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Abstract. This paper deals with the damped pendulum random differential
equation: Ẍ(t) + 2ω0ξẊ(t) + ω2

0X(t) = Y (t), t ∈ [0, T ], with initial conditions

X(0) = X0 and Ẋ(0) = X1. The forcing term Y (t) is a stochastic process and
X0 and X1 are random variables in a common underlying complete probability
space (Ω,F ,P). The term X(t) is a stochastic process that solves the random
differential equation in both the sample path and in the Lp senses. To understand
the probabilistic behaviour of X(t), we need its joint finite-dimensional distribu-
tions. We establish mild conditions under which X(t) is an absolutely continuous
random variable, for each t, and we find its probability density function fX(t)(x).
Thus, we obtain the first finite-dimensional distributions. In practice, we deal
with two types of forcing term: Y (t) is a Gaussian process, which occurs with
the damped pendulum stochastic differential equation of Itô type; and Y (t) can
be approximated by a sequence {YN (t)}∞N=1 in L2([0, T ]× Ω), which occurs with
Karhunen-Loève expansions and some random power series. Finally, we provide
numerical examples in which we choose specific random variables X0 and X1 and a
specific stochastic process Y (t), and then, we find the probability density function
of X(t).

Keywords: Damped pendulum random differential equation; Stochastic methods
in Physics; Probability density function; Numerical analysis.
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1. Introduction and motivation

The study of the damped pendulum differential equation with uncertainties has
been tackled using different approaches, namely, the random and the Itô approaches,
[1, pp. 96–97], [2]. In the former case, uncertainty is manifested in coefficients, ini-
tial/boundary conditions and/or forcing term via random variables and/or functions
whose sample behaviour is regular (e.g., continuous). This approach leads to the so-
called Random Differential Equations (RDEs). While in the latter case, uncertainty
is forced through an irregular stochastic process such as a Wiener process or Brow-
nian motion. In this case, Stochastic Differential Equations (SDEs) are formulated.
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SDEs are typically written in terms of stochastic differentials, but they are inter-
preted as Itô stochastic integrals. Nevertheless, if the integrand of the involved Itô
integral is deterministic, SDEs can be treated as RDEs too. This is the case when
the forcing term is just the White noise stochastic process. This particular situation
will be studied later. Throughout our contribution RDEs will be considered only.

On the one hand, in [3, p. 161] the author analyzes the damped pendulum RDE
when the forcing term is nonwhite and assuming that it is mean square continuous
and wide-sense stationary with zero mean and having a given correlation function.
On the other hand, recently in [4] the authors have provided an efficient computa-
tional method, based upon generalized hat basis functions, for solving stochastic Itô
differential equations written in their integral equivalent form. In [4], a nice analysis
of the stochastic pendulum problem is included. In both papers, a key objective
is the computation of reliable approximations for the mean and the variance of the
solution stochastic process. In [5], the author deals with the study of an oscillator
subject to a random multiplicative noise with a spectral density (or power-spectrum)
that decays as a power law at high frequencies. Although the computation of the
first two statistical moments (mean and variance) of the solution is an important
goal, in general, a more ambitious target is the computation of the exact or ap-
proximate probability distribution of the solution stochastic process to RDEs. In
particular, a major challenge is to determine the probability density function of the
solution, since from it one can obtain a full characterization of all one-dimensional
statistical moments of the solution (hence including, just as particular cases, the
mean and the variance). We point out that the computation of the probability den-
sity function of the solution stochastic process of some random ordinary and partial
differential equations describing relevant problems in Physics and Engineering has
been achieved, [6, 7, 8, 9, 10, 11, 12, 13, 14].

In this paper, we deal with the computation of the probability density function
of the random initial value problem

Ẍ(t) + 2ω0ξẊ(t) + ω2
0X(t) = Y (t), t ∈ [0, T ],

X(0) = X0,

Ẋ(0) = X1,

(1.1)

under mild conditions on the random input data X0, X1 and Y (t). Here, T > 0,
w0 6= 0, ξ 6= 0 and ξ2 < 1 (underdamped case) are constant [3, Example 7.2]. We are
assuming an underlying complete probability space (Ω,F ,P), where Ω is the sample
space, F is a σ-algebra of events and P is a probability measure. The outcomes
(i.e., the elements of Ω) will be generically denoted by ω. The initial position X0

and the initial velocity X1 are random variables and the source/forcing term Y (t)
is a stochastic process. The term X(t) is a stochastic process that solves (1.1) in
some probabilistic sense, see Theorem 1.2. When we want to make the dependence
on ω ∈ Ω explicit, we will write X0(ω), X1(ω), Y (t, ω) and X(t, ω).

Notation 1.1. In this paper, we will work with Lebesgue spaces. Given a mea-
sure space (S,A, µ), where S is an abstract set, A is the σ-algebra and µ is the
measure, we will use the notation Lp(S), 1 ≤ p < ∞, for the real-valued p-
integrable measurable mappings in the Lebesgue sense: f : S → R such that
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‖f‖Lp(S) := (
∫
S
|f |p dµ)1/p < ∞. When p = ∞, the norm in L∞(S) is given by

‖f‖L∞(S) = inf{sup{|f(x)| : x ∈ S\N} : µ(N) = 0} (this norm is the so-called “es-
sential supremum”). In this paper, we will work with the particular cases of S being
a real interval I with the real Lebesgue measure dµ = dx, S being a sample space
Ω0 with a probability measure µ = Q (we write dµ = dQ = Q(dx), where x ∈ Ω0 is
the variable of integration), and S being a product space I × Ω0 with the product
measure dµ = dx× dQ. Notice that, in the latter case, the p-norm of a measurable
map f : I × Ω0 → R is given by ‖f‖Lp(I×Ω0) = (E[

∫
I
|f(x)|p dx])1/p, where E stands

for the expectation operator with respect to the probability Q. The important case
p = 2 corresponds to the so-called mean square stochastic convergence that will
be explicitly used in this paper. The shorten notation a.e. and a.s. will stand for
“almost every” or “almost everywhere”, and “almost surely”, respectively.

One way to find a formal solution to (1.1) is by acting as in the deterministic case.
The second-order linear differential equation is equivalent to the following first-order
system of linear differential equations:(

Ẋ(t)

Ẍ(t)

)
=

(
0 1
−ω2

0 −2ω0ξ

)(
X(t)

Ẋ(t)

)
+

(
0

Y (t)

)
. (1.2)

Using the theory on deterministic first-order systems of linear differential equations,
one obtains that a formal solution to (1.1) is given by

X(t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 +

e−ω0ξt sin(ω1t)

ω1
X1 +

∫ t

0
h(t− s)Y (s) ds,

(1.3)

where

ω1 = ω0

√
1− ξ2 6= 0, h(t) =

1

ω1

e−ξω0t sin(ω1t). (1.4)

The goal of this contribution is to provide a comprehensive stochastic analysis
of the random initial value problem (1.1) via the exact or approximate computa-
tion of the probability density function of its solution stochastic process (1.3)–(1.4).
Furthermore, for the sake of completeness, we first establish the following theorem
where we show that the stochastic process (1.3)–(1.4) is a rigorous solution to (1.1) in
the two main probabilistic senses usually considered in dealing with RDEs, namely
the sample path sense and the Lp sense (see for instance [3, Appendix A] and [3,
Ch. 5–8], respectively).

