

TRABAJO FINAL DE MÁSTER

DISEÑO E IMPLANTACIÓN DE UN PROTOCOLO DE MANTENIMIENTO DE UNA DOSIFICADORA DE ADHESIVO BICOMPONENTE

Titulación: Máster en Ingeniería del Mantenimiento

Autor: D. Diego Escriche Rodrigo

Director: Dr. José M. Salavert Fernández

Valencia, julio de 2019

RESUMEN

El presente trabajo expone el desarrollo del sistema de mantenimiento de una dosificadora automática de adhesivo bicomponente utilizada en la fabricación de transductores electroacústicos (Altavoces) la cuál ha sido desarrollada por la empresa DAS Audio Group, S.L. para ser instalada en su planta de Paterna (Valencia).

Los objetivos particulares del trabajo son:

- Desarrollar un sistema de mantenimiento para una máquina industrial recientemente fabricada con el fin de minimizar fallos y averías.
- Definir una metodología que pueda ser aplicada a otros equipos de la empresa.

Para alcanzar los objetivos se analizan los factores generales, la empresa y el equipo; posteriormente se elabora el sistema de mantenimiento; y finalmente se hace un análisis económico.

Como conclusiones se obtiene que un adecuado mantenimiento permite:

- Asegurar la calidad del producto ayudando a mantener la repetitividad del proceso.
- Reducir costes evitando mermas y aumentando la vida útil de los sistemas.
- Una mejor planificación de producción evitando productos fallidos y ofreciendo una mayor disponibilidad.

El sistema de mantenimiento precisa de un sistema de gestión de la información para poder analizarlo y adaptarlo si fuese necesario para cumplir los objetivos.

AGRADECIMIENTOS

A mis padres, Pepe y Mari, por su ayuda desde siempre, porque sin ellos no habría llegado hasta aquí.

A Laura, por su ayuda y apoyo durante estos años sobre todo cuando la situación no fue fácil.

A la empresa DAS Audio Group, S.L., en especial a Javier Navarro, por su confianza en estos años y por permitirme realizar este trabajo.

A mi compañero Pablo Conejos, por estar siempre dispuesto a escuchar, ayudar y sobre todo por explicarme cien veces como funciona un altavoz.

Al profesor José Miguel Salavert por su tiempo y su dedicación en la dirección del trabajo.

A todos aquellos que me han enseñado todo lo que sé, que me han dado alguna oportunidad confiando en mí o me han ayudado a crecer.

ÍNDICE

R	ESUME	N	1
Α	GRADE	CIMIENTOS	2
1	INT	RODUCCIÓN	7
	1.1	Objetivo	7
	1.2	Motivación	7
	1.3	Antecedentes	7
	1.4	Cronograma de etapas del proyecto	7
2	ANÁ	ÁLISIS DE FACTORES GENERALES	10
	2.1	Transductores electroacústicos (altavoces)	10
	2.2	Adhesivo	11
	2.2.	1 La unión adhesiva	12
3	ANÁ	ÁLISIS DE LA EMPRESA	13
	3.1	La empresa	13
	3.2	Localización y dimensionado	13
	3.3	Organigrama	15
	3.4	Sistema de producción	16
	3.4.	1 Abastecimiento y almacenaje	16
	3.4.	2 Electrónica	16
	3.4.	3 Carpintería	16
	3.4.	4 Transductor	17
	3.4.	5 Taller de mecanizado	17
	3.4.	6 Montaje de sistemas	17
	3.4.	7 Expediciones	18
	3.5	Sistema de mantenimiento	18
	3.5.	1 Antecedentes del departamento de mantenimiento	18
	3.5.	2 Estrategias	19
	3.5.	3 Recursos	21
	3.5.	4 Gamas de mantenimiento (Ingeniería)	26
	3.5.	5 Análisis DAFO	26
	3.6	Dosificadoras	27
4	ANÁ	ÁLISIS DEL EQUIPO	28

	4.1	Info	rmación del equipo	. 28
	4.1.	1	Ubicación del equipo en planta	. 29
	4.1.	2	Utilización	. 30
	4.1.	3	Sistemas	. 31
	4.1.	4	Control y regulación de parámetros	. 37
	4.1.	5	Listado de materiales	. 41
	4.1.	6	Lubricantes	. 42
	4.2	Aná	lisis de mantenimiento	. 43
	4.2.	1	Criticidad del equipo	. 43
	4.2.	2	Averías más frecuentes	. 43
	4.2.	3	Componentes mantenibles	. 45
	4.2.	4	Otras operaciones de mantenimiento	. 71
	4.2.	5	Procedimientos de mantenimiento	. 74
5	SIST	ЕМА	DE MANTENIMIENTO	. 75
	5.1	Orga	anigrama de mantenimiento	. 75
	5.2	Nor	mativa	. 76
	5.2.	1	Obligatorio cumplimiento	. 76
	5.2.	2	Referencias	. 76
	5.3	Doc	umentación	. 76
	5.3.	1	Solicitud de trabajo (ST)	. 77
	5.3.	2	Órdenes de trabajo (OT)	. 77
	5.3.	3	Registros	. 77
	5.4	Mar	ntenimiento correctivo	. 78
	5.4.	1	Diagrama de flujo del proceso (M. correctivo)	. 78
	5.4.	2	Flujo de información	. 79
	5.4.	3	Operaciones de mantenimiento correctivo	. 79
	5.4.	4	Costes de mantenimiento correctivo	. 80
	5.5	Mar	ntenimiento programado	. 82
	5.5.	1	Diagrama de flujo del proceso (M. Sistemático)	. 82
	5.5.	2	Diagrama de flujo del proceso (M. Predictivo)	. 83
	5.5.	3	Flujo de información	. 83
	5.5.	4	Matriz maestra	. 84
	5.5.	1	Costes de operaciones de mantenimiento programado	. 85
	5.5.	2	Gamas de mantenimiento	. 85

	5.5.3		Calendario de intervenciones	86
5.6 Gestión de recambios		Gest	tión de recambios	88
	5.7	Forr	nación de los técnicos de mantenimiento	88
	5.	7.1	Análisis de averías	89
	5.8	Indi	cadores	89
	5.	8.1	Indicadores de mantenimiento correctivo	89
	5.	8.2	Indicadores de mantenimiento programado	90
	5.	8.3	Disponibilidad máquina	90
	5.	8.4	Correctivo / Programado	91
	5.	8.5	Coste de mantenimiento	91
	5.	8.6	Coste mantenimiento por pieza	93
	5.9	Cua	dro de Mandos	93
	5.	9.1	Disponibilidad	93
6	ΙA	NÁLISIS	ECONÓMICO	94
	6.1	Cost	te anual de mantenimiento	94
	6.	1.1	Coste de mantenimiento correctivo de las válvulas dosificadoras	94
	6.	1.2	Coste de mantenimiento de las VD con programado variable	94
	6.	1.3	Análisis estrategias de mantenimiento	96
	6.	1.4	Coste de mantenimiento programado sin válvulas dosificadoras	97
	6.	1.5	Coste total anual de mantenimiento	98
	6.2	Cost	te del mantenimiento por pieza	98
7	CC	ONCLUS	SIONES	99
8	PF	RESUPU	JESTO DEL PROYECTO	100
	8.1	Pres	supuesto desarrollo	100
	8.2	Pres	supuesto implementación	100
	8.3	Pres	supuesto general	100
9	ВІ	BLIOGF	RAFÍA/FUENTES	101
10)	ÍNDICE	DE FIGURAS	101
11	1	ÍNDICE	DE TABLAS	103
12	2	ANEXC	OS	106
	12.1	Prod	cedimientos de mantenimiento	106
	12	2.1.1	POMTADA102 Sustitución de válvulas dosificadoras	
	12.2	Regi	istros	106
	12	2.2.1	ST Mantenimiento	106

Trabajo Fin de Máster
Ingeniería del Mantenimiento

Escriche Rodrigo, Diego

12.2.	.2	OT Mantenimiento correctivo	106
12.2.	.3	OT Mantenimiento programado	106
12.3	Hoja	a de procesos de análisis de averías	106

1 INTRODUCCIÓN

1.1 OBJETIVO

Los objetivos del trabajo son:

- Desarrollar un sistema de mantenimiento para una máquina industrial recientemente fabricada con el fin de minimizar fallos y averías.
- Definir una metodología que pueda ser aplicada a otros equipos de la empresa.

1.2 MOTIVACIÓN

La motivación principal es satisfacer la necesidad de desarrollar el mantenimiento adecuado para un nuevo equipo fabricado e instalado por la empresa DAS Audio Group, S.L. en su planta de Paterna (Valencia)

Además, con este trabajo se busca poder ofrecer un esquema de partida para el desarrollo de otros sistemas y planes de mantenimiento dentro de la propia empresa.

La motivación académica es demostrar mediante la aplicación en un caso práctico algunos de los conocimientos adquiridos en el Máster en Ingeniería del Mantenimiento de la Universitat Politècnica de València.

1.3 ANTECEDENTES

No se tiene constancia de trabajos similares con dosificadoras de adhesivo.

En la empresa no existe documentación en cuanto a sistemas de mantenimiento se refiere más allá de indicaciones en los manuales de algunos equipos.

1.4 CRONOGRAMA DE ETAPAS DEL PROYECTO

El trabajo se desarrollará siguiendo el siguiente esquema:

- 1. Análisis de factores generales
 - Altavoces
 - Adhesivos
- 2. Análisis de la empresa
- 3. Análisis del equipo
- 4. Sistema de mantenimiento
- 5. Análisis económico
- 6. Conclusiones

El siguiente cronograma muestra la duración en semanas de las diferentes etapas del proyecto, además se incluyen la posterior implementación y su control:

Fig. 1: Cronograma de etapas del proyecto

En la primera etapa se definirán los factores generales que más relevancia tienen tanto en el funcionamiento del equipo como en su mantenimiento.

Posteriormente, se analizará la empresa donde está instalado el equipo, ya que ésta determinará el uso del equipo y por tanto su mantenimiento. El sistema productivo, el mantenimiento (personal, recursos, etc.), así como otros equipos similares serán los apartados más importantes a considerar.

La siguiente etapa será el análisis del propio equipo. Los apartados principales de este análisis serán; los datos y parámetros del equipo (alimentación, potencia, etc.); su función dentro del proceso productivo; los sistemas que lo componen; y el análisis del mantenimiento.

Una vez analizados todos los agentes que influyen en el mantenimiento, se desarrollará el sistema de mantenimiento del equipo. El sistema de mantenimiento define los procesos relativos a éste, los indicadores que permiten analizarlo y cuantificarlo, la documentación relacionada con la gestión y las tareas a desarrollar en periodos determinados. Además se elaborará el plan de mantenimiento del equipo, el cual permitirá establecer las actuaciones que se llevarán a cabo, los periodos y sus costes.

Con el fin de exponer los costes del mantenimiento y como repercuten los diferentes tipos de mantenimiento en el coste global se realizará el análisis económico del sistema de mantenimiento.

Por último se hará una valoración de los aspectos expuestos en el trabajo y se expondrán las conclusiones obtenidas.

La implementación y el control de la misma no se incluyen en el presente trabajo.

2 ANÁLISIS DE FACTORES GENERALES

En este apartado se analizan brevemente los principales factores que están relacionados con el equipo con el objetivo de conocerlos y permitir comprender como pueden influir en el funcionamiento del equipo y su mantenimiento.

Estos factores son:

- Producto fabricado: Transductores electroacústicos (Altavoces).
- Producto utilizado en el proceso: Adhesivo.

2.1 TRANSDUCTORES ELECTROACÚSTICOS (ALTAVOCES)

Un transductor electroacústico es un sistema que transforma una señal eléctrica en una señal acústica.

Altavoz es la denominación popular que recibe uno de los tipos de transductor electroacústico.

La siguiente figura muestra un esquema con las diferentes partes que componen un altavoz:

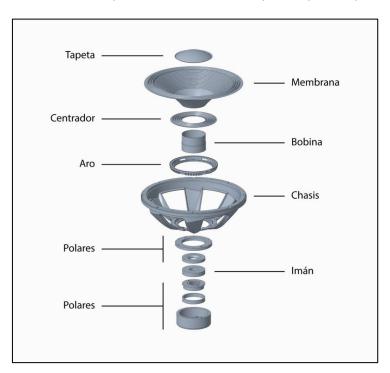


Fig. 2: Componentes del altavoz

Los altavoces están compuestos por dos grupos de elementos:

- Grupo fijo: Componente estático.
 - Imán: Elemento generador del campo magnético.
 - Polares: Elementos que conducen y concentran el campo magnético.
 - Chasis: Soporte del conjunto del altavoz.
 - Aro (opcional): Soporte del centrador.

- Grupo móvil: Componente dinámico.
 - Bobina: Elemento por el que circula la señal eléctrica y en el cuál se establecen las fuerzas que en relación con el campo magnético generan el movimiento.
 - Centrador: Elemento encargado de centrar la bobina y aportar rigidez.
 - Membrana: Superficie de radiación y que aporta rigidez.
 - Tapeta guardapolvo: Elemento que cubre la bobina y genera circulación de aire para refrigeración.

A excepción del chasis, que se atornilla o remacha, comúnmente todos los componentes del altavoz se unen por medio de adhesivos de diferentes naturalezas.

Los componentes unidos por los adhesivos están fabricados en diversos materiales. Estos materiales condicionan la selección del adhesivo.

Los materiales más comunes y los componentes donde se aplican son:

- Metales recubiertos con cataforesis, cincados o epoxi. Polares, chasis y en ocasiones el aro.
- Polímeros. Aro.
- Textiles impregnados con fenoles. Centrador y suspensión de la membrana.
- Pulpa de papel mezclada con diferentes materiales como fibra de vidrio o de carbono.
 Membrana y tapeta.
- Composites. Soporte de la bobina.

2.2 ADHESIVO

La Real Academia Española en su diccionario [1] define el adhesivo como:

"Sustancia que, interpuesta entre dos cuerpos o fragmentos, sirve para pegarlos."

Los adhesivos están formados por polímeros. Estos polímeros son moléculas en forma de cadenas largas en las cuales se repite una pequeña unidad llamada monómero. Pueden ser de naturaleza natural o sintética.

En la industria se utilizan principalmente adhesivos sintéticos de diferente naturaleza y composición para diferentes usos. Aunque existen diferentes formas de agrupar los adhesivos, una de las clasificaciones más habituales es por su aplicación[2]:

- Adhesivos estructurales (Epoxis, Acrílicos, Metacrilatos...)
- Selladores (Siliconas, Poliuretanos, polímeros híbridos modificados...)
- Fijadores de roscas (Anaeróbicos)
- Adhesivos Instantáneos (Cianocrilatos)

A su vez cada tipo se divide según la cantidad de componentes que se utilizan en su aplicación, los más comunes son monocomponentes y bicomponentes.

2.2.1 La unión adhesiva

La unión adhesiva es el resultado de unir, o pegar, dos cuerpos mediante un adhesivo. La siguiente figura muestra el esquema con los componentes que forman la unión adhesiva.

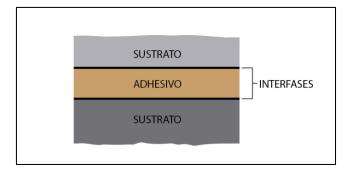


Fig. 3: Unión adhesiva

Las fuerzas que intervienen en la formación de la unión adhesiva se conocen como fuerzas adhesivas, las cuales se dividen en dos tipos:

- Fuerzas adhesivas, la fuerza con la que el adhesivo se adhiere a la superficie de los sustratos. Interacción física y/o química.
- Fuerza cohesiva, la fuerza que une las propias partículas de adhesivo. Interacción entre cadenas de polímeros.

Uno de los factores más importantes en la unión adhesiva es la energía superficial o tensión superficial de los materiales a unir. Ésta se puede ver afectada por factores externos que pueden aumentarla (tratamientos superficiales, imprimaciones, etc.) o disminuirla (suciedad, contaminación, etc.). Por ello es de gran importancia la limpieza y evitar la contaminación con lubricantes de las zonas donde se realizan operaciones con adhesivos.

3 ANÁLISIS DE LA EMPRESA

El siguiente apartado contiene la información relativa a la empresa donde está instalado el equipo.

El análisis se estructura de la siguiente forma:

- La empresa (Información general).
- Localización y dimensionado.
- Organigrama.
- Sistema de producción.
- Sistema de mantenimiento.
- Dosificadoras.

3.1 LA EMPRESA

La empresa DAS Audio Group, S.L. es un fabricante español de sistemas de audio profesional. Fue fundada a principio de la década de 1970 en Valencia, ciudad donde tiene su sede.

Además de la sede de Fuente del Jarro (Paterna, Valencia), donde también tiene su fábrica, DAS Audio Group, S.L. cuenta con delegaciones comerciales en Miami (U.S.A.), Singapur (Republica de Singapur), São Paulo (Brasil) y Shanghái (China).

Los productos DAS se distribuyen a todo el mundo, teniendo como principal mercado el continente americano.

La producción de la fábrica en el año 2018 alcanzó una cantidad de 29000 sistemas, 20000 recintos acústicos, 40000 transductores y 15000 amplificadores. La facturación superó los 24millones de euros.

3.2 LOCALIZACIÓN Y DIMENSIONADO

DAS Audio Group, S.L. tiene su sede situada en el 24 de la calle Islas Baleares del polígono Fuente del Jarro, perteneciente a la localidad de Paterna (Valencia, España).

Las oficinas y fábrica se ubican entre las calles Islas Baleares al Este, Villa de Madrid al Oeste y Ciudad de Sagunto al Sur.

La siguiente figura muestra la ubicación de la empresa:



Fig. 4: Localización DAS Audio sede Valencia

Las instalaciones ocupan un área de 21000m² (16800m² construidos) distribuidos en 6 edificios, casi todos ellos de un nivel de altura salvo el edificio de oficinas y el de almacén con dos niveles y otro edificio con tres.

La siguiente imagen muestra la distribución de los edificios y su código:

Fig. 5: Distribución DAS Audio sede Valencia

Las diferentes secciones se encuentran distribuidas por las instalaciones del siguiente modo:

- Oficinas (A-1 y A-2)
- Montaje de sistemas (B-1)
- Expediciones (C-1)
- Almacenes (D-1, D-0 y E-0)
- Electrónica (E-1)
- Transductor (E-2)
- Carpintería (F-0)

3.3 ORGANIGRAMA

La empresa DAS Audio Group, S.L. es una empresa familiar que cuenta con alrededor de 120 personas en plantilla, además de eventuales refuerzos en las diferentes áreas productivas.

La plantilla de la empresa se distribuye según el siguiente organigrama [3]:

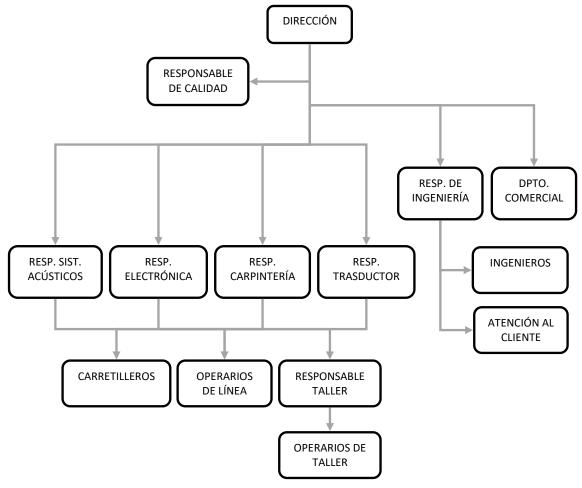


Fig. 6: Organigrama de la empresa

3.4 SISTEMA DE PRODUCCIÓN

El sistema productivo de la empresa abarca prácticamente todas las fases de la fabricación de un sistema de audio, desde la carpintería donde se fabrica el recinto acústico (caja) hasta el montaje final del sistema, pasando por la fabricación de los transductores acústicos (altavoces y motores de compresión) y el ensamblaje de los componentes electrónicos.

La producción se limita de lunes a viernes en turno partido (comenzando a las 08:00h y con descansos de media hora a las 10:30h y de una hora a las 14:00h). La planta permanece cerrada una semana en navidad y tres en agosto además de los festivos habituales.

Para poder explicar más fácilmente el sistema productivo, debido a la diversidad del proceso dependiendo de la sección, éstas se separan y explican individualmente.

3.4.1 Abastecimiento y almacenaje

El abastecimiento y almacenaje de la materia prima, componentes y producto terminado se realiza con la ayuda de carretillas elevadoras y montacargas.

3.4.2 Electrónica

La sección de electrónica es donde se ensamblan los componentes que forman los amplificadores o módulos de potencia de los sistemas. El proceso es manual y se realiza en puestos individuales con el siguiente orden:

Fig. 7: Proceso sección electrónica

3.4.3 Carpintería

El proceso productivo en la sección de carpintería se basa en la transformación de tableros de madera contrachapada en recintos acústicos pintados.

Los trabajos son realizados con maquinaría de carpintería industrial y se llevan a cabo siguiendo la siguiente secuencia:

Fig. 8: Proceso sección carpintería

3.4.4 Transductor

La sección de transductor es el lugar donde se fabrican los transductores acústicos, altavoces de membrana y motores de compresión.

El proceso productivo en esta sección consta de diferentes fases donde se ensamblan los diferentes componentes que conforman un transductor. La mayoría de los procesos son manuales, aunque con ayuda de máquinas semiautomáticas. El orden es el siguiente:



Fig. 9: Proceso sección transductor

3.4.5 Taller de mecanizado

El taller se considera una sección particular porque aunque realiza algunas operaciones de producción se dedica a otras labores, como el mantenimiento. Por esta razón no se incluye en ninguna de las anteriores secciones.

Tradicionalmente en el taller se fabricaban componentes de transductores con máquinas herramienta, tarea que todavía hoy se desempeña a menor escala sobretodo en el ajuste final de algunos componentes de motores de compresión. Además también se mecanizan algunas piezas para la sección de electrónica y fabrica piezas y accesorios para aplicaciones especiales que se instalan en la sección de montaje de sistemas.

Además, entre los trabajos que se realizan también están la fabricación y acondicionamiento de útiles de producción, tareas de mantenimiento, así como la fabricación de prototipos para ingeniería.

