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Abstract

This paper presents the non-linear modelling, based on first principle equations, for

a climatic model of a greenhouse and the estimation of the feasible parameter set

(FPS) when the identification error is bounded simultaneously by several norms.

The robust identification problem is transformed into a multimodal optimization

problem with an infinite number of global minima that constitute the FPS. For

the optimization task, a special evolutionary algorithm (ε−GA) is presented, which

characterizes the FPS by means of a discrete set of models that are well distributed

along the FPS. A procedure for determining the norm bounds, such that FPS 6= ∅,
is presented.
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1 Introduction

Climate control is increasingly necessary for precision agriculture that pro-

duces more and better crops. In recent years, it has become possible to begin

developing and applying systems with more sophisticated control strategies

- thanks to the application of modelling and identification techniques (Ro-

dríguez, Yebra, Berenguel and Dormido, 2002; Boaventura, 2003).

The problems involved in controlling greenhouses are strongly dependent on

the geographical area. Solutions that are valid in some regions must be adapted

or changed to fit others. More particularly, in Mediterranean countries the high

levels of radiation, temperature, and humidity during summer are factors that

differentiate this region from other European regions. Under these conditions,

conventional temperature control is insufficient and must be complemented

with humidity control. For instance, a sudden fall in humidity would produce

a high crop transpiration, followed by water stress that would damage crop

production and quality (Baille, Baille and Delmon, 1994).

Therefore, to keep both temperature and humidity inside a desired range, a

window opening and fog system must be correctly controlled and this creates

the need for multivariable controllers (Blasco, Martínez. Herrero, Ramos and

Sanchis, 2007). The required multivariable process is non-linear and influenced

by biological processes. Developing a suitable mathematical model, as well as

an adequate adjustment of the model parameters, is a complex task.

Because the process behaviour is incompletely known and that available data

is insufficient or unreliable, the identified parameters will contain uncertain-

ties. This factor must be considered when the model is used for prediction,
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controller design, and so on. The task of identifying the nominal model, and

its uncertainty, is called robust identification (RI).

Two different approaches are possible in RI: stochastic or deterministic. In

the first, the identification error (IE), meaning the difference between the pro-

cess output measurements and the model simulated outputs, is assumed to be

modelled as a random variable with several statistical properties. Under this

approach, it is possible to use classical identification techniques (Walter and

Pronzalo, 1997; Ljung, 1999) to obtain the nominal model and its uncertainty

- which is related to the covariance matrix of the estimated parameters. When

these assumptions do not work, the deterministic approach may be more ap-

propriate (Walter and Piet-Lahanier, 1990; Milanese, Norton, Piet Lahanier

and Walter, 1996; Reinelt, Garulli and Ljung, 2002), where the identification

error, although unknown, is assumed to be bounded.

The objective of the deterministic approach is to obtain the nominal model

and its uncertainty - or directly the feasible parameter set (FPS); i.e. the

parameter set that keeps the IE bounded for certain IE functions or norms

and their bounds.

When the model has linear parameters, the FPS is, if it exists, a convex poly-

tope. This polytope may be complex because the number of vertices can grow

exponentially as the number of observations increases, and so the complexity

involved in obtaining the polytope can be considerable. The polytope is often

approximated using orthotopes (Belforte, Bona and Cerone, 1990), ellipsoids

(Fogel and Huang, 1982), or parallelotopics (Chisci, Garulli, Vicino and Zappa,

1998); and these generally result in a more conservative characterization of the

FPS.
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When the model is non-linear, the FPS may be a non-convex, and even dis-

joint, polytope - and this makes it more difficult to find a tight characteriza-

tion of the FPS. Some techniques: such as interval computation (Walter and

Kieffer, 2003); support vector machine (Keesman and Stappers, 2004); signo-

mial programming (Milanese and Vicino, 1991); and others (see an overview

in Keesman (2003)) can be used. However, these techniques suffer limita-

tions (the type of function for bounding the IE, the inability to characterize

a non-convex or disjoint FPS), or their use is complicated when the model is

complex (non-differentiable with respect to its parameters, discontinuities in

parameters and/or signals, etc.).

To overcome these handicaps, a more flexible and general methodology for

characterizing FPS is presented. It can identify many processes and charac-

terize convex, non-convex, and even disjoint FPS. In addition, several norms

can be taken into account at the same time. This enables, for instance, bound-

ing the IE for each experimental sample and its integral simultaneously; as

well as the consideration of independent norms for each output. The practical

sense of simultaneous norms is justified: for example, it would be useful if the

model predictions attempt to satisfy a limited maximal error, (∞-norm) and -

at the same time - find a good average fitting between model and experiment

(absolute norm).

The proposed methodology is based on the optimization of a function that is

built from selected IE norms and bounds. This function may have the result

that in the global minima search space there are points belonging to the FPS

contour which could be used to characterize the FPS. This would be a multi-

modal function, which could be non-convex and/or present local minima, and

so classical optimizers (for example, SQP) are inappropriate.
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The FPS depends on the norms used to bound the IE; and especially, their

corresponding bounds. To select the bounds, a priori process knowledge and

noise characteristics must be used. However, this can be a difficult task, be-

cause the bound is often selected by taking into account the desired perfor-

mance for the model prediction. Low values for the bounds could result in

an empty FPS; whereas high values could provide a more conservative FPS;

and so IE bound selection is a critical decision.

A procedure which uses Pareto front information will be proposed to select

bounds and avoid an FPS = ∅. This front is obtained by the simultaneous

minimization of the IE norms, using a multiobjective optimization (MO).

This article will present the capabilities of the proposed methodology using

the RI of a non-linear greenhouse climate model with real data from a sum-

mer in the Mediterranean area. The main capabilites shown are: flexibility;

demonstrated by the fact that four norms are applied simultaneously on in-

door temperature and humidity; and power; demonstrated by the fact that

the model contains hard non-linearities.

The work is organized as follows. In section 2, the fundamentals of the ε-GA

multimodal optimization algorithm and the algorithm itself are presented. The

proposed RI methodology is shown in section 3. Sections 4 shows an example

of modelling and section 5 shows RI in a greenhouse climate model. The main

conclusions are presented in section 6.
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2 ε-GA evolutionary algorithm

ε-GA (Herrero, 2006) is an evolutionary strategy (ES) (Bäck and Schwefel,

1995), inspired by multiobjective EAs (MOEA) (Coello, Veldhuizen and Lam-

ont, 2002), and designed to optimize those multimodal mono-objective func-

tions which have an infinite number of global optima. ε-GA uses both an

archive A(t) to store a set of minimal solutions that take active part in the

algorithm evolution; and a "restart and phased" procedure (Ursem, 2002) to

avoid premature convergence. This final characteristic distinguishes it from

classical ES.

