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Abstract Causality is a fundamental part of reason-

ing to model the physics of an application domain, to

understand the behaviour of an agent or to identify

the relationship between two entities. Causality occurs

when an action is taken and may also occur when two

happenings come undeniably together. The study of

causal inference aims at uncovering causal dependencies

amongst observed data and to come up with automated

methods to find such dependencies. While there exist

a broad range of principles and approaches involved in

causal inference, in this position paper we argue that

it is possible to unify different causality views under a

common framework of symbolic learning.

Keywords Causal inference · Action Models ·
Behaviour Prediction

1 Introduction

Causality is a relationship between two events wherein

one is identified as the cause and the other one as the

consequence or effect caused by the former. When we

say that event A causes event B, we can mean that A has

been observed to probabilistically cause B (e.g. smoking

causes lung cancer), that intervening on the value of A

will affect the distribution of B (e.g. eating fast food

for several weeks causes a weight gain independently

of other causes?) or that A causally affects B via some

action application (e.g. pouring water in a jug makes it

become full).

In our exposition to learning causal inference, we

will classify causality into two categories: (a) intrin-

sic causality and (b) extrinsic causality. In the former,
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causal inference is addressed from a statistical stand-

point, typically using causal Bayesian networks [16].

In the intrinsic causality, the value of a variable is re-

garded as a consequence of the evolution of the other

variables of the model. This has been the mainstream

in the field of causal discovery whose principal aim is

to study causal inference from independent and iden-

tically distributed random variables which rely on the

conditional independence relationships in the data [18].

Ultimately, causal discovery is concerned with study-

ing the mechanisms by which variables come to take on

values, or with predicting the value of a variable after

some other variable has been manipulated; i.e., analyz-

ing the dynamics of beliefs under changing conditions.

Philosophers have typically distinguished between the

type-level or general causality, and the token or actual

causality. The former is principally devoted to the in-

vestigation of generic and counterfactual relationships

among variables that are applicable to any hypothetical

scenario, while the latter focuses on particular events

and it is mostly concerned with finding explanations

or the causes of the observed events [8]. The differ-

ence between general and actual causality amounts to

the difference between asking whether smoking causes

lung cancer (the effect that results from the cause) and

asking whether the years of smoking of an individual

caused her to get cancer (the cause of an observed ef-

fect).

On the other hand, the extrinsic causality is deter-

mined by a given specific target and the actions taken

by an agent towards the achievement of the desired tar-

get. Unlike intrinsic causality, which assumes that ac-

tions are external entities originating outside the theory

and not as a mode of behaviour within the theory [15],

in extrinsic causality actions are part of the set of vari-

ables that define the model theory.
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A central problem in extrinsic causality is to de-

scribe the changes or effects caused by the execution

of actions. A large body of research has been devoted

to the study of the frame problem (the problem of de-

scribing what does not change when actions are per-

formed) [14], to the qualification problem (the problem

of specifying all the sufficient conditions for an action to

be executable) [13] and the ramification problem (the

problem of stating all possible effects of an action) [19].

Causal theories have been introduced in [12] as a non-

monotonic formalism that provides a natural solution

for both the frame and ramification problem in rea-

soning about actions. Intuitively, there is a difference

between knowing the cause of a fact and knowing the

conditions under which facts are caused, a distinction

which is commonly disregarded in natural sciences. A

causal theory is a set of causal rules A⇒ B that express

a kind of a causal relation among propositions, indicat-

ing that B is caused if A is true. Informally, every fact

that is caused obtains and every fact that obtains is

caused [7].

In goal-driven applications, goals are the actual causal

initiators that drive behavioural sequences, and actions

are regarded as consciously acting causes towards the

achievement of the goals. In extrinsic causality, the anal-

ysis of causal factors between the observations prior to

the occurrence of an event and the observations after

the event are very relevant, as they provide a viable

explanation of the undertaken actions and are infor-

mative in terms of the predictions of behavioural out-

comes. Particularly, the token-level reasoning in extrin-

sic causality is concerned with the extraction of the

sequence of actions (plan) that causally explains the

agent’s behaviour in a particular scenario, while the

type-level reasoning is involved with obtaining the de-

scription of the causal rules; that is, discovering the

functional relationships among observations that ex-

plain the dynamics of a domain.

