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ABSTRACT
Although polyploidy is considered a ubiquitous process in plants, the

establishment of new polyploid species may be hindered by ecological competition

with parental diploid taxa. In such cases, the adaptive processes that result in the

ecological divergence of diploids and polyploids can lead to their co-existence.

In contrast, non-adaptive processes can lead to the co-existence of diploids and

polyploids or to differentiated distributions, particularly when the minority

cytotype disadvantage effect comes into play. Although large-scale studies

of cytotype distributions have been widely conducted, the segregation of sympatric

cytotypes on fine scales has been poorly studied. We analysed the spatial

distribution and ecological requirements of the tetraploid Centaurea seridis and

the diploid Centaurea aspera in east Spain on a large scale, and also microspatially

in contact zones where both species hybridise and give rise to sterile triploid

hybrids. On the fine scale, the position of each Centaurea individual was recorded

along with soil parameters, accompanying species cover and plant richness. On the

east Spanish coast, a slight latitudinal gradient was found. Tetraploid C. seridis

individuals were located northerly and diploid C. aspera individuals southerly.

Tetraploids were found only in the habitats with strong anthropogenic

disturbance. In disturbed locations with well-developed semi-fixed or fixed dunes,

diploids and tetraploids could co-exist and hybridise. However, on a fine scale,

although taxa were spatially segregated in contact zones, they were not ecologically

differentiated. This finding suggests the existence of non-adaptive processes

that have led to their co-existence. Triploid hybrids were closer to diploid

allogamous mothers (C. aspera) than to tetraploid autogamous fathers (C. seridis).

This may result in a better ability to compete for space in the tetraploid minor

cytotype, which might facilitate its long-term persistence.
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INTRODUCTION
Polyploidy is considered a ubiquitous process that has played a key role in plant evolution

(Wendel et al., 2016). Whether polyploidy represents an evolutionary advantage or

disadvantage remains unclear, and mainly depends on taxa (Madlung, 2013) and

evolutionary moment (Parisod, Holderegger & Brochmann, 2010). Obstacles to new

polyploids establishment include ecological and reproductive competition with parental

diploid species (Petit, Bretagnolle & Felber, 1999). However, the coexistence of diploids

and polyploids can be fairly stable for different factors, of which ecological divergence

following adaptive processes is among the most important (Mable, 2003; Hülber et al.,

2009; Mráz et al., 2012). This divergence is driven by an environmentally-dependent

selection along an abiotic or biotic gradient, which results in the differentiation of the

ecophysiological requirements of different related cytotypes. Polyploids may display a

better fitness advantage in novel environments due to both increased genetic diversity, on

which selection can act, and novel biochemical pathways and transgressive characters

(Leitch & Leitch, 2008). This new steady state may confer onto them a predisposition

towards both the extension of their ecological amplitude and quick adaptation to

changing environmental conditions (Ramsey, 2011; Hülber et al., 2015). As a result,

polyploids might respond better to aridity (Manzaneda et al., 2012;McAllister et al., 2015),

higher or lower altitudes and latitudes (Hardy et al., 2000; Sonnleitner et al., 2010;

Zozomová-Lihová et al., 2015), lower temperatures (Zozomová-Lihová et al., 2015; Paule

et al., 2017), salt (Chao et al., 2013), and limiting soil characteristics (Kolá�r et al., 2013).

However, this is not always consistent and, in some cases, a wider ecological amplitude has

been found in diploids compared to tetraploids (Španiel et al., 2008; Theodoridis et al.,

2013). Differentiation among related cytotypes can be reflected in shifts in the abundance

of accompanying species (Johnson, Husband & Burton, 2003), spatial segregation based on

distinct ecological preferences within the same habitat type (Raabová, Fischer &

Münzbergová, 2008), or separation of cytotypes into plant communities that differ in

structure and physiognomy (Lumaret et al., 1987).

The co-existence of individuals of different ploidy levels can also be caused by non-

adaptive processes, such as the recent origin of polyploids in primary contact zones

(McArthur & Sanderson, 1999), multiple polyploidisation events (Leitch & Bennett, 1997),

and the predominance of vegetative reproduction associated with local dispersal in

polyploids (Šafá�rová & Duchoslav, 2010). In contrast, non-adaptive processes may lead to

differentiated distributions, even in those cases where cytotypes have similar ecological

requirements. The minority cytotype disadvantage (Levin, 1975) is a particular concern.

This occurs mainly in contact zones where different cytotypes of the same or closely-

related species produce hybrid offspring, which are generally triploid individuals that are

mostly sterile and act as a major reproductive barrier (Petit, Bretagnolle & Felber, 1999;

Husband, 2004; Herben, Trávnı́ček & Chrtek, 2016). By assuming random mating, it

can be stated that the lower the frequency of a cytotype, the higher the proportion of

its ineffective pollinations. For each generation, the minority cytotype produces

proportionally fewer offspring than the majority cytotype, which leads to its progressive
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elimination (Baack, 2004). Differentiated distributions of related cytotypes can also be

achieved through historical colonisations and past dispersals (Kolá�r et al., 2009), and

through variations in mating and competition patterns (Trávnı́ček et al., 2011).

