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ON THE PRESERVED EXTREMAL STRUCTURE OF
LIPSCHITZ-FREE SPACES

RAMÓN J. ALIAGA AND ANTONIO J. GUIRAO

Abstract. We characterize preserved extreme points of the unit ball
of Lipschitz-free spaces F(X) in terms of simple geometric conditions on
the underlying metric space (X, d). Namely, the preserved extreme points
are the elementary molecules corresponding to pairs of points p, q in X
such that the triangle inequality d(p, q) ≤ d(p, r) + d(q, r) is uniformly
strict for r away from p, q. For compact X, this condition reduces to the
triangle inequality being strict. As a consequence, we give an affirmative
answer to a conjecture of N. Weaver that compact spaces are concave
if and only if they have no triple of metrically aligned points, and we
show that all extreme points are preserved for several classes of compact
metric spaces X, including Hölder and countable compacta.

1. Introduction

Given a pointed metric space (X, d), i.e. a metric space with a designated

base point e, the space Lip(X) of scalar valued Lipschitz functions on X

has a distinguished subspace Lip0(X) consisting of those elements of Lip(X)

that vanish at e. Lip0(X) is then a Banach space endowed with the norm

L(f) given by the tightest Lipschitz constant of f , and different choices

of base points lead to linearly isometric Banach spaces via the map f 7→
f − f(e).

It is well-known that Lip0(X) is a dual space, and its canonical predual

is F(X) = span j(X) ⊂ Lip0(X)∗, where j : X → Lip0(X)∗ maps each

x ∈ X to its evaluation functional j(x) : f 7→ f(x). Following [7], we call

F(X) the Lipschitz-free space over X. Note that j is a (non-linear) isometric

embedding of X into a linearly dense subset of F(X) and, in fact, this is a

universal property of F(X): every non-expansive map from X into a Banach

space that maps e to 0 can be factored through j [9, Theorem 2.2.4]. For a

recent survey on Lipschitz-free Banach spaces see [6].

The extremal structure of the unit ball of F(X) reveals important de-

tails about the geometry of X. Of particular interest are the preserved ex-

treme points, i.e. those points of Ext(BF(X)) that are also extreme points
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of BF(X)∗∗ = BLip0(X)∗ . For instance, their properties are used in Sections

2.6 and 2.7 of [9] to obtain metric versions of the Banach-Stone theorem for

Lip and Lip0 spaces under various hypotheses. Further information about

preserved and unpreserved extreme points can be found in the recent survey

[8].

When X is complete, any preserved extreme points of BF(X) are neces-

sarily elementary molecules, i.e. elements of the form

upq :=
j(p)− j(q)
‖j(p)− j(q)‖

=
j(p)− j(q)
d(p, q)

for distinct p, q ∈ X [9, Corollary 2.5.4]; completeness of X is essential for

this. In this paper, we study the geometric conditions under which these

elements of BF(X) are indeed preserved extreme points. They can be stated

in a simple form if we allow an abuse of notation and extend the metric

function d from pairs of points in X to its Stone-Čech compactification βX.

Our main result is the following:

Main Theorem (cf. Theorem 4.1). If X is a complete pointed metric space,

then the preserved extreme points of BF(X) are precisely the elements upq

where p, q are distinct points of X such that d(p, q) < d(p, r) + d(q, r) for

all r ∈ βX \ {p, q}.

In terms of the geometry within X, this characterization is equivalent to

the triangle inequality being uniformly strict for r away from p and q; the

precise statement is given in Lemma 2.3.

As a consequence of this result, in Corollary 4.5 we solve in the positive

a conjecture of N. Weaver stating that compact spaces such that d(p, q) <

d(p, r) + d(r, q) for any triple of distinct points p, q, r are concave [9, Open

Problem in p. 53]. Another implication is that all extreme points of BF(X)

of the form upq are preserved when X is compact (Theorem 4.2).

Moreover, we also find a sufficient condition for upq to be a preserved ex-

treme point (Proposition 3.4) that improves the well-known [9, Proposition

2.4.2], replacing the single, globally peaking function with a family of func-

tions that peak locally. Example 3.7 implies that neither of these sufficient

conditions are necessary, even in the compact case.

Throughout the paper, X will denote a metric space with metric d; if

X is pointed, its base point will be denoted by e. We will use standard

notation: BY for the closed unit ball of normed space Y , and 〈x∗, x〉 for

the evaluation of the functional x∗ ∈ Y ∗ at the point x ∈ Y . We will also

restrict ourselves to the case of real scalars, as our approach relies on the
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following metric version of Tietze’s extension theorem, which fails to hold

in the complex case [9, p. 18]:

Proposition 1.1 ([9, Theorem 1.5.6]). Let X be a metric space and Y ⊂ X.

