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Abstract Some aspects in the interpretation of the resonances provided by the theory of characteristic
modes for dielectric bodies are analyzed. The analysis has been performed analytically based on the
Poggio-Miller-Chang-Harrington-Wu-Tsai formulation on a canonical problem, the infinite dielectric circular
cylinder. First, natural resonances and characteristic mode resonances are presented and compared. It has
been observed that characteristic mode resonances are in general near to internal natural resonances but
not to external ones. It is also demonstrated that characteristic resonances become closer to internal natural
ones as the relative permittivity of the dielectric cylinder is increased.

1. Introduction

Natural resonances (NRs) on dielectric bodies have been extensively studied in the past. Some of the main
geometries studied are the infinite circular cylinder and the sphere. The infinite circular cylinder was first stud-
ied by Rayleigh (1918) and the sphere by Mie (1908). After these two works, many works have been carried
out to understand physically the behavior of the electromagnetic fields inside and outside of them. Linked to
this, many of these works treated the resonance problem of natural modes that can be excited by a source.

For example, with regard to the infinite dielectric circular cylinder, in Van Bladel (1977), resonant modes, field
patterns, resonant frequencies, and quality factors of the modes were determined. In Dettmann et al. (2009)
internal and external resonant modes for both TMz and TEz polarizations were analyzed providing a mathe-
matical procedure for singling out internal and external NRs without resorting to a priori visualization of the
electromagnetic field of the mode. Even if simple, the analysis of an infinite dielectric circular cylinder may be
of practical use in problems such as the estimate of cylinder radius for optical-communications fibers through
its transverse resonances (Kotlyar et al., 2016; Owen et al., 1981, among others).

Concerning the dielectric sphere, in Conwell et al. (1984) natural resonant frequencies and poles associated
with the electromagnetic modes were analyzed. In C.-C. Chen (1998), internal and external NRs were exhaus-
tively studied via the Mie series, and in Lee et al. (2013), the Cauchy method was applied to extract the NRs of
dielectric spheres considering different parameters such as permittivity and conductivity.

The knowledge of these two canonical geometries has been very important, not only for its own sake but also
for the insight it provides for other more general geometries. That is why new methods have been developed
to extract NRs from arbitrary structures, such as the Cauchy method mentioned above. Other methods are the
singularity expansion method (Baum, 2012) and the Prony’s method, among others. An alternative approach,
similar to singularity expansion method, would be to determine the NRs by searching the complex frequency
plane for the zeros of the determinant of the method of moments matrix, (Glisson et al., 1983; Kishk et al.,
1993). All the methods mentioned provide the same set of resonances.

Unlike this type of resonances, another method is becoming very popular to find other type of modes and
resonances. This method is known as Characteristic Mode Analysis (CMA). When compared to NRs, whose
resonances are generally complex, the resonances provided by CMA are all real. CMA was first proposed
by Garbacz (1968) and reformulated by Harrington, Mautz, and Chang, establishing a more direct method
to obtain Garbacz’s modal expansion (Chang & Harrington, 1977; Harrington & Mautz, 1971; Harrington
et al., 1972). They considered integro-differential formulations using the impedance matrix of the method
of moments. Although many design-related works have been published since then, particularly devoted
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to antennas and scatterers, there are still theoretical aspects that are unknown and need to be clarified to
provide a correct interpretation of the characteristic mode solutions. In order to interpret these solutions,
it is interesting to use NRs as a reference, since NRs are unique, regardless of the method considered to
obtain them and the integral formulation approach used (Larison, 1989). It is worth mentioning Sarkar et al.
(2016), where some insightful discussions about characteristic mode resonances (CMRs) and NRs for con-
ducting bodies led to greater clarity on this subject. However, with regard to dielectric bodies, there are still
many issues to be clarified because the formulation derived in Chang and Harrington (1974), if hastily inter-
preted, may lead to these misunderstandings. In Alroughani (2013) it is concluded that NRs and CMRs are
very close to each other. Moreover, they found some spurious modes called nonphysical modes. On the other
hand, in Bernabeu-Jiménez et al. (2015) it is concluded that NRs and CMRs are, in fact, very different. This
leads to opposite views. To explicitly determine CMRs on dielectric bodies, Y. Chen and Wang (2015, 2014)
proposed an alternative generalized eigenvalue equation involving only the equivalent electric current on
the surface. Starting from the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) operator, they obtained a
modified matrix operator to form a new generalized eigenvalue equation from which CMs were calculated
for dielectric bodies. Furthermore, in Hu and Wang (2016), five integral equation formulations were compared
for CMA of dielectric resonators and concluded that PMCHWT cannot fully predict resonant frequency of
dielectric resonators.