In this position paper, we argue that learning any

of the aforementioned types of causality can be ap-

proached as learning the action model that governs the

dynamics or behaviour of a domain. While this state-

ment seems more appropriate for goal-driven applica-

tions that explicitly exhibit an action-based or extrin-

sic causality, we hypothesize that symbolic qualitative

learning is also exploitable to learning intrinsic causal-

ity; that is, we hypothesize that domains that exhibit

an intrinsic causality are likewise governed by an im-

plicitly action model. The rationale behind this claim

is supported by the fact that an action model accounts

for both the facts that hold when an event occurs as

well as the cause of the event.

In the following section, we briefly summarize the

main literature to causal discovery or intrinsic causal-

ity. In section 3 we sketch a model of symbolic learning

for causal inference and we show how the model can

also be used to infer causal relations in intrinsic causal-

ity. Section 4 outlines some practical domains in which

the symbolic learning framework is applicable to ex-

tract causality. Finally section 5 concludes and points

at further research lines.

2 Causal discovery

Causal discovery algorithms derive causal relations be-

tween the measured variables of the observational data

of a phenomenon. This type of algorithms are princi-

pally applied to uncover causal relations in natural and

social sciences, examining how a phenomenon would

change when a variable is manipulated. Due to the del-

icate nature of some experiments in these disciplines,

scientists have put the focus of causal discovery on ob-

servational domain data obtained without intervention

instead of experimental data.

Causal inference from statistical data has attracted

much interest in many application domains. Causal in-

ference methods in machine learning are explicitly de-

signed to generate hypotheses on causal directions au-

tomatically based upon statistical independence tests

and the causal Markov assumption that relates causal

relations to probability densities [16,17].

Discovery of causal directed acyclic graphs (DAG)

models has been addressed with two major approaches:

the Bayesian approach and the constrained-based ap-

proach. The probabilistic framework of the Bayesian
approach computes the probability that the indepen-

dencies associated with an entire causal structure are

true and hence it enables to average a particular hy-

pothesis of interest, such as Does X cause Y?, over all

possible causal structures. Bayesian networks allow in-

formation from several models to be combined to make

better inferences and to better account for modeling un-

certainty [9]. In contrast, the constrained-based model

identifies first several constraints that the underlying

causal structure must satisfy, and then it looks for those

sets of causal structures that are consistent with the

constraints. Constraints may consist, for instance, of

particular conditional-independence statements [18]. A

number of algorithms based on Boolean satisfiability

solvers, as constraint optimization techniques, have opened

new opportunities to integrate general background knowl-

edge and discover causal structures in the presence of

both directed cycles and latent variables [20].

As a whole, algorithms that learn the causal struc-

ture from purely or mostly observational data, as well
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as experimental data, and that typically use graphical

model representations, are recently spreading widely in

statistics, machine learning, and the social and natural

sciences [11]. However, despite many algorithms prov-

ably find the correct causal structure under certain ideal

circumstances, they are not proven to be effective in

practice. Learning a complete causal Bayesian network

is very costly and only applicable to low-dimensional

data, and as such they are greatly limited due to the

high computational complexity (bad scalability). Al-

though introducing constraints on the structure of the

DAG enable to deal efficiently with high-dimensional

data, constrained-based methods are generally incom-

plete and unable to identify combined cause factors

(when a change in an individual variable does not cause

a change in the response variable but combined changes

of variables do).

On the other hand, association rule mining is an

efficient means for discovering potentially causal rela-

tionships in data. Causal rule mining approaches first

extract association rules and then, following different

methodologies of hypothesis testing, validate whether

or not they are causal rules. One of the challenges in

discovering causality in large datasets of observational

studies is that even using domain knowledge, it is diffi-

cult to foresee a combined cause of an outcome, and this

is where data mining research comes into play. Causal

rule mining relies upon the idea that associations are

necessary for causality. In the work presented in [10],

hypothesized cause-effect relationships are represented

as association rules, and then an observational study

is conducted to test if each of the hypotheses is a real

cause; i.e., to identify if the association rule is a causal

rule.

We have presented here three different methodolo-

gies to find causal relationships: via probability, via con-

straints or via associations. Ultimately, the aim is to

come up with a mechanism that allows to identify the

cause variables that affect the effect variables.

3 Symbolic learning for causal inference

The symbolic learning paradigm has its roots at the in-

ception of the field of Artificial Intelligence (AI). The

models manipulated in this paradigm contain rules and

syntactic combinations of explicit variables (symbols).

