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Application and benchmarking of a direct method to optimize

fuel consumption of a diesel electric locomotive

V Macian, C Guardiola, B Pla, A Reig
CMT-Motores Térmicos, Universitat Politècnica de València, Spain.

Abstract

This paper addresses the optimal control of a
long-haul passenger train to deliver minimum
fuel operation. Contrarily to the common Pon-
tryagin minimum principle approach in railroad
related literature, this work addresses this op-
timal control problem with direct method opti-
mization, whose use in this field is still marginal.
A particular implementation of a direct method
based on Euler collocation scheme and its tran-
scription into a nonlinear problem is described
in detail. In this paper, this optimization tech-
nique is benchmarked with well-known optimiza-
tion methods in literature, namely dynamic pro-
gramming and Pontryagin minimum principle,
simulating a real route. The results showed that
direct methods are on the same level of optimal-
ity than other algorithms while requiring reduced
computational time and memory, and being able
to handle very complex dynamic systems. Di-
rect method performance is also compared to the
real trajectory followed by the train operator ex-
hibiting up to 20% of fuel saving in the example
route.

Index terms— optimal control; direct
method; diesel electric locomotive; speed control

The authors acknowledge the support of Spanish Min-
isterio de Economı́a, Industria y Competitividad through
project TRA2016-78717-R.

Abbreviations

DM Direct Method
DP Dynamic Programming
HJB Hamilton-Jacobi-Bellman equation
HVAC Heating, Ventilating and Air Condi-

tioning
IM Indirect Method
MINLP Mixed Integer Nonlinear Program-

ming
NLP Nonlinear Programming
NP Nondeterministic Polynomial time

problem
OCP Optimal Control Problem
ODE Ordinary Differential Equation
PMP Pontryagin Minimum Principle

1 Introduction

Optimal control provides tools to operate a sys-
tem in the most efficient way it can behave. How-
ever, either it is generally too hard to be imple-
mented or the system is not clear enough to de-
fine a proper optimal control problem (OCP).

Train operation is a field in which optimal con-
trol is especially attractive for several reasons:
the problem to optimize is generally well known,
it is usually applied many times under similar
conditions and there may be enough time to solve
(and recalculate if necessary) an OCP. In partic-
ular, diesel electric locomotives are an interesting
target since their performance (especially prime
mover’s) is strongly affected by the way they are
operated.

There is an extensive literature in optimal
control for trains from the late 60’s, when [1]
first introduced the optimal control in railroad
transportation, particularly for diesel locomo-
tives, which was lately followed by [2]. The topic
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gained interest especially during the last decade
[3], with a variety of different approaches being
used. Nowadays, works are spread over two main
fields of optimization: scheduling and routing of
trains [4–7], and efficient operation throughout
the tracks. Regarding the latter, several works
present heuristic control algorithms [8–10], but
most of the literature focuses on optimal control
theory, with different applications of the Pontrya-
gin minimum principle (PMP) [11–16] or the dy-
namic programming method (DP) [17, 18]. Some
of these works focus on discrete control locomo-
tives optimization: [19] proposed an algorithm
based on finding switching times for different
notch settings, introducing speed limits in [20],
track slope in [21] and a varying slope in [22].
All these PMP theory-based are founded around
what some authors call the necessary conditions
for optimality. In short, the common methodol-
ogy is to apply PMP theory analytically to some
extent and, then, deduct from the formulation a
set of predefined operation modes (such as con-
stant speed, full acceleration, coasting, etc.). At
the end, the idea is to reduce the optimal control
to the choice of the best operation mode at each
moment. Of course, such a simple control scheme
is only possible when using strongly simplified
models; detailed train models are unapproach-
able with that methodology. Implementation of
constraints and disturbances (track grade, speed
limits, etc.) is significantly complex and, in some
cases, impossible.

Direct methods (DM) in literature are
marginal and have been applied on few works,
mainly [23–25]. Those are based on the pseu-
dospectral method to address ordinary differen-
tial equations (ODEs) and transcribing the OCP
into a linear problem. These approaches permit
a better handling of constraints but, still, the
train model must be strongly simplified due to
the problem linearization. Also, in those partic-
ular works, the computational requirements were
significantly higher to those of PMP-based ap-
proaches.

The present paper tries to overcome the gaps
found in the above works: (i) the requisite of
a strongly simplified model, (ii) the complex-
ity/inability to handle a number of constraints,
and (iii) the increased computational requisites of
powerful optimizers. In order to do so, this paper
introduces the application of a DM to solve the

train OCP. Therefore, the contributions of this
work are the ability of the presented methodol-
ogy to:

1. Compute the optimal operation of the loco-
motive for a train model of nearly any com-
plexity as long as DM can consider any type
of dynamic model (the presented model is
deliberately simple to provide a fair compar-
ison to other optimization algorithms, but
the same methodology applies for more com-
plex dynamic models).

2. Include any kind of constraint in a straight-
forward manner, including slopes, speed lim-
its, traffic, schedule, state constraints, etc.,
since DM intrinsically allow to include con-
straints explicitly in their formulation.

3. Find the optimal solution with little compu-
tational requirements that allows to quickly
recalculate the optimal train trajectory if the
track conditions have changed, and to do
so in embedded systems. The use of Eu-
ler collocation scheme results in a very light
nonlinear problem that can be handled effi-
ciently.

In contrast to the existing literature, this
method is based on the Euler’s collocation
scheme, transcribing the original OCP into a
nonlinear problem. This is achieved with an ad
hoc framework designed to approach this kind of
OCPs. Its performance is benchmarked against
the two optimal control theory methods most
commonly used in literature, DP and PMP. The
efficiency of DM control algorithm on a long-haul
route will be compared to the real operation of
the train to quantify the potential fuel savings
that optimal control offers.

The paper is organized as follows: first of all
the diesel electric locomotive model to be used
throughout this work is described and the corre-
sponding OCP is stated. Then, the DM is intro-
duced in detail followed by a brief description of
the benchmarking methods: DP and PMP. Next,
the performance on a real long distance route is
shown and compared to the real operation of the
train and, finally, some conclusions on the results
are drawn.
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2 Simulation tools

2.1 Train set model

The modeled train is a four axle Bo’Bo’ type
diesel electric locomotive coupled to 8 coaches
with a total weight of 505 tonnes. The prime
mover develops up to 2.4 MW with 8 different
notch settings and an idle position. Brakes are
of electro-pneumatic type with forced convection
resistors on top of the locomotive.