In this paper, the conclusions drawn by Alroughani (2013) and Bernabeu-Jiménez et al. (2015) will be discussed
and linked throughout the paper. In addition, some aspects in the interpretation of the resonances provided
by CMA are analyzed. This has been done using the analytical solution of the PMCHWT integro-differential
operator for the infinite dielectric circular cylinder. First, NRs and CMRs are presented and compared. Second,
it is demonstrated that the resonant frequencies of the CMRs are only close to the resonant frequencies of
the internal NRs and do not provide information at all about the external ones. Finally, it is shown that the
resonant frequencies of the CMRs become closer to the resonant frequencies of the internal NRs as the relative
permittivity of the dielectric cylinder is increased. Furthermore, it is also found that, for a given permittivity,
each natural mode observed provides a different error between the CMRs and the NRs.

2. Brief Introduction to the PMCHWT Formulation and Its NRs and CMRs

Consider a dielectric body illuminated by an incident electric and magnetic field, Einc and Hinc, respectively.
These incident fields induce electric and magnetic equivalent surface currents J and M flowing on the dielec-
tric surface that radiates the scattered fields Es and Hs. After imposing the boundary conditions for the
tangential field on the dielectric surface, the problem to be solved can be written from a functional viewpoint
defined by the PMCHWT formulation as

[
Le −C
C Lm

] [
J

M

]
tan

=
[

Einc

Hinc

]
tan

, (1)

where Le, Lm, and C are integro-differential operators defined in Chang and Harrington (1974). Equation (1)
can be also expressed as follows:

T(f) = ginc, (2)

where the subscript “tan” have been dropped for brevity. Moreover,

T =
[

Le −C
C Lm

]
; f =

[
J

M

]
; ginc =

[
Einc

Hinc

]
, (3)

being T the operator tangent to the surface of the object, f the current vector, and ginc the incident field vector.

The resonance problem considered as NR problem is formulated in (4), where no excitation is applied, that
is, ginc = 0. Equation (4) defines the natural frequencies and natural modes of the target involved in the
scattering process for dielectric bodies:

T(f(𝜔)) = 0. (4)

This means that one seeks for the nontrivial solutions of (4), which requires to find the solutions in which
T is a singular operator. This generally occurs at an infinite number of discrete complex frequencies, known
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as natural frequencies, 𝜔 = 𝜔′ + j𝜔′′, where 𝜔′ provides the natural resonant frequency of a given natural
mode and 𝜔′′ its damping factor. The damping factor is linked to the radiating properties of a given mode
(C.-C. Chen, 1998).

To find the singularities of the T operator, one can seek for the zeros of the eigenvalues of the standard
eigenvalue problem (5), 𝜈n = 0 or, equivalently, to solve for det(T) = 0, being T a matrix operator, since
det(T) =

∏
n 𝜈n.

Tfn(𝜔) = 𝜈nfn(𝜔). (5)

In (5), fn is the natural basis or the natural modes for the PMCHWT formulation. It is important to note that
both fn and 𝜈n are complex valued.