Then every f : Y → R can be extended to X in such a way that L(f) and

‖f‖∞ are preserved.

For the non-defined notions used through this article, we refer to [3].

2. Metric alignment and extremal structure

Definition 2.1. Let X be a metric space and p, q, r ∈ X. We say that r lies

between p and q if d(p, r) + d(r, q) = d(p, q); if r is neither p nor q, we say

that it lies strictly between p and q. We also say that three distinct points

of X are metrically aligned if one of them lies strictly between the other

two. The metric segment [p, q] is defined as the set of all points of X that

lie between p and q.

Observe that this definition of metric alignment coincides with the intu-

itive notion of alignment in the Euclidean plane or space. More generally, if

X is a subset of a strictly convex normed space, then p, q, r are metrically

aligned if and only if they are linearly aligned, i.e. if they span an affine

subspace of dimension 1 instead of 2, or equivalently, if p− r and q − r are

linearly dependent.

We also introduce the notation

ε(r; p, q) := d(r, p) + d(r, q)− d(p, q).

Note that ε(r; p, q) ≥ 0, and ε(r; p, q) = 0 if and only if r lies between p and

q. Note also that [p, q] is closed, always contains p and q, and it is possible

for it to contain no other point. Finally, note that ε(x; p, q) ≤ 2 dist(x, [p, q])

for any x ∈ X; this is proven by adding the triangle inequalities d(p, x) ≤
d(p, r) + d(r, x) and d(q, x) ≤ d(q, r) + d(r, x) for r ∈ [p, q].

Since the mapping r 7→ ε(r; p, q) is continuous in X, it can be extended

continuously to a mapping βX → [0,∞], where βX is the Stone-Čech com-

pactification of X. Thus, for ξ ∈ βX, we will denote by ε(ξ; p, q) the result

of applying that mapping to ξ, i.e. ε(ξ; p, q) = limi ε(xi; p, q) if {xi : i ∈ I} is

a net in X that converges to ξ. We will then say that ξ lies strictly between

p and q if ε(ξ; p, q) = 0 and ξ is neither p nor q.

There is a strong relationship between metric alignment in X and the

extremal structure of BF(X), as illustrated by the following result:

Proposition 2.2. Let X be a pointed metric space and p, q distinct points

of X.
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(a) If upq is an extreme point of BF(X), then no point of X lies strictly

between p and q.

(b) If upq is a preserved extreme point of BF(X), then no point of βX lies

strictly between p and q.

Proof. (a) For any r ∈ X \ {p, q} we have

upq =
j(p)− j(q)
d(p, q)

=
j(p)− j(r)
d(p, q)

+
j(r)− j(q)
d(p, q)

=
d(p, r)

d(p, q)
upr +

d(r, q)

d(p, q)
urq.

If d(p, q) = d(p, r) +d(q, r), then this expresses upq as a convex combination

of elements upr and urq of BF(X) so it cannot be an extreme point.

(b) Suppose that ε(ξ; p, q) = 0 for some ξ ∈ βX \ {p, q}. Let {xi : i ∈ I}
be a net in X that converges to ξ. We may assume that ε(xi; p, q) is bounded,

hence so are d(xi, p) and d(xi, q). Thus the limits d(p, ξ) = limi d(p, xi) and

d(ξ, q) = limi d(xi, q) exist and are finite and positive; moreover, d(p, ξ) +

d(ξ, q) = ε(ξ; p, q) + d(p, q) = d(p, q).

Let V be a closed ball with center in e and a radius large enough

to contain neighborhoods of p, q and all the xi. The restricted opera-

tor j|V : V → Lip0(X)∗ is w ∗-continuous and its range is contained in

diam(V ) · BLip0(X)∗ which is w ∗-compact. Hence j|V can be extended w ∗-

continuously to βV , and in particular there is Λ = j|V (ξ) ∈ Lip0(X)∗ such

that 〈Λ, f〉 = limi f(xi) for f ∈ Lip0(X). For any f ∈ BLip0(X) we have

|〈j(p)− Λ, f〉| = lim
i
|f(p)− f(xi)| ≤ lim

i
d(p, xi) = d(p, ξ)

and so upξ := (j(p) − Λ)/d(p, ξ) is an element of BLip0(X)∗ . Analogously,

uξq := (Λ− j(q))/d(ξ, q) ∈ BLip0(X)∗ . Then we can express

upq =
j(p)− j(q)
d(p, q)

=
j(p)− Λ

d(p, q)
+

Λ− j(q)
d(p, q)

=
d(p, ξ)

d(p, q)
upξ +

d(ξ, q)

d(p, q)
uξq,

i.e. upq is a convex combination of elements in BLip0(X)∗ , so it cannot be a

preserved extreme point. �

The condition in Proposition 2.2(b) essentially means that it is not pos-

sible to have d(p, ri) + d(q, ri) → d(p, q) unless {ri} clusters at p or q.