Although these models were originally designed for search

and representation, there have been important devel-

opments in the learning of symbolic models. Symbolic

learning consists in finding a set of rules that explain the

examples given to the learner. The strength of this ap-

proach, as compared to the connectionist approach, lies

in its capabilities to generalize from very small amounts

of examples. Another interesting feature of symbolic

learning is that the inferred models are easily inter-

preted and understood by humans. A good example of

symbolic learning is Inductive Logic Programming, a

collection of techniques that, given a set of positive and

negative examples, learn a logic program that entails all

the positive examples and none of the negative ones.

In recent years, an interest in the learning symbolic

action models has emerged from the AI Planning com-

munity, and different approaches have been proposed to

solve this problem. We will focus our attention on this

task, Action Model Learning, and we will show how this

task allows us to tackle all the different types of causal-

ity.

An action model describes how a domain changes,

that is, the valid transitions in the space of states of a

given environment. Each action in the action model is

usually defined in terms of its preconditions and effects,

where the preconditions restrict the applicability of the

actions to states meeting certain criteria and the effects

describe the changes undertaken by the state. Action

models can be fed to automated planners to find the

solution to a planning problem, defined as a tuple P =

〈F ,A, I,G〉 , where F is a set of variables, A is the

action model, I is an initial state, i.e. an instantiation

of all variable in F , and G is a goal condition defined

as an instantiated subset of F . The solution to P is a

sequence of instantiated actions that transits from the

state I to a state in which the conditions of G hold.

There exists several approaches to learning action

models [2,21,4,22,1], varying both in methodology and

input data. These algorithms usually rely on two types

of inputs: (1) plan traces representing a valid sequence

of instantiated actions, and (2) state observations, un-

derstood as total or partial instantiations of the world

variables. The aim of the learning algorithms is to de-

termine the action schemes (their preconditions and

effects) that explain the input data. This means that

the plan traces should be correct instantiations of the

learned model and that the state observations should

belong to the state space generated by the model. Usu-

ally these algorithms impose additional constraints that

limit the space of possible models to a finite space. Some

constraints come in the form of hyper-parameters (like

maximum number of actions) and some are imposed

by the domain (since the number of variables also re-

strict the space of possible models). Under these restric-

tions, learning action models can be seen as a determin-

istic search problem in an hypothesized space. Given

that these learning algorithms originate from the auto-

mated planning field, which aims to automatically find

plans for any given goal, the learned models represent

the physics of a domain and determine all valid transi-
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si sj
EH EX WL EH EX WL

Bob 0 0 0 1 0 1
Lisa 0 1 0 1 1 1
Robert 0 0 0 0 0 0

Table 1 Dataset for the example. EH: eating healthy, EX:
exercising, WL: weight loss .

tions between the set of possible states of the domain.

For causal inference, we are particularly interested in

approaches that learn from state observations because

they are more flexible and enable to learn both intrin-

sic and extrinsic causality depending on the nature of

the observations, as we will show hereafter.

Following the causal inference taxonomy described

in Section 1, action model learning can be seen as dis-

covering inference in extrinsic causation. This is better

understood when learning from observations that en-

code the behaviour of a particular agent. Since the be-

haviour of an agent is motivated by a goal, the space of

states is constrained to the ones the agent understands

as fruitful to achieving his goals. This is reflected in the

action model in the form of additional preconditions

that restrict the state space. When the observations

represent the behaviour of an agent, the learned action

model does not represent the physics of the domain and

instead it is interpreted as an agent strategy or policy.

However, we also claim that an action model is able

to represent the causal relationships among variables

as understood in causal discovery, what we refer to as

intrinsic causation. Moreover, an instantiation of such

action model (i.e. a plan) can also shed light on the

cause of a particular event, usually referred to as actual

cause or token causation.

Let us illustrate now with an example how a sym-

bolic approach is extensible to intrinsic causation and

is able to infer both type and token causation.

Example

In this example we want to identify the causes of a

person losing weight. Let us assume we have identified

that the possible causes of weight loss are eating

healthy and exercising. Using these three variables

we build a dataset where each observation is a tuple

(si, sj) with i < j, meaning that an observation is com-

prised of a pre-state and a post-state of the observed

individual. Using this type of observations, the learn-

ing algorithm should ensure that there exists a correct

sequence of actions that allow the transition from si to

sj . Table 1 shows the dataset we will use throughout

this example.

Using an action model learning algorithm and intro-

ducing the constraint that an action can only modify a

single variable, we would be able to infer the following

action model.