Due to the inertia of the system as well as
the low frequency of actuations, the prime mover
can be modeled following a quasi-static approach.
The power output at the wheels is a function of
the notch setting ξ, so P = P (ξ) as shown in fig-
ure 1. The fuel consumption is also a function
of the notch setting, F = F (ξ), as indicated in
figure 2. These values are also listed in table 1.
This approach considers only the fuel consump-
tion required to deliver a traction effort; auxiliary
devices such as compressors, HVAC and other pe-
ripherals are not considered for simplicity. Note
also that no recuperation of brake energy is avail-
able on board for this type of locomotive, instead
all braking energy is dissipated in resistors (no re-
generative electrodynamic braking). Therefore,
the locomotive is assumed to deliver a given con-
stant power output and fuel consumption for each
notch setting. This quasi-steady approach ne-
glects engine dynamics which, on the one hand
results in a simpler model that may be accurate
enough for systems with slow dynamics (in fact
this approach is widely used in railway control
literature and state-of-the-art algorithms), but
on the other hand could bring overestimation of
engine efficiency under quite dynamic situations.
This effect will be discussed later in the paper.

Accordingly, the locomotive tractive effort is a
function of the power output, P , and the speed,
v:

Ttrac =
P

v
(1)

This force cannot exceed the maximum tractive
effort of electric motors T trac(v) (maximum trac-
tion that motors can deliver by design due to
temperature and integrity reasons), which are
shown in figure 3.

Drag and track resistance are calculated with a
modified form of the original Davis equation [26]
as a function of speed v, mass m, track slope α

Figure 1: Prime mover’s output power at wheels
for each notch setting ξ. Zero notch is idling po-
sition (no power is forwarded to wheels). Red
crosses are values fitted to the first three terms
of a Fourier series.

Figure 2: Prime mover’s instantaneous fuel con-
sumption for each notch setting ξ. Zero notch is
idling position. Red crosses are values fitted to
the first three terms of a Fourier series.

and radius R, according to locomotive manufac-
turer information:

Tres = A+Bv + Cv2 +mg(1000α+D/R) (2)

where A, B, C and D are coefficients depend-
ing on the characteristics of the train set–A is
a constant friction term, B and C are part of
a parabolic model for speed-dependent friction,
and D accounts for additional friction when track
is not a straight line. The particular values for
these coefficients are shown in table 2–they are
fitted by the locomotive manufacturer. Note that
the introduction of α as a per mille term instead
of as sinα introduces an error < 0.002% for the
values considered in this work, which is negligible
and simplifies the expression. The validity of this
equation has been discussed in the past, espe-
cially for high-speed trains. Works like [27] have
proposed alternative forms of the original Davis
equation to even include energy dissipation by
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ξ [-] P [MW] F [kg/h]

0 0 8.6
1 0.16 42
2 0.28 67
3 0.54 120
4 0.79 172
5 1.03 221
6 1.24 259
7 1.87 380
8 2.39 486

Table 1: Tabulated values of prime mover’s
power output and fuel consumption for the dif-
ferent notch settings.

Figure 3: Electric motors maximum tractive ef-
fort as a function of locomotive speed. Red
crosses are values fitted to a sum of three Gaus-
sian functions.

hysteresis and through dumpers. However, the
modified form shown in (2) is still well-accepted
for long-haul freight trains and commonly used
in control-oriented works. Therefore, in line with
the current literature, (2) will be used for the
purpose of this paper.

Electro-pneumatic brakes can be actuated to
any value between release position (Tbrk = 0)
and maximum braking force (Tbrk = T brk = 380
kN).

Train set dynamics are the balance of the above
forces:

v̇ =
Ttrac − Tres − Tbrk

m
(3)

Note that the effect of rotating masses is ne-
glected in the above dynamic equation. How-
ever, the inertia of mainly axes and motors is
low compared to the gross mass of the train set
(505 tonnes).

A 7703 N
B 157.14 N/(m/s)
C 8.68 N/(m2/s2)
D 0.7 m

Table 2: Davis equation coefficients used in this
work. These values are fitted by the locomotive
manufacturer according to their measurements.

Figure 4: Benchmarking route between Binyam-
ina and Tel Aviv University stations (Israel).
Source: Google Maps

2.2 Benchmarking problem

A benchmarking problem is proposed to evalu-
ate the performance of the direct method (DM)
against dynamic programming (DP) and indirect
method (IM), on the current train OCP. Fuel con-
sumption, constraint violation, computational re-
quirements (memory and time) and ease of use
will be compared in the following sections.

This benchmarking problem consists of a 50
km track between Binyamina and Tel Aviv Uni-
versity stations in Israel as shown in figure 4. The
most relevant data of this route (as provided by
locomotive manufacturer) is summarized in table
3 whilst track radius and slope profiles are shown
in figure 5. The specifications of the benchmark-
ing computer are shown in table 4.

3 Optimal control problem

The formulation of an optimal control problem
consists of a cost index L to be minimized sub-
ject to several constraints. The common formu-
lation in literature is expressed in terms of states
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Total distance [km] 50
Available time [min] 27
Speed limit [km/h] 140
Elevation gain [m] 5
Maximum elevation difference [m] 45

Table 3: Summary of benchmarking route be-
tween Binyamina and Tel Aviv University sta-
tions (Israel). Source: locomotive manufacturer.

Figure 5: Track slope and radius profiles of
benchmarking route between Binyamina and Tel
Aviv University stations (Israel). Note that ra-
dius is saturated at 8000 m for numerical reasons
(the difference in resistance between R=8000 and
R=∞ is negligible, about 0.02% at 100 km/h).
Source: locomotive manufacturer.

x, actuators u and a problem domain s (in the
case at hand, distance):

L =

∫ S

0

L(x, u, s) ds (4)

such that:

∂x

∂s
= f(x, u, s) (5)

with boundary conditions:

x(0) = x0
x(S) = xs

(6)

path constraints:

g(x, u, s) ≤ 0 (7)

and integral constraints:∫ S

0

N(x, u, s) ds = 0 (8)

CPU Intel Core i5-4440 @ 3.10 GHz
Memory 8 GB DDR3
OS Ubuntu 14.04
Software MATLAB R2015a with ad hoc

direct optimization framework

Table 4: Benchmarking computer specifications

3.1 Application to the train opti-
mal control problem

The OCP consists in minimizing the cost index
L defined as the fueling rate of the prime mover
along a trajectory of length S:

Ls =

∫ S

0

F (ξ)

v
ds (9)

Note that fueling rate F (ξ) is measured in mass
of fuel per unit of time.

Like in any OCP, the system is subject to sev-
eral constraints. First of all, the train must cover
the distance S within a time T (integral con-
straint): ∫ S

0

1

v
ds = T (10)

Initial and final speeds are fixed since the train
must be stand still at the departing and arriving
platforms (boundary constraints):

v(0) = 0

v(S) = 0
(11)

Track speed limits have to be respected (path
constraint):

v(s) ≤ g(s) (12)

Limits of prime mover (maximum power out-
put P ), traction motors (maximum tractive ef-
fort T trac) and brakes (maximum braking force
T brk) are also considered:

P (s) ≤ P
Ttrac(s) ≤ T trac(v(s))

Tbrk(s) ≤ T brk

(13)

In addition, there are two disturbances to the
problem that affect the dynamic response of the
system, namely the track slope α(s) and radius
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R(s). These are included in the traction effort
calculation.