3.4.6 Montaje de sistemas

La sección de montaje engloba una sección principal, montaje de sistemas, y dos secciones auxiliares, rejas y accesorios. En las dos secciones auxiliares se preparan, las rejas de los sistemas, los accesorios y elementos auxiliares; mientras que en montaje se ensamblan los diferentes componentes que componen el sistema.

El montaje del sistema se lleva a cabo en ocho puestos, siete con mesas elevadoras y uno con una mesa giratoria para los más pequeños, donde se trabaja por lotes de tamaño variable según el modelo.

Todo el proceso se realiza por el mismo equipo de montadores en un puesto siguiendo el orden de la Fig. 10.

Fig. 10: Proceso sección montaje

3.4.7 Expediciones

El último de los pasos que se lleva a cabo en el proceso productivo por parte de la empresa es la preparación de los pedidos y expedición de los mismos. Para ello se emplean carretillas elevadoras y flejadoras automáticas.

3.5 SISTEMA DE MANTENIMIENTO

3.5.1 Antecedentes del departamento de mantenimiento

Los antecedentes del departamento de mantenimiento hacen referencia a labores sencillas realizadas esporádicamente por personal de producción, reparaciones llevadas a cabo por el personal del taller de producción y SAT de electrónica, soporte del departamento informático y la subcontratación de tareas complejas o de gran envergadura.

Tradicionalmente las labores de mantenimiento eran llevadas a cabo por el personal del taller de mecanizado debido a que era el único departamento que contaba con maquinaria y también era el encargado de reparar y fabricar el utillaje de producción.

Con la adquisición de maquinaria para la sección de carpintería el mantenimiento se subcontrató con el distribuidor de dicha maquinaría, dejando las sencillas acciones correctivas y el mantenimiento preventivo básico al personal del taller de mecanizado ya que era el único con experiencia.

De la misma forma sucede con el mantenimiento de las carretillas elevadoras, equipos de aire comprimido, aire acondicionado o equipos de extracción donde el mantenimiento en general esta subcontratado con empresas externas y las labores diarias o sencillas son las llevadas a cabo por el personal del taller.

Todas las secciones históricamente han seguido el mismo camino, las labores sencillas de mantenimiento correctivo y preventivo se han asignado al taller de mecanizado. Esta evolución junto con el crecimiento de la empresa llevó a que uno de los operarios de producción se dedique a tiempo completo a labores de mantenimiento siendo ayudado por el resto del personal del taller cuando la situación lo requiere.

Por otro lado el SAT de electrónica, por contar con personal cualificado y dedicarse a labores similares, ha sido el encargado tanto de las reparaciones de sistemas eléctricos y electrónicos como del mantenimiento de las instalaciones eléctricas.

Por estas razones históricamente fue que se debió entender el mantenimiento como una parte de la producción y por ello, tanto el personal de mantenimiento depende de los encargados de producción, como también éstos son los encargados del mantenimiento en su sección.

Diversos motivos, entre los que se encuentra principalmente el uso de nuevos adhesivos, han ocasionado recientemente la necesidad de utilizar dispositivos de dosificación automáticos y semiautomáticos en la producción de transductores. Por la naturaleza de los mismos, el diseño y la fabricación han sido llevados a cabo por el departamento de ingeniería, llevando a éste a entrar en el sistema de mantenimiento.

Por otro lado, el soporte tanto de las redes informáticas como de los dispositivos informáticos es gestionado y realizado por el departamento informático de la empresa.

Por lo tanto no existe un departamento de mantenimiento definido, sino que es la suma de varios grupos de trabajo.

3.5.2 Estrategias

En este apartado se van a exponer las diferentes estrategias de mantenimiento llevadas a cabo dentro de la empresa. Se diferencia dentro de cada estrategia si el mantenimiento es llevado a cabo por personal interno de la empresa o personal externo perteneciente a empresas subcontratadas.

Como resumen, principalmente el personal propio se encarga de realizar tareas sencillas y de pequeña envergadura mientras que el personal externo acomete acciones de mayor envergadura y complejidad.

El mantenimiento de las dosificadoras de adhesivo, en particular, es realizado únicamente por personal propio de mantenimiento colaborando el departamento de ingeniería cuando es preciso.

3.5.2.1 Correctivo

El manteniento correctivo se puede dividir en dos apartados, el llevado a cabo por personal de la empresa o por personal externo subcontratado.

En general, el personal de mantenimiento de la empresa realiza tareas menores y sencillas de mantenimiento correctivo. En el caso de que la tarea no pueda ser llevada a cabo por el personal de la empresa, ésta se encarga a la empresa externa habitual.

3.5.2.2 Sistemático

Al igual que en el caso del mantenimiento correctivo el mantenimiento sistemático también se puede dividir en las tareas realizadas por el personal interno de la empresa, taller mecánico, y las revisiones realizadas por personal externo subcontratado.

El mantenimiento sistemático llevado a cabo por el personal interno se centra en tareas sencillas y rutinarias, lubricaciones, cambios de aceite, recarga de agua en baterías, purgas, etc.

Las empresas subcontratadas realizan revisiones periódicas de mayor magnitud, garantías y revisiones legales.

Como ejemplo del plan de revisiones se muestra un resumen del plan de dos de los equipos de la empresa en las siguientes tablas:

DM-01 (Dosificadora - sección transductor)

Periodicidad	Componente	Operación	Encargado
Diaria	Cabezal dosificador	Limpieza	Operario
	Sistema dosificador	Control dosis	Operario
Mensual	Equipo completo	Limpieza	Operario
	Conductos	Comprobación fugas	Operario
	Válvulas dosificadoras	Revisión estado	Técnico de mantenimiento
	Válvulas dosificadoras	Sustitución y Iimpieza	Técnico de mantenimiento
Bimensual	Tubos válvula-cartucho	Sustitución	Técnico de mantenimiento
Trimestral	Cartucho de dosificación	Sustitución	Técnico de mantenimiento
Semestral	Equipo completo	Revisión general	Técnico de mantenimiento

Tabla 1: Plan revisión DM-01

Torno CMZ TA-15 (Torno CNC - Taller mecanizado)

Periodicidad	Componente	Operación	Encargado
Diario	Refrigerante	Revisión nivel	Operario
	Aceite bomba HPC	Revisión nivel	Operario
	Lubricante	Revisión nivel depósito	Operario
	Máquina (interior)	Limpieza de virutas	Operario
	Torreta	Limpieza de virutas	Operario
Semanal	Cabezal	Lubricación	Operario
	Filtros de refrigerante	Comprobación	Operario
	Máquina (exterior)	Limpieza	Operario
Mensual	Aceite caja engranajes	Comprobación de nivel	Técnico de mantenimiento
	Depósito de refrigerante	Limpieza sedimentos	Técnico de mantenimiento
	Depósitos de grasa y aceite	Revisión	Técnico de mantenimiento
	Protecciones de las guías	Revisión y lubricación	Técnico de mantenimiento
	Ventilaciones armario eléctrico	Limpieza	Técnico de mantenimiento

Periodicidad	Componente	Operación	Encargado
Semestral	Líquido refrigerante	Cambio	Técnico de mantenimiento
	Filtro unidad hidráulica	Cambio	Técnico de mantenimiento
	Mangueras de lubricación	Revisión	Técnico de mantenimiento
Anual	Aceite caja engranajes	Sustitución	Técnico de mantenimiento
	Filtro del depósito de aceite	Limpieza	Técnico de mantenimiento
Quinquenal	Máquina	Revisión y ajuste general	Personal CMZ

Tabla 2: Plan revisión torno CMZ

3.5.2.3 Predictivo

El mantenimiento predictivo dentro de la empresa, además de las mediciones en instalaciones eléctricas exigidas por ley y efectuadas por empresas certificadas, se ha limitado principalmente a revisiones en las cuales la experiencia del técnico ha determinado si era necesaria una intervención.

Recientemente, se ha incluido en el programa de mantenimiento de las dosificadoras de adhesivo y las válvulas dosificadoras algunas operaciones de mantenimiento predictivo, como por ejemplo, la comprobación de fugas en las válvulas dosificadoras tras su sustitución y limpieza con el fin de verificar el correcto funcionamiento de éstas antes de su montaje en otros equipos.

3.5.3 Recursos

A continuación se muestran los recursos de la empresa relativos al mantenimiento.

3.5.3.1 Especialidades

El personal vinculado con el mantenimiento se distribuye en varias especialidades; mecánica, electricidad y electrónica, ingeniería e informática; además los operarios de algunos equipos realizan operaciones básicas de mantenimiento. Cada especialidad realiza diferentes tareas:

- Mecánica (TME):
 - Acondicionamiento y fabricación de utillaje.
 - Reparaciones mecánicas.
 - Reparaciones de sistemas neumáticos e hidráulicos.
 - Mantenimiento de carretillas elevadoras.
 - Fabricación de maquinaría.
 - Instalación de redes neumáticas.
 - Lubricación de equipos.
- Electricidad (TEL):
 - Reparación de dispositivos eléctricos y electrónicos.
 - Cableado de armarios eléctricos.
 - Mantenimiento de instalaciones eléctricas.
 - Instalación de redes eléctricas.

- Informática (TIN):
 - Reparación y sustitución de sistemas informáticos.
 - Instalación de nuevos sistemas informáticos.
 - Mantenimiento de la red informática.
 - Instalación de nuevas redes.
- Ingeniería (ING):
 - Programación de maquinaria.
 - Construcción de dispositivos complejos.
 - Apoyo de las otras especialidades.
- Operarios (OPE)
 - Verificación diaria del equipo.
 - Limpieza del equipo.
 - Revisiones básicas.
 - Lubricaciones.

Los costes para cada uno de estos grupos son los mostrados en la siguiente tabla:

Especialidad	Coste m.o. [€/h]
Técnicos	17,50
(TME, TEL, TIN)	
Ingeniería (ING)	24,00
Operarios (OPE)	15,00

Tabla 3: Coste por especialidad [4]

3.5.3.2 Talleres y almacenes

Existen cuatro talleres dedicados cada uno de ellos a diferentes especialidades. Los talleres se encuentran distribuidos por la empresa, dentro o junto al departamento al que pertenecen, cada taller tiene diferentes tareas asignadas.

- Taller mecanizado/mecánico (mecánica)
- Taller SAT electrónica (electricidad y electrónica)
- Taller informática (informática)
- Taller ingeniería (industrialización)

Cada uno de los talleres cuenta con su propio almacén, cada taller almacena los repuestos que utiliza, además existe un almacén extra en la sección de carpintería.

3.5.3.3 Oficinas de control

Históricamente no ha existido control del mantenimiento efectuado en la empresa.

Actualmente en las labores que participa el departamento de Ingeniería (mantenimiento de las dosificadoras de adhesivo) éste es el encargado de controlar las reparaciones y llevar un sencillo registro de éstas.

Por otro lado, el departamento informático gestiona y controla sus propias tareas de mantenimiento.

3.5.3.4 Equipos especiales

La ejecución de algunas operaciones requiere de equipos o herramientas específicos, éstos se encuentran en determinados talleres. Algunos de los equipos utilizados y su ubicación son:

Comprobador de válvulas (Taller de ingeniería)

El comprobador de válvulas es un equipo utilizado para verificar el correcto cierre de las válvulas dosificadoras (centro Fig. 11). Éste consta de un regulador de presión para la entrada de dosificación (superior Fig. 11), una válvula para accionar la válvula dosificadora neumáticamente (izquierda Fig. 11), un manómetro para comprobar el cierre (derecha Fig. 11) y un cronómetro. La siguiente imagen muestra el montaje:

Fig. 11: Comprobador de válvulas

Engrasadoras (Taller mecánico)

El engrase de los diferentes equipos se realiza mediante engrasadoras manuales.

Diferentes etiquetas de colores sirven para distinguir fácilmente las engrasadoras y tratar de minimizar posibles errores. La siguiente imagen muestra una de las engrasadoras:

Fig. 12: Engrasadora manual

Prensa de insertos para cartuchos (Taller mecánico)

La prensa de insertos es la herramienta utilizada para introducir en el cartucho dosificador los insertos en los que se enroscan los racores de entrada. Consiste en un sargento, unos separadores para no dañar el cartucho y unas guías para éstos últimos. La siguiente imagen muestra la herramienta:

Fig. 13: Prensa de insertos

3.5.3.5 Gestión de la información

A nivel global dentro de la empresa no existe un sistema de gestión de la información relacionada con el mantenimiento, únicamente el departamento informático utiliza una herramienta online de gestión de incidencias llamada web help desk, de solarwinds, la cual gestiona tanto las peticiones de trabajo como el registro de las tareas realizadas.

Por otro lado el departamento de ingeniería utiliza Microsoft Access y Outlook para gestionar el mantenimiento en el cual está involucrado.

3.5.3.5.1 Codificación del mantenimiento (Ingeniería)

La codificación relacionada con el mantenimiento (equipos, documentos, operaciones, repuestos, etc.) que utiliza el departamento de ingeniería sigue una serie de reglas dependiendo de su tipología.

Codificación de equipos y herramientas:

Los equipos se codifican indicando la ubicación (sección y subsección), el tipo de equipo y un número.

La siguiente tabla muestra un ejemplo de código de un equipo:

Т	Α	DM	1
Sección	Subsección	Tipo	Número
(Transductores)	(Altavoces)	(Dosificadora manual)	(Nº 1)

Tabla 4: Código de equipo

Las herramientas especiales (engrasadoras, prensas, dinamométricas, etc.) son tratadas como equipos. La primera letra del tipo indica que es una herramienta (H) y la segunda su tipo (L; Lubricadora, por ejemplo)

Codificación de documentación:

Las operaciones de mantenimiento, así como sus procedimientos, se codifican indicando su tipo, el equipo y un número de identificación.

Las operaciones y procedimientos se dividen en los siguientes tipos:

- OPC: Operación de mantenimiento correctivo.
- OPS: Operación de mantenimiento sistemático.
- OPP: Operación de mantenimiento predictivo.
- POM: Procedimientos de mantenimiento.

La siguiente tabla muestra un ejemplo de código de operación:

OPS	TADM1	01
Tipo	Equipo	Número de identificación
(Operación de	(Dosificadora manual de la	(Nº1)
mantenimiento sistemático)	sección de transductor)	

Tabla 5: Código de operación

Por el momento no se generan órdenes ni peticiones de trabajo para realizar los trabajos de mantenimiento, pero sí se registran las incidencias e intervenciones. El registro se realiza utilizando la siguiente codificación:

- Incidencia: INC+(2 últimos cifras Año)+(000)

- Intervención: IM+(2 últimos cifras Año)+(000)

La siguiente imagen muestra un detalle de la base de datos:

Fig. 14: Detalle BDD de mantenimiento

Codificación de materiales:

Los materiales utilizados en la construcción de los equipos y vinculados con el mantenimiento están codificados para poder gestionarlos. Los lubricantes se incluyen en el grupo de repuestos. La siguiente tabla muestra un ejemplo:

R	L	G	001
Repuesto	Familia	Subfamilia	Número identificador
	(Lubricante)	(Grasa)	

Tabla 6: Código de repuesto

3.5.4 Gamas de mantenimiento (Ingeniería)

Las operaciones de mantenimiento de las dosificadoras de adhesivo se agrupan en gamas teniendo en cuenta su periodo, éstas se codifican de la siguiente forma:

- Diaria: A + periodo en días

- Semanales: B + periodo en semanas

- Mensuales: C + periodo en meses

- Anuales: D + mes de realización (V para la parada de vacaciones)

En la misma sección que está situado el equipo se realizan tareas de mantenimiento sistemático a otros equipos dentro de las gamas mostradas en la siguiente tabla:

Gama	Periodo	Personal
A1	Diario	Operador equipo
B1	Semanal	Operador equipo
B4	4 semanas	Técnico de mantenimiento
В8	8 semanas	Técnico de mantenimiento
B12	12 semanas	Técnico de mantenimiento
B24	24 semanas	Técnico de mantenimiento
DV	Pre-vacacional	Técnico de mantenimiento

Tabla 7: Gamas sección transductor

3.5.5 Análisis DAFO

El análisis DAFO permite mostrar fácilmente las fortalezas y debilidades del propio sistema de mantenimiento y las oportunidades y amenazas relacionadas con el entorno.

Éste se muestra en la siguiente tabla:

	Fortalezas	Debilidades
Análisis interno	 Personal polivalente Personal experimentado Operarios de producción relacionados con el mantenimiento Disponibilidad de recursos técnicos 	 Personal sin formación especializada en mantenimiento Inexistencia de departamento de mantenimiento autónomo Escasez de datos de mantenimiento Inexistencia de planes de mantenimiento
	Oportunidades	Amenazas
Análisis externo	 Adaptación de tecnologías existentes en la empresa Aplicación de nuevas tecnologías y estrategias Red de proveedores experimentados Situación en empresa sólida y con recursos Disponibilidad de personal cualificado en la zona 	 Costes de implantación de mejoras Empresa sin cultura de mantenimiento Sistema de mantenimiento dependiente de producción

Tabla 8: Análisis DAFO

3.6 DOSIFICADORAS

La primera dosificadora automática, DAV-01, se introdujo a mediados del año 2015 para implementar mejoras en las uniones adhesivas empleadas en la fabricación de altavoces. Las mejoras que se buscaban eran:

- Utilización de adhesivos de nueva tecnología bicomponente más rápidos y con propiedades adhesivas mayores.
- Control de la dosificación para evitar mermas y fallos de calidad.

Inicialmente se empleó para dosificar el adhesivo de la tapeta guardapolvo de los altavoces de mayor potencia, aunque posteriormente se incluyeron la práctica totalidad de la producción; finalmente se incluyo en el proceso de fabricación de los grupos fijos ensamblados en la empresa.

Además de la DAV-01 también se desarrolló e incluyó otro modelo de dosificadora manual en el año 2016, DM-01, para implementar la utilización de los nuevos adhesivos bicomponente en la fabricación del grupo móvil. Esta dosificadora comparte el mismo sistema de dosificación que las dosificadoras automáticas pero la aplicación es manual.

En el año 2018 se desarrolló el modelo DAV-02, segunda generación de dosificadora automática desarrollada y utilizada en la fabricación de transductores por la empresa DAS Audio Group, S.L.

Desde la puesta en marcha de la primera dosificadora se han recopilado datos relativos a mantenimiento como averías más frecuentes, tiempos entre averías, periodos de mantenimiento sistemático y fallos de producción producidos por el adhesivo, la regulación o averías de la máquina.

4 ANÁLISIS DEL EQUIPO

El siguiente apartado expone la información relativa al propio equipo. Esta información se estructura de la siguiente forma:

- Información del equipo.
- Análisis de mantenimiento.

4.1 INFORMACIÓN DEL EQUIPO

El equipo TADA1 (Fig. 15) es una dosificadora de adhesivo bicomponente la cual dispone de un sistema de posicionado y giro para aplicar el adhesivo en diferentes posiciones programadas.

Fig. 15: TADA1

Los datos generales de la máquina se muestran en la siguiente tabla:

Identificador	TADA1
Ubicación	Sección Transductor
	(Fábrica de Paterna)
Modelo	DAV-02
Fabricante	DAS AUDIO GROUP, S.L.
Número de serie	DASIE010003001
Año de fabricación	2018
Puesta en marcha	4 de octubre de 2018

Tabla 9: Datos de la máquina

Los datos técnicos se muestran en la siguiente tabla:

Masa	240kg
Dimensiones (L/A/H)	1520x895x2265mm
Tensión de entrada	230V AC 50Hz
Potencia máxima	3680W
Potencia de trabajo	600W
Presión de entrada (Aire)	8bar

Tabla 10: Datos técnicos

4.1.1 Ubicación del equipo en planta

El equipo se encuentra instalado en un puesto en línea con otros puestos de montaje y situado junto a una transportadora.

En las siguientes imágenes se muestra la ubicación del equipo dentro de la sección de producción:

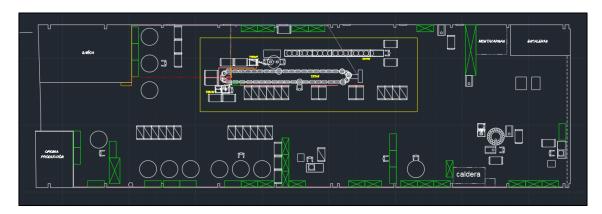


Fig. 16. Plano de situación

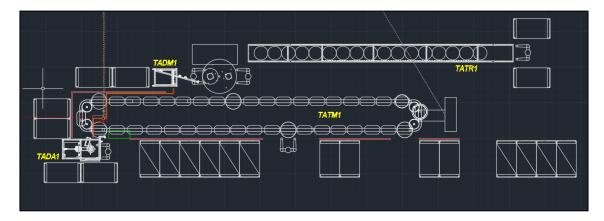


Fig. 17. Detalle plano situación

La recepción de producto se realiza mediante la transportadora TATM1 o carros de transporte y la salida por medio de carros. La carga y descarga de producto se realiza manualmente por parte del operario de la máquina.

4.1.2 Utilización

La función principal del equipo TADA1 es la dosificación de adhesivo en el proceso de montaje de los altavoces, más concretamente en la fase de montaje de la tapeta. Este proceso ocupa entorno a 4 horas diarias ubicadas al principio de la jornada.

Como función secundaria también interviene en la fase de montaje de algunos grupos fijos, principalmente los fabricados con imanes de neodimio. La producción de estas piezas no es regular.

La siguiente imagen muestra la dosificación del adhesivo para la tapeta sobre un altavoz de 8" de diámetro:

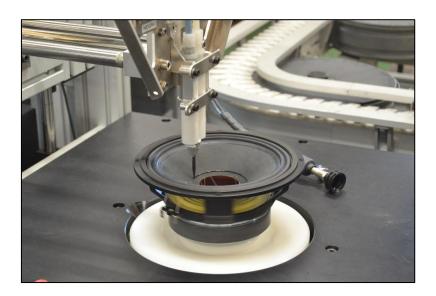


Fig. 18: Dosificación de adhesivo

En el proceso de dosificación influyen varios parámetros propios de cada referencia fabricada:

- Posición del cordón de adhesivo.
- Velocidad de giro.
- Tiempo de dosificación.

Las diferentes piezas que componen los productos son colocadas en su posición por el operario del equipo.

4.1.2.1 Producto fabricado

Los productos fabricados por el equipo son altavoces diseñados específicamente para ser montados en sistemas de audio profesional.