Theorem 1.2. The following hold:

• Sample path solution: Suppose that the integral
∫ t

0
h(t − s)Y (s) ds in (1.3)

is interpreted as a Lebesgue integral for each ω ∈ Ω fixed (this is sometimes
referred to as SP integral, see [15, Def. A–1]). If Y has sample paths in
L1([0, T ]), then X is the unique process with absolutely continuous sample
paths that solve (1.1) for a.e. t ∈ [0, T ]. If Y has continuous sample paths,
then X is the unique process with C1([0, T ]) sample paths that solve (1.1) for
every t ∈ [0, T ].

• Lp-solution: Suppose that the integral
∫ t

0
h(t − s)Y (s) ds in (1.3) is inter-

preted as an Lp-Riemann integral (see [3, p. 100]). If Y is Lp-continuous and
X0, X1 ∈ Lp(Ω), then X is the unique Lp-solution [3, p. 118].
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Proof. The first part is a consequence of the theory on deterministic differential
equations (see Carathéodory theory in [16, pp. 28–30]). The second part follows
from [3, Th. 7.1.1]. �

We will address the following important cases regarding the random nature of the
forcing term Y (t): (1) it is Gaussian, and in particular, a White noise stochastic
process; (2) it can be represented via a Karhunen-Loève expansion, and (3) it can
be represented via a mean square random power series.

This paper is organized as follows. In Section 2, we first establish a key lemma that
will be extensively used throughout the paper. This result allows us to give useful
expressions for the probability density function, fX(t)(x), of the solution stochastic
process X(t) given by (1.3)–(1.4) in terms of the expectation operator or explicitly.
In Subsection 2.1, these expressions are also obtained in the significant case that
the forcing term Y (t) is Gaussian. This particular analysis includes the case in
which Y (t) is the White noise stochastic process that involves an Itô type SDE.
Subsection 2.2 addresses the study of the RDE (1.1) in the case that the forcing
term can be approximated by a stochastic process in L2([0, T ]×Ω). After providing
general results in this setting, the analysis is divided into two important cases: (i)
Y (t) is expressed via a Karhunen-Loève expansion (see Subsubsection 2.2.1) and
(ii) Y (t) is expressed via a mean square random power series (see Subsubsection
2.2.2). Section 3 is devoted to illustrating our findings by means of a wide range of
numerical examples. Finally, conclusions are drawn in Section 4.

2. Probability density function of the solution stochastic process

Our main goal in this paper is to establish conditions under which the solution
stochastic process X(t) given by (1.3)–(1.4) is an absolutely continuous random
variable for each t ∈ [0, T ], and then to compute its probability density function,
fX(t)(x). Physically, the existence and computation of the probability density func-
tion of X(t) means that the probability for the response to lie in a certain set A at
time t can be calculated as P(X(t) ∈ A) =

∫
A
fX(t)(x) dx. This allows computing

the main statistical properties of the response process X(t), say the mean, variance,
or any specific moment.

For the purpose of determining the probability density function of X(t), we need
the following key lemma.

Lemma 2.1. [17, pp. 266–267] Let Z1 and Z2 be two independent real random
variables defined in a common complete probability space (Ω,F ,P). Suppose that
Z1 is absolutely continuous. Then Z1 + Z2 is absolutely continuous and has density
function fZ1+Z2(u) = E[fZ1(u− Z2)].

In what follows, we will impose conditions on the initial position X0 and the
initial velocity X1, see H0H0H0 and H1H1H1, so that X(t) is an absolutely continuous random
variable, for each t. As we shall see in the subsequent development, Lemma 2.1 will
play a key role to obtain the probability density function of X(t), fX(t)(x).

Fix t ∈ [0, T ]. We will assume one of the following two hypotheses:
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H0H0H0: X0 is absolutely continuous, ξ sin(ω1t)√
1−ξ2

+ cos(ω1t) 6= 0, X0 and (X1, Y ) are

independent 1.
H1H1H1: X1 is absolutely continuous, sin(ω1t) 6= 0, X1 and (X0, Y ) are independent.

Assume H0H0H0. Then, using the Random Variable Transformation technique [18,
Lemma 4.12],

Z1 =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0

is absolutely continuous, with density function given by

fZ1(z) = fX0

 z
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣ .
Taking into account expression (1.3) and applying Lemma 2.1 with Z2 = e−ω0ξt sin(ω1t)

ω1
X1+∫ t

0
h(t− s)Y (s) ds, X(t) is absolutely continuous and

fX(t)(x)

= E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∫ t

0 h(t− s)Y (s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣ .
(2.1)

Assume H1H1H1. Proceeding as before, but now applying Lemma 2.1 with Z1 =
e−ω0ξt sin(ω1t)

ω1
X1 and Z2 = ( ξe

−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t))X0 +
∫ t

0
h(t − s)Y (s) ds,

X(t) is absolutely continuous with density function

fX(t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∫ t
0 h(t− s)Y (s) ds

e−ω0ξt sin(ω1t)
ω1


 1

e−ω0ξt| sin(ω1t)|
|ω1|

.

(2.2)

Summarizing, the following result has been established:

Proposition 2.2. The following statements hold:

• Assume H0H0H0, then the probability density function of the solution stochastic
process (1.3)–(1.4) to the random initial value problem (1.1) is given by (2.1).
• Assume H1H1H1, then the probability density function of the solution stochastic

process (1.3)–(1.4) to the random initial value problem (1.1) is given by (2.2).

1 X0 and (X1, Y ) independent means that, for any points t1, . . . , tm ∈ [0, T ], m ≥ 1, the random
variable X0 and the random vector (X1, Y (t1), . . . , Y (tm)) are independent.
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In practice, the problem is to know the probability law of I(t) =
∫ t

0
h(t−s)Y (s) ds.

If we know the law PI(t) = P ◦ I(t)−1 of I(t), then (2.1) becomes

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
R2

fX0

 x− e−ω0ξt sin(ω1t)
ω1

x1 − y
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

P(X1,I(t))(dx1, dy),

and (2.2) becomes

fX(t)(x)

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

∫
R2

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 − y

e−ω0ξt sin(ω1t)
ω1

P(X0,I(t))(dx0, dy).

As a consequence, both expressions for the probability density function fX(t)(x) can
be computed. In fact, one does not need to compute those integrals analytically,
since by sampling from X0, X1 and I(t), we can approximate the expectations in
(2.1) and (2.2) as accurate as desired by the Law of Large Numbers (Monte Carlo
simulations).

Our objective in the following subsections is to analyze important cases in which
(2.1) and (2.2) can be computed, or at least approximated, in practice. More specif-
ically, the subsequent analysis will be split into two cases, depending on the random
nature of Y (t). First, in Subsection 2.1, we will deal with Y (t) being a Gaussian sto-
chastic process. This case will include the damped pendulum stochastic differential
equation of Itô type in Subsubsection 2.1.1. Second, in Subsection 2.2, we will deal
with a forcing term Y (t) that can be approximated in L2([0, T ] × Ω). This second
case will include two significant situations: Y (t) is expressed as a Karhunen-Loève
expansion, in Subsubsection 2.2.1, and Y (t) is expressed as a random power series,
in Subsubsection 2.2.2.

2.1. Gaussian forcing term. Suppose that Y (t) is a Gaussian stochastic process.

Then the process I(t) = {
∫ t

0
h(t− s)Y (s) ds : t ∈ [0, T ]} is Gaussian. Indeed, if the

integral is interpreted as a Lebesgue integral for each fixed ω ∈ Ω, then this fact
follows from [19, Lemma 2.3]; if the integral is an Lp-Riemann integral, p ≥ 2, then
the Gaussianity follows from [3, Th. 4.6.4]. Moreover, its mean and variance are
given by

E[I(t)] =

∫ t

0

h(t− s)E[Y (s)] ds =: µI(t) (2.3)

and

V[I(t)] =

∫ t

0

∫ t

0

h(t− s1)h(t− s2)Cov[Y (s1), Y (s2)] ds1 ds2 =: σI(t)
2, (2.4)

respectively. Thus, I(t) ∼ Normal(µI(t), σI(t)
2). From this, if H0H0H0 holds and, more-

over, the random variable X1 and the stochastic process Y are independent (which
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implies the independence of X1 and I(t), i.e., P(X1,I(t)) = PX1×PI(t)), we can compute
(2.1) as

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
R

∫
R
fX0

 x− e−ω0ξt sin(ω1t)
ω1

x1 − y
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

 fNormal(µI(t),σI(t)2)(y) dy PX1(dx1).