As a result of these adaptive and non-adaptive processes, distribution of well-

established neopolyploids tend to separate from that of their diploid ancestors, although

overlapping areas may exist with varying magnitudes depending on taxa (Thompson,

Husband & Maherali, 2015; Zozomová-Lihová et al., 2015). Most studies that deal with

distributions and ecological affinities of related cytotypes have been assessed by

comparing single-ploidy level populations or by broad-scale surveys of individuals (Balao

et al., 2009; Koutecký, Štěpánek & Bad’urová, 2012; Krejčı́ková et al., 2013;McAllister et al.,

2015). In most of them, individuals of different ploidy levels appear to occupy

differentiated geographical and/or ecological areas. In particular, allopolyploids more

frequently display an intermediate niche between those of their diploid progenitors, and

also a wider niche overlap with them (Blaine, Soltis & Soltis, 2016). In contrast, much

fewer surveys that deal with the segregation of sympatric populations of different ploidy

levels on fine scales have been performed. As most ecological variables are spatially

structured, these studies can allow inference of whether one single microhabitat is suited

for different related cytotypes (hybrid zones, e.g. Baack & Stanton, 2005; Kolá�r et al.,

2009), or if differentiated habitats suited for a single cytotype are microspatially segregated

(mosaic zones, e.g. Suda et al., 2004; Hülber et al., 2015). Furthermore, if heteroploid

hybridisation is possible, the hybrids that emerge in contact zones have to establish and

compete with parental individuals. Their persistence may be influenced by the magnitude

of ecological differentiation from parental populations, and by their geographical and

ecological position in relation to those of their parents (Ståhlberg & Hedrén, 2009).

Centaurea (Compositae) is a recent, taxonomically intricate genus due to the existence

of polyploidy, descending dysploidy cycles, and hybridisation events (Hellwig, 2004;

Romaschenko et al., 2004). Centaurea aspera L. and Centaurea seridis L. are perennial

herbaceous plants that belong to the section Seridia (Juss.) Czerep. C. aspera is widespread

from south–west Europe (it extends eastwardly to central Italy) to north–west Africa

(Tutin & Heywood, 1976; Devesa, 2016). It is highly differentiated locally and grows in a

wide range of habitats: in dry and open habitats at low elevations, remnant Mediterranean

forest patches, and nitrophilous sand dunes. In Europe, only diploid populations of

C. aspera have been recorded (compiled in Invernón, Devesa & López, 2013; see also

Garmendia et al., 2015). C. seridis is an allotetraploid that derives from C. aspera and one

still unknown closely-related species (Invernón, Devesa & López, 2013; Ferriol, Merle &

Garmendia, 2014). It has a narrower distribution from south–east Spain to north–west

Africa (Tutin & Heywood, 1976), although it has also been cited as a rare species in Italy

(the Calabria region and Sicily, Conti et al., 2005), Albania and Greece (Gibbons, 2003;

Devesa, 2016). It usually develops on maritime sand soils and rarely occurs inland, on

rocky soils in dry open habitats. In east Spain and west Morocco, both species co-exist

in several contact zones, hybridise and generate morphologically intermediate hybrids,

C. x subdecurrens Pau (Ferriol et al., 2012, Garmendia et al., 2015). In east Spain, the

hybrids from diploid subspecies of C. aspera and tetraploid C. seridis are triploid and
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sterile (Ferriol, Merle & Garmendia, 2014). To date in Spain, six contact zones have been

described in sand and pebble coastal dunes between north Castellón and Almerı́a

(Calblanque, Guardamar del Segura, Santa Pola, El Saler, Marjal dels Moros, and

Chilches) (Garmendia et al., 2010), and one inland (Sax) (Merle, Garmendia & Ferriol,

2010). In all the 165 individuals previously evaluated in these six contact zones, ploidy

level determined by flow cytometry unambiguously corresponded to the morphological

characters that are discriminant of each taxon (C. aspera 2x = 22, C. seridis 4x = 44, and

C. x subdecurrens 3x = 33) (Ferriol et al., 2012; Ferriol, Merle & Garmendia, 2014). No

ploidy levels higher than tetraploid were found.

Both C. aspera and C. seridis are insect-pollinated and their flowering periods

overlap widely in east Spain (Bosch, Retana & Cerdá, 1997; Ferriol et al., 2015). However,

while diploids are strictly allogamous and do not display mentor effects, tetraploids are

highly autogamous (Ferriol et al., 2015). Consequently, hybrids asymmetrically form: all

triploid intact cypselae come from the diploid mothers pollinated by the pollen of

tetraploids. In artificial crosses between C. aspera and C. seridis, only triploids were

observed in the progeny (Ferriol et al., 2015). No tetraploids, which could act as interploid

bridge, were found to form from unreduced gametes from the diploid C. aspera

(Sutherland & Galloway, 2017). These unidirectional crossings could help C. seridis

overcome the minority cytotype exclusion effect to enhance its short-term survival

(Van de Peer, Mizrachi & Marchal, 2017).

In this study, we analysed the spatial distribution of diploid C. aspera, triploid C. x

subdecurrens, and tetraploidC. seridis, and we tested the hypothesis that they are ecologically

differentiated, both on a broad scale and microspatially in contact zones where they grow

in sympatry. This potential geographic and/or ecological segregation may contribute to

interspecific reproductive isolation. Specifically, we addressed the following questions:

(i) what is the spatial structure and what are the ecological requirements of diploids and

their allotetraploid derivatives across east Spain? (ii) What is the microspatial distribution

pattern of individuals in mixed-ploidy plots? (iii) Does the distribution of triploids in

contact areas correspond to patterns of crossability between the diploid C. aspera and the

tetraploid C. seridis? (iv) Is there any correlation between taxa distribution on a fine

scale and ecological microhabitat characteristics? In coastal dunes, there are strong gradients

of various environmental factors that run perpendicularly to the shoreline. These include

sand grain diameter, wind-driven sand movement, amount of salty spray, water availability,

nutrient level, soil pH, vegetation cover, and plant diversity (Brown & McLachlan, 1990;

Brunbjerg et al., 2012). As these factors are expected to act as filtering processes, we predicted

that, if taxa are ecologically differentiated, their habitat should differ from them. Altogether,

these questions can shed light onto long-term diploids/polyploids co-existence, and

whether it is a result of adaptive vs. non-adaptive mechanisms.