Los diámetros de estos altavoces comprenden entre 8" los menores y 21" los mayores, siendo los más comunes los de entre 12" y 18".

La siguiente imagen muestra uno de estos productos:

Fig. 19: Producto fabricado [4]

4.1.2.2 Adhesivo

El adhesivo utilizado por el equipo es un bicomponente de base acrílica especialmente diseñado para poder ser utilizado en todas las uniones adhesivas del altavoz.

La siguiente tabla muestra algunos datos del producto:

Modelo	Ergo 1320
Fabricante	Kisling AG
Ratio de mezcla	1:1
Tiempo de mezcla	2-3 minutos

Tabla 11: Datos adhesivo

Como peculiaridad cabe resaltar que el adhesivo reacciona e inicia el curado en contacto con metales.

4.1.3 Sistemas

El equipo TADA1 está compuesto por varios sistemas diferenciados según su función. Estos sistemas son los siguientes:

- Neumática [N]
- Dosificación [D]
- Movimiento [M]
- Control [C] (Electricidad y Electrónica)

4.1.3.1 Neumática [N]

El sistema neumático es el encargado de regular y distribuir el aire comprimido utilizado por la máquina.

La Fig. 20 muestra el esquema neumático del equipo:

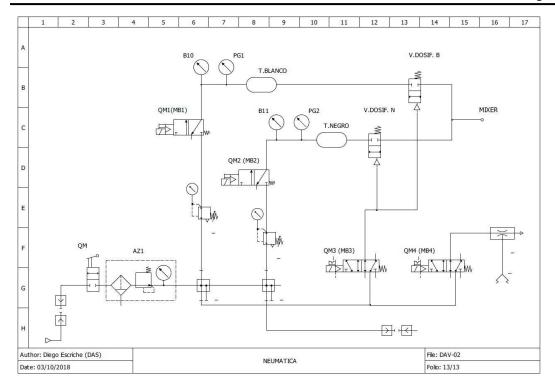


Fig. 20: Esquema del sistema neumático

El sistema consta de varias etapas; la primera etapa prepara y regula el aire mediante filtros y reguladores de presión neumáticos; la siguiente distribuye el aire; y por último éste es utilizado para presurizar los tanques, generar vacío para manipular piezas o para soplado. El control de los circuitos se lleva a cabo con electroválvulas controladas por la CPU. La siguiente imagen muestra el cuadro neumático del equipo:

Fig. 21: Detalle preparación y control

El subsistema de vacío es el utilizado para manipular componentes que son ensamblados en el producto durante las operaciones de fabricación.

Este subsistema está compuesto por una electroválvula, un eyector tipo venturi, un filtro y un dispositivo (Fig. 22), utilizado por el operario para manipular piezas, el cual contiene una ventosa y un pulsador que acciona la electroválvula.

Fig. 22: Detalle de ventosa con mango

4.1.3.2 Dosificación [D]

El sistema de dosificación es el sistema principal de la máquina, encargado de dosificar el adhesivo (función principal).

Este sistema consta de dos etapas, presurización del adhesivo y dispensación.

La siguiente imagen muestra el esquema del sistema de dosificación (detalle del esquema de la Fig. 20):

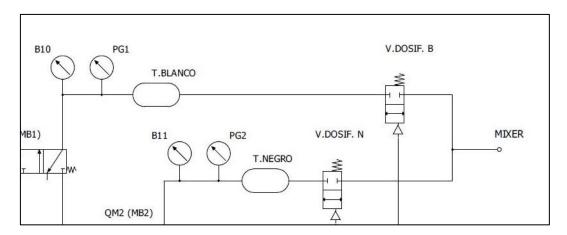


Fig. 23: Detalle esquema circuito de dosificación

La primera etapa utilizando la presión neumática impulsa el adhesivo, para ello se utilizan tanques presurizados los cuales contienen el adhesivo. Estos tanques están instalados en el interior de un refrigerador que controla la temperatura del adhesivo.

La siguiente imagen muestra los tanques en el interior del refrigerador:

Fig. 24: Detalle tanques de adhesivo

En la segunda etapa mediante válvulas dosificadoras controladas neumáticamente se realiza la dispensación de adhesivo. Para mezclar los dos componentes del adhesivo se utiliza una cánula con relación de mezcla 1:1, ésta se instala en un cartucho con insertos de PVDF unidos a las válvulas.

La siguiente imagen muestra el cabezal dosificador donde están montadas las válvulas y el cartucho con la cánula:

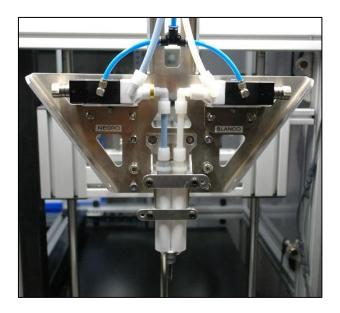


Fig. 25: Detalle grupo dosificador

4.1.3.3 Movimiento [M]

El sistema de movimiento es el encargado de ajustar la posición de dosificación a las cotas requeridas para cada modelo fabricado y de rotar los altavoces para dispensar el adhesivo.

La siguiente imagen muestra una vista parcial del sistema:

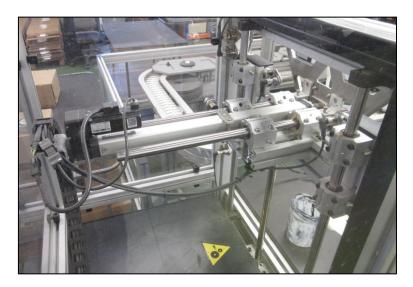


Fig. 26: Conjunto posicionador

El sistema de movimiento consta de giro y dos ejes, horizontal y vertical. El giro se lleva a cabo mediante un motorreductor y el movimiento de los ejes mediante dos servos. La calibración de los ejes se realiza con sensores inductivos como los mostrados en la siguiente imagen:

Fig. 27: Detalle sensores inductivos

4.1.3.4 Control [C] (Electricidad y Electrónica)

El sistema de control es el encargado de proveer de electricidad a la máquina, permitir la interacción hombre-máquina, monitorizar los diferentes parámetros necesarios para el buen funcionamiento del equipo y regular el movimiento.

La siguiente imagen muestra el interior del cuadro eléctrico del equipo:

Fig. 28: Cuadro eléctrico

El control de todas las entradas y salidas lo gestiona una CPU (Fig. 28 centro), la cual recibe los parámetros correspondientes a cada programa seleccionado por el operador desde el HMI, procesa la información de las entradas, ejecuta las operaciones pertinentes y comanda las controladoras de los servos y el variador de frecuencia del motorreductor (Fig. 28 zona superior izquierda).

La interacción hombre máquina se efectúa mediante un visor táctil HMI (Fig. 29) donde el operario selecciona los diferentes programas; una botonera que contiene el pulsador de inicio de ciclo y una seta de emergencia; y otra en el propio cuadro que contiene un pulsador para reiniciar los programas en caso de ser necesario.

Fig. 29: Visor táctil HMI

4.1.4 Control y regulación de parámetros

4.1.4.1 Presión neumática

La presión neumática es uno de los parámetros más importantes que se regulan y monitorizan debido a que está directamente relacionada con la dosificación de adhesivo.

Presión general

El aire a presión es filtrado y su presión regulada a la entrada de la máquina mediante una estación que contiene una válvula candable y un regulador neumático con filtro y manómetro.

La siguiente imagen muestra la estación:

Fig. 30: Estación de preparación del aire

Los datos del regulador se muestran en la siguiente tabla:

Fabricante	Asco Numatics
Modelo	G652APBP4GA00H
Rango	0,5 – 10bar
Filtro	5µm

Tabla 12: Datos regulador principal

Presión de los tanques

La presión de los tanques se regula mediante dos reguladores independientes y la entrada de aire a éstos es controlada con electroválvulas que a su vez están comandadas por el sistema de control. Los tanques se despresurizan cuando se presiona la seta de emergencia o cuando se desconecta la energía eléctrica.

Los reguladores de presión de los tanques de adhesivo (Fig. 31) tienen instalados manómetros digitales que permiten visualizar de forma fácil las presiones al operario.

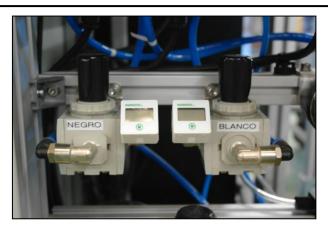


Fig. 31. Control presión tanques de adhesivo

Los datos de los reguladores de los tanques se muestran en la siguiente tabla:

Fabricante	Asco Numatics
Modelo	G651AR002D119H0 / PS180
Rango	0,5-10bar

Tabla 13: Datos reguladores de los tanques

El monitorizado de la presión se lleva a cabo mediante sensores electrónicos de presión y manómetros analógicos instalados en los tanques.

La siguiente imagen muestra estos componentes:

Fig. 32. Monitorización presión tanques de adhesivo

Los sensores electrónicos de presión disponen de una pantalla digital que muestra la presión del interior de los tanques, además están programados con la presión de trabajo (2,7bar) y cuando la presión se sitúa en un rango de ±0,2bar envían una señal al sistema de control para confirmar que la presión es correcta.

Los datos de los sensores se muestran en la siguiente tabla:

Fabricante	Talleres AR S.A.
Modelo	INDAP52PNPA
Rango	-1/10bar
Salida	PNP/4-20mA

Tabla 14: Datos sensores de presión electrónicos

Los manómetros analógicos están instalados a modo de indicador en caso de que los manómetros electrónicos perdieran la alimentación eléctrica.

La siguiente tabla muestra los datos de los manómetros:

Fabricante	Asco Numatics
Modelo	34300015
Rango	0-4bar

Tabla 15: Datos manómetros analógicos de los tanques

4.1.4.2 Control de nivel

El nivel mínimo de adhesivo se monitoriza mediante dos sensores capacitivos montados en sendos tanques.

El nivel mínimo está establecido para que el circuito no succione aire. Cuando uno de los dos sensores (Fig. 33) no detecta el nivel mínimo de adhesivo la máquina muestra una advertencia en pantalla y aunque permite finalizar la operación no permite iniciar una nueva.

Fig. 33: Monitorizado nivel de adhesivo

La siguiente tabla muestra los datos de los sensores de nivel:

Fabricante	Rechner sensors
Modelo	KAS-80-A13-A-Y5-D
Montaje	Enrasado
Distancia de conmutación (Sn)	5mm
Ajuste	Potenciómetro

Tabla 16: Datos sensores de presión de los tanques

4.1.4.3 Comprobación del ratio de mezcla y caudal

El parámetro considerado más crítico es el ratio de mezcla de los dos componentes que forman el adhesivo. Una desviación excesiva de este ratio provoca deficiencias en el curado del adhesivo y por tanto fallos en el proceso de fabricación.

La desviación máxima permitida entre ambos componentes está establecida en el 10%, valor considerado seguro por el fabricante del adhesivo. Para que las desviaciones sean fácilmente observables se dosifica una cantidad de 2ml de cada componente.

El control de la mezcla de adhesivo se realiza dos veces por jornada, al inicio de la jornada y después de la parada de mediodía. Este control se lleva a cabo mediante dos probetas graduadas montadas en un soporte, el cual permite que las probetas se puedan situar manualmente en la salida de adhesivo fácilmente. La siguiente imagen muestra el soporte con las probetas en la posición de comprobación:

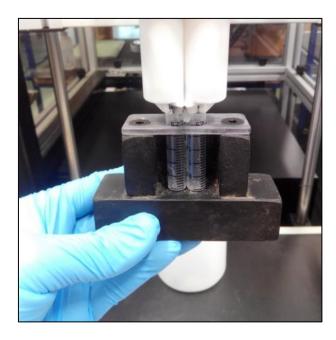


Fig. 34: Probeta de control de dosificación

Además de comprobar que el ratio de mezcla es el correcto, esta prueba también sirve para comprobar el caudal de adhesivo que dosifica el equipo.

El caudal de cada componente son 0,2ml/s con una tolerancia del 10%.

Para asegurar la repetitividad de la prueba la máquina contiene un programa (TEST), seleccionable desde la pantalla de inicio (Fig. 35), éste posiciona el cabezal dosificador en una posición alcanzable por el operario y cuando es pulsado el botón de marcha de ciclo se dosifica la cantidad programada (2ml).

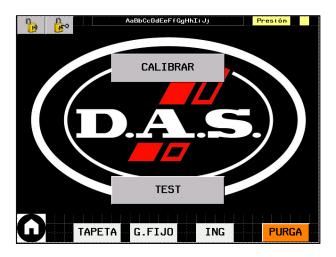


Fig. 35: Pantalla de inicio

4.1.5 Listado de materiales

La siguiente tabla muestra un resumen del listado de materiales donde se incluyen los componentes más susceptibles de ser sustituidos.

Id	Descripción	Fabricante	Referencia
RDC001	Cartucho Mixpac	Mixpac	AB 050-01-10-33
RDC002	Junta tórica, Dm 15 x 2,00 mm, NBR		
RDV001	Válvula dosificadora ciano PN.295229	Ecolab	295229
REA001	CPU AC 14E/10S relé Ethernet canopen	Schneider	TM241CEC24R
REA002	Módulo 2E analógicas HR tornillo	Schneider	TM3AI2H
REA003	Módulo M241/M251 switch 4xethernet	Schneider	TM4ES4
REA004	Terminal grafico TFT color 7,5"	Schneider	HMIGTO4310
REA005	ATV312 0,18KW 230V monofásico	Schneider	ATV312H018M2
REA006	Tab 4 puertos DB9	Schneider	TSXCANTDM4
REA008	Driver servo-motor Lexium 28 100W	Schneider	LXM28AU01M3X
REA010	Contacto NA TEE ZENL1111	Schneider	ZENL1111
REA011	Contacto NC TEE ZENL1121	Schneider	ZENL1121
REA012	Cabeza seta 40MM emergencia c/fraud.	Schneider	ZB5AS844
REA013	Cabeza pulsador V TEE ZB5AA3	Schneider	ZB5AA3
REA015	Piloto luminoso LED 230V Blanco	Schneider	XB4BVM1
REA017	Piloto luminoso LED 24V Rojo	Schneider	XB4BVB4
REA018	Piloto luminoso LED 24V Amarillo	Schneider	XB4BVB5
REA023	Fuente conmutada 24 VCD 3A 72W	Schneider	ABL8REM24030
REA025	Interruptor C/B candado 25A 3P C-1	Gave	AB5522100
REA028	Mecanismo y fijación mural pulsador NA	Schneider	ZB4 BZ101
REA029	Contacto NC fijación frontal	Schneider	ZBE102
REA054	Relé 24Vdc	Finder	34.51.7.024.0010
REA056	Lámpara Baliza XVB	Schneider	
RED015	S. inductivo M18 C50mm 8mm PNP NC	Schneider	XS118B3PBM12
RED016	Escuadra fijación sensor M18	Schneider	XUZA118
RED018	S. inductivo M18 L74mm 8mm PNP NA	Schneider	XS618B1PAM12
RED019	S. inductivo M18 L74mm 8mm PNP NC	Schneider	XS618B1PBM12
RED021	Sensor capacitivo M18 M12	Rechner	KAS-80-A13-A-Y5-D
REI032	Turbina 80x80x25 24Vdc	Sunon	
REL004	Luminaria Alba Led 22W 4000K	ARLUS	631.022
REM001	Servo-motor	Schneider	BCH2MB0131CF5C
REM002	Servo-motor	Schneider	BCH2MB0131CA5C
REM004	Reductor sin fin MSF30 i=30	Jalmac	MSF30
REM005	Motor Trif. 0,12cv(0,09kw) 1320r.p.m.	Cemer	IE1-MSE 562-4
REP002	Automático IK60N 2P C-16A	Schneider	A9K17216
REP003	Diferencial 2P 25A 30mA	Schneider	A9R60225
REP006	Fusible cilíndrico Ind. GG 110x38 S/I 2A	Mersen	D213098J
RESO01	Barrera seguridad EOS2 750mm	Reer	EOS2703X
RESO02	Barrera seguridad EOS2 450mm	Reer	EOS2453X
RESO03	Relé seguridad MSR126RT	AllenBradley	440R-N23120
RMM001	Actuador eléctrico 600mm	Thomson	PC25PA194B03-
			0600RF1-66
RMM002	Actuador eléctrico 400mm	Thomson	PC25PA194B03-
			0400RF1-23

Id	Descripción	Fabricante	Referencia
RMM005	Rodamiento lineal @20	Thomson	SPPBAM20
RMM010	Rodamiento axial agujas 100x135x4	Iko	NTB 100135
RNA004	Electroválvula 5/2 Mono 1/4" 24vdc S/C	Asco	52100163
RNA005	Electroválvula 3/2 NC monoestable	Asco	G551A005S3YZ
RNA006	Bobina 24VDC T-22	Asco	430061895230
RNP002	Válvula candable	Asco	G652A3M040A0000
RNP003	Filtro regulador G652A 1/2" 5micras	Asco	G652APBP4GA00H
RNP016	Regulador 1/4" + manómetro digital	Asco	G651AR002D119H0
RNP017	Presostato digital -1/10bar PNP/4-20mA	AR	INDAP52PNPA
RNP018	Válvula seguridad 3,8bar	Herose	06205
RNP021	Filtro Vacio 3/8" Elemento 15micras	AR	FILFNU38BP
RNP024	Manómetro @40 0-4bar 1/8" Posterior		34300015
RNV001	Eyector de vacio K1 1/8"	AR	EVK1
RNV002	Ventosa fuelle Ø30mm nitrilo 1/8"	AR	VF30NIT/RAC15R18M
RRR001	Refrigerador 40PC-40	Vinobox	CV40PC1TN

Tabla 17: Listado de materiales

4.1.6 Lubricantes

La siguiente tabla incluye los lubricantes empleados por el equipo y utilizados en las operaciones de mantenimiento:

Id	Descripción	Viscosidad	Fabricante	Referencia	Puntos de uso
RLG002	Grasa CNC	NLGI 2	SMW-autoblok	K05	Rodamientos lineales guías
RLG005	Grasa actuadores eléctricos	NLGI1	Brugarolas	Beslux Komplex M-1	Actuadores eléctricos PC25
RLG006	Grasa silicona válvulas	-	CRC	32086	Válvulas dosificadoras cámara neumática

Tabla 18: Lubricantes del equipo

Debido a que dos de los tipos de grasa se utilizan en puntos de uso muy cercanos, éstos disponen de diferentes modelos de engrasadores para evitar errores. Además las dos engrasadoras que se utilizan en el equipo están marcadas con adhesivos de colores diferentes para evitar equivocaciones en su relleno:

Amarillo: RLG002Naranja: RLG005

La tercera grasa no se considera susceptible de ser aplicada erróneamente, además de por su formato de envase, porque se utiliza únicamente en las reparaciones de válvulas.

4.2 ANÁLISIS DE MANTENIMIENTO

4.2.1 Criticidad del equipo

Por encontrarse al final del proceso, cualquier fallo producido en el producto conlleva el coste de todo el grupo móvil del altavoz más el reproceso de cada unidad, éste supone alrededor del 40% del coste del altavoz dependiendo el modelo. Además, cuando se detecta el fallo hay varias unidades afectadas ya que en el tiempo de curado del adhesivo se fabrican varias unidades

En la siguiente tabla se indican algunos ejemplos de los costes de cada producto defectuoso y su porcentaje sobre el total[4]:

Altavoz	Coste [€]	Porcentaje
18UXN	31,70	35
18FW	18,24	38
12F	13,67	43

Tabla 19: Coste de material desechado por producto [4]

No se consideran pérdidas económicas de post-venta ya que los fallos son detectados por los sistemas de calidad fácilmente.

Previa a la implantación de rutinas de mantenimiento las incidencias en el producto fabricado se repetían recurrentemente, aunque no hay registros, al menos una vez por mes ocurría un fallo involucrando varias unidades.

Debido a la gravedad y la frecuencia (especialmente con inexistencia de mantenimiento) de las incidencias, y a pesar de la fácil detección, la criticidad del equipo se considera alta.

4.2.2 Averías más frecuentes

El análisis de las averías permite conocer los componentes más susceptibles de fallar, sus consecuencias y de esta forma intentar minimizar los problemas que puedan generar.

La siguiente tabla muestra las incidencias que ha tenido el equipo desde su instalación:

N_Incidencia	Fecha	Sistema	Componente	Descripción
INC-18019	25-oct-18	Control	Mando	Seta de emergencia suelta
INC-18022	18-dic-18	Movimiento	Eje	El eje Z hace ruido cuando se desplaza
INC-19006	04-feb-19	Dosificación	VD	Adhesivo gotea, componente negro.
INC-19007	04-feb-19	Control	Mando	Caja pulsadores suelta ligeramente
INC-19011	14-may-19	Dosificación	VD	Adhesivo gotea
INC-19012	15-may-19	Dosificación	VD	Válvula blanco fuga salida

Tabla 20: Incidencias TADA1 (DAV-02)

Las incidencias se ordenarían por su gravedad de la siguiente forma:

- Válvulas dosificadoras (VD): Alta. Las averías de este componente afectan a la calidad del adhesivo y por tanto al producto final, generando costes por mermas como se explicó en el apartado 4.2.1.
- Eje: Media. El ruido es debido a que existe una condición anómala por la que el componente puede degradarse.
- Mandos: Media. La pérdida de firmeza en el anclaje de la seta de emergencia puede llevar a que en una emergencia no pueda pulsarse correctamente, no obstante la seguridad de las personas no está en riesgo por existir otros sistemas de seguridad como las barreras inmateriales.

La siguiente gráfica muestra la distribución de las incidencias de la Tabla 20:

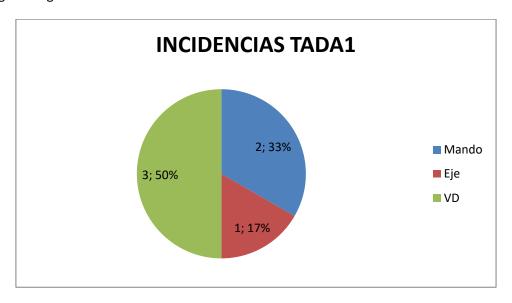


Fig. 36: Incidencias equipo

La anterior gráfica muestra que el componente que más incidencias ha provocado ha sido la válvula dosificadora (VD).