(2.5)

If H1H1H1 holds and, moreover, the random variable X0 and the stochastic process Y are
independent, (2.2) is written as

fX(t)(x)

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

∫
R

∫
R
fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 − y

e−ω0ξt sin(ω1t)
ω1


·fNormal(µI(t),σI(t)2)(y) dy PX0(dx0). (2.6)

On the other hand, bearing in mind expressions (1.3)–(1.4) and Lemma 2.1, if
I(t) ∼ Normal(µI(t), σI(t)

2) and Y is independent of (X0, X1), butH0H0H0 andH1H1H1 do not
hold, then X(t) remains being absolutely continuous. By Lemma 2.1 with Z1 = I(t)

and Z2 = ( ξe
−ω0ξt sin(ω1t)√

1−ξ2
+e−ω0ξt cos(ω1t))X0 + e−ω0ξt sin(ω1t)

ω1
X1, the probability density

function of X(t) can be expressed as

fX(t)(x)

= E

[
fNormal(µI(t),σI(t)2)

(
x−

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

e−ω0ξt sin(ω1t)

ω1
X1

)]

=

∫
R2

fNormal(µI(t),σI(t)2)

(
x−

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
x0 −

e−ω0ξt sin(ω1t)

ω1
x1

)
·P(X0,X1)(dx0, dx1). (2.7)

Observe that, in order to derive expression (2.7), we have not needed that X0 and X1

be absolutely continuous random variables, respectively. This fact is a consequence
of the key Lemma 2.1.

Below, we summarize the results previously established in the important case that
the forcing term Y = Y (t) is a Gaussian stochastic process:

Proposition 2.3. Let us consider the random initial value problem (1.1), where
Y = Y (t) is a Gaussian stochastic process. The following statements hold:

• Assume H0H0H0 and that X1 and Y are independent, then the probability density
function of the solution stochastic process (1.3)–(1.4) is given by (2.5).
• Assume H1H1H1 and that X0 and Y are independent, then the probability density

function of the solution stochastic process (1.3)–(1.4) is given by (2.6).
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• Assume that Y and (X0, X1) are independent, then the probability density
function of the solution stochastic process (1.3)–(1.4) is given by (2.7).

2.1.1. Damped pendulum stochastic differential equation of Itô type. Let the forcing
term Y (t) be a White noise process: Y is a Gaussian process, E[Y (t)] = 0 and
E[Y (t)Y (s)] = δ0(t − s). In this case, using formulas (2.3) and (2.4), µI(t) = 0

and σI(t)
2 =

∫ t
0
h(s)2 ds, therefore I(t) ∼ Normal(0,

∫ t
0
h(s)2 ds). Thus, if Y is

independent of (X0, X1) and (X0, X1) has any probability distribution, then the
density function of the solution stochastic process X(t) is given by (2.7). For the
sake of completeness, we state this result in the following corollary:

Corollary 2.4. Let us consider the random initial value problem (1.1), where Y =
Y (t) is a White noise stochastic process. Assume that Y and (X0, X1) are inde-
pendent. Then, the probability density function of the solution stochastic process
(1.3)–(1.4) is given by (2.7).

Notice that, if Y (t) is a White noise process, then the RDE problem (1.1) becomes
a SDE of Itô type: if we denote

Z(t) =

(
X(t)

Ẋ(t)

)
, Z0 =

(
X0

X1

)
, A =

(
0 1
−ω2

0 −2ω0ξ

)
, b =

(
0
1

)
,

and Y (t) = Ḃ(t), where B is a standard Brownian motion [18, Def. 5.11], then, from
(1.2), we obtain the following SDE of Itô type:{

dZ(t) = AZ(t) dt+ b dB(t), t ∈ [0, T ],

Z(0) = Z0.

The solution stochastic process X(t) of (1.1) corresponds to the first component of
Z(t):

X(t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 +

e−ω0ξt sin(ω1t)

ω1
X1 +

∫ t

0
h(t− s) dB(s),

where the integral is understood in the Itô sense.

2.2. Forcing term that can be approximated in L2([0, T ]×Ω). In this subsec-
tion, we assume that Y ∈ L2([0, T ]× Ω) and that there exists a sequence {YN}∞N=1

of stochastic processes in L2([0, T ] × Ω) that converges to Y in the topology of
L2([0, T ] × Ω). This occurs, as we will see, with Karhunen-Loève expansions and
some random power series. The first case will be studied in Subsubsection 2.2.1,
whereas the second case will be analyzed in Subsubsection 2.2.2. Before considering
these two important cases, in this subsection we will establish general results in
order to determine computable expressions for the probability density function of
the solution stochastic process (1.3)–(1.4) to the random initial value problem (1.1)
(see Theorem 2.5 and Theorem 2.7 later).

From the truncation YN of the forcing term Y , we consider a truncation of the
solution stochastic process (1.3):

XN (t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0+

e−ω0ξt sin(ω1t)

ω1
X1+

∫ t

0
h(t−s)YN (s) ds,

(2.8)
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where the integral is understood in the Lebesgue sense. Notice that XN(t)→ X(t)
as N → ∞ in L2(Ω), for each t ∈ [0, T ]. Indeed, since YN → Y as N → ∞ in
L2([0, T ]×Ω) and h is bounded on [0, T ] (see definition of h in (1.4)), we have that
h(t−s)YN(s)→ h(t−s)Y (s) as N →∞ in L2([0, t]×Ω, ds×dP), for each t ∈ [0, T ],
so by Cauchy-Schwarz inequality,

E[|XN (t)−X(t)|2] = E

[∣∣∣∣∫ t

0
h(t− s)(YN (s)− Y (s)) ds

∣∣∣∣2
]

≤ T‖h‖2L∞([0,T ])‖YN − Y ‖
2
L2([0,T ]×Ω)

N→∞−→ 0. (2.9)

This shows that XN(t) → X(t) as N → ∞ in L2(Ω), for each t ∈ [0, T ]. This
is important, as the main statistical information of X(t), say the expectation and
variance, can be approximated by using the following key properties of mean square
convergence: limN→∞ E[XN(t)] = E[X(t)] and limN→∞V[XN(t)] = V[X(t)] (see [3,
Th. 4.2.1, Th. 4.3.1]).

We will assume that H0H0H0 entails that X0 is independent of (X1, Y1, . . . , YN) for
all N ≥ 1 (analogously, H1H1H1 implies that X1 is independent of (X0, Y1, . . . , YN) for
all N ≥ 1). Later on, in the particular cases of Karhunen-Loève expansions and
random power series, we will prove this assumption in Remark 2.8 and Remark 2.12,
respectively.

Under H0H0H0, XN(t) is absolutely continuous with density function given by

fXN (t)(x) = E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∫ t

0 h(t− s)YN (s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)




· 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣ . (2.10)

Under H1H1H1, XN(t) is absolutely continuous with density function given by

fXN (t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∫ t
0 h(t− s)YN (s) ds

e−ω0ξt sin(ω1t)
ω1


 1

e−ω0ξt| sin(ω1t)|
|ω1|

.

