Ideals in $B_{1}(X)$ and residue class rings of $B_{1}(X)$ modulo an ideal

A. Deb Ray ${ }^{a}$ and Atanu Mondal ${ }^{b}$
a Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India (debrayatasi@gmail.com)
${ }^{b}$ Department of Mathematics and Statistics, Commerce Evening, St. Xavier's College, Kolkata700016, India (atanu@sxccal.edu)

Communicated by F. Lin

Abstract

This paper explores the duality between ideals of the ring $B_{1}(X)$ of all real valued Baire one functions on a topological space X and typical families of zero sets, called Z_{B}-filters, on X. As a natural outcome of this study, it is observed that $B_{1}(X)$ is a Gelfand ring but nonNoetherian in general. Introducing fixed and free maximal ideals in the context of $B_{1}(X)$, complete descriptions of the fixed maximal ideals of both $B_{1}(X)$ and $B_{1}^{*}(X)$ are obtained. Though free maximal ideals of $B_{1}(X)$ and those of $B_{1}^{*}(X)$ do not show any relationship in general, their counterparts, i.e., the fixed maximal ideals obey natural relations. It is proved here that for a perfectly normal T_{1} space X, free maximal ideals of $B_{1}(X)$ are determined by a typical class of Baire one functions. In the concluding part of this paper, we study residue class ring of $B_{1}(X)$ modulo an ideal, with special emphasize on real and hyper real maximal ideals of $B_{1}(X)$.

2010 MSC: 26A21; 54C30; 13A15; 54C50.
KEYWORDS: Z_{B} - filter; Z_{B}-ultrafilter; Z_{B}-ideal; fixed ideal; free ideal; residue class ring; real maximal ideal; hyper real maximal ideal.

1. Introduction

In [1], we have introduced the ring of Baire one functions defined on any topological space X and have denoted it by $B_{1}(X)$. It has been observed that $B_{1}(X)$ is a commutative lattice ordered ring with unity containing the ring $C(X)$ of continuous functions as a subring. The collection of bounded Baire one functions, denoted by $B_{1}^{*}(X)$, is a commutative subring and sublattice of $B_{1}(X)$. Certainly, $B_{1}^{*}(X) \cap C(X)=C^{*}(X)$.
In this paper, we study the ideals, in particular, the maximal ideals of $B_{1}(X)$ (and also of $B_{1}^{*}(X)$). There is a nice interplay between the ideals of $B_{1}(X)$ and a typical family of zero sets (which we call a Z_{B}-filter) of the underlying space X. As a natural consequence of this duality of ideals of $B_{1}(X)$ and Z_{B}-filters on X, we obtain that $B_{1}(X)$ is Gelfand and in general, $B_{1}(X)$ is non-Noetherian.

Introducing the idea of fixed and free ideals in our context, we have characterized the fixed maximal ideals of $B_{1}(X)$ and also those of $B_{1}^{*}(X)$. We have shown that although fixed maximal ideals of the rings $B_{1}(X)$ and $B_{1}^{*}(X)$ obey a natural relationship, the free maximal ideals fail to do so. However, for a perfectly normal T_{1} space X, free maximal ideals of $B_{1}(X)$ are determined by a typical class of Baire one functions.

In the last section of this paper, we have discussed residue class ring of $B_{1}(X)$ modulo an ideal and introduced real and hyper-real maximal ideals in $B_{1}(X)$.

$$
\text { 2. } Z_{B} \text {-FILTERS on } X \text { and Ideals in } B_{1}(X)
$$

Definition 2.1. A nonempty subcollection \mathscr{F} of $Z\left(B_{1}(X)\right)([1])$ is said to be a Z_{B}-filter on X, if it satisfies the following conditions:
(1) $\varnothing \notin \mathscr{F}$
(2) if $Z_{1}, Z_{2} \in \mathscr{F}$, then $Z_{1} \cap Z_{2} \in \mathscr{F}$
(3) if $Z \in \mathscr{F}$ and $Z^{\prime} \in Z\left(B_{1}(X)\right)$ is such that $Z \subseteq Z^{\prime}$, then $Z^{\prime} \in \mathscr{F}$.

Clearly, a Z_{B}-filter \mathscr{F} on X has finite intersection property. Conversely, if a subcollection $\mathscr{B} \subseteq Z\left(B_{1}(X)\right)$ possesses finite intersection property, then \mathscr{B} can be extended to a Z_{B}-filter $\mathscr{F}(\mathscr{B})$ on X, given by $\mathscr{F}(\mathscr{B})=\left\{Z \in Z\left(B_{1}(X)\right)\right.$: there exists a finite subfamily $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ of \mathscr{B} with $\left.Z \supseteq \bigcap_{i=1}^{n} B_{i}\right\}$. Indeed this is the smallest Z_{B}-filter on X containing \mathscr{B}.

Definition 2.2. A Z_{B}-filter \mathscr{U} on X is called a Z_{B}-ultrafilter on X, if there does not exist any Z_{B}-filter \mathscr{F} on X, such that $\mathscr{U} \varsubsetneqq \mathscr{F}$.
Example 2.3. Let $A_{0}=\left\{Z \in Z\left(B_{1}(\mathbb{R})\right): 0 \in Z\right\}$. Then A_{0} is a Z_{B}-ultrafilter on \mathbb{R}.

Applying Zorn's lemma one can show that, every Z_{B}-filter on X can be extended to a Z_{B}-ultrafilter. Therefore, a family \mathscr{B} of $Z\left(B_{1}(X)\right)$ with finite intersection property can be extended to a Z_{B}-ultrafilter on X.