Equivalently, the triangle inequality is uniformly strict for r away from p, q.

The precise formulation is the following:

Lemma 2.3. Let X be a metric space and p, q distinct points of X. Then

the following are equivalent:

(i) no point of βX lies strictly between p and q,

(ii) for every ε > 0 there is δ > 0 such that ε(r; p, q) ≥ δ whenever r ∈ X
satisfies d(p, r) ≥ ε and d(q, r) ≥ ε.
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Proof. Suppose (i) is false and there is ξ ∈ βX \{p, q} such that ε(ξ; p, q) =

0. Then there is a net {xi : i ∈ I} in X such that xi → ξ and ε(xi; p, q)→ 0.

Choose ε > 0 such that d(xi, p) > ε and d(xi, q) > ε eventually; such an ε

exists because {xi} would otherwise have a subsequence that converges to

p or q. Then (ii) is false for this ε.

Suppose now that (ii) is false, and choose ε > 0 such that for every n ∈ N
there is rn ∈ X such that d(p, rn) ≥ ε, d(q, rn) ≥ ε and ε(rn; p, q) < 2−n.

Let ξ be a cluster point of rn in βX. Then clearly ξ lies strictly between p

and q, so (i) is false. �

3. Norm attainment of Lipschitz functions

We borrow the following notation from Chapter 2 of [9]: denote

X̃ := {(x, y) : x, y ∈ X, x 6= y}

with the subspace topology of X2. Then we define the so-called de Leeuw’s

map as the operator Φ: Lip(X)→ C(X̃) given by

Φf(p, q) :=
f(p)− f(q)

d(p, q)
= 〈upq, f〉

for f ∈ Lip(X) and (p, q) ∈ X̃.

Note that L(f) = ‖Φf‖∞, so Φ is in fact a linear isometry from Lip0(X)

into `∞(X̃). Moreover, for any f ∈ Lip(X), the function Φf ∈ C(X̃) is

bounded by L(f), so it can be extended continuously and uniquely to βX̃,

the Stone-Čech compactification of X̃; hence Φf can be identified with an el-

ement in C(βX̃), and Φ can be regarded as a map from Lip0(X) into C(βX̃).

For arbitrary ζ ∈ βX̃, we will write Φf(ζ) to refer to the value at ζ of the

extension of Φf ; equivalently, Φf(ζ) = limi Φf(xi, yi) if {(xi, yi) : i ∈ I} is

a net in X̃ converging to ζ in βX̃.

Recall that the dual of C(βX̃) is M(βX̃), the space of real regular Borel

measures on βX̃, so that for each x∗ ∈ Lip0(X)∗ there is a measure µ ∈
M(βX̃) of equal norm such that Φ∗µ = x∗, where Φ∗ : M(βX̃)→ Lip0(X)∗

is the adjoint operator of Φ.

Definition 3.1. Let f ∈ Lip(X), f 6= 0 and ζ ∈ βX̃. We say that f

attains its (Lipschitz) norm at ζ if |Φf(ζ)| = L(f). We say that f peaks

at (p, q) ∈ X̃ if it attains its norm at (p, q) and, for every open U ⊂ X̃

containing (p, q) and (q, p), there is c < L(f) such that |Φf(x, y)| ≤ c for

all (x, y) ∈ X̃ \ U .
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Informally, f peaks at (p, q) if |Φf | is uniformly less than L(f) away from

(p, q) and (q, p). This is a strong condition, and it is a well-known result that

it is sufficient to ensure the existence of preserved extreme points:

Proposition 3.2 ([9, Proposition 2.4.2]). Let X be a pointed metric space

and suppose that there is a function in Lip0(X) that peaks at (p, q) ∈ X̃.

Then upq is a preserved extreme point of BF(X).

We wish to generalize this result by finding weaker sufficient conditions.

In order to do this, for a given (p, q) ∈ X̃ we will consider the set

D(p,q) :=
{
ζ ∈ βX̃ : every f ∈ Lip0(X) that attains its norm at (p, q)

also attains its norm at ζ
}

.

Notice that D(p,q) is closed, hence compact. Notice also that (p, q) and (q, p)

are always in D(p,q). It is possible for D(p,q) to contain no other points beside

these two; this happens, for instance, when there is f ∈ Lip0(X) that peaks

at (p, q), as that same f shows that every other ζ ∈ βX̃ fails to fulfill the

condition in the definition.