(2.11)

Theorem 2.5. The following statements for the probability density function, fX(t)(x),
of the solution stochastic process (1.3)–(1.4) to the random initial value problem (1.1)
hold:

• Assume H0H0H0. If fX0 is continuous on R and fX0(x) ≤ a + bx2, for certain
a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and
fX(t)(x) defined by (2.10) and (2.1), respectively.
• Assume H1H1H1. If fX1 is continuous on R and fX1(x) ≤ a + bx2, for certain
a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and
fX(t)(x) defined by (2.11) and (2.2), respectively.
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Proof. We will prove the first part, as the second one is analogous. Thus, let us
assume H0H0H0, fX0 continuous on R and fX0(x) ≤ a+ bx2.

Let

UN =
x− e−ω0ξt sin(ω1t)

ω1
X1 −

∫ t
0
h(t− s)YN(s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
(2.12)

and

U =
x− e−ω0ξt sin(ω1t)

ω1
X1 −

∫ t
0
h(t− s)Y (s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
. (2.13)

Since YN → Y as N → ∞ in L2([0, T ] × Ω), and by (2.9), we derive that UN → U
as N →∞ in L2(Ω).

By (2.10), to conclude that limN→∞ fXN (t)(x) = fX(t)(x), it suffices to show
fX0(UN) → fX0(U) as N → ∞ in L1(Ω) (because convergence in L1(Ω) implies
convergence of expectations). This will follow if we show that, for every subse-
quence {UNk}∞k=1 of {UN}∞N=1, there exists another subsequence {UNkl}

∞
l=1 such that

fX0(UNkl )→ fX0(U) as l→∞ in L1(Ω) 2. Thus, fix a subsequence {UNk}∞k=1. Since

UNk → U as k →∞ in L2(Ω), by [20, Th. 4.9] there exists a subsequence {UNkl}
∞
l=1

and a random variable V ∈ L2(Ω) such that UNkl (ω) → U(ω) as l → ∞ a.s. and

|UNkl (ω)| ≤ V (ω) a.s., for all l ≥ 1. As fX0 is continuous on R, fX0(UNkl (ω)) →
fX0(U(ω)) as l→∞ a.s. Now, fX0(UNkl (ω)) ≤ a+bUNkl (ω)2 ≤ a+bV (ω)2 ∈ L1(Ω).

By the Dominated Convergence Theorem [21, result 11.32, p. 321], fX0(UNkl ) →
fX0(U) as l→∞ in L1(Ω), as wanted. �

Remark 2.6. The conditions fXi, i = 0, 1, continuous on R and fXi(x) ≤ a+ bx2,
are the usual hypotheses imposed so that the Nemytskii operator V 7→ fXi(V ) is
continuous from L2(Ω) to L1(Ω), [22, pp. 15–17], [23, pp. 154–163]. Essentially,
these hypotheses are mathematical restrictions on the probabilistic features of the
initial position and/or initial velocity that permit proving that the density functions
of the truncations XN(t) tend to the density function of X(t) as N →∞.

From a practical standpoint, most of the probability density functions, like Beta
(with shape parameters α, β ≥ 1), Gaussian, Gamma (with shape parameter α ≥ 1
and rate parameter β > 0), etc., are bounded, so it is enough to take the constant
a > 0 big enough in order that the condition fXi(x) ≤ a + bx2, for i = 0 or i = 1,
holds. Nevertheless, in order to further enlarge the class of random variables for
which our theoretical findings can be applied, below we generalize Theorem 2.5 by
assuming that the probability density functions are almost everywhere continuous
rather than continuous. Recall that a real function is said to be almost everywhere
continuous if it is continuous except on a set of Lebesgue measure zero. For example,

2Let {an}∞n=1 be a sequence and a be an element in a topological space. If for every subsequence
{ank}∞k=1, there exists a subsequence {ankl }

∞
l=1 such that ankl → a as l → ∞, then an → a as

n→∞. Indeed, if an does not tend to a, there exists a neighbourhood A of a and a subsequence
{ank}∞k=1 such that ank /∈ A, for all k ≥ 1. By hypothesis, there is a subsequence {ankl }

∞
l=1 that

converges to a. But this contradicts the fact that ankl /∈ A, for each l ≥ 1.
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the uniform, exponential, truncated Gaussian, etc. distributions possess almost
everywhere continuous density functions.

In Section 3, the application of both Theorem 2.5 and Theorem 2.7 will be illus-
trated.

Theorem 2.7. The following statements for the probability density function, fX(t)(x),
of the solution stochastic process (1.3)–(1.4) to the random initial value problem (1.1)
hold:

• Assume H0H0H0. Suppose that fX0 is a.e. continuous on R and fX0(x) ≤ a +
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds, then
limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and fX(x) defined
by (2.10) and (2.1), respectively.
• Assume H1H1H1. Suppose that fX1 is a.e. continuous on R and fX1(x) ≤ a +
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds, then
limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and fX(x) defined
by (2.11) and (2.2), respectively.

Proof. We show the first part, as the second one is analogous. As in the proof of
Theorem 2.5, consider UN and U defined by (2.12) and (2.13), respectively. Recall
that UN → U as N → ∞ in L2(Ω). Since H1H1H1 holds, by Lemma 2.1 U is absolutely
continuous. This, together with the fact that fX0 is a.e. continuous, implies that
the probability that U belongs to the discontinuity set of fX0 is 0. Thereby, by the
Continuous Mapping Theorem [24, p. 7, Th. 2.3], fX0(UNkl (ω)) → fX0(U(ω)) a.s.,
as l→∞. Therefore, the proof from Theorem 2.5 works. �

2.2.1. Forcing term expressed as a Karhunen-Loève expansion. Let Y ∈ L2([0, T ]×
Ω). Consider its covariance integral operator

C : L2([0, T ])→ L2([0, T ]), Cf(t) =

∫ T

0

Cov[Y (t), Y (s)]f(s) ds. (2.14)

This operator is linear, compact, self-adjoint and nonnegative-definite [18, Th. 1.68,
Lemma 1.72, Lemma 1.77]. Let J ∈ N ∪ {∞} be the dimension of the image of C.
By Hilbert-Schmidt Theorem [18, Th. 1.73], the nonzero eigenvalues of C, repeated
according to their multiplicity, form a sequence {νj}Jj=1 (we will not assume any
particular ordering of the sequence of nonzero eigenvalues). Moreover, the sequence
{φj}∞j=1 of eigenfunctions of C is an orthonormal basis of L2([0, T ]). Here, φj is
associated to νj, and if j > J , then φj is associated to 0.

By Karhunen-Loève Theorem [18, Th. 5.28], the process Y = {Y (t) : t ∈ [0, T ]}
can be expressed as

Y (t) = µY (t) +
J∑
j=1

√
νjφj(t)ξj, (2.15)

where µY (t) = E[Y (t)] and {ξj}Jj=1 is a sequence of random variables with zero ex-

pectation, unit variance and pairwise uncorrelated. These random variables {ξj}Jj=1

have a closed expression:

ξj =
1
√
νj

∫ T

0

(Y (s)− µY (s))φj(s) ds, j = 1, . . . , J. (2.16)
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Moreover, if Y = {Y (t) : t ∈ [0, T ]} is a Gaussian process, then {ξj}Jj=1 are inde-

pendent and Gaussian. If J =∞, the series (2.15) converges in L2([0, T ]× Ω).
Notice that

I(t) =

∫ t

0

h(t−s)Y (s) ds =

∫ t

0

h(t−s)µY (s) ds+
J∑
j=1

√
νj

(∫ t

0

h(t− s)φj(s) ds

)
ξj,

(2.17)
where, if J =∞, the series is understood in L2([0, T ]× Ω).