On the other hand, the resonance problem considered as CMR problem is formulated in (7). But we must first
consider a symmetrization of the T operator presented in (6), renamed as T ′ and the changes produced in f
and g as it is expressed below:

T ′ =
[

Le −jC
−jC Lm

]
; f′ =

[
J

jM

]
; g′inc =

[
Einc

jHinc

]
. (6)

These changes were first proposed by Chang and Harrington (1974). And they were considered because in
the generalized eigenvalue problem governing the theory of characteristic modes (7), T ′

2 and T ′
1 have to be

Hermitian operators to obtain both eigenvalues 𝜆n and eigenvectors f′n real valued. Here is the importance
of theory of characteristic modes solutions.

[T ′
2][f′n] = 𝜆n[T ′

1][f′n] (7)

In equation (7) T ′
2 and T ′

1 are the imaginary and the real parts of the symmetrized PMCHWT operator (T ′ = T ′
1+

jT ′
2), respectively. f′n are the characteristic currents, and 𝜆n are their corresponding characteristic eigenvalues.

In the following, we will ignore the primed variables, and we will calculate the NRs from the determinant of
the symmetric operator T ′, since to make the determinant of the symmetric operator T ′ (6), or by using the
antisymmetric operator T (3), the same result is obtained. Thus, we will recall T ′ as T .

3. Infinite Dielectric Circular Cylinder

In this section, NRs and CMRs are compared through the PMCHWT formulation. Since we are dealing with
an infinite circular cylinder, the PMCHWT operator can be written in its closed form for both the TMz and
the TEz polarizations. Inasmuch as the scope of this paper is to show the differences between both types of
resonances, the calculation procedure of these operators is not included here. Chang and Harrington (1974)
was followed to derive these analytical operators.

Equations (8) and (9) represent the analytical TMz
n and TEz

n PMCHWT matrix operators, where a is the cylinder
radius, H(2)

n (x) are the Hankel functions of the second kind, Jn(x) the Bessel functions of the first kind, n the
azimuthal mode order, kj the wave number, and the pairs

(
𝜖j, 𝜇j

)
are the permittivity and the permeability,

respectively. The primes on the Bessel and Hankel functions denote differentiation with respect to the entire
argument. The subscripts j = 1 or j = 2 stands for outer and inner media, respectively.

T TMz

n =(𝜋a)2

[
𝜔(𝜇2Jn

(
k2a

)
H(2)

n

(
k2a

)
+𝜇1Jn

(
k1a

)
H(2)

n

(
k1a

)
) (k2Jn′

(
k2a

)
H(2)

n

(
k2a

)
+k1Jn

(
k1a

)
H(2)

n′
(

k1a
)
)

(k2Jn′
(

k2a
)

H(2)
n

(
k2a

)
+k1Jn

(
k1a

)
H(2)

n′
(

k1a
)
) 𝜔(𝜖2Jn′

(
k2a

)
H(2)

n′
(

k2a
)
+𝜖1Jn′

(
k1a

)
H(2)

n′
(

k1a
)
)

]

(8)

T TEz

n =(𝜋a)2

[
𝜔(𝜇2Jn′

(
k2a

)
H(2)

n′
(

k2a
)
+𝜇1Jn′

(
k1a

)
H(2)

n′
(

k1a
)
) (k2Jn′

(
k2a

)
H(2)

n

(
k2a

)
+k1Jn

(
k1a

)
H(2)

n′
(

k1a
)
)

(k2Jn′
(

k2a
)

H(2)
n

(
k2a

)
+k1Jn

(
k1a

)
H(2)

n′
(

k1a
)
) 𝜔(𝜖2Jn

(
k2a

)
H(2)

n

(
k2a

)
+𝜖1Jn

(
k1a

)
H(2)

n

(
k1a

)
).