No obstante, debido a la falta de datos, por tratarse de un equipo relativamente nuevo, se amplía el estudio con el análisis de las incidencias del modelo anterior de dosificadora automática ya que es el equipo con mayor similitud. Este análisis permitirá conocer con mayor certeza cuáles son las averías más frecuentes que se podrían producir.

La siguiente figura muestra una gráfica con la distribución de las incidencias del modelo antiguo:

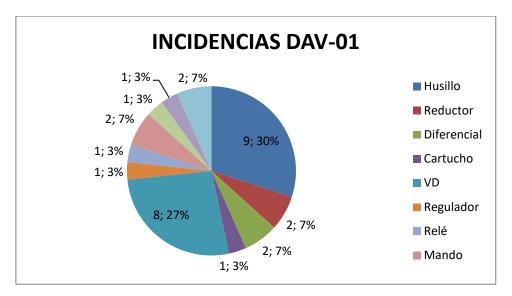


Fig. 37: Incidencias dosificadora DAV-01

Como muestra la anterior figura las averías más frecuentes están relacionadas con el husillo y también con las válvulas dosificadoras (VD).

Para poder hacer una previsión más ajustada, cabría apuntar que la mayoría de incidencias relacionadas con el husillo en este equipo eran debidas a que, al ser los motores paso a paso, si éste se bloqueaba la máquina se desajustaba. En el modelo DAV-02 se ha sustituido este sistema por ejes con servomotores (con detección de la posición). Esta modificación debería evitar que el sistema se desajuste, y por tanto, el porcentaje de averías relacionadas con el eje debería ser menor.

Por esta razón la avería más recurrente se prevé que sea, y por el momento esa es la tendencia según la Fig. 36, un fallo de la válvula dosificadora.

Debido a ser, y prever que sea, el componente con más frecuencia de averías y además con una gravedad alta, se considera a las válvulas dosificadoras los componentes más críticos de la máquina.

4.2.3 Componentes mantenibles

En este apartado se describen los componentes que requieren de mantenimiento periódico para asegurar su correcto funcionamiento y/o alargar su vida útil, o que son sustituidos debido a mantenimiento sistemático y/o predictivo.

4.2.3.1 Válvulas dosificadoras

Válvula dosificadora de accionamiento neumático y cierre por resorte. Cierre plano y partes en contacto con el producto fabricados en PTFE.

La Fig. 38 muestra una válvula dosificadora montada en el equipo.

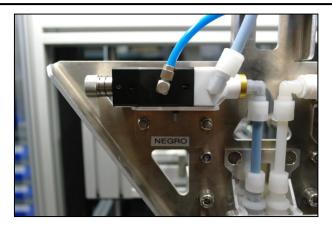


Fig. 38: Válvula dosificadora

La siguiente tabla muestra los datos de las válvulas dosificadoras:

Fabricante	Ecolab
Modelo	2.952.29
Presión del producto	0,8-4bar
Presión de accionamiento	4-6bar
Tiempo de respuesta	0,03s

Tabla 21: Datos válvulas dosificadoras

La válvula se divide en varios subconjuntos:

- La cámara de dosificación por donde fluye el producto, compuesta por tres partes fabricadas en PTFE, cámara, vástago y diafragma (Nº1, 2 y 4 de la imagen siguiente respectivamente). El sellado se lleva a cabo mediante juntas tóricas (Nº3 y 22 de la Fig. 39).
- El pistón neumático el cual está unido al vástago y abre la válvula cuando se introduce aire presurizado. Principalmente compuesta por el cuerpo de la válvula (aluminio anodizado), vástago (acero inoxidable) y el émbolo (POM) (№5, 6 y 19 de la Fig. 39 respectivamente). El sellado se lleva a cabo mediante juntas tóricas (№9, 20 y 21 de la Fig. 39).
- Regulador de apertura. Permite ajustar el flujo de producto cuando la válvula abre. Fabricado en acero inoxidable. (Nº10, 16, 14 y 12 de la Fig. 39).

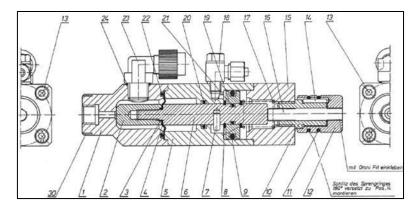


Fig. 39: Esquema válvula dosificadora

Las válvulas dosificadoras se tratan como un elemento particular, ya que por tratarse de un componente que se recupera (limpian y revisan) y posteriormente se instalan en diferentes equipos, éstas están numeradas para permitir su trazabilidad.

4.2.3.1.1 Cálculos de mantenimiento

Se analiza el MTBF del componente.

La ecuación para obtener el MTBF es la siguiente [5]:

$$MTBF = \frac{\sum tiempo\ entre\ averias}{n^{0}\ de\ TBF} \tag{1}$$

Los periodos se han contabilizado en días laborables obtenidos con los calendarios de la empresa.

El periodo de análisis comienza el día de instalación del equipo y finaliza el 1 de julio de 2019.

Las averías se muestran en la Tabla 20. Se elimina la INC-19012 por ser un fallo de montaje.

Los datos para el cálculo son los siguientes:

Periodo: 169días
Nº de averías: 2
Nº de TBF: 3

Se introducen los datos en la Ecuación (1) y se obtiene el MTBF de las válvulas dosificadoras en el equipo TADA1.

$$MTBF = \frac{169}{3} = 56,33 \approx 11,3semanas$$
 (2)

MTBF DAV-01

Como pasara en el apartado 4.2.2, debido a que el equipo es reciente no se dispone de gran cantidad de datos. Para poder ampliar el estudio se calcula el MTBF de las válvulas instaladas en el equipo antiguo (DAV-01), ya que el trabajo y el sistema eran exactamente iguales.

Se toma como inicio del periodo una incidencia ocasionada por un lote defectuoso de adhesivo (no contabilizado como avería para el MTBF) para que no afecte al resultado. En ese periodo, además, se establecieron las sustituciones sistemáticas, inicialmente cada 12 semanas y posteriormente, hasta la actualidad, cada 8 semanas.

Las averías del equipo antiguo se muestran en la siguiente tabla:

N_Incidencia	Fecha	Fallo
INC-17031	30-jun-17	Adhesivo
INC-17039	18-oct-17	Cierre
INC-17045	17-nov-17	Cierre
INC-18004	21-mar-18	Cierre
INC-18013	28-ago-18	Neumática

Tabla 22: Incidencias MTBF DAV-01

Los datos para el cálculo son los siguientes:

Periodo: 274días
 Nº de averías: 4
 Nº de TBF: 5

Los datos se introducen en la Ecuación (1) para obtener el MTBF de las válvulas dosificadoras:

$$MTBF = \frac{274}{5} = 54.8 \approx 11semanas \tag{3}$$

Los MTBF son muy similares a pesar de la diferencia en los periodos de sustitución.

El componente se considera que tiene fallos aleatorios por la disparidad en los TBF.

Tasa de fallo

La tasa de fallo es la inversa del MTBF [5]. Se toma el MTBF del equipo actual. El cálculo se realiza mediante la siguiente ecuación:

$$\lambda = \frac{1}{MTBF} = \frac{1}{11,3} = 0.089 fallos/semana \tag{4}$$

4.2.3.1.2 Averías más frecuentes

La siguiente tabla muestra todas las incidencias relacionadas con las válvulas dosificadoras en la empresa desde que se tiene registro:

N_Incidencia	Fecha	Fallo
INC-17007	18-ene-17	Regulación
INC-17013	05-may-17	Cierre
INC-17027	19-jun-17	Regulación
INC-17031	30-jun-17	Adhesivo
INC-17032	30-jun-17	Adhesivo
INC-17033	03-jul-17	Adhesivo
INC-17039	18-oct-17	Cierre
INC-17041	30-oct-17	Cierre
INC-17045	17-nov-17	Cierre
INC-17046	12-dic-17	Fugas
INC-18001	22-ene-18	Cierre
INC-18004	21-mar-18	Cierre
INC-18006	03-abr-18	Cierre
INC-18007	10-abr-18	Cierre
INC-18013	28-ago-18	Neumática
INC-18014	28-ago-18	Regulación
INC-18017	03-oct-18	Cierre
INC-18020	09-nov-18	Neumática
INC-19001	03-ene-19	Cierre
INC-19003	16-ene-19	Neumática
INC-19006	04-feb-19	Cierre

Tabla 23: Incidencias totales en válvulas dosificadoras

La siguiente figura muestra la distribución de las incidencias de las válvulas dosificadoras recogidas en la Tabla 23:

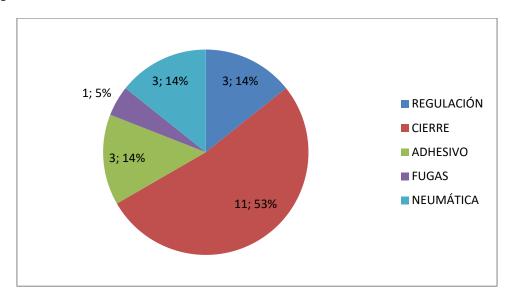


Fig. 40: Incidencias de las válvulas dosificadoras

Como muestra el gráfico de la Fig. 40 el fallo en el cierre de la válvula es la avería más recurrente. Las incidencias marcadas como "Adhesivo" también fueron fallos de cierre pero se han diferenciado por deberse a una partida de adhesivo defectuosa.

Las incidencias de regulación estarían debidas a desajustes tras largos periodos de inactividad.

Las averías "Neumáticas" son las relacionadas con el sistema de accionamiento del que dispone la válvula. Se deberían tener en consideración, más si cabe, al estar relacionados con componentes que sufren desgaste y que conforme aumente la vida de las válvulas éstas averías podrían incrementar su número.

La gravedad de las averías se ordenaría de la siguiente forma:

- Regulación: Alta. Afecta a la calidad del adhesivo y provoca productos inservibles.
- Cierre: Alta. Afecta a la calidad del adhesivo y provoca productos inservibles.
- Neumática: Media. Puede provocar goteos sobre los altavoces fácilmente.
- Fugas: Baja. Puede provocar goteos sobre los altavoces no fácilmente.

La detección de las averías seguiría el siguiente orden:

- Fugas: Alta. Muy visible.
- Regulación: Alta. Detectable con la comprobación rutinaria.
- Cierre: Media. Observable a simple vista.
- Neumática: Baja. Se observa difícilmente a simple vista.

Debido a la gravedad, frecuencia y detección se considera que la avería más crítica de las válvulas dosificadoras es el fallo del cierre seguido de la avería en el pistón neumático.

A continuación se explican con más detalle las dos averías que se consideran más significativas; los fallos en el cierre de la válvula y las averías del accionamiento neumático.

Cierre parcial de la válvula

La avería más frecuente es el fallo en el cierre de la válvula. Ésta avería se produce porque el cierre de la válvula dosificadora es parcial debido a que se originan depósitos de residuos de adhesivo en el asiento de válvula.

Debido a la naturaleza del adhesivo se generan depósitos de partículas en el asiento de las válvulas. Estos depósitos impiden el cierre total de las válvulas y permiten que el adhesivo continúe fluyendo. La siguiente imagen muestra un ejemplo de partícula clavada en el asiento:

Fig. 41: Partícula de adhesivo en asiento de válvula

El síntoma más usual es el goteo de adhesivo cuando las válvulas no están accionadas.

Esta avería puede tener dos consecuencias dependiendo de la apertura y el tiempo entre dosificaciones existente:

- El goteo constante de adhesivo aún cuando la válvula está cerrada, el cual puede manchar los altavoces.
- Fallos en el cordón de adhesivo debido a que se generan volúmenes de un solo componente dentro del mezclador, los cuales no pueden curarse. Este fallo convierte el producto en inservible.

Avería en el pistón actuador de la válvula

La siguiente avería más frecuente en las válvulas es el fallo del sistema de accionamiento neumático de la propia válvula.

Ésta avería provoca que el cierre no sea instantáneo o incluso no exista cierre debido al mal estado de la corredera neumática responsable de accionar la válvula. Normalmente es producida por degradación del lubricante o de las juntas tóricas del sistema de accionamiento.

Esta avería al permitir el flujo de adhesivo más tiempo del programado provoca que, al retirarse el grupo dosificador a su posición de reposo, se puedan manchar los altavoces ocasionando en el peor de los casos que el producto sea inservible.

4.2.3.1.3 Mantenimiento

El mantenimiento de las válvulas consiste en, la retirada de la máquina y limpieza interna, y en la revisión del cierre de la válvula, tanto a mitad del periodo de funcionamiento como cuando es retirada. Como resultado de las revisiones temporalmente las válvulas requieren ser reparadas y engrasadas.

El periodo actual del mantenimiento preventivo se ha obtenido mediante la experiencia observando las averías y el tiempo transcurrido. Debido a la importancia de estos componentes en el proceso se ha preferido realizar sobremantenimiento a fin de evitar averías que afectaran a la producción.

Actualmente los periodos de funcionamiento se registran en días; para poder obtener datos más precisos, recientemente se han instalado contadores de ciclos los cuales permiten registrar los ciclos realizados por las válvulas entre operaciones con el fin de poder utilizar estos datos en el futuro.

La siguiente imagen muestra el contador de ciclos:

Fig. 42: Contador ciclos de dosificación

Comprobación del cierre de la válvula

Las válvulas dosificadoras se limpian y comprueban después de ser sustituidas para verificar el buen funcionamiento de las mismas y poder ser instaladas posteriormente en otros equipos.

La siguiente tabla muestra los datos de la operación:

Operación	OPPGEVD101			
Periodo	8 semanas			
Procedimiento	POMGEVD101			
Inspección Manómetro de comprobación de cierre				

Tabla 24: Datos operación

Cuando son retiradas las válvulas son limpiadas con acetona con el fin de eliminar el adhesivo que contienen en el interior.

La comprobación se realiza con un montaje específico en el que se utiliza un manómetro para verificar que la válvula no tiene pérdidas. En la siguiente imagen se muestra el montaje utilizado para comprobar las válvulas:

Fig. 43: Montaje comprobación válvulas

Resumen de los pasos:

- Conexión de la válvula de accionamiento (5-6bar) y presurización de la cámara frontal (3bar).
- Regulación de la válvula dosificadora mediante el regulador trasero. El regulador se gira una vuelta completa desde la posición de cerrado.
- Accionamiento de la válvula (3 repeticiones) para comprobar que el cierre es inmediato.
- Conexión del manómetro en la salida de la válvula para comprobar el cierre y cronometrar 30 segundos.
- Actuación según el resultado de acuerdo a la siguiente tabla:

Resultado	Estado	Acciones
Presión=0bar y cierre instantáneo	BIEN	No actuar
Cierre no instantáneo	MAL	Limpiar y engrasar el pistón actuador
Presión>0bar	MAL	Rectificar asiento de válvula y repetir. Sustituir cámara y/o vástago si no se pueden reparar.

Tabla 25: Límites

Sustitución periódica de las válvulas dosificadoras

La sustitución periódica de válvulas se realiza debido a que se crean depósitos de residuos de adhesivo en los asientos de la válvula, los cuales provocan que el cierre de éstas no sea estanco.

Las válvulas montadas en el equipo se sustituyen por válvulas que se encuentran en el almacén de reserva y que han sido limpiadas y comprobadas.

La siguiente tabla muestra los detalles de la operación:

Operación	OPSTADA101
Periodo	8 semanas
Procedimiento	POMTADA102
Material	Válvulas dosificación componente blanco
	Válvulas dosificación componente negro
	Teflón
	Guantes nitrilo

Tabla 26: Datos operación

Resumen de los pasos:

Desmontaje:

- Desconexión de los tubos de adhesivo de entrada y salida de las válvulas.
- Desconexión de los tubos de aire de las válvulas.
- Desatornillado de los tornillos y retirada de las válvulas.

Montaje:

- Colocación de las válvulas y fijar con los tornillos.
- Conexión de los tubos de aire.
- Conexión de los tubos de entrada y salida de adhesivo.

Ajuste y comprobación:

- Cierre total y apertura de una vuelta del regulador de la válvula.
- Purgado hasta que no salgan burbujas de aire.
- Calibración de la máquina y realización del TEST estándar.
- Si fuese necesario regulación de las válvulas y repetición del TEST.

Revisión periódica de válvulas instaladas

El correcto funcionamiento de las válvulas dosificadoras se comprueba a la mitad del periodo de sustitución para limpieza con el fin de detectar posibles averías que puedan surgir.

La siguiente tabla muestra los detalles de la operación:

Operación	OPPTADA102
Periodo	4 semanas
Procedimiento	POMTADA104
Inspección	Cronómetro

Tabla 27: Datos operación

Con una cánula modelo T-mixer (Mixpac) instalada en el dosificador se dosifica adhesivo y se observa como la válvula corta el flujo de adhesivo. El cierre debe ser instantáneo, de no serlo la válvula debe ser sustituida.

En caso que cierre instantáneamente se realiza una segunda dosificación y se comprueba si el adhesivo gotea. Con la ayuda de un cronómetro se mide el tiempo transcurrido hasta la primera gota.

La siguiente tabla muestra los tiempos y acciones a llevar a cabo tras la comprobación:

Tiempo hasta goteo	Estado	Acciones
X >15s	BIEN	No actuar
5s< x <15s	REGULAR	Vigilar y sustituir si fuese
		necesario
X < 5s	MAL	Sustituir inmediatamente

Tabla 28: Límites

4.2.3.2 Rodamientos lineales

Los rodamientos lineales de bolas que monta el equipo tienen bajo coeficiente de fricción, permiten desalineaciones de hasta 0,5°, aceleraciones de 150m/s² y velocidades de 3m/s. Disponen de sellos dobles y puertos de lubricación.

La siguiente imagen muestra uno de los rodamientos lineales del equipo:

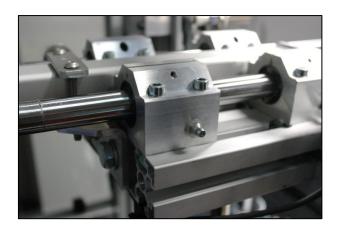


Fig. 44: Rodamiento lineal

La siguiente tabla muestra algunos de los datos de los rodamientos:

Fabricante	Thomson
Modelo	SPPBAM20
Lubricante	Grasa NLGI2

Tabla 29: Datos rodamiento lineal

4.2.3.2.1 Cálculos de mantenimiento

"La vida de un rodamiento de movimiento lineal es dada por la distancia la cuál una de las pistas se desplaza, en relación de la otra pista, previo a la primera evidencia del desarrollo de fatiga en el material de una de las pistas o uno de los elementos rodantes" [6].

De acuerdo con la norma ISO 14728-1:2017 [6], la cual basa las fórmulas en la teoría de Lundberg y Palmgren [7], el cálculo de la vida de los rodamientos de recirculación de bolas es dada por la siguiente fórmula:

$$L_{10} = \left(\frac{C}{F}\right)^3 \cdot 10^5 \tag{5}$$

Donde:

L: Vida del rodamiento (m)

C: Capacidad de carga dinámica del rodamiento (N)

F: Carga dinámica aplicada (N)

La capacidad de carga dinámica "C" la establece el fabricante según la siguiente tabla, para esta referencia (SPPBM20), en 2020N.

	Dimensions (mm)										Dynamic	Load			
Part Number	ød ⁽⁴⁾	H +/- 0.020	H1	A	A1 +/- 0.020	В	E +/-0.1	E1 +/-0.1	Нз	L3(5)	øN	N2	Mass (kg)	Load W ⁽¹⁾⁽³⁾ (N)	Limit W ₀ (2)(3) (N)
SPPBM08	8	15	28	35	17.5	32	20 ⁽⁶⁾	25 ⁽⁶⁾	12(5)	8.5	3.3	M4	0.07	310	340
SPPBM12	12	18	35	43	21.5	39	23 ⁽⁶⁾	32 ⁽⁶⁾	10	10.5	4.3	M5	0.13	830	910
SPPBM16	16	22	42	53	26.5	43	26	40	12	16.5	5.3	M6	0.21	1020	1120
SPPBM20	20	25	50	60	30.0	54	32	45	13	20.5	6.6	M8	0.35	2020	2220
SPPBM25	25	30	60	78	39.0	67	40	60	15	23	8.4	M10	0.66	3950	4350
SPPBM30	30	35	71	87	43.5	79	45	68	20	27	8.4	M10	0.97	4800	5280
SPPBM40	40	45	91	108	54.0	91	58	86	21.5	30	10.5	M12	1.81	8240	9060
SPPBM50	50	50	105	132	66.0	113	50 ⁽⁶⁾	108(5)	12.5	22	13.5	M16	3.00	12060	13270

Fig. 45: Tabla rodamientos lineales [8]

El cálculo de la durabilidad de los rodamientos se realizaría para cada eje independientemente debido a que las cargas y las distancias, aunque similares, son diferentes en los dos ejes.

Como se muestra más adelante, las cargas sometidas y los desplazamientos realizados no son críticos para la vida del sistema, por esta razón solamente se muestra el cálculo del eje Y.

La carga aplicada a los rodamientos lineales es resultante del peso del cabezal dosificador más las propias barras calibradas y la distancia a la que ésta se encuentra de los apoyos. Los rodamientos traseros son los sometidos a mayor carga.

La siguiente imagen muestra un esquema del conjunto:

Fig. 46: Esquema distancias eje Y

El cabezal posicionador siempre se encuentra por delante de los rodamientos frontales; variando su posición, desde 32mm hasta 348,5mm. Como aproximación se considera 316,5mm como la distancia media y el peso del conjunto íntegro.

Se calcula la fuerza en los rodamientos traseros por ser los que están sometidos a mayor carga.

La fuerza resultante sería:

$$F = \frac{4,15 \cdot 9,81 \cdot 316,5}{119,5} = 107,83N \tag{6}$$

Introduciendo en la ecuación del cálculo de vida (5) la fuerza resultante calculada en la ecuación (6); la carga dinámica de la Fig. 45; y teniendo en cuenta que hay dos rodamientos por fila; se obtiene:

$$L_{10} = \left(\frac{2020}{107,83/2}\right)^3 \cdot 10^5 = 5,26 \cdot 10^9 \, m \tag{7}$$

La distancia recorrida por el eje Y estaría entorno a 2m/día.

Tomando los datos anteriores la durabilidad de los rodamientos lineales del eje estaría alrededor de 2,63x10⁹ dias.