MATERIALS AND METHODS
Population sampling and ecology on a broad scale
Centaurea individuals were sampled on two geographic scales. On a broad scale, extensive

sampling was conducted in east and south Spain, and in south France, during the
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2008–2015 period. Here, we focused particularly on the Mediterranean coast as it is the

typical habitat of C. seridis, where most contact zones with C. aspera occur with formation

of triploid hybrids. A total of 39 sites were selected from the ANTHOS project and the

BDNFF botanic databases (ANTHOS, 2018; Base de Données nomenclaturales de la Flore

de France (BDNFF, 2018)). In each location, several environmental parameters were

recorded: coastal urbanisation (presence of buildings, roads, promenades), anthropic

disturbance (human traffic, tourism, grazing), presence of large salt marshes near the sea

that prevent the presence of well-developed semi-fixed and fixed dunes, soil type (sand

dune, fossil dune, pebble dune), and vegetation type.

Population sampling on the microspatial scale
Three coastal contact zones, where C. aspera, C. seridis, and C. x subdecurrens were present,

were selected to assess microspatial distribution. These contact zones corresponded to sites

14 (Marjal dels Moros), 15 (El Saler North), and 16 (El Saler South), the first on pebble

dunes and the last two on sandy soils (Table 1). The limits of each sampling plot were

determined by geo-referencing corners and using ropes between them (Table 2). Each plot

was of an appropriate size to include more than 50 individuals of each parental taxon

(C. aspera 2x and C. seridis 4x). Samplings were performed in spring (March and April

2013). The exact location of each individual in each plot was determined by a Garmin Etrex

GPS(Olathe, KS, USA). All the locations from each plot were collected with the same

GPS receiver in the shortest possible sampling time (within 3 days).

Ecological differentiation of taxa on the microspatial scale
To compare the ecological requirements of C. seridis, C. aspera, and C. x subdecurrens, we

selected the “El Saler North” plot because of its regular shape, high individual density, and

the absence of strong discontinuities due to pathways or other infrastructures. In the field,

a grid (20 � 120 m) was laid out with an E–W orientation and perpendicular to the

shoreline, which was subdivided in 2,400 quadrats of 1 m2 delimited by ropes.

In the central quadrat of each 25 m2 area (5 � 5 m) (96 quadrats in all), the following

parameters were measured: (1) total vegetation cover, specifically the cover of

chamaephytes, hemicryptophytes, geophytes, and therophytes, (2) distance to the nearest

pathway (or percentage of quadrat occupied by the pathway), (3) slope aspect, (4) slope

inclination, (5) plant species richness, (6) occurrence (presence/absence) of species

present in the plot.

Soil parameters were analysed in the centre of each 100 m2 area, which was already

delimited by ropes (24 samples in all). Soil was collected manually with a soil core sampler

(15 cm deep and 10 cm in diameter). Soil samples were air-dried at 25 �C and passed

through a 2 mm sieve. Grain sizes were determined by dry sieving, using five sieve

intervals from 2 to 0.05 mms. Soil pH was determined with a soil-distilled water ratio of

1:2.5 w/v. Soil organic matter was determined by potassium dichromate oxidation

(Nelson & Sommers, 1996). Electrical Conductivity (EC) was measured by an EC meter

on 50 ml of a 1:5 w/v soil to water extract, to which two drops of 0.1% sodium

hexametaphosphate were added (MAPA, 1986). Soil samples were also defined for their
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colour indices (Hue, Value, and Chroma) according to the Munsell colour chart under

similar illumination conditions, and following Post et al. (2000). These indices have been

significantly related with soil parameters, specifically the Munsell Value component

with albedo (R2 = 93%, Post et al., 2000). Furthermore, digital photographs of each soil

sample arranged on a Petri dish were taken in the laboratory with a high quality digital

camera (16.1 megapixels) under standard lighting conditions and with no flash, from a

height of 12 cm above the sample (resolution 4,608 � 3,456 pixels). Digital images were

processed using GIMP 2.8.4 (GIMP team, 2014). After calibrating the RGB values

following Levin, Ben-Dor & Singer (2005), a region of interest (ROI) covering the central

part of the Petri dish with the soil sample was defined and the RGB coordinates of the

ROI were obtained. Redness Index [RI = R2/(B�G3)], which correlates highly with the free

iron content in sand dune soils (R2 = 88.9%, Levin, Ben-Dor & Singer, 2005), was

calculated.

In all the studied quadrats, the presence or absence of all three taxa was recorded to

describe and compare their representative microhabitats.

Statistical analyses
To render this document, we used R, RMarkdown, Knitr, and Pandoc (R Core Team, 2017;

Xie, Hill & Thomas, 2017). We also used packages readxl (Wickham & Bryan, 2017) and

writexl (Ooms, 2017) to import and export data, and dplyr (Wickham et al., 2017) and

tidyr (Wickham & Henry, 2018) to manage data.

Centaurea individuals were plotted on maps on the microspatial scale using maptools

(Bivand & Lewin-Koh, 2017) and rgdal (Bivand et al., 2017). The package ggsn (Baquero,

2017) was also employed to include scales on some maps.

In the mixed-ploidy plots, spatial distribution and the relationship between species

were analysed following Pebesma & Bivand (2005) using spatstat (Baddeley & Turner,

2005; Baddeley, Rubak & Turner, 2015). The distribution pattern of the individuals within

each taxon was analysed by Ripley’s K-function (Ripley, 1976). The K-function determines

the distribution pattern (clumped, random, or regular) by counting the number of

conspecific individuals within a given radius r of each individual in the study area, and by

comparing the mean number with the counts that derived from the density of this species

in the plot. The results were compared with those observed with random Poisson

distribution confidence intervals, which were obtained by a Monte Carlo test with 300

independent repeats per plot. Therefore, when the observed K(r) was over the confidence

interval, distribution was considered clumped. If it was under the confidence interval, it

was considered regular. When it was between the limits of the interval, it was not separated

from random.

