
Developing Unobtrusive
Mobile Interactions

Miriam Gil Pascual

A Model Driven Engineering approach

Supervisors:
Dr. Vicente Pelechano Ferragud

Dr. Pau Giner Blasco

Centro de Investigación en

Métodos de Producción de Software

Miriam Gil

Developing Unobtrusive
Mobile Interactions

A Model Driven Engineering approach

Master’s Thesis, December 2010

Developing Unobtrusive Mobile Interactions: A Model Driven Engineer-
ing approach

This report was prepared by
Miriam Gil

Supervisors
Vicente Pelechano
Pau Giner

Release date: 10-12-2010
Comments: A thesis submitted in partial fulfillment of the re-

quirements for the degree of Master of Science at
the Universidad Politécnica de Valencia.

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia
Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

To my grandparents.

“A picture is worth a thousand words. An interface is
worth a thousand pictures”.

- Ben Shneiderman, 2003

Abstract

I
n Ubiquitous computing environments, people are surrounded by a
lot of embedded services. With the inclusion of pervasive technologies

such as sensors or GPS receivers, mobile devices turn into an effective
communication tool between users and the services embedded in their
environment. All these services compete for the attentional resources
of the user. Thus, it is essential to consider the degree in which each
service intrudes the user mind when services are designed.

In order to prevent service behavior from becoming overwhelming,
this work, based on Model Driven Engineering foundations, is devoted
to develop services according to user needs. In this thesis, we provide
a systematic method for the development of mobile services that can
be adapted in terms of obtrusiveness. That is, services can be devel-
oped to provide their functionality at different obtrusiveness levels by
minimizing the duplication of efforts.

For the system specification, a modeling language is defined to cope
with the particular requirements of the context-aware user interface
domain. From this specification, following a sequence of well-defined
steps, a software solution is obtained.

The proposal has been applied in practice with end-users. Although
the development process is not completely automated, the guidance of-
fered and the formalization of the involved concepts was proven helpful

iv Contents

to raise the abstraction level of development avoiding to deal with tech-
nological details.

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem statement . 4

1.3 Thesis goals . 5

1.4 The proposed solution 6

1.5 Research methodology 7

1.6 Thesis context . 8

1.7 Thesis structure . 9

2 Background 11

2.1 Mobile Computing . 12

2.1.1 Interaction Modalities 13

2.1.2 Challenges in mobile design 14

2.1.3 The Android platform 16

2.1.4 The Android application framework 17

vi CONTENTS

2.2 Context-Aware Computing 19

2.2.1 Modeling languages 20

2.2.2 Analysis and discussion 23

2.3 Considerate Computing 24

2.3.1 Analysis and discussion 27

2.4 Conclusions . 28

3 State of the art 29

3.1 Context-Aware Mobile User Interfaces 30

3.1.1 Analysis and discussion 37

3.2 Non-intrusive mobile computing 38

3.2.1 Analysis and discussion 41

3.3 Attentive User Interfaces 42

3.3.1 Analysis and discussion 45

3.4 Conclusions . 45

4 Designing unobtrusive mobile interactions 47

4.1 Development method overview 49

4.1.1 Why a modeling approach? 50

4.1.2 Proposal overview 53

4.2 Design stage . 54

4.2.1 User modeling 57

4.2.2 Interaction specification 65

4.2.3 Architecture description 73

4.3 Tool support . 78

4.3.1 The obtrusiveness level metamodel 79

4.3.2 The Feature Model metamodel 79

4.3.3 The component architecture metamodel 83

4.4 Conclusions . 85

CONTENTS vii

5 Prototyping and automating the development 87

5.1 Prototyping to validate the design 88

5.1.1 Requirements for the evaluation 89

5.1.2 Fast-prototyping for mobile service adaptation . 90

5.2 Automating the development 96

5.2.1 Architecture metamodel 97

5.2.2 Glue code generation 99

5.2.3 Continuous evolution 111

5.3 Conclusions . 112

6 Validation of the proposal 115

6.1 Smart Home case study 116

6.1.1 User modeling 118

6.1.2 Interaction specification 123

6.1.3 Architecture description 126

6.2 Early-stage evaluation 129

6.2.1 Questionnaire and participants 129

6.2.2 Procedure . 130

6.2.3 Results . 130

6.2.4 Adaptation re-design 132

6.3 Conclusions . 134

7 Conclusions 135

7.1 Contributions . 136

7.2 Publications . 137

7.2.1 Relevance of the publications 138

7.3 Future Work . 138

Bibliography 140

viii CONTENTS

List of Figures

1.1 Research methodology followed in this thesis. 8

2.1 Application domains involved in this work. 12

2.2 The interaction continuum (O’Grady et al., 2008) 13

2.3 Android architecture . 16

2.4 Model of acceptability of notifications (Vastenburg et al.,
2009). 27

3.1 Application domains involved in this work and their in-
tersecting subdomains. 30

3.2 Overview of the approach followed by MANNA (Eisen-
stein et al., 2001). 32

3.3 The unifying reference framework instantiated for TERESA (Cal-
vary et al., 2003). 33

3.4 The Cameleon RT architecture reference model (Balme
et al., 2004). 34

3.5 DynaMo-AID Development Process (Clerckx et al., 2005). 35

3.6 FAME’s architecture (Duarte & Carriço, 2006). 37

x LIST OF FIGURES

3.7 Input and output channels in mobile multimodal inter-
faces (Chittaro, 2010). 39

3.8 Equivalents of GUI elements in Attentive UI (Vertegaal
et al., 2006). 43

4.1 The stages proposed in the user-centered development
process. 49

4.2 Problems of context condition discretization. 51

4.3 Context decomposition into features. 52

4.4 The different tasks in the design method proposed. . . . 55

4.5 The different tasks in the user modeling stage. 57

4.6 The elements of a persona prioritized into three layers . 59

4.7 Excerpt of a persona . 60

4.8 Sources of contextual information 61

4.9 Framework for characterizing implicit interactions (Ju &
Leifer, 2008). 63

4.10 Services at different obtrusiveness level 64

4.11 The different tasks in the interaction specification stage. 65

4.12 Interaction mechanisms Feature Model 67

4.13 Decomposition of context conditions 69

4.14 Selecting the interaction feature for an obtrusiveness level. 70

4.15 Concrete Interface model of the“Supermarket Notification” 71

4.16 Mappings between interaction features and concrete com-
ponents . 73

4.17 The task involved in the architecture description stage. . 73

4.18 Graphical notation used to represent components of the
Android application framework 76

4.19 Component Architecture Model 77

4.20 Obtrusiveness space metamodel 80

4.21 Obtrusiveness space editor 80

4.22 Feature Model metamodel 81

LIST OF FIGURES xi

4.23 Different representations for interface nodes 82

4.24 MFM environment . 84

4.25 Android components metamodel 84

4.26 Graphical editor for Android components 85

5.1 The stages proposed in the user-centered development
process. 88

5.2 The different tasks in the evaluation method proposed . 91

5.3 Android prototype . 94

5.4 Some screen mock-ups of the prototype 95

5.5 The different tasks in the implementation stage proposed 96

5.6 Excerpt from the system architecture metamodel 97

5.7 Global schema of the elements generated by the trans-
formation. 102

5.8 Hierarchy for defining Android UIs 106

5.9 Configuration metamodel used to generate the interfaces. 107

5.10 Different generations of the same service 110

5.11 Service evolution . 112

6.1 A detailed persona . 117

6.2 A detailed persona . 119

6.3 Obtrusiveness level defined for each service in the Smart
Home case study. 121

6.4 Decomposition of interaction aspects using the Feature
Model. 124

6.5 Concrete UI components of a Smart Home system. . . . 126

6.6 Component arquitecture of the Smart Home services. . . 128

6.7 Summarized results . 131

6.8 Nasa TLX results . 133

xii LIST OF FIGURES

List of Tables

6.1 Interaction features for each task in the obtrusiveness space125

6.2 Linking between interaction features and concrete com-
ponents . 127

xiv LIST OF TABLES

Chapter 1

Introduction

The Ubiquitous Computing vision implies a radical paradigm shift
in the way users interact with systems (Weiser, 1991). One of the

defining traits of this vision is the pursuit of invisibility. Computing
resources become invisible to the user in order to allow interaction with
the system in a natural way.

The ubiquity of mobile phones gives them great potential to be the
default physical interface for ubiquitous computing applications (Bal-
lagas et al., 2006). Furthermore, mobile devices have become full of
sensors that provide a rich contextual information (e.g., current loca-
tion of the user). However, this information is considered marginally
in most of mobile services. This does not conform to our everyday life
and behavior in which context plays a central role. Moreover, the uses
of such pervasive technology can also disturb the users in the current
focus of activity.

Mobile phones ring loudly even though we are in a meeting, comput-
ers interrupt presentations advising a software update. The infiltration
of computer technologies into everyday life has brought these interac-

2 Introduction

tion crises to a head. As Neis Gershenfeld observes, “There’s a very
real sense in which the things around us are infringing a new kind of
right that has not needed protection until now. We’re spending more
and more time responding to the demands of machines.” (Gershenfeld,
1999)

The challenge in an environment full of embedded services is to
“provide the right information, at the right time and in the right way
for individual users” (Fischer, 2001) avoiding to interrupting them. If
we do not provide support to help control the interactions, users may
be disturbed often, and be unable to focus on their tasks. This thesis
provides an approach to define services that adapt their attentional
demand according to the context of each user. In this work, modeling
techniques are applied in order to face the development of such services
from a higher abstraction level and systematize the construction of the
final system.

The rest of this chapter is organized as follows: Section 1.1 explains
the purpose of this work. Section 1.2 details the problem that the
present thesis resolves. Section 1.3 introduces the goals defined for this
work. Section 1.4 describes the approach followed in this thesis to fulfill
the detected goals. Section 1.5 introduces the research methodology
that has been followed in this work. Section 1.6 explains the context in
which the work of this thesis has been performed. Finally, Section 1.7
gives an overview of the structure of this thesis.