Con estos datos se considera que los rodamientos lineales no deberían fallar por causa de la fuerza aplicada y distancia recorrida en un periodo razonable de tiempo.

Por otro lado el fabricante en uno de sus "papers" [9] explica cómo se puede utilizar las guías a modo de probeta para poder localizar si existiese desgaste, el cuál vendría producido por el mal funcionamiento de los rodamientos lineales. La siguiente imagen muestra el desgaste en una guía:

Fig. 47: Desgaste de la guía [9]

4.2.3.2.2 Mantenimiento

El mantenimiento de este componente consiste en reemplazar la grasa que contiene con nueva grasa.

El fabricante en uno de sus documentos [9] aconseja como mínimo realizar el mantenimiento 1 vez por año o 100km.

Por experiencia se ha observado que el engrase debe realizarse más frecuentemente que anualmente debido a la suciedad recogida. Por el momento se toma como referencia el periodo de cambio que tenía establecido el anterior equipo instalado en el mismo puesto aunque se podría estudiar el modificarlo cuando se tengan más datos.

Los detalles de la operación se muestran en la siguiente tabla:

Operación	OPSTADA103
Periodo	8 semanas
Procedimiento	POMTADA105
Material	Grasa (RLG002) [3ml por rodamiento]
	Acetona
	Guantes nitrilo
Herramientas	Engrasadora amarilla (RTL001)

Tabla 30: Datos operación

Resumen de los pasos:

- Apertura de las protecciones traseras de la máquina.
- Engrase de los rodamientos mediante los engrasadores instalados (1 por rodamiento)
- Cierre de las protecciones traseras.
- Limpieza del tablero de la máquina con papel impregnado en acetona.

4.2.3.3 Rodamiento de agujas

El plato giratorio sobre el que se sitúa el producto está montado sobre un rodamiento de agujas.

La siguiente imagen muestra el rodamiento de agujas del equipo:

Fig. 48: Rodamiento de agujas

La siguiente tabla muestra los datos del rodamiento:

Fabricante	Iko
Modelo	NTB 100135
Lubricante	Grasa NLGI2

Tabla 31: Datos rodamiento de agujas

4.2.3.3.1 Cálculos de mantenimiento

El cálculo de la vida de los rodamientos de agujas es dada por la siguiente expresión [10]:

$$L_{10} = \left(\frac{C}{F}\right)^{10/3} \cdot 10^5 \tag{8}$$

La capacidad de carga dinámica "C" la establece el fabricante según la siguiente tabla, para esta referencia (NTB 100135), en 90300N.

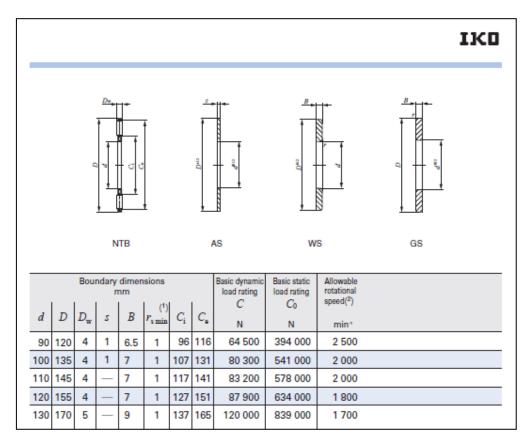


Fig. 49: Tabla carga dinámica rodamiento de agujas [11]

La carga aplicada es igual al peso del plato giratorio (35,32N) más el peso del transductor. Para poder establecer una carga dinámica se toma como referencia la media de las masas de los altavoces más fabricados el pasado año mostrada en la siguiente tabla:

Referencia	Masa [kg]	Porcentaje fabricación 2018
12F	6,3	22%
8C	3,25	15%
18LX	12,05	13%
Media	6,88	50%

Fig. 50: Masa de altavoces

Introduciendo los datos en la Ecuación (8) se obtiene:

$$L_{10} = \left(\frac{90300}{102.81}\right)^{10/3} \cdot 10^5 = 6.49 \cdot 10^{14} rev \tag{9}$$

"La vida L del rodamiento en la Norma ISO 281:2007 se calcula corrigiendo la vida nominal con un factor de fiabilidad (a_1) y otro (a_{iso}), que tiene en cuenta las condiciones de trabajo del rodamiento según la siguiente expresión" [10]:

$$L = a_1 \cdot a_{iso} \cdot L_{10} \tag{10}$$

El factor de fiabilidad (a_1) se obtiene 0,25 para una fiabilidad del 99% (para considerar una situación desfavorable) según la tabla de la siguiente figura:

Fiabilidad %	a ₁
90	1
95	0.64
96	0.55
97	0.47
98	0.37
99	0.25
99.2	0.22
99.4	0.19
99.6	0.16
99.8	0.12
99.9	0.093
99.92	0.087
99.94	0.080
99.95	0.077

Fig. 51: Factor de fiabilidad a₁ [7]

El factor de condiciones de trabajo (a_{iso}) se obtiene siguiendo los siguientes pasos:

- La viscosidad relativa (v_1) en función del diámetro medio del rodamiento (d_m) y la velocidad de giro (n):

$$v_1 = \frac{45000}{\sqrt{d_m \cdot n^{1,667}}} = \frac{45000}{\sqrt{117,5 \cdot 30^{1,667}}} = 243,8mm^2/s \tag{11}$$

 El cociente (κ) entre la viscosidad relativa (ν₁) y la viscosidad del aceite a la temperatura de trabajo del rodamiento (ν) obtenida en la tabla de la Fig. 52, la temperatura de trabajo se considera que es 30°C.

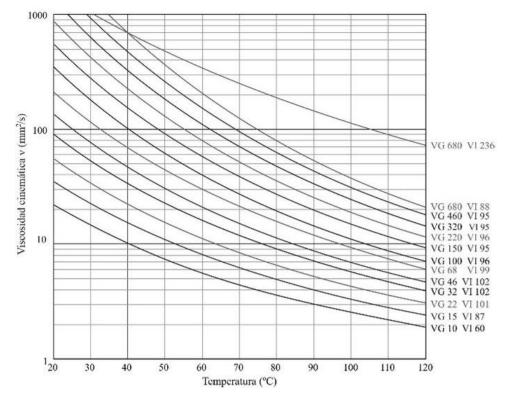


Fig. 52: Variación de la viscosidad cinemática con la temperatura [7]

$$\kappa = \frac{\nu_1}{\nu} = \frac{150}{243.8} = 0.6 \tag{12}$$

- El factor de contaminación (η_c) obtenido en la siguiente tabla, considerando que existe contaminación típica (0,2) :

 $\eta_c = f(contaminación, d_m)$

Condición	$d_{\rm m} < 100$	d _m ≥ 100
Limpieza extrema Condiciones de laboratorio	1	1
Gran limpieza Aceite filtrado a través de un filtro extremadamente fino Típico de los rodamientos engrasados de por vida y obturados	0,8 0,6	0,9 0,8
Limpieza normal Aceite filtrado a través de un filtro fino Rodamientos engrasados de por vida y con placas de protección	0,6 0,5	0,8 0,6
Contaminación ligera	0,5 0,3	0,6 0,4
Contaminación típica Típico de los rodamientos sin obturaciones integrales, filtrado grueso, partículas de desgaste y entrada de partículas del exterior	0,3 0,1	0,4 0,2
Contaminación alta Entorno muy contaminado y obturación inadecuada	0,1 0	0,1 0
Contaminación muy alta η _c puede estar fuera de la escala produciendo una reducción mayor de la vida útil de lo establecido por la ecuación Ec. 4	0	0

Fig. 53: Factor de contaminación [7]

Tomando estos valores; calculando la relación contaminación-carga, se considera la carga dinámica (C) como (P_u) por no disponer de otro dato; y utilizando la gráfica del factor (a_{iso}) para rodamientos axiales de rodillos mostrada en la Fig. 54 se establece que el factor es 2,5 ya que es el máximo para el cociente (κ).

$$\eta_c \cdot \frac{P_u}{F} = 0.2 \cdot \frac{90300}{102.81} = 175.7$$
(13)

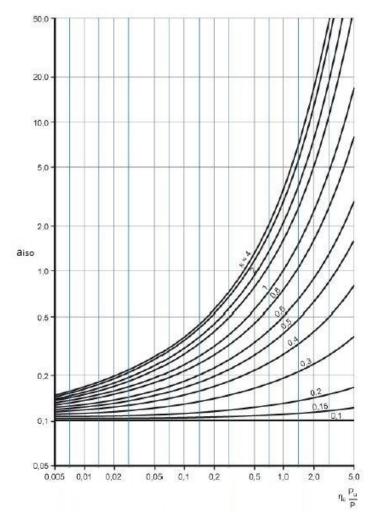


Fig. 54: Factor a_{iso} para rodamientos axiales de rodillos [12]

Introduciendo los datos obtenidos en la Ecuación (10) se obtiene la vida del rodamiento:

$$L = 0.25 \cdot 2.5 \cdot 6.49 \cdot 10^{14} = 4.06 \cdot 10^{14} rev \tag{14}$$

El rodamiento gira 700rev/día, por tanto la vida en días sería:

$$L = \frac{4,06 \cdot 10^{14}}{700} = 5,8 \cdot 10^{11} dias \tag{15}$$

Con estos datos se considera que el rodamiento de agujas no debería fallar por las condiciones de trabajo aplicadas.

4.2.3.3.2 Mantenimiento

El engrase del rodamiento de agujas se realiza para reemplazar la grasa deteriorada. El mantenimiento consta de la limpieza y posterior engrase de los elementos rodantes.

El periodo de las intervenciones se ha establecido basado en la experiencia, principalmente la observación de la acumulación de suciedad que accede al emplazamiento del componente, y se ha ajustado a los periodos de otras operaciones. Los datos de la operación se muestran en la siguiente tabla:

Operación	OPSTADA104
Periodo	8 semanas
Procedimiento	POMTADA106
Material	Grasa (RLG002) [3ml]
	Acetona
	Guantes nitrilo

Tabla 32: Datos operación

Resumen de los pasos:

- Desatornillado de los tornillos del útil base y retirarlo.
- Desatornillado de los tornillos del plato giratorio y retirarlo.
- Retirada y limpieza del rodamiento de agujas.
- Limpieza de la zona interior de la mesa de trabajo.
- Montaje del rodamiento aplicando la grasa.
- Colocación y atornillado del plato giratorio.
- Colocación y atornillado del útil base.
- Limpieza del tablero de la máquina con papel impregnado de acetona.

4.2.3.4 Actuadores eléctricos

El equipo cuenta con dos actuadores lineales de tipo husillo, los cuales llevan acoplados sendos servomotores, como el mostrado en la siguiente imagen:

Fig. 55: Actuador lineal

Los datos de estos actuadores se muestran en las siguientes tablas:

Fabricante	Thomson
Modelo	PC25PA194B03
Carrera	600mm
Lubricante	Grasa NLGI1
Cantidad de lubricante	4,5ml

Tabla 33: Datos actuador lineal vertical

Fabricante	Thomson
Modelo	PC25PA194B03
Carrera	400mm
Lubricante	Grasa NLGI1
Cantidad de lubricante	3ml

Tabla 34: Datos actuador lineal horizontal

4.2.3.4.1 Mantenimiento

El mantenimiento de estos sistemas consta de la lubricación periódica de la tuerca de bolas (Nº2 en la Fig. 56) a través del puerto de engrase (Nº3 en la Fig. 56). Para realizar esta operación se requiere de una engrasadora con boquilla para engrasador DIN3405 D1/A.

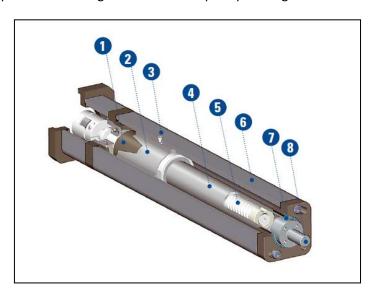


Fig. 56: Esquema actuador lineal

El fabricante en el manual de instalación [13] recomienda engrasar al menos cada 600 horas de operación o cada 6 meses (24 semanas), cualquiera que ocurra primero. Debido a la novedad de estos componentes dentro de la empresa no se disponen de datos para poder establecer periodos diferentes a los que el fabricante recomienda.

Tomando el tiempo de funcionamiento habitual del equipo (4 horas diarias y 5 días a la semana) se obtiene el periodo calculado de mantenimiento:

$$Periodo = \frac{600}{20} = 30semanas \tag{16}$$

Debido a que este periodo es superior a las 24 semanas establecidas por el fabricante se establece el periodo de engrase de los actuadores en éste último.

La siguiente tabla muestra los datos de la operación:

Operación	OPSTADA105
Periodo	24 semanas
Procedimiento	POMTADA107
Material	Grasa (RLG005) [3ml eje Y / 4,5ml eje Z]
	Guantes nitrilo
Herramientas	Engrasadora naranja (RTL002)

Tabla 35: Datos operación

Resumen de los pasos de la operación:

- Apertura de las protecciones traseras de la máquina.
- Engrase mediante el puerto de engrase localizado en la carcasa del actuador (1 por actuador).
- Cierre de las protecciones traseras.

4.2.3.5 Filtro de vacío

El sistema de vacío contiene un filtro que evita que las partículas aspiradas por la ventosa dañen y/o obstruyan el eyector de vacío. Este filtro consta de una carcasa removible la cual contiene el elemento filtrante fabricado en papel.

La siguiente imagen muestra el filtro de vacío instalado en el equipo:

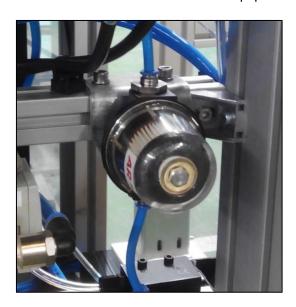


Fig. 57: Filtro de vacío

La siguiente tabla muestra los datos del filtro:

Fabricante	Talleres AR S.A.
Modelo	FILFNU38BP
Filtro	15µm

Tabla 36: Datos filtro de vacío

4.2.3.5.1 Mantenimiento

El mantenimiento del filtro consta de la limpieza periódica del elemento filtrante mediante el soplado con aire a presión y la sustitución del mismo cuando está deteriorado. Para ello se

extrae el cartucho filtrante de la carcasa y se sopla en dirección contraria a la de entrada de aire.

La siguiente tabla muestra los detalles de la operación:

Operación	OPSTADA107
Periodo	Anual
Procedimiento	POMTADA110

Tabla 37: Datos operación

Resumen del procedimiento:

- Apertura de la carcasa del filtro y retirada del cartucho filtrante.
- Limpieza del cartucho mediante soplado con aire a presión.
- Introducción del cartucho y cierre de la carcasa.

4.2.3.6 Ventosa

El equipo cuenta con una ventosa (mostrada anteriormente en la Fig. 22) con la que el operario sitúa las piezas en el proceso de montaje del altavoz.

La siguiente tabla muestra los datos del elemento:

Fabricante	Talleres AR S.A.
Modelo	VF30NIT/RAC15R18M
Diámetro	30mm

4.2.3.6.1 Mantenimiento

Debido a la abrasión producida por la superficie rugosa de las tapetas la ventosa sufre desgaste y para prevenir que éste sea excesivo se inspeccionan periódicamente.

Los datos de la operación se muestran en la siguiente tabla:

Operación	OPPTADA104
Periodo	12 semanas
Procedimiento	POMTADA112
Inspección	Visual

Tabla 38: Datos operación

El estado de la ventosa se comprueba visualmente y la experiencia del técnico determina el estado en el que se encuentra. La siguiente tabla muestra los límites y acciones a realizar:

Desgaste	Estado	Acciones
La superficie de contacto no presenta desperfectos	BIEN	No actuar
La superficie de contacto presenta desperfectos y/o pérdida de material	MAL	Sustituir

Tabla 39: Límites

4.2.3.7 Cartucho de dosificación

El cartucho de dosificación es el elemento final del sistema de dosificación y donde se instalan las cánulas que mezclan el adhesivo.

La siguiente imagen muestra el cartucho de dosificación instalado en la máquina:

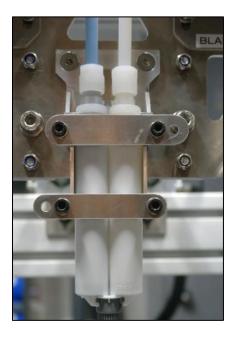


Fig. 58: Cartucho de dosificación

La siguiente tabla muestra los datos del cartucho:

Fabricante	Mixpac
Modelo	AB 050-01-10-33

Tabla 40: Datos cartucho

4.2.3.7.1 Mantenimiento

El cartucho de dosificación se sustituye debido a que sufre el desgaste por el cambio de cánulas. Este desgaste puede llegar a provocar que el cierre no sea estanco y se produzcan fugas. Además se producen depósitos de residuos dentro del cartucho los cuales se deben eliminar.

Previamente a la instalación del nuevo cartucho se requiere introducir dos insertos dentro de éste para lo cual se utiliza un útil que hace la función de prensa (Fig. 13).

La siguiente tabla muestra los datos de la operación:

Operación	OPSTADA102
Periodo	24 semanas
Procedimiento	POMTADA103
Material	Cartucho 50ml Mixpac (RDC001)
	Insertos PVDF cartucho 50ml (RDC003)
	Guantes nitrilo
Herramienta	Prensa insertos (RTP001)

Tabla 41: Datos operación

Resumen de los pasos de la operación:

- Desmontaje:
 - Desatornillado de las sujeciones del cartucho.
 - Desenroscado de los racores de salida de válvula y entrada del cartucho.
 - Retirada del cartucho y desechado de los tubos.
- Montaje:
 - Fijación de los tubos a las válvulas e introducción del cartucho.
 - Roscado de los racores.
 - Fijación de las sujeciones del cartucho
 - Comprobación de la dosificación.

4.2.3.8 Válvula de seguridad

Cada tanque tiene instalada una válvula de seguridad tarada a 3,8bar que se abriría en caso de exceso de presión. La siguiente tabla muestra los datos de la válvula:

Fabricante	Herose
Modelo	06205
Presión tarado	3,8bar

Tabla 42: Datos válvulas de seguridad de los tanques

La siguiente imagen muestra un esquema de la válvula:

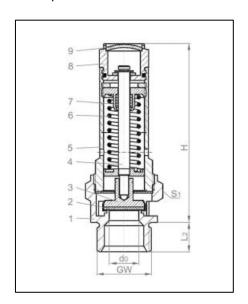


Fig. 59: Esquema válvula de seguridad

4.2.3.8.1 Mantenimiento

La comprobación de las válvulas se lleva a cabo para comprobar que éstas no se encuentran obstruidas o destaradas y de esta forma asegurar el nivel de seguridad del equipo. Los datos de la operación se muestran en la siguiente tabla:

Operación	OPPTADA106
Periodo	Anual
Procedimiento	POMTADA114
Inspección	Manómetro de los tanques del equipo

Tabla 43: Datos operación

Mediante el regulador de presión de cada tanque se aumenta progresivamente la presión de cada uno de los tanques, sin sobrepasar 4bar, hasta que la válvula se accione y se anota el valor.

Los límites de la inspección y las acciones resultantes se muestran en la siguiente tabla:

Tiempo hasta goteo	Estado	Acciones
P < 3,8bar	BIEN	No actuar
P > 3,8bar	MAL	Sustituir inmediatamente

Tabla 44: Límites

4.2.3.9 Relé de seguridad

El equipo dispone de dos pares de barreras ópticas (en el frente y un lateral) para evitar que los ejes se muevan en caso de que el operario introduzca una parte de su cuerpo y así impedir que se produzcan accidentes. Cada pareja de barreras tiene asociado un relé de seguridad que garantiza el funcionamiento seguro del sistema. La siguiente imagen muestra los relés del equipo:

Fig. 60: Relés de seguridad

Los datos de los relés se muestran en la siguiente tabla:

Fabricante	Allen Bradley
Modelo	440R-N23120

Tabla 45: Datos relé de seguridad

4.2.3.9.1 Mantenimiento

El mantenimiento de los relés consiste en la comprobación del correcto funcionamiento de éstos. La siguiente tabla muestra los datos de la operación:

Operación	OPPTADA107
Periodo	Anual
Procedimiento	POMTADA115
Inspección	Visual

Tabla 46: Datos operación

La comprobación de las barreras de seguridad consiste en efectuar las siguientes comprobaciones:

- Interrumpir el haz y accionar la máquina para comprobar que no efectúa ningún movimiento.
- Interrumpir el haz mientras los actuadores están en movimiento para comprobar que la máquina se bloquea.

Se debe tener en cuenta que el giro y la dosificación no se bloquean cuando las barreras son atravesadas.

Los límites y acciones resultantes de la inspección se muestran en la siguiente tabla:

Resultado	Estado	Acciones
Las barreras bloquean el movimiento de la máquina.	BIEN	No actuar
Las barreras no bloquean el movimiento de la máquina.	MAL	Investigar causa y solucionar

Tabla 47: Límites

4.2.3.10 Válvulas distribuidoras

La entrada de aire a los tanques de adhesivo se controla mediante electroválvulas 3/2 instaladas entre los reguladores de presión de cada tanque y el propio tanque. La siguiente imagen muestra las válvulas distribuidoras del equipo:

Fig. 61: Válvulas distribuidoras

Estas válvulas solo permiten la entrada de aire a los tanques cuando la máquina está en funcionamiento y la seta de emergencia no está pulsada.

Los datos de las válvulas se muestran en la siguiente tabla:

Fabricante	Asco Numatics
Modelo	G551A005S3YZ
Presión	2-10bar
Tensión alimentación	24Vdc

Tabla 48: Datos válvulas distribuidoras

4.2.3.10.1 Cálculos de mantenimiento

La siguiente tabla muestra los datos relativos al mantenimiento suministrados por el fabricante:

Series	Туре	Components	Version	B _{10d (cycles)}	MTTF _d (h)
551	Spool valve Tapped 1/4	Spool valve	DC 5/2 and 3/2 Solenoid air operated spring return	60.200.000	551

Tabla 49: Datos mantenimiento válvulas [14]

Según la Norma EN ISO 13849-1:

$$B_{10d} = 2 \cdot B_{10} \tag{17}$$

Por tanto, el valor B₁₀ (Tiempo al que fallan el 10% de las muestras) son:

$$B_{10} = \frac{B_{10d}}{2} = \frac{6,02 \cdot 10^7}{2} = 3,01 \cdot 10^7 ciclos \tag{18}$$

Considerando que las válvulas distribuidoras hacen 5ciclos/día, el tiempo de vida para una fiabilidad del 90% se obtiene en:

$$L = \frac{3,01 \cdot 10^7}{5} = 6 \cdot 10^6 dias \tag{19}$$

4.2.3.10.2 Mantenimiento

Debido a la previsión de durabilidad de los componentes se decide realizar únicamente mantenimiento correctivo.

