Diseño de una instalación de regadío para una Plantación de Trufa Negra en Albentosa (Teruel)

Trabajo de Fin de Grado de Ingeniería Mecánica

Alumna: Paula Pastor Corella

Tutor: Miguel Ángel Jiménez Bello

Valencia, julio de 2019
ÍNDICE GENERAL

DOCUMENTO 1: MEMORIA

Anexo I: Estudio Climatológico
Anexo II: Diseño Agronómico
Anexo III: Diseño hidráulico
Anexo IV: Vallado
Anexo V: Movimiento de tierras
Anexo VI: Plazo de ejecución
Anexo VII: Referencias

DOCUMENTO 2: PLANOS

DOCUMENTO 3: PLIEGO DE CONDICIONES

DOCUMENTO 4: PRESUPUESTO
ÍNDICE MEMORIA

1. OBJETIVO DEL PROYECTO ... 6
2. INTRODUCCIÓN .. 7
 2.1. Tipologías ... 7
 2.1.1. Tuber melanosporum ... 7
 2.1.2. Tuber aestivum .. 7
 2.1.3. El quemado .. 8
3. DATOS GENERALES ... 9
 3.1. Localización .. 9
 3.2. Antecedentes .. 10
 3.3. obras existentes ... 11
4. ESTUDIOS PREVIOS ... 12
 4.1. Climatología ... 12
 4.2. Calidad del agua .. 12
 4.3. Calidad del suelo .. 12
5. JUSTIFICACIÓN DE LA SOLUCIÓN ADOPTADA 13
 5.1. Necesidades de agua ... 13
 5.2. Necesidades totales de riego ... 13
 5.3. Uniformidad de emisión ... 14
 5.4. Marco de riego ... 14
 5.5. Características del microaspersor .. 14
 5.6. Cálculo del diámetro de las tuberías ... 15
 5.7. Determinación de caudales y presiones en las subunidades 15
 5.8. Dimensionamiento de la red general ... 16
 5.9. Instalación del Cabezal de Riego .. 17
 5.10. Plan de Riego ... 17
6. DESCRIPCIÓN DE LAS OBRAS ... 18
 6.1. Red de distribución .. 18
 6.1.1. Movimientos de tierra ... 18
 6.1.2. Aporte de tierra .. 19
 6.1.3. Rellenos de zanja .. 19
 6.2. Dimensiones de las conducciones ... 19
 6.2.1. Tubería de la Red General ... 19
 6.2.2. Tuberías en las subunidades ... 20
 6.3. Microaspersor elegido ... 20
 6.4. Valvulería ... 21
 6.5. Arquetas de riego .. 21
 6.6. Cabezal de Riego .. 21
6.6.1. Equipo de filtrado .. - 22 -
6.7. Vallado - 22 -
7. EJECUCIÓN DE LAS OBRAS.............................. - 24 -
8. FACTORES ECONÓMICOS ... - 25 -

ÍNDICE DE TABLAS

Tabla 1: Déficit de agua en los meses más secos .. - 13 -
Tabla 2: Características del microaspersor .. - 14 -
Tabla 3: Diámetro de las tubería laterales y terciarias por subunidad - 15 -
Tabla 4: Presión y caudal requerido en la cabecera por subunidad - 16 -
Tabla 5: Diámetro de la Red General .. - 16 -
Tabla 6: Zanjeado ... - 18 -
Tabla 7: Rendimiento de las excavaciones ... - 19 -
Tabla 8: Tubería de la Red General .. - 19 -
Tabla 9: Tuberías Laterales .. - 20 -
Tabla 10: Tuberías Terciarias ... - 20 -
Tabla 11: Características del microaspersor ... - 21 -
Tabla 12: Equipo de filtrado .. - 22 -
Tabla 13: Longitud del vallado ... - 23 -

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Trufa Aestivum ... 8
Ilustración 2: Trufa Melanosporum .. 8
Ilustración 3: Quemado en una carrasca .. - 8 -
Ilustración 4: Localización de la plantación .. - 9 -
Ilustración 5: Obras existentes y nueva plantación adquirida - 11 -
Ilustración 6: Gráfico de un microaspersor turbulento - 15 -
1. OBJETIVO DEL PROYECTO

El objetivo de este proyecto es el diseño y cálculo de una red de riego para una plantación de trufa negra situada en la localidad de Albentosa, Teruel.

Este proyecto nace debido a los problemas de sequía que sufre la zona en determinados meses del año, haciendo que el riego sea principalmente de apoyo para un mejor rendimiento del cultivo de la trufa tal y como se verá más adelante.
2. INTRODUCCIÓN

La trufa es un fruto de un hongo micorríco, necita asociarse en las raíces más finas de ciertos árboles y arbustos como avellanos, las encinas, los robles, las jaras o los pinos entre otros. Desde un punto de vista biológico, las trufas se incluyen en el género Tuber, al cual pertenecen a los ascomicetos. En el ciclo biológico de una plantación se pueden distinguir dos fases claramente diferenciadas. El primero, que sería el de formación de la trufera, y que puede durar aproximadamente entre seis y ocho años, y un segundo periodo de producción propiamente dicho a partir de los ocho-diez años. Su crecimiento se desarrolla sobre suelo calizo, en carrascales. Estas zonas son mayoritarias en la mitad oriental de la Península y se encuentran sobre rocas de edad geológica. Pueden aparecer de forma natural a altitudes entre 100 y 1500 msnm y en exposiciones soleadas. [1]

2.1. TIPOLOGÍAS

Existen dos tipos de trufas dentro del género Tuber, la Melanosporum o trufa de invierno y la Aestivum o trufa de verano. A continuación, se describen las características de cada una.

2.1.1. TURBER MELANOSPORUM

Este tipo de trufa es más conocida como trufa negra, suelen ser del tamaño de una nuez y se diferencia por su aspecto verrugoso y un color negro o rojo oscuro. Su carne, denominada gleba, es firme, blanquecina al principio y negra una vez madura. Es un hongo muy apreciado y cotizado en el mercado, desprende un olor perfumado e inconfundible que lo hace único.

Tiene lugar entre los meses de noviembre y marzo, siendo de vital importancia que previamente haya habido una buena temporada de lluvias. Se encuentran ocultas en el subsuelo a unos 30 cm de la superficie. Antiguamente se buscaban gracias al olfato de cerdos. Hoy, han sido sustituidos por perros adiestrados. Aunque su cultivo se da en países como Francia o Italia, la zona más importante es en Aragón y más concretamente la Comarca de Gúdar Javalambre con cerca de 8.000 hectáreas de plantaciones. [2]

2.1.2. TUBER AESTIVUM

Siendo menos conocida debido, entre otras cosas, a que su valor económico es inferior a la trufa negra. Se diferencia de esta última por su color claro en su interior, siendo verrugosa y negra igualmente en la parte externa y por tener un aroma diferente.

Crecce en hábitat similar al de la trufa negra pero no requiere unas condiciones tan específicas en cuanto a composición de la tierra y humedad. Su recolección se da entre los meses de mayo y agosto, se encuentra enterrada a menor profundidad que la trufa negra, a veces, es posible observar montículos ya que puede levantar el suelo o incluso asomar en la superficie. [3].
2.1.3. EL QUEMADO

El quemado en una plantación trufera es la zona de tierra entorno al árbol donde no crece vegetación. Generalmente es un círculo alrededor del árbol y es causado por la alelopatía. Esta, es un fenómeno por el cual la trufa es capaz de impedir el crecimiento de algunas plantas, y, por lo tanto, la causa de la formación de quemados. El quemado hace que la planta trufera no tenga competencia de otra vegetación. Al deshacerse de las plantas genera materia orgánica en descomposición de la podrá alimentarse.

Ilustración 3: Quemado en una carrasca
3. DATOS GENERALES

Las parcelas donde va a instalarse el regadío pertenecen a la empresa Corella S.A. Cuentan con más de 40 hectáreas en plantaciones de trufa negra. Este proyecto se centra en el diseño de la instalación de riego de 15 de ellas debido al deseo de una ampliación de la plantación.

Las parcelas se encuentran próximas al municipio de Albentosa, Teruel. La parcela está dividida en 10 campos que suman un total de 15 hectáreas, todos ellos tienen plantadas encinas previamente micorrizadas en vivero con Tuber Melanosporum.

En la actualidad, no existe ningún tipo de red de riego en estas parcelas, pero los propietarios poseen un pozo y una balsa que pueden utilizarse para la aportación de agua en la nueva parcela.

3.1. LOCALIZACIÓN

Albentosa se encuentra al sudeste de la provincia de Teruel, dentro de la Comarca Gúdar-Javalambre. Los actuales 257 habitantes se reparten entre cinco núcleos urbanos. El principal es Albentosa, junto a la Venta del Aire, Estación de Mora, Fuen del Cepo y los Mases, 50 Km separa Albentosa de su capital Teruel. Respecto a Valencia son 96 los Km. a recorrer por la Autovía Mudéjar (A-23), que enlaza Teruel con Valencia. Las dos ciudades se encuentran comunicadas también por ferrocarril con Albentosa, mediante la estación de Mora de Rubielos.

![Ilustración 4: Localización de la localidad](image-url)
Datos generales:
- País: España
- Comunidad Autónoma: Aragón
- Provincia: Teruel
- Comarca: Gúdar Javalambre
- Coordenadas: 40°05’34’’ N 0°45’21’’ O
- Altitud: 998 metros sobre el nivel del mar
- Superficie: 15 hectáreas

3.2. ANTECEDENTES

La plantación existente, comenzó aproximadamente en 2009 y jamás se ha llevado a cabo el riego de ninguna forma hasta hace solamente 2 años. Es una zona que hace pocos años atrás tenía una climatología idónea para este tipo de cultivo, pero debida a la escasez de agua y a la subida de temperaturas, los propietarios se vieron en la situación de tomar la decisión de instalar un sistema de regadío idóneo para poder disfrutar de una buena producción.

Los propietarios decidieron hacer un pozo de agua en uno de los terrenos que ya poseían a pocos kilómetros de la plantación, tampoco se pudo hacer más próximo porque no se encontraba agua. Para ayudar a traer el agua, construyeron un embalse en un punto próximo a la plantación para poder almacenarla y abastecer al cultivo en los meses de menor precipitación.

De manera que para el terreno que han adquirido recientemente, en el que no se encuentra ningún tipo de sistema de riego, se desea diseñar y construir una red con microaspersión para mejorar la producción trufera ayudándose de las obras existentes.

Número de encinas:
- 2.800 encinas micorrizadas en vivero con T. melanosporum
3.3. OBRAS EXISTENTES

Las obras existentes en la parcela son:

- 2 caminos de entrada y salida a la parcela
- Un pozo donde se extrae el agua
- Un embalse situado a 30 metros bajo el cultivo
- Una caseta para el cabezal de riego de dimensiones exteriores de 6x7 metros

Ilustración 6: Obras existentes y nueva plantación adquirida
4. ESTUDIOS PREVIOS

Para la realización de este proyecto se han considerado los siguientes estudios:

- Estudio climatológico de la zona con los Datos obtenidos del Observatorio de Segorbe por ser el más próximo a la zona de estudio.
- Estudio del agua procedente del pozo para determinar su idoneidad.
- Estudio de la calidad del suelo.

4.1. CLIMATOLOGÍA

La pluviometría media mensual del terreno dónde se encuentra la parcela es de 40,5 mm, siendo muy inferior en los meses de verano de julio y agosto, alrededor de 15 mm. La temperatura media de la zona es de 15ºC, alcanzando los 30 ºC en el mes de agosto y los -4ºC en los meses de invierno.

Según el estudio climatológico realizado en el Anexo I, se ha determinado el tipo de clima dónde se encuentra la plantación y coincide con un clima seco o subhúmedo, primer mesotérmico, con excedente invernal moderado y moderada concentración de la eficiencia durante el verano.

4.2. CALIDAD DEL AGUA

En 2016 se realizó un estudio para determina la idoneidad del agua que se extraía del pozo, los resultados fueron positivos para el cultivo en cuanto a salinidad. Se determinó que la conductividad eléctrica era 0,425 dS/cm por lo que el suelo no es salino y no afecta al cultivo.

4.3. CALIDAD DEL SUELO

La zona está catalogada como conglomerados y arcillas y la permeabilidad es baja por porosidad. La textura del suelo es franco arcilloso con una conductividad hidráulica saturada de 5 mm/hr.
5. JUSTIFICACIÓN DE LA SOLUCIÓN ADOPTADA

EL objetivo de este proyecto es la instalación de una red de riego para aportar agua a la plantación que ayude a mejorar la productividad del cultivo. Para ello, se han seguido una serie de parámetros para determinar la mejor solución adoptada.

5.1. NECESIDADES DE AGUA

Las plantas deben obtener el agua suficiente para que la producción sea elevada y de calidad. Para satisfacer este objetivo, se ha realizado un estudio agronómico donde se han determinado las necesidades de agua en los meses más secos. Este estudio viene acompañado de un análisis climatológico donde se ha determinado que hay meses en los que las temperaturas son muy altas y las precipitaciones muy bajas. Este déficit hídrico estacional hace necesario la aplicación del riego para que la producción de trufa no se vea afectada.

En el Anexo II, se ha calculado la cantidad de agua que debería aportarse desde el pozo en los meses más secos, siendo un total de 161,8 l/m² en los meses de mayo a septiembre.

<table>
<thead>
<tr>
<th>Tabla 1: Déficit de agua en los meses más secos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación media (l/m²)</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Necesidades de agua (l/m²)</td>
</tr>
<tr>
<td>Déficit (l/m²)</td>
</tr>
</tbody>
</table>

5.2. NECESIDADES TOTALES DE RIEGO

Junio, es el mes más desfavorable con un déficit de 51,1 l/m², por lo que se realizarán los cálculos bajo las necesidades de agua más exigentes, es decir, suponiendo que no se produce lluvia (80 mm).

Puesto que no toda el agua aplicada es utilizada por la planta, se utiliza un factor de corrección, la eficiencia de aplicación, que en microaspersión se estima de un 90%.

Así que para el cálculo de las necesidades de riego totales se tiene que tener en cuenta las necesidades netas y la eficiencia de riego por microaspersión.

\[N_r = \frac{N_n}{E_a} = \frac{80 \text{mm}}{0,9} = 88,88 \text{ mm (Ec. 1)} \]
5.3. UNIFORMIDAD DE EMISIÓN

Debido a que el caudal en un microaspersor depende de la presión y esta no es constante en toda la instalación, para conseguir un riego uniforme en todas las plantas se debe establecer un coeficiente de uniformidad. En este caso, la uniformidad de riego deseable es del 90%. Esto significa que las plantas menos regadas deben recibir, como media, al menos el 90% de la media total.

5.4. MARCO DE RIEGO

El marco de riego es la separación que hay entre microaspersores. Para estas subunidades se ha decidido tomar un marco de riego de 6x6 metros y un marco de plantación de 6x6, que es la distancia entre plantas.

El microaspersor tiene una cobertura de 12 metros, por lo que el agua llega a todos los sitios con la misma uniformidad.

5.5. CARACTERÍSTICAS DEL MICROASPERSOR

Haciendo un estudio sobre los últimos microaspersores que hay en el mercado, el aspersor elegido es un Gyonet SR por la empresa Hydromatic.

A continuación, se muestra los datos técnicos del microaspersor dados por el fabricante:

Tabla 2: Características del microaspersor

<table>
<thead>
<tr>
<th>Caudal (l/h)</th>
<th>Diámetro de la boquilla (mm)</th>
<th>Constante k</th>
<th>Exponente x</th>
<th>Presión de operación (bar)</th>
<th>Diámetro de alcance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.5</td>
<td>49.1</td>
<td>0.5</td>
<td>2.5</td>
<td>12</td>
</tr>
</tbody>
</table>
5.6. CÁLCULO DEL DIÁMETRO DE LAS TUBERÍAS

En el Anexo III, se ha realizado el diseño hidráulico de la subunidad. El objetivo es determinar qué diámetro tendrán cada una de las tuberías de las subunidades, tanto laterales como terciarias y deben cumplir ser los más económicos y producir, como máximo, una determinada diferencia de presión en la subunidad.

El resultado del dimensionado para las 10 subunidades es adoptar los siguientes diámetros:

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Lateral</th>
<th>Terciaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ø40</td>
<td>PE 80 PN 10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Ø125 PE 100 PN 10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3: Diámetro de las tubería laterales y terciarias por subunidad

5.7. DETERMINACIÓN DE CAUDALES Y PRESIONES EN LAS SUBUNIDADES

Como se ha citado anteriormente, la uniformidad de riego mínima ha de ser del 90%.

Para saber si el diseño de la red es el correcto se debe cumplir por subunidad que:

\[
\frac{q_{\text{max}}-q_{\text{min}}}{q_a} \leq 10\% \quad (\text{Ec.2})
\]

Y que:

\[
CUa = \left[1 - \frac{1.27 \times CV}{\sqrt{e}}\right] \times \frac{1}{2} \times \left[\frac{Q_{\text{min}}}{Q_a} + \frac{Q_a}{Q_{\text{max}}}\right] > 90\% \quad (\text{Ec.3})
\]
En el Anexo III.3 se puede comprobar que la elección de diámetros está correctamente definida ya que ambas condiciones cumplen en cada una de las subunidades.

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº de emisores</th>
<th>Caudal Total l/h</th>
<th>Presión requerida (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264</td>
<td>52.800</td>
<td>17,89</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>52.800</td>
<td>17,89</td>
</tr>
<tr>
<td>3</td>
<td>264</td>
<td>52.800</td>
<td>17,89</td>
</tr>
<tr>
<td>4</td>
<td>264</td>
<td>52.800</td>
<td>17,89</td>
</tr>
<tr>
<td>5</td>
<td>264</td>
<td>52.800</td>
<td>17,89</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>60.000</td>
<td>17,91</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>60.000</td>
<td>17,91</td>
</tr>
<tr>
<td>8</td>
<td>324</td>
<td>64.800</td>
<td>18,92</td>
</tr>
<tr>
<td>9</td>
<td>324</td>
<td>64.800</td>
<td>18,92</td>
</tr>
<tr>
<td>10</td>
<td>230</td>
<td>46.000</td>
<td>17,27</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.798</td>
<td>559.600</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4: Presión y caudal requerido en la cabecera por subunidad

5.8. DIMENSIONAMIENTO DE LA RED GENERAL

El dimensionamiento de la red general se ha calculado en base a la subunidad más desfavorable, en nuestro caso, cualquier subunidad de la 1 a la 5 debido a la altura a la que se encuentran las parcelas. El método empleado de pérdidas de carga ha sido el de Hazen-Williams y puede verse detallado en el Anexo III.4.

Para hacer el cálculo de la red, se ha tenido en cuenta un equipo de bombeo porque el embalse está a una cota inferior a las parcelas.

Los resultados del dimensionamiento de la tubería han sido:

Tabla 5: Diámetro de la Red General

<table>
<thead>
<tr>
<th>POLIETILENO PE 100 PN 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión nominal 10 kg/cm²</td>
</tr>
<tr>
<td>Diámetro nominal (mm) 125</td>
</tr>
<tr>
<td>Diámetro interior (mm) 117,6</td>
</tr>
</tbody>
</table>
5.9. INSTALACIÓN DEL CABEZAL DE RIEGO

Para el buen funcionamiento de la red de riego es necesaria la instalación de un cabezal de riego con el fin de garantizar el correcto funcionamiento de esta, el mantenimiento y alargar la vida útil de la instalación. En este caso, el cabezal de riego está formado por:

- **Equipo de filtrado**: constará de un filtro caza piedras que retendrá los elementos más gruesos que lleva el agua, tales como arena y pequeñas partículas minerales, y también constará de un filtro de mallas que se encargará de retener los elementos más finos capaces de obstruir la salida de los goteros.
- **Motor de combustión Diesel** cuyas características técnicas se mostrarán más adelante.
- **Alternador**
- **Válvula de retención** a la salida de la columna de la electrobomba para evitar el retorno del agua en las paradas
- **Programador de riegos** que controle la apertura y cierre de las electroválvulas que comandan cada subunidad de riego.
- **El resto de los elementos** (manómetros, válvulas, etc.) se pueden observar en el plano del cabezal de riego.
- **El equipo de fertirrigación**, es un elemento común en el cabezal de riego de otro tipo de plantaciones. En este caso, no es recomendable añadir abono a las plantas por el tipo de producto que producen.

En el Anexo III.5, se puede observar en detalle la instalación del cabezal.

5.10. PLAN DE RIEGO

La trufa no necesita de un riego de alta frecuencia. Los tiempos de riego variarán según las precipitaciones producidas a lo largo del año. Los meses donde se deberá hacer una aportación de agua son entre mayo y septiembre, periodo previo a la época de recolección.

El tiempo de riego se describe en el Anexo II.2.7.
6. DESCRIPCIÓN DE LAS OBRAS

6.1. RED DE DISTRIBUCIÓN

Las obras necesarias para la construcción de la red de distribución se realizan mediante los siguientes pasos.

6.1.1. MOVIMIENTOS DE TIERRA

Para la instalación de las tuberías terciarias, se excavan una serie de zanjas rectangulares con una anchura correspondiente al diámetro de la tubería. Por lo general, la profundidad es de 0,7 metros sobre la superficie de la tierra. Las tuberías laterales y la tubería general suelen ir sobre la superficie.

Las zanjas se dispondrán en cada subunidad de tal forma que el centro de esta sea equidistante a cada árbol de la línea, 3 metros de distancia a cada árbol desde el centro de zanja, ya que el marco de plantación es de 6x6.

Las características de estas excavaciones son:

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Longitud de la terciaria (m)</th>
<th>Ancho de la zanja (m)</th>
<th>Profundidad de la zanja (m)</th>
<th>Largo de la zanja (m)</th>
<th>Volumen Excavación (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
<tr>
<td>3</td>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
<tr>
<td>4</td>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
<tr>
<td>5</td>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>0,6</td>
<td>0,7</td>
<td>92</td>
<td>38,64</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>0,6</td>
<td>0,7</td>
<td>92</td>
<td>38,64</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>0,6</td>
<td>0,7</td>
<td>110</td>
<td>46,2</td>
</tr>
<tr>
<td>9</td>
<td>108</td>
<td>0,6</td>
<td>0,7</td>
<td>110</td>
<td>46,2</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>0,6</td>
<td>0,7</td>
<td>62</td>
<td>25,2</td>
</tr>
</tbody>
</table>

Tabla 6: Zanjeado
Diseño de una instalación de regadío para una plantación de trufa negra

Según el estado del suelo en el que se encuentre el día que se inicien las obras, se clasifican dos tipos de rendimientos:

- Terreno disgregado
- Terreno compacto

<table>
<thead>
<tr>
<th>Tipo de terreno</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disgregado</td>
<td>120 m³/jornada</td>
</tr>
<tr>
<td>Compacto</td>
<td>80 m³/jornada</td>
</tr>
</tbody>
</table>

Tabla 7: Rendimiento de las excavaciones

El volumen de cada excavación está detallado en el Anexo V.

6.1.2. APORTE DE TIERRA

Las tuberías terciarias irán apoyadas sobre un material granular compactado y extendido para la formación de la cama asiento de la tubería en la zanja.

El tipo de material presupuestado es arena de cantera caliza optándose para el caso de la terciaria por un espesor mínimo de 10 centímetros.

6.1.3. RELLENOS DE ZANJA

En la instalación de la tubería terciaria, el relleno de la zanja se realiza de dos formas diferentes; la primera, por medio de relleno manual con material seleccionado de la excavación, la segunda, se hará por medio mecánicos según la Norma UNE-EN 13331-1:2002.

6.2. DIMENSIONES DE LAS CONDUCCIONES

6.2.1. TUBERÍA DE LA RED GENERAL

La tubería general que conectará las tuberías terciarias de cada subunidad tiene las siguientes dimensiones:

<table>
<thead>
<tr>
<th>Diámetro nominal (mm)</th>
<th>Diámetro interior (mm)</th>
<th>P. de trabajo (kg/cm²)</th>
<th>Longitud (m)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>117,6</td>
<td>19</td>
<td>1304</td>
<td>PE 100 PN 10</td>
</tr>
</tbody>
</table>

Tabla 8: Tubería de la Red General

Se ha elegido un PN 10 para evitar averías o roturas provocadas por animales y otros factores.
6.2.2. TUBERÍAS EN LAS SUBUNIDADES

Las tuberías que forman la red completa de riego se clasifican en laterales que son las que contienen los emisores, y terciarias que son las tuberías portalaterales. En el Anexo III, puede verse más en detalle cómo se han calculado las dimensiones de estas tuberías. Se ha considerado un diámetro uniforme para las tuberías laterales y otro uniforme para las terciarias. Esto es debido a que, en una minoría de subunidades, la dimensión del diámetro era ligeramente menor al resto, pero las pérdidas continuas de carga estaban muy ajustadas al límite admisible. Por lo que se aumentó a un diámetro superior coincidiendo con el resto de las subunidades.

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Diámetro exterior (mm)</th>
<th>Diámetro interior (mm)</th>
<th>Longitud (m)</th>
<th>Material</th>
<th>Presión Tuberías Kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>37,6</td>
<td>36</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>37,6</td>
<td>36</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>37,6</td>
<td>36</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>37,6</td>
<td>36</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>37,6</td>
<td>36</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>37,6</td>
<td>120</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>37,6</td>
<td>120</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>37,6</td>
<td>108</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>37,6</td>
<td>108</td>
<td>PE 80</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>37,6</td>
<td>138</td>
<td>PE 80</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 9: Tuberías Laterales

Para las tuberías terciarias, se ha establecido el mismo criterio para homogenizar los diámetros:

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Diámetro exterior (mm)</th>
<th>Diámetro interior (mm)</th>
<th>Longitud (m)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>117,6</td>
<td>264</td>
<td>PE 100</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>117,6</td>
<td>264</td>
<td>PE 100</td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td>117,6</td>
<td>264</td>
<td>PE 100</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>117,6</td>
<td>264</td>
<td>PE 100</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>117,6</td>
<td>264</td>
<td>PE 100</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>117,6</td>
<td>90</td>
<td>PE 100</td>
</tr>
<tr>
<td>7</td>
<td>125</td>
<td>117,6</td>
<td>90</td>
<td>PE 100</td>
</tr>
<tr>
<td>8</td>
<td>125</td>
<td>117,6</td>
<td>108</td>
<td>PE 100</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>117,6</td>
<td>108</td>
<td>PE 100</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>117,6</td>
<td>60</td>
<td>PE 100</td>
</tr>
</tbody>
</table>

Tabla 10: Tuberías Terciarias

6.3. MICROASPERSOR ELEGIDO

Los microaspersores que irán instalados en las tuberías laterales tienen las siguientes características técnicas:
6.4. VALVULERÍA

Las válvulas empleadas en esta instalación son del tipo:

- **Válvula de paso**: a la salida del embalse, se instalará una válvula de paso que permitirá la conducción del agua a través de la red general.

- **Válvula de desagüe**: al final de la conducción en la tubería principal, se instalará una válvula de desagüe en caso de avería o necesidad de vaciado de la red.

- **Arquetas de riego**: al comienzo de cada terciaria, se colocará una arqueta de riego de dimensiones interiores a 80x80x80 cm. Estas arquetas tendrán dos válvulas de paso y un manómetro.

6.5. ARQUETAS DE RIEGO

Las arquetas van colocadas en el comienzo de cada tubería terciaria, antes de enterrarse. Los limitadores de presión nos aseguran una presión determinada aguas debajo de su emplazamiento y, por tanto, son capaces de mantener un caudal determinado y una uniformidad de riego. Los reguladores o limitadores de presión instalados deben permitir suspender su funcionamiento cuando se requieran grandes presiones aguas abajo para limpiar los ramales, los limitadores serán de tipo muelle.

6.6. CABEZAL DE RIEGO

El agua que se utiliza para regar proviene de un embalse, y para que el sistema se encuentre siempre con un buen funcionamiento, es necesario instalar una serie de elementos que hacen el conjunto de cabezal de riego.

- Filtro de caza piedras
- Filtro de anillas
- Electroválvulas
- Programadores
- Contadores
- Sistema de automatización

En el Anexo III.5, se recoge la información detallada de los elementos del cabezal.
6.6.1. EQUIPO DE FILTRADO

- Filtro de arena:
 - Tamizado: Retiene las partículas de tamaño superior a los poros del filtro
 - Sedimentación: cada espacio poroso actúa como un pequeño decantador en el que la sedimentación se ve favorecida por la baja velocidad del agua
 - Adhesión y cohesión: las partículas en suspensión entran en contacto con un grano del material filtrante creando fuerzas de atracción de origen eléctrico, que explican que los filtros retengan partículas mucho menores que el tamaño de los poros.

En el Anexo III.5.1 se ha determinado el tipo de filtro que se instalará, sus características son:

<table>
<thead>
<tr>
<th>Diámetro (m)</th>
<th>Pérdidas de carga (m.c.a)</th>
<th>Conexión</th>
<th>Carcasa</th>
<th>Elemento filtrante</th>
<th>Abrazadera</th>
<th>Elemento sellado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,91</td>
<td>1</td>
<td>2"</td>
<td>Poliamida reforzada con fibra de vidrio</td>
<td>Discos ranurados de Polipropileno</td>
<td>Acero inoxidable</td>
<td>NBR</td>
</tr>
</tbody>
</table>

Tabla 12: Equipo de filtrado

- Filtro de mallas: para poder retener las partículas minerales o productos nocivos que pueda llevar el agua antes de llegar a la instalación, es necesario instalar un filtro de mallas. Puede verse dimensionado en el Anexo III.5.1.2.

6.7. VALLADO

Para evitar la entrada de fauna silvestre como jabalíes, ciervos o ganado es necesario instalar un cerramiento en toda la plantación.

Los elementos del cerramiento son:

- Postes intermedios
- Postes de tensión
- Postes de refuerzo
- Malla ganadera galvanizada
- Alambre de espino galvanizado
- Grampillones galvanizados
- Tensores de carraca galvanizados.
- Tornillos bicromados M5 de 100 mm
- Puertas de dos hojas de pino tanalizado
- Ejecución de las obras
Cada uno de los tramos tendrá postes intermedios separados a una distancia de 3 metros. La colocación de estos postes, irán de la siguiente manera:

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Longitud (m)</th>
<th>Nº Postes Intermedios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>178</td>
<td>59</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>3-4</td>
<td>348</td>
<td>116</td>
</tr>
<tr>
<td>4-5</td>
<td>213</td>
<td>71</td>
</tr>
<tr>
<td>5-6</td>
<td>182</td>
<td>61</td>
</tr>
<tr>
<td>6-7</td>
<td>263</td>
<td>88</td>
</tr>
<tr>
<td>7-8</td>
<td>211</td>
<td>70</td>
</tr>
<tr>
<td>8-9</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>9-10</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>10-11</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>11-12</td>
<td>116</td>
<td>39</td>
</tr>
<tr>
<td>12-13</td>
<td>310</td>
<td>103</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.005</td>
<td>668</td>
</tr>
</tbody>
</table>

Tabla 13: Longitud del vallado
7. EJECUCIÓN DE LAS OBRAS

En el Anexo VI, se justifica el plazo de ejecución de las obras mediante el diagrama de Gantt. Se estima que la ejecución de las obras finaliza en un periodo de 23 días desde la autorización de comienzo. Todas las actividades están detalladas en el diagrama del Anexo VI.4.
Diseño de una instalación de regadío para una plantación de trufa negra

8. FACTORES ECONÓMICOS

En el Documento 4 “Presupuesto” se puede encontrar una versión extendida del presupuesto del proyecto.