Remark 2.8. If H0H0H0 holds, then the random inputs X0 and Y are independent,
i.e., X0 and (Y (t1), . . . , Y (tm)) are independent, for each t1, . . . , tm ∈ [0, T ], m ≥ 1.
By (2.16), X0 and (ξ1, . . . , ξJ) are independent. Indeed, as it is proved in [19,
Lemma 2.3],

ξj ∈

{
1
√
νj

m∑
k=1

λk(Y (tk)− µY (tk))φj(tk) : λk ∈ R, tk ∈ [0, 1], m ≥ 1

}L2(Ω)

(the overline stands for the closure). Since X0 is independent to each sum

1
√
νj

m∑
k=1

λk(Y (tk)− µY (tk))φj(tk),

we derive that (ξ1, . . . , ξJ) is a limit in L2(Ω;RJ) of random vectors that are inde-
pendent to X0, which implies the independence of X0 and (ξ1, . . . , ξJ).

An analogous result is satisfied if H1H1H1 holds, instead of H0H0H0. This concludes the
remark.

Suppose that J <∞. Assume that H0H0H0 holds, that we know the probability law of
the random vector (ξ1, . . . , ξJ) and that X1 and (ξ1, . . . , ξJ) are independent. Then
(2.1) becomes

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
RJ

∫
R
fX0

x− e−ω0ξt sin(ω1t)
ω1

x1 −
∫ t
0
h(t− s)µY (s) ds−

∑J
j=1

√
νj

(∫ t
0
h(t− s)φj(s) ds

)
ξj

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


·PX1(dx1)P(ξ1,...,ξJ )(dξ1, . . . ,dξJ). (2.18)

If H1H1H1 holds, and X0 and (ξ1, . . . , ξJ) are independent, then (2.2) becomes

fX(t)(x) =
1

e−ω0ξt| sin(ω1t)|
|ω1|

·
∫
RJ

∫
R
fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 −

∫ t
0 h(t− s)µY (s) ds−

∑J
j=1
√
νj

(∫ t
0 h(t− s)φj(s) ds

)
ξj

e−ω0ξt sin(ω1t)
ω1


·PX0

(dx0)P(ξ1,...,ξJ )
(dξ1, . . . ,dξJ ). (2.19)

Therefore, both densities are computable in practice.
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If J =∞, for each N ≥ 1 we may define the truncations

YN(t) = µY (t) +
N∑
j=1

√
νjφj(t)ξj. (2.20)

Thus, we have a sequence {YN}∞N=1 that converges to Y in L2([0, T ]×Ω), according
to Karhunen-Loève Theorem [18, Th. 5.28]. By what we have just seen, the density
function of the truncation XN given by (2.8) is computable, as in (2.18) and (2.19)
by taking J = N . If the assumptions of Theorem 2.5 or Theorem 2.7 hold, then we
can approximate fX(t) by using limN→∞ fXN (t)(x) = fX(t)(x).

In fact, a more general result than Theorem 2.7 can be established in this setting:

Theorem 2.9. The following statements for the probability density function, fX(t)(x),
of the solution stochastic process (1.3)–(1.4) to the random initial value problem (1.1)
hold:

• Assume H0H0H0. Suppose that fX0 is a.e. continuous on R and fX0(x) ≤ a+ bx2

for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds or some ξj
is absolutely continuous, independent of (X1, ξ1, . . . , ξj−1, ξj+1, . . .) and with∫ t

0
h(t − s)φj(s) ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R,

being fXN (t)(x) and fX(x) defined by (2.10) and (2.1), respectively.
• Assume H1H1H1. Suppose that fX1 is a.e. continuous on R and fX1(x) ≤ a+ bx2

for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or some ξj
is absolutely continuous, independent of (X0, ξ1, . . . , ξj−1, ξj+1, . . .) and with∫ t

0
h(t − s)φj(s) ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R,

being fXN (t)(x) and fX(x) defined by (2.11) and (2.2), respectively.

Proof. We prove the first part, as the second one is analogous. As in the proof
of Theorem 2.5, consider UN and U defined by (2.12) and (2.13), respectively,
where YN is defined by (2.20). If some ξj is absolutely continuous, independent

of (X1, ξ1, . . . , ξj−1, ξj+1, . . .) and with
∫ t

0
h(t − s)φj(s) ds 6= 0, by Lemma 2.1 U is

absolutely continuous. Thereby, the proof of Theorem 2.7 is applicable. �

To provide a full analysis, it is interesting to observe that, in this setting of
Karhunen-Loève expansions, sometimes H0H0H0 and H1H1H1 do not need to be satisfied (so
both X0 and X1 may not be absolutely continuous). Consider the hypothesis

H2H2H2: ξ1 is absolutely continuous,
∫ t

0
h(t−s)φ1(s) ds 6= 0, ξ1 and (X0, X1, ξ2, . . . , ξj)

are independent, for each j, 2 ≤ j ≤ J 3(if ξ1 does not satisfyH2H2H2 but another
ξj instead, j 6= 1, then we may reorder the eigenvalues and eigenfunctions so
that ξ1 becomes ξj).

The random variable

Z1 =
√
ν1

(∫ t

0

h(t− s)φ1(s) ds

)
ξ1

3If J <∞, this independence is reduced to ξ1 and (X0, X1, ξ2, . . . , ξJ) be independent.
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is absolutely continuous, with density function

fZ1(z) = fξ1

 z
√
ν1

(∫ t
0
h(t− s)φ1(s) ds

)
 1
√
ν1

∣∣∣∫ t0 h(t− s)φ1(s) ds
∣∣∣ ,

as a consequence of the Random Variable Transformation technique. By (1.3), (2.17)
and Lemma 2.1, the solution X(t) is absolutely continuous, with density function
given by

fX(t)(x) =
1

√
ν1

∣∣∣∫ t0 h(t− s)φ1(s) ds
∣∣∣

·E

[
fξ1

(z − ( ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

)
X0 − e−ω0ξt sin(ω1t)

ω1
X1

√
ν1

(∫ t
0 h(t− s)φ1(s) ds

)
+
−
∫ t

0 h(t− s)µY (s) ds−
∑J

j=2
√
νj

(∫ t
0 h(t− s)φj(s) ds

)
ξj

√
ν1

(∫ t
0 h(t− s)φ1(s) ds

) )]
. (2.21)

If J <∞, we may compute this explicitly. Otherwise, if J =∞, we need to consider
the truncation XN(t) given by (2.8), where YN is defined in (2.20). With analogous
proofs to those of Theorem 2.5 and Theorem 2.7, one arrives at the following results:

Theorem 2.10. Assume H2H2H2. If fξ1 is continuous on R and fξ1(x) ≤ a + bx2, for
certain a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, where fXN (t) is
given by (2.21) with J = N and fX(t)(x) is given by (2.21) with J =∞.

Theorem 2.11. Assume H2H2H2. Suppose that fξ1 is a.e. continuous on R and fξ1(x) ≤
a+ bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or H1H1H1 holds or
some other ξj (j 6= 1) satisfies H2H2H2, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R,
where fXN (t) is given by (2.21) with J = N and fX(t)(x) is given by (2.21) with
J =∞.