1.1 Motivation

The pervasive computing paradigm envisions an environment full of em-
bedded services. With the inclusion of pervasive technologies such as
sensors or GPS receivers, mobile devices turn into an effective commu-
nication tool between users and the services embedded in their envi-
ronment (e.g. users can compare prices of products directly interacting
wih the physical products by means of the user mobile device).

Since mobile devices provide a rich contextual information about
the user, the system can anticipate some of the user tasks. However a

1.1 Motivation 3

complete automation is not always possible or desirable (Tedre, 2008).
For certain tasks, some users prefer that the system acts silently in
order not to be disturbed. For other tasks, users want to know what is
happening behind the scenes. For example, when the favorite program
of a certain user begins, the system should consider whether to start
recording and/or informing the user depending on his/her context or
preferences. If the system decides to inform the user first, it must
choose the most adequate mechanism from all the ones available in
his/her mobile device (sound, vibration, a text message, etc.).

Services should interact with users in a way that is not disturbing
for them. Services might be embedded in the actual activities of ev-
eryday life, resulting in “calm” technology that moves back and forth
between the center and the periphery of human attention (Weiser &
Brown, 1997). Since user attention is a valuable but limited resource,
an environment full of embedded services must behave in a considerate
manner (Gibbs, 2004), demanding user attention only when it is actu-
ally required. The work of Presto (Giner et al., 2010) (a context-aware
mobile platform that allows to support different workflows by interact-
ing with the physical environment) highlighted the use of different levels
of obtrusiveness to support workflow tasks. However, in many cases, the
adequate intrusion level for a given task depends on the context. In the
present work, we follow the idea of Presto in order to allow the degree to
which interaction intrudes on user attention can be adapted according
to context information and user needs.

Towards creating interfaces that adapt their level of intrusiveness to
the context of use, several initiatives have studied strategies to minimize
the burden on interruptions (Ho & Intille, 2005; Vastenburg et al., 2008).
However, these initiatives are almost exclusively focused on evaluating
the adequate timing for interruptions, while user interface adaptation
has received few attention. Other initiatives that focus their works on
development context-aware user interfaces (Calvary et al., 2003; Van den
Bergh & Coninx, 2005) do not consider user attention in the adaptation
process.

In an environment where the possible combinations of context are
constantly increasing, the implementation of ad-hoc solutions to cover

4 Introduction

all possible combinations is not feasible. Therefore, there is a need
for a systematic development method of mobile services that can be
adapted to regulate the service obtrusiveness (i.e., the extent to which
each service intrudes the user’s mind) without duplicating efforts in the
development. Through decomposing the context aspects in its com-
monalities and differences, the interaction could be adapted to the user
attention without explicitly having to define it for each combination of
context. For example, a noisy context and a user with an auditory im-
pairment require interaction not to be provided by means of audio. By
considering the specification in terms of features (as opposed to spec-
ifying for each context), the duplication of efforts in the development
are minimized since both cases are expressed as the exclusion of the
auditory feature.

1.2 Problem statement

The development of context-aware user interfaces is not a closed re-
search topic. The above discussion indicates that some problems still
need to be considered. The work that has been done in this thesis seeks
to improve the development of context-aware mobile services focusing
on the adaptation to regulate the user attention by considering these
problems, which can be stated by the following three research questions:

Research question 1. How should interaction be adapted in terms of
attentional demand according to the context of use?

Research question 2. How to decompose the interaction in different
adaptation aspects in order to avoid duplicating efforts in the
development?

Research question 3. How can adaptation specifications be repre-
sented in models to develop context-aware user interfaces system-
atically?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis goals 5

1.3 Thesis goals

The main goal of this thesis is to define a method for the development
of mobile services that can be adapted in terms of obtrusiveness (i.e.,
the extend to which each service intrudes the user’s mind).

First of all, regarding research question 1, one of the main goals
of this work is the study of the interaction techniques and the parame-
ters on which interaction will be adapted. Traditional human-computer
interactions have focused on the realm of explicit interaction, where the
use of computers rely in a command-based or graphical user interface.
Implicit interactions, on the other hand, enable communication and ac-
tion without explicit input or output. In the present work, user atten-
tion is the focus on design the adaptation since this is a limited resource
that must be conserved. Providing a great degree of automation for ser-
vices is not always the best option in terms of user satisfaction (Tedre,
2008). For some tasks, users prefer that the system acts silently in or-
der not to be disturbed. For other tasks, users want to know what is
happening and interact with the system. In order to manage the in-
trusive nature of interactions and clasify the services, we make use of
the framework for implicit interaction presented by Ju and Leifer (Ju
& Leifer, 2008).

Regarding research question 2, another goal of this work is to
avoid duplicating efforts in the development defining the adaptation
process in a declarative manner. Variability modeling has proven useful
in mass-production domains to maximize reuse when developing a set
of similar software systems (a system family) (Coplien et al., 1998). Be-
cause common system parts are clearly identified, it is possible to detect
reuse opportunities for each new development. They are used in (Cetina
et al., 2009) to describe an adaptation space of the system at service
level. Thus, variability modeling techniques are used in this work for
selecting different alternatives for presenting pervasive services to the
user depending on him/her preferences, needs and context in terms of
obtrusiveness. Interaction requirements are expressed by means of fea-
tures and this work provides a mechanism to make use of the adequate
interaction technique to provide the functionality according to the ob-

6 Introduction

trusiveness level.

Regarding research question 3, one of the goals of the present
work is to minimize the error-proneness of this kind of developments. In
order to do so, a systematic method is defined to obtain the appropiate
interaction from specifications by following a sequence of well-defined
steps.

1.4 The proposed solution

Model Driven Engineering (MDE) (Schmidt, 2006) proposes the use of
models as the basis for system development. A model is a simplification
of a system, built with an intended goal in mind, that should be able
to answer questions in place of the actual system (Bézivin & Gerbé,
2001). The use of models (such as model of planes in a wind tunnel or
models of software systems) in engineering has a twofold benefit. On
the one hand, models guide the development of a system. On the
other hand, models allow to reason about the system avoiding to
deal with technical details.

In a context where the possible combinations of users, situations and
devices are constantly increasing, the implementation of ad-hoc solu-
tions to cover all possible combinations is not feasible. Sottet in (Sottet
et al., 2005) reports this problem and stresses the relevance of MDE
for the modeling of interaction in Ubicomp systems. The specified sys-
tem can be automatically generated from an abstract description. This
approach addresses the technological heterogeneity problems found at
the implementation level, which constitutes a need for interaction when
multiple platforms and interaction modes are considered. In this work,
we introduce a development process based on the foundations of MDE
to specify the interaction aspects of Ubicomp systems. Specifically, this
development process provides the following contributions:

A design method has been defined in order to capture the adap-
tation aspects for mobile interaction. The defined method enables de-
signers to specify to which degree pervasive services must intrude the
users mind and the way in which a user can interact with the mobile

1.5 Research methodology 7

device.

An evaluation method is provided in order to simulate the adap-
tation of mobile interaction in terms of obtrusiveness. This enables to
anticipate adaptation results without actually implementing the sup-
porting system. The method is fast to apply and it allows to reproduce
a level of user experience that is considered to be very close to what
users expect from a final system. The method allows to receive relevant
feedback in terms of user experience and interaction adaptation, which
is essential to reconsider the designs prior to the development of the
final system.

A development method is defined to guide the developer in the
construction of the context-aware user interfaces in a systematic way.
The method comprises from specification to the final implementation.

1.5 Research methodology

In order to perform the work of this thesis, we have carried out a research
project following the design methodology for performing research in in-
formation systems as described by (March & Smith, 1995) and (Vaish-
navi & Kuechler, 2004). Design research involves the analysis of the
use and performance of designed artifacts to understand, explain and,
very frequently, to improve on the behavior of aspects of Information
Systems (Vaishnavi & Kuechler, 2004).

The design cycle consists of 5 process steps: (1) awareness of the
problem, (2) solution suggestion, (3) design and development, (4) eval-
uation, and (5) conclusion. The design cycle is an iterative process;
knowledge produced in the process by constructing and evaluating new
artifacts is used as input for a better awareness of the problem. Follow-
ing the cycle defined in the design research methodology, we started with
the awareness of the problem (see Fig. 1.1): we identified the problem
to be resolved and we stated it clearly.

Next, we performed the second step which is comprised of the sug-
gestion of a solution to the problem, and comparing the improvements
that this solution introduces with already existing solutions. To do this,

8 Introduction

Problem
awareness

Solution
suggestion

State of the
art review

Design method

Simulation
technique

Architecture
for execution

Conclusions
Characterization

of pervasive
service adaptation

Tool support
for automation

Step 1 Step 2 Step 3 and 4 Step 5

Figure 1.1: Research methodology followed in this thesis.

the most relevant approaches were studied in detail. Once the solution
to the problem was described, we plan to develop and validate it (steps
3 and 4). These two steps are performed in several phases (see Fig. 1.1).
The tasks carried out in these steps were intended to characterize per-
vasive service adaptation, define techniques for their design, simulation
and implementation providing tool support for each.

Finally, we will analyze the results of our research work in order
to obtain several conclusions as well as to delimitate areas for further
research (step 5).

1.6 Thesis context

This Master’s Thesis was developed in the context of the research cen-
ter Centro de Investigación en Métodos de Producción de Software of
the Universidad Politécnica de Valencia. The work that has made the
development of this thesis possible is in the context of the following
research government projects:

• SESAMO: Construcción de Servicios Software a partir de Mode-
los. CYCIT project referenced as TIN2007-62894.

• OSAMI Commons: Open Source Ambient Intelligence Commons.
ITEA 2 project referenced as TSI-020400-2008-114.

1.7 Thesis structure 9

• “Internet de las Cosas como soporte a Procesos de Negocio”. Primeros
proyectos de Investigación de la UPV, referenced as PAID-06-09
number 2920.