Pairwise interspecific associations were examined by Chi-squared tests following

Baddeley (2010). By considering two taxa, each sampling plot was divided into three

equal-area density (low, intermediate and high) levels for the first taxon, and the

frequencies (quadrat countings) of the second taxon in each equal-area were established.

A Chi-squared test was performed to determine the significance of the individual

distribution of the second taxon along the different densities areas of the first taxon.
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Comparisons were made both between parentals (C. aspera 2x and C. seridis 4x), and also

between the hybrid (C. x subdecurrens 3x) and each parental.

The ecological differentiation among quadrats was summarised by multivariate

techniques in vegan for R (Oksanen et al., 2009). Initially, a non-metric multidimensional

scaling (NMDS) analysis was run to examine the distribution of the species composition

in the different quadrats using 200 random starts. The multidimensional space of

species accompanying the Centaurea taxa, represented by pairwise Bray–Curtis distances

between individuals, was reduced to a four-dimensional configuration (NMDS-space),

and the quality of this transformation was indicated by a non-linear monotone

transformation of the observed distances and ordination distances called “stress”

(Oksanen, 2009). The ordination result was post-processed with the “metaMDS”

(default-options) function, which repeats calculations 20 times with random starting

arrangements (Oksanen et al., 2009). The configuration with the lowest stress for the given

number of axes was chosen. The results were scaled to make interpretation easier, and the

ecological variables were fitted over the first two axes. To analyse the differentiation

among quadrats according to soil parameters, an NMDS was performed similarly using

the results of the soil variables instead of species. Additionally, for each Centaurea taxon,

the ecological characteristics between quadrats with and without plants of the analysed

taxon were compared by non-parametric analyses (Wilcoxon signed rank test for

continuous variables and Chi-square for categorical variables), followed by Bonferroni

correction. A statistically significant difference was considered if P � 0.05.

The packages ggmap and ggplot2 (Wickham, 2016; Kahle &Wickhman, 2013) were used

to plot graphics.

RESULTS
Distribution of the Centaurea taxa in east Spain and south France,
and ecological preferences
The occurrence of the diploid C. aspera and/or tetraploid C. seridis individuals in all the 39

studied sites is shown in Fig. 1 and Table 1. The two taxa showed contrasting distribution

patterns on a broad scale.

Centaurea seridis is present within a range that goes from the surroundings of

Castellón, which represents its north limit, to the Strait of Gibraltar, which separates the

Mediterranean Sea and the Atlantic Ocean where it is absent (Fig. 1). This species is a

coastal dune specialist. Plants grow on mobile to fixed dunes, with both sandy and

stony soils, regardless of the presence of inter- and post-dune salt marshes. They are

especially abundant in disturbed dunes due to human traffic and grazing that result in

removed soils, absence of a dense vegetation cover, and presence of nitrophilous species.

Rarely, in only four locations, whose distance from one another is <38 km (Font de la

Figuera, Villena, Sax, and Elda), C. seridis was also found inwardly in disturbed

shrublands, along with ruderal and nitrophilous species.

C. aspera is mainly an inland species with a broader distribution area (Fig. 1). On the

Mediterranean coast, C. aspera individuals were found on the semi-fixed and fixed dunes
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from France to Murcia. However, they were absent at the sites where urbanisation and/or

the presence of large salt marshes prevented the occurrence of well-developed semi-fixed

and fixed dunes. In Andalusia, C. aspera was not found on the Mediterranean coast, but

was present in nearby low mountains, with a ruderal and nitrophilous character.

Contact zones between diploids and tetraploids occur from Chilches to Calblanque

with the presence of triploids. We found eight contact zones in coastal habitats and

Figure 1 Localization of single-ploidy populations and mixed-ploidy populations in east and south Spain and in south France. Populations of

diploid C. aspera are represented in red circles, populations of tetraploid C. seridis in blue squares, and mixed populations of C. aspera, C. seridis,

and triploid C. x subdecurrens in green triangles. Numbers correspond to sites from Table 1. Map by Map Data ©2018 Google, Instituto Geográfico

Nacional. Full-size DOI: 10.7717/peerj.5209/fig-1
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two inland. In the coastal contact zones, C. aspera and C. seridis co-exist in dune habitats

that include well-developed semi-fixed or fixed dunes with the presence of open

shrublands and pine forests. The habitat at all sites was disturbed by beach tourists or

grazing. As a result, C. seridis is frequently found along the abundant pathways that move

inland, while C. aspera also moves in a seaward direction along the same pathways,

and both act as ruderal species. In these situations, the triploid hybrids of C. x

subdecurrens arise. Similarly, in inland contact zones, diploids and tetraploids co-exist in

ruderal plant communities near roads, which causes C. x subdecurrens to appear.

Distribution on the microspatial scale
The three mixed ploidy-plots investigated on the microspatial scale differed in plant

abundances, densities, and in proportions of diploids, tetraploids and triploids (Table 2;

Fig. 2). In agreement with the biogeography on a broader scale, a lower density of

Centaurea individuals was found in “El Saler South,” which represented the dune habitat

with the least anthropic disturbance. Both “Marjal dels Moros,” with a reduced area of

semi-fixed and fixed pebble dunes, and “El Saler South,” with the least anthropic

disturbance, displayed a low and similar density of C. aspera and C. x subdecurrens, while

“El Saler North,” with strong anthropic disturbance and well-developed semi-fixed dunes,

showed a higher density of both diploids and triploids. C. seridis displayed the highest

density at the most disturbed site (“Marjal dels Moros”), and the lowest at the least

disturbed site (“El Saler South”). These results suggest that the extent of semi-fixed dunes

and of anthropic disturbance is a more determining factor on the presence of Centaurea

individuals than dune soil type (pebble vs. sand). Consequently, and according to these

two factors, the ratio between tetraploids and diploids vastly varied among sites.

