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(misanche@ual.es)

Abstract

In this paper, we deal with a classical problem in Fractal Geometry con-

sisting of the calculation of the similarity dimension of IFS-attractors.

The open set condition allows to easily calculate their similarity di-

mension though it depends on an external open set. We contribute

a necessary condition to reach the equality among some fractal di-

mensions for the natural fractal structure for IFS-attractors and the

similarity dimension. That condition, weaker than the SOSC, becomes

more representative of the attractor’s self-similar structure.
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1. Introduction

A classical problem in Fractal Geometry deals with determining under what condi-

tions on the pieces of a strict self-similar set K, the equality between the similarity

and the Hausdorff dimensions of K stands. In this way, a classical result con-

tributed by P. A. P. Moran in the forties (c.f. [12, Theorem III]) states that under

the open set condition (OSC in the sequel), a property required to the pieces of

K to guarantee that their overlaps are thin enough, the desired equality holds.

Afterwards, Lalley introduced the strong open set condition (SOSC) by further

requiring that the (feasible) open set provided by the OSC intersects the attractor

K. The next chain of implications and equivalences stands in the case of Euclidean

self-similar sets and is best possible (c.f. [14]):

(1) SOSC⇔ OSC⇔ HαH(K) > 0⇒ dimH(K) = α,

where HαH is the α−dimensional Hausdorff measure, dimH denotes the Hausdorff

dimension, and α is the similarity dimension of K. A counterexample due to

Mattila allows to guarantee that the last implication in Eq. (1) cannot be inverted,

in general. Accordingly, the OSC becomes only sufficient to reach the equality

between those dimensions. A further extension of the problem above takes place

in the more general context of attractors on complete metric spaces. Schief also

explored such a problem and justified the following chain of implications (c.f. [15]):

(2) HαH(K) > 0⇒ SOSC⇒ dimH(K) = α,

i.e., the SOSC is necessary for HαH(K) > 0 and only sufficient for dimH(K) = α.

Once again, the above-mentioned result due to Mattila implies that Eq. (2) is

best possible. From both Eqs. (1) and (2), it holds that the SOSC is a sufficient

condition on the pre-fractals of K leading to dimH(K) = α.

In this paper, we shall make use of the concept of a fractal structure (first sketched

in [3]) to explore and characterize a novel separation property in both contexts:

Euclidean attractors and self-similar sets in complete metric spaces. Such a sep-

aration property, weaker than the OSC, becomes necessary to reach the equality

between the similarity dimension of the attractor and its Hausdorff dimension.
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2. Preliminaries

2.1. The open set condition. We say that F = {f1, . . . , fk} (or its attractor K,

as well) is under the Moran’s OSC (c.f. [12]) if there exists a nonempty open subset

V ⊆ Rd such that the images fi(V) are pairwise disjoint with all of them contained

in V , called a feasible open set. The strong open set condition (SOSC) stands, if

and only if, it holds, in addition to the OSC assumptions, that V∩K 6= ∅ (c.f. [10]).

Schief proved that both the OSC and the SOSC are equivalent on Euclidean spaces

(c.f. [14, Theorem 2.2]).

2.2. Fractal structures. Fractal structures were first sketched by Bandt and

Retta in [3] and formally introduced afterwards by Arenas and Sánchez-Granero

to characterize non-Archimedean quasi-metrization (c.f. [1]).

By a covering of a nonempty set X , we shall understand a family Γ of subsets

such that X = ∪{A : A ∈ Γ}. Let Γ1 and Γ2 be two coverings of X . The notation

Γ2 ≺ Γ1 means that Γ2 is a refinement of Γ1, i.e., for all A ∈ Γ2, there exists

B ∈ Γ1 such that A ⊆ B. Moreover, Γ2 ≺≺ Γ1 denotes that Γ2 ≺ Γ1, and

additionally, for all B ∈ Γ1, it holds that B = ∪{A ∈ Γ2 : A ⊆ B}. Thus, a

fractal structure on X is a countable family of coverings Γ = {Γn}n∈N such that

Γn+1 ≺≺ Γn, for all natural number n. The covering Γn is called level n of Γ. A

fractal structure is said to be finite if all its levels are finite coverings.