1.7 Thesis structure

This thesis is presented in seven chapters including this one. As a guide
to the organization of the remainder of this thesis:

Chapter 2 introduces fields that are related to the work that is pre-
sented in this thesis and gives an overview of some relevant con-
cepts and technologies in which this work relies.

Chapter 3 presents initiatives that face similar problems or provide
solutions to some pieces of this work. This initiatives are analized
and compared to the work that is presented in this thesis.

Chapter 4 defines the design method that is followed in our approach
to adapt the way in which a pervasive service is accessed and
describes the tools provided to design this kind of systems.

Chapter 5 provides guidelines to validate in practice the designs ob-
tained with the method and introduces a development process
that covers from the specification of the system to the implemen-
tation of the final solution by following a sequence of systematic
steps. Code generation techniques are provided to obtain an im-
plementation of the final system.

Chapter 6 details how the proposal has been validated by the devel-
opment of a complete case study.

Chapter 7 summarizes the main contributions and publications of this
work. In addition, this chapter provides some insights about fur-
ther work.

10 Introduction

Chapter 2

Background

This work deals with the development of mobile services that can be
adapted in terms of obtrusiveness. As it is shown in Fig. 2.1, it is

placed in the intersection of three research areas that have some aspects
in common. This disciplines are: Mobile Computing, Context-Aware
Computing and Considerate Computing.

This work relies on different concepts and technologies from these
areas. In order to clarify the foundations in which our approach relies,
different technologies and techniques are introduced in this chapter.
The rest of this chapter is organized as follows: Section 2.1 provides
an overview of the impact of context in the design and development
of mobile systems and mobile platforms for coping with these require-
ments. Section 2.2 provides an overview of the context-aware area and
the modeling languages that enable the design of context-aware user
interfaces. Section 2.3 presents the foundations of the considerate com-
puting paradigm for the development of user interfaces and introduces
strategies to minimize interruptions. Finally, Section 2.4 concludes the
chapter.

12 Background

 M

o
b

ile
 C

om
putin

g
Context-Aw

are

Considerate Computin
g

Interaction
obtrusiveness

adaptation

Co
m

p
u

tin
g

Figure 2.1: Application domains involved in this work.

2.1 Mobile Computing

Mark Weiser envisioned ubiquitous computing (Ubicomp) as a world
where computation and communication would be conveniently at hand
and distributed throughout our everyday environment (Weiser, 1991).
Pervasive Computing (PerCom) (Hansmann et al., 2001), Ambient In-
telligence (AmI) (Aarts et al., 2002) or Everyware (Greenfield, 2006)
are some of the paradigms that share this goal. As mobile phones are
rapidly becoming more powerful, this is beginning to become reality.
Mobile devices play an important role in the modern society. With the
advanced capabilities of mobile devices such as connectivity, positioning
systems, sensors, and advanced interaction mechanisms, new valuable
services can be provided. They are considered the first pervasively avail-
able computer and interaction device.

However, mobile interaction has peculiar aspects that distinguishes
it from interaction with desktop systems, making it more difficult to
build effective user interfaces for mobile users. One of the themes of this

2.1 Mobile Computing 13

work is to provide interaction with the system in a natural way through
adapting interaction mechanisms to the different contexts. The way
users interact with mobile devices is a key point to achieve a seamless
and intuitive interaction. The different kinds of interaction are intro-
duced below.

2.1.1 Interaction Modalities

Broadly speaking, there are two extremes of interaction: one in which
the user interacts consciously and explicitly with the system; and at the
other extreme, the user interacts unconsciously or implicitly (Fig. 2.2).
In between, there are various degrees of each kind.

Figure 2.2: The interaction continuum (O’Grady et al., 2008)

Explicit Interaction In this case, a user interacts with a software
application directly by manipulating a GUI, running a command
in a command window or issuing a voice command. In short, the
user intentionally performs some action.

Implicit Interaction Implicit interaction (Schmidt, 2000) is a more
recent development and occurs when a user’s subconscious actions
indicate a preference that may be interpreted as an interaction.
It is difficult to capture and subject to error, but it offers useful
possibilities in the mobile domain. As a practical example, con-
sider the case of a smart refrigerator. The refrigerator is aware
of what products are put inside it. By not returning a product
inside could be interpreted by a refrigerator as an indication of a
lack of the product. Therefore, the refrigerator could deduce that

14 Background

the user runs out of that product and it could add the product to
the shopping list.

Implicit interaction is closely related to user’s context (Tamminen
et al., 2004) and some knowledge of the prevailing context is almost es-
sential if designers want to incorporate it into their applications (O’Grady
et al., 2008). Mobile information systems users are characterized by fre-
quent changes in the context (Siau, 2003). Mobility emphasizes several
concerns (space, time, personality, society, environment, an so on) of-
ten not considered by the traditional desktop systems (Krogstie et al.,
2004). In addition, many limitations in terms of computing capabilities,
screen size and so on, must be considered when systems are designed
for being accessed through a mobile device. In particular, this work is
interested in environment context (entities that surround the user) and
user context (user using the mobile). The main challenges in the design
of mobile applications are detailed below.

2.1.2 Challenges in mobile design

Mobile devices present designers with five main challenges (Dunlop &
Brewster, 2002):

1. Designing for mobility: as users are mobile, their environment
changes drastically as the user moves, varying available resources
and application requirements.

2. Designing for a widespread population: mobile devices are typi-
cally used by a larger population spread than traditional PCs and
without any training.

3. Designing for limited input/output facilities: screens are small due
to the need for portability. Audio output quality is often very poor
with restricted voice recognition on input. Keyboards are limited
in size and number of keys.

4. Designing for (incomplete and varying) context information: mo-
bile devices can be made aware of their context (e.g. current

2.1 Mobile Computing 15

location through the GPS).

5. Designing for users multitasking at levels unfamiliar to most desk-
top users: interruptions in mobile devices are likely to be much
higher.

The development of a mobile application should take into account all
of these kind of devices and situations. Software development facilities
must be provided for leveraging the great capabilities of mobile devices.
However, this has not been an easy task. Mobile operating systems have
been mainly closed to developers. While a few have opened up to the
point where they will allow some Java-based applications to run within
a small environment on the phone, many do not allow this (DiMarzio,
2008).

The Open Handset Alliance1 (OHA) was formed by Google with
the goal of providing the first open, complete, and free platform cre-
ated specifically for mobile devices. Different organizations joined the
OHA, resulting the Android platform. The first version of Android was
released on November 2007, almost one year later (in October 2008)
the first mobile device supporting Android was released. In 2010 An-
droid was featured in 20 devices and many more were planned including
mobile phones, laptops, digital picture frames, e-book readers, home ap-
pliances, and gaming devices among others.

The availability of an open platform for mobile devices enables the
development of innovative applications. Considering the number of sen-
sors that are present in current mobile devices, developing context-aware
mobile applications is feasible with the Android platform. For example,
Android devices are capable of determining context information such as
the user location and orientation. In this work, the Android platform is
used for the development of context-aware user interfaces. Next section
provides more detail about this platform.

1http://www.openhandsetalliance.com

16 Background

Linux kernel
(Drivers for Camera, WiFi, USB...)

Libraries
(OpenGL|ES, SQLite, WebKit...)

Android Runtime
Core libraries

Dalvik VM

Application Framework

Android Applications

Figure 2.3: Android architecture

2.1.3 The Android platform

Android is an open software platform for mobile development that is
intended to provide a full-stack for developers. Android includes an op-
erating system, middleware, applications and development tools. This
section describes the most innovative aspects of the Android platform
since it has been used in this work.

Figure 2.3 provides an overview of the architecture of the platform.
The platform is defined in different layers. Is worth noting that all the
applications make use of the platform in the same way. There are not
special privileges for certain applications (e.g., preinstalled applications)
and any application can access to any platform service.

The Android Operating System is based on Linux 2.6. Mobile de-
vice manufacturers are in charge of developing drivers for their devices
that follow the Linux directives. On top of the operating system, ba-
sic system functionality is provided by native C/C++ libraries. Most
of them provide low-level functionality based on well established open
source projects such as OpenGL|ES, FreeType, SQLite or WebKit. This
layer abstracts the particularities of each hardware piece. For example,
OpenGL can be used to program graphics regardless of the technology

2.1 Mobile Computing 17

used for the device screen.

One of the native components that plays a central role for the devel-
opment of Android applications is the Dalvik Virtual Machine. Dalvik
allows the development of applications for Android in Java. The Dalvik
virtual machine allows the system functionality to be accessed from a
higher abstraction layer. The Dalvik can run classes compiled by a
Java language compiler that have been transformed into Dalvik Exe-
cutable (*.dex) format, a format that is optimized for efficient storage
and memory-mappable execution.

On top of the virtual machine Java utility functions based on Apache
Harmony2 are provided. These libraries provide interfaces and classes
for programming. Data structures such as collections, connectivity func-
tions to handle sockets and input and output access are only some
of the functionalities that are provided with these core libraries. In
order to facilitate the development an application framework is also
provided. This framework provides the basic building blocks, commu-
nication mechanisms and APIs that any Android application will use.
From the software engineering perspective, the application framework
is the most relevant layer in the Android platform since it defined the
main components that form any Android-based application. The main
components that form the framework are detailed below.

2.1.4 The Android application framework

The Android application framework is based on loosely-coupled compo-
nents. Each component developed is declared in the Android Manifest.
When a component is described in the Android Manifest, it defines the
way it is integrated in the platform by indicating the possibilities for
communicating with other components and the permissions that each
application requires for the platform. In this way, when an application
is installed by users, they can know which kind of use of their mobile
device would make a certain application.

The Android application framework provides the following main

2http://harmony.apache.org/

18 Background

components: Activity, Service, Content Provider and Broadcast Re-
ceiver. These components are introduced below.