2.1 Related concepts of the ε-GA

The optimization problem consists of:

Definition 1 (Global minimum set). Given a finite L-dimensional domain

D ⊆ RL, D 6= ∅ and a function to optimize J : D →R, the set Θ∗ will be the

global minimum set of J if, and only if, Θ∗ contains all the global optima of

J .

Θ∗ := {θ ∈ D : J(θ) = J∗},

being J∗ a global minimum of J for the search space D.

From this definition, Θ∗ is assumed to be a unique set which can contain

infinite global optima and therefore, the best course of action is to obtain a

finite set Θ∗
ε , in the solution space D, as a discretized approximation to Θ∗.

To achieve this, the solution space is divided into a grid with εi width for each
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dimension i ∈ [1 . . . L] and the algorithm is forced to produce just one solution

for each box. So, thanks to the grid, the solutions in Θ∗
ε are forced to be well

distributed and to characterize Θ∗ (see figure 1).
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Figure 1. Multimodal optimization example. L = 1, D ∈ [0 . . . 1], n_box = 9 is the

number of boxes in which search space is divided and so the box width is ε = 1/9,

J∗ = 0.01 and Θ∗ := {θ ∈ [0.2 . . . 0.8]}. A possible Θ∗
ε is represented by means of ◦.

Note that inside the box, the solution nearest to its centre is preferred - so improving

the characterization.

Concepts such as approximation and discretization must be specified to obtain

Θ∗
ε , and so definitions of quasi-global minimum and box representation are

shown next.

Definition 2 (Quasi-global minimum) Given a finite domain D 6= ∅ and a

function to optimize J : D →R, the solution θ is considered as a quasi-global

minimum of J , if and only if,

J(θ) ≤ J∗ + δ,

being δ > 0 and J∗ the global minimum value of J .
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So, a global minimum solution is also a quasi-global minimum solution.

Definition 3 (Quasi-global minimum set). Given a finite domain D 6= ∅ and a

function to optimize J : D →R, the set Θ∗∗ will be the quasi-global minimum

set of J if Θ∗∗ contains all the quasi-global minimum solutions of J .

Θ∗∗ := {θ ∈ D : J(θ) ≤ J∗ + δ},

being J∗ a global minimum of J for the search space D and δ > 0.

Definition 4 (Box). Given a vector θ = [θ1 . . . θi . . . θL] ∈ D ⊆ RL and

the width box ε = [ε1 . . . εi . . . εL], its box is defined as the vector box(θ) =

[box1(θ) . . . boxi(θ) . . . boxL(θ)] where:

boxi(θ) =

⌊
θi − θmin

i

εi

⌋
, εi > 0 ∀i ∈ [1 . . . L].

So boxi(θ) ∈ [0 . . . (n_boxi − 1)], being n_boxi the number of divisions of the

grid in the dimension i

n_boxi =

⌈
θmax

i − θmin
i

εi

⌉
, (θmax

i − θmin
i ) ≥ εi

where θmax
i and θmin

i determine the limits of the solution space D.

Definition 5 (Box-representation). Given two vectors θ1, θ2 ∈ D, whose im-

ages in the space of the function J are J(θ1) and J(θ2) respectively, it can be

said that θ1 box-represents θ2 (denoted by θ1 ¹ θ2) for a certain εi > 0 if

box(θ1) = box(θ2) ∧ J(θ1) ≤ J(θ2).

Therefore, Θ∗
ε can be defined as:

Definition 6 (ε-global minimum set). Given a solution set Θ in the solution
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space, the set Θ∗
ε ⊆ Θ will be an ε global minimum set of Θ, if and only if,

(1) It only contains quasi-global minimum solutions of Θ

Θ∗
ε ⊆ (Θ ∩Θ∗∗).

(2) Any vector in Θ ∩Θ∗∗ has a box-representation in Θ∗
ε , that is:

∀θ ∈ Θ ∩Θ∗∗, ∃θ∗ ∈ Θ∗
ε : θ∗ ¹ θ.

Therefore, given a set Θ, Θ∗
ε must not be a unique set, because global minimum

solutions of Θ which share the same box can box represent each other.

Definition 7 (Φε(Θ) set). The set of all the ε global minimum sets of Θ will

be called as Φε(Θ).

With these definitions, it is possible to establish the procedure to manage

the contents of the archive A(t) (where Θ∗
ε is stored). So, it is necessary to

know the global minimum J∗, although this is not always possible. The best

approximation to J∗ that the algorithm can provide is Jmin
Θ = minθ∈Θ J(θ).

Definition 8 (Inclusion of θ in A(t)) Given a vector θ in the solution space,

δ (the parameter related to the quasi-global minimum solution, see definition

2) and the archive A(t), θ will be included in the archive if, and only if,

J(θ) ≤ Jmin
A(t) + δ (1)

∧
¬∃θ∗ ∈ A(t) : θ∗ ¹ θ. (2)

Being Jmin
A(t) the best solution included in A(t). At the same time, the inclusion

of θ in the archive could modify Jmin
A(t) , and so all the solutions θ∗ ∈ A(t)

satisfying the following condition will be removed from A(t).
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J(θ∗) > Jmin
A(t) + δ (3)

∨
θ ¹ θ∗. (4)

Due to the inclusion procedure of the definition 8 the contents of A(t) converge

towards an ε-global minimum set (see demonstrations in Herrero (2006)).

Finally, the effect of parameters εi and δ is described. Coefficients εi show the

desired discretization degree to apply to Θ∗
ε and it is directly related to the

parameter physical meaning which defines the search space dimensions. The

lower εi is, the higher n_boxi, and the solution numbers |Θ∗
ε | are.

|Θ∗
ε | ≤

L∏

i=1

n_boxi. (5)

The parameter δ plays two roles related to convergence and diversity:

• A value δ ' 0 improves the convergence and Θ∗
ε ⇒ Θ∗, but worsens the

approximation of Θ∗ and so its characterization.

• On the contrary, a too high value of δ could cause the quasi-global minimum

solutions of Θ∗
ε to be distorted Θ∗ instead of characterizing it.

So, a good procedure to choose δ consists of starting from a value δ = δini

and modifying it (for instance, by using a decreasing exponential function)

towards a value δ = δfin that is low enough to make the quasi-global minimum

solutions be close to the global minimum solutions. Since δ will be decreasing,

the properties of the inclusion procedure (definition 8) will remain unaltered

and A(t) ∈ Φ(Θ).
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2.2 ε-GA description

The objective of the ε-GA algorithm is to provide an ε-global minimum set,

Θ∗
ε . ε-GA uses the populations P (t), A(t) y G(t).

(1) P (t) is the main population and it explores the search space D. The

population size is NindP .

(2) A(t) is the archive where Θ∗
ε is stored. Its size NindA is variable but

bounded (equation (5)).