Therefore, the OCP consists in minimizing L
(9) throughout a trajectory of length S, fulfilling
the constraints (10)-(13).

4 Direct method application

DM consist in approximating the optimal state
and actuator trajectories to known functions such
as polynomials, piecewise functions, or functions
of any other form. The original OCP can be then
transcribed into a large and extremely sparse
nonlinear programming (NLP) problem whose
unknowns are the coefficients of these functions
[28–32]. In other words, this family of meth-
ods first discretize and then optimize the OCP.
Thanks to the efficiency of nowadays sophisti-
cated NLP optimizers, DMs are powerful meth-
ods. In fact, OCPs that have been traditionally
unaffordable with other methods (either because
of computational or mathematical aspects), for
instance the complete optimization of all actua-
tors in an internal combustion engine [33] or the
calculation of minimum-fuel orbit transfer for a
small spacecraft [34], can be approached with a
transcription into an NLP problem.

The current paper is focused on Euler’s col-
location method to transcribe the ODEs into
a large and sparse NLP. Collocation is a nu-
merical method to solve ODEs and consists in
splitting the domain of the problem (space in
this case) into n subintervals [si, si+1] (colloca-
tion points) of length h = S/n, and approximat-
ing the state and actuator trajectories to known
functions (generally polynomials) with a finite
number of coefficients. Then, these functions
are evaluated at the collocation points to solve
the unknown coefficients [32]. For this particular
OCP, state and actuator trajectories are approx-
imated to a finite set of discrete values:

x ≈ [x0, x1, . . . , xn−1, xn]

u ≈ [u0, u1, . . . , un−2, un−1]
(14)

where xi = x(si) and ui = u(si). ODEs can
be approximated by any numerical method such
as Euler or any Runge-Kutta method. For the
sake of simplicity the Euler method is used in
this work. Therefore, ODEs are transcribed into:

Figure 6: Jacobian matrix of the example OCP.
Blue dots are the non-zero elements of the ma-
trix. Quadrants are, from left to right: speed
(state), notch setting and braking force (actu-
ators) collocation points; from top to bottom:
initial, final and integral constraints (thin up-
per rows), system dynamics, tractive effort limit
(path constraint) and discretizing function (path
constraint).

∂x

∂s
≈
[
∂x0
∂s

, . . . ,
∂xn−1

∂s

]
∂xi
∂s

=
xi+1 − xi

h

(15)

and accordingly system dynamics end up as:

xi+1 − xi
h

= f

(
xi + xi+1

2
, ui

)
(16)

Therefore, ODEs and constraints may be tran-
scribed and arranged as a large and sparse NLP
with unknowns x = [x0, . . . , xn, u0, . . . , un−1],
which can be solved with an NLP solver. In this
work, IPOPT [35] (an open source NLP solver
based on the interior point method available to
download at its website) was used to solve the
NLP. As an example, the Jacobian’s structure of
the NLP corresponding to the train OCP is de-
picted in figure 6 to show the high level of sparsity
of DM (blue dots are non-zero elements).

NLP solvers require the objective function
Ls(x), the constraints c(x) and generally first
derivatives, namely the gradient g(x) of the ob-
jective function:

gi =
∂Ls(x)

∂xi
(17)
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and the Jacobian J(x) of the constraints:

Ji,j =
∂ci(x)

∂xj
(18)

Some solvers also accept second derivatives, i.e.
the Hessian:

Hi,j =
∂2ϕ(x)

∂xi∂xj
(19)

where ϕ(x) is the objective function Ls(x) or any
of the constraints c(x). The availability of second
derivatives may improve the convergence of the
NLP solver.

Formally, functions Ls(x) and c(x) must be
twice continuously differentiable for the colloca-
tion method to be applied. However, this is not
a hard requisite from a numerical point of view;
discrete or non-differentiable functions (such as
maps, piecewise functions, etc) might be included
providing numerical derivatives and substituting
non-differentiable points with arbitrary finite val-
ues. Although this can be done with some suc-
cess, providing continuous functions is recom-
mended as long as the NLP solver convergence
improves with function smoothness.

Therefore, discrete functions P (ξ), F (ξ) and
T trac(v) from the train model are fitted to con-
tinuous expressions. Prime mover’s power out-
put P and fuel consumption F are represented
by the first 3 terms of a Fourier series, as shown
in figures 1 and 2:

P (ξ) ≈ p10
2

+

+

3∑
i=1

[
p1i cos

(
2πiξ

p3

)
+ p2i sin

(
2πiξ

p3

)] (20)

F (ξ) ≈ f10
2

+

+

3∑
i=1

[
f1i cos

(
2πiξ

f3

)
+ f2i sin

(
2πiξ

f3

)] (21)

and maximum tractive effort is fitted to the sum
of three Gaussian functions, which can be appre-
ciated in figure 3:

T trac(v) =

3∑
i=1

t1ie
−
(

v−t2i
t3i

)2

(22)

Note that the notch setting actuator ξ is a dis-
crete quantity but in the context of an NLP it
should be considered as a continuous variable,
otherwise objective or constraint functions will
not be continuous.

Although all variables have been approximated
to continuous functions, the train OCP is actu-
ally a problem combining continuous and inte-
ger variables, whose transcription into an NLP
is known as mixed integer NLP (MINLP). There
are several solvers available to manage a MINLP
such as BONMIN [36] or NOMAD [37]. All these
algorithms combine the solution of the equiva-
lent relaxed NLP (NLP obtained after removing
the constraints such that some variables are inte-
ger) with an integer programming technique such
as the cutting plane or the branch and bound
methods. Unfortunately, MINLPs are considered
to be NP-hard in computational complexity the-
ory, i.e. at least as hard to solve as the hardest
nondeterministic polynomial time (NP) problem
(a class of problems that can be solved in poly-
nomial time with a nondeterministic Turing ma-
chine), which generally means that an algorithm
would need super-polynomial time (e.g. expo-
nential time as a function of the number of in-
puts to the problem) to find a solution or even
that an algorithm simply does not exist and only
suboptimal guesses can be achieved [38]. There-
fore, the fact that MINLPs are NP-hard infor-
mally means that any algorithm to approach the
solution in that class of problems might be po-
tentially time consuming. Particularly, the above
MINLP solvers (and generally any integer pro-
gramming algorithm) take prohibitive computa-
tional times for a large MINLP with thousands
of integer variables such as the one at hand.

