EBs.
Yet as mentioned before, scrubbing wont protect FFs allowing faults to accumulate
over time. One could argue that getting their contribution to the PoF as close to 0
as possible is a mayor necessity.

4.4 Conclusion
When looking at all the results the biggest contribution to the FITs are the CLBs,
since they are the biggest population in all the designs tested. This leads to a big
problem, since the CLBs where the only elements where the Pof was no possible to
trace down to individual instances or signal within the design. This in turn lead to
the design where everything was triplicated, the device TMR, to be the most robust.
While all the other designs, even when in some cases tolerating all faults in the FFs
and BRAMs, lacked behind due to the mitigation in the CLBs not being sufficient. In
order to achieve better better values for the FITs more tests on designs targeting the
CLBs should have been carried out, using the results as a means of tracking down the
parts of the design mapped into CLBs that were most vulnerable. Applying TMR
to these parts of the design would have drastically reduced the contribution of the
CLBs to the FITs, as could be seen when triplicating the ALU for the first designs.

The calculations for each of the designs, their consumed resources and their chip
floor-plan, can all be seen in the appendix.

Figure 4.7: Comparison of Resources, PoFs and FITs for the Different Designs (4
Faults).



CHAPTER 5
Discussion

The results presented in the previous section deal only with the fault tolerant aspect
of device dependability. Yet in any normal space design these results would consist of
nothing else but the initial step in determining the arrangement of techniques to be
further deployed. When having the FITs, any professional designer would proceed to
design a fault removal model based on scrubbing in order to avoid the accumulation
of faults. The reason being that the FITs represent soft errors that will permanently
reconfigure the FPGA’s configuration memory. These soft errors can be mitigated by
the fault tolerant techniques for a limited amount of time before the failure rate of
the device reaches unacceptable values as the SEUs accumulate. This is an extremely
important aspect of any space system and even though it was not implemented in the
designs presented, it is a clear next step for future projects.

Another crucial aspect of space radiation in electronics is that of the TID or very
high energy particles, both of which will cause hard errors in the FPGA. These kind
of errors pose the same threat to the design’s failure rate as soft errors do with the
risk of accumulation. Yet these errors cannot be fixed with scrubbing, they can only
be ignored by reallocating the design. Once again any professional designer would
have to take into account this when assessing the device’s dependability and despite
no mechanism like this being implemented in the solutions presented, it is a very
important aspect to keep in mind for future, more complex iterations of this project.

Time is a deciding element for any space system. It is the force against which
device dependability struggles the most and it is inevitable. The unit of FIT is based
on time for this very reason, cause no matter how robust a design is it will fail at
some point. For instance a device with a failure rate of 1 FIT is a very robust device
as in a matter of 1000 million hours it is estimated to fail once. Yet, even if the
amount of time till failure is as high as 1000 million hours, it still is a failure in
time. This is why it is important to determine the aspect of space system design
known as mission duration, a measure of the time required for a mission to carry
out its intended purpose. This is an extremely important aspect of space system
design that was not discussed throughout the thesis and it is required in order to
asses whether the obtained FITs are acceptable or not. For example if a system is
intended to execute an application for 15000 years, a failure rate of 1 FIT would not
be acceptable as it would entail that the system would fail once during its functioning.
Another important aspect required to conclude whether a failure rate is acceptable
or not is the importance of the system, something that normally is decided based on
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human life, with systems that are crucial to human survival as the most critical. A
combination of mission duration and system importance is what would be used to set
the dependability margins for the space system to be designed, yet in the thesis this
elements are not discussed due to the lack of a specific space application.

On a final note, this thesis was an extremely interesting project that allowed me
to establish a basis on a topic of which I new very little before starting. This also
meant that a lot of time was employed on just getting up to date on the theory behind
space radiation in FPGAs and the state of the art fault tolerant techniques. Being
an electronics student, the areas of space physics and space weather were completely
new to me. This in turned limited my understanding of these topics to a more or less
superficial level. For future revisions of this project a better theoretical background
would be preferred and as such I will take several specialization courses on these
topics for my masters. In a way I wish I could start it all over from the point I am
currently standing at, in order to present a more concise and structure thesis. After
all, when starting this thesis I though I was aiming to create a fault tolerant system
with a specific purpose. It was not until the final days of the project that I realised
that there was no real concise objective present in the work. The AVR was made
fault tolerant to arbitrary numbers of faults, so rather than becoming a true example
of what would be a real life fault tolerant system it became a collection of techniques
I applied in order to get the ropes of the topic and improve failure rates in an all-
together non realistic way. Yet I do not feel like the effort to understand the topic
was a waste, since now I have the certainty that this is the field of hardware design
I want to pursue. I plan to delve deeper into space-level hardware dependability for
my master’s thesis, where I hopefully will be able to implement the more advanced
techniques and concepts commented in this discussion that only now I am starting
to understand, while doing so in a realistic and practical manner.
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Figure A.1: Calculations for the Basic AVR Design.
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Figure A.2: Floor-Plan for the Basic AVR Design.

Figure A.3: Resources employed by the Basic AVR Design.
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Figure A.4: Calculations for the Device TMR Design.
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Figure A.5: Floor-Plan for the Device TMR Design.

Figure A.6: Resources employed by the Device TMR Design.
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Figure A.7: Calculations for the ALU TMR Design.
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Figure A.8: Floor-Plan for the ALU TMR Design.

Figure A.9: Resources employed by the ALU TMR Design.
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Figure A.10: Calculations for the OPC-DECO TMR Design.
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Figure A.11: Floor-Plan for the OPC-DECO TMR Design.

Figure A.12: Resources employed by the OPC-DECO TMR Design.
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Figure A.13: Calculations for the EDAC in BRAMs and FFs Design.
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Figure A.14: Floor-Plan for the EDAC in BRAMs and FFs Design.

Figure A.15: Resources employed by the EDAC in BRAMs and FFs Design.
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Figure A.16: Calculations for the Design with TMRs and EDAC.
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Figure A.17: Floor-Plan for the Design with TMRs and EDAC.

Figure A.18: Resources employed by the Design with TMRs and EDAC.
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Figure A.19: Calculations for the Device TMR, 4 Faults.
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Figure A.20: Calculations for the Design with TMRs and EDAC, 4 Faults.
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Figure A.21: Calculations for the Design with TMRs and EDAC plus Device TMR,
4 faults.
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Figure A.22: Floor-Plan for the Design with TMRs and EDAC plus Device TMR.

Figure A.23: Resources employed by the Design with TMRs and EDAC plus Device
TMR.
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