(3) G(t) is an auxiliary population used to store the new individuals gener-

ated at each iteration by the algorithm. The population size is NindG.

The pseudocode of the ε-GA algorithm is given by:

1. t:=0

2. A(t):=∅
3. P(t):=ini_random(D)

4. eval(P(t))

5. A(t):=store(P(t),A(t))

6. mode:=exploration

7. while t<t_max do

8. G(t):=create(P(t),A(t))

9. eval(G(t))

10. A(t+1):=store(G(t),A(t))

11. P(t+1):=update(G(t),P(t))

12. mode:=determinemode(P(t))

13. t:=t+1

14. end while
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The main steps of the above algorithm are detailed below:

Step 3. Population P (0) is initialized with NindP individuals, randomly cre-

ated inside the search space D.

Steps 4 and 9. Function eval calculates the value of the fitness function J(θ)

for each individual θ from P (t) (step 4) or G(t) (step 9).

Step 12. The function determine mode selects the algorithm operation mode

between the exploration and exploitation modes. These modes affect how

new individuals are created (function create). When the population P (t)

has converged, the exploitation mode must be selected, by using the dif-

ference between the best value Jmin
P (t) = minθ∈P (t) J(θ) and the worst value

Jmax
P (t) = maxθ∈P (t) J(θ) at iteration t. If Jmax

P (t) − Jmin
P (t) < δ the exploitation

mode 1 will be selected, on the contrary, the exploration will be selected.

Step 5 and 10. Function store analyzes whether each individual of P (t) (step

5) or G(t) (step 10) must be included in archive A(t). The individual will have

to satisfy the inclusion condition (definition 8), and according to this definition

other individuals will be removed. When including a new individual θ1 in the

archive, if its box (box(θ1)) is occupied by another individual θ2 from the

archive, that is box(θ1) = box(θ2), and J(θ1) = J(θ2), the individual nearest

to the centre of the box will be included 2 .In this way, a better distribution of

the solutions inside the archive is achieved.

Step 8. Function create creates new individuals and stores them in population

G(t) using the following procedure until G(t) is full:

1 If Jmin
P (t) = J∗ all the individuals in P (t) will be quasi-global minimum solutions.

2 Strictly according to definition 8, the individual θ2 will not be included.
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(1) Two individuals are randomly selected, θp1 from P (t), and θp2 from A(t).

(2) If the algorithm operates in exploration mode θp2 is not altered, whereas

in exploitation, it is mutated according to θp2
i = θp2

i + N(0, βini).

(3) A random number u ∈ [0 . . . 1] is selected. If u > Pc/m (crossover-

mutation probability) step 4 is taken, otherwise, step 5.

(4) θp1 and θp2 are crossed over by the extended linear recombination tech-

nique and two new individuals θh1 and θh2 are created 3 :

θh1
i = αi(t) · θp1

i + (1− αi(t)) · θp2
i , θh2

i = (1− αi(t)) · θp1
i + αi(t) · θp2

i .

(5) θp1 and θp2 are mutated by random mutation with gaussian distribution 4 .

θh1
i = θp1

i + N(0, β1i(t)), θh2
i = θp2

i + N(0, β2i(t)).

Step 11. Function update updates P (t) with individuals from G(t). One in-

dividual θG from G(t) will be inserted in P (t) replacing θp, if J(θG) < J(θp)

being θp = arg maxθ∈P (t) J(θ) so, the contents of P (t) are converging.

Finally, when t = tmax, the individuals included in the archive A(t) will be

the solution Θ∗
ε to the multimodal optimization problem, being Θ the set of

individuals generated by steps 3 and 8, that is,

Θ = P (0)
⋃


 ⋃

0≤τ<tmax−1

G(t)


 , Θ ∩Θ∗ 6= ∅.

3 αi(t) is a random value with uniform distribution ∈ [−d(t), 1 + d(t)] and

d(t) is a parameter tuned by a decreasing exponential function. d(t) =

dini√
1+((dini/dfin)2−1)(t/(tmax−1))

.
4 Variances β1i(t) and β2i(t) are expressed in percentage of (θi max − θi min) and

are tuned by a function similar to the function used for tuning d(t).
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3 RI problem statement

The technique is based on the acceptance of an initial model structure, for

instance, a series of first-order differential equations which can be obtained

from physical principles.

ẋ(t) = f(x(t),u(t), θ) (6)

ŷ(t, θ) = g(x(t),u(t), θ) (7)

where: f(.), g(.) are the non-linear functions of the model; θ ∈ D ⊂ RL is

the vector 5 of unknown model parameters and x(t) ∈ Rn, u(t) ∈ Rm and

ŷ(t, θ) ∈ Rl are the vector of model states, inputs, and outputs respectively.

Normally, the objective is to look for the best parameters, such as the model

outputs (obtained by simulation using these parameters), which are as similar

as possible to the real process parameters (obtained by experiments). This

objective is achieved by a minimization of a function which penalizes the IE.

Definition 9 (Identification Error) The identification error ej(θ) for the out-

put j ∈ [1 . . . l] is stated:

ej(θ) = yj − ŷj(θ),

where: yj = [yj(t1), yj(t2) . . . yj(tN)] are the process output j measurements 6

when the inputs U = [u(t1),u(t2) . . .u(tN)] are applied to the model and

ŷj(θ) = [ŷj(t1, θ), ŷj(t2, θ) . . . ŷj(tN , θ)] are the simulated model output j when

5 θ, x(t), u(t) e ŷ(t, θ) are all column vectors
6 y(t) ∈ Rl is the column vector of process outputs.
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the same inputs U are applied to the model 7 .

It is assumed that the IE can be bounded by several norms 8 simultaneously.

Definition 10 (IE norm) Let Ni denote the p norm of the identification error

vector for the output j as:

Ni(θ) = ‖ej(θ)‖p, i ∈ A := [1, 2, . . . , s],

where s is the number of norms 9 .

Therefore, there exists an FPSi consistent with each Ni and ηi bound

FPSi := {θ ∈ D : Ni(θ) ≤ ηi, ηi > 0}.

and its boundary

∂FPSi := {θ ∈ D : Ni(θ) = ηi, ηi > 0}.

And therefore, the FPS for all the simultaneous norms is stated as:

FPS := {⋂

i∈A

FPSi} = {θ ∈ D : ∀i ∈ A,Ni(θ) ≤ ηi, ηi > 0}.

and its boundary

∂FPS := {θ ∈ D : ∃i|Ni(θ) = ηi ∧Nj(θ) ≤ ηj, ηi, ηj > 0, i, j ∈ A}

To characterize the FPS, and especially its boundary ∂FPS, a function J(θ)

7 N is the measurements number of each output and input. The interval between

measurements is constant ti = i · Ts, being Ts the sample time.
8 In a more general case, it would be possible to use bounds on any function.
9 Some typical norms are absolute, infinite, or Euclidian - although any norms (see

(Herrero, 2006) and its references) and even functions could be used.
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is stated in such a way that its global minima constitute the ∂FPS and the

FPS constitutes quasi-global minimum solutions.