Action 1: eat healthy

Preconditions: ¬ eating healthy

Effects: eating healthy

Action 2: exercise

Preconditions: ¬ exercising

Effects: exercising

Action 3: lose weight 1

Preconditions: eating healthy, ¬ weight loss

Effects: weight loss

Action 4: lose weight 2

Preconditions: exercising, ¬ weight loss

Effects: weight loss

Analyzing the resulting action model, we can ob-

serve that in actions 1 and 2 only the variable under

change participates, meaning that these actions can

take place with independence of the values of other vari-

ables. Actions 3 and 4, on the other hand, present an

additional variable in their preconditions set, meaning

that the value of weight loss will change if a certain

condition is met. This action model gives rise to the

following causal structure, with weight loss being a

common effect of eating healthy and exercising.

exercising → weight loss ← eating healthy

We have, thus far, learned the causal relation be-

tween the variables under study, what in causal discov-

ery literature is known as type causation. Let us go a

step beyond and assume that now we want to know

the cause of Bob (see Table 1) losing weight. The an-

swer to this query is the solution to the planning prob-

lem P = 〈F ,A, si, sj〉, with F = {eating healthy,

exercising, weight loss} and A being the inferred

action model. An automated planner would find the

following solution to P :

eat healthy → lose weight 1

With this example we have demonstrated that a

symbolic approach is able to deal with causation in both

the type-token dimension and the intrinsic-extrinsic di-

mension. Specifically, an action model captures how

variables are related to one another, and the instan-

tiation of such model explains the sequence of events

that gave place to a particular event. With respect to

the intrinsic or extrinsic nature of the learned causality,

the result depends on the input observations of the ac-

tion model learning algorithm. When the observations

reflect the behaviour of an agent in a goal-driven en-

vironment, we learn extrinsic causation. On the other
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hand, if the environment is not goal-driven and the ob-

servation just reflects its evolution, the learned model

represents intrinsic causation.

We would like to end this section by clarifying that,

although we have used a deterministic example, prob-

abilistic planning is a very active research subfield in

automated planning. While it is true that action model

learning is still in its early stages and most proposed

methodologies only learn classical or deterministic mod-

els, the field is quickly evolving and we can expect soon

the appearance of learning algorithms for probabilis-

tic action models. This would open the door to not

just causal structure inference but also to quantify the

causal dependencies among variables. Moreover, recent

successful examples in action model learning and plan-

ning in continuous spaces [3] have expanded the appli-

cability of planning to a wider range of domains.

4 Application domains

In this section we describe two application domains

where the symbolic learning approach can be used to

discover the causality of the environment. First, we

present a popular strategic AI game to show the ac-

quisition of causal relationships in a setting that ex-

hibits extrinsic causality. In this example, we will ana-

lyze the difference between learning the planning rules

that model the physics (not the rules) of the game in

contrast to learning the strategy of the player, which

obviously follows the game rules.

Next, we present the benefits of using the learning

approach in a climate science environment, a domain

that exhibits an intrinsic causality in the form of cli-

mate phenomena.

4.1 Extrinsic causality in strategic games

In this section we present an example of how the learn-

ing framework can be applied to learn the behaviour

of strategic games. Games represent an interesting en-

vironment that require players to engage with differ-

ent situations where action must be taken in order to

progress towards a target. In this type of deliberative

games, unlike more reactive-like games as video games,

a player typically follows some kind of strategy that we

can learn via discovering the underlying action model.

A strategy is a set of rules which guides the sequence

of actions of a player towards a particular goal. In con-

trast, a set of planning rules aims to find a solution

for any valid goal. The difference between a strategy

and a set of planning rules is similar to the difference

between informed and uninformed search, in the sense

Fig. 1 Sokoban game

that a strategy uses the player knowledge as a heuristic

to prune the search space.

Let us illustrate this difference using Sokoban, a

prime example of an AI game. The game starts with a

grid (see Figure 1) in which four elements are present:

(1) a player, (2) boxes (represented with a cross inside

a square), (3) stores (represented with a small circle),

and (4) obstacles (brick-like squares). The only actions

allowed to the player are move a box and push a box

and the goal is for all boxes to end up in a store cell.

The difficulty of the game lies in that the actions are

not reversible (one can push but not pull), so a bad

action choice can lead to a situation from which a solu-

tion no longer exists, like a box placed in a corner. This

type of situation is known as a dead end.