There are several possible workarounds for
such a large MINLP. The straightforward solu-
tion is to round the variables with integer con-
straints from the result of the relaxed NLP to the
nearest integer value. However, neither it is pos-
sible to guarantee that constraints will be fulfilled
with this solution nor its optimality. Another so-
lution is to include some kind of ad-hoc heuristics
to the relaxed NLP in order to iteratively search
for the appropriate integer values. Constraints
can be fulfilled but, again, optimality cannot be
guaranteed with this solution.

In this paper a third workaround is proposed.
It consists of three steps: first, the relaxed NLP
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is solved; second, the variables with integer con-
straints are rounded to the nearest integer value;
and third, a new NLP is constructed by substi-
tuting variables with integer constraints for the
rounded trajectories from step two as fixed dis-
turbances. Therefore, the first NLP provides an
initial estimation about where the appropriate
values of the integer variables are, while the sec-
ond guarantees constraints fulfilling as well as an
optimal solution for those given integer trajecto-
ries. Note that although this last solution is opti-
mal, the fact that integer trajectories are fixed in-
troduces suboptimality; however, the impact on
the performance of the system is small compared
to the optimal solution as it will be verified in
section 6.

The main advantages that DM shows are:

• Handling of large problems with many states
and actuators in a compact way.
• Profiting of state-of-the-art NLP solvers.
• Use of first and second derivatives of OCP

objective function and constraints adding
knowledge to the problem and speeding up
the algorithm.
• Lower memory and time requirements than

dynamic programming.
• Robustness and (often) convergence after

few iterations.
• Use of previous solution of similar problems

as a seed to improve speed.
• Implementation of state constraints directly

in the formulation.

However some troubles can arise when solving
OCPs with DM, especially when dealing with dis-
crete quantities or a poor initial solution:

• NLP solvers give a local optimum which may
differ from the global optimum.
• Convergence and solution may depend on

initial seed.
• Extremely nonlinear problems might compli-

cate the algorithm convergence.
• OCP cost index and constraint functions

must be twice continuously differentiable,
which might be troublesome for some par-
ticular problems.
• First and, especially, second derivatives

could be difficult to calculate in some situa-
tions (numerical derivatives can be used but
it may impact on algorithm performance).

• Discrete quantities are difficult to include in
the optimization; MINLP can be used but
OCP is much more expensive to solve.

This direct collocation method has been used
to transcribe the train OCP into an NLP. Then,
the problem is solved with IPOPT (interior point
method) twice, one for the relaxed NLP and an-
other time with fixed integer trajectories. Results
of this optimization are depicted for the bench-
marking route in figure 7, showing a strong ac-
celeration at the beginning (notch 7, since notch
8 has lower efficiency), cruising around 130 km/h
(between notch 2 and 6), then coasting for several
kilometers (and eventually cruising with notch 1)
and finally arriving to the platform with a strong
braking at the very last moment, using the full
available braking effort.

5 Methods for dynamic opti-
mization

There exist three main families of numerical
methods to calculate the optimal set of actu-
ators that minimize a given cost index over
the time [32, 39]: the Hamilton-Jacobi-Bellman
(HJB) equation, whose main application is the
dynamic programming algorithm (DP); indirect
methods (IM) commonly applied as the Pontrya-
gin minimum principle (PMP); and direct meth-
ods (DM), which have already been applied to
the train OCP in the above section.

5.1 Dynamic programming

The DP algorithm is the numerical implemen-
tation of the HJB equation which is a sufficient
condition for a global optimum. Although DP
is not very common in railroad-related problems
with some exceptions like [17, 18], in the automo-
tive field it is widely used, especially in works like
[40–44]. Informally, it consists in discretizing the
problem into n domain steps (in this case steps in
distance) and griding the states (X ) and controls
(U) space to build a finite set of possible trajec-
tories between consecutive time steps. Then, the
single-step problem at a given step (distance) si
is:
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Figure 7: Train OCP solution calculated with DM. Main quantities are displayed: speed (state),
accumulated fuel consumption (cost index), notch and braking force (actuators). Dashed line is the
track speed limit.

L∗
s(si) = min

u

{
Ls(X ,U , si) +

n∑
k=i+1

L∗
s(sk)

}
(23)

whose solution consist in the selection of the
minimum among a finite set of candidates for
L∗
s. Note that the minimization must be per-

formed backwards to compute the sum in par-
allel. Therefore the OCP can be solved itera-
tively by evaluating the single-step problem from
sn = S to s0 = 0. The interested reader may find
an extended introduction to DP at [45].

This method shows several advantages:

• It provides a sufficient condition, so the so-
lution to the OCP is the global optimum.
• It is able to deal with systems of any com-

plexity.
• It is differential-less, i.e. partial differential

of states or actuators are not needed, which
permits handling discontinuous systems.
• It is discrete by definition, so discrete sys-

tems are well handled.
• It is suitable for closed loop control as a

space of optimal trajectories are precom-
puted.

However, some difficulties arise when dealing
with it, especially with problems with many
states and/or actuators:

• It suffers from the so called curse of dimen-
sionality. The number of candidates to eval-
uate at any single step is LN =

∏
Nx
XN,i ·∏

Nu
UN,j (where Nx and Nu are the num-

ber of states and actuators, and XN and UN
the number of discrete points of each gridded
state and actuator) which quickly rises as
the number of states/actuators or the den-
sity of their grids increase. In practice it
means that problems with Nx + Nu ' 5 in-
volve prohibitive computational times.

• The discrete nature of the method generally
prevents from fulfilling equality constraints,
requiring an acceptance threshold.

The OCP was solved with a comprehensive
DP algorithm implementation for MATLAB by
Sundström and Guzzella [46]. The DP solution
for the train OCP at the benchmarking route can
be appreciated at figure 9 (in green). Grid dis-
cretization and a list of states and actuators in-
cluded in the formulation of the problem may
be found in table 5. Note that elapsed time,
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Figure 8: Prime mover’s efficiency for each notch
setting ξ, in blue. Red dashed line represent
the virtual efficiency curve resulting of switch-
ing from notch position 7 to null with different
weights.

albeit it is an integral constraint of the form

N̂ =
∫ S
0
N(x, u, t) dt, has been included as a state

∂x/∂s = N(x, u, t) with conditions x(0) = 0 and

x(S) = N̂ as a straightforward solution.

The solution for the benchmarking route
roughly shows three phases: maximum acceler-
ation, cruise speed and coasting. This is a very
common speed profile for dissipative systems as
it can be appreciated [47] (i.e. a system that can
only spend energy on dissipative forces with no
chances to regenerate energy back). Accordingly,
for the first 4 minutes the notch setting stays at
position 7 until track limit speed is reached; af-
terwards, the speed is held as close to track limits
as possible by switching from notch setting 7 (the
most efficient position, check figure 8) to null (the
position spending the least fuel). Finally, notch
is set to idle position and the train coasts until
reaching the station, where brakes are applied to
stop the train.