2.2.2. Forcing term expressed as a random power series. Sometimes, one may work
with a forcing term Y (t) that is an analytic stochastic process in the mean square
sense [3, p. 99]: Y (t) =

∑∞
n=0 Ynt

n, where the sum converges in L2(Ω), for each
t ∈ [0, T ]. We will assume, in addition, that the convergence of the series holds in

L2([0, T ] × Ω). Thus, if we define the partial sums {YN(t) =
∑N

n=0 Ynt
n}∞N=0, then

they converge to Y in L2([0, T ]× Ω).

Remark 2.12. If H0H0H0 holds, then X0 and Y are independent. Let us see that X0

and (Y0, . . . , YN) are independent, for 0 ≤ N <∞.
We have Yn = Y (n)(0)/n!, where Y (n) is the n-th mean square derivative of Y (t)

[3, Ch. 4]. Thus, if we prove that X0 and

(Y (t01), . . . , Y (t0m0
), Y ′(t11), . . . , Y ′(t1m1

), . . . , Y (N)(tN1 ), . . . , Y (N)(tNmN ))

are independent, for each t01, . . . , t
0
m0
, t11, . . . , t

1
m1
, . . . , tN1 , . . . , t

N
mN
∈ [0, T ], m0, . . . ,mN≥

1, then X0 and (Y0, . . . , YN) will be independent, as wanted.
We prove this assertion by induction on N ≥ 0. For N = 0, we already know that

X0 and (Y (t01), . . . , Y (t0m0
)) are independent for each t01, . . . , t

0
m0
∈ [0, T ], m0 ≥ 1,
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because of the independence of X0 and Y . We assume the assertion true for N − 1
and we prove it for N . Write

(Y (t01), . . . , Y (t0m0
), . . . , Y (N−1)(tN−1

1 ), . . . , Y (N−1)(tN−1
mN−1

), Y (N)(tN1 ), . . . , Y (N)(tNmN ))

= lim
h→0

(
Y (t01), . . . , Y (t0m0

), . . . , Y (N−1)(tN−1
1 ), . . . , Y (N−1)(tN−1

mN−1
),

Y (N−1)(tN1 + h)− Y (N−1)(tN1 )

h
, . . . ,

Y (N−1)(tNmN + h)− Y (N−1)(tNmN )

h

)
,

where the limit is understood in L2(Ω;Rm0+m1+...+mN ). By induction, X0 is inde-
pendent of each random vector(

Y (t01), . . . , Y (t0m0
), . . . , Y (N−1)(tN−1

1 ), . . . , Y (N−1)(tN−1
mN−1

),

Y (N−1)(tN1 + h)− Y (N−1)(tN1 )

h
, . . . ,

Y (N−1)(tNmN + h)− Y (N−1)(tNmN )

h

)
.

This implies that X0 and

(Y (t01), . . . , Y (t0m0
), Y ′(t11), . . . , Y ′(t1m1

), . . . , Y (N)(tN1 ), . . . , Y (N)(tNmN ))

are independent, as wanted.
An analogous result is satisfied if H1H1H1 holds, instead of H0H0H0. This concludes the

remark.

IfH0H0H0 holds, we know the probability law of the random vector (Y0, . . . , YN), andX1

and (Y0, . . . , YN) are independent, then the density function of XN(t) is computable:
(2.10) becomes

fXN (t)(x) = E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∑N

n=0 Yn
∫ t

0 h(t− s)sn ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)




· 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣
=

1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
RN+1

∫
R
fX0

x− e−ω0ξt sin(ω1t)
ω1

x1 −
∑N

n=0 yn
∫ t

0 h(t− s)sn ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


·PX1(dx1)P(Y0,...,YN )(dy0, . . . ,dyN ).
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If H1H1H1 holds, and X0 and (Y0, . . . , YN) are independent, (2.11) becomes

fXN (t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∑N
n=0 Yn

∫ t
0
h(t− s)sn ds

e−ω0ξt sin(ω1t)
ω1


 1

e−ω0ξt| sin(ω1t)|
|ω1|

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

∫
RN+1

∫
R
fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 −

∑N
n=0 yn

∫ t
0
h(t− s)sn ds

e−ω0ξt sin(ω1t)
ω1


·PX0

(dx0)P(Y0,...,YN )(dy0, . . . ,dyN ).

If the assumptions of Theorem 2.5 or Theorem 2.7 hold, then we can approximate
fX(t) by using limN→∞ fXN (t)(x) = fX(t)(x).

In fact, a more general result than Theorem 2.7 can be proved in this setting:

Theorem 2.13. The following statements hold:

• Assume H0H0H0. Suppose that fX0 is a.e. continuous on R and fX0(x) ≤ a+ bx2

for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds or some Yn
is absolutely continuous, independent of (X1, Y0, . . . , Yn−1, Yn+1, . . .) and with∫ t

0
h(t − s)sn ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being

fXN (t)(x) and fX(x) defined by (2.10) and (2.1), respectively.
• Assume H1H1H1. Suppose that fX1 is a.e. continuous on R and fX1(x) ≤ a+ bx2

for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or some Yn
is absolutely continuous, independent of (X0, Y0, . . . , Yn−1, Yn+1, . . .) and with∫ t

0
h(t − s)sn ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being

fXN (t)(x) and fX(x) defined by (2.11) and (2.2), respectively.

Proof. Analogous to Theorem 2.9. �

If H0H0H0 and H1H1H1 do not hold, we can consider the hypothesis

H3H3H3: There is an n0 ≥ 0 such that Yn0 is absolutely continuous,
∫ t

0
h(t−s)sn0 ds 6=

0, Yn0 and (X0, X1, Y0, . . . , Yn0−1, Yn0+1, . . . , YN) are independent, for each
N ≥ 0.

In such a case, the random variable Z1 = Yn0

∫ t
0
h(t− s)sn0 ds is absolutely contin-

uous, with density function

fZ1(z) = fYn0

(
z∫ t

0
h(t− s)sn0 ds

)
1∣∣∣∫ t0 h(t− s)sn0 ds

∣∣∣ .
By Lemma 2.1, for N ≥ n0,

fXN (t)(x) =
1∣∣∣∫ t0 h(t− s)sn0 ds

∣∣∣
·E

[
fYn0

(x− ( ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

)
X0 − e−ω0ξt sin(ω1t)

ω1
X1 −

∑N
n6=n0

Yn
∫ t

0 h(t− s)sn ds∫ t
0 h(t− s)sn0 ds

)]
.

(2.22)
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With analogous proofs to those of Theorem 2.5 and Theorem 2.7, one arrives at the
following results:

Theorem 2.14. Assume H3H3H3. If fYn0 is continuous on R and fYn0 (x) ≤ a + bx2,
for certain a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x)
given by (2.22) and fX(t)(x) given by (2.22) with N =∞.

Theorem 2.15. Assume H3H3H3. Suppose that fYn0 is a.e. continuous on R and

fYn0 (x) ≤ a+bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or H1H1H1

holds or some other Yn, n 6= n0, satisfies H3H3H3, then limN→∞ fXN (t)(x) = fX(t)(x) for
all x ∈ R, being fXN (t)(x) given by (2.22) and fX(t)(x) given by (2.22) with N =∞.

Remark 2.16. Hypotheses H0H0H0, H1H1H1, H2H2H2 and H3H3H3 are not necessary to have X(t)
absolutely continuous. Indeed, by [25], there exists a singular continuous measure λ
such that λ∗λ is absolutely continuous (here ∗ stands for the convolution operator).
Fix t̄ ∈ [0, T ] such that

ξ sin(ω1t̄)√
1− ξ2

+ cos(ω1t̄) 6= 0, sin(ω1t̄) 6= 0.

Take a pair of independent random variables X0 and X1 such that(
ξe−ω0ξt̄ sin(ω1t̄)√

1− ξ2
+ e−ω0ξt̄ cos(ω1t̄)

)
X0 ∼ λ,

e−ω0ξt̄ sin(ω1t̄)

ω1

X1 ∼ λ.