Definition 1 (c.f. [2], Definition 4.4). Let F be an IFS whose attractor is K. The

natural fractal structure on K as a self-similar set is given by the countable family

of coverings Γ = {Γn}n∈N, where Γ1 = {fi(K) : i ∈ Σ}, and Γn+1 = {fi(A) : A ∈

Γn, i ∈ Σ}.

3. Fractal dimensions for fractal structures

Let Γ be a fractal structure on a metric space (X, ρ). We shall define An(F ) as

the collection consisting of all the elements in level n of Γ that intersect a subset F

of X . Mathematically, An(F ) = {A ∈ Γn : A ∩ F 6= ∅}. Further, let diam (Γn) =

sup{diam(A) : A ∈ Γn}, and diam (F,Γn) = sup{diam(A) : A ∈ An(F )}, as well.
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Definition 2 (c.f. [5, Definition 4.2] and [7, Definition 3.2]). Assume that

diam (F,Γn)→ 0 and consider the following expression for k = 3, 4:

Hsn,k(F ) = inf
{∑

diam (Ai)
s : {Ai}i∈I ∈ An,k(F )

}
,where

(i) An,3(F ) = {Al(F ) : l ≥ n}.

(ii) An,4(F ) = {{Ai}i∈I : Ai ∈ ∪l≥nΓl, F ⊆ ∪i∈IAi,Card (I) < ∞}. Here,

Card (I) denotes the cardinal of I.

In addition, let Hsk(F ) = limn→∞Hsn,k(F ). By the fractal dimension III (resp.,

IV) of F , we shall understand the (unique) critical point satisfying the identity

dim k
Γ(F ) = sup{s ≥ 0 : Hsk(F ) =∞} = inf{s ≥ 0 : Hsk(F ) = 0}.

4. Moran’s type theorems under the OSC

One of the main goals in this paper is to explore some separation conditions for

IFS−attractors in the context of fractal structures. It is worth pointing out that

the main ideas contributed hereafter first appeared in [13].

IFS conditions. Let (X,F) be an IFS, where X is a complete metric space, F =

{f1, . . . , fk} is a finite collection of similitudes on X , and K is the IFS−attractor

of F . Moreover, let Γ be the natural fractal structure on K as a self-similar set

(c.f. Definition 1), and ci be the similarity ratio of fi ∈ F .

All the results contributed along this paper stand under the IFS conditions above.

Next, we recall the concept of similarity dimension for IFS−attractors.

Definition 3. Let F be an IFS and K its attractor. By the similarity dimension

of K, we shall understand the unique solution α > 0 of the equation
∑k

i=1 c
s
i = 1.

In other words, the similarity dimension of K is the unique value α > 0 such that

p(α) = 0, where p(s) =
∑k

i=1 c
s
i − 1.

Along the sequel, α will denote the similarity dimension of an IFS−attractor. It

is worth noting that (without any additional assumption) HαH(K) < ∞ for any

IFS-attractor K (c.f. [8, Proposition 4 (i)]).
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Theorem 4 (IFS). (c.f. [5, Theorem 4.20]) dim 3
Γ(K) = α, and Hα3 (K) ∈ (0,∞).

Moran’s Theorem (1946) (EIFS). OSC⇒ dimH(K) = α, andHαH(K) ∈ (0,∞).

By a Moran’s type theorem, we shall understand a result that yields the equal-

ity between a fractal dimension dim of an IFS−attractor K and its similarity

dimension, namely, dim (K) = α.

Corollary 5 (EIFS). (c.f. [5, Corollary 4.22]) OSC⇒ dim H(K) = dim 3
Γ(K) = α.

Lemma 6. (c.f. [7, Proposition 3.5 (3)]) Let Γ be a finite fractal structure on a

metric space (X, ρ), F be a subset of X, and assume that diam (F,Γn)→ 0. Then

dim H(F ) ≤ dim 4
Γ(F ) ≤ dim 3

Γ(F ).

Corollary 7 (IFS). dimH(K) ≤ dim 4
Γ(K) ≤ dim 3

Γ(K) = α.

Theorem 8 (EIFS). OSC⇒ dimH(K) = dim 4
Γ(K) = dim 3

Γ(K) = α.