Remark 2.4. A Z_{B}-ultrafilter \mathscr{U} on X is a subfamily of $Z\left(B_{1}(X)\right)$ which is maximal with respect to having finite intersection property. Conversely, if a family \mathscr{B} of $Z\left(B_{1}(X)\right)$ has finite intersection property and maximal with respect to having this property, then \mathscr{B} is a Z_{B}-ultrafilter on X.
In what follow, by an ideal I of $B_{1}(X)$ we always mean a proper ideal.
Theorem 2.5. If I is an ideal in $B_{1}(X)$, then $Z_{B}[I]=\{Z(f): f \in I\}$ is a Z_{B}-filter on X.
Proof. Since I is a proper ideal in $B_{1}(X)$, we claim $\varnothing \notin Z_{B}[I]$. If possible let $\varnothing \in Z_{B}[I]$. So, $\varnothing=Z(f)$, for some $f \in I$. As $f \in I \Longrightarrow f^{2} \in I$ and $Z\left(f^{2}\right)=Z(f)=\varnothing$, hence $\frac{1}{f^{2}} \in B_{1}(X)[1]$. This is a contradiction to the fact that, I is a proper ideal and contains no unit.
Let $Z(f), Z(g) \in Z_{B}[I]$, for some $f, g \in I$. Our claim is $Z(f) \cap Z(g) \in Z_{B}[I]$. $Z(f) \cap Z(g)=Z\left(f^{2}+g^{2}\right) \in Z_{B}[I]$, as I is an ideal and so, $f^{2}+g^{2} \in I$.
Now assume that $Z(f) \in Z_{B}[I]$ and $Z^{\prime} \in Z\left(B_{1}(X)\right)$ is such that $Z(f) \subseteq Z^{\prime}$. Then we can write $Z^{\prime}=Z(h)$, for some $h \in B_{1}(X) . Z(f) \subseteq Z^{\prime} \Longrightarrow Z(h)=$ $Z(h) \cup Z(f)$. So, $Z(h)=Z(h f) \in Z_{B}[I]$, because $h f \in I$. Hence, $Z_{B}[I]$ is a Z_{B}-filter on X.
Theorem 2.6. Let \mathscr{F} be a Z_{B}-filter on X. Then $Z_{B}^{-1}[\mathscr{F}]=\left\{f \in B_{1}(X)\right.$: $Z(f) \in \mathscr{F}\}$ is an ideal in $B_{1}(X)$.
Proof. We note that, $\varnothing \notin \mathscr{F}$. So the constant function $\mathbf{1} \notin Z_{B}^{-1}[\mathscr{F}]$. Hence $Z_{B}^{-1}[\mathscr{F}]$ is a proper subset of $B_{1}(X)$.
Choose $f, g \in Z_{B}^{-1}[\mathscr{F}]$. Then $Z(f), Z(g) \in \mathscr{F}$ and \mathscr{F} being a Z_{B}-filter $Z(f) \cap$ $Z(g) \in \mathscr{F}$. Now $Z(f) \cap Z(g) \subseteq Z(f-g)$. Hence $Z(f-g) \in \mathscr{F}$, \mathscr{F} being a Z_{B}-filter on X. This implies $f-g \in Z_{B}^{-1}[\mathscr{F}]$.
For $f \in Z_{B}^{-1}[\mathscr{F}]$ and $h \in B_{1}(X), Z(f . h)=Z(f) \cup Z(h)$. As $Z(f) \in \mathscr{F}$ and \mathscr{F} is a Z_{B}-filter on X, it follows that $Z(f . h) \in \mathscr{F}$. Hence $f . h \in Z_{B}^{-1}[\mathscr{F}]$.
Thus $Z_{B}^{-1}[\mathscr{F}]$ is an ideal of $B_{1}(X)$.
We may define a map $Z: B_{1}(X) \rightarrow Z\left(B_{1}(X)\right)$ given by $f \mapsto Z(f)$. Certainly, Z is a surjection. In view of the above results, such Z induces a map Z_{B} between the collection of all ideals of $B_{1}(X)$, say \mathscr{I}_{B} and the collection of all Z_{B}-filters on X, say $\mathscr{F}_{B}(X)$, i.e., $Z_{B}: \mathscr{I}_{B} \rightarrow \mathscr{F}_{B}(X)$ given by $Z_{B}(I)=Z_{B}[I], \forall I \in \mathscr{I}_{B}$. The map Z_{B} is also a surjective map because for any $\mathscr{F} \in \mathscr{F}_{B}(X), Z_{B}^{-1}[\mathscr{F}]$ is an ideal in $B_{1}(X)$. We also note that $Z_{B}\left[Z_{B}^{-1}[\mathscr{F}]\right]=\mathscr{F}$. So each Z_{B}-filter on X is the image of some ideal in $B_{1}(X)$ under the map $Z_{B}: \mathscr{I}_{B} \rightarrow \mathscr{F}_{B}(X)$.

Observation. The map $Z_{B}: \mathscr{I}_{B} \rightarrow \mathscr{F}_{B}(X)$ is not injective in general. Because, for any ideal I in $B_{1}(X), Z_{B}^{-1}\left[Z_{B}[I]\right]$ is an ideal in $B_{1}(X)$, such that $I \subseteq Z_{B}^{-1}\left[Z_{B}[I]\right]$ and by our previous result $Z_{B}\left[Z_{B}^{-1}\left[Z_{B}[I]\right]\right]=Z_{B}[I]$. If one gets an ideal J in $B_{1}(X)$ such that $I \subseteq J \subseteq Z_{B}^{-1}\left[Z_{B}[I]\right]$, then we must have $Z_{B}[I]=Z_{B}[J]$. The following example shows that such an ideal is indeed possible to exist. In fact, in the following example, we get countably many ideals I_{n} in $B_{1}(\mathbb{R})$ such that the images of all the ideals are same under the map Z_{B}.

Example 2.7. Let $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as,

$$
f_{0}(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q}, \text { where } p \in \mathbb{Z}, q \in \mathbb{N} \text { and g.c.d. }(p, q)=1 \\ 1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

It is well known that $f_{0} \in B_{1}(\mathbb{R})$ (see [2]). Consider the ideal I in $B_{1}(X)$ generated by f_{0}, i.e., $I=\left\langle f_{0}\right\rangle$. We claim that $f_{0}^{\frac{1}{3}} \notin I$. If possible, let $f_{0}^{\frac{1}{3}} \in I$. Then there exists $g \in B_{1}(\mathbb{R})$, such that $f_{0}^{\frac{1}{3}}=g f_{0}$. When $x=\frac{p}{q}$, where $p \in \mathbb{Z}, q \in \mathbb{N}$ and g.c.d $(p, q)=1, g(x)=q^{\frac{2}{3}}$. We show that such g does not exist in $B_{1}(\mathbb{R})$. Let α be any irrational number in \mathbb{R}. We show that g is not continuous at α, no matter how we define $g(\alpha)$. Suppose $g(\alpha)=\beta$. There exists a sequence of rational numbers $\left\{\frac{p_{m}}{q_{m}}\right\}$, such that $\left\{\frac{p_{m}}{q_{m}}\right\}$ converges to α and $p_{m} \in \mathbb{Z}, q_{m} \in \mathbb{N}$ with g.c.d $\left(p_{m}, q_{m}\right)=1, \forall m \in \mathbb{N}$. If g is continuous at α then $\left\{g\left(\frac{p_{m}}{q_{m}}\right)\right\}$ converges to $g(\alpha)$, which implies that $q_{m}^{\frac{2}{3}}$ converges to β. But $q_{m} \in \mathbb{N}$, so $\left\{q_{m}^{\frac{2}{3}}\right\}$ must be eventually constant. Suppose there exists $n_{0} \in \mathbb{N}$ such that $\forall m \geq n_{0}$, q_{m} is either c or $-c$ or q_{m} oscillates between c and $-c$, for some natural number c, i.e., $\left\{\frac{p_{m}}{c}\right\}$ converges to α or $-\alpha$ or oscillates. In any case, $\left\{\frac{p_{m}}{q_{m}}\right\}$ cannot converges to α. Hence we get a contradiction. So, g is not continuous at any irrational point. It is well known that, if, $f \in B_{1}(X, Y)$, where X is a Baire space, Y is a metric space and $B_{1}(X, Y)$ stands for the collection of all Baire one functions from X to Y then the set of points where f is continuous is dense in X [4]. Therefore, the set of points of \mathbb{R} where g is continuous is dense in \mathbb{R} and is a subset of \mathbb{Q}. Hence it is a countable dense subset of \mathbb{R} (Since \mathbb{R} is a Baire space). But using Baire's category theorem it can be shown that, there exists no function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is continuous precisely on a countable dense subset of \mathbb{R}. So, we arrive at a contradiction and no such g exists. Hence $f_{0}^{\frac{1}{3}} \notin I$.
Observe that, $Z\left(f_{0}\right)=Z\left(f_{0}^{\frac{1}{3}}\right)$ and $I \subseteq Z_{B}^{-1}\left[Z_{B}[I]\right]$. Again, $f_{0}^{\frac{1}{3}} \notin I$ but $f_{0}^{\frac{1}{3}} \in Z_{B}^{-1} Z_{B}[I]$, which implies $I \varsubsetneqq Z_{B}^{-1}\left[Z_{B}[I]\right]$. By an earlier result $Z_{B}[I]=$ $Z_{B}\left[Z_{B}^{-1}\left[Z_{B}[I]\right]\right]$, proving that the map $Z_{B}: \mathscr{I}_{B} \rightarrow \mathscr{F}_{B}(X)$ is not injective when $X=\mathbb{R}$.