Note that switching between notch settings 7
and null when holding speed allows to virtu-
ally operate at an efficiency level resulting from
the linear combination of fuel consumption and
power output of both notch settings. This virtual
efficiency (red dashed line in figure 8) is higher
for any power output than the efficiency of the
corresponding notch settings (blue line in figure
8). However, the model neglects engine dynam-
ics that actually have an effect in the real engine,
so this operation may not be suitable for a real
world application since switching from full load
to idle would neither be practical nor efficient.

The above DP calculation took 2277 seconds

which may be considered a large computational
requirement for such a short trip. Fortunately,
this can be improved removing states that are
consequence of integral constraints. To do so,
the integral constraint (elapsed time in this par-
ticular problem) is adjoined to the cost index by
means of a weighting parameter ψ:

Lψ =

∫ S

0

(
F

v
+ ψ

1

v

)
ds (24)

Formally, as stated in [39], an integral constraint

on the form of N̂ =
∫ T
0
N(x, u, t) dt can be in-

terpreted as a state xn+1 such that ẋn+1 =
N(x, u, t). According to Euler-Lagrange equa-
tions, a state xn+1 may be adjoined to the cost
index by means of a weighting function ψ such
that ψ̇ = −∂H/∂xn+1, with H = L+ ψxn+1. In
the case of the integral constraint, L is not a func-
tion of xn+1 and consequently ψ̇ = 0. Therefore,
an integral constraint can be introduced as an
additional term in the cost index weighted with
a constant parameter ψ as done in (24).

The above artifact might be interpreted as a
penalization on the cost index for solutions tak-
ing large amounts of time to reach the end of the
track. It allows to reduce the current number of
states in one unit. However, the value for ψ such

that
∫ S
0

1/v ds = T must be found. This is gener-
ally done by iterating, which unfortunately spoils
some of the computational time savings. The re-
sults for this second DP approach at the bench-
marking route are shown in red at figure 9, while
blue trajectories correspond to the DP approach
with 2 states (speed and remaining time). The
results are pretty similar to those of DM, show-
ing the acceleration/cruise/coasting/braking se-
quence. The main difference is the way DP han-
dles the cruising section, with a high frequency
switch between notch zero and 7 as discussed
above.

5.2 Indirect methods

Indirect methods (IM) are based on necessary
conditions for optimality and, in few words, first
they try to solve the differential equation and af-
terwards to discretize the solution. The most rep-
resentative algorithm of this family is the PMP
[39, 48]. This is by far, the most common method
in railroad journey optimization in literature [12–
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Variable Type Range Elements

Distance domain 0 ∼ 49.8 km 499
Train speed state 0 ∼ 140 km/h 141
Elapsed time state 0 ∼ 1633 s 328
Notch setting actuator 0 ∼ 8 9
Braking effort actuator 0 ∼ 380 kN 15

Table 5: Grid discretization at DP problem definition. Note that elapsed time is actually an integral
constraint included in formulation as a state for convenience.

Figure 9: Train OCP solution calculated with DP (problem with 1 state in red, with 2 states in
green). Main quantities are displayed: speed (state), accumulated fuel consumption (cost index),
notch and braking force (actuators). Dashed line is the track speed limit.

16]. This method arises from the idea of adjoin-
ing the states to the cost function (same philos-
ophy than adjoining integral constraint in DP),
constructing the so-called Hamiltonian:

H = Ls(x, u, s) +
∑
n

λi(s)
∂xi(s)

∂s
(25)

where the Lagrangian multipliers λi are known as
costates. It can be verified that the optimal tra-
jectory minimizes the value of the Hamiltonian
at any position:

H(λ∗, x∗, u∗, s) ≤ H(λ∗, x∗, u, s) (26)

The trajectory of the costates follows the dy-
namics:

∂λi
∂s

= −∂H
∂xi

(27)

Therefore, the original OCP is translated into
an equivalent problem with 2Nx ODEs. Gener-
ally this is solved by shooting techniques, which
can be summarized as: guess initial values for λi,
find actuations that minimize Hamiltonian, up-
date states by integrating ∂x/∂s = f(x, u, s) and
update costates also by integrating (27); if final
conditions are met the problem is solved; if not,
a different set of initial λi should be used.

IM shows several advantages:
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• Can manage large scale problems that DP
cannot in a compact form.
• Suitable for online optimal control since they

do not need to evaluate the whole problem
at once but optimize step by step separately
(if λi are known).

Unfortunately, only very simple problems can
be solved with IM [49] (generally those where all
λi are constant or where an explicit solution for
all ODEs exist). PMP drawbacks are:

• Costate ODEs are usually ill-conditioned,
resulting in divergent trajectories when inte-
grated numerically, even with a good initial
guess [50].
• Initial λi values are generally hard to find

and computationally demanding.
• Discrete quantities cannot be managed since

functions must be continuous and differen-
tiable.
• Active state constraints introduce disconti-

nuities in costates that cannot be managed
with this kind of optimization methods.
• Only necessary conditions for a local opti-

mum are provided so optimality of solution
is only guaranteed for convex problems.
• If the cost index is a linear function of u,

in the differential ∂H/∂u = 0 (calculated to
find the minimum of Hamiltonian) the con-
trol u vanishes, resulting in a bang-bang con-
trol or a singular-control problem which is
generally hard to solve [39, 51].

Due to the above drawbacks, the common use
of PMP in rail transportation literature is not a
direct application of the original principle but a
set of algorithms or modes that drains from the
theory, known as necessary conditions for opti-
mality. This consists in analyzing the analyti-
cal solution of the control variable for different
ranges of λi. This analysis shows (after sev-
eral model assumptions) that an optimal trajec-
tory typically consists of a set of full power/hold
speed/coast segments, where only the switching
times are to be found [15, 16, 19]. It is useful in
practical applications as a first approach to op-
timal operation with low computational require-
ments and, in fact, algorithms proposed by [11–
16] are already used in commercial devices. Un-
fortunately, this analytical analysis is only possi-
ble for very simple models where optimal control

is of bang-bang type (as stated before, this is the
case when ∂H/∂u = 0). For a more complex
model, such as the one at hand in this paper,
the necessary conditions for optimality-based al-
gorithms are suboptimal and, therefore, the full
PMP theory must be considered.