Activity. An Activity presents a visual user interface to the user. An
activity is designed around a well-defined purpose (e.g., viewing,
editing, dialing the phone, taking a photo, etc.). It handles a par-
ticular type of content (e.g., a list of contacts) and accepts a set of
actions. The user interface provided by the Activity is composed
by a hierarchy of interaction nodes (View and ViewGroup ele-
ments following the composite pattern) that process input events.
Each activity has a lifecycle that is independent of the other activ-
ities in its application or task and it is managed by the application
framework.

Service. A Service provides functionality that is executed in the back-
ground (e.g., a service that plays music). It is possible to connect
to an ongoing service and start it if it is not already running.
While connected, communication with the service is performed
through an interface that the service exposes. Different compo-
nents such as Activities or other Services can be binded to a Ser-
vice.

Content Provider. A content provider makes data available to other
applications. The data can be internally stored in the file system,
in an SQLite database, or in any other particular mechanism. A
Content Provider exposes generic mechanisms for accessing the in-
formation regardless of the underlying implementation technology
used.

Broadcast Receiver. A broadcast receiver is a component that re-
acts to announcements from other components. Broadcasts can
originate from system code (e.g., indicate that the battery is low)
or other applications. In response to the broadcast, Broadcast
Receivers can start an activity or use the NotificationManager to
alert the user. Notifications can get the user’s attention in vari-
ous ways (flashing the backlight, vibrating the device, playing a
sound, etc.).

2.2 Context-Aware Computing 19

Android allows different components to execute simultaneously and
it provides an inter-component communication mechanism based on In-
tents. An Intent is an abstract description of a desired action (e.g.,
obtaining an image) regardless of the component that provides this func-
tionality. Components declare in their manifest which kinds of intents
they can respond to, and the linkage between the caller and the called
is performed dynamically at run-time. This enables the extensibility of
the platform since newly installed applications can take advantage of
already installed components.

2.2 Context-Aware Computing

With the emergence of a wide variety of computer devices including
mobile phones, Personal digital Assistants (PDAs), pocket PCs and so
on, and the varying capabilities of these devices, it appeared the need
to adapt this new diversity to the context of use without exploding the
cost of development and maintenance. This is the goal of context-aware
computing (Calvary et al., 2003). Context-aware computing as men-
tioned by Dey and Abowd (Dey & Abowd, 2000) refers to the “ability
of computing devices to detect and sense, interpret and respond to,
aspects of a user’s local environment and the computing devices them-
selves”. As context influences the interaction, the assumption is that by
making systems aware of their context, interaction can be made more
relevant and useful (Lucas, 2001).

In order to achieve the adaptation, devices, services or systems have
access to context information. Context needs to be sensed and modeled
to guide adaptations of interaction. There is no unequivocal definition
of the concept of context. There are several definitions of context in the
literature, but the most used definition in AmI systems was introduced
by Dey (Dey & Abowd, 2000):

“Context is any information that can be used to char-
acterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interac-
tion between a user and an application, including the user

20 Background

and applications themselves.”

There is a wide variety of information that can be gathered to sup-
port the adaptation process. However, most of the approaches define
the context of use by three classes of entities (Calvary et al., 2003):

• User. The users of the system who are intended to use the system.
In particular, his perceptual, cognitive and action disabilities.

• Platform. The computational and interaction device that can be
used for interacting with the system. Examples, in terms of re-
sources, include memory size, network bandwidth, screen size, in-
put and output facilities, and so on.

• Environment. The physical environment where the interaction can
take place such as noisy environment, lighting conditions, location
information, time information, etc.

User interface modeling is an essential component of any effective
long term approach to developing context-aware UIs. User interface
modeling (Thevenin & Coutaz, 1999) involves the definition of several
models pertaining to various facets of the UI, such as the presentation,
the dialog, the platform, the user, the task, and the context. These
models are then exploited to automatically produce a usable UI match-
ing the requirements of each context of use. The present work deals
with the modeling of interaction, taking into account its nomadic and
context-aware nature. The current user interface modeling languages
that allow the development of this kind of UIs are presented below.

2.2.1 Modeling languages

Different modeling languages are focused on the description of interac-
tion. Developers can use a high-level language to implement an abstract
and device-independent UI model. Then, they can generate the code for
a specific platform (Seffah et al., 2004). Calvary et al. (Calvary et al.,
2003) give an overview of different modeling approaches to deal with

2.2 Context-Aware Computing 21

user interfaces supporting multiple targets in the field of context-aware
computing. The approaches studied from the user interface modeling
area are detailed below.

User Interface Markup Language. The User Interface markup Lan-
guage (UIML) (Abrams et al., 1999) is an XML-compliant lan-
guage to support the development of UIs for multiple computing
platforms by introducing a description that is platform-independent
that will be further expanded with peers once a target platform
has been chosen. Thus, the universality of UIML makes it possible
to describe a rich set of interfaces and reduces the work in port-
ing the user interface to another platform to changing the style
description.

UIML describes a user interface with five sections: description,
structure, data, style, and events. The description section lists the
individual elements that collectively form an application’s user in-
terface. The structure section specifies which elements from the
description section are present for a given appliance, and how
the elements are organized. The data section contains data that
is appliance-independent but application-dependent. The style
section contains the style sheet information and data that are
appliance-dependent. Finally, the events section describes the
runtime interface events, which may be communicated.

UIML is a declarative language that distinguishes which user in-
terface elements are present in an interface, what the structure of
the elements are for a family of similar appliances, what natural
language text should be used with the interface, how the interface
is to be presented or rendered using cascading style sheets, and
how events are to be handled for each user interface element.

eXtensible Interface Markup Language. eXtensible Interface Markup
Language (XIML) (Puerta & Eisenstein, 2002) is an XML-based
language that enables a framework for the definition and interre-
lation of interaction data items. XIML is an organized collection
of interface elements that are categorized into one or more major

22 Background

interface components. The language does not limit the number
and types of components that can be defined.

In its first version, XIML predefines five basic interface compo-
nents, namely task, domain, user, dialog, and presentation. The
first three of these can be characterized as contextual and abstract,
while the last two can be described as implementation-based and
concrete. An XIML-based UI specification can lead to both an
interpretation at runtime and a code generation at design time.

Using XIML, the design and implementation of a UI will be a
series of refinements from an abstract UI representation (of the
user context or a task model for example) to a concrete UI repre-
sentation (of widgets and interaction techniques for example).

USer Interface eXtensible Markup Language. A User Interface
Description language (USIXML) (Limbourg et al., 2004) aimed
at describing user interfaces with various levels of details and ab-
stractions, depending on the context of use. USIXML supports
a family of user interfaces such as devide-independent, platform-
independent, modality independent, and context-independent.

USIXML allows specifying multiple models involved in user in-
terface design such as: task, domain, presentation, dialog, and
context of use, which is in turn decomposed into user, platform,
and environment.

It is focused on business applications and tries to be as complete
as possible in the definition of all the models that are considered to
be relevant. The language allows the specification of domain, task,
abstract user interface, concrete user interface and context models.
Mappings and transformations between the different models can
be explicitly defined in separate models: mapping, transformation
and rule-term model.

Context-Sensitive User Interface Profile. Bergh and Coninx in-
troduced the Context-Sensitive User Interface Profile (CUP) (den
Bergh & Coninx, 2005). CUP is a UML-based notation that al-
lows the specification of requirements for context integration into

2.2 Context-Aware Computing 23

an interactive application. CUP proposes some improvements on
UMLi (da Silva & Paton, 2003) to consider context aspects. CUP
takes some notions from the Context Modeling language (Hen-
ricksen & Indulska, 2005) and defines a UML-based modeling lan-
guage to define interactions based on them.

CUP is defined by means of the UML profile extension mechanism.
The following models are defined: The application model shows
the concepts and the relations between them that are used within
the application. The task dialog model provides an hierarchical
view to the activities that need to be accomplished. The context
model shows the concepts that can influence the interaction of the
user with the application directly or indirectly. The abstract pre-
sentation model shows the composition of interactors in the user
interface and describes the general properties of the interactors
(the data they interact with and meta information about them).
The concrete presentation model describes the user interface for a
specific set of contexts or platforms.

The context model defined considers the nature of gathering con-
text information (manually entered into the system by the user/de-
signer of the software or automatically sensed/interpreted), the
information about the platform through which the user interacts
with, context information ambiguity, and the topic of interest.

2.2.2 Analysis and discussion

Summarizing the results from context-aware computing, the goal of
using context information is to make interaction with a system more
relevant, useful and robust. Several conclusions arise from the analysis
of the modeling languages studied.

Despite the evolution of the modeling languages for the designing of
user interfaces, there is no accepted models and notations in contrast
to the world of system design where the Unified Modeling Language
(UML) (Rumbaugh et al., 1998) has emerged as the modeling notation
of choice.

24 Background

Several notations for model-based design of user interfaces, and more
generally interactive systems, have been proposed. They all use several
models to support the design process. The names, contents and number
of these models vary greatly(den Bergh & Coninx, 2005). Despite of
this, several models seem to come back in most approaches.

2.3 Considerate Computing

Humanity has connected itself through roughly three billion networked
telephones, computers, traffic lights -even refrigerators and picture frames-
because these things make life more comfortable and keep us available to
those we care about. So although we could simply turn off the phones,
close the e-mail program, and shut the office door when it is time for
a meeting, we usually do not. We just endure the consequences(Gibbs,
2004).

Today, increasing numbers of users are surrounded by multiple ubiq-
uitous computing devices, such as mobile phones, PDAs and so on.
These devices bombard users with requests for attention, regardless
of the cost of interruptions(Vertegaal, 2003). Numerous studies have
shown that when people are unexpectedly interrupted, they not only
work less efficiently but also make more mistakes. Eric Horvitz of Mi-
crosoft Research stated: “If we could just give our computers and phones
some understanding of the limits of human attention and memory, it
would make them seem a lot more thoughtful and courteous”.

Researchers are becoming aware of the fact that user attention is a
limited resource that must be conserved. To this end, the considerate
computing paradigm aims at avoiding overloading the user by adapting
system behavior based on the sensed user attention focus. Considerate
user interfaces generally calculate the cost in terms of user attention
and the benefit in terms of subjective or objective performance factors,
in order to predict acceptability and select the optimal timing of the
interruptions.