Observation: $\left\langle f_{0}\right\rangle \subsetneq\left\langle f_{0}^{\frac{1}{3}}\right\rangle$. Analogously, it can be shown that $\left\langle f_{0}\right\rangle \subsetneq\left\langle f_{0}^{\frac{1}{3}}\right\rangle \subsetneq$ $\left\langle f_{0}^{\frac{1}{5}}\right\rangle \subsetneq \ldots \subsetneq\left\langle f_{0}^{\frac{1}{2 m+1}}\right\rangle \subsetneq \ldots$ is a strictly increasing chain of proper ideals in $B_{1}(\mathbb{R})$. Hence $B_{1}(\mathbb{R})$ is not a Noetherian ring.

Theorem 2.8. If M is a maximal ideal in $B_{1}(X)$ then $Z_{B}[M]$ is a $Z_{B^{-}}$ ultrafilter on X.

Proof. By Theorem 2.5, $Z_{B}[M]$ is a Z_{B}-filter on X. Let \mathscr{F} be a Z_{B}-filter on X such that, $Z_{B}[M] \subseteq \mathscr{F}$. Then $M \subseteq Z_{B}^{-1}\left[Z_{B}[M]\right] \subseteq Z_{B}^{-1}[\mathscr{F}] . \quad Z_{B}^{-1}[\mathscr{F}]$ being a proper ideal and M being a maximal ideal, we have $Z_{B}^{-1}[\mathscr{F}]=M \Longrightarrow$
$Z_{B}[M]=Z_{B}\left[Z_{B}^{-1}[\mathscr{F}]\right]=\mathscr{F}$. Hence every Z_{B}-filter that contains $Z_{B}[M]$ must be equal to $Z_{B}[M]$. This shows $Z_{B}[M]$ is a Z_{B}-ultrafilter on X.
Theorem 2.9. If \mathscr{U} is a Z_{B}-ultrafilter on X then $Z_{B}^{-1}[\mathscr{U}]$ is a maximal ideal in $B_{1}(X)$.
Proof. By Theorem 2.6, we have $Z_{B}^{-1}[\mathscr{U}]$ is a proper ideal in $B_{1}(X)$. Let I be a proper ideal in $B_{1}(X)$ such that $Z_{B}^{-1}[\mathscr{U}] \subseteq I$. It is enough to show that $Z_{B}^{-1}[\mathscr{U}]=I$. Now $Z_{B}^{-1}[\mathscr{U}] \subseteq I \Longrightarrow Z_{B}\left[Z_{B}^{-1}[\mathscr{U}]\right] \subseteq Z_{B}[I] \Longrightarrow \mathscr{U} \subseteq Z_{B}[I]$. Since \mathscr{U} is a Z_{B}-ultrafilter on X, we have $\mathscr{U}=Z_{B}[I] \Longrightarrow Z_{B}^{-1}[\mathscr{U}]=$ $Z_{B}^{-1}\left[Z_{B}[I]\right] \supseteq I$. Hence $Z_{B}^{-1}[\mathscr{U}]=I$

Remark 2.10. Each Z_{B}-ultrafilter on X is the image of a maximal ideal in $B_{1}(X)$ under the map Z_{B}.
Let $\mathcal{M}\left(B_{1}(X)\right)$ be the collection of all maximal ideals in $B_{1}(X)$ and $\Omega_{B}(X)$ be the collection of all Z_{B}-ultrafilters on X. If we restrict the map Z_{B} to the class $\mathcal{M}\left(B_{1}(X)\right)$, then it is clear that the map $\left.Z_{B}\right|_{\mathcal{M}\left(B_{1}(X)\right)}: \mathcal{M}\left(B_{1}(X)\right) \rightarrow \Omega_{B}(X)$ is a surjective map. Further, this restriction map is a bijection, as seen below.

Theorem 2.11. The map $\left.Z_{B}\right|_{\mathcal{M}\left(B_{1}(X)\right)}: \mathcal{M}\left(B_{1}(X)\right) \rightarrow \Omega_{B}(X)$ is a bijection.
Proof. It is enough to check that $\left.Z_{B}\right|_{\mathcal{M}\left(B_{1}(X)\right)}: \mathcal{M}\left(B_{1}(X)\right) \rightarrow \Omega_{B}(X)$ is injective. Let M_{1} and M_{2} be two members in $\mathcal{M}\left(B_{1}(X)\right)$ such that $Z_{B}\left[M_{1}\right]=$ $Z_{B}\left[M_{2}\right] \Longrightarrow Z_{B}^{-1}\left[Z_{B}\left[M_{1}\right]\right]=Z_{B}^{-1}\left[Z_{B}\left[M_{1}\right]\right]$. But $M_{1} \subseteq Z_{B}^{-1}\left[Z_{B}\left[M_{1}\right]\right]$ and $M_{2} \subseteq Z_{B}^{-1}\left[Z_{B}\left[M_{2}\right]\right]$. By maximality of M_{1} and M_{2} we have, $M_{1}=Z_{B}^{-1}\left[Z_{B}\left[M_{1}\right]\right]$ $=Z_{B}^{-1}\left[Z_{B}\left[M_{2}\right]\right]=M_{2}$.
Definition 2.12. An ideal I in $B_{1}(X)$ is called a Z_{B}-ideal if $Z_{B}^{-1}\left[Z_{B}[I]\right]=I$, i.e., $\forall f \in B_{1}(X), f \in I \Longleftrightarrow Z(f) \in Z_{B}[I]$.

Since $Z_{B}\left[Z_{B}^{-1}\left[\mathscr{F}_{B}\right]\right]=\mathscr{F}_{B}, Z_{B}^{-1}\left[\mathscr{F}_{B}\right]$ is a Z_{B}-ideal for any Z_{B}-filter \mathscr{F}_{B} on X. If I is any ideal in $B_{1}(X)$, then, $Z_{B}^{-1}\left[Z_{B}[I]\right]$ is the smallest Z_{B}-ideal containing I. It is easy to observe
(1) Every maximal ideal in $B_{1}(X)$ is a Z_{B} ideal.
(2) The intersection of arbitrary family of Z_{B}-ideals in $B_{1}(X)$ is always a Z_{B}-ideal.
(3) The map $\left.Z_{B}\right|_{\mathscr{J}_{B}}: \mathscr{J}_{B} \rightarrow \mathscr{F}_{B}(X)$ is a bijection, where \mathscr{J}_{B} denotes the collection of all Z_{B}-filters on X.
Example 2.13. Let $I=\left\{f \in B_{1}(\mathbb{R}): f(1)=f(2)=0\right\}$. Then I is a Z_{B} ideal in $B_{1}(\mathbb{R})$ which is not maximal, as $I \subsetneq \widehat{M}_{1}=\left\{f \in B_{1}(\mathbb{R}): f(1)=0\right\}$. The ideal I is not a prime ideal, as the functions $x-1$ and $x-2$ do not belong to I, but their product belongs to I. Also no proper ideal of I is prime. More
generally, for any subset S of $\mathbb{R}, I_{S}=\left\{f \in B_{1}(\mathbb{R}): f(S)=0\right\}$ is a Z_{B}-ideal in $B_{1}(\mathbb{R})$.