The complete PMP method has been formu-
lated and implemented to solve the train OCP.
One state (speed) and two actuators (notch set-
ting and braking effort) are considered to mini-
mize the index at (24). The Hamiltonian is:

H =
F

v
+ ψ

1

v
+ λv

v̇

v
(28)

with λv the costate associated to the speed.
This OCP shares space domain discretization

with DP to produce fair comparisons (check do-
main discretization in table 5). Note that notch
setting actuator is relaxed to a continuous func-
tion, albeit it can only take discrete values, be-
cause PMP formulation requires all functions to
be continuous and differentiable.

It is well known that costate ODEs are gen-
erally ill-conditioned. That brings numerical is-
sues when integrating (27), resulting in divergent
λi(s) trajectories. An example of such a diver-
gent trajectory may be appreciated at figure 10
for λv(s) (in red) as calculated with PMP. As a
workaround to this numerical issue, if an opti-
mal solution is already available, costates can be
pre-calculated from optimal state and actuator
trajectories as [41] introduced:

λi(s) = − ∂L∗
s

∂(∂xi/∂s)
(29)

The costate λv(s) has been calculated for the
train OCP with the above expression using L∗

s

and xi trajectories from DP solution. Results
may be found in figure 10 (in blue). Despite λv(s)
is noisy in this case (caused by the disturbances
introduced to the problem, i.e. track slope and
radius profile) it is easy to see that it shows a con-
vergent behavior. The comparison between this
result and the divergent evolution of the numer-
ically integrated λv(s) indicates that the proper
λv(s) trajectory cannot be guessed by means of
numerical integration but from an existing solu-
tion to the problem. This makes PMP virtually
lacking of utility for this particular OCP.

Since PMP method lacks of a minimum robust-
ness to obtain a solution to the train OCP, the
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Figure 10: Costate trajectory of PMP method,
calculated from results of DP method using (29)
(in green) and by numerical integration with its
formal definition from (27) (in red).

λv(s) trajectory calculated with (29) has been
used to show that, at least, the method is still
able to reach the optimal solution when getting
rid of some sources of numerical issues. Figure
11 shows the speed profile, fuel consumption,
notch setting and braking effort of the result-
ing PMP solution to the train OCP. Even so,
it may be appreciated that around s = 23 km
train slightly over-speeds. Speed limit constraint
is not respected as long as state constraints can-
not be directly considered in PMP formulation
but through the value of the costate: since λv is
calculated by numerical differentiation from DP,
discretization issues may lead to a suboptimal
value that violate state constraints. Notch set-
ting behavior is erratic compared to DP although
speed profile holds many similarities.

To provide a workaround to the inability of
guessing proper values for λv(s) without the need
of a previous solution to the OCP, a constant
costate value has been used instead. A sweep
was performed, varying values in the range of
[λ̄v − 1, λ̄v + 1] with λ̄v the average of the actual
λv(s) trajectory. The resulting speed profiles can
be appreciated in figure 11 in brown scale (darker
colors are lower values). Despite the accelera-
tion/cruising/coasting/braking pattern might be
somehow identified in the notch trajectory, the
resulting speed profile is unrecognizable. In fact,
none of these fulfill constraints, especially the ter-
minal speed, since a constant λv value means a
roughly constant actuation as long as the Hamil-
tonian reaches a steady state situation, and there
will be no chances to brake.

It may seem strange that after so many works
that successfully employed PMP to extract an
optimal control policy for diesel locomotives [11–
14], it is still unable to solve the current OCP.
The answer is that these works extract operation
modes (full throttle, coasting, full brake, etc.) as
a function of the costate with no need to solve the
actual PMP set of ODEs. Then, they combine
those modes to build a complete control trajec-
tory which is a simplification of the optimal tra-
jectory. To calculate the actual solution to the
OCP the complete set of ODEs must be solved,
and at this point PMP method falters.

6 Discussion on benchmark-
ing results

Two methods have been capable of solving the
current OCP in an standalone form: DP and the
presented DM. The main performance character-
istics of both algorithms are summarized in table
6 as well as constraint fulfilling in table 7. On the
other hand, PMP method is unable to find a solu-
tion because of the ill-conditioning of the ODEs
that drive the costates to diverge. However, if
a previous solution is available, costates can be
guessed and PMP is able to deliver a proper solu-
tion. Even so, PMP throws the worst fuel result
(73 kg versus 68.2 of the DP and 70.4 of the DM)
with computational requirements somewhere be-
tween DP and DM, while slightly violating speed
limits (state constraints such as a speed limits
cannot be directly considered in formulation but
through costates).

DP, with its current discretization, solved the
OCP after 38 minutes of calculation. Although
this solution is expected to be the global opti-
mum of the problem, it must be taken into ac-
count that actually it is the optimum among the
discrete spaces of candidates X and U into which
the continuous problem has been gridded. As
long as the system does not go only through the
grid but also through the continuous space, OCP
solution may be suboptimal or even violate some
constraints due to interpolation of gridded val-
ues along the continuous path of states and ac-
tuators. In fact, it may be appreciated that DP
solution in figure 9 ends at 10 km/h while the fi-
nal constraint is set to 0 km/h. This issue might
be reduced as the grid density increases, but at
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Figure 11: Train OCP solution calculated with PMP.

Method Fuel consumption [kg] CPU time [s] Total memory [kB]

DP (2 states) 69.4 2277 224000
DP (1 state) 68.2 44 680
PMP (precalculated λv) 73.0 12 40
DM (relaxed) 69.5 1.5 60
DM (discrete) 70.4 0.5 45

Table 6: Main performance indices of DP, PMP and DM algorithms used to solve the train OCP at
the benchmarking route. Note that CPU time includes possible iterations in DP and PMP to find
values for the parameter ψ.

Method Max speed [km/h] Trip time [s] Final speed [km/h]
(limit: 140) (limit: 1633) (limit: 0)

DP (2 states) 139 1618 10
DP (1 state) 132 1632 4
PMP (precalculated λv) 145 1605 0
DM (relaxed) 131 1631 0
DM (discrete) 132 1623 0

Table 7: Constraint fulfilling of DP, PMP and DM of the OCP solution at the benchmarking route.
Values violating constraints are in bold numbers and red color.
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the expense of strongly increasing computation
time.

The general DP method shows a robust op-
timization of the OCP but calculation takes a
large amount of time. The modified DP with one
adjoined state at the cost index reached a pretty
similar solution but reducing the calculation time
from 38 minutes to just 3.5 seconds. However,
no explicit method exists to estimate the value
of the additional parameter ψ so an iterative cal-
culation is needed until final constraints are met,
shooting several DP instances that could jeopar-
dize any time saving. In this case 12 iterations
were needed with a total time of 44 seconds.