A refinement of the argument used in the proof of Proposition 3.2 con-

tained in [9] yields the following:

Lemma 3.3. Let X be a pointed metric space and (p, q) ∈ X̃. Suppose that

upq = λx∗1 + (1−λ)x∗2 for some λ ∈ (0, 1) and x∗1, x
∗
2 ∈ BLip0(X)∗. Then there

are measures µ1, µ2 ∈ BM(βX̃) concentrated on D(p,q) such that x∗1 = Φ∗µ1

and x∗2 = Φ∗µ2.

Proof. Take measures µi ∈ BM(βX̃) such that Φ∗µi = x∗i for i = 1, 2. Notice

that, for any f ∈ BLip0(X) such that Φf(p, q) = 1, the inequalities

1 = Φf(p, q) = 〈upq, f〉 = λ 〈x∗1, f〉+ (1− λ) 〈x∗2, f〉

= λ 〈µ1,Φf〉+ (1− λ) 〈µ2,Φf〉

≤ λ ‖µ1‖ ‖Φf‖∞ + (1− λ) ‖µ2‖ ‖Φf‖∞ ≤ 1

hold and so we must have 〈µ1,Φf〉 = 〈µ2,Φf〉 = 1. Now fix µ ∈ {µ1, µ2};
we will show that µ is concentrated on D(p,q).

Let ζ ∈ βX̃ \ D(p,q). Then there is f ∈ Lip0(X) that attains its norm

at (p, q) but not at ζ. We may assume that Φf(p, q) = L(f) = 1 and

|Φf(ζ)| < 1. Since Φf is continuous, there are c ∈ (0, 1) and an open

neighborhood U(ζ) ⊂ βX̃ of ζ such that |Φf(ζ ′)| ≤ c for every ζ ′ ∈ U(ζ).
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But then

1 =

∫
βX̃

(Φf) dµ =

∫
U(ζ)

(Φf) dµ+

∫
βX̃\U(ζ)

(Φf) dµ

≤ c |µ| (U(ζ)) + |µ| (βX̃ \ U(ζ)) ≤ 1− (1− c) |µ| (U(ζ))

where |µ| is the total variation of µ. Since c < 1 we obtain |µ| (U(ζ)) = 0.

Now let K be any compact subset of βX̃ \D(p,q). Then {U(ζ) : ζ ∈ K}
is an open cover of K so it admits a finite subcover K ⊂

⋃n
j=1 U(ζj), hence

|µ| (K) ≤
n∑
j=1

|µ| (U(ζj)) = 0.

Since |µ| is regular and βX̃ \D(p,q) is open, |µ| (βX̃ \D(p,q)) is the supremum

of such |µ| (K), which implies that it is equal to zero. It follows that µ is

concentrated on D(p,q). �

As a consequence, the peaking function in Proposition 3.2 can be re-

placed by a family of norm attaining functions f such that the regions where

|Φf | < L(f) cover all of βX̃ except for (p, q) and (q, p). This is equivalent

to saying that D(p,q) = {(p, q), (q, p)}.

Proposition 3.4. Let X be a pointed metric space and (p, q) ∈ X̃ such that,

for any ζ ∈ βX̃ \ {(p, q), (q, p)}, there is f ∈ Lip0(X) such that Φf(p, q) =

L(f) and |Φf(ζ)| < L(f). Then upq is a preserved extreme point of BF(X).

Proof. Suppose that upq = λx∗1 + (1− λ)x∗2 for some λ ∈ (0, 1) and x∗1, x
∗
2 ∈

BLip0(X)∗ . By Lemma 3.3, for i = 1, 2 we have x∗i = Φ∗µi where µi ∈ BM(βX̃)

is concentrated on D(p,q) = {(p, q), (q, p)}. But the Dirac measure δ(p,q) on

(p, q) satisfies 〈
Φ∗δ(p,q), f

〉
= Φf(p, q) = 〈upq, f〉

for any f ∈ Lip0(X), so Φ∗δ(p,q) = upq. For i = 1, 2, x∗i is therefore a linear

combination of upq and uqp = −upq and it follows that x∗i = upq. Hence

upq ∈ Ext(BLip0(X)∗) as was to be shown. �

Next, we show that the elements of D(p,q) have a very specific form when

p and q satisfy the condition in Lemma 2.3. Let p ∈ X and ζ ∈ βX̃.

Following Section 4.7 of [9], we say that ζ lies over p if it is the limit of a

net {(xi, yi) : i ∈ I} in X̃ such that limi xi = limi yi = p. Notice that if p is

an isolated point in X then no point of βX̃ can lie over p. Notice also that if

X is compact, then each point of βX̃ either belongs to X̃ or lies over some

p ∈ X.