Let Y = 0. Then the solution stochastic process X(t̄) has distribution λ ∗ λ, which
is absolutely continuous. However, H0H0H0 and H1H1H1 do not hold, because X0 and X1 are
not absolutely continuous, respectively. Thus, we have a pathological example. In
these cases, at least to our knowledge, it is not possible to know the probability
density function of the solution stochastic process.

3. Applications

In this section, we showcase the proposed approach on several examples where
we apply our theoretical findings to particular random problems (1.1). The exam-
ples will cover a wide variety of situations which are of mathematical and physical
interest. The main objective will be to test the methodology reported in this paper.

For the sake of clarity, throughout Examples 3.3–3.7 we will fix the constants in
(1.1): we choose the upper time T = 1, the damping ratio ξ = 1/2 and the natural

frequency ω0 = π/2. Then, according to (1.4), ω1 = ω0

√
1− ξ2 = π

√
3/4. Notice

that, as ω1 ∈ (0, π/2), we have sin(ω1t) > 0 and cos(ω1t) > 0, for t ∈ (0, 1] = (0, T ].
Then

ξ sin(ω1t)√
1− ξ2

+ cos(ω1t) > 0

on [0, 1] and h(t) > 0 on (0, 1]. We will work with independent X0, X1 and Y .
Physically, the initial position, the initial velocity and the harmonic excitation are
independent. On the other hand, to ensure the inequality f(x) ≤ a+bx2 for a specific
density f , we will take f bounded. Notice that this boundedness restriction covers
any possible situation in practice, as a random variable with an unbounded density
function may be truncated to achieve the boundedness condition but maintaining
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its main probabilistic features [26]. Moreover, truncation does not affect almost
everywhere continuity of the density, which has been a very important hypothesis
in some of the previous theorems.

Finally, to obtain/plot density functions given by an expectation expression ((2.1),
(2.2), (2.7), (2.10), etc.), we will use Monte Carlo simulations.

Example 3.1. In this example we determine the probability density function of
the response of a pendulum differential equation model to earthquake type random
disturbances. Reference [27] justifies the use of equation (1.1) to model the response.
Soong [3, Example 7.3] provides a summary of the results obtained in [27] and
focuses on the mathematical properties of the random differential equation model, by
computing the expectation and covariances, but not the probability density function.
Reference [28] is a continuation of the investigation from [27]. On our part, our
method to find the probability density function of the response will consist in a
direct application of Lemma 2.1.

In [27, 28], [3, Example 7.3], a simple structure approximating a linear one-story
building is considered. The goal is to analyze the response of this structure to an
earthquake type random disturbance with ground acceleration

Y (t) =
n∑
j=1

taje
−αjt cos(wjt+ θj), t ≥ 0.

It is assumed that aj, αj and wj are constant, while θ1, . . . , θn are independent ran-
dom variables with Uniform(0, 2π) distribution. The term Y (t) has this particular
form because it takes the usual appearance of earthquake accelerogram records when
n is sufficiently large. Horizontal displacement of the roof of the structure is assumed
due to ground motion. Let X(t) be the relative horizontal displacement of the roof
with respect to the ground (see [3] for further detailed physical justification). We
assume that the roof is at rest at t = 0: X(0) = X0 = 0 and Ẋ(0) = X1 = 0.
By [27], the relative displacement of the roof, X(t), is governed by the pendulum
differential equation

Ẍ(t) + 2ω0ξẊ(t) + ω2
0X(t) = −Y (t).

The solution of this model is given by

X(t) = −
∫ t

0

h(t− s)Y (s) ds,

where the impulse response h is given by (1.4).
In order to find the probability density function of X(t), we rewrite Y (t) as follows:

Y (t) = ta1e−α1t (cos(w1t) cos(θ1)− sin(w1t) sin(θ1)) +
n∑
j=2

taje
−αjt cos(wjt+ θj).

Then X(t) can be written as X(t) = Z1 + Z2, where

Z1 =

(
−
∫ t

0
h(t− s)sa1e−α1s cos(w1s) ds

)
cos(θ1)+

(∫ t

0
h(t− s)sa1e−α1s sin(w1s) ds

)
sin(θ1),
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Z2 = −
n∑
j=2

∫ t

0

h(t− s)saje−αjs cos(wjs+ θj) ds.

Since θ1, . . . , θn are independent, for each fixed t ≥ 0 the random variables Z1 and
Z2 are also independent, and Z1 is absolutely continuous, whose density function
fZ1 can be obtained numerically by using that it is a transformation of θ1. By
Lemma 2.1, the response X(t) is absolutely continuous and its density function is
given by fX(t)(x) = E[fZ1(x−Z2)]. This expectation can be approximated by means
of Monte Carlo simulations.

In order to obtain a graphical representation of the probability density function
of X(t), let us fix the following values for the constants: ω0 = 20, ξ = 0.05, n = 20,
αi = 0.333, ai = 0.5 and wi = 15, for i = 1, . . . , 20. In Figure 1, we plot fX(t)(x) for
t = 0.1.

-0.0005 0.0005
x

500

1000

1500

2000

f

Figure 1. Density function fX(t)(x) for t = 0.1 in Example 3.1.

Example 3.2. White noise processes are of great interest in random vibrations.
The probabilistic characteristics of dynamical systems with white noise inputs have
been examined [29, 30, 31]. In this example, we consider the response of a mass-
spring linear oscillator to a white noise random excitation, with governing equation
Ẍ(t) + ω2

0X(t) = Y (t), see [3, Example 7.1]. This is a particular case of (1.1)
with damping ratio ξ = 0. The source term Y (t) is the formal derivative of a
Brownian motion process, therefore the initial value problem (1.1) takes the form of
a stochastic differential equation of Itô type. It is assumed that X0, X1 and Y are
independent.

As discussed in Subsection 2.1, the probability density function of the response
X(t) is expressed by (2.7), being µI(t) = 0 and σI(t)

2 =
∫ t

0
h(s)2 ds, where the

impulse response h is given by (1.4).
For the numerical experiment, let us fix the frequency ω0 = 1, the initial position

X0 = 0 and the initial velocity X1 ∼ Triangular(−0.1, 0.1). In Figure 2, we depict
the density function of X(t) at t = 0.8.

Example 3.3. Consider model (1.1) with fixed initial position X0 = −1, initial
velocity X1 ∼ Poisson(5) and forcing term Y (t) = A ∼ Exponential(4), for all
t ∈ [0, 1] (Y (t) is a constant random variable as a function of t, i.e., a steady-
state random excitation). These random variables are assumed to be independent.
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Figure 2. Density function fX(t)(x) for t = 0.8 in Example 3.2.

Using expression (2.22) with N = n0 = 0 and Y0 = A, and taking into account

that
∫ t

0
h(t − s)sn0 ds =

∫ t
0
h(t − s) ds > 0, we deduce that the probability density

function of the response stochastic process X(t) is given by

fX(t)(x)

=
1∣∣∣∫ t0 h(t− s) ds

∣∣∣E
fA

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 − e−ω0ξt sin(ω1t)

ω1
X1∫ t

0 h(t− s) ds


 ,

for t ∈ (0, 1]. In Figure 3, we show the graph of fX(0.2)(x), for −1.5 ≤ x ≤ 1.5.

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

5

10

15

20

25

30

f

Figure 3. Density function fX(0.2)(x) in Example 3.3.