J(θ) :=





∑
B Ji if B(θ) 6= ∅

min(δ,
∏

A Ji) if B(θ) = ∅

where: B(θ) := {i ∈ A : Ni(θ) > ηi}, and Ji(θ) = |Ni(θ)− ηi

∣∣∣.

Some of the properties of function J(θ) are:

(1) B(θ) = ∅ when θ ∈ FPS. Ji(θ) = 0 if θ ∈ ∂FPSi and J(θ) = 0 if

θ ∈ ∂FPS.

(2) J(θ) < δ when θ ∈ FPS, therefore, it is ensured that these solutions are

quasi-global minimum solutions and they will be never removed from A(t)

by algorithm ε-GA. In addition, they will not prevail over the solutions

θ ∈ ∂FPS either, and so boundary characterization will be a priority.

With regard to the bounds selection avoiding an FPS = ∅ when a unique norm

N1(θ) is used, some authors (Walter and Piet-Lahanier, 1991) recommend

selecting the bound by the N1(θ) minimization, that is the lower bound ηmin
1 =

minθ N1(θ) and an FPS 6= ∅ is satisfied if η1 ≥ ηmin
1 .

However, when several norms are simultaneously taken into account, the se-

lection of ηi ≥ ηmin
i (being ηmin

i = minθ Ni(θ)) does not imply that FPS 6= ∅
as shown later. In this work, we propose an alternative to selecting the ηi

bounds, by using the simultaneous optimization of the Ni norms, through the
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following multiobjective optimization problem 10 :

min
θ∈D

J(θ) = J(θ) = {N1(θ), N2(θ), . . . , Ns(θ)}

The optimization problem solution is the Pareto optimum set Θ̂P , or the

optimum projection models for the various norms simultaneously 11 .

Once the optimization problem is solved, it is possible to use the Pareto front

information J(Θ̂∗
P ) for selecting the ηi bounds as shown next. Figure 2 shows

the case in which two norms N1 and N2 of the identification error are used. It

can be seen that a piece of the Pareto front J(Θ̂P ), that depends on the se-

lected bounds η1 and η2 and corresponds to the restricted projection optimum

models J(Θ̂Pr) stands out in the figure.

N2

N1

J( )qN1

J( )qN2

h2

h1

h
min

2

h
min

1

J( )QPr

h1

h2

Figure 2. The minimum bounds ηmin
1 and ηmin

2 and J(Θ̂Pr) which depend on the

selected bounds η1 > ηmin
1 and η2 > ηmin

2 .

10 The computational burden is reduced as only a single multiobjective optimization

is made, instead of s independent optimizations of the corresponding Ni (i ∈ s).
11 The algorithm ε↗-MOGA (Herrero, Blasco, Martínez and Ramos, 2005) is used to

determine Θ̂P . The algorithm solution consists of a finite set Θ̂∗
P of optimum models

distributed along the Pareto front. Since Θ̂∗
P contains the Pareto front ends, it also

contains the independent projection estimations θ̂Ni = arg minθ∈FPS Ni.
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Therefore, it is sufficient to select ηi in such a way Θ̂Pr 6= ∅ to ensure that

FPS 6= ∅, since Θ̂Pr ⊂ FPS. The figure shows that the selected bounds η1

and η2 (η1 > ηmin
1 and η2 > ηmin

2 ) achieve Θ̂Pr 6= ∅. The dark zone (bounded

by the bounds η1, η2 and the Pareto front itself) contains J(FPS) in the

space (N1, N2). If bounds η̄1 and η̄2 (η̄1 > ηmin
1 and η̄2 > ηmin

2 ) had been used,

Θ̂Pr = ∅ and therefore FPS = ∅ there would have been no dark zone. So it is

proved that η̄i > ηmin
i is an insufficient condition for FPS 6= ∅.

3.1 FPS validation

Once the feasible parameter set FPSide is determined via RI, using the exper-

imental data Ωide = {Yide,Uide}, the s norms Ni and their bounds ηi must be

validated by using different experimental data Ωval = {Yval,Uval}.

One method of validation consists of checking whether the FPSide contains

models that are consistent with new data Ωval. That means that the FPS

obtained by process identification with data Ω = {Ωide, Ωval} would be FPS 6=
∅. In figure 3 two cases are shown. In the first case, there are models in the

FPSide that also belong to the FPSval (set consistent with Ωval and with the

same s norms Ni and bounds ηi used for FPSide) and, therefore, the FPSide

is validated; and in the second case, this does not occur and so the FPSide is

invalidated.

If the FPSide is validated, the final FPS will be FPS = FPSide
⋂

FPSval.

It is not necessary to obtain the FPSval, but it is necessary to maintain in

the FPS those models from FPSide which are consistent with the data Ωval.

Since the finite set FPS∗ide is available, obtaining the FPS∗ is easy, because
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Figure 3. Validation process. On the left, the FPSide is validated, since FPS 6= ∅.
On the right, the FPSide is invalidated since FPS = ∅.
it is only necessary to simulate the models θ ∈ FPS∗ide (using Ωval) and to

choose those which satisfy Ni(θ) ≤ ηi ∀i ∈ A.

If the FPSide is invalidated, several actions could be considered: increase some,

or all, of the ηi bounds until the FPSide can be validated with data Ωval; or to

modify the model (for instance, by adding part of the non-modelled dynamics)

until the FPSide is validated. In this second action, it is not necessary to

increase the ηi bounds and so model prediction performance is not deteriorated

- as occurs with the first action. However, the model in the second case is more

complex.

4 Greenhouse model

For some time now, agricultural engineers have been working to perfect mod-

els of the physical and physiological processes that take place inside green-

houses based on mass and energy balances, including the biological behaviour

of plants. In (Stanghellini and de Jong, 1995) there is a groundbreaking study

on the description of a model of the humidity in a greenhouse that is based on
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obtaining a first principles non-linear model of the humidity by defining the

balance of condensation, ventilation, and transpiration flows. In this last case,

the Penman-Monteith equation (Monteith, 1973) is used to incorporate the

saturation and radiation deficit measurements so they can be evaluated. This

model is still utilised today to design the ventilation systems in greenhouses

(Seginer, 2002). The humidity model is complemented by energetic balance

models at different levels. Again, a first principles equation is constructed to

include the balance of thermal flows associated with the ventilation, convec-

tion, conduction, and latent heat, due to plant transpiration (Jolliet and Bai-

ley, 1992; Baille, Baille and Delmon, 1994) that define temperature evolution.