8 R. J. ALIAGA AND A. J. GUIRAO

Proposition 3.5. Let X be a pointed metric space and p, q distinct points

of X. Suppose that no point of βX lies strictly between p and q. Then

D(p,q) = {(p, q), (q, p)} ∪ Ap ∪ Aq where Ap (resp. Aq) consists of points of

βX̃ that lie over p (resp. q).

Proof. Let ζ ∈ βX̃, and let {(xi, yi) : i ∈ I} be a net in X̃ that converges

to ζ in βX̃. Choose a subnet such that {xi} and {yi} converge to elements

ξ and η in βX; call that subnet (xi, yi) again. First we prove the following

claim:

Claim. If {xi} does not converge to p or q, then it has a subnet {xj} such

that

(1) lim
j

ε(xj; p, q)

d(xj, q)
> 0.

Proof of the claim. Take ε > 0 and a subnet such that d(xi, p) > ε and

d(xi, q) > ε eventually. By Lemma 2.3, there is δ > 0 such that ε(xi; p, q) ≥ δ

eventually. Hence, if d(xi, q) is eventually bounded by M < ∞, then the

limit (1) is at least δ/M > 0. Otherwise, choose a subnet {xj} such that

d(xj, q)→∞. Then also d(xj, p) ≥ d(xj, q)− d(p, q)→∞, and

lim
j

d(xj, p)

d(xj, q)
≤ lim

j

d(xj, q) + d(q, p)

d(xj, q)
= 1 + lim

j

d(p, q)

d(xj, q)
= 1

and by symmetry in p and q we get limj d(xj, p)/d(xj, q) = 1, hence

lim
j

ε(xj; p, q)

d(xj, q)
= 1 + lim

j

d(xj, p)− d(p, q)

d(xj, q)
= 2

is positive. �

We need to show that ζ ∈ D(p,q) implies that ξ, η ∈ {p, q}. We will

assume otherwise, and construct f ∈ BLip0(X) such that Φf(p, q) = 1 and

|Φf(ζ)| < 1.

Suppose first that ξ, η ∈ βX \ {p, q}. By the claim, we can replace

{(xi, yi)} with a subnet such that

c := min

{
1, inf

i

ε(xi; p, q)

d(xi, q)
, inf
i

ε(yi; p, q)

d(yi, q)

}
> 0.

Let Z = {p, q} ∪
⋃
i∈I {xi, yi}, choose α ∈ (0, c) and define g : Z → R by

g(x) =

{
d(p, q) if x = p

(1− α) · d(x, q) if x ∈ Z \ {p} .
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It is clear that Φg(p, q) = 1 and |Φg(x, y)| ≤ 1 − α for x, y ∈ Z \ {p}. For

any x ∈ Z \ {p, q} we have

1− Φg(p, x) =
ε(x; p, q)− αd(x, q)

d(p, x)
≥ (c− α)

d(x, q)

d(p, x)
> 0

1 + Φg(p, x) =
ε(p;x, q) + αd(x, q)

d(p, x)
≥ α

d(x, q)

d(p, x)
> 0

so −1 < Φg(p, x) < 1, hence L(g) = 1. Now extend g from Z to X using

Proposition 1.1 and let f = g − g(e). Then f ∈ BLip0(X), Φf(p, q) = 1, and

|Φf(ζ)| = limi |Φf(xi, yi)| ≤ 1− α < 1, hence ζ /∈ D(p,q).

Now suppose that exactly one of ξ, η is in {p, q}; without loss of gen-

erality, assume that η = q. Then we can repeat the construction above

with

c = min

{
1, inf

i

ε(xi; p, q)

d(xi, q)

}
> 0

and Z = {p, q}∪
⋃
i∈I {xi}. Again we obtain f ∈ BLip0(X) such that Φf(p, q) =

1, and |Φf(ζ)| = limi |Φf(xi, q)| ≤ 1 − α < 1 so that ζ /∈ D(p,q). This con-

cludes the proof. �

If Ap and Aq are empty, we can apply Proposition 3.4 to conclude that

upq is a preserved extreme point of BF(X). However this is not generally

the case. The following technical lemma will be used in Example 3.7 to

build compact spaces that have no triple of metrically aligned points and

yet one or both of Ap, Aq are nonempty; they will show that the condition

in Proposition 3.4 is sufficient but not necessary for preserved extremality.

Lemma 3.6. Let X be a pointed metric space and p, q distinct points of

X. Suppose that there is a sequence {qn} in X \ {q} such that qn → q and

ε(qn; p, q)/d(qn, q)→ 0. Then D(p,q) contains a point that lies over q.