4.2.3.11 Válvulas de accionamiento neumáticas

Fig. 62: Válvulas de accionamiento

La apertura de las válvulas dosificadoras está controlada por una electroválvula 5/2 (izquierda de la anterior imagen) la cual está controlada a su vez por la CPU del equipo.

Montada junto a ésta hay otra electroválvula 5/2 (derecha de la anterior imagen) que controla el accionamiento del sistema de vacío la cual se acciona mediante el pulsador situado en el soporte de la ventosa. La siguiente tabla muestra los datos de los componentes:

Fabricante	Asco Numatics
Modelo	52100163
Presión	1,5-8bar
Tensión alimentación	24Vdc

Tabla 50: Datos válvulas de accionamiento

4.2.3.11.1 Cálculos de mantenimiento

La siguiente tabla muestra los datos relativos al mantenimiento suministrados por el fabricante:

Series	Туре	Components	Version	B _{10d (cycles)}	MTTF _d (h)
521	Mini spool valve G1/4	Spool valve	DC 5/2 Solenoid air operated spring return	160.000.000	521

Tabla 51: Datos mantenimiento válvulas [14]

Considerando la Ecuación (17), el valor B₁₀ (Tiempo al que fallan el 10% de las muestras) son:

$$B_{10} = \frac{B_{10d}}{2} = \frac{16 \cdot 10^7}{2} = 8 \cdot 10^7 ciclos \tag{20}$$

Considerando que las válvulas distribuidoras hacen un máximo de 300ciclos/día, el tiempo de vida para una fiabilidad del 90% se obtiene en:

$$L = \frac{8 \cdot 10^7}{300} = 2.6 \cdot 10^5 dias \tag{21}$$

4.2.3.11.2 Mantenimiento

Debido a la previsión de durabilidad de los componentes se decide realizar únicamente mantenimiento correctivo.

4.2.4 Otras operaciones de mantenimiento

4.2.4.1.1 Comprobación de dosificación

La comprobación del ratio y el caudal de adhesivo es realizada por el operador del equipo diariamente antes de comenzar la producción.

La siguiente tabla muestra los datos de la operación:

Operación	OPPTADA101
Periodo	Diario
Procedimiento	POMTADA101
Equipo de medida	Probeta de dosificación

Tabla 52: Datos operación

Resumen de los pasos:

- Seleccionar el programa de "TEST" en la pantalla del equipo.
- Situar la probeta bajo la salida del cartucho dosificador.
- Accionar el pulsador de marcha de ciclo (verde).
- Una vez finalizada la dosificación comprobar niveles.
- Regular si fuese necesario.

La siguiente tabla muestra los límites de la inspección y las acciones a realizar:

Resultado	Estado	Acciones
Diferencia de niveles < 0,2ml Dosis test = 2±0,2ml	BIEN	No actuar
Diferencia de niveles > 0,2ml	MAL	Regular válvulas
Dosis test ≠ 2±0,2ml	MAL	Regular válvulas

Tabla 53: Límites

4.2.4.1.2 Limpieza básica

Con el fin de evitar la acumulación de adhesivo curado en la salida del cartucho y la contaminación de las piezas a fabricar se debe limpiar la salida de adhesivo y el tablero antes de comenzar la producción.

La siguiente tabla muestra los datos de la operación:

Operación	OPSTADA106
Periodo	Diario
Procedimiento	POMTADA108

Tabla 54: Datos operación

Resumen de los pasos:

- Retirada de la cánula desechable o tapón del cartucho.
- Limpieza de la salida del cartucho con papel y acetona.
- Limpieza del tablero de la máquina con papel impregnado en acetona.

4.2.4.1.3 Revisión básica

Antes de comenzar la producción el operario revisa el estado de la máquina. La siguiente tabla muestra los datos de la operación:

Operación	OPPTADA103
Periodo	Diario
Procedimiento	POMTADA109
Inspección	Visual

Tabla 55: Datos operación

La revisión se focaliza en las conexiones de las válvulas y trata de evitar paradas inesperadas durante la producción.

Los límites y acciones a realizar se muestran en la siguiente tabla:

Resultado	Estado	Acciones
No existen fugas de adhesivo ni aire	BIEN	No actuar
Existen fugas de adhesivo y/o aire	MAL	Avisar para reparar fuga

Tabla 56: Límites

4.2.4.1.4 Limpieza de filtro y turbina del armario

La limpieza del filtro y la turbina de ventilación del armario eléctrico se realiza mediante soplado con aire comprimido.

No es necesario desmontar ninguno de los dos componentes. La dirección del soplado debe de ser desde dentro hacia fuera del armario con la turbina desconectada. Los datos de la operación se muestran en la siguiente tabla:

Operación	OPSTADA108
Periodo	Anual
Procedimiento	POMTADA111

Tabla 57: Datos operación

4.2.4.1.5 Revisión general

La revisión general se realiza para comprobar el estado de la máquina más profundamente que con las revisiones diarias. Los datos de la operación se muestran en la siguiente tabla:

Operaciones	OPPTADA105
Periodo	Anual
Procedimiento	POMTADA113
Inspección	Visual

Tabla 58: Datos operación

La revisión general de la máquina consiste principalmente en comprobar que no existen fugas ni de adhesivo ni de aire y verificar que las conexiones eléctricas están bien conectadas. Además también se comprueba que no existan desperfectos mecánicos. La siguiente tabla muestra los límites y acciones:

Resultado	Estado	Acciones
No existen fugas de adhesivo ni aire	BIEN	No actuar
Existen fugas de adhesivo y/o aire	MAL	Reparar fuga
Las conexiones eléctricas están firmemente conectadas.	BIEN	No actuar
Las conexiones eléctricas no están firmemente conectadas.	MAL	Investigar y fijar

Tabla 59: Límites

4.2.5 Procedimientos de mantenimiento

Los procedimientos de mantenimiento son las instrucciones para realizar una operación de mantenimiento. Éstos sirven tanto para operaciones de mantenimiento programado como correctivo, en ocasiones varias operaciones comparten un mismo procedimiento.

Como ejemplo se adjunta en los anexos el procedimiento de sustitución de las válvulas dosificadoras POMTADA102.

5 SISTEMA DE MANTENIMIENTO

En este apartado se desarrolla el sistema de mantenimiento del equipo.

Debido a que el sistema de mantenimiento de la empresa no está muy desarrollado algunos de los apartados son propuestas que podrían ser aplicadas al resto de equipos o al sistema de mantenimiento general de la empresa.

Los apartados en los que se divide son:

- Organigrama de mantenimiento.
- Normativa.
- Documentación.
- Mantenimiento correctivo.
- Mantenimiento programado.
- Gestión de recambios.
- Formación de los técnicos de mantenimiento.
- Indicadores.
- Cuadro de mandos.

5.1 ORGANIGRAMA DE MANTENIMIENTO

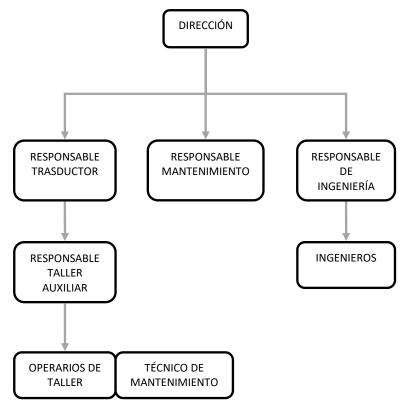


Fig. 63: Organigrama de mantenimiento

Los encargados de producción tienen las siguientes responsabilidades:

- Gestión de personal y subcontratistas de mantenimiento.
- Solicitar la realización de trabajos de mantenimiento.
- Reportar incidencias relacionadas con el mantenimiento.

El responsable del taller auxiliar gestiona el almacén.

Se propone crear la figura de responsable de mantenimiento en la empresa para planificar y gestionar las tareas de mantenimiento.

El departamento de ingeniería está vinculado con el mantenimiento, principalmente en las operaciones modificativas, pero también como apoyo de los técnicos.

5.2 NORMATIVA

La normativa relacionada con el sistema de mantenimiento se ha dividido en dos grupos:

- Normativa de obligatorio cumplimiento por ley.
- Normativa referencia para la gestión del mantenimiento

5.2.1 Obligatorio cumplimiento

- Ley 31/1995: Ley de prevención de riesgos laborales.
- Directiva 2006/42/CE: Máquinas.
- Directiva 2014/35/UE: Baja tensión.
- EN ISO 12100:2010: Seguridad de las máquinas. Principios generales.
- EN 60204-1:2006: Seguridad de las máquinas. Equipos eléctricos.

El equipo por no encontrarse dentro de un tipo de máquinas con normativa propia no dispone de normas de obligado cumplimiento específicas.

5.2.2 Referencias

Las normas de referencia sirven de guía para la gestión del mantenimiento. Se toman como referencia las siguientes normas:

- ISO55000 2014: Gestión de activos.
- Norma UNE-EN 15341:2008: Mantenimiento. Indicadores clave de rendimiento.

5.3 DOCUMENTACIÓN

Debido a que no existe un registro de las operaciones en la empresa se elaboran algunos documentos para facilitar la gestión del mantenimiento del equipo.

El uso de estos documentos podría generalizarse para el mantenimiento de otros equipos e instalaciones de la empresa.

Por el momento la gestión de estos documentos lo llevará a cabo el departamento de ingeniería.

5.3.1 Solicitud de trabajo (ST)

La solicitud de trabajo es el documento mediante el cual producción realiza una petición al departamento de mantenimiento para que realice una intervención como consecuencia de una incidencia que detecta. La solicitud de trabajo contiene los siguientes campos:

- Solicitante.
- Persona a quién notifica la incidencia y fecha de notificación.
- Equipo y sección.
- Descripción de los síntomas.
- Mermas producidas y si ha parado la producción.

La plantilla de la solicitud de trabajo se adjunta como anexo.

5.3.2 Órdenes de trabajo (OT)

La orden de trabajo es el documento que describe las tareas de mantenimiento que se realizan. La orden de trabajo contiene los siguientes campos:

- Solicitante y fecha de solicitud. (No se requiere en mantenimiento programado)
- Persona que autoriza el trabajo y fecha de autorización.
- Responsable de ejecución, fecha planificada, supervisor y fecha de inicio.
- Equipo y sección.
- Síntomas y averías que presenta el equipo. (No se requiere en mantenimiento programado)
- Tareas a realizar, tiempo previsto, tiempo real y resultado.
- Consumibles previstos y utilizados.

Las plantillas de órdenes de trabajo de mantenimiento correctivo y mantenimiento programado se adjuntan como anexo.

5.3.3 Registros

El registro de estos documentos, por el momento, se lleva a cabo en la base de datos (pag.24 Apartado 3.5.3.5) que utiliza el departamento de ingeniería para la gestión del mantenimiento de las dosificadoras.

5.4 MANTENIMIENTO CORRECTIVO

5.4.1 Diagrama de flujo del proceso (M. correctivo)

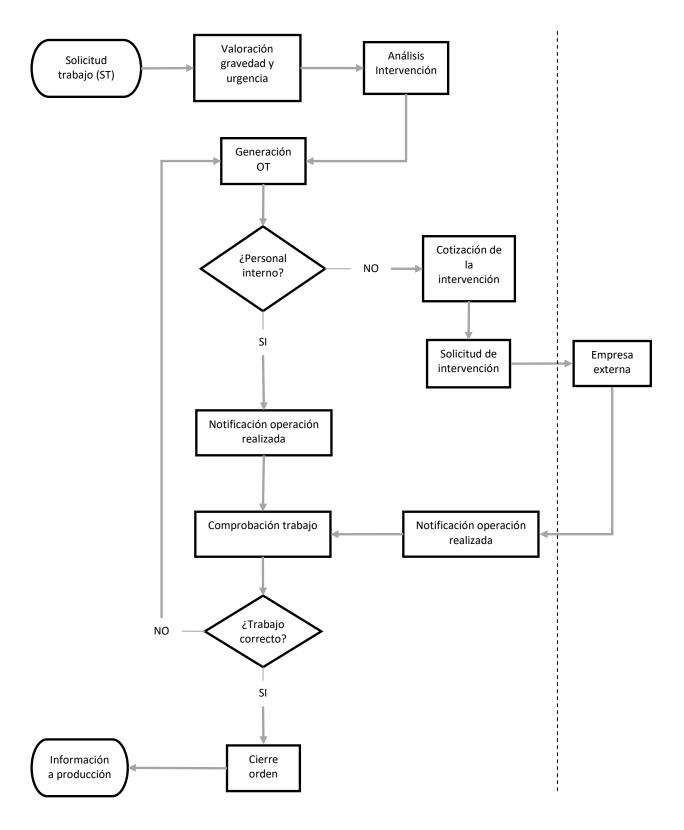


Fig. 64: Diagrama de mantenimiento correctivo

5.4.2 Flujo de información

La información relativa a las tareas de mantenimiento correctivo sigue el siguiente flujo:

- Producción (Reporte de incidencia o solicitud de trabajo).
- Gestión mantenimiento (Orden de trabajo).
- Técnico (Cumplimenta la OT).
- Gestión mantenimiento (Registra información e informa).
- Producción (Recibe información).

Fig. 65: Flujo de información mantenimiento correctivo

5.4.3 Operaciones de mantenimiento correctivo

Tareas de mantenimiento correctivo habituales y/o derivadas de inspecciones de mantenimiento predictivo.

Sist.	Componente	Operación	Código	Rep.	Herr.	Esp.	T [min]
D	Válvulas	Sustitución	OPCTADA101	VD (B)		TME	30
	dosificadoras			VD (N)			
	Cartucho de	Sustitución	OPCTADA102	RDC001	RTP001	TME	30
	dosificación			RDC003			
	Junta de tanque	Sustitución	OPCTADA103			TME	20
	Válvula	Sustitución	OPCTADA104	RNP018		TME	10
	seguridad						
С	Mandos	Sustitución	OPCTADA105	REA010		TEL	15
	Relé de	Sustitución	OPCTADA106	RES003		TEL	15
	seguridad						
N	Regulador de	Sustitución	OPCTADA107	RNP008		TME	20
	presión						
	Ventosa	Sustitución	OPCTADA108	RNV002		TME	10
	Filtro de vacío	Sustitución	OPCTADA109	RNP021		TME	15

Tabla 60: Tabla de operaciones correctivas

La siguiente tabla muestra las operaciones de mantenimiento correctivo de las válvulas dosificadoras:

Sist.	Componente	Operación	Código	Rep.	Herr.	Esp.	T [min]
D	Asiento de válvula	Rectificado	OPCGEVD101			TME	20
	Vástago de cierre	Sustitución	OPCGEVD102	RDR003		TME	15

Sist.	Componente	Operación	Código	Rep.	Herr.	Esp.	T [min]
	Cámara del diafragma	Sustitución	OPCGEVD103	RDR001		TME	15
	Juntas de cámara de adhesivo	Sustitución	OPCGEVD104	RDR006		TME	15
Α	Actuador neumático	Engrase	OPCGEVD105	RLG006		TME	25
	Juntas de actuador neumático	Sustitución	OPCGEVD106	RDR004 RDR005 RDR007		TME	25

Tabla 61: Tabla de operaciones correctivas VD

5.4.4 Costes de mantenimiento correctivo

Los costes del mantenimiento correctivo se distribuyen en dos grupos, los propios costes derivados de las tareas de mantenimiento (costes directos) y los costes relativos a mermas producidas por averías del equipo (costes indirectos).

La siguiente tabla muestra los costes de algunas operaciones de mantenimiento correctivo habituales y/o derivadas de inspecciones de mantenimiento predictivo.

Sist.	Componente	Operación	Código	T [min]	Coste m.o. [€]	Coste rec. [€]	Coste total [€]
D	Válvulas dosificadoras	Sustitución	OPCTADA101	30	8,75	11,60	20,35
	Cartucho de dosificación	Sustitución	OPCTADA102	30	8,75	1,80	10,55
	Junta de tanque	Sustitución	OPCTADA103	20	5,83	3,60	9,43
	Válvula seguridad	Sustitución	OPCTADA104	10	2,92	43,00	45,92
С	Mandos	Sustitución	OPCTADA105	15	4,38	5,57	9,95
	Relé de seguridad	Sustitución	OPCTADA106	15	4,38	62,00	66,38
N	Regulador de presión	Sustitución	OPCTADA107	20	5,83	21,42	27,25
	Ventosa	Sustitución	OPCTADA108	10	2,92	6,41	9,33
	Filtro de vacío	Sustitución	OPCTADA109	15	4,38	20,88	25,26

Tabla 62: Coste de operación correctiva

Los costes se han calculado de acuerdo a la Tabla 3 y Tabla 17.

La siguiente tabla muestra los costes de las operaciones de mantenimiento correctivo de las válvulas dosificadoras:

Sist.	Componente	Operación	Código	T [min]	Coste m.o. [€]	Coste rec. [€]	Coste total [€]
D	Asiento de válvula	Rectificado	OPCGEVD101	20	5,83	0,00	5,83
	Vástago de cierre	Sustitución	OPCGEVD102	15	4,38	44,00	48,38
	Cámara del diafragma	Sustitución	OPCGEVD103	15	4,38	93,00	97,38
	Juntas de cámara de adhesivo	Sustitución	OPCGEVD104	15	4,38	2,45	6,83
А	Actuador neumático	Engrase	OPCGEVD105	25	7,29	0,16	7,45
	Juntas de actuador neumático	Sustitución	OPCGEVD106	25	7,29	5,10	12,39

Tabla 63: Costes de operación correctiva de la válvula dosificadora

Los costes se han calculado de acuerdo a la Tabla 3 y Tabla 17.

Los costes indirectos debido a las mermas se calcularían tomando como referencia los costes de la Tabla 19.

5.5 MANTENIMIENTO PROGRAMADO

5.5.1 Diagrama de flujo del proceso (M. Sistemático)

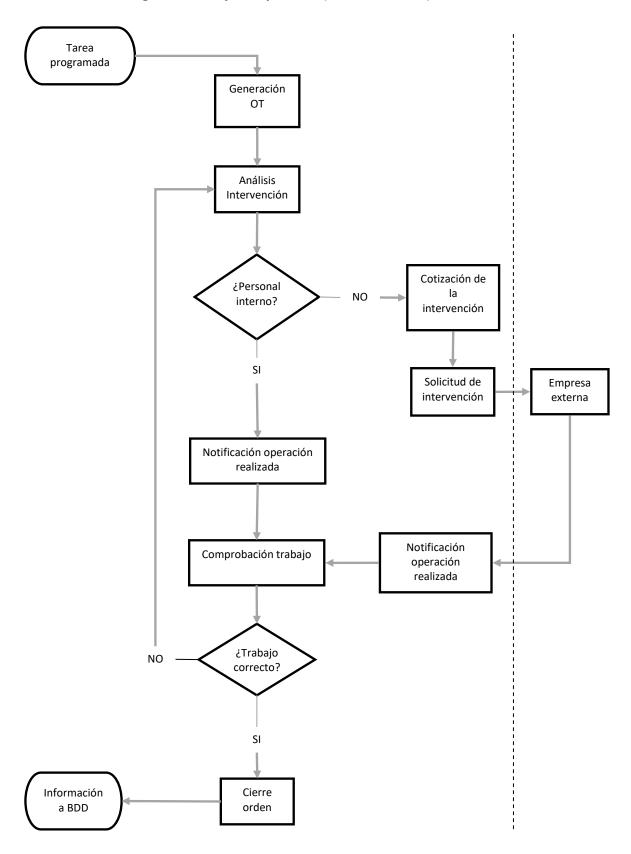


Fig. 66: Diagrama de proceso de mantenimiento sistemático

5.5.2 Diagrama de flujo del proceso (M. Predictivo)

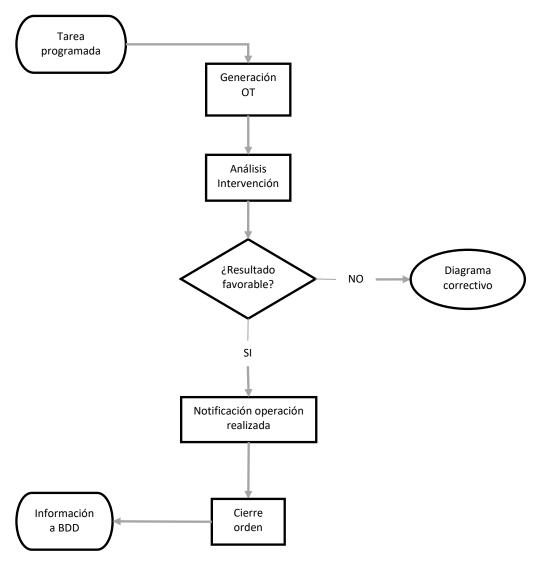


Fig. 67: Diagrama de proceso de mantenimiento predictivo

5.5.3 Flujo de información

- Gestión mantenimiento (Genera Orden de trabajo)
- Técnico (Cumplimenta OT)
- Gestión mantenimiento (Registra información)

Fig. 68: Diagrama de flujo de información de mantenimiento programado

5.5.4 Matriz maestra

Sist	Componente	Operación	Código	Periodo	Rep.	Herr.	Esp.	T [min]
D	Sistema dosificador	Comprobación	OPPTADA101	Diario	Probeta [2ud] Adhesivo [4ml]	Soporte probeta	OPE	5
	Válvulas dosificadoras	Sustitución	OPSTADA101	8sem	VD (B) VD (N)		TME	30
		Revisión	OPPTADA102	4sem		Crono	TME	10
	Cartucho de dosificación	Sustitución	OPSTADA102	24sem	RDC001 RDC003	RTP001	TME	30
	Válvulas de seguridad	Comprobación	OPPTADA106	Anual			TME	15
M	Rodamientos lineales	Engrase	OPSTADA103	8sem	RLG002 [24ml]	RTL001	TME	20
	Rodamiento de agujas	Engrase	OPSTADA104	8sem	RLG002 [3ml]		TME	20
	Actuadores eléctricos	Engrase	OPSTADA105	24sem	RLG005 [7,5ml]	RTL002	TME	20
G	Zona de trabajo	Limpieza básica	OPSTADA106	Diario			OPE	2
	Zona de trabajo	Revisión básica	OPPTADA103	Diario			OPE	2
	Equipo completo	Revisión	OPPTADA105	Anual			TME	15
N	Filtro de vacío	Limpieza	OPSTADA107	Anual			TME	10
	Ventosa	Revisión	OPPTADA104	12sem			TME	5
С	Filtro y turbina del armario	Limpieza	OPSTADA108	Anual			TME	5
	Barreras de seguridad	Comprobación	OPPTADA107	Anual			TME	10
VD	Válvula de dosificación	Comprobación	OPPGEVD101	8sem			TME	20

Fig. 69: Matriz maestra

5.5.1 Costes de operaciones de mantenimiento programado

Componente	Operación	Código	Tiempo	Coste	Coste	Coste
		operación	[min]	personal [€]	recambios [€]	total [€]
Sistema dosificador	Comprobación de dosificación	OPPTADA101	5	1,25	1,2	2,45
Válvulas	Sustitución	OPSTADA101	30	8,75	11,6	20,35
dosificadoras	Revisión	OPPTADA102	10	2,92	0	2,92
Cartucho de dosificación	Sustitución	OPSTADA102	30	8,75	1,8	10,55
Rodamientos lineales	Engrase	OPSTADA103	20	5,83	1,44	7,27
Rodamiento de agujas	Engrase	OPSTADA104	20	5,83	0,18	6,01
Actuadores eléctricos	Engrase	OPSTADA105	20	5,83	0,39	6,22
General	Limpieza básica	OPSTADA106	2	0,50	0	0,50
General	Revisión básica	OPPTADA103	2	0,50	0	0,50
Filtro de vacío	Limpieza	OPSTADA107	10	2,92	0	2,92
Filtro y turbina del armario	Limpieza	OPSTADA108	5	1,46	0	1,46
Ventosa	Revisión	OPPTADA104	5	1,46	0	1,46
Equipo completo	Revisión	OPPTADA105	15	4,38	0	4,38
Válvulas de seguridad	Comprobación	OPPTADA106	15	4,38	0	4,38
Barreras de seguridad	Comprobación	OPPTADA107	10	2,92	0	2,92

Tabla 64: Costes de las operaciones de mantenimiento sistemático

Los costes se han calculado de acuerdo a la Tabla 3 y Tabla 17.