Equations can be defined for the temperature evolution in each greenhouse,

depending on their different volumes and floor areas, and the interactions

among them. The model can vary in its complexity depending on the number

of volumes selected, which give rise to a higher, or lower, number of differential

equations (Blasco, 1999; Rodríguez, 2002).

In this study, the greenhouse is considered to be a volume of air that is de-

limited by the walls, the roof, and the floor, so establishing two subsystems:

namely, the volume of air and the floor, this latter acting as a thermal mass

(Albright, Seginer, Marsh, and Oko, 1985). Some hypotheses are considered

(Rodríguez, 2002): the walls and the roof are homogeneous material with in-

significant heat capacity and constant optic properties; the crop density is

homogeneous and its heat capacity is insignificant too; the air is homogeneous

and is considered inert to radiation process; and the approximation presented

in (Boulard and Draoui, 1995) is used to calculate the renewal air flow.

The state variables that describe the climatic behaviour are temperature T̂i

(̂. is used for the model output variables) and humidity ĤRi (or absolute
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humidity Hi) in the air and floor temperature Tm (called the thermal mass

temperature).

The water mass balance and air energy balance establish the first two equa-

tions of state, and the third is set by the energy balance over thermal mass.

ρvi
dHi

dt
= Fv + Csat(E + fog), (8)

viρcp
dT̂i

dt
= Qs −Qcc + Qm −Qv − Csat(Qe + Qn) + W. (9)

AiCm
dTm

dt
= Qsm −Qm −Qf . (10)

where: the inside temperature T̂i and the temperature of the thermal mass Tm

are in oC; the absolute inside humidity Hi is in KgH2O/Kgair; the volume of

the greenhouse vi is given in m3 and the area Ai in m2; the density of the air ρ

is in Kgair/m
3; specific heat of the air cp is in JKg−1 oC−1; the air saturation

coefficient Csat is dimensionless and the heat capacity of the thermal mass Cm

is given in Jm−2 oC−1.

The flows in the mass balance are: (all in KgH2O/s): Fv; renovation flow

due to the window opening; E, crop evapotranspiration, which is estimated

from the Penman-Monteith equation (Monteith, 1973) and has important non-

linearities; and fog, which is the water produced by the fog system.

The energy balance terms are (all in W ): Qs, solar energy supplied to the air;

Qcc, energy exchange due to conduction and convection; Qm, energy exchange

with the thermal mass; Qe, energy loss due to crop evapotranspiration; Qn,

energy loss due to fogging; Qv, energy exchange due to ventilation and W ,

energy from heating system.

The energy balance terms are (all in W ): Qm, energy exchanges between the
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thermal mass and the inside air; Qsm, energy stored by the thermal mass

during the day and Qf , losses into the ground.

The output variables are: inside humidity ĤRi in % and inside temperature

T̂i in oC. The input variables that can be manipulated are: window opening

control MVα ∈ [0, 100]%; heating control MVw ∈ [0, 100]% and fog control

MVfog ∈ [0, 100]%. Figure 4 shows an input/output model diagram.

Greenhouse

Climate Model

Inside Temperature

Inside Humidity

So
la

r 
R
a

d
ia

c
tio

n

S
o

W
in

d
 S

p
e

e
d

V

O
u
ts

id
e

 T
e

m
p

e
ra

tu
re

T
o

O
u
ts

id
e

 H
u
m

id
ity

H
R

o

Window

Mva

Fog System

MVfog

Heat System

MVw

Ti

HRi

Figure 4. Greenhouse climatic model.

Measurable disturbances are: solar radiation So in W ·m−2; outside tempera-

ture To in oC; outside humidity HRo in % and wind speed V in m/s.

As can be seen in Appendix 7.1, the model has many parameters. Some are

easy to determine, for example, the volume and the area of the greenhouse,

but others, such as the maximum stomatal conductance are not so simple.

The complexity of the model and the large number of unknown parameters,

together with the fact that some vary over time, make them difficult to handle.
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5 Greenhouse Robust Identification

5.1 Planning the experiments

The operating conditions of a greenhouse are potentially altered by the ef-

fects of disturbances, mainly due to solar radiation and outside temperature.

These disturbances follow a typical behaviour that is repeated daily and which

depends largely on the time of year. Thus, it is impossible to give a single

set of parameters θ̂ which enables the reproduction of greenhouse behaviour

throughout the year. In Mediterranean areas, greenhouse control in summer

is a challenging problem. This model will therefore be adjusted to cover the

dynamics found in the summer period (day and night). It is worth noting that

at this time of year heating is not used, and so this actuator is not taken into

account.

To simplify identification, some authors (Rodríguez, Yebra, Berenguel and

Dormido, 2002) distinguish between day and night, and propose particular

conditions to independently identify some of the model parameters. This work

does not use these simplifications and proposes an identification of the pa-

rameter model and setting uncertainties using daily data (no requirement for

special experiments) that will facilitate practical application.

The experiments will last for a multiple 24-hour period. The more days used,

the more accurately the model will represent the period. A large number of

days, however, makes the simulations costly to perform and the time required

to fit the model increases considerably. This approach tries to simulate a real

application where a model could be adjusted with daily data in a reasonable
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time at the beginning of the summer and subsequently used during all of the

summer for control. This is why, in this case, and as a compromise, two (non-

consecutive) days were chosen. This may seem too little data for identification,

but remember the RI approach is deterministic and it is not necessary to

establish statistical properties of the IE (which would require more data).

For the identification task, data from the 11th and 15th June 2002 was used 12

(see figure 11). Although this data is restricted to two specific days, it will be

shown that it is possible to obtain an FPS validated with data for the days

of 20th June, 28th July, 22nd August and 8th September 2002 - with very

different conditions (see figure 12).

5.2 Norms and bounds selection

Before selecting norms and bounds to use in RI, the following aspects need to

be dealt with: the model adaptation; selection of the parameters to be identi-

fied; the procedure for establishing the initial conditions; and the optimality

criteria to be applied.

With regard to the model adaptation, in the particular case of the greenhouse

climatic model (figure 4), the state equations (8), (9) and (10) are adapted

directly to the generic equation (6).

In relation to the parameter selection, for the case of hydroponic cultivation

of roses in a greenhouse, the candidate set of parameters to be estimated (θ)

is associated with the specific growing of rosebushes and with parameters that

12 The sampling period was 15 seconds, which is more than enough to capture the

dynamics of the processes taking place in the greenhouse.
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are associated with different heat transfer constants and reference tempera-

tures inside the greenhouse. The meaning of each parameter to be identified,

together with its adjustment range, can be consulted in the Notation section

in the appendix. The physical sense of the parameters (which permits an an-

alytical approximation of values) together with previous identification works

(Martínez, Blasco, Herrero, Ramos and Sanchis, 2005) have enabled us to sug-

gest these approximate ranges (even taking into account the simplifications

made in the model), and as a result, the search area is drastically reduced.