DM solved the OCP after 2 seconds (1.5 sec-
onds for the relaxed problem plus 0.5 seconds
for the problem with integer trajectories). This
calculation time strongly depends on the qual-
ity of the initial solution provided to the NLP
solver. In this case the initial solution is set to
constant speed and notch settings that does not
necessarily fulfill the constraints. In addition, for
the sake of simplicity, this calculation does not
include second derivatives, making it harder for
the NLP solver to converge to the problem solu-
tion. Even so, the NLP converges quickly to the
optimal solution and is in fact much faster than
DP or PMP. Moreover, even a quicker calcula-
tion can be reached including some heuristics to
guess a better initial solution or providing sec-
ond derivatives. It is remarkable that there is a
difference of 0.9 kg of fuel between the relaxed
and the discrete DM. This difference is not only
because of the integer approximation carried out
but also due to the unrealistic fractional notch
settings selected in the relaxed DM. Therefore,
the penalty in fuel consumption introduced by
the integer constraint might be under 1.3%.

DP and DM solutions are pretty much the
same in terms of speed profile and fuel consump-
tion as it can be appreciated in table 7 (DP spent
68.2 kg of fuel and DM 70.4 kg). However, there
are two remarkable differences between both: the
number of switches in actuators and constraints
fulfilling.

Regarding the first difference, the fact that
DP handles all state and actuation spaces (X
and U) as discrete variables brings on solutions
with switching actuators, especially if several eco-
nomic poles exist and no switching costs are
specified (e.g. efficiency versus notch setting as

shown in figure 8), but also if grid density is
poor. On the other hand, DM treats quanti-
ties as continuous variables and therefore optimal
solution might be smoother. Even after round-
ing variables with integer constraints, the num-
ber of switches are definitely lower than that in
DP. This behavior brings a major drawback for
DP since a switching solution that is numerically
the optimum, may be unpractical for real world
conditions. In this case, the operator obviously
cannot be constantly switching from notch 7 to
idle, not only because the operator itself but also
because of the capabilities, wear, safety and ef-
ficiency of the prime mover. In this sense, it is
also interesting to remark that optimal solutions
could be considered uncomfortable from a pas-
senger point of view: as shown in figures 7 and
9, there are many notch switches (way less in the
DM solution but still a great number of switches)
that may produce a bouncing trip, and heavy
braking for a full stop–it saves fuel not to brake
until the very end and, then, brake as strong as
possible, since it maximizes the average speed al-
most for free. These issues, which could limit the
applicability of these optimal trajectories in the
actual locomotive, can be overcome introducing
additional constraints that take into considera-
tion ride comfort concerns, such as a limit on the
number of switches or an acceptance threshold
for negative accelerations. Although the imple-
mentation of such constraints is pretty straight-
forward following the presented methodology, it
falls out of the scope of this paper.

Regarding the second difference, as long as DM
simulates the system at the same time it is being
optimized, it can be guaranteed that the solution
fulfills all constraints in a forwards simulation
within very tight tolerances. By contrast, due to
the discrete set of candidates that DP manages
and since OCP is optimized first in a backwards
fashion and then simulated, it may happen that
the optimal trajectory calculated by the solver
(which is restricted to the set of discrete candi-
dates) does not fit the forwards simulation and,
therefore, some constraints might not be fulfilled.
Table 7 summarizes constraint fulfilling for all al-
gorithms showing that DM is the only method
that does not violate any constraint and, in par-
ticular, it may be appreciated that DP does not
match zero speed at the end of the route while
DM does.
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As a general conclusion, DP could be the choice
for simple problems with few states and actu-
ators and featuring discrete quantities. OCPs
with integral constraints would be on the bor-
derline as long as they might not directly jeop-
ardize computational time but introduce addi-
tional parameters to calibrate (which vary from
problem to problem, even when changing a single
model parameter) that may be troublesome and
require the calculation of several DP problems.
OCPs with increasing complexity or number of
states/actuators will involve prohibitive compu-
tational times. DM, on the other hand, can deal
with OCPs of any complexity and many states
and actuators. Integral constraints are handled
directly on the formulation without any addi-
tional parameter and no significant impact on
calculation time. Although discrete quantities
must be handled indirectly, NLP convergence is
usually strong and it takes less time than DP to
find the optimal solution to the OCP. In addition,
since DM deals with continuous variables, the so-
lution is usually smoother matching constraints
better than DP.

Therefore, unless the target OCP is a simple
function with a couple of states/actuators, no in-
tegral constraints, discrete quantities and some
discontinuities, DM should be the choice to solve
the OCP.

In the following section, the optimization of
a full trip of 127 km with stops in 13 stations is
compared to the real utilization of the train. DM
is used to solve the OCP since it featured the best
performance over all methods in the benchmark-
ing route.

7 Optimization of a long-
haul route

As introduced in the previous discussion, DM is
the choice to deal with the vast majority of OCPs
due to its efficiency, simplicity and flexibility to
manage large amounts of constraints, states and
actuators [33]. Despite DP method shown a sim-
ilar performance under some conditions, DM is
selected because:

• It keeps a similar performance even if addi-
tional constraints or states are considered.
• Train routes are generally repeated multiple

Figure 12: Route between Nahariyya and Tel
Aviv HaHagana stations (Israel). Source: Google
Maps

times a day with a high degree of predictabil-
ity, so information of previous trips may be
used as initial solution to speed up the algo-
rithm.

• DM is faster and uses reduced memory, mak-
ing it attractive for online applications with
limited memory.

In order to test the performance and applica-
bility of DM to a complete route, the train OCP
is implemented for a trip between Nahariyya and
Tel Aviv HaHagana stations in Israel whose route
may be appreciated in figure 12. The route
is daily operated by diesel electric locomotives
(same type than the one modeled in this work),
and it covers a distance of 127 km in 111 minutes
with stops in 13 stations. The slope and radius
of the track (disturbances to the OCP) are dis-
played in figure 13.

This OCP is similar to the problem formulated
for the benchmarking route. The minimization
objective is the total fuel consumption of the
prime mover (9). This is subject to a time limit
Ti to reach each station:∫ si

si−1

1

v
ds = Ti (30)

where si is the position of the i-th station (s0 = 0
and s12 = S). Consequently, total travel time at
the actual route and the optimal trajectory will
be the same. Speed is also constrained at stations
(train must remain stopped at platforms):
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Figure 13: Slope α and track radius R profile at the full route between Nahariyya and Tel Aviv
HaHagana stations (Israel).

v(si) = 0 (31)

Additionally, track speed limit (12) and technical
limits of the locomotive (13) are also included.

Direct collocation is used to transcribe the
OCP to a large sparse NLP, which is optimized
with IPOPT. Calculations for the whole route
take about 9 seconds for the relaxed OCP and
4 seconds for the discrete OCP. Total fuel con-
sumption at this route is 182 kg which compared
to the actual speed profile (228 kg) results in a
saving of 46 kg. Figure 14 shows the resulting tra-
jectories and table 8 summarizes the main results.
Note that fuel consumption at the actual route is
calculated by simulating the model stated in sec-
tion 2.1 while using measurements of the notch
settings selected by the operator onboard the real
train, in order to provide a fair benchmark be-
tween optimal and real notch trajectories. There-
fore, all differences shown in this benchmark are
only because of the optimized controls. The ac-
tual data from the real operation of the train at
this particular route and its simulated fuel con-
sumption are also displayed in figure 14.