This game is usually modeled in planning with three

actions or planning rules: move, push to nongoal and

push to goal. The specification of the actions does not

contain any notion of good or bad moves, the only cri-

teria is whether it is possible or not to apply the action.

This means that the only precondition needed to push

a box is that the adjacent cell (any cell in the up, down,

right or left direction) where the box is going to be

put is empty.

Let us now put aside what we know about the game

and assume that instead we observe an agent playing

this game without knowing which game it is; and let us

consider the situation in Figure 1. This figure represents

our initial observation, the initial state of the game. For

the sake of explanation, we will represent the position of

the player and the boxes as (player|box,row,column),

being the initial situation (player,3,2) and the two

boxes located at (box1,3,1) and (box2,4,3), respec-

tively. Let us assume we have the following observa-

tions:

1. (player,3,4)
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2. (player,4,3) (box2,4,2)

3. (player,3,2) (box2,2,2)

What can we learn from here? The valid transitions

of the learnt action model will describe how the domain

changes, and from the preconditions of the transitions

we can infer that box2 is always located in a cell where

at least three of its adjacent cells are not occupied by

an obstacle, that is, the box is never placed in a corner.

This learnt statement may represent either a rule of

the game or a strategy of the player, but since we know

from the planning rules that the game does not impose

such rule, this is clearly a strategy aimed to avoid dead

ends.

4.2 Intrinsic causality in climate science

Climate science is an interesting field for causal dis-

covery because despite basic equations governing the

evolutions of the states of the atmosphere and ocean

and other climate elements, there are still many factors

that we do not understand [5]. Climate science tempo-

ral information typically plays a crucial role, especially

when dealing with daily data. This is the reason that

scientists use temporal models to identify strong, robust

causal signals [6].

One interesting application in climate science is to

find the relationships between the indices that repre-

sent patterns of low-frequency tropospheric height vari-

ability, that is, pattern change. Roughly speaking, at-

mospheric oscillation compound indices like North At-

lantic Oscillation (NAO), East Pacific Oscillation (EPO)
or Pacific/North America (PNA), amongst others, are

used as a signal of climate changes accordingly to their

positive/negative values and the slope of the trending.

Hence, finding the potential causal connections between

the readings or observations of these compound indices

along various days can provide interesting information

about climate changes.

In this particular scenario, readings of the compound

indices would be accompanied with climate phenomena

occurring in that day, like snowstorm, storm south,

storm east, warm conditions east, warm

conditions south, cold blasts, etc. Thus, learning

the action model would lead us to causal relationships

like:

– A negative NAO and negative EPO and positive

PNA fosters a storm east

– A positive EPO favors warm conditions east

– A negative NAO and a positive PNA do not make

a snowstorm

intrinsic extrinsic
type How does a positive

EPO affect climate
conditions?

How does a corner tile
affect a player’s deci-
sions?

token What caused the snow-
storm in the east yes-
terday?

What sequence of ac-
tions did the player
follow to solve this
Sokoban grid?

Table 2 Causal inference taxonomy

We must note that symbolic learning approaches

typically work with discretized values. This is not though

a limitation to discover causal relationships in numeric

datasets.

Our aim is to give answer to the questions that

raise when studying causality, regardless the particu-

lar type of causality of the application domain. Ta-

ble 2 showcases the orthogonality of the causality di-

mensions presented in our taxonomy as well as an ex-

ample of question for each combination. The applica-

tion domains shown in this section demonstrate that

both intrinsic and extrinsic causality are inferible with

a symbolic learning approach. Additionally, the learnt

action model embodies the causal structure of the do-

main (type causation), and a sequence of instantiated

actions of the model reports the actual cause of a par-

ticular event (token causation). With these examples of

application we have shown that the proposed approach

is able to answer any question regarding causality and

hence we can affirm it is a first step towards a common

framework for causal inference.

5 Conclusions

In this paper, we argue that symbolic learning can be

exploited to uncover causal relationships from obser-

vational tuples of data. This is done by acquiring the

underlying action model that explains the physics of the

domain or the behaviour of the agent. While it seems

clear that the symbolic learning approach is suitable

for extrinsic causality domains in which there exists a

conscious or explicit action taking, we have shown that

it is also possible to adapt the symbolic scheme to do-

mains that exhibit intrinsic causality. Although these

domains are not driven by a goal-oriented behaviour,

underlying transitions between observable states are al-

ways extractable, and these transitions precisely consti-

tute the underpinning of our proposed symbolic learn-

ing approach.
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