“Marjal dels Moros” (narrow area of semi-fixed dunes and high disturbance) showed the

highest 4x/2x ratio, which is considerably higher than “El Saler North” and “El Saler

South.” The number of triploids was related more to the number of diploids than to the

number of tetraploids across sites. Accordingly, the 3x/2x ratio was more constant than

the 3x/4x ratio.

Ripley’s K-function revealed a clumped distribution of diploids and tetraploids at all

the sites (Fig. 3). Triploids also displayed clumped distribution at sites “El Saler North”

and “El Saler South,” but not at “Marjal dels Moros,” where distribution was random.

However, “Marjal dels Moros” was the site that included the fewest C. x subdecurrens

individuals (9). Therefore, this result should be interpreted with caution.

More profound insight into the spatial structure was provided by the Chi-squared

tests. When each plot was divided into three equal areas of high, intermediate and low

densities of C. aspera, C. seridis showed a different distribution pattern depending on the

studied plot (Fig. 4). At “El Saler South,” no significant differences in the number of

tetraploid C. seridis individuals were found among several C. aspera (2x) densities.

Furthermore, at “Marjal dels Moros,” C. seridis individuals were significantly more

abundant in the areas with intermediate and high C. aspera densities, and were more

abundant at “El Saler South” in high and low C. aspera densities. A similar variable

pattern was observed in C. aspera distribution over different C. seridis densities.
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Figure 2 Fine scale distribution of C. aspera (2x), C. seridis (4x), and C. x subdecurrens (3x) in the

three studied sampling plots. C. aspera (2x): green circles, C. seridis (4x): blue crosses, and C. x sub-

decurrens (3x): red triangles. Study sites: (A) MM, Marjal dels Moros; (B) ESN, El Saler North; (C) ESS,

El Saler South. The blue line represents the edge of the sea. Full-size DOI: 10.7717/peerj.5209/fig-2

Garmendia et al. (2018), PeerJ, DOI 10.7717/peerj.5209 14/34

http://dx.doi.org/10.7717/peerj.5209/fig-2
http://dx.doi.org/10.7717/peerj.5209
https://peerj.com/


At “El Saler North,” C. aspera individuals were significantly more abundant in

intermediate and low C. seridis densities, while the opposite occurred at “El Saler South,”

where they were more abundant in areas with a high density of C. seridis. Non-significant

differences were observed at “Marjal dels Moros.” Therefore, no consistent C. aspera

distribution pattern was found according to that of C. seridis, and vice versa. As expected,

triploid hybrids were generally more abundant in those areas with high densities for both

parentals (Fig. 4). However, these differences were more significant when triploid C. x

subdecurrens abundance was compared over the several densities of C. aspera than those of

C. seridis. At “Marjal dels Moros,” the difference in the number of hybrids among the areas

of varying C. seridis densities was non-significant.

This higher affinity between C. x subdecurrens triploids and C. aspera diploids than

between triploids and C. seridis tetraploids was also supported by the spatial correlograms

Figure 3 Ripley’s K observed and expected with random distribution for the combined data of all plots, with confidence intervals calculated

using Monte Carlo simulations for a Poisson distribution. Ripley’s K observed: black, Ripley’s K expected with random distribution: red,

confidence intervals: grey. Values larger than the upper confidence limit indicate significant intracytotype aggregation at the particular distance of

r. (A–C) Marjal dels Moros (MM), (D–F) El Saler North (ESN), and (G–I) El Saler South (ESS). (A, D, G) C. aspera, (B, E, H) C. x subdecurrens, and

(C, F, I) C. seridis. Full-size DOI: 10.7717/peerj.5209/fig-3
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(Fig. 5). At both “El Saler North” and “El Saler South,” the highest C. x subdecurrens

density came closer to C. aspera individuals (at 1.32 ± 0.16 m and 1.43 ± 0.22 m,

respectively) than to C. seridis individuals (at 7.72 ± 1.04 m and 4.97 ± 0.70 m,

respectively). At “Marjal dels Moros,” the highest C. x subdecurrens density was observed

at 5.53 ± 1.43 m from C. aspera individuals, whereas two triploid density peaks related to

Figure 4 Relationship between the abundance of C. x subdecurrens (3x) and both parentals (numbers

in white) and C. aspera (2x) and C. seridis (4x) (numbers in light blue) at three sampling plots. (A and

B)Marjal dels Moros (MM); (C and D) El Saler North (ESN), and (E and F) El Saler South (ESS). (A, C, E)

The number of C. x subdecurrens and C. seridis individuals over different densities of C. aspera, and (B, D, F)

the number of C. x subdecurrens and C. aspera individuals over different densities of C. seridis. Significant

Chi-square differences between number of individuals of one taxon over the three equal-area density parts

(yellow: high, pink: medium, and blue: low density of the other taxon) are marked.

Full-size DOI: 10.7717/peerj.5209/fig-4
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the distance to C. seridis individuals were found at 1.22 and 9.92 m, with a mean distance

of 6.60 ± 0.57 m. However, the fact that “Marjal dels Moros” displayed the highest

tetraploid:diploid individuals ratio, and that C. seridis tetraploids were more abundant

when C. aspera diploids displayed intermediate and high densities, can explain the

presence of these two peaks. The correlograms also showed that the difference between the

distance from a C. x subdecurrens individual to the nearest C. aspera individual, and that

to the nearest C. seridis individual, was bigger at the least disturbed site (“El Saler South”)

than at the most disturbed sites.