]

(9)

3.1. Natural Resonances
As previously introduced, NRs are extracted from the zeros of the determinant of the PMCHWT matrix operator
(Glisson et al., 1983). Thus, concerning the infinite dielectric circular cylinder, the determinant of the operators
(8) and (9) have to be equal to 0 to find its corresponding NRs. The cylinder under study is 𝜖r2

= 9 and 𝜇r2
= 1,
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Figure 1. Natural resonances (NRs) obtained from the Poggio-Miller-Chang-
Harrington-Wu-Tsai operators (8) and (9) and NRs obtained from the scattering
coefficient of the harmonic series solution (16) and (17). Both procedures give
the same results and therefore coincide each other in the graph. Thus, without
making any difference between them, only NRs for the TM and TE modes have
been plotted. Placement of dividing vertical line at Im(k2a) = 0.75 is arbitrary,
with the only purpose of indicing where the internal/external NRs are located.
Internal NRs are located to the left of the line, and external NRs to the right.
The relative permittivity of the cylinder is 𝜖2 = 9, and the outer media is
considered vacuum.

and the surrounding media is considered to be vacuum. Substituting
this values in (8) and (9), we can find some of the first natural reso-
nances of the TEz

n and TMz
n modes for n = 0, 1, 2, 3. These resonances

are shown in Figure 1.

In order to determine the zeros of det(Tn(k2a)), a standard zero-finding
routine is used as in Glisson et al. (1983).

These NRs are located in the k2a complex plane as done in C.-C.
Chen (1998) for the dielectric sphere. k2a = 𝜔

√
𝜖2𝜇2, 𝜖2 and 𝜇2 are

the wave number, permittivity, and permeability of the inner media.
The subscript “2” designates the inner media. In Figure 1 TMz

n and TEz
n

modes are marked with “+” and “∘,” respectively. The real part of the NRs
provides the resonant frequency and the imaginary part the damping
factor. The damping factor provides information on how a given mode
is leaking.

Considering the conclusions presented in C.-C. Chen (1998), the same
can be concluded here: the NRs can be separated into internal and
external. The internal NRs are caused by the internal waves that experi-
ence multiple internal reflections, whereas the external NRs are caused
by creeping waves. These creeping waves propagate along the surface
with attenuation due to the continuous radiation in tangent direction.
In Figure 1, the internal NRs are on the left-hand side of a vertical line,
and the external NRs are located on the right-hand side, both indicated
by arrows. The vertical line only serves to divide the graph between
the internal and the external NRs, helping the graph understanding.
In order to differentiate between internal and external NRs, one can use
the formulas given by Dettmann et al. (2009), where a complete anal-

ysis for an infinite dielectric circular cylinder is shown to clearly distinguish between internal and external
modes for both TMz and TEz polarizations. For the TMz polarization, the internal and external NRs can be found
using the limits (10)–(12) and (13), respectively:

lim
𝜖r2

→∞
[k2a]n,m = jn−1,m ⇒ n ≠ 0 (10)

lim
𝜖r2

→∞
[k2a]0,m = j1,m−1 ⇒ m ≠ 1 (11)

lim
𝜖r2

→∞
[k2a]0,1 = 0 (12)

lim
𝜖r2

→∞
[k1a]n,m = hn,m. (13)

Regarding the TEz polarization, the internal and external NRs can be found using equations (14) and (15),
respectively.

lim
𝜖r2

→∞
[k2a]n,m = jn,m (14)

lim
𝜖r2

→∞
[k1a]n,m = h′

n,m, (15)

where the subscripts n and m define the mth resonance of the nth-order Bessel and Hankel functions. These
equations provide the difference between internal and external NRs. When the relative permittivity tends to
infinity, internal NRs, which start being complex valued, become real in the limit according to the correspond-
ing definition. On the contrary, external NRs remain complex valued. This allows one to distinguish between
internal and external NRs.
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Figure 2. Comparison between analytic and numerical characteristic eigenvalues for the infinite dielectric circular
cylinder. The relative permittivity of the cylinder is 𝜖r2

= 9, and the outer media is
considered vacuum.