It is well known that in a commutative ring R with unity, the intersection of all prime ideals of R containing an ideal I is called the radical of I and it is denoted by \sqrt{I}. For any ideal I, the radical of I is given by $\left\{a \in R: a^{n} \in I\right.$, for some $n \in \mathbb{N}\}([3])$ and in general $I \subseteq \sqrt{I}$. For if $I=\sqrt{I}, I$ is called a radical ideal.

Theorem 2.14. $A Z_{B}$-ideal I in $B_{1}(X)$ is a radical ideal.
Proof. $\sqrt{I}=\left\{f \in B_{1}(X): \exists n \in \mathbb{N}\right.$ such that $\left.f^{n} \in I\right\}=\left\{f \in B_{1}(X)\right.$: such that $Z\left(f^{n}\right) \in Z_{B}[I]$ for some $\left.n \in \mathbb{N}\right\}$ (As I is a Z_{B}-ideal in $\left.B_{1}(X)\right)$ $=\left\{f \in B_{1}(X): Z(f) \in Z_{B}[I]\right\}=\left\{f \in B_{1}(X): f \in I\right\}=I$. So I is a radical ideal in $B_{1}(X)$.

Corollary 2.15. Every Z_{B}-ideal I in $B_{1}(X)$ is the intersection of all prime ideals in $B_{1}(X)$ which contains I.

Next theorem establishes some equivalent conditions on the relationship among Z_{B}-ideals and prime ideals of $B_{1}(X)$.

Theorem 2.16. For a Z_{B}-ideal I in $B_{1}(X)$ the following conditions are equivalent:
(1) I is a prime ideal of $B_{1}(X)$.
(2) I contains a prime ideal of $B_{1}(X)$.
(3) if $f g=0$, then either $f \in I$ or $g \in I$.
(4) Given $f \in B_{1}(X)$ there exists $Z \in Z_{B}[I]$, such that f does not change its sign on Z.
Proof. (1) $\Longrightarrow(2)$ and $(2) \Longrightarrow(3)$ are immediate. $(3) \Longrightarrow(4)$: Let (3) be true. Choose $f \in B_{1}(X)$. Then $(f \vee 0) \cdot(f \wedge 0)=0$. So by $(3), f \vee 0 \in I$ or $f \wedge 0 \in I$. Hence $Z(f \vee 0) \in Z_{B}[I]$ or $Z(f \wedge 0) \in Z_{B}[I]$. It is clear that $f \leq 0$ on $Z(f \wedge 0)$ and $f \geq 0$ on $Z(f \vee 0)$.
$(4) \Longrightarrow(1):$ Let (4) be true. To show that I is prime. Let $g, h \in B_{1}(X)$ be such that $g h \in I$. By (4) there exists $Z \in Z_{B}[I]$, such that $|g|-|h| \geq 0$ on Z (say). It is clear that, $Z \cap Z(g) \subseteq Z(h)$. Consequently $Z \cap Z(g h) \subseteq Z(h)$. Since $Z_{B}[I]$ is a Z_{B}-filter on X, it follows that $Z(h) \in Z_{B}[I]$. So $h \in I$, since I is a Z_{B}-ideal. Hence, I is prime.

Theorem 2.17. In $B_{1}(X)$, every prime ideal P can be extended to a unique maximal ideal.

Proof. If possible let P be contained in two distinct maximal ideals M_{1} and M_{2}. So, $P \subseteq M_{1} \cap M_{2}$. Since maximal ideals in $B_{1}(X)$ are Z_{B}-ideals and intersection of any number of Z_{B}-ideals is Z_{B}-ideal, $M_{1} \cap M_{2}$ is a Z_{B}-ideal containing the prime ideal P. By Theorem $2.16, M_{1} \cap M_{2}$ is a prime ideal. But in a commutative ring with unity, for two ideals I and J, if, $I \nsubseteq J$ and $J \nsubseteq I$,
then $I \cap J$ is not a prime ideal. Thus $M_{1} \cap M_{2}$ is not prime ideal and we get a contradiction. So, every prime ideal can be extended to a unique maximal ideal.

Corollary 2.18. $B_{1}(X)$ is a Gelfand ring for any topological space X.
Definition 2.19. A Z_{B}-filter \mathscr{F}_{B} on X is called a prime Z_{B}-filter on X, if, for any $Z_{1}, Z_{2} \in Z\left(B_{1}(X)\right)$ with $Z_{1} \cup Z_{2} \in \mathscr{F}_{B}$ either $Z_{1} \in \mathscr{F}_{B}$ or $Z_{2} \in \mathscr{F}_{B}$.

The next two theorems are analogous to Theorem 2.12 in [3] and therefore, we state them without proof.

Theorem 2.20. If I is a prime ideal in $B_{1}(X)$, then $Z_{B}[I]=\{Z(f): f \in I\}$ is a prime Z_{B}-filter on X.
Theorem 2.21. If \mathscr{F}_{B} is a prime Z_{B}-filter on X then $Z_{B}^{-1}\left[\mathscr{F}_{B}\right]=\{f \in$ $\left.B_{1}(X): Z(f) \in \mathscr{F}_{B}\right\}$ is a prime ideal in $B_{1}(X)$.
Corollary 2.22. Every prime Z_{B}-filter can be extended to a unique Z_{B}-ultrafilter on X.

Corollary 2.23. $A Z_{B}$-ultrafilter \mathscr{U} on X is a prime Z_{B}-filter on X, as $\mathscr{U}=Z_{B}[M]$, for some maximal ideal M in $B_{1}(X)$.

3. Fixed ideals and free ideals in $B_{1}(X)$

In this section, we introduce fixed and free ideals of $B_{1}(X)$ and $B_{1}^{*}(X)$ and completely characterize the fixed maximal ideals of $B_{1}(X)$ as well as those of $B_{1}^{*}(X)$. It is observed here that a natural relationship exists between fixed maximal ideals of $B_{1}^{*}(X)$ and the fixed maximal ideals of $B_{1}(X)$. However, free maximal ideals do not behave the same. In the last part of this section, we find a class of Baire one functions defined on a perfectly normal T_{1} space X which precisely determines the fixed and free maximal ideals of the corresponding ring.

Definition 3.1. A proper ideal I of $B_{1}(X)$ (respectively, $B_{1}^{*}(X)$) is called fixed if $\bigcap Z[I] \neq \varnothing$. If I is not fixed then it is called free.