User interface designers and engineers should design computing de-
vices that negotiate rather than impose the volume and timing of their

2.3 Considerate Computing 25

communications with the user. Cooper and Reimann’s About Face 3
describes some of the most important characteristics of considerate in-
teractive products:

“Take an interest. Are deferential. Are forthcoming. Use
common sense. Anticipate people’s needs. Are conscien-
tious. Don’t burden you with their personal problems. Keep
you informed. Are perceptive. Are self-confident. Don’t ask
a lot of questions. Take responsability. Know when to bend
the rules.” (Cooper et al., 2007)

Since user attention is a valuable but limited resource, an environ-
ment full of embedded services must behave in a considerate manner,
demanding user attention only when it is actually required. The present
work is interested in regulate the service obtrusiveness (i.e., the extent
to which each service intrudes the user’s mind). Several initiatives that
have studied strategies to minimize the burden of interruptions are pre-
sented below.

BusyBody. Horvitz et al. described BusiBody (Horvitz et al., 2004),
a software component that provides an integrated, onboard super-
vised learning and inference system. It is a system that intermit-
tently asks users to assess their perceived interruptability during
a training phase and that builds decision-theoretic models with
the ability to predict the cost of interrupting the user.

BusyBody intermittently engages users via a pop-up busy palette,
heralded with an audio chime. The palette allows users to assess
their current cost of interruption efficiently. In the background,
a rich stream of desktop events is logged continuously. Busy-
Body trains and periodically re-trains Bayesian network models
that provide real-time inferences about the cost of notification.
The models are linked to programming interfaces that allow other
components, such as notification systems to access the expected
cost of interruption.

26 Background

Multi-Agent Negotiation. Ramchurn et al. proposed an agent-based
approach to minimizing intrusiveness in a meeting environment (Ram-
churn et al., 2004). It mainly concerns how to display a message
when there is a meeting.

Participants have their own devices, such as a personal laptop;
they also share some public devices, such as a whiteboard in the
meeting room. Displaying a message on a public device is more
intrusive than displaying it on a private device, as all participants
can see the whiteboard but not the screen of a laptop. Each user
has an agent maintaining the user’s interests and making decisions
for him. When a message arrives for a user, the agent checks with
other agents to see if they are interested in this message. If so, the
message will be displayed on a public device; otherwise, it goes to
a private device.

AuraOrb. AuraOrb (Altosaar et al., 2006) is a social appliance, an am-
bient notification device that uses information about user interest
to determine its notification strategy. AuraOrb uses eye contact
sensing to detect user interest in an initially ambient light display.
When eye contact is detected, AuraOrb displays the subject head-
ing of the notification, i.e., in the center of the user’s attention.
Touching the orb causes the associated message to be displayed
on the user’s last attended computer screen. When user interest
is lost, AuraOrb automatically reverts back to its idle state.

Considerate Home Notification Systems. Vastenburg et al. (Vas-
tenburg et al., 2009) conducted a user study of acceptability of
notifications in a living room laboratory in order to (1) know what
factors influence the acceptability of notifications and (2) create a
considerate mechanism for scheduling and presenting notifications
in the home. The study was concentrated on a potentially rele-
vant factor: the level of intrusiveness. Secondary factors included
were: engagement in activities and message urgency.

The study was situated in a living room laboratory in which the
user activities and the timing of notifications were controlled.

2.3 Considerate Computing 27

Figure 2.4: Model of acceptability of notifications (Vastenburg et al., 2009).

They evaluated questionnaire data using cluster analysis in or-
der to construct a semantic model that describes the relationship
between user, system and environment. This model is shown in
Fig 2.4. The model shows that perceived cost of notifications is
linked to attention level and presentation mode. Moreover, per-
ceived value of messages is linked to perceived message urgency.
Prediction of message urgency remains a major challenge in the
development of considerate notification systems. The bold arrows
indicate message urgency to be the primary indicator of accept-
ability and preferred timing.

2.3.1 Analysis and discussion

Several works were presented with the same goal: reduce the perceived
burden of interruptions. Existing systems deal with the problem in
different ways but with various limitations.

For example, the work of Ramchurn does not address the problem of
whether an incoming message is intrusive to the receiver. Furthermore,
it can only be applied to a situation where multiple users have shared

28 Background

devices.

In the same manner, BusyBody and AuraOrb are unaware of the
value of the messages itself, resulting in potentially unwanted interrup-
tions in case of non-urgent messages.

The conclusion is that these initiatives are almost exclusively focused
on evaluating the adequate timing for interruptions, while user interface
adaptation has received few attention.

2.4 Conclusions

This chapter provides an overview of different techniques that are re-
lated with the work presented in this document. The analisys has con-
sidered three application domains: Mobile Computing, Context-Aware
Computing and Considerate Computing. This work is aimed at provid-
ing development support for systems that fit in these three areas. Thus,
much of the technologies and techniques introduced are applied in the
following chapters. A more detailed analysis of the proposals that are
more close to the goal of this work is provided in Chapter 3.

Chapter 3

State of the art

This chapter introduces the most important approaches that support
the design and development of considerate mobile user interfaces.

Once we have analyzed in Chapter 2 the general application domains in
which this work fits, we analize the specific proposals in this domains
that are closely related to our approach. This analysis allows us to
determine the way in which each proposal addresses the aspects that
are central in our approach.

The work of this thesis is placed in the intersection of Mobile Com-
puting, Context-Aware Computing and Considerate Computing. An
overview of the techniques used in these areas was presented in Chap-
ter 2. We have identified three subdomains situated in the intersection
of the main areas that are relevant to the present work. This is il-
lustrated in the Figure 3.1. In particular, context-aware mobile user
interfaces deals with the development of context-aware user interfaces
in the domain of mobile computing, non-intrusive mobile computing is
based on reducing the burden of interruptions in the mobile area, and
finally, attentive user interfaces are context-aware user interfaces where

30 State of the art

 M

o
b

ile
 C

om
putin

g
Context-Aw

are

Considerate Computin
g

Interaction
obtrusiveness

adaptation

Co
m

p
u

tin
g

Context-Aware
Mobile User

Interfaces

Non-Intrusive
Mobile

Computing

Attentive
User

Interfaces

Figure 3.1: Application domains involved in this work and their intersecting
subdomains.

context is governed by user attention. Relevant approaches in these
subareas have been analyzed and discussed in this chapter.

The remainder of the chapter is structured as follows. Section 3.1
presents related work for adapting user interfaces to mobile contexts.
Section 3.2 studies different approaches with the goal of reducing the
intrusiveness in mobile computing. Section 3.3 introduces the research
carried out in the attentive user interfaces area. Finally, Section 3.4
concludes the chapter.

3.1 Context-Aware Mobile User Interfaces

As mobile computing is growing and offering a variety of access devices
for multiple contexts of use, it poses the need to design and develop
context-aware user interfaces for mobile contexts. Some of the chal-
lenges introduced by mobile computing in the design and development
of context-aware user interfaces are (Satyanarayanan, 1996): the diver-

3.1 Context-Aware Mobile User Interfaces 31

sity of computing platforms, the input and output constraints for each
platform, the contextual change while the user is carrying out the task,
and the varying contexts for which mobile devices are suited. Relevant
techniques and tools from this area are introduced below.

MANNA: The Map ANNotation Assistant. Eisenstein described
MANNA (Eisenstein et al., 2001), a hypothetical software appli-
cation intended to create annotated maps of geographical areas.
It is a multimedia application that must run on several platforms
and can be utilized collaboratively over the internet. In order to
provide an adaptive, multi-platform user interface, it describes a
set of model-based techniques that can facilitate the design of such
UIs.

The technique used is based on the development of a user inter-
face model. A UI model is expressed by the MIMIC modeling
language (Puerta, 1996). MIMIC is a comprehensive UI modeling
language which include all relevant aspects of the UI. In particu-
lar, it focused on three model components: platform model which
describes the various computer systems that may run a UI, pre-
sentation model that describes the visual appearance of the user
interface, and task model that is a structured representation of
the tasks that the user may want to perform.

The connections between the platform model and the presentation
model describe how the constraints posed by the various platforms
will influence the visual UI appearance. Through the application
of a task model, it can optimize the UI for each device since,
depending on the device, the user may want to perform a subset
of the overall tasks. The overview of the procedure is depicted in
Fig. 3.2.

The Unifying Reference Framework. Calvary et al. (Calvary et al.,
2003) describe a development process to create context-aware user
interfaces. It was presented to characterize the models, the meth-
ods, and the process involved for developing user interfaces for
multiple contexts of use. In this framework, a context of use is

32 State of the art

Figure 3.2: Overview of the approach followed by MANNA (Eisenstein et al.,
2001).

decomposed into three facets: the end users of the interactive sys-
tem, the hardware and software computing platform with which
the users have to carry out their interactive tasks and the physical
environment where they are working.

The development process consists of four steps: creation of a task-
oriented specification, creation of the abstract interface, creation
of the concrete interface, and finally the creation of the context-
aware interactive system. These levels are structured with a rela-
tionship of reification going from an abstract level to a concrete
one and a relationship of abstraction going from a concrete level
to an abstract one. The focus however, lays upon a mechanism
for context detection and how context information can be used
to adapt the UI, captured in a three-step process: (1) recognizing
the current situation (2) calculating the reaction and (3) executing
the reaction.

3.1 Context-Aware Mobile User Interfaces 33

Figure 3.3: The unifying reference framework instantiated for
TERESA (Calvary et al., 2003).

TERESA. TERESA (Transformation Environment for inteRactivE
Systems representAtions) (Mori et al., 2004) is a tool for design-
ing user interfaces for various platforms including mobile devices.
TERESA presents a solucion based on three levels of abstractions.
These levels involved are: The task and object model which consid-
ers the logical activities that need to be performed, the abstract
user interface defined as a number of abstract presentations, a
concrete user interface where each abstract interactor is replaced
with a concrete interaction object, and the final user interface
which is the result of the translation of the concrete interface into
an specific software language.