To verify the correctness of equations (8) and (9), a comparison between the scattering coefficient poles of the
harmonic series solution (16) and (17) is performed in Figure 1. In Figure 1, NRs obtained from both procedures
coincide each other.

TMz → 𝜂2Jn(k2a)H(2)
n′

(
k1a

)
− 𝜂1Jn′(k2a)H(2)

n

(
k1a

)
= 0 (16)

TEz → 𝜂2Jn′(k2a)H(2)
n

(
k1a

)
− 𝜂1Jn(k2a)H(2)

n′
(

k1a
)
= 0. (17)

3.2. Characteristic Mode Resonances
CMRs are obtained from the following generalized eigenvalue problem (7). By definition, the eigencurrents
and the eigenvalues are both real, and CMRs are obtained from the eigenvalues 𝜆n. When 𝜆n = ±∞ (asymp-
totic behavior) or 𝜆n = 0 means that at those frequencies there is a suspected internal or external CMRs,
respectively. As in the case of NRs, CMRs are also classified in two types, internal and external. Nevertheless,
as we will see in the next subsection, they are different from NRs.

Concerning the infinite dielectric cylinder, characteristic eigenvalues can be found substituting equations (8)
and (9) in (7). Let us consider the same example as for the previous section: a nonmagnetic homogeneous
cylinder with 𝜖r2

= 9. The characteristic eigenvalues obtained are shown in Figure 2, in which the analytical
eigenvalues are validated by comparing them with those obtained numerically by an in-house code inter-
faced with (FEKO Suite 7.0). Notice that a one-dimensional periodic boundary condition and the surface
equivalence principle were used to simulate the infinite cylinder with FEKO.

Figure 2 shows an excellent agreement between the numerical and the analytical solutions. Furthermore,
as shown in Figure 2, two eigenvalues are obtained per each mode, as it must be, given that the PMCHWT
operator is a 2-by-2 linear integro-differential operator. In Figure 2, the eigenvalues with superscripts 1 and
2 are referred to as the physical and the nonphysical characteristic eigenvalues, respectively. This notation
was adopted after the publication (Alroughani, 2013), where a more detailed explanation about nonphysical
characteristic modes can be seen.

In addition, each eigenvalue has its associated subscript indicating the polarization type and the order of
the cylindrical harmonic solution, that is, TMz

n, TEz
n. It is interesting to note that eigenvalues corresponding

to the TEz
0 and the TMz

1 coincide with each other. Now turning to the nonphysical modes, this term was first
introduced by Alroughani et al. (2014), since they found that certain types of eigenvalue solutions provided

Table 1
NRs for the First and Second Modes (m = 1, 2), Poles (n = 0, 1, 2), for the Infinite Dielectric
Circular Cylinder Graphed in Figure1

k2a NRs m = 1 NRs m = 2

n TMz
n,1 TEz

n,1 TMz
n,2 TEz

n,2

0 0.85 + j0.43 2.27 + j0.25 3.95 + j0.36 5.44 + j0.33

1 2.27 + j0.25 3.65 + j0.33 5.45 + j0.32 6.93 + j0.35

2 3.64 + j0.12 4.78 + j0.23 6.84 + j0.25 8.27 + j0.42
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Table 2
External Characteristic Mode Resonant Frequencies for the Infinite Dielectric Circular Cylinder
Obtained From 𝜆1

TMz
n

, 𝜆2
TMz

n
, 𝜆1

TEz
n

, and 𝜆2
TEz

n
Curves in Figure2

Re(k2a) CMRs 𝜆1
X CMRs 𝜆2

X

n
\

X TMz
n,1 TEz

n,1 TMz
n,1 TEz

n,1

0 1.514 2.371 2.340 3.490

1 2.371 3.545 3.490 2.505

Note. These values correspond to the zero crossings of the eigenvalue curves.

by the PMCHWT operator diagonalization did not satisfy the orthogonality far field relation presented by
Chang and Harrington (1974). Because the nonphysical characteristic modes were declared of no relevance,
the next section only deals with resonances of the physical characteristic modes.