There are several facts that can be appreciated
when comparing these results with the real oper-
ation of the train:

• DM solution tends to strongly accelerate the
train at the beginning, then coast and brake
only at the very end, while actual speed pro-
file includes few coasting phases.
• Both trajectories brake in a similar way.
• DM never reaches notch 8 (highest power

output) but notch 7 (highest efficiency)
while the driver regularly does.

• And most importantly, DM operation pro-
vided a fuel saving of 46 kg, which is a 20%
of total fuel consumption.

8 Discussion on the results
and applicability of the op-
timization method

The benchmark showed that PMP can easily han-
dle problems with many states and actuators,
however due to its lack of robustness (ODEs are
ill-conditioned), it has been unable to manage
the problem properly. Results exhibited strong
divergence and it is only possible to find a fea-
sible solution using information from another
OCP solver. On the other hand, DP is a ro-
bust method that provides the global optimum
of the problem (informally speaking, it provides
a soft global optimum since it searches among a
gridded space of candidates instead of the whole
continuous space). As a counterpart it suffers
the so called curse of dimensionality, requiring
prohibitive computation times for problems with
many states/actuators. The current OCP is close
to be unaffordable, however adjoining the inte-
gral constraint to the cost function reduced the
computational burden by a factor of 50. Results,
however, slightly violate final constraints due to
the difference between the discrete backwards op-
timization and the continuous forwards simula-
tion.

DM is able to transcribe a large scale problem
with many states, actuators and constraints into
a sparse NLP that can be optimized efficiently

17



Figure 14: Main results of train operation in the full route between Nahariyya and Tel Aviv HaHa-
gana stations in Israel (127 km). Green color corresponds to real train operator actuations and red
to direct method OCP solution.

Method Fuel consumption CPU time Total memory Max speed Trip time
[kg] [s] [kB] [km/h] [min]

Human operator 228 — — 139 111
Direct method 182 13 150 137 111

Table 8: Main results from the simulation of the long-haul route (13 stations), for the optimized
control (DM) and the human operator.

with any state-of-the-art NLP solver. It shows
robust convergence to the optimal solution, but
is only able to reach a local optimum. Also,
handling discrete quantities is troublesome since
the NLP turns into a MINLP which is harder to
solve. The workaround suggested in this work
is to solve the NLP twice: first with the integer
variables relaxed into continuous quantities, then
round the result to the nearest integer and finally
optimized the NLP again with the rounded vari-
ables as fixed disturbances. This involves a small
penalization in terms of computational time com-
pared to a fully continuous OCP without a sig-
nificant impact in the cost of the minimization
objective.

Recalling the main contributions of the pa-
per as stated in the introduction, the presented
method has been able to:

1. Compute the optimal trajectory for a long-
haul route, delivering the optimal set of
notch settings to drive the locomotive effi-
ciently in a real route. Particularly, a signif-
icant reduction of fuel consumption has been
achieved compared to the control performed
by the train operator. Despite the model
used in this work has been kept simple in
line with the existing literature to provide a
fair comparison o other optimization meth-
ods, more complex models (with additional
states such as engine dynamics, coolant or
motor coil temperatures, etc.) can be eas-
ily included (as long as they are continuous
functions) in the presented formulation as in
(5). Contrarily to DP, the inclusion of addi-
tional states only involves a linear increase
in the Jacobian dimensions.
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2. Include constraints to the problem, namely
full stops at platforms (boundary con-
straints) track speed limits (path con-
straint), tractive effort limit (path con-
straint) and maximum travel time (integral
constraint). These constraints were included
in a straightforward manner in the formu-
lation, simply by discretizing them follow-
ing the methodology described in section 4.
Any other boundary, path or integral con-
straint can be included following the same
precise methodology. Note that, in the Ja-
cobian matrix, boundary constraints only in-
troduce a new element, integral constraints
a new row, and path constraints a whole new
matrix.

3. Find the optimal trajectory for the long-haul
route with very little computational requi-
sites. In fact, this problem just required
13 seconds to be optimized, suggesting that
much more complex models and many ad-
ditional constraints could still be considered
while keeping a low computational burden.
This also points out that, in case of any
unexpected situation during the train op-
eration (such as a red signal), the method
could recalculate the remaining portion of
the route in few seconds with updated ar-
rival time constraints.

The above results showed promising perfor-
mance and capabilities of direct methods for
railroad control applications. However, it must
be taken into account that for a final imple-
mentation many additional requisites must be
fulfilled that, so far, are not addressed in this
work. Among others, these are: a more detailed
train set model considering additional dynamics,
backup controls in case of unexpected situations
that have not been included in the formulation
or ride comfort considerations.

9 Conclusions

The optimal operation of a diesel electric loco-
motive has been approached as an OCP to mini-
mize fuel consumption fulfilling time and distance
constraints for a given route. A benchmarking
route has been used to analyze and benchmark
the three main families of methods able to deal

with OCPs: HJB equation (DP), IM (PMP) and
DM. This particular problem consists of one state
(speed), two actuators (notch setting and brak-
ing force), one integral constraint (elapsed time)
and two disturbances (track slope and radius).

DM resulted the most effective and versatile al-
gorithm, so it has been benchmarked with a com-
plete route that is daily covered by diesel electric
locomotives in Israel, between Nahariyya and Tel
Aviv HaHagana stations. This OCP is interest-
ing because it is a large problem, involves addi-
tional constraints (arriving on time at each sta-
tion), and data of the real operation of the train
is available at that route. DM spent 9 seconds to
solve the relaxed OCP and 4 additional seconds
to find a solution for the discrete OCP, resulting
in a saving of 46 kg of fuel compared to the real
operation of the train.

Optimal control is especially interesting in
diesel electric locomotives because performance is
strongly dependent on the way it is actuated and
many information is known in advance (speed
limits, track grade, etc.). For the case at hand
(a typical route between two cities) it has been
found that a proper optimal control saves about
20% of the fuel consumption compared to the
actual current operation and that DM is prob-
ably the best performer algorithm for this kind
of problems.

However, several things are still missing to pro-
vide a complete optimal control that can be used
for real world applications. Future works may
focus on closing this gap. Some interesting ideas
might be applying the methodology presented in
this paper with detailed locomotive models that
would provide more accurate optimization tra-
jectories, or including ride comfort constraints to
the problem in order to guarantee a safe and re-
alistic train operation.
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