Proof. Since d(qn, q)→ 0, we may assume that d(qn, q) is strictly decreasing

and that d(qn+1, q)/d(qn, q) → 0 by selecting a subsequence. Then ζn :=

(qn, qn+1) ∈ X̃ for every n ∈ N and, since βX̃ is compact, the sequence {ζn}
must have a subnet that converges to some ζ ∈ βX̃. Clearly ζ lies over q.

We will show that ζ ∈ D(p,q).

Define h ∈ BLip0(X) by h(x) = d(x, q) for x ∈ X. Then

Φh(ζn) =
d(qn, q)− d(qn+1, q)

d(qn, qn+1)
≥ d(qn, q)− d(qn+1, q)

d(qn, q) + d(qn+1, q)
=

1− d(qn+1,q)
d(qn,q)

1 + d(qn+1,q)
d(qn,q)

and since Φh ≤ 1 we obtain Φh(ζn)→ 1 and thus Φh(ζ) = 1.



10 R. J. ALIAGA AND A. J. GUIRAO

Now let f ∈ BLip0(X) be such that Φf(p, q) = 1. From Φf(qn+1, q) ≤ 1

we obtain f(qn+1) ≤ f(q) + h(qn+1), and from Φf(p, qn) ≤ 1 we get

f(qn) ≥ f(p)− d(p, qn) = f(q) + h(qn)− ε(qn; p, q).

Subtracting both inequalities yields f(qn) − f(qn+1) ≥ h(qn) − h(qn+1) −
ε(qn; p, q), hence

Φf(ζn) ≥ Φh(ζn)− ε(qn; p, q)

d(qn, qn+1)
≥ Φh(ζn)− ε(qn; p, q)

d(qn, q)

1

1− d(qn+1,q)
d(qn,q)

and taking limits we get Φf(ζ) ≥ Φh(ζ), hence Φf(ζ) = 1. �

Example 3.7. In R2, choose distinct points p and q at unit distance, and

λ ∈ (0, 1). We construct sequences {pn} and {qn} iteratively as follows:

let q0 = p and p0 = q. Suppose that p0, . . . , pn−1 and q0, . . . , qn−1 have been

chosen. Then take pn in the ball with center p+λn(q−p) and radius λ2n, such

that pn is not aligned with any pair of points in {p0, . . . , pn−1, q0, . . . , qn−1}.
Similarly, take qn in the ball with center q + λn(p − q) and radius λ2n but

not aligned with any pair of points in {p0, . . . , pn−1, pn, q0, . . . , qn−1}.
The space X = {p, q, p1, p2, . . . , q1, q2, . . .} is compact and has no triple

of aligned points. Hence, upq is a preserved extreme point of BF(X) as we

will prove in Theorem 4.2. However, λn − λ2n < d(pn, p) < λn + λ2n and

ε(pn; p, q) ≤ 2 dist(pn, [p, q]) < 2λ2n, so it is simple to check that the hy-

potheses of Lemma 3.6 are satisfied and this yields an element of D(p,q) that

lies over p. Similarly, the sequence {qn} yields an element of D(p,q) that lies

over q.

By removing e.g. the points pn for n ≥ 1 from X, we obtain a similar

example where Ap is empty because p is then isolated.

4. Characterization of preserved extreme points

We are finally ready to prove the characterization theorem for preserved

extreme points of BF(X).

Theorem 4.1. Let X be a pointed metric space, and let p, q be distinct

points of X. Then the following are equivalent:

(i) upq is a preserved extreme point of BF(X),

(ii) no point of βX lies strictly between p and q,

(iii) for every ε > 0 there is δ > 0 such that ε(r; p, q) ≥ δ whenever r ∈ X
satisfies d(p, r) ≥ ε and d(q, r) ≥ ε.

Proof. The equivalence (ii)⇔(iii) is Lemma 2.3, and the implication (i)⇒(ii)

is Proposition 2.2(b). Only (ii)⇒(i) remains to be proved. Assume (ii), then
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Proposition 3.5 implies that D(p,q) = {(p, q), (q, p)} ∪ Ap ∪ Aq where all

elements of Ap and Aq lie over p and q, respectively.

Suppose that upq = λx∗1 + (1 − λ)x∗2 for some λ ∈ (0, 1) and x∗1, x
∗
2 ∈

BLip0(X)∗ . By Lemma 3.3, x∗1 = Φ∗µ1 and x∗2 = Φ∗µ2 where µ1, µ2 ∈ BM(βX̃)

are concentrated on D(p,q). Hence, for i = 1, 2 we can write µi = aiδ(p,q) +

biδ(q,p) + µ′i where ai, bi ∈ R and µ′i is concentrated on Ap ∪ Aq, so that

x∗i = (ai − bi)upq + Φ∗µ′i. Then, for any f ∈ Lip0(X) we have

〈upq, f〉 = λ 〈(a1 − b1)upq + Φ∗µ′1, f〉+ (1− λ) 〈(a2 − b2)upq + Φ∗µ′2, f〉

=
(
λ(a1 − b1) + (1− λ)(a2 − b2)

)
〈upq, f〉

+ λ

∫
Ap∪Aq

(Φf) dµ′1 + (1− λ)

∫
Ap∪Aq

(Φf) dµ′2.(2)

Let U and V be neighborhoods of p and q whose closures are at a positive

distance of each other, and define g ∈ Lip(U ∪ V ) by g = d(p, q) in U and

g = 0 in V . Extend g to all of X using Proposition 1.1, and let f = g−g(e).