3.3. NRs Versus CMRs
In this subsection, the study concerns mainly with the differences between NRs and CMRs. NRs were also
compared with CMRs for DRs in Alroughani (2013) and Bernabeu-Jiménez et al. (2015). In Alroughani (2013)
an isolated cylindrical dielectric resonator with 𝜖r = 79.7 was studied. They concluded that the CMRs occur
at the same resonant frequencies as the NRs with an agreement between the two sets of frequencies within
4%. However, in Bernabeu-Jiménez et al. (2015), an infinite dielectric circular cylinder with 𝜖r2

= 9 was analyti-
cally analyzed concluding that the resonant frequencies of the CMRs were different from the NRs, observing a
larger difference than in Alroughani (2013) and stating that CMR can be seen as a different type of resonances.
It is believed that the reason that Alroughani (2013) arrived at a different conclusion was probably because
a high relative permittivity value was used. Here, however, it is observed that when lower relative permit-
tivities are considered, the differences between the resonant frequencies of CMRs and NRs are much larger.
The results presented in this paper are therefore crucial to the application of CMA to DRs and dielectric
resonator antenna design.

The statements below will be demonstrated regarding the infinite dielectric circular cylinder:

1. CMRs are distinct from NRs.
2. The resonant frequencies provided by internal (𝜆n → ±∞) and external (𝜆n = 0) CMRs provide values that

are close to the resonant frequencies of internal NRs only, while the resonant frequencies of external NRs
cannot be found by the resonant frequencies of the CMRs.

Figure 3. A comparison between the characteristic eigenvalues and internal natural resonances (TMz
01, TMz

02, and TMz
03,

circles from left to right, respectively) considering relative permittivity for the dielectric cylinder of 𝜖r2
= 9 in (a), 𝜖r2

= 90
in (b), and 𝜖r2

= 900 in (c).
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Figure 4. Comparison between the resonant frequencies of the characteristic mode resonances (CMRs) and natural
resonances (NRs) versus 𝜖r2

for TMz (n = 0) mode.

3. As the dielectric permittivity increase, the resonant frequencies of the internal NRs are closer to the resonant
frequencies of the both internal and external CMRs.

4. The gap found between CMRs and internal NRs differs depending on the electromagnetic mode considered.
In other words, each characteristic mode differs from its corresponding natural mode in a different way
when it is subjected to permittivity variations and is compared with other modes having different order.

To demonstrate that NRs are different from CMRs, Tables 1 and 2 show some of the resonances obtained by
both procedures and plotted in Figures 1 and 2, respectively. It is obvious that the real part of the NRs are
completely different from their corresponding CMRs.

It is interesting to note that, unlike a shielded cavity, whose internal NRs are located on the real axis of fre-
quencies, a dielectric cavity has its internal NRs on the complex frequency plane because their corresponding
internal modes are leaking. This leakage is due to radiation losses through the cavity wall. For example, an infi-
nite perfect electric conductor circular cylinder exhibits its internal NRs at frequencies that meet conditions
Jn(ka) = 0 (TMz

n) and J′n(ka) = 0 (TEz
n), resulting in real frequencies, not complex numbers. This can be seen

from Sarkar et al. (2016) where a thorough discussion regarding internal NRs and CMRs for a perfect electric
conductor circular cylinder was carried out.