Ecological differentiation on the microspatial scale
The results of the NMDS performed to analyse the vegetation differentiation among

quadrats with the presence/absence of each taxon are shown in Fig. 6. As a whole, plant

species composition of the sampled quadrats at “El Saler North” was most variable. Some

factors to explain this variability include total vegetation cover, chamaephyte cover,

therophyte cover, geophyte cover, presence of trails, and species richness (see Figs. S1–S3

to view the vegetation structure and paths). They all had a relatively strong impact on the

differentiation patterns, shown by the length of the vectors in Fig. 6. Nevertheless, based

on these vegetation data and environmental variables, it was not possible to ecologically

differentiate the C. aspera and C. seridis individuals as they appeared to be highly

intermingled, and showed no clear distribution pattern. Nor was it possible to

differentiate C. aspera and C. seridis individuals according to soil variables, appearing

intermingled in the NMDS analysis (Fig. 7).

These results are supported by the pairwise comparisons made between quadrats with

the presence and absence of each taxon, and by considering environmental, species, and

soil variables. Only some environmental variables significantly differed between quadrats

with the presence vs absence of C. aspera individuals, but none of these significant

differences were conclusive (Table 3). Species richness was lower in the quadrats where

diploid individuals were absent than in those where they were present (Table 3). Similarly,

the hemicryptophyte cover percentage was also significantly lower in the quadrats where

Figure 5 C. x subdecurrens density (number of individuals per m2) related to the distance between

each C. x subdecurrens individual and the nearest individual of C. aspera and C. seridis. C. aspera:

dark grey, C. seridis: light grey. Study sites: (A) MM, Marjal dels Moros; (B) ESN, El Saler North;

(C) EES, El Saler South. Full-size DOI: 10.7717/peerj.5209/fig-5
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diploid individuals were absent than in those where they were present. Furthermore,

the quadrats with C. aspera individuals were significantly more distant to pathways

than the quadrats without them. For C. x subdecurrens, only the percentage of

hemicryptophytes slightly differed, but significantly, between the quadrats with the

absence vs presence of individuals, although this result must be interpreted with caution

because of few quadrats (4) there were where triploids were present. No significant

differences for any environmental variable were found between quadrats with the

absence vs. presence of C. seridis.

In relation to the accompanying species, C. aspera was positively/negatively associated

with the species that were indicative of varied habitats and showed no particular ecological

Figure 6 Non-metric multidimensional scaling (NMDS) for accompanying species represented by

pairwise Bray–Curtis distances between individuals (stress = 0.1413). Orange filled points represent

quadrats with the presence of diploid C. aspera, green with allotetraploid C. seridis, crosses with triploid

hybrids, and empty circles quadrats with absence of Centaurea. Ellipses represent standard deviations for

the three species. Arrows are fitted environmental variables. Analysis was performed in “El Saler North”

site. Nanophan, nanophanerophytes; Theroph, therophytes; TotalCov, Total cover; Nspp, Number of

species; Ammare, Ammophila arenaria; Rubper, Rubia peregrina; Laures, Launaea resedifolia; Teucap,

Teucrium capitatum; Helsyr, Helianthemum syriacum; Sedsed, Sedum sediforme; Scaatr, Scabiosa atro-

purpurea; Panmar, Pancratium maritimum; Pararg, Paronychia argentea; Cuseur, Cuscuta europaea; Mallit,

Malcolmia littoralis; Silram, Silene ramosissima; Ditvis, Dittrichia viscosa; Lagova, Lagurus ovatus; Cypcap,

Cyperus capitatus; Vuluni, Vulpia unilateralis; Psepum, Pseudorlaya pumila; Lotcre, Lotus creticus; Echsab,

Echium sabulicola; Spopun, Sporobolus pungens; Erolac, Erodium laciniatum; Elyfar, Elymus farctus; Cissal,

Cistus salvifolius; Aspacu, Asparagus acutifolius; Halhal,Halimium halimifolium; Parfil, Parapholis filiformis.

Full-size DOI: 10.7717/peerj.5209/fig-6
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pattern (Table 4). Specifically, it was associated positively with species with broad

ecological requirements (Lagurus ovatus L., Scabiosa atropurpurea L.). It also correlated

positively with Helichrysum stoechas DC. and negatively with Erodium laciniatum (Cav.)

Willd., and both are indicative of semi-fixed dune habitats (Costa &Mansanet, 1981). This

lack of ecological preferences by accompanying species was also evident in C. seridis and

C. x subdecurrens, which showed no positive or negative correlations with any of the

species present in the plot. Finally, no significant differences in relation to soil variables

were found for any analysed taxon (Table 5).

DISCUSSION
Although the diploid C. aspera and the tetraploid C. seridis displayed a wide overlapping

distribution, they also showed relatively contrasting distribution patterns in east Spain on

a broad scale. C. seridis displayed a narrower distribution area, confined mainly to the

coast from Castellón to Gibraltar. Some individuals were also found inland, which agrees

with previous works (Merle, Garmendia & Ferriol, 2010). Northwardly we did not find

it, although it has been cited rarely in Catalonia (Invernón & Devesa, 2013). In contrast,

C. aspera showed a broader distribution area, which covered the east half of Spain and

Figure 7 Non-metric multidimensional scaling (NMDS) for soil variables represented by pairwise

Bray–Curtis distances between quadrats (stress = 0.0562). Orange filled points represent quadrats

with the presence of diploid C. aspera, green with allotetraploid C. seridis, crosses with triploid hybrids,

and empty circles quadrats with absence of Centaurea. Ellipses represent standard deviations for the

three species. Analysis was performed in “El Saler North” site. gr2000, percentage of particles measuring

between 1 and 2 mm in diameter; gr1000, percentage between 0.5 and 1 mm; gr0500, percentage less

between 0.2 and 0.5 mm; gr0200, percentage between 0.1 and 0.2 mm; gr0100, percentage between

0.05 and 0.1 mm; gr0050, percentage <0.05 mm; MunsV, Munsell Value; SOM, soil organic matter;

ElecCond, electrical conductivity. Full-size DOI: 10.7717/peerj.5209/fig-7
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arrived at the coast, but only from Murcia northwardly (Invernón & Devesa, 2013). Thus

on the coastline, a taxon distribution following a latitudinal gradient (diploid C. aspera to

the north, tetraploid C. seridis to the south) was observed with a wide overlapping area.