For any Tychonoff space X, the fixed maximal ideals of the ring $B_{1}(X)$ and those of $B_{1}^{*}(X)$ are characterized.
Theorem 3.2. $\left\{\widehat{M}_{p}: p \in X\right\}$ is a complete list of fixed maximal ideals in $B_{1}(X)$, where $\widehat{M}_{p}=\left\{f \in B_{1}(X): f(p)=0\right\}$. Moreover, $p \neq q \Longrightarrow \widehat{M}_{p} \neq \widehat{M}_{q}$.
Proof. Choose $p \in X$. The map $\Psi_{p}: B_{1}(X) \rightarrow \mathbb{R}$, defined by $\Psi_{p}(f)=f(p)$ is clearly a ring homomorphism. Since the constant functions are in $B_{1}(X), \Psi_{p}$ is surjective and $\operatorname{ker} \Psi_{p}=\left\{f \in B_{1}(X): \Psi_{p}(f)=0\right\}=\left\{f \in B_{1}(X): f(p)=\right.$ $0\}=\widehat{M}_{p}$ (say).
By First isomorphism theorem of rings we get $B_{1}(X) / \widehat{M}_{p}$ is isomorphic to the field \mathbb{R}. $B_{1}(X) / \widehat{M}_{p}$ being a field we conclude that \widehat{M}_{p} is a maximal ideal in $B_{1}(X)$. Since $p \in \bigcap Z_{B}[M]$, the ideal \widehat{M}_{p} is a fixed ideal.

For any Tychonoff space X, we know that $p \neq q \Longrightarrow M_{p} \neq M_{q}$, where $M_{p}=\{f \in C(X): f(p)=0\}$ is the fixed maximal ideal in $C(X)$. Since $\widehat{M}_{p} \cap C(X)=M_{p}$, it follows that for any Tychonoff space $X, p \neq q \Longrightarrow \widehat{M_{p}} \neq$ $\widehat{M_{q}}$.
Let M be any fixed maximal ideal in $B_{1}(X)$. There exists $p \in X$ such that for all $f \in M, f(p)=0$. Therefore, $M \subseteq \widehat{M_{p}}$. Since M is a maximal ideal and $\widehat{M_{p}}$ is a proper ideal, we get $M=\widehat{M}_{p}$.
Theorem 3.3. $\left\{\widehat{M}_{p}^{*}: p \in X\right\}$ is a complete list of fixed maximal ideals in $B_{1}^{*}(X)$, where $\widehat{M}_{p}^{*}=\left\{f \in B_{1}^{*}(X): f(p)=0\right\}$. Moreover, $p \neq q \Longrightarrow \widehat{M}_{p}^{*} \neq$ \widehat{M}_{q}^{*}.
Proof. Similar to the proof of Theorem 3.2.
The following two theorems show the interrelations between fixed ideals of $B_{1}(X)$ and $B_{1}^{*}(X)$.
Theorem 3.4. If I is any fixed ideal of $B_{1}(X)$ then $I \cap B_{1}^{*}(X)$ is a fixed ideal of $B_{1}^{*}(X)$.
Proof. Straightforward.
Lemma 3.5. Given any $f \in B_{1}(X)$, there exists a positive unit u of $B_{1}(X)$ such that $u f \in B_{1}^{*}(X)$.

Proof. Consider $u=\frac{1}{|f|+1}$. Clearly u is a positive unit in $B_{1}(X)$ [1] and $u f \in B_{1}^{*}(X)$ as $|u f| \leq 1$.

Theorem 3.6. Let an ideal I in $B_{1}(X)$ be such that $I \cap B_{1}^{*}(X)$ is a fixed ideal of $B_{1}^{*}(X)$. Then I is a fixed ideal of $B_{1}(X)$.

Proof. For each $f \in I$, there exists a positive unit u_{f} of $B_{1}(X)$ such that $u_{f} f \in I \cap B_{1}^{*}(X)$. Therefore, $\bigcap_{f \in I} Z(f)=\bigcap_{f \in I} Z\left(u_{f} f\right) \supseteq \bigcap_{g \in B_{1}^{*}(X) \cap I} Z(g) \neq \varnothing$. Hence I is fixed in $B_{1}(X)$.

Since for any discrete space $X, C(X)=B_{1}(X)$ and $C^{*}(X)=B_{1}^{*}(X)$, considering the example 4.7 of [3], we can conclude the following:
(1) For any maximal ideal M of $B_{1}(X), M \cap B_{1}^{*}(X)$ need not be a maximal ideal in $B_{1}^{*}(X)$.
(2) All free maximal ideals in $B_{1}^{*}(X)$ need not be of the form $M \cap B_{1}^{*}(X)$, where M is a maximal ideal in $B_{1}(X)$.

Theorem 3.7. If X is a perfectly normal T_{1} space then for each $p \in X$, $\chi_{p}: X \rightarrow \mathbb{R}$ given by

$$
\chi_{p}(x)= \begin{cases}1 & \text { if } x=p \\ 0 & \text { otherwise }\end{cases}
$$

is a Baire one function.

Proof. For any open set U of \mathbb{R},

$$
\chi_{p}^{-1}(U)= \begin{cases}X & \text { if } 0,1 \in U \\ X \backslash\{p\} & \text { if } 0 \in U \text { but } 1 \notin U \\ \{p\} & \text { if } 0 \notin U \text { but } 1 \in U \\ \varnothing & \text { if } 0 \notin U \text { but } 1 \notin U\end{cases}
$$

Since X is a perfectly normal space, the open set $X \backslash\{p\}$ is a F_{σ} set. Hence in any case χ_{p} pulls back an open set to a F_{σ} set. So χ_{p} is a Baire one function [5].

In view of Theorem 3.7 we obtain the following facts about any perfectly normal T_{1} space.

Observation 3.8. If M is a maximal ideal of $B_{1}(X)$ where X is a perfectly normal T_{1} space then
(1) For each $p \in X$ either $\chi_{p} \in M$ or $\chi_{p}-1 \in M$.

This follows from $\chi_{p}\left(\chi_{p}-1\right)=0 \in M$ and M is prime.
(2) If $\chi_{p}-1 \in M$ then $\chi_{q} \in M$ for all $q \neq p$.

For if $\chi_{q}-1 \in M$ for some $q \neq p$ then $Z\left(\chi_{p}-1\right), Z\left(\chi_{q}-1\right) \in Z_{B}[M]$. This implies $\varnothing=Z\left(\chi_{p}-1\right) \cap Z\left(\chi_{q}-1\right) \in Z_{B}[M]$ which contradicts that $Z_{B}[M]$ is a Z_{B}-ultrafilter.
(3) M is fixed if and only if $\chi_{p}-1 \in M$ for some $p \in X$.

If M is fixed then $M=\widehat{M_{p}}$ for some $p \in X$ and therefore, $\chi_{p}-1 \in M$. Conversely let $\chi_{p}-1 \in M$ for some $p \in X$. Then $\{p\}=Z\left(\chi_{p}-1\right) \in$ $Z_{B}[M]$ shows that M is fixed.
(4) M is free if and only if M contains $\left\{\chi_{p}: p \in X\right\}$.

Follows from Observation (3).
The following theorem ensures the existence of free maximal ideals in $B_{1}(X)$ where X is any infinite perfectly normal T_{1} space.

Theorem 3.9. For a perfectly normal T_{1} space X, the following statements are equivalent:
(1) X is finite.
(2) Every maximal ideal in $B_{1}(X)$ is fixed.
(3) Every ideal in $B_{1}(X)$ is fixed.