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de tierras</td>
<td>2.173,68 €</td>
</tr>
<tr>
<td>Subunidades</td>
<td>9.553,04 €</td>
</tr>
<tr>
<td>Red General de Riego</td>
<td>3.588,26 €</td>
</tr>
<tr>
<td>Cabezal de riego</td>
<td>8.092,26 €</td>
</tr>
<tr>
<td>Vallado</td>
<td>5.243,25 €</td>
</tr>
<tr>
<td>Total sin IVA</td>
<td>28.650,49 €</td>
</tr>
<tr>
<td>Total con IVA</td>
<td>34.666,5 €</td>
</tr>
</tbody>
</table>

Tabla 14: Presupuesto del proyecto
ANEXO I: ESTUDIO CLIMATOLÓGICO
ÍNDICE ANEXO I

ANEXO I. ESTUDIO CLIMATOLÓGICO
Anexo I.1. Introducción
Anexo I.2. Variables Hídricas: Precipitaciones y humedad relativa
Anexo I.3. Temperaturas
Anexo I.3.1. Temperaturas invernales
Anexo I.3.2. Temperaturas estivales
Anexo I.4. Diagrama ombrotérmico de Gaussen
Anexo I.5. Índices climáticos
Anexo I.5.1. Índice de Lang
Anexo I.5.2. Índice de Martonne
Anexo I.5.3. Índice de Meyer
Anexo I.5.4. Índice de Dantín-Cereced
Anexo I.6. Clasificaciones climáticas
Anexo I.6.1. Clasificación climática de Thorntwaite
Anexo I.6.2. Clasificación climática según la UNESCO
Anexo I.6.3. Clasificación Agroclimática de Papadakis
Anexo I.7. Conclusión

ÍNDICE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Pluviometría de la estación meteorológica de Albentosa</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Resumen de precipitaciones y humedad relativa 2002-2016</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>Precipitaciones medias por estaciones</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>Humedad relativa por estaciones</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Temperaturas entre 2002-2016</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>Régimen de heladas</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>Temperaturas estivales altas y bajas</td>
<td>34</td>
</tr>
<tr>
<td>21</td>
<td>Valores de Lang</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>Valores de Martonne</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>Valores de Meyer</td>
<td>37</td>
</tr>
<tr>
<td>24</td>
<td>Valores de Dantín-Cereced</td>
<td>38</td>
</tr>
<tr>
<td>25</td>
<td>Índice de calor anual</td>
<td>39</td>
</tr>
<tr>
<td>26</td>
<td>Resumen de Datos para el cálculo de ETP</td>
<td>39</td>
</tr>
<tr>
<td>27</td>
<td>Resumen de Datos para el cálculo de Iw</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Clasificación según el Índice de humedad</td>
<td>41</td>
</tr>
<tr>
<td>29</td>
<td>Clasificación según el índice de eficiencia térmica</td>
<td>41</td>
</tr>
<tr>
<td>30</td>
<td>Variación estacional de la humedad</td>
<td>42</td>
</tr>
<tr>
<td>31</td>
<td>Resumen de Datos para el cálculo de CV</td>
<td>42</td>
</tr>
<tr>
<td>32</td>
<td>Concentración térmica en verano</td>
<td>43</td>
</tr>
<tr>
<td>33</td>
<td>Grupos según la UNESCO</td>
<td>43</td>
</tr>
<tr>
<td>34</td>
<td>Tipo de invierno</td>
<td>44</td>
</tr>
<tr>
<td>35</td>
<td>Tipo de clima según los periodos secos</td>
<td>44</td>
</tr>
</tbody>
</table>
Diseño de una instalación de regadío para una plantación de trufa negra

Tabla 36: Coeficiente de sequía según la humedad relativa.................................- 45 -
Tabla 37: Resumen de datos para el cálculo del índice xerotérmico..........................- 45 -
Tabla 38: Tipo de Invierno..- 46 -
Tabla 39: Tipo de verano...- 46 -
Tabla 40: Régimen térmico..- 47 -
Tabla 41: Caracterización térmica...- 48 -
Tabla 42: Lluvia de lavado..- 48 -
Tabla 43: Déficit en los meses más secos ..- 53 -
Tabla 44 - Valores máximos de CU...- 54 -

ÍNDICE ILUSTRACIONES

Ilustración 7: Gráfico de la evolución de las precipitaciones media mensuales...... - 31 -
Ilustración 8: Gráfico de la evolución de la humedad relativa...........................- 31 -
Ilustración 9: Gráfico de temperaturas mensuales ...- 33 -
Ilustración 10: Gráfico de las precipitaciones y temperaturas medias...............- 33 -
Ilustración 11: Microaspersor Gyronet...- 55 -
Anexo I. **ESTUDIO CLIMATOLÓGICO**

Anexo I.1. Introducción

El presente anexo contiene el estudio climatológico alrededor de la parcela donde se ejecuta la instalación de riego. Estos estudios nos indicarán la viabilidad del sistema de riego en la plantación.

Las condiciones climáticas en la truficultura son las siguientes:

- La trufa precisa de una pluviometría de 500 a 900 mm, con humedad suficiente en primavera, para que se desarrolle el micelio a partir de la micorriza, y durante el verano para que engorde la trufa, siendo perjudicial el exceso de humedad en otoño e invierno.
- El clima ideal para las trufas es aquel cuya temperatura media del mes más cálido sea de 20º C y la temperatura media del mes más frío 2ºC. [1]

La trufa es un hongo que necesita frío, pero le perjudican las heladas y nevadas persistentes ya que entonces no madura. Las condiciones más idóneas son zonas de mucha altura y climas fríos y las más perjudiciales, las zonas de mucho sol y lluvia escasa. Por lo que los climas costeros con estaciones poco marcadas, los climas áridos con precipitaciones inferiores a los 500 mm y los climas de alta montaña con frecuentes, fuertes y prolongadas heladas serán poco idóneos para el cultivo de trufa. No es corriente que la trufa se produzca por debajo de los 700 metros. La altitud corriente está comprendida de los 700 a 1400 metros sobre el nivel del mar.

Para el estudio climatológico, el observatorio meteorológico elegido ha de estar situado a una altitud similar a la de la parcela en estudio y localizado en la misma orientación respecto a cadenas montañosas importantes.

Los resultados climatológicos se han obtenido desde el observatorio de Segorbe, situado a 35 km de la parcela. Este es el que nos dará los datos más aproximados para poder realizar el estudio.
Diseño de una instalación de regadío para una plantación de trufa negra

Anexo 1.2. Variables Hídricas: Precipitaciones y humedad relativa

A continuación, encontramos una tabla con la cantidad de precipitaciones comprendidas entre 2002 y 2016.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Total Anual</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>40,8</td>
<td>0,2</td>
<td>19,6</td>
<td>105,8</td>
<td>101,4</td>
<td>20,6</td>
<td>39,4</td>
<td>130,6</td>
<td>65,2</td>
<td>21,8</td>
<td>13,6</td>
<td>38,2</td>
<td>597,2</td>
<td>49,8</td>
</tr>
<tr>
<td>2003</td>
<td>4,8</td>
<td>92,8</td>
<td>40,4</td>
<td>54</td>
<td>136,8</td>
<td>12</td>
<td>2,6</td>
<td>81,2</td>
<td>84,4</td>
<td>58,2</td>
<td>10,8</td>
<td>24,8</td>
<td>602,8</td>
<td>50,2</td>
</tr>
<tr>
<td>2004</td>
<td>0,2</td>
<td>71</td>
<td>111</td>
<td>72</td>
<td>102,2</td>
<td>24,8</td>
<td>13,2</td>
<td>22,8</td>
<td>89,6</td>
<td>13,4</td>
<td>4,6</td>
<td>71,2</td>
<td>596</td>
<td>49,7</td>
</tr>
<tr>
<td>2005</td>
<td>1,6</td>
<td>41,4</td>
<td>7,6</td>
<td>40,8</td>
<td>43,6</td>
<td>18,6</td>
<td>18,2</td>
<td>44,2</td>
<td>48</td>
<td>21,4</td>
<td>171,2</td>
<td>7,8</td>
<td>464,4</td>
<td>38,7</td>
</tr>
<tr>
<td>2006</td>
<td>101,4</td>
<td>61</td>
<td>10,4</td>
<td>28,8</td>
<td>38</td>
<td>14,8</td>
<td>5,8</td>
<td>55,8</td>
<td>8</td>
<td>80,4</td>
<td>10</td>
<td>420,2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>35,6</td>
<td>28,6</td>
<td>40,2</td>
<td>142</td>
<td>16,6</td>
<td>16</td>
<td>4,2</td>
<td>12,6</td>
<td>70,8</td>
<td>83,8</td>
<td>1,8</td>
<td>96,8</td>
<td>549</td>
<td>45,8</td>
</tr>
<tr>
<td>2008</td>
<td>7,2</td>
<td>81,8</td>
<td>2,4</td>
<td>12,2</td>
<td>140,4</td>
<td>57,4</td>
<td>7,8</td>
<td>15,2</td>
<td>45,6</td>
<td>132,4</td>
<td>34,4</td>
<td>38,6</td>
<td>575,4</td>
<td>48</td>
</tr>
<tr>
<td>2009</td>
<td>22,6</td>
<td>14,4</td>
<td>91,6</td>
<td>37,2</td>
<td>2,6</td>
<td>2,4</td>
<td>6,2</td>
<td>0,4</td>
<td>150</td>
<td>19,8</td>
<td>5,6</td>
<td>79</td>
<td>431,8</td>
<td>36</td>
</tr>
<tr>
<td>2010</td>
<td>78,2</td>
<td>35,6</td>
<td>51,8</td>
<td>67</td>
<td>53,6</td>
<td>51,2</td>
<td>4,4</td>
<td>18</td>
<td>28</td>
<td>59,6</td>
<td>16,4</td>
<td>20,6</td>
<td>484,4</td>
<td>40,4</td>
</tr>
<tr>
<td>2011</td>
<td>21,2</td>
<td>6,6</td>
<td>97</td>
<td>75,6</td>
<td>54,6</td>
<td>42,2</td>
<td>37,6</td>
<td>4,6</td>
<td>8,8</td>
<td>38,4</td>
<td>120,6</td>
<td>9,9</td>
<td>517,1</td>
<td>43,1</td>
</tr>
<tr>
<td>2012</td>
<td>31,1</td>
<td>0,4</td>
<td>22,4</td>
<td>66,1</td>
<td>1,2</td>
<td>21,8</td>
<td>6,1</td>
<td>1,2</td>
<td>65,2</td>
<td>136,6</td>
<td>31,9</td>
<td>2,7</td>
<td>386,7</td>
<td>32,2</td>
</tr>
<tr>
<td>2013</td>
<td>2,7</td>
<td>35,7</td>
<td>83,2</td>
<td>114,3</td>
<td>6,6</td>
<td>17,2</td>
<td>3,1</td>
<td>38</td>
<td>1,6</td>
<td>1,9</td>
<td>8,7</td>
<td>7,9</td>
<td>320,9</td>
<td>26,7</td>
</tr>
<tr>
<td>2014</td>
<td>6</td>
<td>24,3</td>
<td>12,6</td>
<td>1,2</td>
<td>0,6</td>
<td>48,3</td>
<td>7,1</td>
<td>2</td>
<td>27,2</td>
<td>6,6</td>
<td>127,8</td>
<td>26,6</td>
<td>290,3</td>
<td>24,2</td>
</tr>
<tr>
<td>2015</td>
<td>8</td>
<td>8,2</td>
<td>187</td>
<td>3,4</td>
<td>32</td>
<td>83,8</td>
<td>32,6</td>
<td>59,6</td>
<td>22,3</td>
<td>47,8</td>
<td>119,2</td>
<td>2,6</td>
<td>606,5</td>
<td>50,5</td>
</tr>
<tr>
<td>2016</td>
<td>2</td>
<td>7,8</td>
<td>19,5</td>
<td>32,2</td>
<td>58,9</td>
<td>2</td>
<td>5,6</td>
<td>7,6</td>
<td>50,7</td>
<td>23,1</td>
<td>139,1</td>
<td>97,9</td>
<td>446,4</td>
<td>37,2</td>
</tr>
<tr>
<td>Media</td>
<td>24,2</td>
<td>34</td>
<td>53,1</td>
<td>56,8</td>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>44,9</td>
<td>59,1</td>
<td>35,6</td>
<td>485,94</td>
<td>40,5</td>
</tr>
</tbody>
</table>

Tabla 15: Pluviometría de la estación meteorológica de Albentosa

En la presente tabla indica el resumen de las precipitaciones entre los años 2002 y 2016, así como los datos de humedad relativa.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Precipitación máxima en un día (mm)</th>
<th>Precipitación media mensual (mm)</th>
<th>Humedad relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>11,1</td>
<td>24,2</td>
<td>66,0</td>
</tr>
<tr>
<td>Feb</td>
<td>15,4</td>
<td>34,0</td>
<td>63,5</td>
</tr>
<tr>
<td>Mar</td>
<td>22,3</td>
<td>53,1</td>
<td>63,4</td>
</tr>
<tr>
<td>Abr</td>
<td>22,2</td>
<td>56,8</td>
<td>65,6</td>
</tr>
<tr>
<td>May</td>
<td>23,7</td>
<td>52,6</td>
<td>63,8</td>
</tr>
<tr>
<td>Jun</td>
<td>16,2</td>
<td>28,9</td>
<td>61,7</td>
</tr>
<tr>
<td>Jul</td>
<td>8,6</td>
<td>12,9</td>
<td>63,6</td>
</tr>
<tr>
<td>Ago</td>
<td>15,3</td>
<td>29,6</td>
<td>65,7</td>
</tr>
<tr>
<td>Sep</td>
<td>22,6</td>
<td>54,2</td>
<td>70,7</td>
</tr>
<tr>
<td>Oct</td>
<td>18,7</td>
<td>44,9</td>
<td>72,3</td>
</tr>
<tr>
<td>Nov</td>
<td>26,5</td>
<td>59,1</td>
<td>69,7</td>
</tr>
<tr>
<td>Dic</td>
<td>16,8</td>
<td>35,6</td>
<td>69,6</td>
</tr>
</tbody>
</table>

Tabla 16: Resumen de precipitaciones y humedad relativa 2002-2016
En los gráficos mostrados a continuación, se puede ver de una forma visual la evolución de las precipitaciones mensuales y la humedad relativa por meses durante los años 2002 y 2016 en Albentosa:

Ilustración 8: Gráfico de la evolución de las precipitaciones media mensuales

<table>
<thead>
<tr>
<th>Estación</th>
<th>Invierno</th>
<th>Primavera</th>
<th>Verano</th>
<th>Otoño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prec.Media</td>
<td>31,3</td>
<td>54,2</td>
<td>23,8</td>
<td>52,7</td>
</tr>
</tbody>
</table>

Tabla 17: Precipitaciones medias por estaciones

Ilustración 9: Gráfico de la evolución de la humedad

<table>
<thead>
<tr>
<th>Estación</th>
<th>Invierno</th>
<th>Primavera</th>
<th>Verano</th>
<th>Otoño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hum.Relat</td>
<td>63,5</td>
<td>63,8</td>
<td>65,7</td>
<td>69,67</td>
</tr>
</tbody>
</table>

Tabla 18: Humedad relativa por estaciones

Los meses con mayores precipitaciones son en primavera y otoño y los meses con mayor humedad relativa son en otoño e invierno.
Anexo 1.3. Temperaturas

A continuación, se muestran los resultados de las temperaturas obtenidas en el observatorio comprendidas entre los años 2002 y 2016.

- \(T_{mm} \): Temperatura media de las medias
- \(T_{mma} \): Temperatura media de las máximas
- \(T_{mmi} \): Temperatura media de las mínimas
- \(T_{mama} \): Temperatura máxima de las máximas
- \(T_{mimi} \): Temperatura mínima de las mínimas

<table>
<thead>
<tr>
<th>Meses</th>
<th>Tmm</th>
<th>Tmma</th>
<th>Tmmi</th>
<th>Tmama</th>
<th>Tmimi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>8,3</td>
<td>14,7</td>
<td>2,2</td>
<td>22,2</td>
<td>-4,0</td>
</tr>
<tr>
<td>Feb</td>
<td>8,6</td>
<td>14,8</td>
<td>2,5</td>
<td>22,1</td>
<td>-3,3</td>
</tr>
<tr>
<td>Mar</td>
<td>10,9</td>
<td>17,7</td>
<td>4,4</td>
<td>25,8</td>
<td>-2,2</td>
</tr>
<tr>
<td>Abr</td>
<td>13,5</td>
<td>20,3</td>
<td>6,7</td>
<td>27,1</td>
<td>1,5</td>
</tr>
<tr>
<td>May</td>
<td>16,9</td>
<td>23,6</td>
<td>9,8</td>
<td>30,9</td>
<td>5,0</td>
</tr>
<tr>
<td>Jun</td>
<td>21,3</td>
<td>28,2</td>
<td>13,7</td>
<td>33,9</td>
<td>9,2</td>
</tr>
<tr>
<td>Jul</td>
<td>23,8</td>
<td>30,6</td>
<td>16,4</td>
<td>36,0</td>
<td>12,7</td>
</tr>
<tr>
<td>Ago</td>
<td>23,5</td>
<td>30,4</td>
<td>16,7</td>
<td>36,0</td>
<td>12,7</td>
</tr>
<tr>
<td>Sep</td>
<td>20,2</td>
<td>27,0</td>
<td>13,9</td>
<td>33,1</td>
<td>8,2</td>
</tr>
<tr>
<td>Oct</td>
<td>16,4</td>
<td>23,2</td>
<td>10,4</td>
<td>29,9</td>
<td>4,1</td>
</tr>
<tr>
<td>Nov</td>
<td>11,4</td>
<td>17,9</td>
<td>5,5</td>
<td>24,3</td>
<td>-1,0</td>
</tr>
<tr>
<td>Dic</td>
<td>8,8</td>
<td>15,2</td>
<td>3,0</td>
<td>22,7</td>
<td>-4,1</td>
</tr>
</tbody>
</table>

Tabla 19: Temperaturas entre 2002-2016
Según los datos proporcionados de precipitaciones y temperaturas, el clima donde se encuentra la plantación es un clima templado. Las estaciones están bien diferenciadas, en otoño se empieza a presenciar temperaturas más bajas con el paso de los días siendo al contrario en primavera, donde las temperaturas van aumentando.

Ilustración 10: Gráfico de temperaturas mensuales

Ilustración 11: Gráfico de las precipitaciones y temperaturas medias
Anexo I.3.1. Temperaturas inviernales

En tablas anteriores se han proporcionado las temperaturas mínimas que se alcanzan por debajo de los 0°C, siendo estas en los meses de noviembre hasta marzo;

<table>
<thead>
<tr>
<th>Meses</th>
<th>Heladas °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov</td>
<td>-1,0</td>
</tr>
<tr>
<td>Dic</td>
<td>-4,1</td>
</tr>
<tr>
<td>Ene</td>
<td>-4,0</td>
</tr>
<tr>
<td>Feb</td>
<td>-3,3</td>
</tr>
<tr>
<td>Mar</td>
<td>-2,2</td>
</tr>
</tbody>
</table>

Tabla 20: Régimen de heladas

Anexo I.3.2. Temperaturas estivales

El término estival se utiliza para designar como adjetivo calificativo a la época del año en la cual las temperaturas suben y el clima es más cálido. Esta época estival se conoce comúnmente como verano entre los meses de junio a septiembre. En este periodo no se dan temperaturas por debajo de los 0°C, pero sí que hay una gran diferencia entre las temperaturas mínimas y máximas.

<table>
<thead>
<tr>
<th>Meses</th>
<th>Altas</th>
<th>Bajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td>33,9</td>
<td>9,2</td>
</tr>
<tr>
<td>Jul</td>
<td>36,0</td>
<td>12,7</td>
</tr>
<tr>
<td>Ago</td>
<td>36,0</td>
<td>12,7</td>
</tr>
<tr>
<td>Sep</td>
<td>33,1</td>
<td>8,2</td>
</tr>
</tbody>
</table>

Tabla 21: Temperaturas estivales altas y bajas

Anexo I.4. Diagrama ombrotérmico de Gaussen

El diagrama ombrotérmico de Gaussen permite identificar el periodo seco en el cual la precipitación es inferior a dos veces la temperatura media (como aproximación a la sequedad estacional considerando $2 \cdot \text{tm}$ una estimación de la evapotranspiración). Se debe considerar que la escala de precipitaciones debe ser doble que la de temperaturas. Esto es, por cada °C en temperatura se toma un par de mm en precipitación. Si $P \leq 2 \cdot \text{tm}$ la curva de precipitaciones estará por debajo de la curva de temperaturas y el área comprendida entre las dos curvas nos indicará la duración e intensidad del periodo de sequía.
Mes más cálido: se considera el mes más cálido agosto ya que su temperatura media es superior a los 20 ºC. El periodo cálido está comprendido entre los meses de junio y agosto con temperaturas medias aproximadas a los 24 ºC.

Mes frío: se considera como mes más frío aquel en que la temperatura media es menor a que 0ºC. Aunque en las temperaturas media obtenidas ninguna está por debajo de los 0ºC, el mes más frío es enero con una temperatura de 8,3ºC.

Mes seco: se considera como mes seco aquel en el que la precipitación es inferior a dos veces su temperatura media. Como se puede ver en el diagrama, entre junio y agosto la línea de temperaturas supera la de precipitaciones por lo que esto significa que estos serán los meses que determinarán el “periodo o estación seca”.

Mes húmedo: se considera mes húmedo cuando la precipitación media mensual en mm supera dos veces la temperatura media en ºC. El periodo húmedo de la zona comprende los meses de enero, febrero, marzo, abril, mayo, septiembre, octubre, noviembre y diciembre.

Mes subseco: se considera mes subseco aquel donde la precipitación media mensual supere entre dos y tres veces la temperatura media mensual. Como muestra el gráfico este periodo subseco sería el comprendido en los meses de enero, febrero, marzo, abril, mayo, noviembre y diciembre.

Anexo I.5. Índices climáticos

Para definir el clima de una zona determinada se necesita el estudio de los siguientes índices que determinan una serie de valores que sirven para comparar unas zonas de otras.
Anexo I.5.1. Índice de Lang

Este índice se determina mediante la fórmula:

\[I_L = \frac{P}{T} \quad (Ec \ 1) \]

P: Precipitación media anual (mm)
T= Temperatura media anual (°C)

Para este caso:

\[I_L = \frac{485.9}{15.4} = 31.55 \]

<table>
<thead>
<tr>
<th>Valor de (I_L)</th>
<th>Zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>Desiertos</td>
</tr>
<tr>
<td>20-40</td>
<td>Árida</td>
</tr>
<tr>
<td>40-60</td>
<td>Húmeda de estepa y sabana</td>
</tr>
<tr>
<td>60-100</td>
<td>Húmeda de bosques claros</td>
</tr>
<tr>
<td>100-160</td>
<td>Húmeda de grandes bosques</td>
</tr>
<tr>
<td>>160</td>
<td>Perhúmeda con prados y tundras</td>
</tr>
</tbody>
</table>

Tabla 22: Valores de Lang

El valor obtenido corresponde a una **zona árida**.

Anexo I.5.2. Índice de Martonne

Este índice se determina mediante la fórmula:

\[I_M = \frac{P}{T+10} \quad (Ec \ 2) \]

P: Precipitación media anual (mm)
T= Temperatura media anual (°C)

Para este caso:

\[I_M = \frac{485.9}{15.4+10} = 19.13 \]

<table>
<thead>
<tr>
<th>Valor de (I_M)</th>
<th>Zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>Desiertos</td>
</tr>
<tr>
<td>5-10</td>
<td>Semidesierto</td>
</tr>
<tr>
<td>10-20</td>
<td>Semiárido de tipo mediterráneo</td>
</tr>
<tr>
<td>20-30</td>
<td>Subhúmeda</td>
</tr>
<tr>
<td>30-60</td>
<td>Húmeda</td>
</tr>
<tr>
<td>>60</td>
<td>Perhúmeda</td>
</tr>
</tbody>
</table>

Tabla 23: Valores de Martonne

El valor obtenido corresponde a una **zona semiárida de tipo mediterráneo**.
Diseño de una instalación de regadío para una plantación de trufa negra

Anexo I.5.3. Índice de Meyer

Este índice se determina mediante la fórmula:

\[I_{Me} = \frac{P}{D} \quad (Ec \ 3) \]

Donde

\[D = \frac{100 - H}{100} \times T \quad (Ec \ 4) \]

P: Precipitación media anual (mm)
D: Déficit de saturación
H: Humedad relativa media
T: Tensión máxima de vapor de agua a la temperatura media mensual (mb)

Conociendo que 1 atm = 760 mm Hg = 1013 mb

\[D = \frac{100 - 66,3}{100} \times 15,4 = 5,18 \]

\[I_{Me} = \frac{485,9}{5,18} = 93,8 \]

<table>
<thead>
<tr>
<th>Valor de (I_{Me})</th>
<th>Zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>Aridez, desiertos y estepas</td>
</tr>
<tr>
<td>100-275</td>
<td>Semiáridos</td>
</tr>
<tr>
<td>275-375</td>
<td>Semihúmedo</td>
</tr>
<tr>
<td>375-500</td>
<td>Húmedo</td>
</tr>
<tr>
<td>>500</td>
<td>Muy húmedo</td>
</tr>
</tbody>
</table>

Tabla 24: Valores de Meyer

El valor obtenido corresponde a una zona árida.

Anexo I.5.4. Índice de Dantín-Cereced

Este índice se determina mediante la fórmula:

\[I_{DC} = \frac{T}{P} \times 100 \quad (Ec \ 5) \]

P: Precipitación media anual (mm)
T= Temperatura media anual (°C)

\[I_{DC} = \frac{15,4}{485,9} \times 100 = 3,16 \]

<table>
<thead>
<tr>
<th>Valor de (I_{DC})</th>
<th>Zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>Húmeda</td>
</tr>
<tr>
<td>2-3</td>
<td>Semiárida</td>
</tr>
<tr>
<td>3-6</td>
<td>Árida</td>
</tr>
<tr>
<td>6</td>
<td>Subdesértica</td>
</tr>
</tbody>
</table>
Tabla 25: Valores de Dantín-Cereced

El valor obtenido corresponde a una zona árida.

Anexo I.6. Clasificaciones climáticas

Para determinar en qué tipo de clima se encuentra la parcela se deben estudiar las distintas clasificaciones:

- Clasificación climática de Thornthwaite
- Clasificación bioclimática de UNESCO-FAO
- Clasificación agroecológica de Papadakis

Anexo I.6.1. Clasificación climática de Thornthwaite

Thornthwaite propuso una clasificación climática cuya principal característica fue la utilización de la evapotranspiración potencial como parámetro fundamental para la delimitación de los distintos tipos climáticos.

Se basa en el concepto de evapotranspiración potencial y en el balance de vapor de agua, contiene cuatro criterios básicos: índice global de humedad, variación estacional de la humedad efectiva, índice de eficiencia térmica y concentración estival de la eficacia térmica. La evapotranspiración potencial (ETP) se determina a partir de la temperatura media mensual, corregida según la duración del día.

Cálculo de la evapotranspiración potencial:

\[
 e = 1,6 \times \frac{10^{3} \times T_m}{I} \times a \quad (Ec\ 6)
\]

\[
 I = \sum_{i} i \times j = 1, 2, ..., 12 \quad (Ec\ 7)
\]

\[
a = (0,675 \times I^{3} \times 10^{-6}) - (0,771 \times I^{3} \times 10^{-4}) + (0,01792 \times I) + 0,49239 \quad (Ec\ 8)
\]

\[
 I_j = \left(\frac{T_m}{5} \right)^{1,514} \quad (Ec\ 9)
\]

Tm: Temperatura media mensual
I: Índice de calor anual
a: Parámetro que se calcula en función de I según la expresión
Diseño de una instalación de regadío para una plantación de trufa negra

<table>
<thead>
<tr>
<th>Mes</th>
<th>Tm</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>8,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Feb</td>
<td>8,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Mar</td>
<td>10,9</td>
<td>3,3</td>
</tr>
<tr>
<td>Abr</td>
<td>13,5</td>
<td>4,1</td>
</tr>
<tr>
<td>May</td>
<td>16,9</td>
<td>5,1</td>
</tr>
<tr>
<td>Jun</td>
<td>21,3</td>
<td>6,4</td>
</tr>
<tr>
<td>Jul</td>
<td>23,8</td>
<td>7,2</td>
</tr>
<tr>
<td>Ago</td>
<td>23,5</td>
<td>7,1</td>
</tr>
<tr>
<td>Sep</td>
<td>20,2</td>
<td>6,1</td>
</tr>
<tr>
<td>Oct</td>
<td>16,4</td>
<td>5,0</td>
</tr>
<tr>
<td>Nov</td>
<td>11,4</td>
<td>3,5</td>
</tr>
<tr>
<td>Dic</td>
<td>8,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Total</td>
<td>N/A</td>
<td>55,6</td>
</tr>
</tbody>
</table>

Tabla 26: Índice de calor anual

En este caso el índice de calor anual es:

\[I = 55,6 \]

\[a = 1,37 \]

El cálculo de la evapotranspiración potencial anual es:

\[ETP_{Tho} = e \times L \quad (Ec\ 10) \]

e: evapotranspiración mensual sin ajustar en mm
L: factor de corrección del número de días del mes (Ndj) y la duración astronómica del día Nj (horas de sol).

\[L_i = \frac{Nd_j}{30} \times (Ec\ 11) \]

<table>
<thead>
<tr>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tm</td>
<td>8,30</td>
<td>8,60</td>
<td>10,90</td>
<td>13,50</td>
<td>16,90</td>
<td>21,30</td>
<td>23,80</td>
<td>23,50</td>
<td>20,20</td>
<td>16,40</td>
<td>11,40</td>
<td>8,80</td>
</tr>
<tr>
<td>I</td>
<td>2,15</td>
<td>2,27</td>
<td>3,25</td>
<td>4,50</td>
<td>6,32</td>
<td>8,97</td>
<td>10,61</td>
<td>10,41</td>
<td>8,28</td>
<td>6,04</td>
<td>3,48</td>
<td>2,35</td>
</tr>
<tr>
<td>a</td>
<td>0,53</td>
<td>0,53</td>
<td>0,55</td>
<td>0,57</td>
<td>0,60</td>
<td>0,65</td>
<td>0,67</td>
<td>0,67</td>
<td>0,64</td>
<td>0,60</td>
<td>0,55</td>
<td>0,53</td>
</tr>
<tr>
<td>e</td>
<td>11,11</td>
<td>11,08</td>
<td>11,03</td>
<td>11,18</td>
<td>11,60</td>
<td>12,44</td>
<td>13,05</td>
<td>12,97</td>
<td>12,20</td>
<td>11,52</td>
<td>11,05</td>
<td>11,07</td>
</tr>
<tr>
<td>L</td>
<td>0,59</td>
<td>0,61</td>
<td>0,79</td>
<td>0,90</td>
<td>1,02</td>
<td>1,05</td>
<td>1,08</td>
<td>0,99</td>
<td>0,83</td>
<td>0,71</td>
<td>0,58</td>
<td>0,55</td>
</tr>
</tbody>
</table>

Tabla 27: Resumen de Datos para el cálculo de ETP
Cálculo del Índice Global de Humedad

Para calcular el índice de humedad intervienen una serie de factores:

- \(P_m\): Precipitación media mensual (mm)
- ETP: evapotranspiraciones medias mensuales (mm)
- \(P_m - ETP\): déficit o superávit entre precipitaciones y ETP
- \(R\): reservas de agua del suelo
- \(D\): déficits mensuales de agua
- \(E\): excesos mensuales de agua
- \(Dr\): drenaje
- \(ETR\): evapotranspiración real

La expresión para este cálculo viene dada por la fórmula:

\[I = I_E - 0,6 \times I_D \] (Ec 12)

\(I_E\): Índice de exceso

\[I_E = \left(\frac{E_{\text{annual}}}{ETP_{\text{annual}}} \right) \times 100 \] (Ec 13)

\(I_D\): Índice de falta

\[I_D = \left(\frac{D_{\text{annual}}}{ETP_{\text{annual}}} \right) \times 100 \] (Ec 14)

<table>
<thead>
<tr>
<th></th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_m)</td>
<td>24,2</td>
<td>34,0</td>
<td>53,1</td>
<td>56,8</td>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>44,9</td>
<td>59,1</td>
<td>35,6</td>
<td>485,9</td>
</tr>
<tr>
<td>ETP</td>
<td>12,8</td>
<td>13,8</td>
<td>26,3</td>
<td>41,8</td>
<td>67,9</td>
<td>100,2</td>
<td>122,4</td>
<td>110,4</td>
<td>73,2</td>
<td>44,6</td>
<td>20,8</td>
<td>13,0</td>
<td>647,4</td>
</tr>
<tr>
<td>(P_m - ETP)</td>
<td>11,4</td>
<td>20,2</td>
<td>26,8</td>
<td>15,0</td>
<td>-15,3</td>
<td>-71,3</td>
<td>-109,5</td>
<td>-80,8</td>
<td>-19,0</td>
<td>0,3</td>
<td>38,3</td>
<td>22,6</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>84,7</td>
<td>28,7</td>
<td>-9,5</td>
<td>19,2</td>
<td>81,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td>ETR</td>
<td>12,8</td>
<td>13,8</td>
<td>26,3</td>
<td>41,8</td>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>44,6</td>
<td>20,8</td>
<td>13,0</td>
<td>351,5</td>
</tr>
<tr>
<td>(D)</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>15,3</td>
<td>71,3</td>
<td>109,5</td>
<td>80,8</td>
<td>19,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>296,0</td>
</tr>
<tr>
<td>(E)</td>
<td>11,4</td>
<td>20,2</td>
<td>26,8</td>
<td>15,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,3</td>
<td>38,3</td>
<td>22,6</td>
<td>134,4</td>
<td></td>
</tr>
<tr>
<td>(I_E)</td>
<td>(20,8)</td>
<td>(45,7)</td>
<td>(-6,7)</td>
<td></td>
</tr>
</tbody>
</table>
El índice de humedad obtenido es igual a \(I_h = -6.7 \). En la tabla de clasificación, este índice estaría comprendido entre los valores de 0 a -20, por lo que se puede decir que el tipo climático es de **Seco o sub-húmedo**.