TERESA exploits a UIDL called TERESAXML that supports
several types of transformations such as: task model into pre-
sentation task sets, task model into abstract UI, abstract UI to
concrete UI, and generation of the final UI. Figure 3.3 graphically
depicts the Unifying Reference Framework (Calvary et al., 2003)
instantiated for the method described.

Cameleon RT. Cameleon RT (Balme et al., 2004) is a reference model
constructed to define the problem space of user interfaces re-

34 State of the art

Figure 3.4: The Cameleon RT architecture reference model (Balme et al.,
2004).

leased in ubiquitous computing environments. Their reference
model covers user interface distribution, migration, and plastic-
ity (adaptable to context and still usable).

As shown in Figure 3.4, the architecture defines three layers of
abstraction. The middle layer provides context sensing and adap-
tation. The bottom layer consists of physical hardware as well
as operating system. The interactive applications and a meta-
user interface are contained in the top layer. This meta-user
interface provides metadata about the user interface and allows
a user to control the behavior of the middle layer. A flower-
like shape of the figure denotes open-adaptive components. The
miniature adaptation-manager shape denotes close-adaptive com-
ponents. Arrows denote information flow, and lines bi-directional
links.

DynaMo-AID DynaMo-AID (Dynamic Model-Based Used Interface
Development) (Clerckx et al., 2004) is a design process and a run-
time architecture to develop context-sensitive user interfaces that

3.1 Context-Aware Mobile User Interfaces 35

support dynamic context changes. DynaMo-AID is part of the
Dygimes (Coninx et al., 2003) User Interface Creation Framework.

Figure 3.5: DynaMo-AID Development Process (Clerckx et al., 2005).

Figure 3.5 shows an overview of the DynaMo-AID development
process. First designers have to specify declarative models de-
scribing the interaction. These models are: context-sensitive task
model describing the tasks user and application may encounter,
context model denoting what kind of context information can in-
fluence the interaction, context-specific dialog models that are au-
tomatically extracted from the task model for each context of
use, context-sensitive dialog model that is the context-specific di-
alog model with extra edges describing possible context changes,

36 State of the art

presentation model describing how the interaction should be pre-
sented to the user, and context-sensitive interface model that is
the set of previously model components.

Next, the models can be serialized to an XML-based high level
user interface description language in order to export the mod-
els to the runtime architecture. The designer can then render a
prototype and adjust undesirable aspects that came to light in
the prototype. After this iteration, the final user interface can be
deployed on the target platform.

FAME. FAME (Duarte & Carriço, 2006) is a model-based Frame-
work for Adaptive Multimodal Environments. The framework
expands on previous frameworks and models, capturing the pro-
cess of adaptive multimodal interface analysis. It is not intended
to be a tool for automatic application development.

The architecture proposed by FAME (see Fig. 3.6) uses a set of
models to describe relevant attributes and behaviors regarding
user, platform and environment. The information stored in these
models, combined with user inputs and application state changes,
is used to adapt the input and output capabilities of the inter-
face. To assist in the adaptation rules development, the concept
of behavioral matrix is introduced. The matrix reflects the behav-
ioral dimensions in which a user can interact with an adaptable
component.

Two levels are identified in FAME’s architecture. The inner level,
or adaptation module, comprised of the different models and the
adaptation engine, is responsible for updating the models and gen-
erating the system actions. The outer level, corresponding to the
multimodal application layer, is responsible for the multimodal
fusion of user inputs, transmitting the application specific gen-
erated events to the adaptation core, executing the multimodal
fission of the system actions, and determining the presentation’s
layout.

The adaptation is based in three different classes of inputs: user

3.1 Context-Aware Mobile User Interfaces 37

Figure 3.6: FAME’s architecture (Duarte & Carriço, 2006).

actions, application generated events and device changes, and en-
vironmental changes.

3.1.1 Analysis and discussion

The different proposals described follow a model-based approach for
describing interaction and developing context-aware user interfaces for
mobile computing. These approaches are focused on describing abstract
aspects of interaction as user tasks or the dialog between the user and
the system. Thanks to the use of MDE techniques (Schmidt, 2006)
some of the steps in the development of user interfaces can be auto-
mated making easier prototyping. However, in practice, the resulting
interface usually requires different changes at implementation level in
order to fit customer expectations (Pederiva et al., 2007). If the user
interfaces are modified at code level it is dificult to keep the consistency
for aspects such as adaptation that impact on many different elements
in the system. Considering the need to manipulate user interfaces at
a concrete level, we think that is is important to provide mechanisms

38 State of the art

for representing the interface at an abstraction level that represents the
result obtained but still hides the complexities of the underlying technol-
ogy. The definition of a model that is close to the technology has been
considered by different approaches. Model Driven Architecture (Miller
& Mukerji, 2003) defines a Platform Specific Model (PSM) as a view of
a system from the platform specific viewpoint.

Although these proposals presented recognize the need for a concrete
user interface model, efforts have been put on representing structural
aspects of the user interface, overlooking adaptation aspects that we
have taken into account. We propose to represent behaviour aspects in
the design interface level in order to represent how the different elements
are adapted when a particular situation is produced.

Research prototypes to support model-based user interface processes
resulted in tools where models can be constructed and mappings can be
calculated. However the use of graphical notations, giving the designer
an intuitive overview of the models is still limited (Van den Bergh &
Coninx, 2004). Most of the time not all the models are visualized equally
thoroughly or not visualized at all, and connections between distinct
models are left behind in design tools. Our approach provides graphical
tools for all the steps, guiding the designer in the development process.

These proposals consider the context of use as three dimensions:
the user, the platform and the environment. Our proposal introduces
user attention in the adaptation process as well as the three dimensions
mentioned. So, services can provide their functionality at different ob-
trusiveness levels according to the context of use.

3.2 Non-intrusive mobile computing

Mobile computing devices will increasingly deliver phone calls, reminders,
email, task lists, instant messages, news, and other time and/or place-
based information. These are contributing to feelings of information
overload and unexpected interruptions. Moreover, new sensor-enabled
mobile devices will permit applications that proactively deliver infor-
mation to people when and where they need it. Proactive promptings

3.2 Non-intrusive mobile computing 39

Figure 3.7: Input and output channels in mobile multimodal inter-
faces (Chittaro, 2010).

could contribute to feelings of interruption and annoyance.

Each time a device proactively provides information, it is compet-
ing for the user’s attention and possibly interrupting the ongoing tasks.
Research in this area are focused in determining a good time to inter-
rupting the user.

Figure 3.7 summarizes the many channels that can be currently ex-
ploited to send and receive information from a mobile device. Choosing
the appropriate modality or combination of modalities can help in re-
ducing the attentional demand. The approaches studied from this area
are detailed below.

Toward more sensitive mobile phone. Hinckley and Horvitz (Hinck-
ley & Horvitz, 2001) described sensing techniques intended to help
make mobile phones more polite and less distracting. They stated
that many interactions with cell phones can be demanding of cog-
nitive and visual attention. They modeled interruptibility by con-
sidering the user’s likelihood of response and the previous and
current activity.

Three sensors necessary to detect these factors were built in a
mobile computing device: a two-axis linear accelerometer for tilt

40 State of the art

sensing, a capacitive touch sensor to detect if the user was holding
the device, and an infrared proximity sensor that detected if the
head was in close proximity to the device.

The experiments performed include choosing an appropiate no-
tification modality for an incoming call and reducing attentional
demands to answer the calls.

SenSay: a context-aware mobile phone. Sensay (sensing & say ing)
(Siewiorek et al., 2003) is a context-aware mobile phone that mod-
ifies its behavior based on its user’s state and surroundings. It
adapts to dynamically changing environmental and physiological
states and also provides the remote caller information on the cur-
rent context of the phone user.

To provide context information SenSay uses light, motion, and mi-
crophone sensors. The sensors are placed on various parts of the
human body with a central hub, called the sensor box, mounted
on the waist. SenSay introduces the following four states: unin-
terruptible, idle, active, and the default state, normal. A number
of phone actions are associated with each state. For example, in
the uninterruptible state, the ringer is turned off.

SenSay can either eliminate unwanted interruptions or actively
notify the user of an incoming call by adjusting ringer and vibrate
settings. It also has te ability to relay the user’s contextual infor-
mation to the caller when the user is unavailable and it leverages
idle time periods by making call suggestions to the user based
on call history. The resuls of the experiment showed that clear
delineations can be made between different user states from the
data.

Interruptions during activity transitions. In this study (Ho & In-
tille, 2005), a context aware mobile computing device was devel-
oped that automatically detects postural and ambulatory activity
transitions in real time using wireless accelerometers. This device
was used to experimentally measure the receptivity to interrup-
tions delivered at activity transitions relative to those delivered

3.2 Non-intrusive mobile computing 41

at random times.

The hypothesis was the possibility that prompts from mobile de-
vices may be perceived as less disruptive if they are presented
at times when the user is transitioning between different physical
activities. The experiment was motivated by the casual obser-
vation that a transition between two different physical activities
may strongly correlate with a task switch, and a task switch may
be a better time to prompt the user with an interruption than an
otherwise random time.

In the study, notifications that were delivered during activity tran-
sitions were generally found to be more easily accepted by the par-
ticipants. In the case of everyday activities, user engagement in
activities is expected to be lower when transitioning between ac-
tivities, resulting in a high acceptability of notifications. Thereby
suggesting a viable strategy for context-aware message delivery in
sensor-enabled mobile computing devices.

3.2.1 Analysis and discussion

In Section 2.3 of the previous chapter, we introduced several initiatives
that have studied strategies to minimize the burden of interruptions.
These approaches are extended in this chapter, focusing on those that
are carried out in mobile devices. All of these initiatives have studied
strategies to minimize the burden on interruptions in mobile computing.
However, these initiatives are almost exclusively focused on evaluating
the adequate timing for interruptions, while user interface adaptation
or presentation mode has received few attention.