Then f ∈ Lip0(X) and 〈upq, f〉 = Φf(p, q) = 1. For every ζ ∈ Ap there is

a net {(xi, yi) : i ∈ I} in X̃ that converges to ζ in βX̃ and such that xi, yi

are eventually in U , hence Φf(xi, yi) = 0 eventually, and so Φf(ζ) = 0.

Similarly, Φf(ζ) = 0 for ζ ∈ Aq. Thus, for this particular choice of f the

integrals in (2) vanish and we get

1 = λ(a1 − b1) + (1− λ)(a2 − b2)

≤ λ(|a1|+ |b1|+ ‖µ′1‖) + (1− λ)(|a2|+ |b2|+ ‖µ′2‖)

= λ ‖µ1‖+ (1− λ) ‖µ2‖ ≤ 1.

It follows that ‖µ′1‖ = ‖µ′2‖ = 0, so x∗1 and x∗2 are multiples of upq. Thus

upq ∈ Ext(BLip0(X)∗). �

Let us remark that, before publication of this manuscript, L. Garćıa,

C. Petitjean, A. Procházka and A. Rueda have independently obtained a

different proof of the equivalence (i)⇔(iii), and have moreover proved that

all preserved extreme points of BF(X) are also denting points [5].

For compact X, Theorem 4.1 can be restated to involve (unpreserved)

extreme points of BF(X), too:

Theorem 4.2. Let X be a compact pointed metric space, and let p, q be

distinct points of X. Then the following are equivalent:

(i) upq is a preserved extreme point of BF(X),

(ii) upq is an extreme point of BF(X),

(iii) no point of X lies strictly between p and q.
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Proof. (i)⇒(ii) is trivial, (ii)⇒(iii) is Proposition 2.2(a), and (iii)⇒(i) is a

consequence of Theorem 4.1 because βX = X. �

Note that Theorem 4.2 does not imply that all extreme points of BF(X)

are preserved, but only those of the form upq. It is currently unknown

whether all extreme points of BF(X) are elementary molecules when X is

compact (cf. Question 2 in Section 5).

We remark that the hypothesis that X is compact is essential in Theorem

4.2. Simple counterexamples may be constructed using Theorem 4.1, such

as the following one:

Example 4.3. Consider the subset X of c0 consisting of e = 0, p = 2e1,

and qn = e1 + (1 + 1
n
)en for n ≥ 2, where {en} is the canonical basis. Since

d(qn, qm) > 1 for different n,m ≥ 2, the sequence {qn} has no cluster point

in X, and X is not compact. Also ε(qn; p, e) = 2
n
, so no point of X lies

strictly between p and e. However, if ξ is a cluster point of qn in βX, then

ε(ξ; p, e) = 0, hence upe is not a preserved extreme point.

The recent preprint [4] presents a stronger example where there are no

triples of aligned points and no preserved extreme points at all (see Remark

4.10 therein).

Definition 4.4. We say that the pointed metric space X is concave if upq

is a preserved extreme point of BF(X) for any distinct p, q ∈ X.

In [9, Open Problem in p. 53], N. Weaver conjectured that any compact

metric space without triples of metrically aligned points is concave. As an

immediate consequence of Theorem 4.2, we obtain that the conjecture is

actually a characterization of such spaces. We have recently learned that N.

Weaver has independently found a proof of this fact [10], which will appear

in the second edition of [9].

Corollary 4.5. Let X be a compact pointed metric space. Then X is con-

cave if and only if no triple of distinct points of X is metrically aligned.

Examples of concave spaces are Hölder spaces Xα, which are constructed

from metric spaces X by equipping them with the metric dα, where α ∈
(0, 1). In [9, Prop. 2.4.5] they are shown to be concave in general. From

Corollary 4.5, we obtain an alternative, immediate proof that compact

Hölder spaces are concave by noticing that for distinct p, q, r ∈ X we have

d(p, q)α ≤ (d(p, r) + d(r, q))α < d(p, r)α + d(r, q)α
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so that no set of three distinct points can be metrically aligned in Xα. We

remark that not all compact concave spaces are Hölder spaces, as shown by

the following example:

Example 4.6. Consider strictly decreasing sequences λn → 1 and an → 0,

with a1 < 1. Then aλnn + (1− an)λn < (an + 1− an)λn = 1, so we can choose

positive bn → 0 such that

(a2n + b2n)λn/2 + ((1− an)2 + b2n)λn/2 < 1.