<table>
<thead>
<tr>
<th>Tipo climático</th>
<th>Sigla</th>
<th>Índice Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehúmedo</td>
<td>A</td>
<td>(I_h > 100)</td>
</tr>
<tr>
<td>Húmedo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₄</td>
<td></td>
<td>100 (\geq I_h > 80)</td>
</tr>
<tr>
<td>B₃</td>
<td></td>
<td>80 (\geq I_h > 60)</td>
</tr>
<tr>
<td>B₂</td>
<td></td>
<td>60 (\geq I_h > 40)</td>
</tr>
<tr>
<td>B₁</td>
<td></td>
<td>40 (\geq I_h > 20)</td>
</tr>
<tr>
<td>Sub-húmedo a húmedo</td>
<td>C₂</td>
<td>(20 \geq I_h > 0)</td>
</tr>
<tr>
<td>Seco a sub-húmedo</td>
<td>C₁</td>
<td>(0 \geq I_h > -20)</td>
</tr>
<tr>
<td>Semiárido</td>
<td>D</td>
<td>(-20 \geq I_h > -40)</td>
</tr>
<tr>
<td>Árido</td>
<td>E</td>
<td>(-40 \geq I_h > -60)</td>
</tr>
</tbody>
</table>

Tabla 29: Clasificación según el Índice de humedad

Determinación de la eficiencia térmica:

El índice de eficiencia térmica viene dado por la evapotranspiración potencial anual como \(ETP_{\text{anual}} = 647.4 \) mm el tipo climático que corresponde según la tabla de eficiencia térmica, corresponde a un **clima mesotérmico**.

<table>
<thead>
<tr>
<th>Tipo Climático</th>
<th>Sigla</th>
<th>ETP en mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megatérmico</td>
<td>A'</td>
<td>ETP > 1140</td>
</tr>
<tr>
<td>Cuarto mesotérmico</td>
<td>B₄'</td>
<td>1140 > ETP > 997</td>
</tr>
<tr>
<td>Tercer mesotérmico</td>
<td>B₃'</td>
<td>997 > ETP > 855</td>
</tr>
<tr>
<td>Segundo mesotérmico</td>
<td>B₂'</td>
<td>855 > ETP > 712</td>
</tr>
<tr>
<td>Primer mesotérmico</td>
<td>B₁'</td>
<td>712 > ETP > 570</td>
</tr>
<tr>
<td>Segundo microtérmico</td>
<td>C₂'</td>
<td>570 > ETP > 427</td>
</tr>
<tr>
<td>Primer microtérmico</td>
<td>C₁'</td>
<td>427 > ETP > 285</td>
</tr>
<tr>
<td>Clima de tundra</td>
<td>D'</td>
<td>285 > ETP > 142</td>
</tr>
<tr>
<td>Clima de hielo</td>
<td>E'</td>
<td>142 > ETP</td>
</tr>
</tbody>
</table>

Tabla 30: Clasificación según el índice de eficiencia térmica

Determinación de la variación estacional de la humedad:

Para determinar si en un clima húmedo existe un periodo seco y viceversa, se analizan los valores del Índice de exceso de humedad calculado anteriormente.

Según los datos obtenidos del índice de exceso de humedad es igual a \(I_e = 20.8\% \), la variación estacional de la humedad que le corresponde es **excedente invernal moderado**, siendo su sigla correspondiente “s”.

<table>
<thead>
<tr>
<th>SIGLA</th>
<th>TIPO DE CLIMA</th>
<th>ÍNDICE</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Solo climas húmedos (A, B, C₂)</td>
<td>(I_e < 16.7)</td>
<td>Poco o ningún déficit en cualquier estación</td>
</tr>
</tbody>
</table>
Diseño de una instalación de regadío para una plantación de trufa negra

Trabajo Fin de Grado

Tabla 31: Variación estacional de la humedad

Determinación de la concentración térmica en verano:

Este valor viene dado por la suma de ETP durante los meses de verano y expresado en porcentaje:

\[
CV = \frac{ETP_{verano}}{ETP_{anual}} \times 100
\]

ETP Junio	100,2
ETP Julio	122,4
ETP Agosto	110,4
ETP verano	333,1
ETP anual	647,4
CV	51,4%

Tabla 32: Resumen de Datos para el cálculo de CV

Según la siguiente tabla, el valor de CV correspondería a la sigla “b4’” ya que está comprendido entre 48,0 y 51,9.

<table>
<thead>
<tr>
<th>Cv = Necesidad de agua en verano</th>
<th>Sigla</th>
<th>Tipos climáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores inferiores a 48.0</td>
<td>a’</td>
<td>Baja concentración</td>
</tr>
<tr>
<td>Entre 48.0 y 51.9</td>
<td>b4’</td>
<td>Moderada concentración</td>
</tr>
<tr>
<td>Entre 51.9 y 56.3</td>
<td>b3’</td>
<td></td>
</tr>
</tbody>
</table>
Diseño de una instalación de regadío para una plantación de trufa negra

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre 56.3 y 61.6</td>
<td>b₂'</td>
</tr>
<tr>
<td>Entre 61.6 y 68.0</td>
<td>b₁'</td>
</tr>
<tr>
<td>Entre 68.0 y 76.3</td>
<td>c₂' Alta concentración</td>
</tr>
<tr>
<td>Entre 76.3 y 88.0</td>
<td>c₁' Muy alta concentración</td>
</tr>
<tr>
<td>Valores superiores a 88.0</td>
<td>d'</td>
</tr>
</tbody>
</table>

Tabla 33: Concentración térmica en verano

Una vez que se ha determinado el índice de humedad, el índice de eficiencia térmica, la variación estacional de la humedad y la concentración térmica en verano, podemos afirmar que la clasificación climática según Thronthaite de la parcela es:

\[C₁ B₁' s b₄' \]

Clima seco o subhúmedo, primer mesotérmico, con excedente invernal moderado y moderada concentración de la eficiencia durante el verano.

Anexo I.6.2. Clasificación climática según la UNESCO

Temperaturas:

La clasificación por temperatura se define en tres grupos, dos de los cuales tienen subdivisiones, según los valores de la temperatura media del mes más frío y las siguientes condiciones:

<table>
<thead>
<tr>
<th>GRUPO 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>tm >15ºC</td>
<td>El clima es cálido</td>
</tr>
<tr>
<td>15ºC > tm >10ºC</td>
<td>El clima es templado-cálido</td>
</tr>
<tr>
<td>10ºC > tm >0ºC</td>
<td>El clima es templado</td>
</tr>
</tbody>
</table>

Grupo 2

| 0ºC > tm >-5ºC | El clima es templado-frío |
| tm < -5ºC | El clima es frío |

GRUPO 3

Cuando la temperatura media es menor de 0 ºC durante todos los meses del año, el clima es glacial.

Tabla 34: Grupos según la UNESCO

La temperatura media del mes más frío es en enero con un valor de 8,3ºC, este valor está comprendido entre 10ºC y 0ºC y según a la tabla de arriba corresponde a un clima templado dentro del Grupo 1.

Se concede importancia al rigor de la estación más fría, por lo que se definen los siguientes tipos de invierno en función de la temperatura media de mínimas del mes más frío.
Tabla 35: Tipo de invierno

La temperatura mínima de las mínimas en el mes más frío es de -4,1°C en diciembre, como este valor está comprendido entre -1°C y -5°C corresponde a un invierno frío.

Aridez

El cuadro de a continuación son permite hacer otra clasificación según los periodos de sequía:

<table>
<thead>
<tr>
<th>Tipo de clima</th>
<th>Períodos secos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xérico</td>
<td></td>
</tr>
<tr>
<td>Áridos</td>
<td>Período seco mayor a 9 meses</td>
</tr>
<tr>
<td>Mediterráneo</td>
<td>periodo seco de 1 a 8 meses (días más largos)</td>
</tr>
<tr>
<td>Tropical</td>
<td>periodo seco de 1 a 8 meses (días más cortos)</td>
</tr>
<tr>
<td>Bixérico</td>
<td>Dos periodos secos sumando en total de 1 a 8 meses</td>
</tr>
<tr>
<td>Axérico</td>
<td>Ningún periodo seco</td>
</tr>
</tbody>
</table>

Tabla 36: Tipo de clima según los periodos secos

Como se ha determinado anteriormente en el diagrama ombrotérmico, los periodos de sequía corresponden a los meses de verano, ya que las temperaturas son mucho mayores que las precipitaciones. Según la tabla de arriba la parcela se encontraría en un clima xérico mediterráneo.

Una vez conocido el tipo de clima, se deberá determinar el índice xerotérmico para verificar la intensidad de sequía, ya que los meses secos no son igual de secos.

\[X_m = \left[N - \left(n + \frac{b}{2} \right) \right] \times K \quad (Ec\ 15) \]

N: Número de días del mes
n: número de días de lluvia
b: número de días de niebla+número de días de rocío
K=Coeficiente de sequía en función de la humedad relativa del mes (H)
% Humedad Relativa	K = Coeficiente de sequía
H < 40 | 1
40 ≤ H < 60 | 0,9
60 ≤ H < 80 | 0,8
80 ≤ H < 90 | 0,7
90 ≤ H <100 | 0,6
H = 100 | 0,5

Tabla 37: Coeficiente de sequía según la humedad relativa

El índice xerotérmico para un periodo seco (IPX) es la suma de los índices mensuales correspondientes a la duración del periodo seco:

<table>
<thead>
<tr>
<th></th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>60</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>60</td>
</tr>
<tr>
<td>Xm</td>
<td>19,2</td>
<td>20,8</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabla 38: Resumen de datos para el cálculo del índice xerotérmico

De acuerdo con esto, se trata de un clima mediterráneo atenuado.

Anexo I.6.3. Clasificación Agreológica de Papadakis

La clasificación desarrollada por Papadakis se basa en el establecimiento de un régimen térmico y un régimen hídrico que servirán para determinar las distintas unidades climáticas, incluyendo factores de alta relevancia para los cultivos tales como la severidad estival e invernal. A su vez el régimen térmico esta definido por el tipo de verano y de invierno (incluye temperaturas extremas), y el régimen hídrico está compuesto del régimen de precipitación y de las necesidades hídricas de los suelos. La clasificación agroclimatológica de Papadakis junto con una descripción de los requerimientos específicos de cada cultivo, será muy útil para valorar la viabilidad climática de un cultivo.

Rigor de invierno

En el siguiente cuadro se incluyen los diferentes tipos y subtipos climáticos en función del rigor del invierno, indicándose las escalas de valores para cada uno de ellos en función de las temperaturas.

- tma: temperatura media de las mínimas absolutas del mes más frío: -4,1°C.
- ta: temperatura media de las mínimas del mes más frío: 2,2°C.
- Ta: temperatura media de las máximas del mes más frío: 14,8°C.

<table>
<thead>
<tr>
<th>Tipo de invierno</th>
<th>tma</th>
<th>ta</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuatorial</td>
<td>Ec</td>
<td>> 7</td>
<td>> 18</td>
</tr>
</tbody>
</table>
Diseño de una instalación de regadío para una plantación de trufa negra

Tabla 39: Tipo de Invierno

Con estas temperaturas nos encontramos ante un invierno de tipo avena fresco.

Calor del verano:

<table>
<thead>
<tr>
<th>Tipo de Verano</th>
<th>ExLH (x)</th>
<th>tx</th>
<th>Tm</th>
<th>tm</th>
<th>t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gossypium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>> 4.5 (m)</td>
<td>> 25 [6]</td>
<td>> 33.5</td>
<td>> 20</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>> 4.5 (m)</td>
<td>> 25 [6]</td>
<td>< 33.5</td>
<td>< 20</td>
<td></td>
</tr>
<tr>
<td>Cafeto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>= 12 (m)</td>
<td>> 21 [6]</td>
<td>< 33.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>> 4 (m)</td>
<td>21 a 25 [6]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maíz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>> 4.5 (D)</td>
<td>> 21 [6]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>> 2.5 (D)</td>
<td>> 10 [4]</td>
<td>> 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frígido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>< 6 [2]</td>
<td>> 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>< 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andino-Alpino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>< 2.5 (D) y > 1 (M)</td>
<td>> 10 [4]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>< 1 (M)</td>
<td>< 10 [4]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 40: Tipo de verano

- ExLH (x): Estación libre de heladas: mínima (m), disponible (D), media (M): 5
- tx (2,4,6): Media de las temperaturas medias de máximas de los 2, 4 o 6 meses más cálidos: 27 °C
- Tm: La media de las máximas del mes más cálido
- tm: La media de las mínimas del mes más cálido
- t2: La media de las medias de mínimas de los dos meses más cálidos

En nuestro caso el tipo climático de verano según Papadakis es Maíz, ya que el periodo libre de heladas es superior a cuatro meses y medio y la temperatura media de las máximas del semestre más cálido es mayor de 27 °C.
Régimen térmico

Combinando los tipos correspondientes al rigor de invierno y al calor de verano se puede obtener el régimen térmico. En el caso de estas parcelas, el régimen térmico corresponde a un **clima templado cálido**.

<table>
<thead>
<tr>
<th>Régimen térmico</th>
<th>Nomenclatura</th>
<th>Tipo de invierno</th>
<th>Tipo de verano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuatorial</td>
<td>Ecuat. cálido</td>
<td>EQ</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Ec. semi-cálido</td>
<td>Eq</td>
<td>g</td>
</tr>
<tr>
<td>Tropical</td>
<td>Cálido</td>
<td>TR</td>
<td>Tp</td>
</tr>
<tr>
<td></td>
<td>Semi-cálido</td>
<td>Tr</td>
<td>Tp</td>
</tr>
<tr>
<td></td>
<td>Cálido con invierno frío</td>
<td>tR</td>
<td>tP</td>
</tr>
<tr>
<td></td>
<td>Frío</td>
<td>tr</td>
<td>tp</td>
</tr>
<tr>
<td>Tierra templada</td>
<td>Templada</td>
<td>Tt</td>
<td>Tp, tp</td>
</tr>
<tr>
<td></td>
<td>Templada fresca</td>
<td>tt</td>
<td>tp</td>
</tr>
<tr>
<td>Tierra fría</td>
<td>Baja</td>
<td>TF</td>
<td>Cto más frío</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Tv</td>
<td>Cto más frío</td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>tf</td>
<td>Cto más frío</td>
</tr>
<tr>
<td>Andino</td>
<td>Bajo</td>
<td>An</td>
<td>Ti o más cálido</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>an</td>
<td>Ti o más cálido</td>
</tr>
<tr>
<td></td>
<td>Taiga</td>
<td>aP</td>
<td>Ti o más cálido</td>
</tr>
<tr>
<td></td>
<td>Tundra</td>
<td>ap</td>
<td>Ti o más cálido</td>
</tr>
<tr>
<td></td>
<td>Desierto subglacial</td>
<td>aF</td>
<td>Ti o más cálido</td>
</tr>
<tr>
<td>Subtropical</td>
<td>Semitropical</td>
<td>Ts</td>
<td>Ct</td>
</tr>
<tr>
<td></td>
<td>Cálido</td>
<td>SU</td>
<td>Ct, Av</td>
</tr>
<tr>
<td></td>
<td>Semicálido</td>
<td>Su</td>
<td>Ct</td>
</tr>
<tr>
<td></td>
<td>Super-marino</td>
<td>Mn</td>
<td>Ct</td>
</tr>
<tr>
<td></td>
<td>Cálido</td>
<td>MA</td>
<td>Ct</td>
</tr>
<tr>
<td></td>
<td>Fresco</td>
<td>Ma</td>
<td>av, Av</td>
</tr>
<tr>
<td></td>
<td>Frío</td>
<td>ma</td>
<td>av, T, Tv</td>
</tr>
<tr>
<td></td>
<td>Tundra</td>
<td>mp</td>
<td>Ti, av</td>
</tr>
<tr>
<td></td>
<td>Desértico subglacial</td>
<td>mF</td>
<td>Ti</td>
</tr>
<tr>
<td>Templado</td>
<td>Cálido</td>
<td>TE</td>
<td>av, Av</td>
</tr>
<tr>
<td></td>
<td>Fresco</td>
<td>Te</td>
<td>ti, T, Tv</td>
</tr>
<tr>
<td></td>
<td>Frío</td>
<td>te</td>
<td>ti, Ti</td>
</tr>
<tr>
<td>Pampeano-Patagoniano</td>
<td>Pampeano</td>
<td>PA</td>
<td>Av</td>
</tr>
<tr>
<td></td>
<td>Patagoniano</td>
<td>Pa</td>
<td>T, av, Av</td>
</tr>
<tr>
<td></td>
<td>Patagoniano frío</td>
<td>pa</td>
<td>T, av, av</td>
</tr>
<tr>
<td>Continental</td>
<td>Cálido</td>
<td>CO</td>
<td>Av o más frío</td>
</tr>
<tr>
<td></td>
<td>Semicálido</td>
<td>Co</td>
<td>Ti o más frío</td>
</tr>
<tr>
<td></td>
<td>Frío</td>
<td>co</td>
<td>pr, Pr</td>
</tr>
<tr>
<td>Polar</td>
<td>Taiga</td>
<td>Po</td>
<td>ti o más frío</td>
</tr>
<tr>
<td></td>
<td>Tundra</td>
<td>po</td>
<td>Ti o más frío</td>
</tr>
<tr>
<td></td>
<td>Desierto subglacial</td>
<td>Fr</td>
<td>Ti o más frío</td>
</tr>
<tr>
<td></td>
<td>Hielo permanente</td>
<td>fr</td>
<td>Ti o más frío</td>
</tr>
<tr>
<td>Alpino</td>
<td>Bajo</td>
<td>Al</td>
<td>Pr, ti, pr, T</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>al</td>
<td>Pr, ti, T, Tv</td>
</tr>
</tbody>
</table>

Tabla 41: Régimen térmico
Caracterización térmica:

El régimen hídrico define la disponibilidad natural de agua para las plantas. Se basa en varios índices definidos a partir del balance hídrico del suelo.

Para ello, hay que diferenciar entre un mes seco, intermedio o húmedo:

- El mes se considera húmedo si la precipitación supera la evapotranspiración potencial (ETP)
- El mes se considera intermedio cuando la precipitación mas el agua que las plantas pueden extraer del suelo superan el 50% de la ETP
- El mes es seco cuando la evapotranspiración real no alcanza el 50% de la ETP

<table>
<thead>
<tr>
<th></th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm</td>
<td>24,2</td>
<td>34,0</td>
<td>53,1</td>
<td>56,8</td>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>44,9</td>
<td>59,1</td>
<td>35,6</td>
<td>485,9</td>
</tr>
<tr>
<td>ETP</td>
<td>12,8</td>
<td>13,8</td>
<td>26,3</td>
<td>41,8</td>
<td>67,9</td>
<td>100,2</td>
<td>122,4</td>
<td>110,4</td>
<td>73,2</td>
<td>44,6</td>
<td>20,8</td>
<td>13,0</td>
<td>647,4</td>
</tr>
<tr>
<td>Pm-ETP</td>
<td>11,4</td>
<td>20,2</td>
<td>26,8</td>
<td>15,0</td>
<td>-15,3</td>
<td>-71,3</td>
<td>-109,5</td>
<td>-80,8</td>
<td>-19,0</td>
<td>0,3</td>
<td>38,3</td>
<td>22,6</td>
<td>-161,5</td>
</tr>
<tr>
<td>ETR</td>
<td>12,8</td>
<td>13,8</td>
<td>26,3</td>
<td>41,8</td>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>44,6</td>
<td>20,8</td>
<td>13,0</td>
<td>351,5</td>
</tr>
<tr>
<td>Tipo</td>
<td>Hum</td>
<td>Hum</td>
<td>Hum</td>
<td>Hum</td>
<td>Int</td>
<td>Sec</td>
<td>Sec</td>
<td>Sec</td>
<td>Int</td>
<td>Hum</td>
<td>Hum</td>
<td>Hum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ETP</td>
<td>12,8</td>
<td>13,8</td>
<td>26,3</td>
<td>41,8</td>
<td>67,9</td>
<td>100,2</td>
<td>122,4</td>
<td>110,4</td>
<td>73,2</td>
<td>44,6</td>
<td>20,8</td>
<td>13,0</td>
<td></td>
</tr>
<tr>
<td>Pm-ETP</td>
<td>11,4</td>
<td>20,2</td>
<td>26,8</td>
<td>15,0</td>
<td>-15,3</td>
<td>-71,3</td>
<td>-109,5</td>
<td>-80,8</td>
<td>-19,0</td>
<td>0,3</td>
<td>38,3</td>
<td>22,6</td>
<td></td>
</tr>
<tr>
<td>Ihm</td>
<td>1,89</td>
<td>2,46</td>
<td>2,02</td>
<td>1,36</td>
<td>0,55</td>
<td>-0,42</td>
<td>-0,79</td>
<td>-0,46</td>
<td>0,48</td>
<td>1,01</td>
<td>2,85</td>
<td>2,73</td>
<td></td>
</tr>
<tr>
<td>Ln</td>
<td>134,4</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 42: Caracterización térmica

- Índice de humedad anual
 \[I_h = \frac{P_\text{anual}}{ETP_\text{anual}} = \frac{485.9}{647.4} = 0.75 \quad (\text{Ec 16}) \]
- Índice de humedad mensual

Si el mes es húmedo se calcula con la misma expresión. En caso de no ser un mes húmedo, habrá que sumar al término de precipitación la cantidad de agua extraída del suelo por las plantas (Pm-ETP)

\[Ih_m = \frac{P_m}{ETP_m} \quad (\text{Ec 17}) \]

\[Ih_m = \frac{P_m + (P_m - ETP_m)}{ETP_m} \quad (\text{Ec 18}) \]

Ln Lluvia de lavado. Es la diferencia entre precipitación y ETP pero sólo en los meses húmedos, si el mes no es húmedo es "0".

\[L_n = \sum_{m=1}^{12} (P_m - ETP_m) \quad (\text{Ec 19}) \]
En este caso:

\[L_n = 134.4 \text{ mm} \]

Por lo tanto: Si \(ETP_{\text{potencial}} = 647.4 \text{ mm} \), el 25% es 161.9.

De donde se desprende que \(L_n < 25\% ETP_{\text{potencial}} \). Según el régimen de humedad el tipo climático correspondiente es “Mediterráneo seco”, cuyas siglas son “Me”.

Como consecuencia de las consideraciones anteriores, la fórmula climática de Papadakis que le corresponde es:

\[\text{Av M TE Me} \]

Corresponde a un clima con «invierno tipo avena, verano que permite el cultivo del maíz, templado cálido, mediterráneo seco».

Anexo 1.7. Conclusión

Una vez analizados todos los factores e índices climáticos más significativos para distintas clasificaciones, llegamos a la conclusión de que el clima es adecuado para la plantación trufera y su correcto desarrollo.

Los factores condicionantes a tener en cuenta son las escasas precipitaciones y falta de humedad en los meses de junio, julio y agosto que podremos solucionar realizando una instalación de riego que aporte la humedad necesaria.
ANEXO II: DISEÑO AGRONÓMICO
ÍNDICE ANEXO II

ANEXO II. DISEÑO AGRONÓMICO .. - 52 -
Anexo II.1. Introducción .. - 52 -
Anexo II.2. Desarrollo del diseño agronómico - 52 -
Anexo II.2.1. Cálculo de las necesidades de agua - 52 -
Anexo II.2.2. Necesidades de riego netas - 53 -
Anexo II.2.3. Necesidades totales de riego - 53 -
Anexo II.2.4. Uniformidad de emisión - 54 -
Anexo II.2.5. Marco de riego ... - 54 -
Anexo II.2.6. Microaspersor a instalar - 54 -
Anexo II.2.7. Tiempos de riego - 56 -

ÍNDICE TABLAS

Tabla 43: Déficit en los meses más secos - 53 -
Tabla 44 - Valores máximos de CU - 54 -
Tabla 45: Datos técnicos del microaspersor - 55 -

ÍNDICE ILUSTRACIONES

Ilustración 11: Microaspersor Gyronet - 55 -
Anexo II. DISEÑO AGRONÓMICO

Anexo II.1. Introducción

El diseño agronómico es el paso esencial en todo proyecto de riego. En este punto, se desarrollará varias fases: la evapotranspiración del cultivo y del suelo, las necesidades de riego, la uniformidad de emisión y los tiempos de riego.

La producción trufera es mucho más efectiva con un sistema de riego para que las plantas obtengan el agua necesaria para su producción efectiva y para ello se debe estudiar las necesidades de riego. El contenido de humedad en el suelo puede variar dependiendo de las extracciones o aportes de agua que en él se producen y por ello se tiene que tener en cuenta la evapotranspiración.

El agua que llega a la plantación proviene de un pozo ya existente a varios kilómetros de las parcelas. Esta agua es totalmente apta para el cultivo ya que fue analizada y suministra agua a otras parcelas ya en producción.

El sistema de riego elegido es riego localizado por microaspersión, es el óptimo para este tipo de cultivos ya que el agua cae en la superficie como efecto lluvia, es uno de los más utilizados y tiene muy buenos resultados en parcelas en producción.

Anexo II.2. Desarrollo del diseño agronómico

Anexo II.2.1. Cálculo de las necesidades de agua

En la fase de inicio de la producción, aproximadamente a partir del sexto año, las necesidades de agua irán variando según la época y la lluvia caída hasta el momento. Junio, julio y agosto están considerados como los meses más críticos, como se ha visto en el Anexo I, en cuanto a las necesidades de agua.

Los riegos que deben aplicarse durante estos meses están comprendidos entre los 20-25 l/m² cada 15-20 días si hay una ausencia de lluvias o tormentas y es preferible a partir de la caída del sol.

El riego en esta época es muy importante ya que son los meses previos a la época de recogida comprendida entre noviembre y marzo.
Diseño de una instalación de regadío para una plantación de trufa negra

Trabajo Fin de Grado

<table>
<thead>
<tr>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>52,6</td>
<td>28,9</td>
<td>12,9</td>
<td>29,6</td>
<td>54,2</td>
<td>178,2</td>
</tr>
</tbody>
</table>

Tabla 44: Déficit en los meses más secos

Los datos aportados en la tabla muestran que las necesidades son de 340 l/m² entre los meses de mayo y septiembre y, según las precipitaciones medias recogidas en al Anexo I, se puede observar que solo dispone de 178,2 l/m². Por lo que se debería aportar un total de 161,8 l/m² extra en esos meses con el sistema de riego.

Anexo II.2.2. Necesidades de riego netas

Las conducciones y microaspersores deberán preverse para el mes con más necesidades, de manera que a efectos de diseño solo se necesite la evapotranspiración de cultivo máxima. En climas semiáridos, la precipitación efectiva se considera despreciable ya que el ascenso capilar no representa un aporte significativo.

Las necesidades de riego neta también reciben el nombre de dosis netas, \(D_n \). Para establecer la máxima cantidad de agua que podría añadirse al suelo, ser totalmente retenida y utilizada por el cultivo, se establece la siguiente ecuación:

\[
NR_n = ET_c (Ec 20)
\]

El mes más desfavorable es junio con un déficit de 51.1 l/m², por lo que se realizarán los cálculos bajo las necesidades de agua más exigentes, es decir, 80 mm correspondiente al mes de junio.

Existen unos factores de corrección a tener en cuenta, la eficiencia de riego por microaspersión se estima de un 90%.

Anexo II.2.3. Necesidades totales de riego

Para el cálculo de las necesidades totales de riego, se establece la siguiente ecuación:

\[
Nt = Nn/Ea \quad (mm) \quad (Ec 21)
\]

Donde:
- \(Nt \): Necesidades totales
- \(Nn \): Necesidades netas
- \(Ea \): Eficiencia del riego que incluye los efectos de pérdidas debidas a percolación, evaporación desde el chorro y arrastre del mismo por el viento y falta de uniformidad en la aplicación.

\[
Nt = 80mm/0,9 = 88,88 \text{ mm}
\]

La cantidad de agua que se deberá aportar es de **88,88 mm** mediante el sistema de riego.
Anexo II.2.4. Uniformidad de emisión

Para conseguir un riego uniforme en todas las plantas se debe establecer un coeficiente de uniformidad, CU.

Este coeficiente de uniformidad no solo varía en función de los emisores, CV, si no que depende de las diferencias de presión llevadas a cabo por la diferencia de cotas y las pérdidas, de la obstrucción de los emisores y de la variación de temperatura.

<table>
<thead>
<tr>
<th>CV</th>
<th>CU</th>
<th>CV</th>
<th>CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.99</td>
<td>0.06</td>
<td>0.92</td>
</tr>
<tr>
<td>0.02</td>
<td>0.97</td>
<td>0.07</td>
<td>0.91</td>
</tr>
<tr>
<td>0.03</td>
<td>0.96</td>
<td>0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>0.04</td>
<td>0.95</td>
<td>0.09</td>
<td>0.89</td>
</tr>
<tr>
<td>0.05</td>
<td>0.94</td>
<td>0.10</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Tabla 45 - Valores máximos de CU

En la fase de proyecto no se tendrán en cuenta las variaciones de temperatura ni las de obstrucción, solamente las de presión. Los valores de CU para emisores separados a más de 4 metros y una pendiente de suelo mayor al 2%, oscilan entre 0.85 – 0.90. En este caso, las plantas menos regadas deben recibir, como media, al menos el 90% de la media total y corresponde a un valor de CV= 0.08.