In this work, we focus on choosing the best interaction mechanism
for a given context of use. The techniques presented can be used in
conjunction with our approach to choose the better time for interrupting
the user.

42 State of the art

3.3 Attentive User Interfaces

Computing interfaces that are sensitive to the user’s attention are called
Attentive User Interfaces (AUIs) (Vertegaal, 2003). Attentive User In-
terfaces, by generating only the relevant information, can in particular
be used to display information in a way that increase the effectiveness
of the interaction (Huberman & Wu, 2007).

Roel Vertegaal of Queen’s University has been pioneering the design
of user interfaces that are attentive to their user. These attentive user
interfaces optimize the allocation of the attentive resources of users and
systems; they enable devices that do not bug you when you are busy.
Cues of user attention are applied to make devices more sociable and
efficient and to increase the bandwidth of user communication with and
via computers.

AUIs use specific input, output and turn-taking techniques to deter-
mine what task, device or person a user is attending to. This is done by
detecting a user’s presence, orientation, speech activity and gaze and
statistically modelling attention and interaction in order to establish
the relevance of information that could be presented to the user and
the urgency of doing so in the context of the current estimated activity.
The research in this area is detailed below.

A Framework for Attentive User Interfaces. Vertegaal et al. (Verte-
gaal et al., 2006) presented a framework for augmenting user at-
tention through attentive user interfaces. They extended the GUI
elements to interactions with ubiquitous remote devices, drawing
parallels with the role of attention in human turn taking. This is
shown in Fig 3.8. Windows and icons are supplanted by grace-
ful increases and decreases of information resolution between de-
vices in the foreground and background of user attention; Devices
sense whether they are in the focus of user attention by observ-
ing presence and eye contact; Menus and alerts are replaced by a
negotiated turn taking process between users and devices. Such
characteristics and behaviours define an attentive user interface.

The framework are based on five key properties of AUIs: (1) Sens-

3.3 Attentive User Interfaces 43

Figure 3.8: Equivalents of GUI elements in Attentive UI (Vertegaal et al.,
2006).

ing attention by tracking user’s physical proximity, body orienta-
tion and eye fixations, (2) Reasoning about attention by statis-
tically modeling simple interactive behavior of users, (3) Com-
munication of attention to other people and devices, (4) Gradual
negotiation of turns to determine the availability of the user for
interruption, and (5) Augmentation of focus with the goal of aug-
ment the attention of their users.

Models of attention in computing and communication. Horvitz
et al. (Horvitz et al., 2003) review principles for sensing and rea-
soning about a user’s attention with Bayesian models, and for
using these inferences to identify ideal decisions in messaging, in-
teraction, and computation.

On the one hand, in order to access and use information about
a user’s attention, they constructed by hand and learned from
data Bayesian models viewed as performing the task of an auto-
mated “attentional Sherlock Holmes”, working to reveal current
or future attention under uncertainty from an ongoing stream of
clues. Bayesian attentional models take as inputs sensors that
provide streams of evidence about attention and provide a means
for computing probability distributions over a user’s attention and
intentions.

On the other hand, in order that computers and communications

44 State of the art

systems have awareness of the value and costs of relaying mes-
sages, alerts, and calls to users, they have presented the Notifica-
tion Platform. The Notification Platform system modulates the
flow of messages from multiple sources to devices by performing
ongoing decision analyses. These analyses balance the expected
value of information with the attention-sensitive costs of disrup-
tion. The system employs a probabilistic model of attention and
executes ongoing decision analyses about ideal alerting, fidelity,
and routing.

Personal attentive user interfaces. Streefkerk et al. (Jan Willem Streefk-
erk & Neerincx, 2006) proposed to design personal attentive user
interfaces (PAUI) for which the content and style of information
presentation was based on models of relevant cognitive, task, con-
text and user aspects. They presented a user-centered design
(UCD) method for the iterative development and validation of
the proposed PAUI. In UCD, reasoning about prospected use of a
system gives valuable insights on and validity to user requirements
and collaboration styles.

The relevant cognitive aspects considered are attention, working
memory, task switching, and situation awareness. Regarding to
task aspects, they analyzed information access, prioritization, and
notification. Context aspects taken into account were location,
time and environment. Finally, the relevant user aspects were
preferences, duties, expertise and individual differences.

The approach presented to designing for attention was based on
the usability engineering approach which incorporates scenario-
based design (Carroll, 2000). The process starts with the defini-
tion of a concept, which is a general description of the proposed
system. Then, a scenario is drafted from the relevant usage con-
text. From this scenario collaboration styles are defined which
indicate how the system interacts with the user. Next, user re-
quirements are derived. These requirements will be based on the
relevant cognitive, task, and context aspects. Finally, collabora-
tion styles and user requirements form the basis of the features.

3.4 Conclusions 45

Assesment of the collaboration styles, user requirements and fea-
tures is done by validating them to objective quality criteria, such
as established HCI metrics.

3.3.1 Analysis and discussion

The different approaches in the attentive user interfaces area are mainly
focused on detecting or inferring attention. One of the problems we en-
countered is that the sensing technologies used for sensing attention
may be invasive. Another issue in which users can feel unreliability
is the prioritization of notifications, since automated services rank and
prioritize the information they receive. Also, user may want to un-
derstand why certain adaptations were made, especially when these
adaptations are not consistent over time, place and user. But, as men-
tioned in (Vertegaal et al., 2006), the most pressing issue relating to
the sensing technologies of attentive user interfaces is that of privacy.
How do we safeguard privacy of the user when devices routinely sense,
store and relay information about their identity, location, activities, and
communications with other people?

The presented approaches do not provide neither modeling lan-
guages nor tools for the development of this kind of user interfaces.
They lack methodological guidance and do not provide tool support for
the easy user interface definition. Our approach provides mechanism for
the design and development of user interfaces in a declarative manner
and different visualizations of the adaptation process.

3.4 Conclusions

This chapter presents the state of the art in the disciplines that are re-
lated to this work. These areas are really active these days with many
initiatives. However, there is a lack of proposals to provide mechanisms
that allow the development of user interfaces within the three aplication
domains. Modeling languages are used only to describe context-aware
user interfaces which do not take into account user attention. Towards

46 State of the art

creating systems that adapt their level of intrusiveness to the context
of use, researchers and designers face a design challenge in terms of cre-
ating devices that sense user’s state and attention in order to calculate
the better time for interruptions.

The present work provides a modeling language to support the de-
sign and development of mobile services that can be adapted to the
attentional demand. With the modeling language we can describe by
means of graphical notation the user interface elements that are in-
volved in the adaptation process, and the circumstances under which
they must be adapted. Since many approaches address the problem
of detecting or inferring attention as well as user’s state, our approach
is not focused on capturing this information but describing the way
interaction is adapted according to this.

Chapter 4

Designing unobtrusive mobile
interactions

The increasing of a wide variety of powerful mobile devices and the
heterogeneity among them introduces new challenges in the design

and development of mobile services. All these services compete for the
attentional resources of the user. Thus, it is essential to consider the de-
gree in which each service intrudes the user mind (i.e., the obtrusiveness
level) when services are designed.

Mobile interaction design introduces additional challenges compared
to the design of traditional desktop applications. Most of the new diffi-
culties for mobile interaction design are due to (1) the diversity of usage
contexts and their constant changes during user activities, and (2) the
specific characteristics that define mobile devices such as small screen,
lack of keyboard, etc (de Sá & Carriço, 2009). For the design of adapta-
tion, designers must define what changes in the user interface and why
these changes are produced.

This chapter introduces a methodological approach for the design of
adaptation aspects for mobile interaction. The goal of this method is to

48 Designing unobtrusive mobile interactions

provide a mechanism for defining the desired degree of automa-
tion for the interaction of a given mobile service. In order to sys-
tematize the development of such services and achieve a well-designed
system, the method is based on the user-centered design principles.

User Centered Design (UCD) (Mao et al., 2001) is a design approach
that focuses on the needs of the end user. It is a process in which the
needs, wants, and limitations of end users of a product are given exten-
sive attention at each stage of the design process. In UCD, reasoning
about prospected use of a system gives valuable insights on and validity
to user requirements and interaction styles. Using a scenario from the
application domain, interaction styles and user requirements are formu-
lated, based on the relevant aspects. Design begins with mockups and
storyboards, and progresses to interactive prototypes. User feedback is
gathered at every stage of the process, and the design is iterated on
until it meets the requirements of the end user. Because design changes
are applied to a prototype, iteration occurs very rapidly. The result is
a prototype that serves as an interactive specification for the product.

A User Centered Design paradigm is followed by ubiquitous com-
puting systems since computing resources become invisible to the user
providing a natural interaction with the system. For this reason, user
has to drive the design, helping to take decisions and validating the
design.

Figure 4.1 shows an overview of the stages in the development pro-
cess proposed in our approach. Mobile services are iteratively designed.
This means that design and development is iterative, with cycles of “de-
sign, test, measure, and redesign” being repeated as often as necessary.
In each design cycle, the adaptation of the services is put into practice
to obtain feedback from the users. The feedback obtained is used to
improve the original design. When no further changes are required, the
system specification is used to guide the implementation of the final sys-
tem. This chapter provides detail on the stages involved in the iterative
design of context-aware mobile services. It introduces the aspects to be
considered during design. Chapter 5 provides detail on the prototyp-
ing to evaluate the design and the implementation of the unobtrusive
mobile services.

4.1 Development method overview 49

ImplementationPrototypeDesign

User Feedback

Launch

Design revisions based
on feedback obtained

Analysis and
planning

Chapter 5Chapter 4

Figure 4.1: The stages proposed in the user-centered development process.

The remainder of the chapter is structured in the following man-
ner. Section 4.1 provides an overview of the development method. Sec-
tion 4.2 introduces the concepts used in the design stage to describe the
adaptation in an abstract manner. Section 4.3 provides tool support for
the definition of the system specification that is used as input for later
steps in the development process. Section 4.4 concludes the chapter.