Proof. (1) $\Longrightarrow(2)$: Since a finite T_{1} space is discrete, $C(X)=B_{1}(X)=X^{\mathbb{R}}$. X being finite, it is compact and therefore all the maximal ideals of $C(X)$ $\left(=B_{1}(X)\right)$ are fixed.
$(2) \Longrightarrow$ (3): Proof obvious.
$(3) \Longrightarrow(1)$: Suppose X is infinite. We shall show that there exists a free (proper) ideal in $B_{1}(X)$.
Consider $I=\left\{f \in B_{1}(X): \overline{X \backslash Z(f)}\right.$ is finite $\}$ (Here finite includes \varnothing).
Of course $I \neq \varnothing$, as $\mathbf{0} \in I$. Since X is infinite, $\mathbf{1} \notin I$ and so, I is proper. We show that, I is an ideal in $B_{1}(X)$. Let $f, g \in I$. Then $\overline{X \backslash Z(f)}$ and
$\overline{X \backslash Z(g)}$ are both finite. Now $\overline{X \backslash Z(f-g)} \subseteq \overline{X \backslash Z(f)} \cup \overline{X \backslash Z(g)}$ implies that $\overline{X \backslash Z(f-g)}$ is finite. Hence $f-g \in I$. Similarly, $\overline{X \backslash Z(f . g)} \subseteq \overline{X \backslash Z(f)}$ for any $f \in I$ and $g \in B_{1}(X)$. So, $\overline{X \backslash Z(f . g)}$ is finite and hence $f . g \in I$. Therefore, I is an ideal in $B_{1}(X)$. We claim that I is free.
For any $p \in X$, consider $\chi_{p}: X \rightarrow \mathbb{R}$ given by

$$
\chi_{p}(x)= \begin{cases}1 & \text { if } x=p \\ 0 & \text { otherwise }\end{cases}
$$

Using Theorem 3.7, χ_{p} is a Baire one function. Also, $\overline{X \backslash Z\left(\chi_{p}\right)}=\overline{X \backslash(X \backslash\{p\})}=$ $\overline{\{p\}}=\{p\}=$ finite and $\chi_{p}(p) \neq 0$. Hence, I is free.

4. Residue class Ring of $B_{1}(X)$ modulo ideals

An ideal I in a partially ordered ring A is called convex if for all $a, b, c \in A$ with $a \leq b \leq c$ and $c, a \in I \Longrightarrow b \in I$. Equivalently, for all $a, b \in A, 0 \leq a \leq b$ and $b \in I \Longrightarrow a \in I$.
If A is a lattice ordered ring then an ideal I of A is called absolutely convex if for all $a, b \in A,|a| \leq|b|$ and $b \in I \Longrightarrow a \in I$.

Example 4.1. If $t: B_{1}(X) \rightarrow B_{1}(Y)$ is a ring homomorphism, then $\operatorname{ker} t$ is an absolutely convex ideal.
Proof. Let $g \in \operatorname{ker} t$ and $|f| \leq|g|$, where $f \in B_{1}(X) . g \in \operatorname{ker} t \Longrightarrow t(g)=$ $0 \Longrightarrow t(|g|)=|t(g)|=0$. Since any ring homomorphism $t: B_{1}(X) \rightarrow B_{1}(Y)$ preserves the order, $t(|f|)=0 \Longrightarrow|t(f)|=0 \Longrightarrow t(f)=0 \Longrightarrow f \in$ $\operatorname{ker} t$.

Let I be an ideal in $B_{1}(X)$. In what follows we shall denote any member of the quotient ring $B_{1}(X) / I$ by $I(f)$ for $f \in B_{1}(X)$. i.e., $I(f)=f+I$. Now we begin with two well known theorems.

Theorem 4.2 ([3]). Let I be an ideal in a partially ordered ring A. The corresponding quotient ring A / I is a partially ordered ring if and only if I is convex, where the partial order is given by $I(a) \geq 0$ iff $\exists x \in A$ such that $x \geq$ 0 and $a \equiv x(\bmod I)$.

Theorem 4.3 ([3]). On a convex ideal I in a lattice-ordered ring A the following conditions are equivalent.
(1) I is absolutely convex.
(2) $x \in I$ implies $|x| \in I$.
(3) $x, y \in I$ implies $x \vee y \in I$.
(4) $I(a \vee b)=I(a) \vee I(b)$, whence A / I is a lattice ordered ring.
(5) $\forall a \in A, I(a) \geq 0$ iff $I(a)=I(|a|)$.

Remark 4.4. For an absolutely convex ideal I of $A, I(|a|)=I(a \vee-a)=$ $I(a) \vee I(-a)=|I(a)|, \forall a \in A$.
Theorem 4.5. Every Z_{B}-ideal in $B_{1}(X)$ is absolutely convex.

Proof. Suppose I is any Z_{B}-ideal and $|f| \leq|g|$, where $g \in I$ and $f \in B_{1}(X)$. Then $Z(g) \subseteq Z(f)$. Since $g \in I$, it follows that $Z(g) \in Z_{B}[I]$, hence $Z(f) \in$ $Z_{B}[I]$. Now I being a Z_{B}-ideal, $f \in I$.

Corollary 4.6. In particular every maximal ideal in $B_{1}(X)$ is absolutely convex.

Theorem 4.7. For every maximal ideal M in $B_{1}(X)$, the quotient ring $B_{1}(X) / M$ is a lattice ordered field.

Proof. Proof is immediate.
The following theorem is a characterization of the non-negative elements in the lattice ordered ring $B_{1}(X) / I$, where I is a Z_{B}-ideal.

Theorem 4.8. Let I be a Z_{B}-ideal in $B_{1}(X)$. For $f \in B_{1}(X), I(f) \geq 0$ if and only if there exists $Z \in Z_{B}[I]$ such that $f \geq 0$ on Z.

Proof. Let $I(f) \geq 0$. By condition (5) of Theorem 4.3, we write $I(f)=I(|f|)$. So, $f-|f| \in I \Longrightarrow Z(f-|f|) \in Z_{B}[I]$ and $f \geq 0$ on $Z(f-|f|)$. Conversely, let $f \geq 0$ on some $Z \in Z_{B}[I]$. Then $f=|f|$ on $Z \Longrightarrow Z \subseteq$ $Z(f-|f|) \Longrightarrow Z(f-|f|) \in Z_{B}[I] . I$ being a Z_{B}-ideal we get $f-|f| \in I$, which means $I(f)=I(|f|)$. But $|f| \geq 0$ on Z gives $I(|f|) \geq 0$. Hence, $I(f) \geq 0$.

Theorem 4.9. Let I be any Z_{B}-ideal and $f \in B_{1}(X)$. If there exists $Z \in Z_{B}[I]$ such that $f(x)>0$, for all $x \in Z$, then $I(f)>0$.

Proof. By Theorem 4.8, $I(f) \geq 0$. But $Z \cap Z(f)=\varnothing$ and $Z \in Z_{B}[I] \Longrightarrow$ $Z(f) \notin Z_{B}[I] \Longrightarrow f \notin I \Longrightarrow I(f) \neq 0 \Longrightarrow I(f)>0$.

The next theorem shows that the converse of the above theorem holds if the ideal is a maximal ideal in $B_{1}(X)$.

Theorem 4.10. Let M be any maximal ideal in $B_{1}(X)$ and $M(f)>0$ for some $f \in B_{1}(X)$ then there exists $Z \in Z_{B}[M]$ such that $f>0$ on Z.