Anexo II.2.5. Marco de riego

El marco de riego viene dado por la separación entre las plantas. La separación entre ellas es de aproximadamente 6 metros. Cada planta tiene un único microaspersor junto a ella por lo que el marco de estos microaspersores será de 6x6 metros.

Anexo II.2.6. Microaspersor a instalar

La distribución del agua sobre la superficie regada por un aspersor no es uniforme, por lo que para conseguir una uniformidad posible han de disponerse los aspersores lo suficientemente próximos entre sí de tal forma que se produzca un solape entre ellos. El solape es la superficie del suelo mojada por dos o más aspersores distintos. Para lograr una mayor uniformidad de aplicación de la lluvia provocada por los aspersores es necesario que exista un solape de las superficies regadas por los aspersores cercanos entre sí. Por esta razón, la elección del marco de riego es fundamental.

El marco es la separación entre los aspersores del mismo ramal de aspersión y entre dos ramales consecutivos. El marco determina el solape entre las zonas regadas por aspersores contiguos. Con el objetivo de conseguir una lluvia uniforme se elegirá conjuntamente el tipo de aspersor y el marco, tratando de evitar que las zonas más alejadas de los aspersores reciban menos agua.

Este solape suele ser del 80 % aproximadamente, por lo que la separación entre los microaspersores será de 6 metros en la línea de plantación.

La textura del suelo donde se va a realizar el sistema de regadío es de tipo franco arcilloso. Para esta textura la absorción del terreno es de 5 mm/h por lo tanto el límite máximo para la pluviometría del microaspersor vendrá dado por ese valor. Para evitar problemas de escorrentía, este valor no debería de ser superado.
ANEXO II.2.6.1. CARACTERÍSTICAS

El aspersor elegido es un Gyonet SR por la empresa Hydromatic:

Ilustración 12: Microaspersor Gyronet

- Presión de operación: 2.5 bar
- Presión nominal: 1.7 bar
- Caudal nominal: 200 l/h
- Diámetro de cobertura: 12 m
- Diámetro de boquilla: 1,5mm

La filtración recomendada es de 200 micras, el método de filtración debe seleccionarse de acuerdo con el tipo y concentración de las partículas de suciedad existentes en el agua. Cuando los sólidos de arena, limo y arcilla superan las 100 ppm, se aplicará un pretratamiento.

ANEXO II.2.6.2. BENEFICIOS

- Mecanismo antihormigas que previene la penetración de insectos en el área de la boquilla de los microaspersores.
- Microaspersores hechos de materiales plásticos resistentes a todos los agroquímicos y condiciones climáticas.
- Diseñados para árboles frutales, huertos, caducífolos y otros cultivos arbóreos.
- Se puede usar en mitigación de escarcha o sistemas de riego de enfriamiento.

ANEXO II.2.6.3. DATOS TÉCNICOS

A continuación, se muestra los datos técnicos del microaspersor dados por el fabricante:

<table>
<thead>
<tr>
<th>Caudal (l/h)</th>
<th>Diámetro de la boquilla (mm)</th>
<th>Constante k</th>
<th>Exponente x</th>
<th>Presión de operación (bar)</th>
<th>Diámetro de alcance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1,5</td>
<td>49.1</td>
<td>0.5</td>
<td>2.5</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 46: Datos técnicos del microaspersor

ANEXO II.2.6.4. FUNCIONAMIENTO

La pluviometría media del sistema viene dada en función del caudal descargado por el aspersor (Q) y el área correspondiente al marco de riego adoptado. Al ser parcelas divididas, tomaremos una aproximación de una superficie de 20.000 m² cada una. Este parámetro se calcula para definir la intensidad de lluvia.
Diseño de una instalación de regadío para una plantación de trufa negra

\[P = \frac{Q}{S} \text{(Ec 22)} \]

- \(P\): Pluviometría (mm/h)
- \(Q\): Caudal (l/h)
- \(S\): Superficie (m\(^2\))

\[P = \frac{200}{113} = 1,76 \text{ mm/h} \]

Este valor se encuentra por debajo de los 5 mm/h que corresponden con la absorción máxima del terreno. Se ha elegido microaspersores con diámetro de alcance de 12 m lo que supone un 80% de solape en el marco de 6x6, por lo que se comprueba que la elección del aspersor es correcta.

Anexo II.2.7. Tiempos de riego

La trufa no necesita de un riego frecuente, los tiempos de riego variarán según las precipitaciones producidas a lo largo del año. Los meses donde se deberá hacer una aportación de agua son entre mayo y septiembre, periodo previo a la época de recolección. Estos riegos varían entre 10 y 15 días.

Para aportar los 88,9 mm/mes en el mes más exigente se darán cinco riegos, con 17,78 mm en cada riego.

La parcela se divide en 10 subunidades y se regarán en días diferentes. A los 10 días se comenzará a regar de nuevo en el mismo orden en el que se eligió anteriormente. Para calcular las horas necesarias, cada noche se divide la cantidad total de 17,78 mm/riego y la cantidad que aporta el microaspersor, 1,76mm/h.

\[17,78 \text{ mm/riego} / 1,76 \text{ mm/h} = 8 \text{ horas cada jornada que se riegue.} \]

Todo esto también se verá repercutido y podrá variar en función de las precipitaciones de cada mes durante el año. Y podrá aumentar o disminuir para ajustar las necesidades de agua en la plantación.
ANEXO III: DISEÑO HIDRÁULICO
ÍNDICE ANEXO III

ANEXO III. DISEÑO HIDRÁULICO .. - 60 -
Anexo III.1. Introducción... - 60 -
Anexo III.2. Cálculo del diámetro de las tuberías.............................. - 63 -
Anexo III.2.1. Cálculo para las subunidades 1, 2, 3, 4 y 5.................. - 63 -
Anexo III.2.2. Cálculo para las subunidades 6 y 7............................ - 67 -
Anexo III.2.3. Cálculo para las subunidades 8 y 9............................ - 69 -
Anexo III.2.4. Cálculo para la subunidad 10 - 72 -
Anexo III.2.5. Resumen de diámetros.. - 76 -
Anexo III.2.6. Resumen de caudales... - 76 -
Anexo III.3. Estudio de presiones en las subunidades...................... - 77 -
Anexo III.3.1. Estudio de presiones en las subunidades 1, 2, 3, 4 y 5..... - 78 -
Anexo III.3.2. Estudio de presiones en las subunidades 6 y 7............. - 79 -
Anexo III.3.3. Estudio de presiones en las subunidades 8 y 9............. - 81 -
Anexo III.3.4. Estudio de presiones en la subunidad 10.................... - 82 -
Anexo III.4. Dimensionamiento de la Red principal de riego.............. - 83 -
Anexo III.4.1. Cálculo de la Red... - 83 -
Anexo III.4.2. Elementos auxiliares.. - 85 -
Anexo III.5. Cabezal de Riego... - 85 -
Anexo III.5.1. Equipo de filtrado.. - 85 -
Anexo III.5.2. Otros elementos del cabezal de riego....................... - 88 -
Anexo III.6. Automatización de riego... - 88 -
Anexo III.7. Equipo de bombeo... - 89 -

ÍNDICE TABLAS

Tabla 46: Datos del lateral más desfavorable - 63 -
Tabla 47: Datos de la tubería terciaria ... - 63 -
Tabla 48: Cálculo del diámetro de tubería....................................... - 64 -
Tabla 49: Pérdidas de carga localizadas... - 65 -
Tabla 50: Pérdidas de carga localizadas... - 65 -
Tabla 51: Longitud y caudal de las tuberías laterales....................... - 66 -
Tabla 52: Longitud y caudal de las tuberías terciarias..................... - 66 -
Tabla 53: Datos del lateral más desfavorable.................................. - 67 -
Tabla 54: Datos de la tubería terciaria .. - 67 -
Tabla 55: Cálculo del diámetro de tubería....................................... - 68 -
Tabla 56: Pérdidas de carga localizadas... - 68 -
Tabla 57: Pérdidas de carga localizadas.. - 69 -
Tabla 58: Longitud y caudal de las tuberías laterales....................... - 69 -
Tabla 59: Longitud y caudal de las tuberías terciarias..................... - 69 -
Tabla 60: Datos del lateral más desfavorable.................................. - 70 -
Tabla 61: Datos de la tubería terciaria .. - 70 -
Tabla 62: Cálculo del diámetro de tubería....................................... - 71 -
Tabla 63: Pérdidas de carga localizadas... - 71 -
Tabla 64: Pérdidas de carga localizadas... - 72 -
Tabla 65: Longitud y caudal de las tuberías laterales .. - 72 -
Tabla 66: Longitud y caudal de las tuberías terciarias .. - 72 -
Tabla 67: Datos del lateral más desfavorable .. - 73 -
Tabla 68: Datos de la tubería terciaria .. - 73 -
Tabla 69: Cálculo del diámetro de tubería ... - 74 -
Tabla 70: Pérdidas de carga localizadas ... - 74 -
Tabla 71: Pérdidas de carga localizadas .. - 75 -
Tabla 72: Longitud y caudal de las tuberías laterales ... - 75 -
Tabla 73: Longitud y caudal de las tuberías terciarias ... - 75 -
Tabla 74: Resumen de diámetros ... - 76 -
Tabla 75: Resumen de diámetros ... - 76 -
Tabla 76: Número de emisores y caudales de las subunidades - 77 -
Tabla 77: Longitud de las terciarias y caudal del paso - 84 -
Tabla 78: Relación entre el diámetro de emisor, malla y nº de mesh - 87 -
Tabla 79: Relación entre velocidad media del agua, el caudal y el área de filtro de la malla .. - 88 -

ÍNDICE ILUSTRACIONES

Ilustración 12: Subunidades 1, 2, 3, 4 y 5 .. - 78 -
Ilustración 13: Subunidades 6 y 7 ... - 79 -
Ilustración 14: Subunidades 8 y 9 ... - 81 -
Ilustración 15: Subunidad 10 .. - 82 -
Anexo III. DISEÑO HIDRÁULICO

Anexo III.1. Introducción

El diseño hidráulico de las parcelas tiene como objetivo principal averiguar cuál serían los diámetros correctos para adoptar en las tuberías, tanto en los laterales como en las terciarias. Para ello, deben cumplir dos condiciones; ser los más económicos y producir, como máximo, una determinada diferencia de presión en la subunidad.

La máxima diferencia de presión es aquella que produce una diferencia de caudales, entre los emisores que arrojan el máximo y el mínimo, del 10% de su caudal nominal cómo se ha visto en el diseño agronómico al definirse la uniformidad de riego.

Teniendo en cuenta que la ecuación de un emisor es:

\[q = K h^x \] (Ec 23)

Derivando se obtiene:

\[\frac{d}{dh} = \frac{1}{x} \frac{dq}{dh} \]

\[\frac{\Delta P_s}{\gamma} = \frac{1}{x} 0.10 \ h \] (Ec 24)

Para el cálculo de la longitud y pendiente de las tuberías tanto laterales como terciarias, emplearemos las siguientes fórmulas:

\[L_l = n x S \] (Ec 25)

- \(L_l \): Longitud del lateral
- \(n \): Número de emisores
- \(S \): Separación entre los emisores

Para el cálculo de la pendiente en el lateral:

\[I_l = \Delta z_l / L_l \] (Ec 26)

Para el cálculo de la longitud en la terciaria:

\[L_t = S_f (N_f - 1) + S_0 \] (Ec 27)

- \(L_t \): Longitud de la terciaria
- \(S_f \): Distancia entre los árboles
- \(N_f \): Número de filas
- \(S_0 \): Distancia desde donde empieza la terciaria hasta el primer lateral

Para el cálculo de la pendiente la terciaria:

\[I_t = \Delta z_t / L_t \] (Ec 28)

La pérdida de carga admisible en la subunidad, \(\Delta h_s \), viene determinada por la máxima diferencia de presión y por la diferencia de cotas. Si llamamos \(Z_l \) al desnivel de la tubería lateral y \(Z_t \) al desnivel de la tubería terciaria, la pérdida de carga admisible en la subunidad vale:
Diseño de una instalación de regadío para una plantación de trufa negra

\[
\Delta h_s = \frac{\Delta P_s}{\nu} \pm Z_i \pm Z_t \quad (\text{Ec 29})
\]

Referente a las cotas, el signo positivo corresponderá a los desniveles descendentes mientras que el signo negativo a los desniveles ascendentes.

Una vez conocida la pérdida de carga admisible en la subunidad, está se repartirá entre todas las tuberías que componen la subunidad.

Para ello, Keller y Karmeli (1975), propusieron un reparto del 55% para el lateral y un 45% para la terciaria. Sin embargo, los precios de materiales y energía actuales aconsejan otras proporciones. Montalvo y Arviza (1990), presenta para la subunidad más económica, la relación de pérdidas en el lateral frente a las totales en la subunidad, R, en función del coeficiente de forma de la subunidad, CF, para laterales alimentados por un extremo o por el punto medio y con espaciamientos de 1 a 7 metros.

El coeficiente de forma se define como la relación entre las longitudes de lateral, \(L_l \), y la longitud de la terciaria, \(L_t \):

\[
CF = \frac{L_l}{L_t} \quad (\text{Ec 30})
\]

Para laterales alimentados por un extremo la relación R encontrada fue:

\[
R = \frac{\Delta h_l}{\Delta h_s} = \frac{0.842 \times CF^{0.158}}{S^{0.060}} \quad (\text{Ec 31})
\]

Y para laterales alimentados por su punto medio:

\[
R = \frac{\Delta h_l}{\Delta h_s} = \frac{0.776 \times CF^{0.140}}{S^{0.054}} \quad (\text{Ec 32})
\]

Una vez calculado el reparto de las pérdidas admisibles en la subunidad, se procede al cálculo de las pérdidas localizadas y continuas de cada una de las tuberías que componen la subunidad.

Por un lado, las pérdidas localizadas de las tuberías laterales vienen producidas por la conexión de los emisores distribuidos linealmente. Para ello, se adopta el criterio de Watters y Keller que propusieron una longitud equivalente constante de 0,23 metros por emisor:

\[
L_e = 0.23 \times \text{Emisor} \quad (\text{Ec 33})
\]

Así, los cálculos de pérdida de carga se hacen como si la longitud de la tubería fuese \(L_e \), que incluyen las pérdidas localizadas.

Por otro lado, para el cálculo de las pérdidas de carga continuas se utilizará la expresión de Blasius:

\[
\frac{\alpha}{D^{4.75}} \times L \times Q^{1.75} \times F_g \quad (\text{Ec 34})
\]

donde:

- \(\alpha \): coeficiente en función de la temperatura
- D: Diámetro interior de la tubería (mm)
- L: Longitud de la tubería (m)
- Q: Caudal en el origen de la tubería (l/h)
F₉: Coeficiente de reducción generalizado

Para el cálculo de las pérdidas localizadas en las tuberías terciarias habrá que determinar la longitud equivalente de las pérdidas de carga que representan el punto de conexión de la tubería lateral con la terciaria.

Montalvo determina la longitud equivalente de la conexión lateral-terciaria en función del número de laterales (Nᵢ) y del caudal en cabeza (Q en l/h) con la expresión:

\[Lₑ = 0,10 \times Q^{0.30} \times N^{0.26} \] (Ec 35)

Así, los cálculos de pérdida de carga se hacen como si la longitud de la tubería fuese Lₑ, que incluyen las pérdidas localizadas.

Para el cálculo de las pérdidas de carga continuas se utilizará la misma fórmula que en la tubería lateral, la de Blasius.

Una vez calculados los diámetros que se deben adoptar, estudiaremos las presiones en los puntos más desfavorables de la subunidad donde la presión del emisor será la mínima alcanzada. La presión mínima alcanzada será:

\[H_{\text{min}} = h_a \times \left[\frac{CUD}{1 - \frac{2.27 \times CV}{\sqrt{e}}} \right]^{1 \over 2} \] (Ec 36)

- CU: Coeficiente de uniformidad = 0,9
- CV: Coeficiente de variación de fabricación = 0,04
- e: número de emisores por planta = 1
- x: exponente de descarga = 0,5
- qᵦ: caudal medio de todos los emisores = 200 l/h
- ha: presión nominal del goteo = 17 m.c.a

Para comprobar que el diseño de la subunidad está correctamente deberá cumplir las siguientes condiciones:

- El Coeficiente de Uniformidad absoluta debe ser mayor al establecido anteriormente en el diseño agronómico (90%). Para calcularlo:

\[CU_a = \left[1 - \frac{1.27 \times CV}{\sqrt{e}} \right] \times \frac{1}{2} \times \left[\frac{Q_{\text{min}}}{Q_a} + \frac{Q_a}{Q_{\text{max}}} \right] > 90\% \] (Ec 37)

Donde:
\[Q_{\text{max}} = K \cdot H_{\text{max}}^x \]
\[Q_{\text{min}} = K \cdot H_{\text{min}}^x \]

- También debe cumplir que:

\[\frac{Q_{\text{max}} - Q_{\text{min}}}{Q_a} \leq 10\% \] (Ec 38)

Para cada una de las parcelas se procederá a hacer cada uno de estos pasos, para ello se parte de los siguientes datos del emisor:

- Presión de operación: 2.5 bar = 25 m.c.a
Diseño de una instalación de regadío para una plantación de trufa negra

- Presión nominal: 1.7 bar = 17 m.c.a
- \(q_{ns} \): Caudal nominal = 200 l/h
- \(q_{ns} \): 180,63 l/h
- K: Coeficiente de descarga del emisor = 49,1
- x: Exponente de descarga del emisor = 0,5

Anexo III.2. Cálculo del diámetro de las tuberías

La parcela, se divide en 10 subunidades de riego. Para esta división se ha tenido en cuenta el desnivel del terreno, de tal manera que las tuberías laterales tuvieran el mínimo posible.

Las dimensiones de estas subunidades tienen relación entre ellas, es decir, hay subunidades que coinciden en el número de laterales y emisores, así como en el desnivel del terreno o la forma en la que se alimentan los laterales. Las relaciones son:

- Subunidades 1, 2, 3, 4 y 5.
- Subunidades 6 y 7.
- Subunidades 8 y 9.
- Subunidad 10.

Anexo III.2.1. Cálculo para las subunidades 1, 2, 3, 4 y 5

5 subunidades con una terciaria cada una, cada terciaria constará de 44 laterales con un total de 6 emisores por lateral

Todos los laterales de las 5 subunidades son alimentados por su punto medio y tienen un desnivel del 0%, la tubería terciaria tiene un desnivel del 1,13%.

Características de los laterales:

<table>
<thead>
<tr>
<th>(L_1) (m)</th>
<th>(n) (m)</th>
<th>(S) (m)</th>
<th>(Z_{L1}) (m)</th>
<th>(Z_{L2}) (m)</th>
<th>(I_L) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>6</td>
<td>6</td>
<td>999</td>
<td>999</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabla 47: Datos del lateral más desfavorable

Características de la terciaria:

<table>
<thead>
<tr>
<th>(L_t) (m)</th>
<th>(S_f) (m)</th>
<th>(N_f)</th>
<th>(S_0) (m)</th>
<th>(Z_{T1}) (m)</th>
<th>(Z_{T2}) (m)</th>
<th>(I_t) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>995</td>
<td>998</td>
<td>1,13</td>
</tr>
</tbody>
</table>

Tabla 48: Datos de la tubería terciaria

Para el cálculo de la presión media y mínima utilizamos la expresión vista anteriormente:

\[
q = K h^x = 49,1 h^{0.5} \quad (Ec \ 39)
\]
- Presión media:

\[h_a = \left(\frac{q_a}{49.1}\right)^{10.5} = \left(\frac{200}{49.1}\right)^2 = 16.6 \text{ m.c.a} \]

- Presión mínima:

\[h_{ns} = \left(\frac{q_{ns}}{49.1}\right)^{10.5} = \left(\frac{180.63}{49.1}\right)^2 = 13.5 \text{ m.c.a} \]

- Pérdida de carga admisible en la subunidad:

\[\frac{\Delta P_s}{\gamma} = \frac{1}{x}
\]

\[0.10 \times 16.59 = 3.32 \text{ m.c.a} \]

\[\Delta h_s = 3.32 + 3.00 = 6.318 \text{ m.c.a} \]

- Coeficiente de forma:

\[CF = \frac{L_{\text{Lateral}}}{L_{\text{Terciaria}}} = \frac{120}{90} = 1.33 \]

- Reparto óptimo de presiones laterales alimentados por su punto medio:

\[R = \frac{\Delta h_l}{\Delta h_s} = \frac{0.776 \times CF^{0.140}}{S^{0.054}} \]

\[R = 0.733 \]

Esto significa que el reparto de presiones será del 73.3% para los laterales y 26.7% para la tubería terciaria.

\[\Delta h_{lat} = \Delta h_s \times R = 4.634 \text{ m.c.a} \]

\[\Delta h_{ter} = \Delta h_s - \Delta h_{lat} = 1.685 \text{ m.c.a} \]

<table>
<thead>
<tr>
<th>(h_a)</th>
<th>(h_{ns})</th>
<th>(\Delta P_s/\gamma)</th>
<th>(Z_c)</th>
<th>(Z_T)</th>
<th>(\Delta h_s)</th>
<th>(CF)</th>
<th>(R)</th>
<th>(\Delta h_l)</th>
<th>(\Delta h_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,592</td>
<td>13,534</td>
<td>3,318</td>
<td>0.00</td>
<td>3.00</td>
<td>6,318</td>
<td>1.33</td>
<td>0.73</td>
<td>4,634</td>
<td>1,685</td>
</tr>
</tbody>
</table>

Tabla 49: Cálculo del diámetro de tubería

- Pérdidas de carga localizadas en la tubería lateral:

\[L_e = 0.23 \times n = 1.38 \text{ m} \]

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud del lateral fuese de 37,38 m, con lo que se incluyen las pérdidas de carga localizadas.
Diseño de una instalación de regadío para una plantación de trufa negra

Tabla 50: Pérdidas de carga localizadas

- Pérdida de carga continuas en la tubería lateral:

Las pérdidas continuas en un lateral o terciario son las de una distribución discreta con servicio en el trayecto por lo que como se ha planteado anteriormente:

\[h_{cl} = \frac{\alpha}{D^{4.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:
\[\alpha = 0.450 \]
\[L = 37.38 \text{metros} \]
\[F = 0.451 \]

F: Coeficiente de Christiansen

\[S=6 \text{ metros} \]
\[n=6 \]
\[m=1.75 \]

Tanteamos con \(\varnothing \ 32 \text{ mm} \) → \(\varnothing \) interior 30 mm (Tubería PE-100)

\[h_{cl} = \frac{0.450}{30^{4.75}} \times 1200^{1.75} \times 37.38 \times 0.451 = 0.179 \text{ m.c.a} \]

\[\Delta h_{lat} = 3.367 \text{ m.c.a} \]

VÁLIDO

Adoptamos un diámetro de 32 mm en los ramales laterales de las 5 subunidades

- Pérdidas de carga localizadas en la tubería terciaria:

\[L_e = 0.10 \times 1200^{0.30} \times 44^{0.26} = 2.24 \text{ metros} \]

<table>
<thead>
<tr>
<th>(L_e)</th>
<th>(L_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24</td>
<td>266.24</td>
</tr>
</tbody>
</table>

Tabla 51: Pérdidas de carga localizadas

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud de la terciaria sea de 266,24 m, con lo que se incluyen las pérdidas de carga localizadas.

- Pérdidas de carga continuas en la tubería terciaria:

\[h_{cT} = \frac{\alpha}{D^{4.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:
\[\alpha = 0.450 \]
\[L = 266.24 \text{ metros} \]
\[F = 0.375 \]

F: Coeficiente de Christiansen

\[S=6 \text{ metros} \]
\[n=44 \]
\[m=1.75 \]
Diseño de una instalación de regadío para una plantación de trufa negra

Tanteamos con \varnothing 110 mm \rightarrow $\varnothing_{\text{interior}}$ 103,4 mm (Tubería PE-100)

$$h_{CT} = \frac{0.450}{103.4^{0.75}} \times 52800^{1.75} \times 266,24 \times 0.375 = 2,22 \text{ m.c.a} < \Delta h_{\text{ter}} = 2,951 \text{ m.c.a}$$

VÁLIDO

Adoptamos un diámetro de 110 mm en la tubería terciaria de cada subunidad

<table>
<thead>
<tr>
<th>Subunidades</th>
<th>N° Emisores</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>36</td>
<td>1200</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>36</td>
<td>1200</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>36</td>
<td>1200</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>1200</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>36</td>
<td>1200</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 52: Longitud y caudal de las tuberías laterales

<table>
<thead>
<tr>
<th>Subunidades</th>
<th>N° laterales</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>264</td>
<td>52800</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>264</td>
<td>52800</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>264</td>
<td>52800</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>264</td>
<td>52800</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>264</td>
<td>52800</td>
<td>110</td>
</tr>
</tbody>
</table>

Tabla 53: Longitud y caudal de las tuberías terciarias
Anexo III.2.2. Cálculo para las subunidades 6 y 7

2 subunidades con una terciaria cada una, cada terciaria constará de 15 laterales con un total de 20 emisores por lateral

Todos los laterales de las 2 subunidades son alimentados por su punto medio y tienen un desnivel del 0%, la tubería terciaria tiene un desnivel del 2,77%.

Características de los laterales:

<table>
<thead>
<tr>
<th>L₁ (m)</th>
<th>n (m)</th>
<th>S (m)</th>
<th>Z₁ (m)</th>
<th>Z₂ (m)</th>
<th>l₁ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>20</td>
<td>6</td>
<td>992</td>
<td>992</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 54: Datos del lateral más desfavorable

Características de la terciaria:

<table>
<thead>
<tr>
<th>Lₜ (m)</th>
<th>Sf (m)</th>
<th>Nf</th>
<th>S₀ (m)</th>
<th>Z₁ (m)</th>
<th>Z₂ (m)</th>
<th>lₜ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>988</td>
<td>991</td>
<td>2,77</td>
</tr>
</tbody>
</table>

Tabla 55: Datos de la tubería terciaria

Para el cálculo de la presión media y mínima utilizamos la expresión vista anteriormente:

\[q = K h^4 = 49,1 h^{0.5} \]

- Presión media:

\[h_a = (q_a/49,1)^{1/0.5} = (200/49,1)^{2} = 16,6 \text{ m.c.a} \]

- Presión mínima:

\[h_{ns} = (q_{ns}/49,1)^{1/0.5} = (180,63/49,1)^{2} = 13,5 \text{ m.c.a} \]

- Pérdida de carga admisible en la subunidad:

\[
\frac{\Delta P_z}{\gamma} = \frac{1}{x} \cdot 0,10 \cdot h = \frac{1}{0,5} \cdot 0,10 \times 16,59 = 3,32 \text{ m.c.a}
\]

\[
\Delta h_s = 3,32 + 3,00 = 6,318 \text{ m.c.a}
\]

- Coeficiente de forma:

\[
CF = \frac{L_{\text{Lateral}}}{L_{\text{Terciaria}}} = \frac{120}{90} = 1,33
\]

- Reparto óptimo de presiones laterales alimentados por su punto medio:

\[
R = \frac{\Delta h_l}{\Delta h_s} = \frac{0,776 \times CF^{0.140}}{S^{0.054}}
\]

\[
R = 0,733
\]
Diseño de una instalación de regadío para una plantación de trufa negra

 Esto significa que el reparto de presiones será del 73,3% para los laterales y 26,7% para la tubería terciaria.

\[\Delta h_{lat} = \Delta h_s \times R = 4,63 \text{ m.c.a} \]
\[\Delta h_{ter} = \Delta h_s - \Delta h_{lat} = 1,685 \text{ m.c.a} \]

<table>
<thead>
<tr>
<th>(h_h) m.c.a</th>
<th>(h_{hs}) m.c.a</th>
<th>(\Delta P_s / \gamma) m.c.a</th>
<th>(Z_L)</th>
<th>(Z_T)</th>
<th>(\Delta h_s) m.c.a</th>
<th>CF</th>
<th>R</th>
<th>(\Delta h_L) m.c.a</th>
<th>(\Delta h_T) m.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,59</td>
<td>13,53</td>
<td>3,318</td>
<td>0,0</td>
<td>3,0</td>
<td>6,318</td>
<td>1,333</td>
<td>0,733</td>
<td>4,634</td>
<td>1,685</td>
</tr>
</tbody>
</table>

Tabla 56: Cálculo del diámetro de tubería

- Pérdidas de carga localizadas en la tubería lateral:

\[L_e = 0,23 \times n = 4,6 \text{ m} \]

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud del lateral fuese de 124,6 m, con lo que se incluyen las pérdidas de carga localizadas.

<table>
<thead>
<tr>
<th>(L_e)</th>
<th>(L_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,6</td>
<td>124,6</td>
</tr>
</tbody>
</table>

Tabla 57: Pérdidas de carga localizadas

- Pérdida de carga continuas en la tubería lateral:

Las pérdidas continuas en un lateral o terciario son las de una distribución discreta con servicio en el trayecto por lo que como se ha planteado anteriormente:

\[h_{cl} = \frac{\alpha}{D^{1.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:

\(\alpha = 0,450 \)

\(L = 124,6 \text{ metros} \)

\(F = 0,389 \)

F: Coeficiente de Christiansen \(\rightarrow \)

- \(S=6 \text{ metros} \)
- \(n=20 \)
- \(m=1,75 \)

Tanteamos con \(\varnothing 32 \text{ mm} \rightarrow \varnothing_{\text{interior}} 30 \text{ mm} \) (Tubería PE-100)

\[h_{cl} = \frac{0,450}{30^{1.75}} \times 4000^{1.75} \times 124,6 \times 0,389 = 3,11 \text{ m.c.a} < \Delta h_{lat} = 4,22 \text{ m.c.a} \] VÁLIDO

Adoptamos un diámetro de 32 mm en los ramales laterales de las 2 subunidades

- Pérdidas de carga localizadas en la tubería terciaria:
Diseño de una instalación de regadío para una plantación de trufa negra

\[L_c = 0.10 \times 4000^{0.30} \times 15^{0.26} = 2.43 \text{ metros} \]

<table>
<thead>
<tr>
<th></th>
<th>(L_e)</th>
<th>(L_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,43</td>
<td>92,43</td>
</tr>
</tbody>
</table>

Tabla 58: Pérdidas de carga localizadas

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud de la terciaria sea de 92,43 m, con lo que se incluyen las pérdidas de carga localizadas.

- Pérdidas de carga continuas en la tubería terciaria:

\[h_{CT} = \frac{\alpha}{D^{1.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:
- \(\alpha = 0.450 \)
- \(L = 92,43 \) metros
- \(F = 0.397 \)
- \(S = 6 \) metros
- \(n = 15 \)
- \(m = 1.75 \)

Tanteamos con \(\varnothing 110 \) mm → \(\varnothing_{\text{interior}} 103,4 \) mm (Tubería PE-100)

\[h_{CT} = \frac{0.450}{103^{1.75}} \times 6000^{1.75} \times 92,43 \times 0.397 = 1,024 \text{ m.c.a} < \Delta h_{\text{ter}} = 1,685 \text{ m.c.a} \]

VÁLIDO

Adoptamos un diámetro de 110 mm en la tubería terciaria de cada subunidad

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº Emisores</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20</td>
<td>120</td>
<td>4000</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>120</td>
<td>4000</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 59: Longitud y caudal de las tuberías laterales

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº laterales</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>90</td>
<td>60000</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>90</td>
<td>60000</td>
<td>110</td>
</tr>
</tbody>
</table>

Tabla 60: Longitud y caudal de las tuberías terciarias

Anexo III.2.3. Cálculo para las subunidades 8 y 9

2 subunidades con una terciaria cada una, cada terciaria constará de 18 laterales con un total de 28 emisores por lateral
Diseño de una instalación de regadío para una plantación de trufa negra

Todos los laterales de las 2 subunidades son alimentados por un extremo y tienen un desnivel del 0%, la tubería terciaria tiene un desnivel del 2,77%.