Note that the terms in parentheses are all smaller than 1. Let X be the

subset of `2 consisting of 0, e1, and rn = ane1 + bnen for n ≥ 2, where {en}
is the canonical basis. Then X is compact because rn → 0, and any triple

of distinct points of X spans an affine subspace of `2 of dimension 2 so

they cannot be metrically aligned because `2 is strictly convex; hence X is

concave by Corollary 4.5. However X cannot be α-Hölder for any 0 < α < 1:

suppose there was a metric d on X such that ‖x− y‖2 = d(x, y)α for any

x, y ∈ X, and choose n such that λn < 1/α. Then

d(0, rn) + d(rn, e1) = ‖rn‖1/α2 + ‖e1 − rn‖1/α2

= (a2n + b2n)1/2α + ((1− an)2 + b2n)1/2α

< (a2n + b2n)λn/2 + ((1− an)2 + b2n)λn/2

< 1 = d(0, e1)

violating the triangle inequality.

5. Open questions

Theorem 4.1 provides a characterisation of preserved extreme points of

the unit ball in Lipschitz-free spaces in terms of the geometry of the un-

derlying metric space. In the recent preprint [4], L. Garćıa, A. Procházka

and A. Rueda give a similar purely geometric characterisation for strongly

exposed points. The authors say that a pair (p, q) of distinct points of X

has property (Z) if for every ε > 0 there is r ∈ X \ {p, q} such that

ε(r; p, q) ≤ εmin {d(p, r), d(q, r)}

and then prove the following:

Theorem 5.1. If X is a pointed metric space, then an element upq is a

strongly exposed point of BF(X) if and only if (p, q) ∈ X̃ does not have

property (Z).

Notice that the condition in Lemma 3.6 implies that the pair (p, q) has

property (Z); hence, the construction from Example 3.7 yields a preserved
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extreme point upq that is not strongly exposed. One key difference between

the geometric conditions in Theorems 4.1 and 5.1 is the following: both

involve the existence of nets {ri} such that ε(ri; p, q) → 0, but property

(Z) allows these nets to cluster at p or q whereas our condition explicitly

prevents this.

Since Theorem 4.1 is essentially the converse of Proposition 2.2(b), one

may ask whether Proposition 2.2(a) provides a similar geometric character-

isation of extreme points in BF(X):

Question 1. Is upq an extreme point of BF(X) whenever no point of X lies

strictly between p and q?

Theorem 4.2 shows that the answer to Question 1 is positive when X is

compact, but the general case remains unsolved.

Moreover, when X is complete, all preserved extreme points are of the

form upq, which strongly restricts their search (note that strongly exposed

points are always preserved extreme [8]), but we do not know whether the

same restriction applies to extreme points in general:

Question 2. If X is complete, are all extreme points of BF(X) of the form

upq?

The answer to Question 2 is also known to be positive in some particular

cases. Suppose X is compact, and let lip0(X) be the subspace of Lip0(X)

consisting of those functions f satisfying the condition: for every ε > 0 there

is δ > 0 such that |Φf(p, q)| < ε whenever d(p, q) < δ. We say that lip0(X)

separates points uniformly if there is a constant C ≥ 1 such that for any

p, q ∈ X there is f ∈ lip0(X) with L(f) ≤ C and |f(p)− f(q)| = d(p, q). If

this holds, then F(X) is isometrically isomorphic to lip0(X)∗ and Question

2 has a positive answer for this X [9, Theorem 3.3.3 and Corollary 3.3.6].

Applying Theorem 4.2, we summarize this as follows:

Corollary 5.2. If X is a compact pointed metric space such that lip0(X)

separates points uniformly, then the extreme points of BF(X) are precisely

the elements upq where p, q are distinct points of X such that d(p, q) <

d(p, r) + d(q, r) for all r ∈ X \ {p, q}.

The condition in Corollary 5.2 is not satisfied in general (for instance,

lip0(X) may be trivial), but it is known to hold for all compact Hölder spaces

and for the Cantor ternary set [9, Proposition 3.2.2]. More recently, A. Dalet

showed that it is also satisfied whenever the compact X is countable [1] or

ultrametric [2].



THE PRESERVED EXTREMAL STRUCTURE OF F(X) 15

Acknowledgements. The research of the second author was partially sup-

ported by MINECO grant MTM2014-57838-C2-1-P and Fundación Séneca,
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