Proof. By Theorem 4.8, there exists $Z_{1} \in Z_{B}[M]$ such that $f \geq 0$ on Z_{1}. Now $M(f)>0 \Longrightarrow f \notin M$ which implies that there exists $g \in M$, such that $Z(f) \cap Z(g)=\varnothing$. Choosing $Z=Z_{1} \cap Z(g)$, we observe $Z \in Z_{B}[M]$ and $f(x)>0$, for all $x \in Z$.

Corollary 4.11. For a maximal ideal M of $B_{1}(X)$ and for some $f \in B_{1}(X)$, $M(f)>0$ if and only if there exists $Z \in Z_{B}[M]$ such that $f(x)>0$ on Z.

Now we show Theorem 4.10 doesn't hold for every non-maximal ideal I.
Theorem 4.12. Suppose I is any non-maximal Z_{B}-ideal in $B_{1}(X)$. There exists $f \in B_{1}(X)$ such that $I(f)>0$ but f is not strictly positive on any $Z \in Z_{B}[I]$.

Proof. Since I is non-maximal, there exists a proper ideal J of $B_{1}(X)$ such that $I \varsubsetneqq J$. Choose $f \in J \backslash I . f^{2} \notin I \Longrightarrow I\left(f^{2}\right)>0$. Choose any $Z \in Z_{B}[I]$. Certainly, $Z \in Z_{B}[J]$ and so, $Z \cap Z\left(f^{2}\right) \in Z_{B}[J] \Longrightarrow Z \cap Z\left(f^{2}\right) \neq \varnothing$. So f is not strictly positive on the whole of Z.

In what follows, we characterize the ideals I in $B_{1}(X)$ for which $B_{1}(X) / I$ is a totally ordered ring.

Theorem 4.13. Let I be a Z_{B}-ideal in $B_{1}(X)$, then the lattice ordered ring $B_{1}(X) / I$ is totally ordered ring if and only if I is a prime ideal.

Proof. $B_{1}(X) / I$ is a totally ordered ring if and only if for any $f \in B_{1}(X)$, $I(f) \geq 0$ or $I(-f) \leq 0$ if and only if for all $f \in B_{1}(X)$, there exists $Z \in Z_{B}[I]$ such that f does not change its sign on Z if and only if I is a prime ideal (by Theorem 2.16).

Corollary 4.14. For every maximal ideal M in $B_{1}(X), B_{1}(X) / M$ is a totally ordered field.

Theorem 4.15. Let M be a maximal ideal in $B_{1}(X)$. The function $\Phi: \mathbb{R} \rightarrow$ $B_{1}(X) / M$ (respectively, $\left.\Phi: \mathbb{R} \rightarrow B_{1}^{*}(X) / M\right)$ defined by $\Phi(r)=M(\mathbf{r})$, for all $r \in \mathbb{R}$, where \mathbf{r} denotes the constant function with value r, is an order preserving monomorphism.

Proof. It is clear from the definitions of addition and multiplication of the residue class ring $B_{1}(X) / M$ that the function is a homomorphism.
To show ϕ is injective. Let $M(\mathbf{r})=M(\mathbf{s})$ for some $r, s \in \mathbb{R}$ with $r \neq s$. Then $\mathbf{r}-\mathbf{s} \in M$. This contradicts to the fact that M is a proper ideal. Hence $M(\mathbf{r}) \neq M(\mathbf{s})$, when $r \neq s$.
Let $r, s \in \mathbb{R}$ with $r>s$. Then $r-s>0$. The function $\mathbf{r}-\mathbf{s}$ is strictly positive on X. Since $X \in Z\left(B_{1}(X)\right)$, by Theorem $4.9, M(\mathbf{r}-\mathbf{s})>0 \Longrightarrow M(\mathbf{r})>$ $M(\mathbf{s}) \Longrightarrow \Phi(r)>\Phi(s)$. Thus Φ is an order preserving monomorphism.

For a maximal ideal M in $B_{1}(X)$, the residue class field $B_{1}(X) / M$ (respectively $\left.B_{1}^{*}(X) / M\right)$ can be considered as an extension of the field \mathbb{R}.

Definition 4.16. The maximal ideal M of $B_{1}(X)$ (respectively, $B_{1}^{*}(X)$) is called real if $\Phi(\mathbb{R})=B_{1}(X) / M$ (respectively, $\left.\Phi(\mathbb{R})=B_{1}^{*}(X) / M\right)$ and in such case $B_{1}(X) / M$ is called real residue class field. If M is not real then it is called hyper-real and $B_{1}(X) / M$ is called hyper-real residue class field.

Definition 4.17 ([3]). A totally ordered field F is called archimedean if given $\alpha \in F$, there exists $n \in \mathbb{N}$ such that $n>\alpha$. If F is not archimedean then it is called non-archimedean.

If F is a non-archimedean ordered field then there exists some $\alpha \in F$ such that $\alpha>n$, for all $n \in \mathbb{N}$. Such an α is called an infinitely large element of F and $\frac{1}{\alpha}$ is called infinitely small element of F which is characterized by the relation $0<\frac{1}{\alpha}<\frac{1}{n}, \forall n \in \mathbb{N}$. The existence of an infinitely large (equivalently, infinitely small) element in F assures that F is non-archimedean.

In the context of archimedean field, the following is an important theorem available in the literature.

Theorem 4.18 ([3]). A totally ordered field is archimedean iff it is isomorphic to a subfield of the ordered field \mathbb{R}.
We thus get that the real residue class field $B_{1}(X) / M$ is archimedean if M is a real maximal ideal of $B_{1}(X)$.

Theorem 4.19. Every hyper-real residue class field $B_{1}(X) / M$ is non-archimedean.
Proof. Proof follows from the fact that the identity is the only non-zero homomorphism on the ring \mathbb{R} into itself.

Corollary 4.20. A maximal ideal M of $B_{1}(X)$ is hyper-real if and only if there exists $f \in B_{1}(X)$ such that $M(f)$ is an infinitely large member of $B_{1}(X) / M$.

Theorem 4.21. Each maximal ideal M in $B_{1}^{*}(X)$ is real.
Proof. It is equivalent to show that $B_{1}^{*}(X) / M$ is archimedean. Choose $f \in$ $B_{1}^{*}(X)$. Then $|f(x)| \leq n$, for all $x \in X$ and for some $n \in \mathbb{N}$. i.e., $|M(f)|=$ $M(|f|) \leq M(\mathbf{n})$. So there does not exist any infinitely large member in $B_{1}^{*}(X) / M$ and hence $B_{1}^{*}(X) / M$ is archimedean.

Corollary 4.22. If X is a topological space such that $B_{1}(X)=B_{1}^{*}(X)$ then each maximal ideal in $B_{1}(X)$ is real.
The following theorem shows how an unbounded Baire one function f on X is related to an infinitely large member of the residue class field $B_{1}(X) / M$.
Theorem 4.23. Given a maximal ideal M of $B_{1}(X)$ and $f \in B_{1}(X)$, the following statements are equivalent:
(1) $|M(f)|$ is infinitely large member in $B_{1}(X) / M$.
(2) f is unbounded on each zero set in $Z_{B}[M]$.
(3) for all $n \in \mathbb{N}, Z_{n}=\{x \in X:|f(x)| \geq n\} \in Z_{B}[M]$.