Thus, adapting the generic problem in state variables to the greenhouse model

results in:

θ = [gwsmax gwsmin k L gwb τ a Go Ac Cm hm Tref αm ka fogmax]
T ,

u(t) = [MVα MVfog So To HRo V ]T , ŷ(t) =
[
T̂i ĤRi

]T
,x(t) =

[
Hi T̂i Tm

]T
.

The states will be initialised using real variable measurements. The first state

variable Hi can therefore be initialised directly from the value of the outputs

Ti(0) and HRi(0) in the initial time, as indicated in Appendix 7.2 (equation

(15) & (16)). The second state variable T̂i is at the same time an output

variable, and it can therefore be initialised with the value of this output in

the initial moment Ti(0). Initialisation of the third state variable Tm is not

so straightforward because there is no sensor to measure it. The initial value

of Tm(0) will be estimated using information from inputs and outputs in the

initial moment and the equation (9) for the energy balance in the air. Since

the simulations are started at night (and hence So = 0) and without activating

the fogging system, the equation would be as follows:

viρcp
dTi(0)

dt
= −Qcc(0) + Qm(0)−Qe(0)−Qv(0).
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which, on expansion, would give:

viρcp
dTi(0)

dt
= −AiAc(Ti(0)− To(0)) + Aihm(Tm(0)− Ti(0))− λE(0)

− ρcpAV (0)(aα + Go)(Ti(0)− To(0)).

It can be assumed that dT̂i(0)
dt

= 0 since it varies very little at night (for the

summer days dTi(0)/dt ≈ 0.1 · 10−3 Cs−1 was used in the identification), so

that Tm(0) was obtained in the following way:

Tm(0) =
1

Aihm

(
AiAc(Ti(0)− To(0)) + λE(0)

+ρcpAV (0)(aα + Go)(Ti(0)− To(0))
)

+ Ti(0),

where:

E(0) =
Ai2Lρ cp Di(0) gwb(

∆ + γ
(
1 + gwb

gwsmin

))
λ

.

Four IE norms will be taken into account simultaneously. ∞-norm N1 and

absolute norm N3 applied to inside temperature and∞-norm N2 and absolute

norm N4 applied to inside humidity. In this way, integral error and sample error

will be bounded throughout the data experiment 13 .

N1 = ‖e1(θ)‖1, N2 = ‖e2(θ)‖1, N3 = ‖e1(θ)‖∞, N4 = ‖e2(θ)‖∞. (11)

13 The selected norms influence the FPS (Bai, Nagpal and Tempo, 1996), however

their relation is difficult to discover and more so when non-linear models are used;

and so the norms have been selected in such a way that they present a practical

meaning related to the performance prediction for the IE.
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where e1(tj, θ) = Ti(tj)− T̂i(tj, θ), e2(tj, θ) = (HRi(tj)− ĤRi(tj, θ))kj and:

kj =





−0.02 ∗ ĤRi(tj) + 2.2 if ĤRi(tj) ∈ [60 . . . 100]%

1 if ĤRi(tj) ∈ [0 . . . 60[%

.

The purpose behind using kj is to weigh any errors that are produced for

higher levels of humidity, so giving them a lower relative importance. The

reason for this is related with the commercial humidity sensor used, since its

accuracy drops notably for these values (due to condensation that is usually

produced on the sensor because of the lack of ventilation). Figure 5 shows

the relationship between Kj and ĤRi(tj). It can be observed that the errors

produced for relative humidity values of around 100 % are weighted by 0.2;

that is to say, they have a lower relative importance than those that occur for

humidity values of 60 %.

60% 100% HR(t )i j

kj

1

0.2

Figure 5. kj = f(ĤRi(tj)). ĤRi(tj) inside relative humidity at sample tj .

To select the norm bounds η1, η2, η3 and η4 the Pareto front information from

the following multiobjective optimization problem is considered:

min
θ∈D

J(θ) = {N1, N2, N3, N4}. (12)

Figure 6 shows the Pareto front corresponding to the projection optimum

models Θ̂∗
P .
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Figure 6. Projections of the Pareto front J(Θ̂∗
P ) on different planes (N1(θ), N2(θ)),

(N1(θ), N3(θ)), (N1(θ), N4(θ)), (N2(θ), N3(θ)), (N2(θ), N4(θ)) and (N3(θ), N4(θ)).

From Pareto front analysis it is possible to obtain the minima:

ηmin
1 = min N1(θ) = 0.483oC, ηmin

2 = min N2(θ) = 1.51%,

ηmin
3 = min N3(θ) = 1.86oC, ηmin

4 = min N4(θ) = 10.13%.

and therefore the ideal point Jideal will be

Jideal = {ηmin
1 , ηmin

2 , ηmin
3 , ηmin

4 } = {0.483, 1.51, 1.86, 10.13}.

An ideal model would be determined as:

θideal = arg min
θ∈Θ̂∗

P

||J(θ)− Jideal||2 = [0.010078, 0.002865, 0.41594, 0.72374,

0.016825, 0.30016, 0.0011995, 0.00025871, 19.519, 1.8596e5,

9.4531, 18.732, 0.012533, 1.4839, 0.0019266], (13)

J(θideal) = {0.623, 2.16, 2.12, 12.74}. (14)
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Bounds η1 = 0.8, η2 = 3, η3 = 3 and η4 = 20 are selected from the Pareto

front analysis in order to hold the FPSide model prediction errors not greater

than 0.8oC and 3% and their average values not greater than 3oC and 20%.

So Θ̂Pr 6= ∅ and therefore FPS 6= ∅ 14 .

5.3 Robust identification

There are some parameters with low sensitivity, and so the FPSide will only

be associated with some of them. Therefore, to select these parameters a sen-

sitivity analysis will be made as follows. Taking θideal as the reference model,

each parameter is modified along its search space and the variation of each

norm is evaluated. Table 1 shows the sensitivity analysis results where it is

possible to check that gwsmax, gwsmin, k, Go, Cm, Tref , αm and ka parameters

have lower sensitivity than the other parameters. Consequently, their value

will be matched with the correspondent parameter value of the ideal model,

and hence their uncertainty will not be determined. Thus, the search space of

FPSide and the number of models that FPSide it contains will be reduced.

The FPS∗ide is determined next by ε−GA with the following parameters:

• search space D is associated with the limits of the following parameters

θ = [L, gwb, τ, a, Ac, hm, fogmax]
15 which can be checked in appendix 7.1.