5.5.2 Gamas de mantenimiento

Se propone modificar la nomenclatura utilizada añadiendo la especialidad mediante un prefijo separado de un guión. El código de tiempo se mantiene como se está utilizando actualmente y aparece en la Tabla 7.

Especialidad	Código	Ejemplo
Operario	OPE	
Mecánico	TME	TME-B8
Eléctrico	TEL	TEL-B8
Mecánico (externo)	XME	XME-B8
Eléctrico (externo)	XEL	XEL-B8

Tabla 65: Código gamas (propuesta)

La siguiente tabla agrupa las operaciones de mantenimiento programado del equipo por gamas y muestra el coste de éstas:

Nombre	Periodo	Operaciones	Descripción operaciones	Coste de operación	Coste total
TME-A1	Diario	OPPTADA101	Comprobación dosificación	2,45	3,45
		OPSTADA106	Limpieza básica	0,50	
		OPPTADA103	Revisión básica	0,50	
TME-B4	4 semanas	OPPTADA102	Comprobación visual cierre válvulas	2,92	2,92
TME-B8	8 semanas	OPSTADA101	Sustitución válvulas dosificación	20,35	33,63
		OPSTADA103	Engrase rodamientos lineales	7,27	
		OPSTADA104	Engrase rodamiento agujas plato	6,01	
TME-B12	12 semanas	OPPTADA104	Revisión estado de ventosa	1,46	1,46
TME-B24	24	OPSTADA102	Sustitución cartucho	10,55	16,77
	semanas	OPSTADA105	Engrase actuadores eléctricos	6,22	
TME-DV	Anual	OPPTADA105	Revisión del estado general	2,92	16,06
	vacaciones	OPPTADA106	Comprobación válvula de seguridad tanques	1,46	
		OPPTADA107	Comprobación barreras seguridad	4,38	
		OPSTADA108	Limpieza filtro y turbina armario	4,38	
		OPSTADA107	Limpieza filtro ventosa	2,92	

Tabla 66: Gamas de mantenimiento TADA1

5.5.3 Calendario de intervenciones

La siguiente tabla muestra el calendario previsto para el año 2019.

Esta previsión podría verse modificada debido a las intervenciones correctivas.

La última semana de 2018 corresponde con la semana 12 desde la instalación de la máquina, pero debido a la parada de navidad se pasa a la primera de 2019.

Mes	Semana	Operaciones de Mantenimiento				
		TME-B4	TME-B8	TME-B12	TME-B24	TME-DV
Enero	1	Χ		X		
	(12 _{equipo})					
	2					
	3					
	4					
	5	Χ	Χ			
Febrero	6					
	7					
	8					
	9	Х				

Mes	Semana			nes de Mant		
		TME-B4	TME-B8	TME-B12	TME-B24	TME-DV
Marzo	10					
	11					
	12					
	13	Х	Х	Х	Х	
Abril	14					
	15					
	16					
	17	Х				
Mayo	18					
Mayo	19					
	20					
	21	X	X			
	22	^	^			
Junio	23					
Julio						
	24	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	25	X		X		
	26					
Julio	27					
	28					
	29	Х	Х			
	30					
Agosto	31					
	32					X
	33	-	-	-	-	-
	34	-	-	-	-	-
	35	-	-	-	-	-
Septiembre	36	Χ				
	37					
	38					
	39					
Octubre	40	Х	Х	Х	Х	
	41					
	42					
	43					
	44	X				
Noviembre	45					
Novicinore	46					
	47					
	48	V	X			
Disiomber		X	Λ			
Diciembre	49					
	50					
	51					
	52	-	-			
		TME-B4	TME-B8	TME-B12	TME-B24	TME-DV

Tabla 67: Calendario de intervenciones 2019

5.6 GESTIÓN DE RECAMBIOS

El modelo DAV-02 ha sido diseñado, con entre otras premisas, la utilización de componentes existentes en otros equipos de la fábrica con el fin de disponer de un menor número de referencias en el almacén.

Válvulas dosificadoras

Las válvulas dosificadoras, debido a que son un componente sobre el que se efectúan acciones de mantenimiento que permiten recuperarlas, se tratan como un componente particular que sale y entra al almacén, razón por la cual se marcan con un número identificativo. Además el almacén también dispone de recambios para estos componentes.

Se dispone de una pareja de válvulas de repuesto por cada equipo dosificador para poder sustituirlas en cualquier momento y tener tiempo suficiente de limpiarlas, revisarlas y repararlas si fuese necesario.

Se dispone de un máximo de cuatro y un mínimo de dos juegos de recambios completos (juntas, cámaras, etc.) para poder sustituirlas cuando las válvulas fallan. Esta cantidad es debido a que los recambios tardan en recibirse varias semanas, por ello tan pronto como se consumen dos juegos se piden dos nuevos.

Relé seguridad

Se dispone de dos unidades de relés de seguridad debido a que su fallo no es predecible, además no es una referencia de las que el proveedor dispone en stock, por tanto tardan varios días en recibirse.

Lubricantes

En el caso de los lubricantes se dispone de al menos de un recipiente de cada referencia, cuando se utiliza se pide un lote al proveedor cuya cantidad depende de cada referencia, ya que por no utilizarse gran volumen se pide la cantidad mínima.

Otros componentes

Hay componentes como por ejemplo relés, sensores, electroválvulas, pulsadores, etc. que se tienen en el almacén normalmente por ser utilizados en gran cantidad de equipos e instalaciones y tener un bajo coste.

No se establece una cantidad mínima para éstos ya que son referencias que los proveedores disponen en su almacén y la entrega es inmediata.

5.7 FORMACIÓN DE LOS TÉCNICOS DE MANTENIMIENTO

La formación de los técnicos de mantenimiento relacionada con temas generales del mantenimiento es llevada a cabo por el departamento de Ingeniería de la empresa.

La formación relativa a nueva maquinaría o nuevos componentes es llevada a cabo por el departamento de Ingeniería de la empresa con el soporte del fabricante y/o distribuidor.

En el caso particular del modelo DAV-02 debido a que ha sido fabricada por la propia empresa toda la formación ha sido llevada a cabo por el departamento de ingeniería.

Los aspectos principales sobre los que se ha formado a los técnicos son:

- Funcionamiento de la máquina.
- Tareas de mantenimiento preventivo.
- Resolución de las averías más recurrentes.

5.7.1 Análisis de averías

Con el fin de ayudar al personal en el diagnóstico de averías, principalmente cuando tienen poca experiencia, existen hojas de proceso de análisis desarrolladas basándose en la experiencia del mantenimiento de otros equipos.

Se adjunta un fragmento de una hoja de análisis de avería en los anexos.

5.8 INDICADORES

5.8.1 Indicadores de mantenimiento correctivo

5.8.1.1 Fallos en producción debido a averías, cantidad y coste

Conocer los fallos de producción permite analizar las causas y poder hacer modificaciones para evitarlas en el futuro.

Además este indicador permite contabilizar el coste de las mermas debido al mantenimiento y así sumarlo al coste total del mantenimiento correctivo.

Para poder contabilizarlo se requiere de la colaboración del departamento de producción.

5.8.1.2 Coste reparaciones

El coste de las reparaciones sirve para poder obtener el coste del mantenimiento correctivo y poder analizarlo en el global.

Además permite valorar la viabilidad del equipo y su posible sustitución estudiando su tendencia.

5.8.1.1 Intervenciones

Número total de intervenciones de mantenimiento correctivo.

Puede utilizarse para compararlo con las intervenciones de mantenimiento programado.

5.8.1.2 Tiempos de intervención

Permite planificar los recursos necesarios para realizar las tareas de mantenimiento.

5.8.1.3 Tiempo medio de cierre de OT de correctivo

Analizando el tiempo que se tarda en cerrar las OT se puede determinar si los recursos disponibles son los adecuados.

5.8.1.4 Paradas de máquina no previstas y duración

Permite conocer cómo afecta el mantenimiento a la producción.

5.8.2 Indicadores de mantenimiento programado

5.8.2.1 Intervenciones

Número total de intervenciones de mantenimiento programado.

Puede utilizarse para compararlo con las intervenciones de mantenimiento correctivo.

5.8.2.2 Coste de mantenimiento programado

El coste total del mantenimiento programado sirve para obtener el coste total de mantenimiento.

Además también se puede utilizar para comparar el coste del mantenimiento programado con el coste derivado de no realizarlo y poder ajustarlo.

5.8.2.3 Tiempos de intervención de mantenimiento programado

Los tiempos de intervención permiten conocer los recursos necesarios para cada operación y de esa forma ajustar la planificación.

5.8.3 Disponibilidad máquina

La disponibilidad de máquina está considerada como uno de los indicadores más importantes del mantenimiento debido a que muestra el porcentaje del tiempo total que el equipo ha estado en condiciones de poder desempeñar su función.

Se calcula de la siguiente forma [5]:

$$D = \frac{MTBF}{MTBF + MTTR} \tag{22}$$

Siendo:

MTBF: Tiempo medio entre fallos (Mean Time Between Failures)

MTTR: Tiempo medio de reparación (Medium Time To Repair)

La suma del MTBF y del MTTR es el total de tiempo. Este indicador hace referencia al tiempo en el cual el equipo puede ser utilizado, incluso aunque este fuera del uso habitual.

Se suele considerar que "resulta óptima desde un punto económico entre el 95% y el 98%" [15]. Por tanto, se puede tomar como referencia éstos valores de forma inicial y ajustar en función de los requerimientos y la información obtenida con otros indicadores con el tiempo.

5.8.4 Correctivo / Programado

El indicador "Correctivo/Programado" muestra las intervenciones de mantenimiento correctivo frente a intervenciones de mantenimiento programado que se realizan.

El mantenimiento correctivo está relacionado con menor disponibilidad, menor fiabilidad y normalmente con mayores consumos de repuestos. Por esta razón permite valorar si se podría mejorar éstos aspectos incrementando el mantenimiento programado o si por el contrario se podría estar realizando un sobremantenimiento.

Por sí solo este indicador no aporta un dato relevante pero sirve como orientación.

El cálculo se realiza de la siguiente forma:

$$x = \frac{Intervenciones\ correctivo}{Intervenciones\ programado}$$
 (23)

5.8.5 Coste de mantenimiento

Este indicador muestra el coste total del mantenimiento que se repercute al equipo.

Permite:

- Prever la partida económica necesaria para mantener el equipo.
- Mediante la comparación con los tiempos de parada permite establecer el punto óptimo de mantenimiento.
- Finalmente con el análisis de su tendencia permite decidir el momento de la retirada y sustitución del equipo.

El cálculo del coste de mantenimiento se calcula con la siguiente ecuación:

$$C_m = C_{dm} + C_{im} (24)$$

Donde:

C_{dm}: Costes directos del mantenimiento

C_{im}: Costes indirectos del mantenimiento

Los costes directos del mantenimiento (C_{dm}) se calculan con la siguiente expresión:

$$C_{dm} = C_{mo} + C_f + C_c + C_e \tag{25}$$

Donde:

C_{mo}: Coste de mano de obra

C_f: Costes fijos del servicio de mantenimiento

C_c: Costes de consumibles

C_e: Costes por contratación externa

Los costes indirectos del mantenimiento (C_{im}) se calculan con la siguiente ecuación:

$$C_{im} = T_{hm} \cdot T_{pm} + C_{dp} \tag{26}$$

Donde:

T_{hm}: Tasa horaria de parada [€/h]

T_{pm}: Tiempo de parada de producción por causa del mantenimiento

C_{dp}: Coste de defectos en producción

Gráfica coste de mantenimiento anual

El análisis de la tendencia de los costes de mantenimiento puede utilizarse para valorar la retirada o sustitución del equipo.

La siguiente gráfica muestra un ejemplo de curva de coste de mantenimiento de un equipo con la típica forma de bañera donde se observan tres periodos:

- Inicio: Costes elevados por fallos prematuros.
- Centro: Costes de mantenimiento constantes.
- Final: Tendencia de aumento en los costes.

La sustitución del equipo debería plantearse cuando los costes de mantenimiento comienzan a marcar una tendencia alcista.

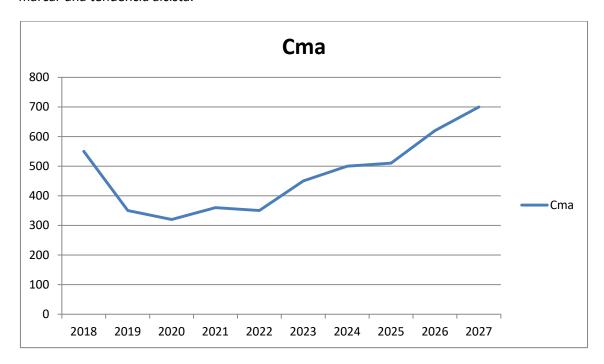


Fig. 70: Gráfica C_{ma}

5.8.6 Coste mantenimiento por pieza

Este indicador permite añadir el mantenimiento como un coste más en el total del producto fabricado.

$$C_{mpp} = \frac{C_m}{Piezas \, a\tilde{\mathbf{n}}o} \tag{27}$$

5.9 CUADRO DE MANDOS

El cuadro de mandos agrupa los indicadores que se utilizan como orientación para gestionar el mantenimiento y cumplir los objetivos establecidos.

5.9.1 Disponibilidad

La gráfica de la disponibilidad representa la evolución de ésta en el tiempo.

El objetivo inicial se establece en una disponibilidad del 98% como punto de partida por encontrarse dentro del rango considerado óptimo[15] aunque se revisará conforme se obtengan más datos.

La siguiente gráfica muestra la disponibilidad del equipo desde su instalación donde se ha marcado como objetivo el 98%:

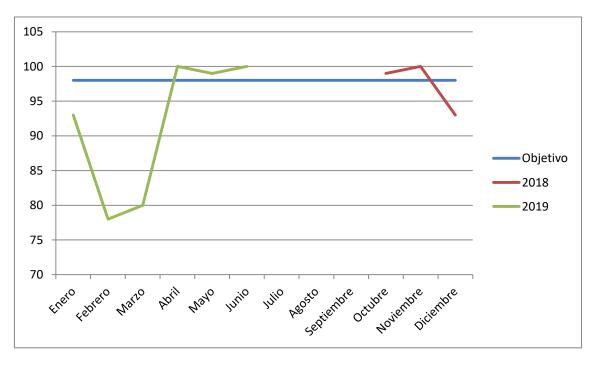


Fig. 71: Gráfica de disponibilidad

6 ANÁLISIS ECONÓMICO

6.1 COSTE ANUAL DE MANTENIMIENTO

6.1.1 Coste de mantenimiento correctivo de las válvulas dosificadoras

Se analiza el coste del mantenimiento relativo a las válvulas dosificadoras en el supuesto de únicamente realizar mantenimiento correctivo con el fin de poder comparar diversas estrategias.

El coste total del correctivo se calcula mediante la siguiente ecuación [5]:

$$CTC = CC \cdot \frac{TT}{TC} \tag{28}$$

Donde:

CTC: Coste total de correctivo CC: Coste operaciones correctivas

TT: Tiempo total

TC: Tiempo de correctivo (MTBF)

Como coste de operación correctiva se toma el de la propia operación de sustitución de las válvulas mostrado en la Tabla 62 y se considera que se produce una unidad fallida del altavoz 12F mostrado en la Tabla 19 por ser el más fabricado (No se consideran costes de parada por no disponer de datos). Los datos para el cálculo serían los siguientes:

CC: 34,02€ (Coste de operación más coste de mermas) TT: 223días (Días laborables en la empresa año 2019)

TC: 56,3días (Ecuación (2))

Introduciendo los datos en la Ecuación (28) se obtiene el coste:

$$CTC = 34,02 \cdot \frac{223}{56,3} = 134,75$$
 (29)

6.1.2 Coste de mantenimiento de las VD con programado variable

En este apartado se calcula el coste del mantenimiento total anual de las válvulas dosificadoras tomando el mantenimiento programado como variable, cuando se realiza mantenimiento correctivo el periodo de mantenimiento programado se reinicia.

La ecuación para su cálculo es la siguiente [5]:

$$CTPVC = \frac{TT}{(R(TP) \cdot TP + F(TP) \cdot \frac{2}{3} \cdot TP)} \cdot (R(TP) \cdot CP + F(TP) \cdot CC)$$
(30)

Donde:

CTPVC: Coste total de mantenimiento programado variable y correctivo

TT: Tiempo total

TP: Periodo de programado

R(TP): Fiabilidad en el periodo de programado

F(TP): Probabilidad de fallo en el periodo de programado

CP: Coste de programado CC: Coste de correctivo

El cálculo del coste se divide debido a que se realiza una rutina de mantenimiento predictivo a las 4 semanas de la instalación de las válvulas y ésta se calcula por separado. El coste total se dividirá en:

- CTSVC: Coste total de mantenimiento sistemático variable y correctivo

- CTPV: Coste total de mantenimiento predictivo variable

Coste de mantenimiento correctivo y sistemático

La fiabilidad con la ley exponencial (fallos aleatorios) se calcula mediante la siguiente expresión:

$$R(TP) = e^{-\lambda \cdot t} \tag{31}$$

Introduciendo la tasa de fallo obtenida en la Ecuación (4) y el periodo obtenido de la Tabla 24 en la anterior ecuación se obtiene la fiabilidad de las válvulas dosificadoras para ese periodo:

$$R(8semanas) = e^{-0.089 \cdot 8} = 0.49$$
 (32)

La probabilidad de fallo se calcula mediante la siguiente expresión:

$$F(TP) = 1 - R(TP) \tag{33}$$

Introduciendo el valor de la fiabilidad en la anterior ecuación se obtiene la probabilidad de fallo para el periodo de mantenimiento sistemático:

$$F(8semanas) = 1 - R(8semanas) = 1 - 0.49 = 0.51$$
(34)

Los valores para el cálculo son los siguientes:

TT: 223días (Días laborables en la empresa año 2019)

TP: 40días (8 semanas de 5días, Tabla 24)

R(TP): 0,49 (Ecuación (32)) F(TP): 0,51 (Ecuación (34)) CP: 20,35€ (Tabla 64)

CC: 34,02€ (Mismo coste Apartado 6.1.1)

Tomando los anteriores valores e introduciéndolos en la Ecuación (30) se obtiene el coste total anual:

$$CTSVC = \frac{223}{(0,49 \cdot 40 + 0,51 \cdot \frac{2}{3} \cdot 40)} \cdot (0,49 \cdot 20,35 + 0,51 \cdot 34,02) = 183,52$$
 (35)

Coste de mantenimiento predictivo

La fiabilidad en el periodo de la operación de predictivo (4 semanas), obtenido en la Tabla 27, se calcula mediante la Ecuación (31):

$$R(4) = e^{-0.018 \cdot 20} = 0.70 (36)$$

Introduciendo en la Ecuación (33) el valor de la fiabilidad obtenido en la anterior ecuación se obtiene la probabilidad de fallo:

$$F(20) = 1 - R(20) = 1 - 0.70 = 0.30$$
(37)

Los valores para el cálculo son los siguientes:

TT: 223días (Días laborables en la empresa año 2019)

TP: 20días (4 semanas de 5días, Tabla 24)

R(TP): 0,70 (Ecuación (32)) F(TP): 0,50 (Ecuación (34))

CP: 2,92€ (Tabla 64)

El coste de mantenimiento correctivo se ha calculado en el apartado anterior, aunque podría existir un error no se considera relativo. Por esta razón solamente se utilizará para el cálculo el coste del mantenimiento programado.