Características de los laterales:

<table>
<thead>
<tr>
<th>L1 (m)</th>
<th>n (m)</th>
<th>S (m)</th>
<th>ZL1(m)</th>
<th>ZL2(m)</th>
<th>L (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>18</td>
<td>6</td>
<td>991</td>
<td>991</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 61: Datos del lateral más desfavorable

Características de la terciaria:

<table>
<thead>
<tr>
<th>Lt (m)</th>
<th>Sf(m)</th>
<th>Nf</th>
<th>S0(m)</th>
<th>ZT1(m)</th>
<th>ZT2 (m)</th>
<th>It(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>996</td>
<td>999</td>
<td>2,77</td>
</tr>
</tbody>
</table>

Tabla 62: Datos de la tubería terciaria

Para el cálculo de la presión media y mínima utilizamos la expresión vista anteriormente:

\[q = K h^x = 49,1 h^{0.5} \]

- Presión media:

\[h_a = \left(\frac{q_a}{49,1} \right)^{1.0.5} = \left(\frac{200}{49,1} \right)^2 = 16,6 \text{ m.c.a} \]

- Presión mínima:

\[h_{ns} = \left(\frac{q_{ns}}{49,1} \right)^{1.0.5} = \left(\frac{180,63}{49,1} \right)^2 = 13,5 \text{ m.c.a} \]

- Pérdida de carga admisible en la subunidad:

\[\frac{\Delta P}{\gamma} = \frac{1}{x} \times 0.10 \times 16,59 = 3,32 \text{ m.c.a} \]

\[\Delta h_s = 3,32 + 3,00 = 6,318 \text{ m.c.a} \]

- Coeficiente de forma:

\[CF = \frac{L \text{. Lateral}}{L \text{. Terciaria}} = \frac{108}{108} = 1,0 \]

- Reparto óptimo de presiones laterales alimentados por un extremo:

\[R = \frac{\Delta h_l}{\Delta h_s} = \frac{0,842 \times CF^{0.158}}{S^{0.060}} \]

\[R = 0,756 \]

Esto significa que el reparto de presiones será del 75,6% para los laterales y 24,4% para la tubería terciaria.
Diseño de una instalación de regadío para una plantación de trufa negra

\[
\Delta h_{\text{lat}} = \Delta h_s \times R = 4,778 \text{ m.c.a}
\]

\[
\Delta h_{\text{ter}} = \Delta h_s - \Delta h_{\text{lat}} = 1,541 \text{ m.c.a}
\]

<table>
<thead>
<tr>
<th>(h_a)</th>
<th>(h_{ns})</th>
<th>(\Delta P_e / \gamma)</th>
<th>(Z_L)</th>
<th>(Z_T)</th>
<th>(\Delta h_s)</th>
<th>(CF)</th>
<th>(R)</th>
<th>(\Delta h_L)</th>
<th>(\Delta h_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,59</td>
<td>13,53</td>
<td>3,32</td>
<td>0,0</td>
<td>3,0</td>
<td>6,32</td>
<td>1,0</td>
<td>0,756</td>
<td>4,79</td>
<td>1,54</td>
</tr>
</tbody>
</table>

Tabla 63: Cálculo del diámetro de tubería

- Pérdidas de carga localizadas en la tubería lateral:

\[
L_e = 0,23 \times n = 4,14 \text{ m}
\]

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud del lateral fuese de 112,14 m, con lo que se incluyen las pérdidas de carga localizadas.

<table>
<thead>
<tr>
<th>(L_e)</th>
<th>(L_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,14</td>
<td>112,14</td>
</tr>
</tbody>
</table>

Tabla 64: Pérdidas de carga localizadas

- Pérdida de carga continuas en la tubería lateral:

Las pérdidas continuas en un lateral o terciario son las de una distribución discreta con servicio en el trayecto por lo que como se ha planteado anteriormente:

\[
h_{cl} = \frac{\alpha}{D^{4,75}} \times L \times Q^{1,75} \times F
\]

En este caso tenemos que:

\[
\alpha = 0,450
\]

\[
L = 112,14 \text{metros}
\]

\[
F = 0,392
\]

F: Coeficiente de Christiansen

\[
S=6 \text{ metros}
\]

\[
n=18
\]

\[
m=1,75
\]

Tanteamos con \(\emptyset 32 \text{ mm} \rightarrow \emptyset_{\text{interior}} 30 \text{ mm} \) (Tubería PE-100)

\[
h_{cl} = \frac{0,450}{30^{4,75}} \times 3600^{1,75} \times 112,14 \times 0,392 = 3,19 \text{ m. c. a} \quad \Delta h_{\text{lat}} = 4,78 \text{ m. c. a} \quad \text{VÁLIDO}
\]

Adoptamos un diámetro de 32 mm en los ramales laterales de las 2 subunidades

- Pérdidas de carga localizadas en la tubería terciaria:

\[
L_e = 0.10 \times 3600^{0.30} \times 18^{0.26} = 2,47 \text{ metros}
\]
Diseño de una instalación de regadío para una plantación de trufa negra

Trabajo Fin de Grado

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud de la terciaria sea de 110,47 m, con lo que se incluyen las pérdidas de carga localizadas.

- Pérdidas de carga continuas en la tubería terciaria:

\[h_{CT} = \frac{\alpha}{D^{1.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:
\[\alpha = 0.450 \]
\[L = 110,47 \text{ metros} \]
\[F = 0.392 \]
\[F: \text{ Coeficiente de Christiansen} \]
\[S = 6 \text{ metros} \]
\[n = 18 \]
\[m = 1.75 \]

Tanteamos con \(\varnothing 110 \text{ mm} \rightarrow \varnothing_{\text{interior}} 103,4 \text{ mm} \) (Tubería PE-100)

\[h_{CT} = \frac{0.450}{103^{1.75}} \times 64800^{1.75} \times 110,47 \times 0.392 = 1,38 \text{ m. c. a} < \Delta h_{\text{ter}} = 1,541 \text{ m. c. a} \]

VÁLIDO

Adoptamos un diámetro de 110 mm en la tubería terciaria de cada subunidad

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº Emisores</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>18</td>
<td>108</td>
<td>3600</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>108</td>
<td>3600</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 66: Longitud y caudal de las tuberías laterales

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº laterales</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>18</td>
<td>108</td>
<td>64800</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>108</td>
<td>64800</td>
<td>110</td>
</tr>
</tbody>
</table>

Tabla 67: Longitud y caudal de las tuberías terciarias

Anexo III.2.4. Cálculo para la subunidad 10

Subunidades con una terciaria de 10 laterales con 23 emisores cada. Todos los laterales de la subunidad son alimentados por un extremo. El desnivel de la parcela es del 0% en toda la parcela.
Características de los laterales:

<table>
<thead>
<tr>
<th>L₁ (m)</th>
<th>n (m)</th>
<th>S (m)</th>
<th>Z₁₁ (m)</th>
<th>Z₁₂ (m)</th>
<th>l₁ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>23</td>
<td>6</td>
<td>996</td>
<td>996</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 68: Datos del lateral más desfavorable

Características de la terciaria:

<table>
<thead>
<tr>
<th>L₉ (m)</th>
<th>Sf(m)</th>
<th>Nf</th>
<th>S0(m)</th>
<th>Z₁₇₁ (m)</th>
<th>Z₁₇₂ (m)</th>
<th>l₉ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>996</td>
<td>996</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 69: Datos de la tubería terciaria

Para el cálculo de la presión media y mínima utilizamos la expresión vista anteriormente:

\[q = K h^4 = 49,1 h^{0,5} \]

- Presión media:

\[h_a = (q_a/49,1)^{1/0,5} = (200/49,1)^2 = 16,6 \text{ m.c.a} \]

- Presión mínima:

\[h_{ns} = (q_{ns}/49,1)^{1/0,5} = (180,63/49,1)^2 = 13,5 \text{ m.c.a} \]

- Pérdida de carga admisible en la subunidad:

\[\frac{\Delta P_s}{\gamma} = \frac{1}{x} 0.10 h = \frac{1}{0.5} 0.10 \times 16,59 = 3,32 \text{ m.c.a} \]

\[\Delta h_s = 3,32 = 3,318 \text{ m.c.a} \]

- Coeficiente de forma:

\[CF = \frac{L \text{. Lateral}}{L \text{. Terciaria}} = \frac{138}{60} = 2,3 \]

- Reparto óptimo de presiones laterales alimentados por un extremo:

\[R = \frac{\Delta h_l}{\Delta h_s} = \frac{0,842 \times CF^{0,158}}{S^{0,060}} \]

\[R = 0,857 \]

Esto significa que el reparto de presiones será del 75,6% para los laterales y 24,4% para la tubería terciaria.

\[\Delta h_{lat} = \Delta h_s \times R = 2,843 \text{ m.c.a} \]

\[\Delta h_{ter} = \Delta h_s - \Delta h_{lat} = 0,475 \text{ m.c.a} \]
Diseño de una instalación de regadío para una plantación de trufa negra

Trabajo Fin de Grado

<table>
<thead>
<tr>
<th>h_a</th>
<th>h_{ns}</th>
<th>$\Delta P_s/\gamma$</th>
<th>Z_L</th>
<th>Z_T</th>
<th>Δh_s</th>
<th>CF</th>
<th>R</th>
<th>Δh_L</th>
<th>Δh_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,59</td>
<td>13,53</td>
<td>3,32</td>
<td>0,0</td>
<td>0,0</td>
<td>3,32</td>
<td>2,3</td>
<td>0,86</td>
<td>2,84</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tabla 70: Cálculo del diámetro de tubería

- Pérdidas de carga localizadas en la tubería lateral:

 $$L_e = 0,23 \times n = 5,29 \text{ m}$$

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud del lateral fuese de 143,29 m, con lo que se incluyen las pérdidas de carga localizadas.

<table>
<thead>
<tr>
<th>L_e</th>
<th>L_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,29</td>
<td>143,29</td>
</tr>
</tbody>
</table>

Tabla 71: Pérdidas de carga localizadas

- Pérdida de carga continuas en la tubería lateral:

Las pérdidas continuas en un lateral o terciario son las de una distribución discreta con servicio en el trayecto por lo que como se ha planteado anteriormente:

$$h_{cl} = \alpha \times D^{1,75} \times Q^{1,75} \times F$$

En este caso tenemos que:

$\alpha = 0,450$
$L = 143,29$ metros
$F = 0,386$

F: Coeficiente de Christiansen

Tanteamos con $\varnothing 40$ mm → $\varnothing_{interior}$ 37,6 mm (Tubería PE-100)

$$h_{cl} = \frac{0,450}{37,6^{1,75}} \times 4600^{1,75} \times 143,29 \times 0,386 = 2,11 \text{ m. c. a} < \Delta h_{lat} = 2,84 \text{ m. c. a}$$

VÁLIDO

Adoptamos un diámetro de 40 mm en los ramales laterales de la subunidad

- Pérdidas de carga localizadas en la tubería terciaria:

 $$L_e = 0.10 \times 4600^{0.30} \times 10^{0.26} = 2,28 \text{ mtr as}$$
Diseño de una instalación de regadío para una plantación de trufa negra

Por lo tanto, los cálculos de pérdida de carga se hacen como si la longitud de la terciaria sea de 62,28 m, con lo que se incluyen las pérdidas de carga localizadas.

- Pérdidas de carga continuas en la tubería terciaria:

\[h_{cT} = \frac{\alpha}{D^{1.75}} \times L \times Q^{1.75} \times F_g \]

En este caso tenemos que:
\[\alpha = 0.450 \]
\[L = 62,28 \text{ metros} \]
\[F = 0.415 \]
\[S=6 \text{ metros} \]
\[n=10 \]
\[m=1.75 \]

Tanteamos con \(\varnothing \) 125 mm \(\rightarrow \) \(\varnothing \) interior 117,6 mm (Tubería PE-100)

\[h_{cT} = \frac{0.450}{10^{0.415}} \times 46000^{1.75} \times 62,28 \times 0.415 = 0,246 \text{ m.c.a } < \Delta h_{ter} = 0,475 \text{ m.c.a} \]

VÁLIDO

Adoptamos un diámetro de 110 mm en la tubería terciaria de la subunidades

<table>
<thead>
<tr>
<th>Subunidades</th>
<th>Nº Emisores</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>23</td>
<td>138</td>
<td>4600</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabla 73: Longitud y caudal de las tuberías laterales

<table>
<thead>
<tr>
<th>Subunidades</th>
<th>Nº laterales</th>
<th>Longitud (m)</th>
<th>Caudal (l/h)</th>
<th>Diámetro Tubería (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>60</td>
<td>46000</td>
<td>125</td>
</tr>
</tbody>
</table>

Tabla 74: Longitud y caudal de las tuberías terciaria
Anexo III.2.5. Resumen de diámetros

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Lateral</th>
<th>Terciaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ø32</td>
<td>ø110</td>
</tr>
<tr>
<td>2</td>
<td>ø32</td>
<td>ø110</td>
</tr>
<tr>
<td>3</td>
<td>ø32</td>
<td>ø110</td>
</tr>
<tr>
<td>4</td>
<td>ø32</td>
<td>ø110</td>
</tr>
<tr>
<td>5</td>
<td>ø32</td>
<td>ø110</td>
</tr>
<tr>
<td>6</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>7</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>8</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>9</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>10</td>
<td>ø40</td>
<td>ø125</td>
</tr>
</tbody>
</table>

Tabla 75: Resumen de diámetros

En la subunidad 10, se ha determinado un diámetro para las tuberías laterales y terciarias mayor al resto. Hay subunidades donde la diferencia de pérdida de carga continua era muy aproximada a la pérdida de carga, así que se decide adoptar un diámetro de tuberías igual en todas las subunidades.

Por lo que quedaría:

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Lateral</th>
<th>Terciaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>2</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>3</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>4</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>5</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>6</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>7</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>8</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>9</td>
<td>ø40</td>
<td>ø125</td>
</tr>
<tr>
<td>10</td>
<td>ø40</td>
<td>ø125</td>
</tr>
</tbody>
</table>

Tabla 76: Resumen de diámetros

Se adopta un diámetro de 40 mm para las tuberías laterales y un diámetro de 125 mm para las tuberías terciarias.

Anexo III.2.6. Resumen de caudales

El número total de microaspersores a instalar es de 2.798, uno por cada encina micorrizada plantada.

El caudal en litros por hora necesario para satisfacer las necesidades de agua de la plantación será:

\[
Q = 2.798 \text{ microaspersores} \times 200 \text{ l/h-emisor} = 559.600 \text{ l/h}
\]
A continuación, se indica el número de microaspersores por sector y sus caudales.

<table>
<thead>
<tr>
<th>Subunidad</th>
<th>Nº de emisores</th>
<th>Caudal Total l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264</td>
<td>52.800</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>52.800</td>
</tr>
<tr>
<td>3</td>
<td>264</td>
<td>52.800</td>
</tr>
<tr>
<td>4</td>
<td>264</td>
<td>52.800</td>
</tr>
<tr>
<td>5</td>
<td>264</td>
<td>52.800</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>60000</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>60000</td>
</tr>
<tr>
<td>8</td>
<td>324</td>
<td>64.800</td>
</tr>
<tr>
<td>9</td>
<td>324</td>
<td>64.800</td>
</tr>
<tr>
<td>10</td>
<td>230</td>
<td>46.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.798</td>
<td>559.600</td>
</tr>
</tbody>
</table>

Tabla 77: Número de emisores y caudales de las subunidades

Anexo III.3. Estudio de presiones en las subunidades

Para conseguir la uniformidad de riego establecida en el diseño agronómico se debe cumplir que:

$$\frac{q_{\text{max}} - q_{\text{min}}}{q_a} \leq 10\%$$

Y, además, debe cumplirse que:

$$CUa = \left[1 - \sqrt[\frac{1}{2}]{\frac{1.27 \times CV}{e}} \right] \times \frac{1}{2} \times \left[\frac{q_{\text{min}}}{Q_a} + \frac{Q_{a}}{Q_{\text{max}}} \right] > 90\%$$

Dónde:

- $Q_{\text{max}} = K \cdot H_{\text{max}}^x$
- $Q_{\text{min}} = K \cdot H_{\text{min}}^x$

Para ello debe calcularse la presión en los puntos más restrictivos:

$$\frac{H_{\text{min}}}{h_a} = \left[\frac{CU}{1 - \frac{1.27 CV}{\sqrt{e}}} \right]^{\frac{1}{x}}$$

- CU: Coeficiente de uniformidad = 0,9
- CV: Coeficiente de variación de fabricación = 0,04
- e: número de emisores por planta = 1
- x: exponente de descarga = 0,5
- Q_a: caudal medio de todos los emisores = 200 l/h
- h_a: presión nominal del goteo

$$h_a = (q_a/K)^{1/0.5} = (200/49,1)^{2} = 16,6 \text{ m.c.a}$$

$$H_{\text{min}} = 14,92 \text{ m.c.a}$$
Anexo III.3.1. Estudio de presiones en las subunidades 1, 2, 3, 4 y 5

El punto más desfavorable es el punto A ya que es el punto más alto y más alejado:

\[
\frac{P_A}{y} = H_{min} = 14.92 \text{ m.c.a}
\]

\[
\frac{P_E}{y} = \frac{P_A}{y} + h_{A,E} = 14.92 + 0.061 = 14,981 \text{ m.c.a}
\]

\[
\frac{P_{RP}}{y} = \frac{P_E}{y} + h_{E,RP} + Z_{E,RP} = 14,981 + 1,23 + 0,011 \times 132 = 17,67 \text{ m.c.a}
\]

\[
\frac{P_F}{y} = \frac{P_{RP}}{y} - h_{F,RP} + Z_{RP,F} = 17,67 - 1,23 + 0,011 \times 132 = 17,89 \text{ m.c.a}
\]

\[
\frac{P_C}{y} = \frac{P_F}{y} - h_{F,C} = 17,89 - 1,23 = 16,66 \text{ m.c.a}
\]

\[
\frac{P_D}{y} = \frac{P_C}{y} = 38,4 - 0,03 = 16,66 \text{ m.c.a}
\]

\[H_{max} = 17,89 \text{ m.c.a}\]
\[H_{min} = 14.92 \text{ m.c.a}\]

\[Q_{max} = K \cdot H_{max}^{0.5} = 49.1 \times 17,89^{0.5} = 207,50 \text{ l/h}\]
\[Q_{min} = K \cdot H_{min}^{0.5} = 49.1 \times 14.92^{0.5} = 189.65 \text{ l/h}\]

Condición:

\[
\frac{207,50 - 189,65}{200} \leq 10\%
\]

\[8,9\% \leq 10\% \quad \text{Se cumple la primera condición}\]

Coeficiente de uniformidad absoluta en la subunidad (CUa):

\[
CUa = \left[1 - \frac{1,27 \times CV}{\sqrt{e}}\right] \times \frac{Q_{min}}{Q_a} + \frac{Q_a}{Q_{max}} > 90\%
\]
Diseño de una instalación de regadío para una plantación de trufa negra

\[CU_a = \left[1 - \frac{1.27 \times 0.04}{\sqrt{1}} \right] \times \frac{1}{2} \times \left[\frac{189.65}{200} + \frac{200}{207.50} \right] > 90\% \]

\[CU_a = 90.1\% > 90\% \]

El Coeficiente de Uniformidad absoluta es del 90,1% al igual que el previsto en el cálculo de necesidades que era del 90 %. No hay diferencia, pero se puede dar por válido.

Anexo III.3.2. Estudio de presiones en las subunidades 6 y 7

![Ilustración 14: Subunidades 6 y 7](image)

El punto más desfavorable es el punto A ya que es el punto más alto y más alejado:

\[\frac{P_A}{\gamma} = H_{\text{min}} = 14.92 \text{ mca} \]

\[\frac{P_B}{\gamma} = \frac{P_A}{\gamma} + h_{AB} = 14.92 + 1.44 = 16.36 \text{ mca} \]

\[\frac{P_{RP}}{\gamma} = \frac{P_B}{\gamma} + h_{B,RP} + Z_{B,RP} = 16.36 + 0.56 + 0.022 \times 45 = 17.91 \text{ mca} \]

\[\frac{P_D}{\gamma} = \frac{P_{RP}}{\gamma} - h_{D,RP} + Z_{RP,D} = 17.91 - 0.56 + 0.022 \times 45 = 18.34 \text{ mca} \]
Diseño de una instalación de regadío para una plantación de trufa negra

\[
\frac{P_c}{\gamma} = \frac{P_D}{\gamma} - h_{D,c} = 18,34 - 1,44 = 16,90 \text{ m.c.a}
\]

\[
H_{\max} = 17,91 \text{ m.c.a}
\]
\[
H_{\min} = 14.92 \text{ m.c.a}
\]

\[
Q_{\max} = K \cdot H_{\max}^x = 49.1 \times 17,91^{0.5} = 207,79 \text{ l/h}
\]
\[
Q_{\min} = K \cdot H_{\min}^x = 49.1 \times 14.92^{0.5} = 189.65 \text{ l/h}
\]

Condición:

\[
\frac{207,79 - 189,65}{200} \leq 10\
\]

9.1 % ≤ 10% Se cumple la primera condición

Coeficiente de uniformidad absoluta en la subunidad (CUa):

\[
CUa = \left[1 - \frac{1,27 \times CV}{\sqrt{e}}\right] \times \frac{1}{2} \times \left[\frac{Q_{\min}}{Q_a} + \frac{Q_{a}}{Q_{\max}}\right] > 90\%
\]

\[
CUa = \left[1 - \frac{1,27 \times 0,04}{\sqrt{1}}\right] \times \frac{1}{2} \times \left[\frac{189,65}{200} + \frac{200}{207,79}\right] > 90\%
\]

CUa = 91% > 90%

El Coeficiente de Uniformidad absoluta es del 91 % frente al que se había previsto en el cálculo de necesidades que era del 90 %. Esta diferencia nos da cierto margen de seguridad, ya que este coeficiente de uniformidad no será constante durante la vida de la instalación y habrá que chequearlo.
Diseño de una instalación de regadío para una plantación de trufa negra

Anexo III.3.3. Estudio de presiones en las subunidades 8 y 9

Ilustración 15: Subunidades 8 y 9

El punto más desfavorable es el punto A ya que es el punto más alto y más alejado:

\[
P_A = \frac{H_{min}}{\gamma} = 14.92 \text{ m.c.a}
\]
\[
P_B = \frac{P_A}{\gamma} + h_{AB} = 14.92 + 1.09 = 16.01 \text{ m.c.a}
\]
\[
P_{RP} = \frac{P_B}{\gamma} + h_{B,RP} + Z_{B,RP} = 16.01 + 0.76 + 0.027 \times 54 = 18.23 \text{ m.c.a}
\]
\[
P_D = \frac{P_{RP}}{\gamma} - h_{D,RP} + Z_{D,RP} = 18.23 - 0.76 + 0.027 \times 54 = 18.92 \text{ m.c.a}
\]
\[
P_C = \frac{P_D}{\gamma} - h_{D,C} = 18.92 - 1.09 = 17.84 \text{ m.c.a}
\]

\[
H_{max} = 18.92 \text{ m.c.a}
\]
\[
H_{min} = 14.92 \text{ m.c.a}
\]

\[
Q_{max} = K \cdot H_{max}^{x} = 49.1 \times 17.91^{0.5} = 207.36 \text{ l/h}
\]
\[
Q_{min} = K \cdot H_{min}^{x} = 49.1 \times 14.92^{0.5} = 189.65 \text{ l/h}
\]

Condición:

\[
\frac{207.36 - 189.65}{200} \leq 10\%
\]
Diseño de una instalación de regadío para una plantación de trufa negra

8,85 % ≤ 10% Se cumple la primera condición

Coeficiente de uniformidad absoluta en la subunidad (CUa):

\[
CU_a = \left[1 - \frac{1,27 \times CV}{\sqrt{e}} \right] \times \frac{1}{2} \times \left[\frac{Q_{\min}}{Q_a} + \frac{Q_a}{Q_{\max}} \right] > 90\%
\]

\[
CU_a = \left[1 - \frac{1,27 \times 0,04}{\sqrt{1}} \right] \times \frac{1}{2} \times \left[\frac{189,65}{200} + \frac{200}{207,36} \right] > 90\%
\]

\[
CU_a = 91\% > 90\%
\]

El Coeficiente de Uniformidad absoluta es del 91 % frente al que se había previsto en el cálculo de necesidades que era del 90 %. Esta diferencia nos da cierto margen de seguridad, ya que este coeficiente de uniformidad no será constante durante la vida de la instalación y habrá que checarlo.

Anexo III.3.4. Estudio de presiones en la subunidad 10

El punto más desfavorable es el punto A ya que es el punto más alejado:

\[
\frac{P_A}{\gamma} = \frac{P_C}{\gamma} = H_{\min} = 14.92\ mca
\]

\[
\frac{P_B}{\gamma} = \frac{P_D}{\gamma} = \frac{P_A}{\gamma} + h_{A,B} = 14,92 + 2,10 = 17.02\ mca
\]
\[
\frac{P_{RF}}{\gamma} = \frac{P_{B}}{\gamma} + h_{B,RF} = 17,02 + 0,25 = 17,27 \text{ m.c.a}
\]

\[H_{\text{max}} = 17,27 \text{ m.c.a}\]
\[H_{\text{min}} = 14.92 \text{ m.c.a}\]

\[Q_{\text{max}} = K \cdot H_{\text{max}}^{1.5} = 49.1 \times 17.91^{0.5} = 204.04 \text{ l/h}\]
\[Q_{\text{min}} = K \cdot H_{\text{min}}^{1.5} = 49.1 \times 14.92^{0.5} = 189.65 \text{ l/h}\]

Condición:
\[
\frac{204.04 - 189.65}{200} \leq 10\%
\]

7,19 % ≤ 10% Se cumple la primera condición

Coeficiente de uniformidad absoluta en la subunidad (CUa):

\[
CUa = \left[1 - \frac{1,27 \times CV}{\sqrt{e}} \right] \times \frac{1}{2} \times \left[\frac{Q_{\text{min}}}{Q_{a}} + \frac{Q_{a}}{Q_{\text{max}}} \right] > 90\%
\]

\[
CUa = \left[1 - \frac{1,27 \times 0,04}{\sqrt{1}} \right] \times \frac{1}{2} \times \left[\frac{189,65}{200} + \frac{200}{204,04} \right] > 90\%
\]

\[
CUa = 91,52\% > 90\%
\]

El Coeficiente de Uniformidad absoluta es del 91,52 % frente al que se había previsto en el cálculo de necesidades que era del 90 %. Esta diferencia nos da cierto margen de seguridad, ya que este coeficiente de uniformidad no será constante durante la vida de la instalación y habrá que chequearlo.

Anexo III.4. Dimensionamiento de la Red principal de riego

El presente apartado tiene como objetivo calcular el dimensionamiento de la tubería general. Esta tubería está conectada con el cabezal de riego y conectará con el resto de las tuberías portalaterales.

Anexo III.4.1. Cálculo de la Red

La tubería general, transportará el agua desde el embalse hasta las tuberías terciarias de cada subunidad.
Para su dimensionamiento se ha seguido el criterio práctico que aconseja mantener la velocidad del fluido en torno a 1,5 m/sg. Todas las pérdidas de carga son mayoradas en un 15 % por posibles pérdidas de carga en puntos singulares. La tubería se dimensiona con PVC de 6 atm debido a que el de 4 atm no soporta las posibles depresiones que puede provocar el grupo de bombeo. Como se ha dispuesto que sólo se riega un sector cada vez, el caudal máximo que deberá transportar la tubería principal es de 64.800 l/h.

Utilizamos la fórmula para obtener el diámetro teórico:

\[
D_{\text{teórico}} > \sqrt{0,236 \times Q} \quad \text{Velocidad} = 1,5 \text{ m/sg (Ec 40)}
\]

\[
D_{\text{teórico}} = \text{diámetro teórico (mm)}
\]
\[
Q = \text{caudal (l/h)}
\]
\[
D_{\text{teórico}} > \sqrt{0,236 \times 64.800} = 123,66 \text{ mm}
\]

Con este diámetro teórico debemos elegir una tubería de **PVC de 125 mm y 6 atm**, cuyo diámetro interior es de 117,6 mm.

Datos de partida:

- Longitud: L = 1.776 m
- Caudal: Q = 64.800 l/h
- Dint = 117,6 mm

- Cálculo del regimen hidráulico

Número de Reynolds: \(\text{Re} = \frac{352,64 \times q}{d} \)

\[
\text{Re} = \frac{352,64 \times 64.800}{117,6} = 194.311,8
\]
Diseño de una instalación de regadío para una plantación de trufa negra

$10^5 < Re < 10^6$ Régimen turbulento rugoso

- Cálculo de las pérdidas de carga en la tubería principal:

Según el régimen obtenido, las pérdidas de carga unitarias se calculan con la fórmula descrita por Darcy-Weisbach:

$$H_f = f \frac{L v^2}{D^2 g} = \frac{8 f L Q^2}{\pi^2 g D^5} = \frac{8 \times 0.015 \times 1776}{\pi^2 \times g \times 117.65^5} 64800^2 = 0.00168$$

Pérdida de carga total:

$$H = a \times J \times F \times L$$

$$A = 1.15 (15\% \text{ por posibles pérdidas en puntos singulares})$$

$$H = 1.15 \times 0.00168 \times 1 \times 1.776 m = 3.43 \text{ m.c.a}$$

- Presión al inicio de la tubería principal:

$$H_{mp} = H_{mt} + H = 18.92 + 3.43 = 22.35 \text{ m.c.a}$$

H_{mt} = presión en el origen de la tubería terciaria de la subunidad 8
H: pérdida de carga en la tubería principal

Anexo III.4.2. Elementos auxiliares

- **Válvula de paso**: a la salida del embalse, se instalará una válvula de paso que permitirá la conducción del agua a través de la red general.

- **Válvula de desagüe**: al final de la conducción en la tubería principal, se instalará una válvula de desagüe en caso de avería o necesidad de vaciado de la red.

Anexo III.5. Cabezal de Riego

El cabezal de riego se compone de los elementos destinados a filtrar, tratar, medir y suministrar el agua a la red de distribución. El agua con la que se va a regar procede directamente del embalse y tiene que someterse a un filtrado para asegurar un buen funcionamiento del sistema.

Anexo III.5.1. Equipo de filtrado.

El equipo de filtrado constará de un filtro de arena o un filtro cazapiédras para retener los elementos más gruesos que lleva el agua, tales como arena y pequeñas partículas minerales, y también constará de un filtro de mallas que se encargará de retener los elementos más finos capaces de obturar la salida de los goteros.
ANEXO III.5.1.1. FILTRO DE ARENA.

En el filtro de arena el agua entra por una tubería superior y se distribuye en el interior del tanque por medio de un deflector que tiene por objeto evitar que el chorro de agua incidente sobre la arena la remueva. La salida del agua filtrada es por una tubería inferior, la cual, se prolonga en el interior del tanque en unos colectores perforados y revestidos de malla para evitar el arrastre de la arena. El tanque dispone de dos amplias bocas, una para la carga y otra para la descarga de la arena. El depósito lleva un purgador ya que, en los filtros de arena el aire se acumula con frecuencia. La tubería de entrada suele llevar una derivación para eliminar el agua sucia durante la limpieza por contralavado.

El filtrado a través de un medio granular es el resultado de tres acciones distintas:

- **Tamizado**, que es un fenómeno superficial que sólo puede retener partículas de tamaño superior a los poros del filtro.
- **Sedimentación**, cada espacio poroso actúa como un pequeño decantador en el que la sedimentación se ve favorecida por la baja velocidad del agua (2 m/min en los filtros de RLAF).
- **Adhesión y cohesión**, cuando una partícula en suspensión entra en contacto con un grano del material filtrante se crean fuerzas de atracción de origen eléctrico, que explican que los filtros retengan partículas mucho menores que el tamaño de los poros.