These results are similar to those observed in Chamerion angustifolium L. (Sabara, Kron &

Husband, 2013) and Actinidia chinensis Planch. (Liu et al., 2015), in which the proportion

of tetraploids in a population correlated negatively to latitude. Triploid hybrids arose

whenever the distribution area of C. seridis and C. aspera overlapped, as previously

observed in several contact zones near the coast (Garmendia et al., 2010).

On the coast, both the diploid C. aspera and the tetraploid C. seridis grew in

nitrophilous and disturbed habitats due to grazing and human activities (tourism,

urbanisation). This habitat was already described by Rigual (1972) 45 years ago, who

found C. seridis plants growing on disturbed mobile dunes (Sporobolo–Centaureetum

seridis, Rivas Goday & Rigual 1958) and in inland ruderal communities (Asphodelo

fistulosi–Hordeetum leporini (A. et O. Bolòs, 1950)O. Bolòs, 1956). Although C. aspera has a

wider ecological amplitude, it usually grows also in ruderal and nitrophilous inland and

coastal habitats (Invernón & Devesa, 2013). In agreement with Costa & Mansanet (1981),

triploid hybrids C. x subdecurrens were found in the contact zones with heavy

anthropogenic disturbance (Centaureo maritimae–Echietum sabulicolae, Costa &

Mansanet, 1981), with high nitrification levels and several pathways used to reach

the beach.

The polyploid complex composed of the diploid C. aspera and its derived allopolyploid

C. seridis is another example of how disturbance can lead to the establishment of newly

arisen polyploids (Ramsey, 2011; Kim et al., 2012; Mráz et al., 2012; Soltis et al., 2015). In

the short term, the availability of new ecological niches may be a determining factor

for the survival and long-term success of polyploids, which often occur more frequently in

newly created, disrupted or harsh environments (Van de Peer, Mizrachi & Marchal, 2017).

This is particularly true when polyploids are self-compatible as self-fertility promotes

the colonisation of open patches (Dorken & Pannell, 2007). This is the case of C. seridis,

which shows a high degree of autogamy, unlike C. aspera, which is obligately outcrossing

(Ferriol et al., 2015). Otherwise in stable ecosystems, newly arisen polyploids may be

unable to compete with their diploid relatives (Van de Peer, Maere & Meyer, 2009).

Accordingly, tetraploids were found in higher proportions in the mixed-ploidy

populations located in more disturbed habitats, which agrees with Lumaret et al. (1987)

and Mráz et al. (2012), who also found a higher proportion of tetraploids in more

disturbed habitats due to human activities in Dactylis glomerata L. and C. stoebe L.,

respectively. Furthermore, the high frequency of C. x subdecurrens triploid hybrids can

also be partly due to disturbance, which has been related with a higher frequency of

triploids resulting from the hybridisation between diploid and tetraploid individuals

(Ståhlberg & Hedrén, 2009).

The greater ability that polyploids display to colonise new habitats could be the result

of adaptive processes, such as developing higher stress tolerance (Van de Peer, Mizrachi &

Marchal, 2017). Consequently, diploid C. aspera and tetraploid C. seridis individuals may

be differentiated according to habitat preferences, which allows their co-existence in
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heterogeneous contact zones. In fact, this is one of the most cited mechanisms that

facilitates the establishment and survival of neopolyploids in heterogeneous environments

(Ramsey & Ramsey, 2014), such as dune fields, where local environmental factors, like

soil and microclimatic characteristics, can vary on a scale of a few metres (Linhart &

Grant, 1996). Along these lines, several examples that show a differentiation of related

cytotypes on the microspatial scale in contact zones, according to different ecological

factors, exist: microtopography and vegetation cover in Senecio carniolicus Willd. (Hülber

et al., 2009); elevation and drainage patterns in Taraxacum sect. Ruderalia (Meirmans

et al., 2003); level of shading in Dactylorhiza maculata (L.) Soó (Ståhlberg & Hedrén,

2009), or heterogeneity of habitats (presence of roads, forests, grasslands, and fields) in

Allium oleraceum L. (Šafá�rová & Duchoslav, 2010). However in our case, neither C. aspera

nor C. seridis was ecologically differentiated on the microspatial scale, which suggests lack

of adaptive processes. Only for C. aspera were some significant differences found between

quadrats with the presence and absence of individuals, but these differences were

unrelated to any clear ecological pattern. Furthermore, the plants that were present or

absent in the vicinity of Centaurea individuals did not show a clear ecological pattern

altogether.

Despite there being no ecological differentiation between the diploid C. aspera and the

tetraploid C. seridis, the individuals of the same taxon appeared to be significantly

aggregated. A clumped distribution of individuals within a ploidy level seems a general

rule in the studies of cytotype distribution on the microspatial scale, regardless of

being ecologically differentiated or not (Husband & Schemske, 2000; Johnson, Husband &

Burton, 2003; Kolá�r et al., 2009; Trávnı́ček et al., 2011; Laport & Ramsey, 2015). In the

C. aspera/C. seridis contact zones, the results suggest that the spatial aggregation of

individuals of the same taxon has led to chance spatial associations with individuals of

other species. This supports the existence of non-adaptive processes that result in the

observed non-significant differences associated with species composition or ecological

variables that characterise the niche of diploids and tetraploids, and also with a non-

random Centaurea intraspecific distribution in contact zones. Firstly, the spatial

aggregation of Centaurea individuals may be due to the low dispersion of achenes (Li, Xu

& Ridout, 2004; Baack, 2005) or a short dispersal distance of pollen (Fortuna et al., 2008).