14 With linear models minimum bound ηmin
1 , ηmin

2 , ηmin
3 , ηmin

4 will be greater and

probably with η1 = 0.8, η2 = 3, η3 = 3 and η4 = 20 the FPS = ∅. Therefore, a
non-linear model is necessary for an adequate approximation with these bounds.
15 Some of these parameters are time variable. For example: the leaves area index

L (related to crop state); transmission coefficient of the greenhouse τ (related to

cover dirtiness); maximum water rate of fog system fogmax (since lime modifies fog
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• tmax = 40000 and ε = [0.19, 0.0098, 0.08, 0.00099, 2.8, 5.8, 0.00398] so the

grid contains 10 divisions per dimension for L, τ , a and Ac (because they

have high sensitivity) and five for gwb, hm and fogmax.

• NindP = 100, NindG = 4, Pc/m = 0.1, dini = 0.25, dfin = βfin = 0.1

and βini = 10. δ(t) is tuned as δ(t) = δ′(t) · J̄ , in order to be useful for

other optimization problems, where J̄ is the average J for all the individu-

als inserted in the population P (t) during the optimization process. So an

average estimation of function J is obtained and δ is related to the opti-

mization problem 16 . δ′(t) is determined by:

δ′(t) =
δini√

1 +
((

δini

δfin

)2 − 1
)

t
(tmax−1)

, δini = 0.1, δfin = 0.01.

Figure 7 shows the ε-GA optimization process result, i.e. FPS∗ide. The FPSide

has been characterized by 4208 models and the average J(∂FPS∗ide) is 0.0019,

which shows the good algorithmic convergence (the ideal average J(∂FPS∗ide)

would be 0). The evaluation number of J(θ) function was 160100, that is,

approximately the eighth part of what would have been necessary if J(θ) had

been evaluated in each box of the grid 17 (exhaustive search).

Figure 8 shows the Yide data, and the envelope generated by the FPS∗ide. It

can be seen that the envelope captures the real data Yide(t).

Figures 9 and 10 show the Yval1 . . . Yval4 data with the envelope from FPSide.

system efficacy); etc.
16 Only those values inserted in P (t) lower than J̄ are taken into account to ensure

that δ(t) never increases.
17 To evaluate 160,100 times the J(θ) function took four hours, whereas approx-

imately 32 hours would have been necessary with an exhaustive search and the

FPSide characterization would have been worse.
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There are 16 models consistent with Ωval1, five with Ωval2, 51 with Ωval3 and

with Ωval4, so FPSide is validated.

6 Conclusions

A methodology, based on a specific genetic algorithm ε−GA, has been devel-

oped to find the feasible parameter set (FPS) of a non-linear model under

parametric uncertainty. That robust identification problem is formulated by

assuming, simultaneously, the existence of several bounds in identification er-

ror. The algorithm presents the following features:

• Assuming parametric uncertainty, all kinds of processes can be identified if
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Figure 9. Yval1(t), Yval2(t) and the FPS∗ide models envelope.
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Figure 10. Yval3(t), Yval4(t) and the FPS∗ide models envelope.

their outputs can be calculated by model simulation. Differentiability with

respect to the unknown parameters is unnecessary.

• Because more than one norm is taken into account at the same time, the

computational cost is reduced as various FPSi intersections are implicitly

performed.

• Non-convex even disjoint C(FPS) can be calculated.

• Since FPS is approximated by neither orthotopes nor ellipsoids, a non-

conservatism is provided.

An intuitive procedure to help to select the bounds ηi associated with Ni(θ)

norms so that FPS 6= ∅ has been presented. This procedure uses the infor-

mation that produces the Pareto front obtained when the Ni(θ) norms are

minimized simultaneously in a multiobjective optimization problem.
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The principal advantages of the RI methodology presented are flexibility and

power.These advantages have been demonstrated through the RI of the non-

linear greenhouse climate model presented with real data from a summer in

the Mediterranean area. This methodology has enabled the registration of the

FPS associated with seven unknown model parameters when four norms are

applied simultaneously on inside temperature and humidity. To solve this RI

problem with other methodologies implies a more difficult task as a conse-

quence of the model non-linearities and norm chosen.

Future work will use a model of the FPS in a predictive control algorithm

where FPS will produce an envelope of future prediction (similar to those of

figures 8, 9 and 10). The controller objective will be to keep both temperature

and humidity envelopes inside the desired range and reduce energy and water

consumption as in (Blasco, Martínez. Herrero, Ramos and Sanchis, 2007).
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7 Appendix

7.1 Notation

Range of possible values are indicated for identifiable parameters. Exact values

are indicated for constant or known parameters.
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A: Window area, 130 m2

Ac: Loss coefficient of conduction and convection, [2, 20]

Ai: Greenhouse surface area, 240 m2

a: Constant for renewal volumetric flow, [0.0005, 0.01]

Cm: Thermal mass heat capacity, [100000, 300000] J oC−1 m−2

cp: Air heat capacity, 1003 J Kg−1 oC−1

Csat: Air saturation coefficient, dimensionless

Di: Air water vapour deficit, KPa

E: Crop evapotranspiration, KgH2O/s

Fv: Water rate in the air renewal flow, KgH2O/s

fog: Water rate of fog system, KgH2O/s

fogmax: Maximum water rate of fog system, [0.001, 0.005] KgH2O/s

Fv: Water rate in the air renewal flow, KgH2O/s

G: Renewal air flow, m3/s

Go: Losses of renewal air flow, [0.0005, 0.01]

gwb: Boundary-layer conductance, [0.001, 0.05] m/s

gws: Stomatal conductance, m/s

gwsmax: Maximum stomatal conductance, [0.01, 0.03] m/s

gwsmin: Minimum stomatal conductance, [0.0001, 0.005] m/s

hm: Conductivity coefficient between air and thermal mass, [1,20] W m−1 o K−1

Hi: Inside absolute humidity, KgH2O/Kgair

Ho: Outside absolute humidity, KgH2O/Kgair

Hsat: Absolute saturation humidity, KgH2O/Kgair

ĤRi: Inside relative humidity, %

HRo: Outside relative humidity, %

k: Extinguishing coefficient of radiation, [0.1, 0.7]

ka: Conductivity coefficient between thermal mass and ground, [0.5, 10]
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W m−1 o K−1

L: Leaves area index, [0.5, 2] m2
leaves/m

2
ground

MVα: Windows opening manipulated variable, %

MVfog: Fog system manipulated variable, %

MVW : Heating system manipulated variable, %

P : Atmospheric pressure, 98.1 KPa

psat: Saturation pressure, KPa

Qcc: Energy exchange by conduction and convection phenomena, W

Qe: Energy loss due to crop evapotranspiration, W

Qf : Energy loss through ground, W

Qm: Energy exchange with thermal mass, W

Qn: Energy loss by nebulization, W

Qs: Solar energy supplied to air volume, W

Qsm: Energy stored by the thermal mass during the day, W

Qv: Energy exchange due to window ventilation, W

Rn: Solar radiation absorbed by the crop, W/m2

So: Solar radiation, W/m2

T̂i: Inside temperature, oC

Tm: Thermal mass temperature, oC

To: Outside temperature, oC

Tref : Ground temperature at reference depth, [10, 20] oC

V : Wind speed, m/s

vi: Greenhouse volume, 850 m3

W : Energy from heating system, W

Wmax: Maximum power of heating system, 5000 W

zref : Reference depth, 6 m

α: Opening window angle, o
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αm: Rate of absorbed heat by thermal mass, [0.01, 0.3]

αmax: Maximum window angle, 12o

∆: Slope of water vapour saturation, KPa/oC

γ: Psycrometric constant, 0.066 KPa/oC

λ: Latent heat of vaporization, J/Kg

ρ: Air density, 1.25 Kgair/m
3

τ : Transmission coefficient of the greenhouse, [0.3, 0.9]

7.2 Complementary equations

Opening window angle: α = MVα

100
αmax.