Para la selección de la arena hay que tener en cuenta el siguiente criterio: las partículas que superan el filtro deben tener un diámetro menor que 1/10 del diámetro mínimo del emisor y puesto que los filtros de arena dejan pasar partículas cuyo tamaño es de 1/10 a 1/12 del diámetro efectivo de la arena, por tanto la arena adecuada es la de diámetro efectivo igual al diámetro mínimo del emisor que en nuestro caso es 1,25 mm.

Para el diseño, el máximo caudal que requiere un sector de riego es de 64.800 l/h. Para calcular la superficie filtrante se tiene en cuenta que la velocidad media del agua en el interior del tanque no debe superar los 60 m/h. y que el caudal se aumenta en un 20 % como margen de seguridad.

- **Caudal incrementado en un 20 % → Q' = 77.760 l/h.**
- **Velocidad = 60 m/h.**
- **Superficie filtrante:**

\[S = \frac{Q}{V} = \frac{77760}{60} = 1,29 \ m^2 \]

Se instalarán dos filtros de arena en paralelo para permitir la limpieza de cada unos de ellos con agua limpia procedente del otro filtro.

\[S = \frac{1,29}{2} = 0,645 \ m^2 \]

\[D = \sqrt{\frac{4 \times S}{\pi}} = 0,91 \ m \]

Se instalarán 2 filtros con un diámetro mínimo de 0,91 metros. El espesor de la arena será de 50 centímetros. La arena tendrá un diámetro efectivo igual o menor que el diámetro mínimo del emisor, que es de 1,25 mm y un coeficiente de uniformidad comprendido entre 1,40 y 1,60.
A efectos de cálculo, la pérdida de carga máxima será de 6 m.c.a. aunque en funcionamiento, cuando los filtros están limpios provocan una pérdida de carga del orden de 1 a 2 m.c.a., nunca deberá llegar a 6 m.c.a. Se han de limpiar cuando nos encontremos con una pérdida de carga comprendida entre 4 y 5 m.c.a.

ANEXO III.5.1.2. FILTRO DE MALLAS

Para poder retener las partículas minerales o productos nocivos que pueda llevar el agua antes de llegar a la instalación, es necesario instalar un filtro de mallas.

Los filtros de malla tienen la función de realizar un tamizado superficial del agua, reteniendo las partículas que tienen un tamaño mayor que los orificios de la malla. Se utiliza como elemento de seguridad para el equipo de fertiirrigación y el filtro de arena.

ANEXO III.5.1.2.

Para poder retener las partículas minerales o productos nocivos que pueda llevar el agua antes de llegar a la instalación, es necesario instalar un filtro de mallas.

Los filtros de malla tienen la función de realizar un tamizado superficial del agua, reteniendo las partículas que tienen un tamaño mayor que los orificios de la malla. Se utiliza como elemento de seguridad para el equipo de fertiirrigación y el filtro de arena.

Tabla 79: Relación entre el diámetro de emisor, malla y nº de mesh

<table>
<thead>
<tr>
<th>Ø del gotero (mm)</th>
<th>Ø del orificio de malla (micras)</th>
<th>nº de mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>214</td>
<td>65</td>
</tr>
<tr>
<td>1.25</td>
<td>178</td>
<td>80</td>
</tr>
<tr>
<td>1.00</td>
<td>143</td>
<td>115</td>
</tr>
<tr>
<td>0.90</td>
<td>128</td>
<td>115</td>
</tr>
<tr>
<td>0.80</td>
<td>114</td>
<td>150</td>
</tr>
<tr>
<td>0.70</td>
<td>100</td>
<td>170</td>
</tr>
<tr>
<td>0.60</td>
<td>86</td>
<td>200</td>
</tr>
</tbody>
</table>

A la hora de diseñar el filtro de mallas, seguiremos el criterio de que el tamaño del orificio sea aproximadamente de 1/7 del menos diámetro de paso del microaspersor.

El diámetro de paso del microaspersor es de 1,05 mm, con lo cual se elige una malla de acero de 65 mesh, con un tamaño de orificio menor que 214 micras.

Superficie del filtro:

- Caudal incrementado en un 20 % → Q' = 77.760 l/h.

Para un tamaño de 214 micras con agua sin algas la velocidad del agua debe estar comprendida entre 0,4 y 0,6 m/s. Si se elige una velocidad de 0,4 m/s;
Tabla 80: Relación entre velocidad media del agua, el caudal y el área de filtro de la malla

- El filtro de la malla debe tener una superficie de:
 \[S = \frac{77,76}{446} = 0,17 \, m^2 \]

De modo que se elige un filtro de malla con cuerpo de acero, elementos filtrantes de acero inoxidable, 5" de diámetro, 0,13 m² y malla de 65 mesh.

Anexo III.5.2. Otros elementos del cabezal de riego

En el cabezal de riego además de los filtros de arena y de mallas, habrá también los siguientes elementos de funcionamiento, protección y control:

- Motor de combustión diesel cuyas características técnicas se mostrarán más adelante
- Alternador
- Válvula de retención a la salida de la columna de la electrobomba para evitar el retorno del agua en las paradas
- Programador de riegos, se dispondrá también de un programador que controle la apertura y cierre de las electrovalvulas que riegan cada unidad, este programador efectuará estos controles por tiempo.
- El resto de los elementos (manómetros, válvulas, etc) se pueden observar en el plano del cabezal de riego.

Anexo III.6. Automatización de riego

Para conseguir la automatización del riego se instalará un programador de riego, que controlará la apertura y cierre de las válvulas hidráulicas de las unidades de riego. Las válvulas hidráulicas de cada subunidad de riego estarán conectadas al programador mediante solenoides y microtubos de polietileno de 8 mm de diámetro.
Anexo III.7. Equipo de bombeo

Para que el agua consiga llegar a la parcela, la instalación necesita una bomba horizontal para impulsar el agua de la balsa hasta la parcela que se encuentra a 10 metros de altura.

- Altura de impulsión necesaria

El equipo de bombeo se selecciona para la unidad más desfavorable. En primer lugar, debemos conocer la altura de bombeo necesaria para que la instalación funcione correctamente.

La altura que se necesita en el origen de la tubería principal es igual a la suma de la presión necesaria en el inicio de los ramales más las pérdidas de carga de las tuberías portalaterales y primaria. Es decir:

\[P = 22,8 \text{ m.c.a} \]

A esta presión necesaria al inicio de la tubería principal hay que añadirle las pérdidas de carga producidas en el cabezal de riego, que son las siguientes:

- Pérdida de carga en el contador 1 m.c.a
- Pérdida de carga en el filtro de malla 2 m.c.a
- Pérdida de carga en el filtro de arena 3 m.c.a
- Pérdida de carga en puntos singulares y valvulería del cabezal 3 m.c.a

Por lo tanto, la altura de impulsión necesaria será **31,8 m.c.a**

La diferencia de cotas entre el embalse y la tubería más desfavorables es de **10 metros ascendente**

- Presión al inicio de la tubería principal:

\[H = 31,8 + 10 = 41,8 \text{ m.c.a} \]

Por lo tanto, el grupo motobomba debe suministrar una altura manométrica de al menos 41,8 m.c.a.

Con estos datos y las necesidades del sistema de riego se dimensiona la bomba:

- \(Q = 64,8 \text{ m}^3/\text{h} \) (se mayora en un 20%)
- \(H = 41,8 \text{ m.c.a} \)
- Rendimiento: \(\eta = 75\% \)

Siendo \(\eta \) el rendimiento del grupo motobomba (valor entre 0,7 y 0,8 normalmente).

\[
\text{Potencia} = \frac{Q \times H}{270 \times \eta} = 13,37 \text{ CV}
\]

Necesitamos una bomba de al menos, 15 CV de potencia que suministre un caudal de 64.80 m³/h a una altura de 41,8 m.

\[
Kw = 20 \times 0,736 = 11 \text{ kW}
\]
ANEXO IV: VALLADO
ÍNDICE ANEXO IV

ANEXO IV. VALLADO .. - 92 -
 Anexo IV.1. Introducción.. - 92 -
 Anexo IV.2. Diseño de la valla ... - 92 -
 Anexo IV.3. Actuaciones preventivas ... - 93 -
 Anexo IV.4. Ejecución del vallado ... - 93 -

ÍNDICE TABLAS

Tabla 80: Características de la zanja .. - 97 -
Tabla 81: Características de la zanja .. - 97 -
Tabla 82: Características de la zanja .. - 98 -
Tabla 83: Características de la zanja .. - 98 -
Anexo IV. VALLADO

Anexo IV.1. Introducción

Para el cerramiento de esta plantación se optará por una valla de tipo ganadera para evitar la entrada de fauna silvestre como jabalís, ciervos o ganado que podrían perjudicar a la plantación en la fase de crecimiento. Además, tratándose de un producto muy apreciado se deberá tomar todas las medidas de seguridad posibles para evitar los posibles hurtos ocasionados por las personas.

Para la fase de diseño del vallado se hará de acuerdo a las condiciones reales de la finca y tomar las distintas soluciones técnicas que pueden darse a los diferentes problemas relacionados con la ejecución de la plantación. La preparación del terreno incluye todas aquellas actuaciones necesarias para conseguir las condiciones óptimas de la parcela, así como para la instalación y posterior mantenimiento de la plantación.

Anexo IV.2. Diseño de la valla

La valla delimitará el perímetro de las parcelas y tendrá un total de 2.005 metros con una altura sobre el terreno de 1,90 metros.

Esta valla irá sujeta a unos postes de madera que estarán separados a una distancia de 3 metros aproximadamente uno de otro. En las esquinas, cambios de dirección y en una distancia no superior a 100 m se instalarán “postes de tensión”. Estos, además, llevarán dos postes de refuerzo auxiliares, uno a cada lado, inclinados para dar firmeza.

El acceso a la plantación es posible por dos caminos por lo que se harán dos puertas a la plantación. Para la colocación de la puerta se dejará un espacio de 6 metros para que la maquinaria entre sin problemas.

El material que se utilizará para la instalación del cerramiento es:

- Postes (intermedios) de madera de pino tanalizados y tratados de 2,30 m de altura y 10 cm de diámetro.
- Postes (tensión) de madera de pino tanalizados y tratados de 2,70 m de altura y 10 cm de diámetro.
- Postes (de refuerzo auxiliares) de madera de pino tanalizados y tratados de 2,00 m de altura y 8 cm de diámetro.
- Malla ganadera galvanizada y anudada tipo HJ/200-8-30 de dos metros de altura.
- Alambre de espino galvanizado, en coronación.
- Grampillones galvanizados para unir los postes con los hilos.
- Tensores de carraca galvanizados.
- Tornillos bicromados M5 de 100 mm para unir los tensores a los postes.
- Puertas de dos hojas de pino tanalizado de 1,9 metros de altura y 3 metros de anchura cada hoja.

En el cerramiento se colocarán dos tipos de postes: postes intermedios y postes de tensión.
• **Los postes intermedios** o piquetes mantienen la separación de los hilos y aseguran una buena fijación de la malla. La separación tanto de los de tensión como intermedios será de 3 metros aproximadamente.

• **Los postes de tensión** se colocan al inicio de las líneas, en los ángulos y a una distancia de 80 metro el uno del otro. Estos postes llevarán otros dos postes de refuerzo auxiliares, uno a cada lado, inclinados para dar firmeza.

Los alambres serán de espino galvanizado y nos servirán para enlazar la malla a los postes.

Las grapas son las encargadas de sujetar los alambres y las mallas a los postes. Los tensores modifican la tensión del alambre cuando es necesario.

Anexo IV.3. Actuaciones preventivas

Antes de proceder con la instalación, se deberán hacer una serie de actividades para preparar la fase de colocación:

- Para cada una de las parcelas se procederá a realizar un despedregado debido a la existencia de piedras de tamaño mediano que pueden impedir la correcta instalación de la valla.
- Se realizará un marcado con pintura para situar donde irá la valla colocada y donde se colocarán los postes en el terreno.
- Sobre estas líneas se realizará una zanja de 15 cm de profundidad mediante un subsolador acoplado a un tractor.

Una vez realizadas estas actuaciones, se procede a la ejecución del vallado.

Anexo IV.4. Ejecución del vallado

El cerramiento se construirá entre dos postes de tensión tramo a tramo. Los postes estarán colocados en el inicio del cercado, puertas, cambios de dirección y también se intercalarán en distancias superiores a 100 metros.

El perímetro de la parcela tiene un total de 2.005 metros y si los postes de tensión tienen que estar a una distancia de 80 metros, el vallado se dividirá en 20 tramos.

Cada uno de los tramos tendrá postes intermedios separados a una distancia de 3 metros. La colocación de estos postes, irán de la siguiente manera:

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Longitud (m)</th>
<th>Nº Postes Intermedios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>178</td>
<td>59</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>3-4</td>
<td>348</td>
<td>116</td>
</tr>
<tr>
<td>4-5</td>
<td>213</td>
<td>71</td>
</tr>
<tr>
<td>5-6</td>
<td>182</td>
<td>61</td>
</tr>
<tr>
<td>6-7</td>
<td>263</td>
<td>88</td>
</tr>
<tr>
<td>7-8</td>
<td>211</td>
<td>70</td>
</tr>
<tr>
<td>8-9</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>9-10</td>
<td>47</td>
<td>16</td>
</tr>
</tbody>
</table>
Cada uno de los postes, tanto intermedios como de tensión, van clavados en el suelo y para ello deben de acabar en punta. Se clavarán con un martillo neumático acoplado a un tractor.

Los postes intermedios tienen que ir clavados a una profundidad de aproximadamente 40 cm y los de tensión a una profundidad de 80 cm. Estos últimos tienen unos postes de firmeza que irán clavados a 50 cm.

Una vez colocados los postes de tensión con sus correspondientes firmezas y los postes intermedios, se coloca la malla y los alambres espinosos. Se sujetará cada alambre a cada uno de los postes de tensión, se llevará hasta el otro poste, se colocarán los tensores fijos dándole la tensión adecuada al hilo y, finalmente, se clavan las grapas sujetando el alambre a cada poste intermedio.

Por último, solo queda tapar la zanja realizada al inicio del cerramiento y dejar el alambre inferior enterrado 10 cm.

La colocación de la puerta se realizará sobre zapatas de hormigón anclado en el suelo 60 cm.
ANEXO V: MOVIMIENTO DE TIERRAS
ÍNDICE ANEXO V

ANEXO V. MOVIMIENTO DE TIERRAS ... - 97 -
Anexo V.1. Introducción.. - 97 -
Anexo V.2. Excavaciones y relleno de zanjas ... - 97 -
Anexo V.2.1. Terciaria de las subunidades 1, 2, 3, 4 y 5 - 97 -
Anexo V.2.2. Terciaria de las subunidades 6 y 7 - 97 -
Anexo V.2.3. Terciaria de las subunidades 8 y 9 - 98 -
Anexo V.2.4. Terciaria de las subunidades 10 ... - 98 -
Anexo V.3. Resultados .. - 98 -

ÍNDICE TABLAS

Tabla 82: Características de la zanja .. - 98 -
Tabla 83: Características de la zanja .. - 98 -
Tabla 84: Resultados de movimientos de tierra ... - 98 -
Tabla 85: Actividades y duración... - 101 -
Anexo V. MOVIMIENTO DE TIERRAS

Anexo V.1. Introducción

EL objetivo de esta parte es calcular los movimientos de tierra requeridos para realizar el zanjeado de las terciarias en cada subunidad.

Anexo V.2. Excavaciones y relleno de zanjas

El volumen de tierra movido por el zanjeado, dependerá de la profundidad, longitud y anchura de la propia zanja, que en todos los casos será de forma rectangular. Al ser un terreno que carece de terraplenes y desmontes, este volumen de tierra extraído será sencillo de calcular. Los materiales que aparecen en las excavaciones se han clasificado en roca, tránsito y blando.

Las zanjas se dispondrán en cada subunidad de tal forma que el centro de esta sea equidistante a cada árbol de la línea, 3 metros de distancia a cada árbol desde el centro de zanja, ya que el marco de plantación es de 6x6.

Anexo V.2.1. Terciaria de las subunidades 1, 2, 3, 4 y 5

<table>
<thead>
<tr>
<th>Longitud de la terciaria (m)</th>
<th>Ancho de la zanja (m)</th>
<th>Profundidad de la zanja (m)</th>
<th>Largo de la zanja (m)</th>
<th>Volumen Excavación (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>0,6</td>
<td>0,7</td>
<td>266</td>
<td>111,72</td>
</tr>
</tbody>
</table>

Tabla 81: Características de la zanja

- Angulo pared zanja sobre horizontal 90º
- Espesor de cama de arena 10 cm
- Altura material seleccionado 25 cm

Anexo V.2.2. Terciaria de las subunidades 6 y 7

<table>
<thead>
<tr>
<th>Longitud de la terciaria (m)</th>
<th>Ancho de la zanja (m)</th>
<th>Profundidad de la zanja (m)</th>
<th>Largo de la zanja (m)</th>
<th>Volumen Excavación (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0,6</td>
<td>0,7</td>
<td>92</td>
<td>38,64</td>
</tr>
</tbody>
</table>

Tabla 82: Características de la zanja

- Angulo pared zanja sobre horizontal 90º
- Espesor de cama de arena 10 cm
- Altura material seleccionado 25 cm
Anexo V.2.3. Terciaria de las subunidades 8 y 9

<table>
<thead>
<tr>
<th>Longitud de la terciaria (m)</th>
<th>Ancho de la zanja (m)</th>
<th>Profundidad de la zanja (m)</th>
<th>Largo de la zanja (m)</th>
<th>Volumen Excavación (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>0,6</td>
<td>0,7</td>
<td>110</td>
<td>46,2</td>
</tr>
</tbody>
</table>

Tabla 83: Características de la zanja

- Angulo pared zanja sobre horizontal 90º
- Espesor de cama de arena 10 cm
- Altura material seleccionado 25 cm

Anexo V.2.4. Terciaria de las subunidades 10

<table>
<thead>
<tr>
<th>Longitud de la terciaria (m)</th>
<th>Ancho de la zanja (m)</th>
<th>Profundidad de la zanja (m)</th>
<th>Largo de la zanja (m)</th>
<th>Volumen Excavación (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0,6</td>
<td>0,7</td>
<td>62</td>
<td>25,2</td>
</tr>
</tbody>
</table>

Tabla 84: Características de la zanja

- Angulo pared zanja sobre horizontal 90º
- Espesor de cama de arena 10 cm
- Altura material seleccionado 25 cm

Anexo V.3. Resultados

<table>
<thead>
<tr>
<th>Volumen de excavación</th>
<th>753,48 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen material seleccionado</td>
<td>79,50 m3</td>
</tr>
<tr>
<td>Volumen cama de arena</td>
<td>107,76 m3</td>
</tr>
<tr>
<td>Volumen material ordinario</td>
<td>187,26 m3</td>
</tr>
</tbody>
</table>

Tabla 85: Resultados de movimientos de tierra
ANEXO VI: MOVIMIENTO DE TIERRAS

Trabajo Fin de Grado
ÍNDICE ANEXO VI

ANEXO VI. PLAZO DE EJECUCIÓN .. - 101 -
Anexo VI.1. Introducción... - 101 -
Anexo VI.2. Elaboración del Diagrama de Gantt - 101 -
Anexo VI.3. Definición de actividades .. - 101 -
Anexo VI.4. Diagrama de Gantt .. - 102 -

ÍNDICE TABLAS

Tabla 85: Actividades y duración... - 101 -
Tabla 86: Diagrama de Gantt ... - 102 -
Anexo VI. PLAZO DE EJECUCIÓN

Anexo VI.1. Introducción
Este apartado tiene como objetivo planificar la ejecución del proyecto y el cálculo temporal del mismo.

La ejecución de este proyecto comenzará en septiembre, y tendrá que estar finalizado en un tiempo máximo de 2 meses. Tiempo previo a la recogida de trufa en el resto de las plantaciones.

Para la realización del presente anejo, utilizaremos el método del diagrama de Gantt.

Anexo VI.2. Elaboración del Diagrama de Gantt

Para el desarrollo del diagrama se tienen que definir una serie de labores con las que cuenta el proyecto y, además, definirlas en un plazo de ejecución razonable para cada una de ellas. Estos plazos dependerán de los medios con que se trabajará. En el diagrama se mostrará un espacio temporal gráfico mediante barras donde se podrá observar los solapes entre actividades. Como el equipo de trabajo desempeña las mismas actividades prácticamente, el número de solapes será mínimo.

Anexo VI.3. Definición de actividades

<table>
<thead>
<tr>
<th>ACTIVIDADES</th>
<th>DURACIÓN ESTIMADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de tierras</td>
<td></td>
</tr>
<tr>
<td>• Zanjas</td>
<td></td>
</tr>
<tr>
<td>• Relleno para cama</td>
<td></td>
</tr>
<tr>
<td>• Tapado</td>
<td>15 días</td>
</tr>
<tr>
<td>Subunidades</td>
<td></td>
</tr>
<tr>
<td>• Tendido de tuberías</td>
<td></td>
</tr>
<tr>
<td>• Valvulería</td>
<td>5 días</td>
</tr>
<tr>
<td>Red de Distribución</td>
<td></td>
</tr>
<tr>
<td>• Tendido de tuberías</td>
<td></td>
</tr>
<tr>
<td>• Valvulería</td>
<td>5 días</td>
</tr>
<tr>
<td>Cabezal de Riego</td>
<td></td>
</tr>
<tr>
<td>• Filtros</td>
<td></td>
</tr>
<tr>
<td>• Válvulas</td>
<td>3 días</td>
</tr>
</tbody>
</table>

Tabla 86: Actividades y duración
La duración de la instalación será de un total de 23 días, el inicio será el 2 de septiembre. El proyecto tiene que estar finalizado antes del 1 de noviembre, y según lo planificado hay tiempo suficiente. No obstante, hay días de margen por si el clima no acompaña o hay algún problema con el terreno.

Actividad	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Zanjas										8-9																					
Relleno de zanjas																															
Tapado																															
Tuberías Red General																															
Válvulas Red General																															
Tuberías Subunidades																															
Válvulas Subunidades																															
Filtro Cabezal																															
Válvulas del cabezal																															

Tabla 87: Diagrama de Gantt
Diseño de una instalación de regadío para una plantación de trufa negra

PLANOS
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título Localización de la parcela

<table>
<thead>
<tr>
<th>Localización</th>
<th>Escala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albentosa, Teruel</td>
<td>Nº Plano 1</td>
</tr>
</tbody>
</table>

Paula Pastor Corella
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título: Mapa Topográfico

Localización: Albentosa, Teruel

Escala: 1:5000

Paula Pastor Corella

Nº Plano: 2
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título: Distribución de las subunidades

Localización: Albentosa, Teruel

Escala: 1:4000

Paula Pastor Corella

N° Plano: 3
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título Red de Distribución

Localización Albentosa, Teruel

Escala 1:4000

Paula Pastor Corella Nº Plano 4
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título Cabezal de riego

Localización Albentosa, Teruel

Escala 1:50

Paula Pastor Corella

Nº Plano 5

1. Tubería general
2. Válvula de paso
3. Válvula ventosa
4. Manómetro
5. Filtro de anillas
6. Bomba horizontal
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título Arqueta

Localización Albentosa, Teruel

Escala 1:50

Paula Pastor Corella

Nº Plano 6
Diseño de una instalación de regadío para una plantación de trufa negra

Grado en Ingeniería Mecánica

Título Vallado

Localización Albentosa, Teruel

Escala 1:50

Paula Pastor Corella

Nº Plano 7
PLIEGO DE CONDICIONES
ÍNDICE PLIEGO DE CONDICIONES

1. DISPOSICIONES GENERALES ... - 115 -
 1.1. Obras objeto del presente proyecto .. - 115 -
 1.2. Obras accesorias no especificadas en el Pliego - 115 -
 1.3. Documentos que definen las obras .. - 115 -
 1.4. Compatibilidad y relación entre los documentos - 116 -
 1.5. Director de la obra .. - 116 -
 1.6. Disposiciones a tener en cuenta .. - 116 -

2. CONDICIONES DE ÍNDOLE TÉCNICA .. - 117 -
 2.1. Movimiento de tierras ... - 117 -
 2.2. Cimentaciones ... - 117 -
 2.3. Forjados - 117 -
 2.4. Hormigones y morteros .. - 118 -
 2.5. Morteros - 118 -
 2.6. Acero laminado ... - 119 -
 2.7. Aislamientos .. - 119 -
 2.8. Instalación eléctrica .. - 119 -
 2.9. Instalaciones de protección .. - 120 -
 2.10. Obras o instalaciones no especificadas - 120 -
 2.11. Condiciones generales a cumplir por los materiales - 120 -

3. CONDICIONES TÉCNICAS DE LA PLANTACIÓN - 123 -
 3.1. Técnicas de cultivo .. - 123 -
 3.2. Labores preparatorias del terreno ... - 123 -
 3.3. Características de la maquinaria .. - 123 -
 3.4. Mantenimiento y conservación de la maquinaria - 123 -
 3.5. Tiempo de utilización .. - 124 -
 3.6. Medidas de seguridad .. - 124 -
 3.7. Maquinaria no expresada .. - 124 -
 3.8. Realización de la poda ... - 124 -
 3.9. Tratamiento de los restos de poda ... - 124 -
 3.10. Riego - 124 -
 3.11. Recolección .. - 125 -

4. INSTALACIÓN DE RIEGO .. - 126 -
 4.1. Tuberías de PVC .. - 126 -
 4.2. Tuberías de PEBD .. - 126 -
 4.3. Acoples y juntas ... - 126 -
 4.4. Piezas de conexión ... - 126 -
 4.5. Instalación de tuberías ... - 127 -
4.6. Válvulas de compuerta ... - 127 -
4.7. Grupo de bombeo .. - 127 -
4.8. Microaspersores ... - 127 -
4.9. Cabezal de riego .. - 127 -
4.10. Puesta a punto de la instalación .. - 128 -
4.11. Uniformidad del riego .. - 128 -
4.12. Comprobación de la instalación .. - 128 -
4.13. Manejo de la instalación .. - 128 -
5. TRABAJOS, MATERIALES Y MEDIOS AUXILIARES - 129 -
5.1. Libro de órdenes .. - 129 -
5.2. Comienzo de los trabajos y plazo de ejecución - 129 -
5.3. Condiciones generales de ejecución de los trabajos - 129 -
5.4. Trabajos defectuosos ... - 129 -
5.5. Obras y vicios ocultos .. - 130 -
5.6. Materiales no utilizables o defectuosos - 130 -
5.7. Medios auxiliares ... - 130 -
6. RECEPCIÓN Y LIQUIDACIÓN.. - 131 -
6.1. Recepciones provisionales ... - 131 -
6.2. Plazo de garantía ... - 131 -
6.3. Conservación de los trabajos recibidos provisionally - 131 -
6.4. Recepción definitiva ... - 132 -
6.5. Liquidación final ... - 132 -
6.6. Liquidación en caso de recisión .. - 132 -
7. FACULTADES DE LA DIRECCIÓN DE OBRAS - 133 -
7.1. Facultades de la dirección de obra ... - 133 -
8. CONDICIONES DE ÍNDOLE ECONÓMICA - 134 -
8.1. Base fundamental ... - 134 -
8.2. Garantías .. - 134 -
8.3. Finanzas - 134 -
8.4. Ejecución de los trabajos con cargo a la fianza - 134 -
8.5. Devolución de la fianza .. - 134 -
8.6. Precios contradictorios .. - 134 -
8.7. Reclamaciones de aumento de precios - 135 -
8.8. Revisión de precios ... - 135 -
8.9. Elementos comprendidos en el presupuesto - 136 -
9. VALORACIÓN Y ABONO DE LOS TRABAJOS - 137 -
9.1. Valoración de la obra ... - 137 -
9.2. Medidas parciales y finales ... - 137 -
9.3. Equivocaciones en el presupuesto .. - 137 -
9.4. Valoración de obras incompletas ... - 137 -
9.5. Carácter provisional de las liquidaciones parciales - 137 -
9.6. Pagos - 138 -
9.7. Suspensión por retraso de pagos .. - 138 -
9.8. Indemnización por retraso de los trabajos ... - 138 -
9.9. Indemnización por daños de causa mayor al contratista - 138 -
10. VARIOS .. - 139 -
10.1. Mejoras de obras .. - 139 -
10.2. Seguro de los trabajos ... - 139 -
11. CONDICIONES DE ÍNDOLE LEGAL ... - 140 -
11.1. Jurisdicción ... - 140 -
11.2. Accidentes de trabajo y daños a terceros .. - 140 -
11.3. Pago de arbitrios .. - 140 -
11.4. Causas de rescisión del contrato ... - 141 -
1. DISPOSICIONES GENERALES

1.1. OBRAS OBJETO DEL PRESENTE PROYECTO

Se considerarán sujetas a las condiciones de este pliego todas las obras cuyas características, planos y presupuestos se adjuntan en las partes correspondientes del presente proyecto, así como todas las obras necesarias para dejar completamente terminados los edificios e instalaciones con arreglo a los planos y documentos adjuntos.

Se entiende por obras accesorias aquellas que por su naturaleza no pueden ser previstas en todos sus detalles, sino a medida que avanza la ejecución de los trabajos.

Las obras accesorias se construirán según se vaya conociendo su necesidad. Cuando su importancia lo exija, se construirán sobre la base de los proyectos particulares que se redacten. En los casos de menor importancia se llevarán a cabo conforme a la propuesta que formule el ingeniero director de la obra.

1.2. OBRAS ACCESORIAS NO ESPECIFICADAS EN EL PLIEGO

Si en el transcurso de los trabajos se hiciese necesario ejecutar cualquier clase de obras o instalaciones que no se encuentren descritas en este pliego de condiciones, al adjudicatario estará obligado a realizarlas con estricta sujeción a las órdenes que, al efecto, reciba del ingeniero director de la obra, y, en cualquier caso, con arreglo a las reglas del buen arte constructivo.

El ingeniero director de la obra tendrá plenas atribuciones para sancionar la idoneidad de los sistemas empleados, los cuales serán expuestos para su aprobación de forma que, a su juicio, las obras o instalaciones que resulten defectuosas total o parcialmente deberán ser demolidas, desmontadas o recibidas en su totalidad o en parte, sin que ello de derecho a ningún tipo de reclamación por parte del adjudicatario.

1.3. DOCUMENTOS QUE DEFINEN LAS OBRAS

Los documentos que definen las obras y que la propiedad entrega al Contratista, pueden tener carácter contractual o meramente informativo.

Son documentos contractuales los Planos, Pliego de Condiciones, Cuadros de Precios y Presupuestos Parcial y Total, que se incluye en el presente Proyecto.

Los datos y las marcas comerciales incluidas en la Memoria y Anejos, así como la justificación de precios tienen carácter meramente informativo.

Cualquier cambio de planteamiento de la Obra que implique un cambio sustancial respecto de lo proyectado deberá ponerse en conocimiento de la Dirección Técnica para que lo apruebe, si procede, y redacte el oportuno proyecto reformado.
1.4. COMPATIBILIDAD Y RELACIÓN ENTRE LOS DOCUMENTOS

En caso de contradicción entre Planos y Pliego de Condiciones, prevalecerá lo prescrito en este último documento. Lo mencionado en los Planos i omitido en el Pliego de Condiciones o viceversa, habrá de ser ejecutado como si estuviera expuesto en ambos documentos.

1.5. DIRECTOR DE LA OBRA

La propiedad nombrará en su representación a un graduado en ingeniería agrícola y del medio rural, en quien recaerán las labores de dirección, control y vigilancia de las obras de presente proyecto. El contratista proporcionará toda clase de facilidades para que el ingeniero director, o sus subalternos, puedan llevar a cabo su trabajo con el máximo de eficacia.