To conclude this section, we recall two key results explored by Schief (c.f. [14, 15]).

Theorem 9.

(EIFS) SOSC⇔ OSC⇔ HαH(K) > 0⇒ dimH(K) = α.

(IFS) HαH(K) > 0⇒ SOSC⇒ dimH(K) = α.

Theorem 9 is best possible due to Mattila’s counterexample.

5. Towards a necessary condition for Moran’s type theorems

In this section, we introduce a novel separation condition for each level of the

natural fractal structure Γ that any IFS−attractor can be endowed with (c.f. Def-

inition 1). Such a separation property is equivalent to Γ being irreducible.

Definition 10. We shall understand that F satisfies the level separation property

(LSP) if the two following conditions hold for each level of Γ:

LSP1: A◦ ∩B◦ = ∅, for all A,B ∈ Γn : A 6= B.

LSP2: A◦ 6= ∅, for each A ∈ Γn,
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where the interiors have been considered in K.

It is worth pointing out that the LSP does not depend on an external open set,

unlike the OSC. Let Γ be a covering of X . Recall that Γ is a tiling provided that

all the elements of Γ have disjoint interiors and are regularly closed, i.e., A◦ = A

for each A ∈ Γ. A fractal structure Γ is called a tiling if each level Γn of Γ is a

tiling itself.

Theorem 11 (IFS). The following are equivalent:

(i) Γ irreducible.

(ii) dim 4
Γ(K) = dim 3

Γ(K) = α.

(iii) LSP.

(iv) LSP2 and Ai ⊆ Aj implies j ⊑ i.

(v) Γ tiling.

(vi) Hα4 (K) > 0.

Definition 12. We shall understand that F is under the weak separation condi-

tion (WSC) if any of the equivalent statements provided in Theorem 11 stands.

Corollary 13 (IFS). SOSC⇒WSC, and the reciprocal is not true, in general.

The following Moran’s type theorem holds for both fractal dimensions III and IV

provided that F is under the WSC.

Theorem 14 (IFS). WSC⇔ dim 4
Γ(K) = dim 3

Γ(K) = α.

6. Conclusion

In this section, we summarize all the results contributed along this paper.

Theorem 15. Consider the following statements:

(i) HαH(K) > 0.

(ii) SOSC.

(iii) OSC.

(iv) dimH(K) = dim 4
Γ(K) = dim 3

Γ(K) = α.

(v) dim 4
Γ(K) = dim 3

Γ(K) = α.
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(vi) Γ irreducible.

(vii) Γ tiling.

(viii) Hα4 (K) > 0.

The next chains of implications and equivalences stand:

(EIFS) (i)⇔ (ii)⇔ (iii)⇒ (iv)⇒ (v)⇔ (vi)⇔ (vii)⇔ (viii).

(IFS) (i)⇒ (ii)⇒ (iv)⇒ (v)⇔ (vi)⇔ (vii)⇔ (viii).

To conclude this paper, we provide two comparative theorems (one for each con-

text, EIFS or IFS) involving our results vs. those obtained by Schief.

Theorem 16 (EIFS, comparative theorem).

HαH(K) > 0⇔ OSC⇔ SOSC⇒ dimH(K) = α.

WSC⇔ Hα4 (K) > 0⇔ dim 4
Γ(K) = α.

Theorem 17 (IFS, comparative theorem).

HαH(K) > 0⇒ SOSC⇒ dimH(K) = α.

WSC⇔ Hα4 (K) > 0⇔ dim 4
Γ(K) = α.

Both statements in Theorem 17 (Schief’s and our’s) can be combined into the

following summary result standing in the general case:

Corollary 18 (IFS). HαH(K) > 0⇒ SOSC⇒ dim H(K) = α⇒WSC, where

WSC⇔ Hα4 (K) > 0⇔ dim 4
Γ(K) = α.

Interestingly, Corollary 18 highlights that the WSC becomes necessary to reach the

equality between the Hausdorff and the similarity dimensions of IFS-attractors.

In other words, if the natural fractal structure which any IFS-attractor can be

endowed with is not irreducible, then a Moran’s type theorem cannot hold.
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