Water rate of fog system: fog =
MVfog

100
fogmax.

Energy from heating system: W = MVW

100
Wmax.

Water rate in the air renewal flow: Fv = ρG(Ho −Hi).

Renewal air flow (Boulard and Draoui, 1995): G = AV (aα + Go).

Air saturation coefficient:

Csat =





1 Hi < Hsat

0 Hi = Hsat

.
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Absolute to relative humidity conversion 18 :

HR =





100 HR > 100

HR HR ≤ 100

,

HR =
100H · P

0.611psat(T )
, (15)

psat(T ) = 0.61
[
1 + 1.414 sin(5.82e−3T )

]8.827
. (16)

Crop evapotranspiration (Monteith, 1973):

E =
Ai(∆Rn + 2Lρ cp Di gwb)[

∆ + γ
(
1 + gwb

gws

)]
λ

,

∆ = psat(T̂i + 0.5)− psat(T̂i − 0.5), Rn = (1− ekL)τSo

Di = psat(T̂i)

[
1− ĤRi

100

]
, λ = (3.1468− 0.002365(T̂i + 273)106

gws = gwsmin + (gwsmax − gwsmin) ·
[
1− exp

(
−τSo

160

)]
gD,

18 Depending on different cases, (T ,HR,H) corresponds to the inside (T̂i, ĤRi,Hi) or

outside (To,HRo,Ho) of the greenhouse. It also enables calculation of the saturation

absolute humidity Hsat corresponding to HR = 100%.
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gD =





0.39
0.029+Di

Di ≥ 0.361

1 Di < 0.361

.

Solar energy supplied to air volume: Qs = AiτSo.

Energy exchange by conduction and convection: Qcc = AiAc(T̂i − To).

Energy loss due to crop evapotranspiration: Qe = λE.

Energy exchange due to window ventilation: Qv = ρcpG(T̂i − To).

Energy loss by nebulization: Qn = λfog.

Energy exchange between thermal mass and inside air: Qm = Aihm(Tm − T̂i).

Energy stored by the thermal mass during the day: Qsm = αmQs.

Energy loss through ground: Qf = Aika

(
Tm−Tref

zref

)
.

7.3 Identification and validation data

Figure 11 shows the input (manipulations and perturbations) data Uide(t)

which have been used in the identification process. This data together with

Yide(t) (see figure 8) constitutes the Ωide = {Yide(t), Uide(t)} identification data.

Figure 12 shows the input data Uide1(t), Uide2(t), Uide3(t) and Uide4(t) which

have been used in the validation process. These data together with Yval1(t),

Yval2(t), Yval3(t) and Yval4(t) (see figures 9 and 10) constitutes the Ωval1, Ωval2,

Ωval3 and Ωval4 validation data.
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Figure 11. Uide(t) identification data corresponding to data collected on 11th (left)

and 15th (right) June 2002.
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Figure 12. Uval1(t), Uval2(t), Uval3(t), Uval4(t) validation data corresponding to data

collected on 20th June, 28th July, 22nd August and 8th September 2002 (from left

to right).
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Figure captions

Figure 1. Multimodal optimization example. L = 1, D ∈ [0 . . . 1], n_box = 9

is the number of boxes in which search space is divided and so the box width is

ε = 1/9, J∗ = 0.01 and Θ∗ := {θ ∈ [0.2 . . . 0.8]}. A possible Θ∗
ε is represented

by means of ◦. Note that inside the box, the solution nearest to its centre is

preferred - so improving the characterization.

Figure 2. The minimum bounds ηmin
1 and ηmin

2 and J(Θ̂Pr) which depend on

the selected bounds η1 > ηmin
1 and η2 > ηmin

2 .

Figure 3. Validation process. On the left, the FPSide is validated, since FPS 6=
∅. On the right, the FPSide is invalidated since FPS = ∅.

Figure 4. Greenhouse climatic model.

Figure 5. kj = f(ĤRi(tj)). ĤRi(tj) inside relative humidity at sample tj.

Figure 6. Projections of the Pareto front J(Θ̂∗
P ) on different planes (N1(θ), N2(θ)),

(N1(θ), N3(θ)), (N1(θ), N4(θ)), (N2(θ), N3(θ)), (N2(θ), N4(θ)) and (N3(θ), N4(θ)).

Figure 7. Each line represents a model of FPS∗ide inside the search space. The

horizontal axis represents the seven parameters of each model, whereas the

vertical axis shows the parameter values in % with respect to the limits of

their search space.

Figure 8. Yide(t) and the FPS∗ide models envelope.

Figure 9. Yval1(t), Yval2(t) and the FPS∗ide models envelope.

Figure 10. Yval3(t), Yval4(t) and the FPS∗ide models envelope.
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Figure 11. Uide(t) identification data corresponding to data collected on 11th

(left) and 15th (right) June 2002.

Figure 12. Uval1(t), Uval2(t), Uval3(t), Uval4(t) validation data corresponding to

data collected on 20th June, 28th July, 22nd August and 8th September 2002

(from left to right).
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θi
∆N1
∆θi

∆N2
∆θi

∆N3
∆θi

∆N4
∆θi

gwsmax 0.12 0.2 0.6 6

gwsmin 0.15 4 0.8 8

k 0.04 0.8 0.2 3

L 0.8 6 1.5 22

gwb 0.3 6 1.3 10

τ 3 5 10 13

a 0.5 5 1.7 13

G0 0.2 3 0.8 5

Ac 1 1 3.8 3

Cm 0.05 0.4 0.3 0.5

hm 0.4 0.6 3 4

Tref 0.004 0.05 0.05 0.2

αm 0.003 0.04 0.01 0.1

ka 0.02 0.07 0.06 0.1

fogmax 0.6 4 3 30

Table 1

Variation of N1, N2, N3 and N4 norms when each parameter is independently mod-

ified, respect to θideal, along its search space.
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