Both C. aspera and C. seridis have persistent, short pappi that do not allow effective wind

dispersal. In both species, the dry involucre retains fruits, so their dispersal depends on

stem movements by either wind, or by passing animals, persons or vehicles (Sheldon &

Burrows, 1973). Accordingly, they are considered to display atelechory, lack seed dispersal

mechanisms and have short-distance seed dispersal (Garcı́a-Fayos, Engelbrecht & Bochet,

2013), except ants, which may bring achenes into nests over longer distances (>1 m)

(Hensen, 2002). Similarly, in spite of the lack of studies on C. aspera and C. seridis

specifically, studies performed in other insect-pollinated Centaurea species have shown

that most pollen grains disperse over short distances (<25 m), although a minor

proportion can be dispersed further (Hardy et al., 2004; Albrecht et al., 2009). These short

seed and pollen dispersal distances may, in turn, enhance intraspecific pollination and

ultimately favour the co-existence of C. aspera and C. seridis in the absence of ecological
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segregation (Kennedy et al., 2006). Secondly, tetraploid C. seridis individuals display high

selfing levels (Ferriol et al., 2015), which can lead to the spatial segregation of taxa

regardless of the niche differentiation among them, and can allow tetraploids to become

established and survive (Felber, 1991). Thirdly, triploids are highly or completely sterile

(Ferriol et al., 2015). Although varying degrees of fertility have been assessed in different

triploid plant species, notably by autopolyploidisation (producing hexaploids) or by

backcrossing with diploids (producing tetraploids) (Ramsey & Schemske, 1998), we did

not find any hexaploid individuals among more than 220 individuals of the Moroccan

and European populations (Ferriol et al., 2012; Ferriol, Merle & Garmendia, 2014). In

forced crosses we observed complete sterility of pollen and ovules in the triploids from the

“El Saler” population, also studied here (Ferriol et al., 2015). Thus the C. x subdecurrens

individuals seemed to act as a strong triploid block. This strength of selection against

triploids can also lead to clumped distributions by conferring spatial separation between

parentals, and thereby reducing the competitive interactions between them and

heteroploid crosses, which are the basis of the minority cytotype exclusion effect (Hülber

et al., 2015). Other non-adaptive processes can promote the co-existence of the diploid

C. aspera and the tetraploid C. seridis which cannot be ruled out are human-mediated

colonisations by tetraploids. Similarly to that described for C. stoebe (Mráz et al., 2012),

humans could have unintentionally dispersed tetraploid individuals into already

established diploid populations by creating new open niches suitable for colonisation.

Especially along paths and roads that run inwardly from the sea, the transport of

tetraploid propagules like spiny capitula could have been facilitated by movement on

pets and humans’ belongings. Another explanation could be that plant populations

have not struck the equilibrium at which all cytotypes but one are locally excluded

(Šafá�rová & Duchoslav, 2010).

Even if the aggregated distribution of taxa may enhance the stability of ploidy

co-existence by increasing the assortative mating rate in taxon-uniform clusters,

hybridisation was not prevented. Triploid hybrids C. x subdecurrens are frequent in nature,

and were found in all the mixed ploidy populations. On a fine scale, an intermediate

spatial position between those of the diploid and tetraploid parentals should be expected,

which agrees with Ståhlberg & Hedrén (2009), who reported an intermediate position of

triploid hybrids in mixed diploid/tetraploid populations of the Dactylorhiza maculata

group, but with no statistical evaluation given the few triploids. However in our study,

triploids appeared much closer to diploids than to tetraploids. This agrees with Ferriol et al.

(2015), who found that, due to the high degree of autogamy in the tetraploid C. seridis, and

to the strict allogamy in the diploid C. aspera, triploid progeny always came from diploid

maternal plants pollinated by tetraploid paternal plants in artificial crossings.

These asymmetric crosses, along with short achene distance dispersal and lack of

ecological differentiation among taxa, could have led to a spatial distribution in which

diploid C. aspera plants have to share space with their triploid offspring, while the

C. seridis tetraploids can compete better for space. In addition to the high selfing rate, this

better ability to compete for space compared with their diploid relatives could counteract

the effects of the minority cytotype exclusion principle, and allow tetraploids to persist.
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The mechanism by which diploids act as maternal plants and tetraploids as pollen donors

by influencing the cytotype distribution pattern on the fine spatial scale, has also been

suggested by Suda et al. (2004) in Empetrum. Sabara, Kron & Husband (2013) have also

found that triploids are produced more often by diploid maternal plants than by

tetraploids.

CONCLUSIONS
In the C. aspera (2x)/C. seridis (4x) complex, adaptive mechanisms may exist that could

lead to parapatric distributions on a broad scale to confine tetraploids to coast mobile

dunes, while diploids develop inwardly from semi-fixed dunes. However, contact zones

appeared, but only where dunes were strongly disturbed. Therefore, C. aspera and C.

seridis coexist due mainly to non-adaptative mechanisms, and finally hybridise. In these

contact zones, several mechanisms that allow the persistence of the tetraploid minor

cytotype may take place. In addition to selfing and more assortative matings, the better

ability to compete for space seems a key factor.

The results reported here can shed some light on the debate as to whether recently

formed polyploid plants are evolutionary dead-ends (Mayrose et al., 2011; Arrigo & Barker,

2012) or, on the contrary, if they compete better than diploids (Soltis et al., 2014). Our

observations support the idea that a large amount of neopolyploids, such as C. seridis, can

overcome the minor cytotype exclusion, adapt quickly to new environments, and

survive in the short term, although their long-term survival is still unclear (Van de Peer,

Mizrachi & Marchal, 2017). Specifically, it has been shown in Asteraceae, which

includes the genus Centaurea, that multiple WGD events have led to high rates of

chromosome rearrangements and diversification, and finally to great evolutionary

success (Huang et al., 2016).
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