Tomando los anteriores valores e introduciéndolos en la Ecuación (30) se obtiene el coste total anual:

$$CTPV = \frac{223}{(0.70 \cdot 20 + 0.30 \cdot \frac{2}{3} \cdot 20)} \cdot (0.70 \cdot 2.92) = 25.32$$
 (38)

Coste total del mantenimiento de las válvulas dosificadoras

El coste total es la suma de los dos costes obtenidos en la Ecuación (35) y la Ecuación (38):

$$CTPVC = CTSVC + CTPV = 183,52 + 25,32 = 208,84$$
 (39)

El coste anual previsto para el mantenimiento relativo a las válvulas dosificadoras con los periodos de mantenimiento actual son 208,84€.

6.1.3 Análisis estrategias de mantenimiento

Se analizan las dos estrategias expuestas anteriormente con el fin de deducir cuál sería la más conveniente. La Tabla 68 muestra los costes previstos para el próximo año:

Estrategia	Coste [€]
Correctivo	134,75
Programado + correctivo	208,84

Tabla 68: Comparativa estrategias de mantenimiento

A priori, la previsión es que realizando únicamente mantenimiento correctivo el coste sería un 35% menor que realizando mantenimiento programado.

No obstante, habría que considerar que en el coste del mantenimiento correctivo únicamente se ha incluido el coste de la sustitución del componente y no de su reparación. Por experiencia se ha observado que los depósitos de partículas de adhesivo a medio plazo deterioran las piezas internas pero no se tienen datos para calcularlos.

Tampoco se han incluido los costes por parada de producción por no disponer de datos.

Por estas razones, teniendo en cuenta incluir un coste de parada más el coste de las piezas deterioradas (Tabla 63) por el uso repetido sin limpieza, se puede afirmar que los costes de únicamente aplicar mantenimiento correctivo serán mayores que los de optar por la opción del mantenimiento programado.

Por último se debería considerar el aseguramiento de la calidad y la planificación.

En conclusión, y tras el análisis realizado, se deduce que es más conveniente la opción del mantenimiento programado.

6.1.4 Coste de mantenimiento programado sin válvulas dosificadoras

El coste anual de mantenimiento programado se calcula sin las válvulas debido a que el coste de éstas se ha calculado separadamente. La siguiente tabla muestra el coste del mantenimiento programado:

Mes	Gamas	Coste [€] mensual	Coste [€] acumulado
Enero	TME-B8*	14,74	14,74
	TME-B12		
Febrero		0	14,74
Marzo	TME-B8*	31,52	46,26
	TME-B12		
	TME-B24		
Abril		0	46,26
Mayo	TME-B8*	13,28	59,54
Junio	TME-B12	1,46	61,00
Julio	TME-B8*	13,28	74,28
Agosto	TME-DV	16,04	90,32
Septiembre		0	90,32
Octubre	TME-B8*	31,51	121,83
	TME-B12		
	TME-B24		
Noviembre	TME-B8*	13,28	135,11
Diciembre		0	135,11

Tabla 69: Coste de mantenimiento programado sin VD

Las gamas con un asterisco son a las que se les ha eliminado el coste del mantenimiento de las válvulas dosificadoras.

6.1.5 Coste total anual de mantenimiento

El coste total anual de mantenimiento se calcula con los costes calculados en los anteriores apartados 6.1.2 y 6.1.4 por ser los que se consideran más ajustados a la realidad.

La siguiente tabla muestra los costes:

Concepto	Coste [€]
Mantenimiento válvulas dosificadoras	208,84
Mantenimiento programado	135,11
Total	343,95

Tabla 70: Coste anual de mantenimiento

6.2 COSTE DEL MANTENIMIENTO POR PIEZA

El coste del mantenimiento por pieza se calcula tomando el coste anual total calculado en el apartado anterior y las unidades fabricadas el año anterior por el equipo [4].

$$C_{mud} = \frac{C_m}{ud(2018)} = \frac{343,95}{30000} = 0,011 \le /ud$$
 (40)

7 CONCLUSIONES

Tras desarrollar el sistema de mantenimiento de un equipo industrial y analizar los principales factores que a éste afectan, se llega a las siguientes conclusiones.

El análisis de los equipos, su funcionamiento y sus averías permite la implementación de rutinas de mantenimiento que derivan en la disminución de averías y paradas no programadas, además del aumento de la vida útil de los sistemas.

Como consecuencia resulta en un aseguramiento de la calidad y una reducción de los costes, además de permitir una mejor planificación en los departamentos de producción.

El sistema de mantenimiento permite definir todos los aspectos vinculados con el mantenimiento del equipo y de esta forma gestionar y planificar su mantenimiento de una forma más eficiente.

La apropiada gestión de la información permite analizar el funcionamiento del sistema de mantenimiento y adaptarlo a los objetivos requeridos. Aunque dicha gestión se puede comenzar con herramientas sencillas, se considera conveniente disponer de un sistema de gestión de la información apropiado.

Por otro lado, se considera imprescindible el apoyo de la empresa y poder involucrar al departamento de producción.

8 PRESUPUESTO DEL PROYECTO

El siguiente apartado contiene el presupuesto de realización del proyecto.

En el presupuesto se ha añadido, además del desarrollo del proyecto, el coste de la implementación.

8.1 PRESUPUESTO DESARROLLO

Código	Concepto	Cantidad	Precio [€]	Coste [€]
01.01	Análisis previo (Horas)	80	24,00	1920,00
01.02	Sistema de mantenimiento (Horas)	160	24,00	3840,00
01.03	Análisis económico (Horas)	40	24,00	960,00
	TOTAL C01			6720,00

Tabla 71: Presupuesto desarrollo

8.2 PRESUPUESTO IMPLEMENTACIÓN

La siguiente tabla muestra el coste de la implementación del proyecto:

Código	Concepto	Cantidad	Precio [€]	Coste [€]
02.01	Implementación (Horas)	40	17,50	700,00
		24	24,00	576,00
02.02	Control (Horas)	24	24,00	576,00
	TOTAL CO2			1852,00

Tabla 72: Presupuesto implementación

8.3 PRESUPUESTO GENERAL

Código	Capítulo		Coste [€]
C01	Desarrollo del proyecto		6720,00
C02	Implementación		1852,00
	TOTAL EJECUCIÓN DEL PROYECTO		8572,00
	Gastos generales (13%)	1114,36	
	Beneficio industrial (6%)	514,32	
	SUMA DE G.G. Y B.I.		1628,68
	TOTAL PRESUPUESTO CONTRATA SIN IVA		10200,68
	21% IVA		2142,14
	Honorarios del proyecto, dirección de obra y coordinación de seguridad y prevención.	1500,00	
	21% IVA	315,00	
	TOTAL HONORARIOS		1815,00
	TOTAL PRESUPUESTO GENERAL		14157,82

Tabla 73: Presupuesto general del proyecto

9 **BIBLIOGRAFÍA/FUENTES**

- [1] Real Academia Española, Diccionario de la lengua española, 2018.
- [2] Kisling AG, Advanced seminar structural bonding for professional users, 2015.
- [3] DAS Audio Group, S.L., Libro de Calidad, 2019.
- [4] DAS Audio Group, S.L., «Navision,» [En línea]. [Último acceso: 05 marzo 2019].
- [5] V. Macián Martínez, Apuntes asignatura Fundamentos de mantenimiento, Mastér de Mantenimiento, 2016.
- [6] ISO, ISO 14728-1:2017.
- [7] G. Lundberg y A. Palmgren, «Dynamic capacity of rolling bearings, Acta Polytechnica, Mechanical Engineering Series,» Royal Swedish Academy of Engineering Sciences, Vols. %1 de %2Vol. 1, No.3, 1947.
- [8] Thomson, RoundRail Linear Guides and Components, 2019.
- [9] Thomson, Tips for proper linear bearing maintenance, 2012.
- [10] A. J. Besa Gonzálvez y J. Carballeira Morado, Dieagnóstico y corrección de fallos de componentes mecánicos, Editorial Universitat Politècnica de València, 2018.
- [11] Nippon Thompson co., LTD, IKO BEARINGS CAT-1577E, 2018.
- [12] SKF, «www.skf.com,» [En línea]. Available: https://www.skf.com/uy/products/bearings-units-housings/principles/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/life-modification-factor/index.html. [Último acceso: 07 07 2019].
- [13] Thomson, Thomson PC-Series Precision Linear Actuator Installation Manual, 2014.
- [14] ASCO Numatics, «Reliability-database,» 2019.
- [15] V. Macián Martínez, B. Tormos Martínez y P. Olmeda González, Fundamentos de ingeniería del mantenimiento, UPV, 1999.

10 ÍNDICE DE FIGURAS

Fig. 1: Cronograma de etapas del proyecto	٠ ٤
Fig. 2: Componentes del altavoz	. 10
Fig. 3: Unión adhesiva	. 12
Fig. 5: Distribución DAS Audio sede Valencia	. 14
Fig. 4: Localización DAS Audio sede Valencia	. 14

Fig. 6: Organigrama de la empresa	15
Fig. 7: Proceso sección electrónica	16
Fig. 8: Proceso sección carpintería	
Fig. 9: Proceso sección transductor	17
Fig. 10: Proceso sección montaje	18
Fig. 11: Comprobador de válvulas	23
Fig. 12: Engrasadora manual	23
Fig. 13: Prensa de insertos	
Fig. 14: Detalle BDD de mantenimiento	25
Fig. 15: TADA1	28
Fig. 16. Plano de situación	29
Fig. 17. Detalle plano situación	29
Fig. 18: Dosificación de adhesivo	30
Fig. 19: Producto fabricado [4]	31
Fig. 20: Esquema del sistema neumático	32
Fig. 21: Detalle preparación y control	32
Fig. 22: Detalle de ventosa con mango	33
Fig. 23: Detalle esquema circuito de dosificación	33
Fig. 24: Detalle tanques de adhesivo	34
Fig. 25: Detalle grupo dosificador	34
Fig. 26: Conjunto posicionador	35
Fig. 27: Detalle sensores inductivos	35
Fig. 28: Cuadro eléctrico	36
Fig. 29: Visor táctil HMI	36
Fig. 30: Estación de preparación del aire	37
Fig. 31. Control presión tanques de adhesivo	38
Fig. 32. Monitorización presión tanques de adhesivo	
Fig. 33: Monitorizado nivel de adhesivo	39
Fig. 34: Probeta de control de dosificación	40
Fig. 35: Pantalla de inicio	40
Fig. 36: Incidencias equipo	44
Fig. 37: Incidencias dosificadora DAV-01	45
Fig. 38: Válvula dosificadora	46
Fig. 39: Esquema válvula dosificadora	
Fig. 40: Incidencias de las válvulas dosificadoras	49
Fig. 41: Partícula de adhesivo en asiento de válvula	
Fig. 42: Contador ciclos de dosificación	51
Fig. 43: Montaje comprobación válvulas	52
Fig. 44: Rodamiento lineal	
Fig. 45: Tabla rodamientos lineales [8]	55
Fig. 46: Esquema distancias eje Y	
Fig. 47: Desgaste de la guía [9]	
Fig. 48: Rodamiento de agujas	
Fig. 49: Tabla carga dinámica rodamiento de agujas [11]	58
Fig. 50: Masa de altavoces	58

Fig. 51: Factor de fiabilidad a ₁ [7]	59
Fig. 52: Variación de la viscosidad cinemática con la temperatura [7]	60
Fig. 53: Factor de contaminación [7]	60
Fig. 54: Factor a_{iso} para rodamientos axiales de rodillos [12]	61
Fig. 55: Actuador lineal	62
Fig. 56: Esquema actuador lineal	63
Fig. 57: Filtro de vacío	64
Fig. 58: Cartucho de dosificación	
Fig. 59: Esquema válvula de seguridad	67
Fig. 60: Relés de seguridad	68
Fig. 61: Válvulas distribuidoras	69
Fig. 62: Válvulas de accionamiento	70
Fig. 63: Organigrama de mantenimiento	
Fig. 64: Diagrama de mantenimiento correctivo	
Fig. 65: Flujo de información mantenimiento correctivo	
Fig. 66: Diagrama de proceso de mantenimiento sistemático	82
Fig. 68: Diagrama de flujo de información de mantenimiento programado	
Fig. 67: Diagrama de proceso de mantenimiento predictivo	
Fig. 69: Matriz maestra	84
Fig. 70: Gráfica C _{ma}	
Fig. 71: Gráfica de disponibilidad	93
11 ÍNDICE DE TABLAS	
11 ÍNDICE DE TABLAS Tabla 1: Plan revisión DM-01	20
Tabla 1: Plan revisión DM-01	21
Tabla 1: Plan revisión DM-01	21
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4]	21 22
Tabla 1: Plan revisión DM-01	21 22 24
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor	2122242525
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto	2122242525
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina	212425262626
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos	21242525262628
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo	21242526262828
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo Tabla 12: Datos regulador principal	21242526262931
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo Tabla 12: Datos regulador principal Tabla 13: Datos reguladores de los tanques	212425262628293137
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo Tabla 12: Datos regulador principal Tabla 13: Datos reguladores de los tanques Tabla 14: Datos sensores de presión electrónicos	212425262629313738
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo Tabla 12: Datos regulador principal Tabla 13: Datos reguladores de los tanques Tabla 14: Datos sensores de presión electrónicos Tabla 15: Datos manómetros analógicos de los tanques	21242526262831373838
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo Tabla 5: Código de operación Tabla 6: Código de repuesto Tabla 7: Gamas sección transductor Tabla 8: Análisis DAFO Tabla 9: Datos de la máquina Tabla 10: Datos técnicos Tabla 11: Datos adhesivo Tabla 12: Datos regulador principal Tabla 13: Datos reguladores de los tanques Tabla 14: Datos sensores de presión electrónicos Tabla 15: Datos manómetros analógicos de los tanques Tabla 16: Datos sensores de presión de los tanques	21242526262931373838
Tabla 1: Plan revisión DM-01	2124252626283137383839
Tabla 1: Plan revisión DM-01 Tabla 2: Plan revisión torno CMZ Tabla 3: Coste por especialidad [4] Tabla 4: Código de equipo	2124252626293137383939
Tabla 1: Plan revisión DM-01	21242526262831373838393939

Tabla 21: Datos válvulas dosificadoras	46
Tabla 22: Incidencias MTBF DAV-01	47
Tabla 23: Incidencias totales en válvulas dosificadoras	48
Tabla 24: Datos operación	51
Tabla 25: Límites	52
Tabla 26: Datos operación	53
Tabla 27: Datos operación	53
Tabla 28: Límites	54
Tabla 29: Datos rodamiento lineal	54
Tabla 30: Datos operación	57
Tabla 31: Datos rodamiento de agujas	57
Tabla 32: Datos operación	62
Tabla 33: Datos actuador lineal vertical	63
Tabla 34: Datos actuador lineal horizontal	63
Tabla 35: Datos operación	64
Tabla 36: Datos filtro de vacío	64
Tabla 37: Datos operación	65
Tabla 38: Datos operación	65
Tabla 39: Límites	65
Tabla 40: Datos cartucho	66
Tabla 41: Datos operación	66
Tabla 42: Datos válvulas de seguridad de los tanques	67
Tabla 43: Datos operación	67
Tabla 44: Límites	68
Tabla 45: Datos relé de seguridad	68
Tabla 46: Datos operación	68
Tabla 47: Límites	69
Tabla 48: Datos válvulas distribuidoras	
Tabla 49: Datos mantenimiento válvulas [14]	70
Tabla 50: Datos válvulas de accionamiento	71
Tabla 51: Datos mantenimiento válvulas [14]	71
Tabla 52: Datos operación	71
Tabla 53: Límites	72
Tabla 54: Datos operación	72
Tabla 55: Datos operación	72
Tabla 56: Límites	
Tabla 57: Datos operación	73
Tabla 58: Datos operación	73
Tabla 59: Límites	
Tabla 60: Tabla de operaciones correctivas	
Tabla 61: Tabla de operaciones correctivas VD	
Tabla 62: Coste de operación correctiva	80
Tabla 63: Costes de operación correctiva de la válvula dosificadora	
Tabla 64: Costes de las operaciones de mantenimiento sistemático	85
Tabla 65: Código gamas (propuesta)	85

Tabla 66: Gamas de mantenimiento TADA1	86
Tabla 67: Calendario de intervenciones 2019	87
Tabla 68: Comparativa estrategias de mantenimiento	97
Tabla 69: Coste de mantenimiento programado sin VD	97
Tabla 70: Coste anual de mantenimiento	98
Tabla 71: Presupuesto desarrollo	100
Tabla 72: Presupuesto implementación	100
Tabla 73: Presupuesto general del proyecto	100

12 ANEXOS

12.1 PROCEDIMIENTOS DE MANTENIMIENTO

12.1.1 POMTADA102 Sustitución de válvulas dosificadoras

12.2 REGISTROS

- 12.2.1 ST Mantenimiento
- 12.2.2 OT Mantenimiento correctivo
- 12.2.3 OT Mantenimiento programado

12.3 HOJA DE PROCESOS DE ANÁLISIS DE AVERÍAS

PROCEDIMIENTO DE MANTENIMIENTO

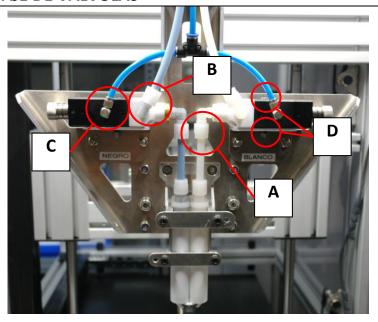
Sustitución Válvulas Dosificación				
Equipo:	TADA1	Procedimiento Nº:	POMTADA102	
Modelo:	DAV-02	Fecha de actualización:	16/07/2019	

MATERIAL	
RECAMBIOS	
Válvula dosificación (componente negro)	
Válvula dosificación (componente blanco)	
HERRAMIENTAS	
Llaves fijas desde 6mm hasta 14mm	
Destornillador plano	
CONSUMIBLES	
Acetona	
Teflón	
EPI	
Gafas de protección	
Guantes de látex	

PRECAUCIONES

Desconectar y bloquear aire y corriente de la máquina antes de comenzar.

No mezclar piezas de un componente del adhesivo con las del otro.


Cuidado restos de metal. El adhesivo reacciona en contacto con el metal.

PROCEDIMIENTO DE MANTENIMIENTO

PROCEDIMIENTO

DESMONTAJE DE VÁLVULAS

Desconectar los tubos de salida de las válvulas [A]

Desconectar tubos de entrada de adhesivo de las válvulas [B]

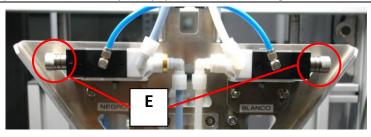
Cuidado por si gotea adhesivo de los tubos

Desconectar tubos de aire de las válvulas [C]

Aflojar tornillos de fijación de válvulas y retirar válvulas [D]

MONTAJE DE VÁLVULAS

Colocar y fijar las nuevas válvulas con los tornillos [D]


Conectar tubo de aire a las válvulas [C]

Conectar tubo de entrada de adhesivo a las válvulas [B]

Conectar tubo de salida a las válvulas y a los cartuchos [A]

AJUSTE Y COMPROBACIÓN

Conectar aire y corriente a la máquina y quitar seta de emergencia

Cerrar totalmente y abrir una vuelta la regulación trasera de la válvula [E]

Purgar hasta que dejen de salir burbujas

Calibrar la máquina y posteriormente realizar el TEST estándar

SOLICITUD DE TRABAJO

Doc: R03.01.01
Versión: 00

Orden No: PT-

Fecha

S.A.	 MANTENIMIENTO	emisión:	16/07/2019
Solicita:			
Notifica a:		Fecha:	
,			

DESCRIPCIÓN

Equipo:	Sección:
Síntoma:	
Mermas:	Parada:

OBSERVACIONES

	Recibida	Registrada
Fecha:		
Nombre:		
Firma:		

Doc: R03.01.02 Versión: 00 ORDEN DE **TRABAJO** Orden No: OT-**D.A.S Audio Group** Fecha MANTENIMIENTO CORRECTIVO 10/07/2019 emisión: S.A. Solicita: Fecha: Autoriza: Fecha: Responsable ejecución Fecha plan. **Supervisor** Fecha inicio **DESCRIPCIÓN** Equipo: Sección: Síntoma: Avería: **TAREAS** \mathbf{T} T $\mathbf{0}$ Id. Proc. Sist. Componente Operación K est. real

CONSUMIBLES

Ref.	Descripción	Cantidad prevista	Cantidad real

OBSERVACIONES

ORDEN DE TRABAJO

Doc: R03.01.03
Versión: 00

Orden Nº: OT-

Fecha

emisión:

10/07/2019

D.A.S Audio Group
S.A.

MANTENIMIENTO PROGRAMADO

Fecha:

Autoriza:				Fecha:	
Responsa	Responsable ejecución		Supervis	sor	Fecha inicio

DES		

Equipo:	Sección:	

TAREAS

Id.	Proc.	Sist.	Componente	Operación	T est.	T real	O K

CONSUMIBLES

Ref.	Descripción	Cantidad prevista	Cantidad real

OBSERVACIONES

	Realizada	Supervisada	Registrada
Fecha:			
Nombre:			
Firma:			

HOJA DE PROCESO DE ANÁLISIS DE AVERÍAS

EQ	UIPO	TA	DA1 (DAV-02)			CÓDI	GO	FECHA
						REAL	IZADO	
SIS	SISTEMA		MA Grupo dosificador			HOJA	v Nō	DE
						REVI	SADO	
FU	INCIÓN	FA	LLO FUNCIÓN	МС	DDO DE FALLO (Causa)	EFEC	TO DE LOS FALLOS	
1	Dosificar adhesivo bicomponente	а	No dosifica adhesivo	1	Desconexión aire comprimido	1a1	No presión en el sistema ne	umático
				2	Válvulas aire no abren	1a2	No presión en los tanques d	e adhesivo
				3	Válvulas dosif. No abren	1a3	Presión de aire pero no fluye	e adhesivo
		b	No dosifica componente blanco	1	Válvula aire B no abre	1b1	No presión en tanque Blanco	0
				2	Válvula dosif. B no abre	1b2	Presión ok pero no fluye cor	np. Blanco
				3	Adaptador B obstruido	1b3	Presión ok, válvula abre, per	o no fluye comp. Blanco
				4	Conductos B obstruidos	1b4	Presión ok, válvula abre, per	o no fluye comp. Blanco