No será responsable ante la propiedad de la tardanza de los organismos competentes en la tramitación del proyecto. La tramitación es ajena al ingeniero director, quién una vez conseguidos todos los permisos, dará la orden de comenzar la obra.

1.6. DISPOSICIONES A TENER EN CUENTA

- Real Decreto Legislativo 3/2011 de 14 de noviembre, por el que se aprueba el Texto Refundido de la Ley de Contratos del Sector Público.
- Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la Instrucción de Hormigón Estructural (EHE-08).
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Pliegos de Prescripciones Técnicas Generales vigente del Ministerio de Fomento. Normas básicas (NBE) y Tecnológicas de la Edificación (NTE).
- Métodos y Normas de Ensayo de Laboratorio Central del M.O.P.U.
- Reglamento Electrónico de alta y baja tensión y normas MIBT complementarias. Reglamento sobre recipientes y aparatos de presión.
2. CONDICIONES DE ÍNDOLE TÉCNICA

2.1. MOVIMIENTO DE TIERRAS

Se refiere a los desmontes y terraplenes para dar al terreno la rasante de explanación, la excavación a cielo abierto realizada con medios manuales y/o mecánicos y a la excavación de zanjas y pozos.

Se adoptarán las condiciones generales de seguridad en el trabajo, así como las condiciones relativas a los materiales, control de la ejecución, valoración y mantenimiento que especifican las normas:

- NTE-AD "Acondicionamiento del terreno. Desmontes"
- NTE-ADE "Explanaciones"
- NTE-ADV "Vaciados"
- NTE-ADZ "Zanjas y pozos"

2.2. CIMENTACIONES

Las secciones y cotas de profundidad serán las que el Ingeniero Director señale, con independencia de lo señalado en el Proyecto, que tienen carácter meramente informativo. No se rellenarán los cimientos hasta que lo ordene el Director.

El Ingeniero Director queda facultado para introducir las cimentaciones especiales o modificaciones que juzgue oportuno en función de las características particulares que presente el terreno.

Se adoptan las condiciones relativas a materiales, control, valoración, mantenimiento y seguridad especificados en las normas:

- TE-CSZ "Cimentaciones superficiales. Zapatas"
- NTE-CSC "Cimentaciones superficiales corridas"
- NTE-CSL "Cimentaciones superficiales. Losas"

2.3. FORJADOS

El presente artículo regula los aspectos relacionados con la ejecución de forjados presentados autorresistentes armados de acero, o de cualquier otro tipo con bovedillas cerámicas u hormigón y fabricado en obra o prefabricado bajo cualquier patente.

Las condiciones de ejecución de seguridad en el trabajo, de control y ejecución, de valoración y de mantenimiento, son las establecidas en el R.D. 1630/1980 de 18 de julio y en las normas:

- NTE-EHU: forjados unidireccionales
- NTE-EHR: forjados reticulares
- NTE-EAF: forjados
2.4. HORMIGONES Y MORTEROS

La docilidad del hormigón será la necesaria para que, con los medios presentes de puesta en obra compactación, rellene perfectamente los encofrados sin que aparezcan coqueras. Todo esto se valorará determinando la consistencia de los hormigones empleados mediante el procedimiento descrito en el método de ensayo UNE-7130.

Los defectos, grietas, deformaciones, roturas, etc., no admisibles a juicio del director de obra que presenten las obras de fábrica serán motivo más que suficiente para ordenar su demolición con la consiguiente reconstrucción, sin derecho de indemnización por parte del contratista. Los moldes y encofrados serán suficientemente impermeables para que no tengan lugar los escapes por las juntas y lo bastante resistentes para que no se produzcan flexiones o deformaciones. El sistema de moldeo y encofrado merecerá la expresa aprobación del ingeniero director de obra.

Las condiciones relativas a los materiales y equipos de origen industrial relacionados con la ejecución de las obras de hormigón en masa, armado o presentado, fabricados en obras o prefabricados, así como las condiciones generales de ejecución, criterios de medición, valoración y mantenimiento.

Regirá lo prescrito en la instrucción EHE-08: “Instrucción de Hormigón Estructural”. Asimismo, se adopta lo establecido en las normas NTE-EH “Estructuras de hormigón”.

Las características mecánicas de los materiales, dosificaciones y niveles de control son las que se fijan en el presente proyecto.

CARACTERÍSTICAS: Se ajustarán a las especificaciones contenidas en la Documentación Técnica, cuidando la dosificación y midiendo la consistencia en fresco, estando prohibido el uso de aditivos, salvo autorización escrita de la Dirección Facultativa.

MEDICIÓN DE LOS COMPONENTES: El cemento se medirá preferentemente, si se dispone de medios para ello, en peso; en todo caso se procurará la máxima exactitud.

Los áridos se medirán en volumen, cuidando que los recipientes para las mediciones estén siempre llenos y enrasados, sin colmo.

AMASADO: El vertido de los materiales se hace en el siguiente orden:
1. Aproximadamente la mitad del agua.
2. El cemento y la arena simultáneamente.
3. La grava.
4. El resto del agua.

El amasado se hará siempre en hormigonera y el período de batido será suficiente para conseguir la mezcla homogénea de los componentes. Si el hormigón es servido por central, cumplirá todas las especificaciones anteriores y se prohibirá agregar agua al hormigón en el recipiente de transporte o durante su manipulación.

2.5. MORTEROS

El amasado se hará siempre en hormigonera y el período de batido será suficiente para conseguir la mezcla homogénea de los componentes y una consistencia del mortero conveniente.
Las proporciones indicadas se consideran como reguladoras, pudiendo modificarse dentro de los límites prudentes, según lo exige la naturaleza de los materiales.

El mortero de cemento y sobre todo si fuera de fraguado rápido, se hará en pequeñas cantidades y su empleo será inmediato, para que tenga lugar antes del principio del fraguado.

La cantidad de agua se fijará en cada caso por el Ingeniero Director (no deberá hacerse en ningún caso el rebatido de morteros).

2.6. ACERO LAMINADO
Se establece en el presente artículo las condiciones relativas a los materiales y equipos industriales relacionados con los aceros laminados utilizados en las estructuras de edificación, tanto sus elementos estructurales, como sus elementos de unión. Así como se fijan las condiciones relativas a la ejecución, seguridad en el trabajo, control de la ejecución, valoración y mantenimiento. Se adopta lo establecido en las normas:
- NBE-MV-102: Ejecución de las estructuras de acero laminado en edificación. Se fijan los tipos de uniones, la ejecución en taller, montaje de obra, las tolerancias y las protecciones.
- NBE-MV-103: Acero laminado para estructuras de edificaciones. Donde se fijan las características del acero laminado, la determinación de sus características y los productos actualmente utilizados.
- NBE-MV-105: Roblones de acero
- NBE-MV-106: Tornillos ordinarios calibrados para la estructura del acero.

2.7. AISLAMIENTOS
Los materiales a emplear y la ejecución de la instalación de aislamiento estarán de acuerdo con lo prescrito en la norma NBE-CT-79 sobre condiciones térmicas de los edificios.

2.8. INSTALACIÓN ELÉCTRICA
Aunque el proyecto no cuenta con instalación eléctrica, si el promotor decidirá instalarla en otro momento, los materiales y ejecución de la instalación eléctrica cumplirán lo establecido en el Reglamento Electrotécnico de Alta y Baja Tensión y Normas MIBT complementarias. Asimismo se adoptan las diferentes condiciones previstas en las normas:
- NTE-IEB: "Instalación eléctrica de baja tensión".
- NTE-IEI: "Alumbrado interior".
- NTE-IEP: "Puesta a tierra".
- NTE-IER: "Instalaciones de electricidad. Red exterior".

Todos los conductores serán de cobre comercial puro, si la sección en algún punto, resulta en un 3% menor que la normal, el conductor no será aceptado. Todos los materiales procederán directamente de fábrica, desechándose los que acusen deterioro por mal trato, picaduras u otros defectos de su envoltura exterior. Los aparatos se suministrarán completos, no tendrán defecto alguno, sus diferentes partes estarán bien sujetas y todo el aparato estará garantizado por una casa acreditada.
Los conductores eléctricos se introducirán con cuidado en la tubería para evitar dañar su aislamiento. No se permitirá que los conductores tengan empalmes, en caso de tener que hacerlos, se harán en las cajas de derivación y siempre por medio de conectores. El color de la envoltura de los conductores activos, se diferenciará de la de los conductores neutro y tierra.

2.9. INSTALACIONES DE PROTECCIÓN

Son las condiciones de ejecución, de los materiales de control de la ejecución, seguridad en el trabajo, medición, valoración y mantenimiento, relativas a las instalaciones de protección contra fuegos y rayos.

Se cumplirá lo prescrito en la norma NBE-CPI-96 sobre condiciones de protección contra incendios y se adoptará lo establecido en la norma NTE-IPF "Protección contra el fuego", y anexo n°6 de la EHE. Así como se adoptará lo establecido en la norma NTE-IPP "Pararrayos".

2.10. OBRAS O INSTALACIONES NO ESPECIFICADAS

Si durante los trabajos fuera necesario ejecutar alguna clase de obra no regulada en el presente Pliego de Condiciones, el Contratista queda obligado a ejecutarla con arreglo a las instrucciones que reciba del Ingeniero Director quien, a su vez, cumplirá la normativa vigente sobre el particular. El Contratista no tendrá derecho a reclamación alguna.

2.11. CONDICIONES GENERALES A CUMPLIR POR LOS MATERIALES

Todos los materiales que se empleen en las obras deberán cumplir las condiciones que se establezcan en el presente Pliego de Condiciones y deberán ser aprobadas por el Ingeniero Director.

ARIDOS:
La arena que se emplee en la construcción será limpia, suelta, áspera, crujiente a tacto y exenta de sustancias orgánicas o partículas terrosas, para lo cual, si fuera necesario se tamizará y lavará convenientemente en agua limpia.

Las gravas que se serán producidas por machaqueo y cumplirán las siguientes condiciones:
1. No serán descomponibles por agentes atmosféricos.
2. No contendrán sustancias que perjudiquen al hormigón o alteren el fraguado, tales como arcillas, limos, carbones, productos afrutados, materia orgánica, etc. horizontal entre barras, admitiéndose a lo sumo el 10% de los elementos más gruesos de esta separación.
3. El tamaño máximo del árido no superará en ningún caso a la 1/4 parte de la mínima dimensión del elemento a ejecutar, ni superior a los 5/6 de la distancia.
4. Tendrán resistencia no inferior a la exigida al hormigón

MORTERO:
El fraguado de los morteros de cemento no debe comenzar antes de una hora, ni terminar antes de cuatro ni después de doce. La estabilidad del volumen debe ser completa. La resistencia del mortero normal a compresión a los 28 días será de 200 Kg/m² como mínimo.

AGUA:
El agua empleada en la confederación de los morteros será potable, no admitiéndose aguas salitrosas, no magnésicas, así como todas aquellas que contengan sustancias perjudiciales para la resistencia y conservación en buen estado de los morteros y hormigones. La cantidad de agua que ha de emplearse para el batido de los morteros y hormigones ha de ser estrictamente la precisa para efectuar esta operación.

CEMEN

TO:
- Cementos naturales: Deberán ser el resultado de la molienda de rocas calizasarcillosas después de calcinadas, sin agregar ninguna sustancia extraña.
- Cementos artificiales: Serán de marcas acreditadas y sometiendo los productos a los análisis químico-mecánicos y de fraguado, darán los resultados exigidos para esta clase de materiales.

Ambos cementos irán envasados y se almacenarán convenientemente, a fin de que no pierdan las condiciones de bondad necesarias para ser aplicadas en la construcción. El cemento deberá estar en el momento de su empleo en estado pulverizado y perfectamente seco.

ENCOFRADOS:
Los encofrados podrán ser de madera, metálicos o mixtos, pero siempre deberán ofrecer la rigidez suficiente para soportar sin deformación apreciable los esfuerzos debidos a la puesta en obra del hormigón necesario para la ejecución de la obra, así como su posterior vibrado. Estos encofrados deberán estar fuertemente anclados al subsuelo para evitar que por su cesión se puedan formar grietas en los bordes o en las proximidades de las juntas longitudinales o transversales. El vibrado del mismo, se realizará bien con regla vibrante o con vibradores internos de forma que se consiga la máxima compacidad de las mezclas.

HORMIGONADO CON TEMPERATURAS EXTREMAS:
Durante los días de heladas no se permitirá trabajar en función alguna en que se emplee mortero de cualquier clase que sea. Cuando pudiera sospecharse que durante la noche la temperatura había de descender por debajo del cero de los termómetros centígrados, se abrigarán cuidadosamente fábricas con esteras, pajas y otros medios que sean aprobados por el Ingeniero Director. Se demolerá toda obra en que se compruebe que el mortero se encuentra deteriorado a consecuencia de las heladas.
Para el caso de grandes calores, el Ingeniero Director está facultado para suspender la ejecución de las obras si lo estima necesario.

El hormigonado se continuará una vez que se haya comprobado que el hormigón anteriormente colocado no ha sufrido daño alguno o, en su caso, después de la demolición de la zona dañada.

CURADO DEL HORMIGON:
Una vez terminado el hormigonado, y durante el fraguado y primer periodo de endurecimiento del hormigón, se mantendrá éste con humedad constante de diez a quince días, dependiendo de la época del año.

El curado podrá realizarse manteniendo húmeda la superficie del pavimento, mediante riego directo que no produzca deslavado del hormigón o a través de materiales que retengan la humedad y no contengan sustancias nocivas, para el hormigón. Estas materias pueden ser sacos, arena, plásticos, etc.

MATERIALES METALICOS:

Los materiales metálicos serán de la mejor calidad o clase, sin deformaciones, roturas ni otros defectos. No se permitirán empalmes ni acopladuras en las piezas que formen parte de las armaduras.

En las piezas compuestas para uniones de otras, la longitud, forma y situación de las cubrejuntas y el nº y diámetro de los tornillos se ajustarán a las instrucciones que previamente dicte el Ingeniero Director.

Todos los materiales serán de buena calidad, exentos de deformaciones y roturas, estarán bien trabajados, presentando buen ajuste en todos los empalmes y juntas. Los hierros forjados deben ser hechos por obreros especializados.

OTROS MATERIALES

Los demás materiales que entren en las obras, para los que no se detallen condiciones, serán de primera calidad y antes de colocarlos en la obra serán reconocidos por el Ingeniero Director, quedando en su mano la facultad de desecharlos.
3. CONDICIONES TÉCNICAS DE LA PLANTACIÓN

3.1. TÉCNICAS DE CULTIVO
Todas las labores se realizarán en la época que queda especificada en los cuadros de cultivo, Memoria y Anejos correspondientes, con la maquinaria y aperos que se señalan y con las condiciones allí descritas.
El encargado jefe de la explotación queda facultado para introducir aquellas variaciones que estime convenientes, aunque sin modificar los principios fundamentales y los objetivos que deben regir la explotación.

3.2. LABORES PREPARATORIAS DEL TERRENO
Como labores previas a la plantación se realizarán las siguientes:
- Arado con vertedera cuatrisurco a 40 cm de profundidad en la segunda quincena de octubre, tras las primeras lluvias de otoño, con el objeto de enterrar el rastrojo del anterior cultivo y las malas hierbas presentes en el terreno.
- Subsolado con subsolador de tres brazos a 80 cm de profundidad la segunda quincena de diciembre cuando el terreno no esté helado superficialmente. Con el fin de romper las capas del subsuelo que pueden limitar o restringir el crecimiento de las raíces.
Labor complementaria realizada con un cultivador de 4 m de anchura: a 30 cm de profundidad se dará un pase en la primera quincena de febrero para igualar el terreno y terminar de deshacer los terrones.

3.3. CARACTERÍSTICAS DE LA MAQUINARIA
Las características que debe cumplir la maquinaria a utilizar en la explotación serán indicadas en el correspondiente Anejo. Si estas máquinas no se encontrasen en el momento en el mercado, podrán ser sustituidas por otras de características similares.
La tracción y la maquinaria utilizada en las labores de los distintos cultivos serán alquiladas en su gran mayoría y escasamente propias para el mantenimiento del cultivo.

3.4. MANTENIMIENTO Y CONSERVACIÓN DE LA MAQUINARIA
Las piezas y mecanismos que así lo pudieran requerir deberán engrasarse para mantener la maquinaria en óptimas condiciones para el trabajo, evitando de esta forma los desgastes extras que ésta pudiera sufrir.
Se deberá disponer en la explotación de las piezas de reposición más frecuentes para poder ser utilizadas con rapidez y subsanar la avería correspondiente en la máquina igualmente habrá que disponer herramientas auxiliares propicias y necesarias para la colocación de la pieza averiada.
Toda maquinaria permanecerá el tiempo mínimo a la intemperie, impidiéndose de esta manera que pueda sufrir la influencia negativa de los agentes atmosféricos que pudieran perjudicar el buen estado de la misma.
3.5. **TIEMPO DE UTILIZACIÓN**
El número de horas de empleo de cada una de las distintas máquinas serán las que aparezcan desglosadas en el Anexo correspondiente a los elementos de trabajo, no debiéndose utilizar en número superior a las mismas, ni ser utilizadas en operaciones externas que no hayan sido convenientemente estimadas en el Proyecto sin que tengan el previo consentimiento del Ingeniero director.

3.6. **MEDIDAS DE SEGURIDAD**
Todos y cada uno de los operarios que trabajen con la maquinaria lo harán con las máximas garantías de cumplimiento de la Normativa vigente sobre Seguridad e Higiene en el Trabajo, durante el manejo de la misma.
Del mismo modo la maquinaria dispondrá de todos los dispositivos de seguridad que fuesen o se estimasen necesarios para deducir al máximo el riesgo de posibles incidentes y concretados de acuerdo con la Inspección de Trabajo.

3.7. **MAQUINARIA NO EXPRESADA**
Si por cualquier circunstancia fuese necesaria la modificación de la maquinaria que se expresa en el Anexo correspondiente, el Director de la explotación estará facultado para la introducción de las variantes necesarias, siempre que las innovaciones estén de acuerdo con el trabajo que deberán llevar a cabo y dentro de los límites económicos propuestos y presupuestados en el Proyecto.

3.8. **REALIZACIÓN DE LA PODA**
La poda se realizará siempre cuando el árbol se encuentre dentro del periodo de parada vegetativa (huyendo de las épocas con fuertes heladas) ejecutándose de la forma expresada en la Memoria y en los Anexos correspondientes, siendo competencia y responsabilidad de la Dirección Técnica cualquier cambio que se realice.

3.9. **TRATAMIENTO DE LOS RESTOS DE PODA**
Las ramas podadas quedarán siempre acumuladas en lugares que no estorben al paso de la maquinaria, utilizándose los restos de poda para leña, etc.

3.10. **RIEGO**
Los riegos se ejecutarán de la forma que se especifica en la Memoria y Anexos correspondientes, siendo competencia de la Dirección Técnica los cambios que se estimen necesarios.
Para el riego se utilizará agua procedente del pozo existente en la explotación. En caso de intuirse algún tipo de contaminación nociva para los cultivos en el agua, se procederá a su análisis en el menor tiempo posible y no se hará uso de la misma hasta que se sepan los resultados y éstos sean favorables.
Siempre que sea posible, se regará entre el atardecer y las primeras horas de la mañana, cuando hay poca diferencia de temperatura entre el agua y el aire, para evitar quemaduras en la vegetación.
3.11. RECOLECCIÓN

Según el Decreto del 18 de Junio de 1972, nº 1688/72 del Ministerio de Agricultura, por el cual se rige la búsqueda y recolección de la trufa negra de invierno, los dueños de explotaciones truferas podrán ejecutar la recolección de trufas entre las fechas del 1 de Diciembre y el 15 de Marzo.
4. INSTALACIÓN DE RIEGO

4.1. TUBERÍAS DE PVC
Los diámetros de tuberías que emplearemos en el proyecto son los que se indican en el Anejo correspondiente.

Las tuberías de PVC estarán fabricadas por el procedimiento de extrusión con prensas de velocidad, presión y temperaturas controladas, previstas para funcionamiento continuo. Se asegurará que la empresa constructora realiza el control de calidad de forma seria y satisfactoria.

Las superficies de los tubos para su machihembrado, deberán estar limpias lisas y pulidas; estas superficies se deberán de polvo e impurezas con un disolvente de tolueno, para asegurar un buen acoplamiento. Después de cinco minutos de secado del disolvente, se extenderá pegamento de PVC uniformemente por la boca interior del tubo hembra y el exterior del tubo macho y se procederá a insertar éste en aquel. En ningún caso se debe realizar esta operación girando un tubo sobre otro, simplemente se deslizará un tubo hacia el otro y se dejará descansar la unión sobre la arena de relleno de la zanja.

Habrá que dejar un tiempo de tres horas para asegurar el total fraguado del pegamento, antes de proceder a nuevas manipulaciones con los tubos conectados. Se rechazarán aquellas tuberías que presenten irregularidades en la superficie o se aparten de sus medidas anunciadas por el fabricante.

4.2. TUBERÍAS DE PEBD
El diámetro de tubería que emplearemos en el proyecto son los que se indican en el Anejo correspondiente.

Su fabricación debe de estar de acuerdo con la norma UNE 53131. El Contratista presentará al Director de obra documentos del fabricante que acrediten las características del material.

Se rechazarán aquellas tuberías que presenten irregularidades en la superficie o se aparten de las medidas anunciadas por el fabricante.

4.3. ACOPLES Y JUNTAS
Se preferirán los sistemas en que el acoplamiento sea del mismo material que los tubos. Se comprobará la estanqueidad de los acoples y juntas. Así mismo, se hará especial hincapié en la buena calidad de las colas empleadas en juntas de este tipo.

4.4. PIEZAS DE CONEXIÓN
El Ingeniero Director, a su criterio, podrá utilizar piezas de conexión no detalladas en el presupuesto si así lo considera conveniente. Como conexión fija se consideran los hidrantes.
4.5. INSTALACIÓN DE TUBERÍAS

Las tuberías de PVC irán enterradas a 60 cm de profundidad en zanja de 100 y 40 cm de anchura y serán montadas por personal especializado, teniendo especial cuidado en colocar el hidrante en coincidencia exacta con las marcas dispuestas en el replanteo. La instalación de la tubería enterrada será anterior a la construcción de la caseta de riego.

Una vez instaladas y colocadas las tuberías, se procederá a rellenar las zanjas en dos etapas: en la primera se cubrirán con una ligera capa de arena y tierra hasta la prueba hidráulica de instalación; en la segunda, una vez probada la instalación si no se detectan fugas, se procederá al relleno definitivo de la zanja, para lo cual se empleará el resto de la tierra, junto con los elementos más gruesos, procediendo luego a la compactación definitiva por capas de 30 cm, evitando que se formen huecos en las proximidades de las piezas.

Las tuberías laterales de PEBD irán sobre el terreno y en la dirección de las líneas de plantación.

4.6. VÁLVULAS DE COMPUERTA

Las válvulas de compuerta, y todos sus elementos, serán de construcción simple y robusta, fáciles de montar y usar. El cierre deberá ser progresivo, para evitar que un cierre brusco provoque golpes de ariete. Deberán ser de larga duración.

4.7. GRUPO DE BOMBEO

Será capaz de suministrar el caudal a la presión que se detalla en la Memoria y Anejos, será de las características específicas. La casa comercial suministradora de la bomba se responsabilizará del transporte e instalación definitiva y la comprobación del buen funcionamiento, incluso de los automatismos que lleve incorporados, según las pruebas que el Ingeniero Director estime oportunas. Al final de cada temporada de riego la bomba se desmontará y se protegerán sus piezas principales hasta la temporada siguiente.

En caso de avería de la bomba en plena temporada de riego, se comprometerá la casa suministradora a su arreglo en el plazo de 48 horas.

4.8. MICROASPERSORES

Los microaspersores serán de las características especificadas en el anejo correspondiente. Deberán cumplir las condiciones precisas de dureza, no fragilidad, estanqueidad y resistencia a la corrosión.

4.9. CABEZAL DE RIEGO

Se compondrá de todos los elementos que se especifican en la documentación técnica del proyecto. Una vez instalado por completo el cabezal se comprobará el correcto funcionamiento de cada uno de los elementos integrantes. La empresa instaladora, se comprometerá a solucionar las posibles averías en menos de 48 horas.
4.10. **PUESTA A PUNTO DE LA INSTALACIÓN**

Antes de proceder a la instalación de cierres terminales, se limpiarán las tuberías dejando correr el agua. Todos los años, antes de comenzar la campaña de riego, se procederá al limpiado de las tuberías principales dejando correr el agua hasta que salga por los extremos de las tuberías alimentadoras, utilizando un producto detergente que no sea corrosivo para las tuberías.

4.11. **UNIFORMIDAD DEL RIEGO**

El Ingeniero Director determinará el coeficiente de uniformidad del riego recogiendo como mínimo 10 caudales de riego de 10 ramales representativos, siendo su valor mínimo admisible del 90% en el riego por microaspersión.

4.12. **COMPROBACIÓN DE LA INSTALACIÓN**

Una vez colocada la instalación y realizadas las pruebas y comprobaciones anteriores, se procederá a la observación global del funcionamiento de dicha instalación. Asimismo, se comprobará la inexistencia de cavitación en las tuberías. Y se comprobará el buen funcionamiento de los sistemas de programación del riego.

4.13. **MANEJO DE LA INSTALACIÓN**

En épocas de recolección, labores mecánicas, preparación del terreno, etc. se debe tener especial cuidado con la instalación de riego, sobre todo con las tuberías laterales. El grupo de bombeo, debe contar con los elementos correspondientes: (manómetro, válvulas, llaves de paso…).

Durante las operaciones de riego, el manejo de válvulas y llaves de paso debe efectuarse según las recomendaciones del fabricante, poniendo especial atención en los tiempos de apertura y cierre de las mismas. Durante la parada invernal las tuberías enterradas deberán vaciarse.
5. TRABAJOS, MATERIALES Y MEDIOS AUXILIARES

5.1. LIBRO DE ÓRDENES
En la casilla y oficina de la obra, tendrá el contratista el Libro de Órdenes, en el que se anotarán las que el ingeniero director de la obra precise dar en el trascurso de la obra. El cumplimiento de las órdenes expresadas en dicho Libro es tan obligatorio para el contratista como las que figuran el Pliego de Condiciones.

5.2. COMIENZO DE LOS TRABAJOS Y PLAZO DE EJECUCIÓN
Obligatoriamente y por escrito, deberán el contratista dar cuenta al ingeniero director del comienzo de los trabajos, antes de transcurrir veinticuatro horas de su iniciación; previamente se habrá suscrito el acta de replanteo.

El adjudicatario comenzará las obras dentro del plazo de 15 días desde la fecha de la adjudicación. Dará cuenta al ingeniero director, mediante oficio, del día en que se propone iniciar los trabajos, debiendo éste dar acuse de recibo. Las obras quedarán terminadas en el plazo de un año. El contratista está obligado al cumplimiento de todo cuanto se dispone en la Reglamentación Oficial del Trabajo.

5.3. CONDICIONES GENERALES DE EJECUCIÓN DE LOS TRABAJOS
El contratista, como es natural, debe emplear los materiales y mano de obra que cumplan las condiciones exigidas en el Pliego de Condiciones Técnicas Particulares y realizará todos y cada uno de los trabajos contratados de acuerdo con lo especificado en dicho documento.

Por ello, y hasta que tenga lugar la recepción definitiva de la obra, el contratista es el único responsable de la ejecución de los trabajos que ha contratado y de las faltas y defectos que, en estos puedan existir, por su mala ejecución o por la deficiente calidad de los materiales empleados o aparatos colocados, sin que pueda servirle de excusa ni le otorgue derecho alguno, la circunstancia de que el ingeniero director o sus subalternos no le hayan llamado la atención sobre el particular, ni tampoco el hecho de que hayan sido valorados en las certificaciones parciales de la obra que siempre se supone que se extiende y abonan a buena cuenta.

5.4. TRABAJOS DEFECTUOSOS
Como consecuencia de lo anteriormente expresado, cuando el ingeniero director o su representante en la obra, adviertan vicios o defectos en los trabajos ejecutados, o que los materiales empleados, o los aparatos colocados no reúnen las condiciones preceptuadas, ya sea en el curso de la ejecución de los trabajos o finalizados éstos y antes de verificarse la recepción definitiva de la obra, podrán disponer que las partes defectuosas sean demolidas y reconstruidas ce acuerdo con lo contratado, y todo ello a expensas de la contrata. Si ésta no estimase justa la resolución y se negase a la demolición y reconstrucción ordenadas, se procederá de acuerdo con lo establecido.
5.5. OBRAS Y VICIOS OCULTOS
Si el ingeniero director tuviese fundadas razones para creer en la existencia de vicios ocultos de construcción en las obras ejecutadas, ordenará efectuar en cualquier tiempo y antes de la recepción definitiva, las demoliciones que crea necesarias para reconocer los trabajos que suponga defectuosos.

5.6. MATERIALES NO UTILIZABLES O DEFECTUOSOS
No se procederá al empleo y colocación de los materiales y de los aparatos son que estos sean antes examinados y aceptados por el ingeniero director, en los términos que prescribe los Pliegos de Condiciones, depositando al efecto el contratista, las muestras y modelos necesarios, previamente contraseñados, para efectuar sobre ellos comprobaciones, ensayos o pruebas preceptuadas en el Pliego de Condiciones, vigente en la obra.
Los gastos que ocasionen los ensayos, análisis, pruebas, etc, antes indicados, serán a cargo del contratista. Cuando los materiales o aparatos no fueran de la calidad requerida o no estuviese perfectamente preparados, el ingeniero director dará orden al contratista para que los reemplace por otros que se ajusten a las condiciones requeridas en los Pliegos, o a falta de éstos, a las órdenes del ingeniero director.

5.7. MEDIOS AUXILIARES
Es obligación de la contratista el ejecutar cuanto sea necesario para la buena construcción y aspecto de las obras, aún cuando no se halle expresamente estipulado en los Pliegos de Condiciones, siempre que, sin separarse de su espíritu y recta interpretación, lo disponga el ingeniero director y dentro de los límites de posibilidad que los presupuesto determinen para cada unidad de obra y tipo de ejecución.
Serán de cuenta y riesgo del contratista, los andamios, cimbras, máquinas y demás medios auxiliares que para la debida marcha y ejecución de los trabajos se necesiten, no cabiendo, por tanto, al propietario responsabilidad alguna por cualquier avería o accidente personal que pueda ocurrir en las obras por insuficiencia de dichos medios auxiliares.
Serán, así mismo, de cuenta del contratista, los medios auxiliares de protección y señalización de la obra, tales como vallado, elementos de protección provisionales, señales de tráfico adecuadas, señales luminosas nocturnas, etc. y todas las necesarias para evitar accidentes previsibles en función del estado de la obra y de acuerdo con la legislación vigente.
6. RECEPCIÓN Y LIQUIDACIÓN

6.1. RECEPCIONES PROVISIONALES
Para proceder a la recepción provisional de las obras será necesaria la asistencia del propietario, del ingeniero director de la obra y del contratista o su representante debidamente autorizado.

Si las obras se encuentran en buen estado y han sido ejecutadas con arreglo a las condiciones establecidas, se darán por percibidas provisionalmente, comenzando a correr en dicha fecha el plazo de garantía, que se considerará de tres meses. Cuando las obras no se hallen en estado de ser recibidas, se hará constar en el acta y se especificarán en la misma las precisas y detalladas instrucciones que el ingeniero director debe señalar al contratista para remediar los defectos observados, fijándose un plazo para subsanarlos, expirado el cual, se efectuará un nuevo reconocimiento en idénticas condiciones a fin de proceder a la recepción provisional de la obra.