Proof. (1) $\Longleftrightarrow(2):|M(f)|$ is not infinitely large in $B_{1}(X) / M$ if and only if $\exists n \in \mathbb{N}$ such that, $|M(f)|=M(|f|) \leq M(\mathbf{n})$ if and only if $|f| \leq \mathbf{n}$ on some $Z \in Z_{B}[M]$ if and only if f is bounded on some $Z \in Z_{B}[M]$.
$(2) \Longrightarrow(3):$ Choose $n \in \mathbb{N}$, we shall show that $Z_{n} \in Z_{B}[M]$. By (2), Z_{n} intersects each member in $Z_{B}[M]$. Now $Z_{B}[M]$ being a Z_{B}-ultrafilter, $Z_{n} \in Z_{B}[M]$.
$(3) \Longrightarrow(2):$ Let each $Z_{n} \in Z_{B}[M]$, for all $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, $|f| \geq n$ on some zero set in $Z_{B}[M]$. Hence $|M(f)|=M(|f|) \geq M(\mathbf{n})$, for all $n \in \mathbb{N}$. That means $|M(f)|$ is infinitely large member in $B_{1}(X) / M$.

Theorem 4.24. $f \in B_{1}(X)$ is unbounded on X if and only if there exists a maximal ideal M in $B_{1}(X)$ such that $M(f)$ is infinitely large in $B_{1}(X) / M$.
Proof. Let f be unbounded on X. So, each Z_{n} in Theorem 4.23 is non-empty. We observe that $\left\{Z_{n}: n \in \mathbb{N}\right\}$ is a subcollection of $Z\left(B_{1}(X)\right)$ having finite
intersection property. So there exists a Z_{B}-ultrafilter \mathscr{U} on X such that $\left\{Z_{n}\right.$: $n \in \mathbb{N}\} \subseteq \mathscr{U}$. Therefore, there is a maximal ideal M in $B_{1}(X)$ for which $\mathscr{U}=Z_{B}[M]$ and so, $Z_{n} \in Z_{B}[M]$, for all $n \in \mathbb{N}$. By Theorem $4.23 M(f)$ is infinitely large.
Converse part is a consequence of $(1) \Longrightarrow(2)$ of Theorem 4.23 .
Corollary 4.25. If a completely Hausdorff space X is not totally disconnected then there exists a hyper-real maximal ideal M in $B_{1}(X)$.

Proof. It is enough to prove that there exists an unbounded Baire one function in $B_{1}(X)$. We know that if a completely Hausdorff space is not totally disconnected, then there always exists an unbounded Baire one function [1].

In the next theorem we characterize the real maximal ideals of $B_{1}(X)$.
Theorem 4.26. For the maximal ideal M of $B_{1}(X)$ the following statements are equivalent:
(1) M is a real maximal ideal.
(2) $Z_{B}[M]$ is closed under countable intersection.
(3) $Z_{B}[M]$ has countable intersection property.

Proof. (1) $\Longrightarrow(2)$: Assume that (2) is false, i.e., there exists a sequence of functions $\left\{f_{n}\right\}$ in M for which $\bigcap_{n=1}^{\infty} Z\left(f_{n}\right) \notin Z_{B}[M]$. Set $f(x)=\sum_{n=1}^{\infty}\left(\left|f_{n}(x)\right| \wedge\right.$ $\left.\frac{1}{4^{n}}\right), \forall x \in X$. It is clear that, the function f defined on X is actually a Baire one function ([1]) and $Z(f)=\bigcap_{n=1}^{\infty} Z\left(f_{n}\right)$. Thus, $Z(f) \notin Z_{B}[M]$. Hence $f \notin M \Longrightarrow M(f)>0$ in $B_{1}(X) / M$.
Fix a natural number m. Then $Z\left(f_{1}\right) \bigcap Z\left(f_{2}\right) \bigcap Z\left(f_{3}\right) \ldots \bigcap Z\left(f_{m}\right)=Z$ (say) $\in Z_{B}[M]$. Now for any point $x \in Z, f(x)=\sum_{n=m+1}^{\infty}\left(\left|f_{n}(x)\right| \wedge \frac{1}{4^{n}}\right) \leq \sum_{n=m+1}^{\infty} \frac{1}{4^{n}}=$ $3^{-1} 4^{-m}$. This shows that, $0<M(f) \leq M\left(3^{-1} 4^{-m}\right), \forall m \in \mathbb{N}$. Hence $M(f)$ is an infinitely small member in $B_{1}(X) / M$. So, M becomes a hyper-real maximal ideal and then (1) is false.
$(2) \Longrightarrow(3)$: Trivial, as $\varnothing \notin Z_{B}[M]$.
$(3) \Longrightarrow(1)$: Assume that (1) is false, i.e. M is hyper-real. So, there exists $f \in B_{1}(X)$ so that $|M(f)|$ is infinitely large in $B_{1}(X) / M$. Therefore for each $n \in \mathbb{N}, Z_{n}$ defined in Theorem 4.23 , belongs to $Z_{B}[M]$. Since \mathbb{R} is archimedean, we have $\bigcap_{n=1}^{\infty} Z_{n}=\varnothing$. Thus (3) is false.

So far we have seen that for any topological space X, all fixed maximal ideals of $B_{1}(X)$ are real. Though the converse is not assured in general, we show in the next example that in $B_{1}(\mathbb{R})$ a maximal ideal is real if and only if it is fixed.

Example 4.27. Suppose M is any real maximal ideal in $B_{1}(\mathbb{R})$. We claim that M is fixed. The identity $i: \mathbb{R} \rightarrow \mathbb{R}$ belongs to $B_{1}(\mathbb{R})$. Since M is a real maximal ideal, there exists a real number r such that $M(i)=M(\mathbf{r})$. This
implies $i-\mathbf{r} \in M$. Hence $Z(i-\mathbf{r}) \in Z_{B}[M]$. But $Z(i-\mathbf{r})$ is a singleton. So, $Z_{B}[M]$ is fixed, i.e., M is fixed.
In view of Observation 3.8(3), we conclude that a maximal ideal M in $B_{1}(\mathbb{R})$ is real if and only if there exists a unique $p \in \mathbb{R}$ such that $\chi_{p}-1 \in M$.

If X is a P -space then $C(X)$ possesses real free maximal ideals. In such case however, $B_{1}(X)=C(X)$. Consequently, $B_{1}(X)$ possesses real free maximal ideals, when X is a P -space. It is still a natural question, what are the topological spaces X for which $B_{1}(X)(\supseteq C(X))$ contains a free real maximal ideal?

References

[1] A. Deb Ray and A. Mondal, On rings of Baire one functions, Applied Gen. Topol. 20, no. 1 (2019), 237-249.
[2] J. P. Fenecios and E. A. Cabral, On some properties of Baire-1 functions, Int. Journal of Math. Analysis 7, no. 8 (2013), 393-402.
[3] L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand Reinhold Co., 1960.
[4] J. R. Munkres, Topology, Second edition, Pearson Education, Delhi, 2003.
[5] L. Vesely, Characterization of Baire-one functions between topological spaces, Acta Universitatis Carolinae. Mathematica et Physica 33, no. 2 (1992), 143-156.