As can be seen from Table 1, the dielectric cylinder has complex-valued internal NRs. On the other hand,
we note that CMRs are represented on the real k2a axis. Let us consider, for instance, TMz

0 mode as in
Bernabeu-Jiménez et al. (2015) to check the closeness between the resonant frequencies of CMRs and NRs,
and the possible relation between them. Figure 3 shows characteristic mode eigenvalues as curves and NRs as
circles (only internal). Recall that external CMRs occur for those frequencies where 𝜆1

TMz
0
= 0, while the internal

ones are occurring for those frequencies where 𝜆1
TMz

0
→ ±∞. Values are shown for three relative permittivity

values of 𝜖r2
= 9 in (a), 𝜖r2

= 90 in (b), and 𝜖r2
= 900 in (c).

Figure 5. Comparison between the resonant frequencies of the
characteristic mode resonances (CMRs) and the natural resonances (NRs)
versus 𝜖r2

for the TEz (n = 0) mode.

From left to right, the blue circles correspond to the projection of the inter-
nal NRs frequencies on the real k2a axis for TMz

01, TMz
02, and TMz

03 poles,
respectively. It is evident that depending on the relative permittivity used,
the resonant frequencies of the internal NRs can be more or less predicted
from the characteristic eigenvalues 𝜆1

TMz
0
. The higher the relative permit-

tivity, the closer the resonant frequencies of the CMRs are to the NRs. This
occurs because internal NRs are in different imaginary planes, Im(k2a) ≠ 0,
for each permittivity, while CMRs are always located on Im(k2a) = 0. It can
be concluded then that the resonant frequencies of the CMRs are relatively
close to the internal NRs depending on the permittivity. The same applies
to the radar cross section spectrum, which also provides values that are
close to NRs (Moser et al., 1989). Therefore, although they are different,
internal NRs are more predictable as permittivity increases.

To end the demonstration on whether the frequencies of the CMRs and
internal NRs become closer as the relative permittivity increases, Figures 4
and 5 show the percentage variation between CMRs and the real part

BERNABEU-JIMENEZ ET AL. 403
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Figure 6. Displacement of the natural resonances due to the variation of the
permittivity for the TMz and TEz (n = 0) mode. Numbers below the poles are
its corresponding 𝜖r2

.

of NRs. Figure 4 shows the percentage difference between the two types
of resonant frequencies for the TMz

n (n = 0). As permittivity decreases, the
percentage difference increases significantly. The same applies to Figure 5,
where TEz

n (n = 0) mode behavior is shown. The percentage difference
for TEz

n mode is less significant than for TMz
n mode because TEz

n mode is
located closer to Re(k2a) axis than TMz

n is; that is, the damping is lower. This
can be seen in Figure 1.

Why is this happening? The answer is simply because the higher the per-
mittivity of the dielectric body, the closer to the Re(k2a) axis the internal
resonances are, as explained by equations (10)–(15) above. As a last evi-
dence in this regard, Figure 6 shows how TMz

n and TEz
n (n = 0) NRs move

into the complex k2a plane as 𝜖r2
decreases. Number next to each pole

in Figure 6 is the corresponding 𝜖r2
value. As 𝜖r2

decreases, the damping
becomes higher and so does radiation.

4. Conclusion

In summary, it has been shown that CMRs are different from NRs. At most, and depending on the relative
permittivity considered, the resonant frequencies of the CMRs might be used as a first guess in an internal
NRs search in the complex frequency plane. In addition, the resonant frequencies of the CMRs only predict
internal the resonant frequencies of the NRs because of their proximity to the Re(k2a) axis. It has been also
demonstrated that the differences between the resonant frequencies of the CMRs and internal NRs depend
on relative permittivity. Large 𝜖r2

provide closer values. It has been concluded that this is due to a decrease
in the dumping factor of a given particular mode. Besides, it has been observed that the difference between
both CMRs and internal NRs also depends on the particular electromagnetic mode considered.

The analysis has been performed on an infinite dielectric circular cylinder. It provides the accurate analyt-
ical solutions required to establish reliable observations. Notice that subtle resonant frequency differences
between the two families of modes have led other authors to misinterpretations.
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