Después de realizar un escrupuloso reconocimiento y si la obra estuviese conforme con las condiciones de este Pliego, se levantará un acta por duplicado, a la que acompañarán los documentos justificantes de la liquidación final. Una de las actas quedará en poder de la propiedad y la otra se entregará al contratista.

6.2. PLAZO DE GARANTÍA
Desde la fecha en que la recepción provisional quede hecha, comienza a contratarse el plazo de garantía que será de un año. Durante este periodo, el contratista se hará cargo de todas aquellas reparaciones de desperfectos imputables a defectos y vicios ocultos.

6.3. CONSERVACIÓN DE LOS TRABAJOS RECIBIDOS PROVISIONALMENTE
Si el contratista, siendo su obligación, no atiende a la conservación de la obra durante el plazo de garantía, en el caso de que el edificio no haya sido ocupado por el propietario, procederá a disponer todo lo que se precise para que se atienda a la guardería, limpieza y todo lo que fuere menester para su buena conservación, abonándose todo aquello por cuenta de la contrata.

Al abandonar el contratista el edificio el edificio, tanto por buena terminación de las obras, como en el caso de rescisión de contrato, está obligado a dejarlo desocupado y limpio en el plazo que el ingeniero director fije.

Después de la recepción provisional del edificio y en el caso de que la conservación del mismo corra a cargo del contratista, no deberá haber en él más herramientas, útiles, materiales, muebles, etc. Que los indispensables para su guardería y limpieza y para los trabajos que fuere preciso realizar.

En todo caso, ocupado o no el edificio, está obligado el contratista a revisar y repasar la obra el plazo expresado, procediendo en la forma prevista en el presente Pliego de Disposiciones Económicas.

El contratista se obliga a destinar a su costa a un vigilante de las obras que presentará su servicio de acuerdo con las órdenes recibidas de la dirección facultativa.
6.4. RECEPCIÓN DEFINITIVA
Terminado el plazo de garantía, se verificará la recepción definitiva con las mismas condiciones que la provisional, y si las obras están bien conservadas y en perfectas condiciones, el contratista quedará relevado de toda responsabilidad económica; en caso contrario, se retrasará la recepción definitiva hasta que, a juicio del ingeniero director de la obra y dentro del plazo que se marque, queden las obras del modo y forma que se determinan en este Pliego.

Si el nuevo reconocimiento resultase que el contratista no hubiese cumplido, se declarará rescindida la contrata con pérdida de la fianza, a no ser que la propiedad crea conveniente conceder un nuevo plazo.

6.5. LIQUIDACIÓN FINAL
Terminadas las obras, se procederá a la liquidación fijada, que incluirá el importe de las unidades de obra realizadas y las que constituyen modificaciones del proyecto, siempre y cuando hayan sido previamente aprobadas por la dirección técnica con sus precios. De ninguna manera tendrá derecho el contratista a formular reclamaciones por aumentos de obra que no estuviesen autorizados por escrito a la entidad propietaria con el visto bueno del ingeniero director.

6.6. LIQUIDACIÓN EN CASO DE RECISIÓN
En este caso, la liquidación se hará mediante un contrato liquidatario, que se redactará de acuerdo por ambas partes. Incluirá el importe de las unidades de obra realizadas hasta la fecha de la recisión.
7. FACULTADES DE LA DIRECCIÓN DE OBRAS

7.1. FACULTADES DE LA DIRECCIÓN DE OBRA

Además de todas las facultades particulares, que correspondan al Ingeniero director, expresadas en los artículos precedentes, es misión específica suya la dirección y vigilancia de los trabajos que en las obras se realicen, bien por sí o por medio de sus representantes técnicos y ello con autoridad técnica legal, completa e indiscutible, incluso en todo lo no previsto específicamente en las Disposiciones Generales de las Condiciones Varias de la Edificación, sobre las personas y cosas situadas en la obra y en relación con los trabajos que para la ejecución de los edificios y obras anejas se lleven a cabo, pudiendo incluso, pero con causa justificada, recusar al contratista, si considera que, el adoptar esta resolución es útil y necesaria para la debida marcha de la obra.
8. CONDICIONES DE ÍNDOLE ECONÓMICA

8.1. BASE FUNDAMENTAL
Como base fundamental de estas Disposiciones económicas, se establece el principio de que el contratista debe percibir el importe de todos los trabajos ejecutados, siempre que éstos se hayan realizado con arreglo y sujeción el Proyecto y Condiciones Generales y Particulares que rijan la construcción del edificio y obra aneja contratada.

8.2. GARANTÍAS
El Ingeniero director podrá exigir el contratista la presentación de referencias bancarias o de otras entidades o personas al objeto de cercenarse de si éste reúne todas las condiciones requeridas para el exacto cumplimiento del contrato; dichas referencias, si le son pedidas, las presentará el contratista antes de la firma del contrato.

8.3. FINANZAS
Se podrá exigir al contratista para que respondan del cumplimiento de lo contratado, una fianza del 10% del presupuesto de las obras adjudicadas.

8.4. EJECUCIÓN DE LOS TRABAJOS CON CARGO A LA FIANZA
Si el contratista se negase a hacer por su cuenta los trabajos precisos para utilizar la obra en las condiciones contratadas, el ingeniero director, en nombre y representación del propietario, los ordenará ejecutar a un tercero, o directamente por administración, abonando su importe con la fianza depositada, sin perjuicio de las acciones legales a que tenga derecho el propietario en el caso de que el importe de la fianza no baste para abonar el importe de los gastos efectuados en las unidades de obra que fueran de recibo.

8.5. DEVOLUCIÓN DE LA FIANZA
La fianza depositada será devuelta al contratista en un plazo que no excederá de 8 días una vez firmada el acta de recepción definitiva de la obra, siempre que el contratista haya acreditado, por medio de certificado del alcalde del distrito municipal en cuyo término se halla emplazada la obra contratada, que no existe reclamación alguna contra él por los daños y perjuicios que sean de su cuenta o por deudas de los jornales o materiales, ni por indemnizaciones derivadas de accidentes ocurridos en el trabajo.

8.6. PRECIOS CONTRADICTORIOS
Si ocurriese algún caso por virtud de la cual fuese necesario fijar un nuevo precio, se procederá a estudiarlo y convenirlo contradictoriamente de la siguiente forma: El adjudicatario formulará por escrito, bajo su firma, el precio que a su juicio debe aplicarse a la nueva unidad.

La dirección técnica estudiará el que, según su criterio, deba utilizarse. Si ambos son coincidentes se formulará por la dirección técnica el Acta de Avenencia, igual que si
cualquier pequeña diferencia o error fuesen salvados por simple exposición y convicción de una de las partes, quedando así formalizado el precio contradictorio. Si no fuera posible conciliar por simple discusión los resultados, el director propondrá a la propiedad que adopte la resolución que estime conveniente, que podrá ser aprobatoria del precio exigido por el adjudicatario, o, en otro caso, la segregación de la obra o instalación nueva, para ser ejecutada por administración o por otro adjudicatario distinto.

La fijación del precio contradictorio habrá de proceder necesariamente, al comienzo de la nueva unidad, puesto que, si por cualquier motivo ya se hubiese comenzado, el adjudicatario estará obligado a aceptar el que buenamente quiera fijar el director y a concluirlo a satisfacción de éste.

8.7. RECLAMACIONES DE AUMENTO DE PRECIOS

Si el contratista, antes de la firma del contrato, no hubiese hecho la reclamación u observación oportunas, no podrá, bajo ningún pretexto de error y omisión, reclamar aumento de los precios fijados en el cuadro correspondiente del presupuesto que sirve de base para la ejecución de las obras. Tampoco se le admitirá reclamación de ninguna especie fundada en las indicaciones que, sobre las obras se hagan en la Memoria, por no servir este documento de base a la contrata. Las equivocaciones materiales o errores aritméticos en las unidades de obra o en su importe, se corregirán en cualquier época que se observen, pero no se tendrán en cuenta a los efectos de la recisión de contrato, señalados en los documentos relativos a las Condiciones Generales o Particulares de Índole Facultativa, sino en el caso de que el ingeniero director o el contratista los hubieran hecho notar dentro del plazo de cuatro meses contados desde la fecha de adjudicación. Las equivocaciones materiales no alterarán la baja proporcional hecha en la contrata, respecto del importe del presupuesto que ha de servir de base a la misma, pues esta baja se fijará siempre por la relación entre las cifras de dicho presupuesto, antes de las correcciones y la cantidad ofrecida.

8.8. REVISIÓN DE PRECIOS

Contratándose las obras a riesgo y ventura, es natural por ello, que no se debe admitir la revisión de los precios contratados. No obstante y dada la variabilidad continua de los precios de los jornales y sus cargas sociales, así como la de los materiales y transportes, que es característica de determinadas épocas anormales, se admite, durante ellas, la revisión de los precios contratados, bien en alza o en baja y en anomalías con las oscilaciones de los precios en el mercado. Por ello en los casos de revisión al alza, el contratista puede solicitarla del propietario, en cuanto se produzca cualquier alteración de precio, que repercuta, aumentando los contratos. Ambas partes convendrán el nuevo precio unitario antes de comenzar o de continuar la ejecución de la unidad de obra en que intervenga el elemento cuyo precio en el mercado, y por causa justificada, sufra un aumento al alza, especificándose y acordándose, también previamente, la fecha a partir de la cual se aplicará el precio revisado y elevado: para lo cual se tendrá en cuenta así proceda, el acopio de materiales de obra, en el caso de que estuviesen total o parcialmente abonados por el propietario.

Si el propietario o el ingeniero director, en su representación, no estuviese conforme con los nuevos precios de los materiales, transportes, etc., que el contratista desee percibir como normales en el mercado, aquél tiene la facultad de proponer al contratista, y éste la obligación de aceptarlos, los materiales, transportes, etc., a precios inferiores a los pedidos por el contratista, en cuyo caso lógico y natural, se tendrán en cuenta para la revisión, los precios de los materiales, transportes, etc.,
adquiridos por el contratista merced a la información del propietario.
Cuando el propietario o el ingeniero director, en su representación, no estuviese conforme con los nuevos precios de los materiales, transportes, etc., concertarán entre las dos partes, la baja a realizar en los precios unitarios vigentes de obra y la fecha en que empezará a regir los precios revisados. Cuando, entre los documentos aprobados por ambas partes, figurase el relativo a los precios unitarios contratados descompuestos, se seguirá en procedimiento similar al preceptuado en los casos de revisión por alza de precios.

8.9. ELEMENTOS COMPRENDIDOS EN EL PRESUPUESTO

Al fijar los precios de las diferentes unidades de obra en el presupuesto, se ha tenido en cuenta el importe de andamios, vallas, elevación, transporte del material, es decir, todos los correspondientes a medios auxiliares de la construcción, así como toda suerte de indemnizaciones, impuestos, multas o pagos que tengan que hacerse por cualquier concepto, con los que se hallen gravados o se graven los materiales o las obras por el Estado, Provincia o Municipio. Por esta razón no se abonará al contratista cantidad alguna por dichos conceptos.
En el precio de cada unidad también van comprendidos los materiales accesorios y operaciones necesarias para dejar la obra completamente terminada y en disposición de recibirse.
9. VALORACIÓN Y ABONO DE LOS TRABAJOS

9.1. VALORACIÓN DE LA OBRA
La medición de la obra concluida, se hará por el tipo de unidad fijada en el correspondiente presupuesto.
La valoración deberá obtenerse aplicando a las diversas unidades de obra, el precio que tuviesen asignado en el presupuesto, añadiendo a este importe el de los tantos por ciento que correspondan al beneficio industrial y descontando el tanto por ciento que corresponda a la baja en la subasta hecha por el contratista.

9.2. MEDIDAS PARCIALES Y FINALES
Las mediciones parciales se verificarán en presencia del contratista, de cuyo acto se levantará acta por duplicado, que será firmada por ambas partes. La medición final se hará después de terminadas las obras con precisa asistencia del contratista. En el acto que se extienda, de haberse verificado la medición y en los documentos que le acompañan, deberá aparecer la conformidad del contratista o de su representación legal. En caso de no haber conformidad, lo expondrá sumariamente y a reserva de aplicar las razones que a ello obliga.

9.3. EQUIVOCACIONES EN EL PRESUPUESTO
Se supone que el contratista ha hecho detenido estudio de los documentos que componen el proyecto, y por tanto al no haber hecho ninguna observación sobre posibles errores o equivocaciones en el mismo, se entiende que no hay lugar a disposición alguna en cuanto afecta a medidas o precios de tal suerte, que la obra ejecutada con arreglo al proyecto contiene mayor número de unidades de las previstas, no tiene derecho a la reclamación alguna.

9.4. VALORACIÓN DE OBRAS INCOMPLETAS
Cuando, por consecuencia de recisión u otras causas, fuera preciso valorar incompletas, se aplicarán los precios del presupuesto, sin que pueda pretenderse hacer la valoración de la unidad de obra fraccionándola en forma distinta a la establecida en los cuadros de descomposición de precios.

9.5. CARÁCTER PROVISIONAL DE LAS LIQUIDACIONES PARCIALES
Las liquidaciones parciales tienen carácter de documentos provisionales a buena cuanta, sujetos a certificaciones y variaciones que resulten de la liquidación final. No suponiendo tampoco dichas certificaciones, aprobación ni recepción de las obras que comprenden. La propiedad se reserva en todo momento y especialmente al hacer efectivas las liquidaciones parciales, el derecho de comprobar que el contratista ha cumplido los compromisos referentes al pago de jornales y materiales invertidos en la obra, a cuyo efecto deberá presentar dicho contratista los comprobantes que se exijan.
9.6. PAGOS
Los pagos se efectuarán por el propietario en los plazos previamente establecidos y su importe corresponderá precisamente al de las certificaciones de obra expedidas por el ingeniero director, en virtud de las cuales se verifican aquellos.

9.7. SUSPENSIÓN POR RETRASO DE PAGOS
En ningún caso podrá el contratista, alegando retraso en los pagos, suspender trabajos ni ejecutarlos a menor ritmo del que les corresponda, con arreglo al plazo en que deben terminarse.

9.8. INDEMNIZACIÓN POR RETRASO DE LOS TRABAJOS
El importe de la indemnización que debe abonar el contratista por causas de retraso no justificado, en el plazo de terminación de las obras contratadas, será: el importe de la suma de perjuicios materiales causados por la imposibilidad de ocupación del inmueble, debidamente justificados.

9.9. INDEMNIZACIÓN POR DAÑOS DE CAUSA MAYOR AL CONTRATISTA
El contratista no tendrá derecho a indemnización por causas de pérdidas, averías o perjuicio, ocasionados en las obras, sino en los casos de fuerza mayor. Para los efectos de este epígrafe, se considerarán como tales casos únicos los que siguen:
1. Los incendios causados por electricidad atmosférica.
2. Los daños producidos por terremotos y maremotos.
3. Los producidos por vientos huracanados, mareas y crecidas de ríos superiores a las que sean de prever en el país, y siempre que exista constancia inequívoca de el contratista tomó las medidas posibles, dentro de sus medios, para evitar o atenuar los daños.
4. Los que provengan de movimientos del terreno en que estén construidas las obras.
5. Los destrozos ocasionados violentamente, a mano armada, en tiempo de guerra, movimientos sediciosos populares o robos tumultuosos.
La indemnización se referirá, exclusivamente, al abono de las unidades de obra ya ejecutadas o materiales acopiados a pie de obra; en ningún caso comprenderá medios auxiliares, maquinaria o instalaciones, etc., propiedad de la contrata.
10. VARIOS

10.1. MEJORAS DE OBRAS

No se admitirán mejoras de obra, más que en el caso en que el ingeniero director haya ordenado por escrito, la ejecución de los trabajos nuevos o que mejoren la calidad de los contratos, así como la de los materiales y aparatos previstos en el contrato. Tampoco se admitirán aumentos de obra en las unidades contratadas, salvo caso de error en las mediciones del proyecto, a menos que el ingeniero director ordene, también por escrito, la ampliación de las contratadas.

10.2. SEGURO DE LOS TRABAJOS

El contratista está obligado a asegurar la obra contratada, durante todo el tiempo que dure su ejecución, hasta la recepción definitiva; la cuantía del seguro coincidirá, en todo momento, con el valor que tengan, por contrata, los objetos asegurados. El importe abonado por la Sociedad Aseguradora, en caso de siniestro, se ingresará a cuenta, a nombre del propietario, para que, con cargo a ella, se abone la obra que se construya y a medida que ésta se vaya realizando. El reintegro de dicha cantidad al contratista se efectuará por certificaciones, como el resto de los trabajos de la construcción. En ningún caso, salvo conformidad expresa del contratista, hecha en documento público, el propietario podrá disponer de dicho importe para menesteres ajenos a los de la construcción de la parte siniestrada; la infracción de lo anteriormente expuesto será motivo suficiente para que le contratista pueda rescindir la contrata, con devolución de la fianza, abono completo de gastos, materiales acopiados, etc., y una indemnización equivalente al importe de los daños causado el contratista por el siniestro y que no le hubiesen abonado, pero sólo en proporción equivalente a lo que suponga la indemnización abonada por la Compañía Aseguradora, respecto al importe de los daños causado por el siniestro, que serán tasados a estos efectos por el ingeniero director. En las obras de reformas o reparación se fijará previamente la proporción de edificio que se debe asegurar y su cuantía y si nada se previese, se entenderá que el seguro ha de comprender toda parte de edificio afectado por la obra. Los riesgos asegurados y las condiciones que figuran en la póliza de seguros, los pondrá el contratista antes de contratarlos en conocimiento del propietario, al objeto de recabar de éste su previa conformidad o reparos.
11. CONDICIONES DE ÍNDOLE LEGAL

11.1. JURISDICCIÓN

Para cuantas cuestiones, litigios o deferencias pudieran, durante o después de los trabajos, las partes se someterán a juicio de amigables componedores nombrados en número igual por ellas y presidido por el ingeniero director de la obra, y en último término, a los tribunales de Justicia del lugar en que radique la propiedad, con expresa renuncia del fuero domiciliario.

El Contratista es responsable de la ejecución de las obras en las condiciones establecidas en el contrato y en los documentos que componen el proyecto (la Memoria no tendrá consideración de documento del proyecto).

El contratista se obliga a lo establecido en la Ley de Contratos de Trabajo y además a lo dispuesto por la de Accidentes de Trabajo, Subsidio Familiar y Seguros Sociales.

Serán de cargo y cuenta del contratista el vallado y la policía del solar, cuidando de la conservación de sus líneas de lindero y vigilando que, por los poseedores de las fincas contiguas, si las hubiese, no se realicen durante las obras actos que mermen o modifiquen la propiedad.

Toda observación referente a este punto será puesta inmediatamente en conocimiento del ingeniero director.

El contratista es responsable de toda falta relativa a la política urbana y a las ordenanzas municipales a estos aspectos vigentes en la localidad en que la edificación está emplazada.

11.2. ACCIDENTES DE TRABAJO Y DAÑOS A TERCEROS

En caso de accidentes ocurridos con motivo y en ejercicio de los trabajos para la ejecución de las obras, el contratista se atendrá a lo dispuesto a estos respectos, en la legislación vigente, y siendo, en todo caso, único responsable de su cumplimiento y sin que, por ningún concepto, pueda quedar afectada la propiedad por responsabilidades en cualquier aspecto.

El contratista está obligado a adoptar todas las medidas de seguridad que las disposiciones vigentes preceptúan para evitar, en lo posible, accidentes a los obreros o viandantes, no solo en los andamios, sino en todos los lugares peligrosos de la obra.

De los accidentes o perjuicios de todo género que, por no cumplir el contratista lo legislado sobre la materia, pudieran acaecer o sobrevenir, será éste el único responsable, o sus representantes en la obra, ya que se considera que en los precios contratados están incluidos todos los gastos precisos para cumplimentar debidamente dichas disposiciones legales.

El contratista será responsable de todos los accidentes que, por inexperiencia o descuido, sobrevinieran tanto en la edificación donde se efectúen las obras como en las contiguas. Será, por tanto, de su cuenta el abono de las indemnizaciones a quien corresponda y cuando a ello hubiera lugar de todos los daños y perjuicios que puedan causarse en las operaciones de ejecución de las obras.

El contratista cumplirá los requisitos que prescriben las disposiciones vigentes sobre la materia, debiendo exhibir, cuando a ello fuera requerido, el justificante de tal cumplimiento.

11.3. PAGO DE ARBITRIOS

El pago de impuestos y arbitrios en general, municipales o de otro origen, sobre vallas, alumbrado, etc., cuyo abono debe hacerse durante el tiempo de ejecución de las obras
por concepto inherente a los propios trabajos que se realizan, correrá a cargo de la contrata, siempre que en las condiciones particulares del proyecto, no se estipule lo contrario. No obstante, el contratista deberá ser reintegrado del importe de todos aquellos en los que el ingeniero director considere justo hacerlo.

11.4. CAUSAS DE RECISIÓN DEL CONTRATO

Se considerarán causas suficientes de rescisión las que a continuación se señalan:

1. La muerte o incapacidad del contratista.
2. La quiebra de la contrata.

En los casos anteriores, si los herederos o síndicos ofrecieran llevar a cabo las obras, en las mismas condiciones estipuladas en el contrato, el propietario puede admitir o rechazar el ofrecimiento, sin que en este último caso, tengan aquellos derechos a indemnización alguna.

3. Las alteraciones del contrato por las causas siguientes:
 a) La modificación del proyecto en forma tal que presente alteraciones fundamentales el mismo, a juicio del ingeniero director y, en cualquier caso, siempre que la variación del presupuesto de ejecución, como consecuencia de estas modificaciones, represente el 40% como mínimo, de alguna de las unidades del proyecto.
 b) La modificación de unidades de obra, siempre que estas modificaciones representen variaciones de un 40% como mínimo, de las unidades del proyecto modificadas.

4. La suspensión de la obra comenzada y, en todo caso, siempre que, por causas ajenas a la contrata, no se dé comienzo a la obra adjudicada dentro del plazo de tres meses, a partir de la adjudicación, en este caso, la devolución de la fianza será automática.

5. La suspensión de la obra, comenzada, siempre que el plazo de suspensión haya excedido un año.

6. El no dar comienzo la contrata a los trabajos, dentro del plazo señalado en las condiciones particulares del proyecto.

7. El incumplimiento de las condiciones del contrato, cuando implique descuido mala fe, con perjuicio de los intereses de la obra.

8. La terminación del plazo de ejecución de la obra, sin haberse llegado a la conclusión de esta.

9. El abandono de la obra sin causa justificada.

 Valencia día 27 de Junio

 Fdo: Paula Pastor Corella
Diseño de una instalación de regadío para una plantación de trufa negra

PRESUPUESTO
1. PRESUPUESTO

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>DESCRIPCIÓN</th>
<th>UD</th>
<th>LATITUD</th>
<th>LONGITUD</th>
<th>ANCHURA</th>
<th>ALTURA</th>
<th>SUBTOTAL MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>MOVIMIENTO DE TIERRAS EXCAVACIONES ZANJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.1</td>
<td>EXCAVACIÓN en zanja y/o pozos en terreno de tránsito, con agotamiento de agua, incluso carga sobre camión de los productos resultantes de la excavación.</td>
<td>600</td>
<td>0,6</td>
<td>0,7</td>
<td></td>
<td>252</td>
<td></td>
<td>5,40 €</td>
<td>1360,8</td>
</tr>
<tr>
<td></td>
<td>ZANJEADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida A.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>RELLENO DE LA ZANJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2.1</td>
<td>RELLENO DE ARENA EN LA ZANJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relleno de arena en zanjas, extendido, humectación y compactación en capas de 20 cm de espesor, con un grado de compactación del 95% del proctor modificado.</td>
<td>600</td>
<td>0,6</td>
<td>0,1</td>
<td></td>
<td>36</td>
<td></td>
<td>9,53 €</td>
<td>343,08</td>
</tr>
<tr>
<td></td>
<td>RELLENO DE ARENA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida A.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2.2</td>
<td>RELLENO LOCALIZADO DE LA ZANJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relleno localizado en zanjas con productos seleccionados procedentes de la excavación y/o de préstamos, extendido, humectación y compactación en capas de 20 cm de espesor, con un grado de compactación del 95% del proctor modificado.</td>
<td>600</td>
<td>0,6</td>
<td>0,25</td>
<td></td>
<td>90</td>
<td></td>
<td>2,10 €</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>RELLENO MATERIAL SELECCIONADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida A.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RELLENO LOCALIZADO DE LA ZANJA
Relleno localizado en zanjas con productos seleccionados procedentes de la excavación y/o de prestamos, extendido, humectación y compactación en capas de 20 cm de espesor, con un grado de compactación del 95% del proctor modificado.

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>DESCRIPCIÓN</th>
<th>UD</th>
<th>LAT</th>
<th>LONG</th>
<th>ANCHU</th>
<th>ALTU</th>
<th>SUBTOTAL</th>
<th>MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.3</td>
<td>RELLENO MATERIAL ORDINARIO</td>
<td>600</td>
<td>0,6</td>
<td>0,3</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>2,60 €</td>
<td>280,8</td>
</tr>
</tbody>
</table>

TOTAL MOVIMIENTO DE TIERRAS

- **TOTAL**: 2.173,68 €

B. SUBUNIDADES

B.1 MICROASERSORES

Microaspersores no compensantes

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CANTIDAD</th>
<th>MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROASPERSORES</td>
<td>27</td>
<td>98</td>
<td>0,80 €</td>
<td>2238,4</td>
</tr>
</tbody>
</table>

B.2 TUBERÍA DE POLIETILENO PE-100 PN 10 PARA TUBERÍA LATERAL

Lateral de riego polietileno

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CANTIDAD</th>
<th>MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERAL DE RIEGO DN 40 mm DI 37,6 mm</td>
<td>774</td>
<td>774</td>
<td>0,36 €</td>
<td>278,64</td>
</tr>
</tbody>
</table>

B.3 TUBERÍA DE POLIETILENO PE-100 PN 10 PARA TUBERÍA TERCIA

Tubería polietileno PE-100 PN 10 para tubería terciaria

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CANTIDAD</th>
<th>MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBERIA POLIETILENO PN 10 DN 125 DI 117,6</td>
<td>1776</td>
<td>1776</td>
<td>3,50 €</td>
<td>6216</td>
</tr>
<tr>
<td>CÓDIGO</td>
<td>DESCRIPCIÓN</td>
<td>UD</td>
<td>LATITUD</td>
<td>LONGITUD</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>B.4</td>
<td>VÁLVULA ESFERA PVC D=90 mm. Válvula de corte de esfera, de PVC, de 90 mm. de diámetro, colocada en tubería de abastecimiento de agua, i/juntas y accesorios, completamente instalada. VÁLVULA DE ESFERA, ALOJADA EN 8 ARQUETA, AL COMIENZO DE SUBUNIDAD</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida B.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL MOVIMIENTO SUBUNIDADES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>RED GENERAL DE RIEGO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubería Polietileno PE-100 PN 10 para tubería General</td>
<td></td>
<td>850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TUBERÍA RED GENERAL POLIETILENO 360 DN 125 DI 117,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida C.1</td>
<td></td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>C.2</td>
<td>VÁLVULA ESFERA PVC D=90 mm. Válvula de corte de esfera, de PVC, de 90 mm. de diámetro, colocada en tubería de abastecimiento de agua, i/juntas y accesorios, completamente instalada. VÁLVULA ESFERA PVC 90 mm 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida C.2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL RED GENERAL DE RIEGO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CÓDIGO</td>
<td>DESCRIPCIÓN</td>
<td>UD</td>
<td>LATITUD</td>
<td>LONGITUD</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>D.1</td>
<td>CABEZAL DE RIEGO FILTRO DE DISCOS AZUD HELIX AUTOMATIC DLP 3" 100 micrones</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILTRO DE DISCOS 1" MICRONES CONEXIONES 3"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida D.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>VÁLVULA ESFERA PVC D=90 mm.</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Válvula de corte de esfera, de PVC, de 90 mm. de diámetro, colocada en</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tubería de abastecimiento de agua, i/juntas y accesorios, completamente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>instalada.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VÁLVULA ESFERA PVC D=90 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida D.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3</td>
<td>VENTOSA/PURGADOR AUTOM. D=80 mm.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventosa/purgador automático 3 funciones, de fundición, con brid, 100 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de diámetro, colocada en tubería de abastecimiento de agua, i/juntas y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>accesorios, sin incluir dado de anclaje, completamente instalada.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VENTOSA/PURGADOR AUTOMATIC D=80 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la partida D.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.4</td>
<td>MANÓMETRO</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manómetro para roscar en los cabezales y tomar lecturas, con rango hasta 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KG/CM2, cuerpo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diseño de una instalación de regadío para una plantación de trufa negra
<table>
<thead>
<tr>
<th>CODIGO</th>
<th>DESCRIPCION</th>
<th>UD</th>
<th>LATITUD</th>
<th>LONGITUD</th>
<th>ANCHURA</th>
<th>ALTURA</th>
<th>SUBTOTAL</th>
<th>MEDICION</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>de acero inoxidable y con baño interno de glicerina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.5</td>
<td>MANOMETRO Total de la partida D.3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 134</td>
<td>268,00€</td>
</tr>
<tr>
<td></td>
<td>GRUPO DE BOMBEO Electrobomba sumergible de 30 CV, totalmente colocada e instalada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOMBA Total de la partida D.4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 3.545</td>
<td>3545,00€</td>
</tr>
<tr>
<td>D.6</td>
<td>AUTOMATISMOS Suministro e instalación de programador electrónico digital, con transformador incorporado y montaje.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 732</td>
<td>732,00€</td>
</tr>
<tr>
<td>D.7</td>
<td>ELECTROVÁLVULAS Válvula hidráulica 5” con solenoide tipo Latch, totalmente instalada.</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 321</td>
<td>2568,00€</td>
</tr>
<tr>
<td></td>
<td>TOTAL CABEZAL DE RIEGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.092,26 €</td>
</tr>
<tr>
<td>E</td>
<td>VALLADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.1</td>
<td>MARCAJE Marcado línea de cerramiento y apertura de zanja de 0,15 m por medios mecánicos para el enterramiento de 0,10 m inferiores del vallado. 100 m MARCADO LÍNEA DE CERRAMIENTO</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 55,55</td>
<td>833,25 €</td>
</tr>
</tbody>
</table>
Diseño de una instalación de regadío para una plantación de trufa negra

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>DESCRIPCIÓN</th>
<th>UDS</th>
<th>LATITUD</th>
<th>LONGITUD</th>
<th>ANCHURA</th>
<th>ALTURA</th>
<th>SUBTOTAL</th>
<th>MEDICIÓN</th>
<th>PRECIO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.2</td>
<td>CERRAMIENTO</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerramiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>constituido por</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>malla ganadera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>galvanizada y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>anudada de tipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HJ/200-8-30 y tres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hilos de alambre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de espino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>galvanizado en</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coronación, todo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ello sobre postes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de tensión de 2,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m de altura y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>postes intermedios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de 2,30 m de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>madera de pino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tratado tanalizado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>redondos y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acabados en punta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>con una separación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de 3 m, hincados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a una profundidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de 0,8 m y 0,4 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>respectivamente.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incluye relleno y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>compactación de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zanja de 0,15 m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 m CERRAMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>partida E.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3</td>
<td>PUERTA</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puerta de dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hojas de pino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tanalizado como</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>marco y malla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HJ/200-8-30, de 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x1,9 m con</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>herrajes y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>colocación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUERTA DE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOJAS DE PINO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>partida E.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL VALLADO

	1									
	1									5.243,25 €
	1									4500,00 €
	1									4500,00 €
										TOTAL 28.650,49 €

Trabajo Fin de Grado - 148 -