Example 3.4. Let us consider model (1.1) with initial position X0 having a Cantor
distribution [32] and no initial motion, X1 = 0. Recall that the Cantor distribution is
defined by having as cumulative distribution function the Cantor staircase function.
The Cantor distribution can be seen in the following way:

X0 = 2
∞∑
k=1

Ak
3k
,

where A1, A2, . . . are independent random variables with Bernoulli(0.5) distribution
and the series converges a.s. Notice that X0 is not an absolutely continuous random
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variable, hence hypothesis H0H0H0 does not hold. We take the forcing term Y (t) as a
standard Brownian motion on [0, 1] [18, Def. 5.11]. It is assumed that X0, X1 and
Y are independent.

Using formulas (2.3) and (2.4) and taking into account that E[Y (t)] = 0 and that

Cov[Y (t), Y (s)] = min{t, s}, we compute µI(t) = 0 and σI(t)
2 =

∫ t
0

∫ t
0
h(t−s1)h(t−

s2) min{s1, s2} ds1 ds2.
According to Proposition 2.3, we have that the response X(t) is absolutely contin-

uous, with density function given by (2.7). In Figure 4, we have plotted the graph
of fX(0.1)(x) and fX(0.8)(x). For t = 0.1, we observe a big influence of the initial
condition X0. For t = 0.8, the influence of X0 seems to be dispelled, since fX(0.8)(x)
is smoother.
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Figure 4. Left: Density function fX(0.1)(x). Right: Density function
fX(0.8)(x). Both in the context of Example 3.4 and interpreting the
Brownian motion Y (t) = B(t) as a Gaussian stochastic process.

We may also see the Brownian motion as a Karhunen-Loève expansion [18, Exer-
cise 5.12]:

Y (t) =
∞∑
j=1

√
2(

j − 1
2

)
π

sin

(
t

(
j − 1

2

)
π

)
ξj,

where {ξj}∞j=1 is a sequence of independent random variables with Normal(0, 1)

distribution. The series converges in L2([0, 1]× Ω).
By Theorem 2.10, the density function of XN(t) (given by (2.21) with J = N)

converges pointwise to fX(t)(x), for t ∈ (0, 1] (given by (2.21) with J = ∞). In
Figure 5, we have plotted the graph of fX15(0.1)(x) and fX15(0.8)(x) (N = 15). Notice
that these densities approximate accurately the exact densities from Figure 4, as
Theorem 2.10 states.

Example 3.5. We deal with model (1.1) with initial position X0 ∼ Exponential(3),
initial velocity X1 ∼ Binomial(7, 0.31) and forcing term

Y (t) =
∞∑
j=1

√
2

jπ
sin(tjπ)ξj.
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Figure 5. Left: Density function fX15(0.1)(x). Right: Density func-
tion fX15(0.8)(x). Both in the context of Example 3.4 and interpreting
the Brownian motion Y (t) = B(t) via its Karhunen-Loève expansion.

The series is understood in L2([0, 1]× Ω) and {ξj}∞j=1 is a sequence of independent

random variables with Uniform(−
√

3,
√

3) distribution. This is a Karhunen-Loève
expansion. It is assumed that X0, X1 and Y are independent.

Since φ1(t) = sin(tπ) > 0 on 0 < t < 1 and h(t) > 0 on 0 < t ≤ 1, then∫ t
0
h(t−s)φ1(s) ds > 0, for t ∈ (0, 1]. As a consequence, hypotheses H0H0H0 and H2H2H2 hold.

By Theorem 2.9 or Theorem 2.11, limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (0, 1] and
x ∈ R.

In Figure 6 we have plotted fXN (0.5)(x) for N = 1, 2, 3, 4, 5, 6. We observe con-
vergence, since a small or nearly no variation of the density functions is noticed at
different values of truncation order N . This convergence agrees with Theorem 2.9
and Theorem 2.11.

Example 3.6. Consider (1.1) with initial position X0 ∼ Gamma(2, 1), initial ve-
locity X1 ∼ Beta(1/2, 1/2) and forcing term

Y (t) =
∞∑
j=1

√
2

jπ
sin(tjπ)ξj,

where the series is understood in L2([0, 1]×Ω) and {ξj}∞j=1 is a sequence of indepen-
dent random variables with Uniform{−1, 1} distribution (discrete distribution with
P(ξj = −1) = P(ξj = 1) = 1/2). This is a Karhunen-Loève expansion. It is assumed
that X0, X1 and Y are independent.

By Theorem 2.5, limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ [0, 1] and x ∈ R. In Figure
7 we plot fXN (0.5)(x) for N = 1, 2, 3, 4, 5, 6. Convergence seems to be achieved,
since nearly no variation of the density functions is noticed at different values of
truncation order N . This fact agrees with Theorem 2.5.

Example 3.7. Consider the initial value problem (1.1) with initial position X0 ∼
Negative Binomial(7, 0.31) and initial velocity X1 being absolutely continuous with
density function given by fX1(x) =

√
2/(π(1 + x4)), x ∈ R. Take

Y (t) =
∞∑
n=1

An
n
tn,
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Figure 6. Density function fXN (0.5)(x) for N = 1 (up left), N = 2
(up right), N = 3 (center left), N = 4 (center right), N = 5 (down
left) and N = 6 (down right) in Example 3.5.

for t ∈ [0, 1], where A1, A2, . . . are independent random variables with Poisson(5)
distribution. Notice that the sum is well-defined in L2([0, 1]× Ω): indeed,∥∥∥∥Ann tn

∥∥∥∥
L2([0,1]×Ω)

=
C

n
√

2n+ 1
,

where C is the 2-norm of a Poisson(5) random variable, therefore

∞∑
n=1

∥∥∥∥Ann tn
∥∥∥∥

L2([0,1]×Ω)

<∞.

It is assumed that X0, X1, A1, A2, . . . are independent.
By Theorem 2.5, limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (0, 1] and x ∈ R. In Figure

8, we plot fXN (0.3)(x) for N = 1, 2, 3, 4, 5, 6. We observe convergence, since virtually
the same density functions are plotted at different values of truncation order N .
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Figure 7. Density function fXN (0.5)(x) for N = 1 (up left), N = 2
(up right), N = 3 (center left), N = 4 (center right), N = 5 (down
left) and N = 6 (down right) in Example 3.6.

4. Conclusions

In this paper we have provided a comprehensive probabilistic analysis of the
damped pendulum differential equation in the case that the initial conditions (po-
sition, X0, and velocity, X1) are random variables and the forcing term, Y (t), is a
stochastic process. To the best of our knowledge, a major difference of our contri-
bution with respect to the ones available in the extant literature is that we have
provided exact or approximate expressions for the probability density function of
the solution stochastic process of this important problem in Physics. Our achieve-
ment contrasts with other studies, where the goal is merely to construct exact or
approximate expressions for the mean and the variance of the solution process. We
think that a strong point of our contribution is the wide range of scenarios studied
with respect to the forcing term Y (t) as well as the generality of our analysis. In
particular, the important cases where Y (t) is Gaussian (including the White noise
process) or Y (t) can be represented via Karhunen-Loève expansion or via a mean
square convergent random power series have been fully addressed. Furthermore,
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Figure 8. Density function fXN (0.3)(x) for N = 1 (up left), N = 2
(up right), N = 3 (center left), N = 4 (center right), N = 5 (down
left) and N = 6 (down right) in Example 3.7.

the study has included a detailed discussion with regard to the hypotheses assumed
on the input data (X0, X1, Y (t)) to establish our findings. The generality of such
hypotheses in practical situations has been illustrated throughout a wide variety of
numerical examples. The analysis performed throughout this paper may be very
useful in dealing with other random differential equations in future contributions.
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