4.1 Development method overview

This section provides a more detailed description on the development
method introduced in this work. The design stage is the initial stage
in our method (see Fig. 4.1). Since we are following a model-driven
approach, the specification obtained at design drives the later stages in
the development of the system. Thus, the design becomes central to
the development method.

The design method captures by means of models the concepts that
are relevant in the development of context-aware interaction. The ben-
efits of using a model-driven approach and the steps followed in the
development of unobtrusive mobile interaction are introduced below.

50 Designing unobtrusive mobile interactions

4.1.1 Why a modeling approach?

Human-Computer Interaction (HCI) community has considered the use
of models to describe interaction for long. In a context where the pos-
sible combinations of users, situations and devices are constantly in-
creasing, the implementation of ad-hoc solutions to cover all possible
combinations is not feasible. Sottet (Sottet et al., 2005) reports this
problem and stresses the relevance of Model Driven Engineering for the
modeling of interaction in Ubicomp systems. MDE proposes the use of
models to specify the desired aspects of a system, and then, derives the
actual code in an automatic way. The specified system can be automat-
ically generated for different platforms from an abstract description.

Abstraction is one of the fundamental principles of software engi-
neering in order to master complexity (Kramer, 2007). Our approach
makes use of modeling techniques in order to promote abstraction in
the context-aware user interface development. By abstracting technical
details, we can describe interaction components and contextual informa-
tion regardless of the particular technology used for the implementation.
In the case of the development of user interfaces, modeling techniques
are applied to obtain the following benefits (Silva, 2000):

• Models can provide a more abstract description of the UI than UI
descriptions provided by the other UI development tools.

• Models facilitate the creation of methods to design and imple-
ment the UI in a systematic way since they offer capabilities: (1)
to model user interfaces using different levels of abstraction; (2)
to incrementally refine the models; and (3) to re-use UI specifica-
tions.

• Models provide the infrastructure required to automate tasks re-
lated to the UI design and implementation processes.

Benefits of our method

The present modeling solutions for interaction usually describe which
information is presented to the user by means of an Abstract User In-

4.1 Development method overview 51

terface, and then define a discrete set of platforms, environments and
user types to determine how the interaction will be offered for each set
of context conditions (Calvary et al., 2003). But this discretization of
context conditions presents some problems:

• Similarities between the different context conditions are
not exploited. Context conditions are considered to be atomic
without taking into account the existence of shared limitations
and capabilities. For example, a mobile phone and a PDA both
have a limited screen, so the interaction with the system would be
more similar in these devices compared to the interaction offered
in a desktop computer or a device with no screen at all (see on
the left of Fig. 4.2).

Platform User Environment

Large-display
device

Mobile
device

PDA

No-screen
device

Novice

Visual
impaired

Expert

Noisy

With
people

Alone

Dark

Limited Screen

Share context
conditions

Explicit combination
of context

High Complexity

Figure 4.2: Problems of context condition discretization.

• All combinations of context conditions are considered ex-
plicitly to define the interaction. This implies specifying how
interaction is derived from an Abstract User Interface for each
platform-user-environment combination. For example, we must
consider how to produce the interface for a visually-impaired user
accessing the system from a mobile device platform in a noisy

52 Designing unobtrusive mobile interactions

environment. Therefore, the complexity of the definition of inter-
action increases with the number of context conditions considered
(see Fig. 4.2).

Since the promise of natural interaction of Ubicomp implies adapting
to a large number of context conditions, we propose decomposing the
context conditions in their features -capabilities and limitations-, and
using these features to describe the interaction in an abstract manner.
In this way, the above problems are solved. The features can be shared
among context conditions to indicate their commonalities and differ-
ences. Figure 4.3 shows an example of the proposal. Context X has the
features F1, F2, F3 and F4, and the last three features (F2, F3, F4)
are common to another context Y. We aim to express the interaction
as a function of features. In this way, we could support contexts X and
Y, and all another contexts that could be expressed as a combination
of these shared features.

Context

X

Y

F1

F2

F4

F3

F5

Context
Features

shared
features

Figure 4.3: Context decomposition into features.

For example, a noisy context and a user with an auditory impairment
require interaction not to be provided by means of audio. By considering
the specification in terms of features (as opposed to specifying for each
context), the duplication of efforts in the development are minimized

4.1 Development method overview 53

since both cases are expressed as the exclusion of the auditory feature.
An overview of the steps involved in the development process is provided
below.

4.1.2 Proposal overview

The development method proposed in this work supports the (1) design,
(2) prototyping and (3) implementation of unobtrusive mobile services.
The method defined involves three development roles: Analysts, Design-
ers and Developers. Each one makes decisions at different abstraction
levels. The steps performed in each phase of the cycle are detailed
below:

1. Design. In the design stage, the aspects that are considered rele-
vant for the final system are captured and they are used to guide
the implementation. In particular, the goals of this stage for the
development of unobtrusive mobile services are to (1) detect the
user needs to determine the obtrusiveness level required for the
interaction and (2) make use of the adequate interaction mecha-
nisms to provide the functionality according to the obtrusiveness
level. This information is captured in models. The models ob-
tained at this point are the input to the system implementation.
Further detail on the concepts captured in this stage is provided
in Section 4.2

2. Rapid prototyping and evaluation. Once designers consider
that the behavior defined for adaptation is the one desired, they
can use the models defined to elaborate a prototype. This pro-
totype can be used to evaluate the adaptation of the system to
one or several simultaneous factors. The obtained interface can
be automatically calculated from the models defined regardless of
the number of simultaneous factors considered. Feedback is gath-
ered from end-users in order to determine whether the proposed
mobile services improves the existing in terms of system usability
and interaction adaptability. Chapter 5 provides the guidelines to
perform the evaluation of the prototype.

54 Designing unobtrusive mobile interactions

3. Implementation. The models obtained at this point are the
input to the next stages of the UCD cycle. Once the models have
been adjusted to fit with the user needs, a final software solution
can be obtained. The derivation of a software solution from the
system specification is described in Chapter 5.

By capturing user needs and adaptation requirements for the user
interface in different models, model-based tools can be used to define,
validate and guiding the development of these unobtrusive adaptable
user interfaces. Once the models have been adjusted to fit with the
user needs, a final software solution can be obtained.

In the following section we provide further detail on the design stage,
describing the concepts that are captured to specify the unobtrusive
mobile services. These concepts are later used to obtain an implemen-
tation.

4.2 Design stage

In a mobile context where users are permanently connected to the en-
vironment, users may be interrupted often. Services should interact
with users in a way that is not disturbing for them. So, the goal of
the approach presented in this work is to manage the attentional de-
mand of services according to each user and the environment in order to
provide an unobtrusive interaction. In order to avoid service behavior
from becoming overwhelming, we propose a technique to adjust the way
attentional resources of each user are used by pervasive services.

In order to determine the adequate interaction technique to be used
in each service, the automation level required for the service and the
available interaction mechanisms are studied in an abstract manner.
Each service in the system is analyzed to determine to which extend
the interactions involved must intrude the user mind (the obtrusiveness
level). In this way, the degree of automation of the services can be
adjusted to the particular requirements of each user and the appropiate
interaction technique can be selected from the ones available. Some

4.2 Design stage 55

Compose
concrete

components

Select the
interaction
technique

Detect
user needs

Detect
services

and
contexts of

use

Decompose
interaction

Specify
obtrusiveness

level

Specify
the

architecture

User modeling Interaction specification Architecture
description

Design

Figure 4.4: The different tasks in the design method proposed.

tasks could require implicit interaction in order to allow the process to
be more fluent, while others would require the users to be completely
aware of the system actions.

This section introduces the modeling techniques applied for describ-
ing this unobtrusive mobile interaction by adjusting the obtrusiveness
level required for each service. Figure 4.4 details the tasks involved
during the design stage. The steps performed in this design phase are
detailed below:

1. User modeling. First, analysts are in charge of understand and
specify who the users will be by studying their cognitive, be-
havioral and attitudinal characteristics. Understanding behavior
highlights priorities, preferences, and implicit intentions (Sharp
et al., 2007). To understand the users and capture their needs
and preferences we use personas (also known as user profiles).
We have used personas since it provides features that directly ad-
dress specific user needs and it is an habitual technique used in
the design of user centered approaches. From the definition of
personas, analysts have to detect the services of the system to

56 Designing unobtrusive mobile interactions

achieve user needs. Services become the basic unit of work dur-
ing development. Then, the contexts of use are studied and
services are designed to support it and the user needs.

Once user needs, services and contexts of use are identified, design-
ers must define the way in which a pervasive service is accessed by
adjusting its obtrusiveness level according to the user needs
and contexts of use.

2. Interaction specification. Then, the commonalities and differ-
ences between adaptation aspects are specified by means of in-
teraction features. By considering the desired obtrusiveness
level, an adequate interaction mechanism is selected to pro-
vide the functionality according to the obtrusiveness level. Note
that depending on the persona and the current activity, a different
obtrusiveness level could be required for the same service. For ex-
ample, the obtrusiveness level for the notification of a supermarket
nearby can be changed depending on the user’s activity, but can
be also changed depending on the priority it has for the user (e.g.,
demanding more attention when the user is walking around the
supermarket or when the number of items to buy exceed a fixed
number).

Once interaction requirements are specified in an abstract manner,
designers have to describe the concrete interaction components
that are going to represent the user interface elements available
for a specific platform. Composing these concrete compo-
nents, interaction features are going to be supported for a specific
platform.

3. Architecture description. Finally, designers have to define the
way user interfaces are integrated with the different com-
ponents from the current and external systems. This allows to
express the dependencies of an application in terms of data and
functionality and detect the sources of context information that
can trigger user interface adaptation. In order to do so, the com-
ponents of the specific mobile platform used for the application
are captured in a model.

4.2 Design stage 57

The following subsections provide more detail about these design
concepts.

4.2.1 User modeling

The first step in the design phase is to understand the users and cap-
ture their needs and preferences. This information will determine the
obtrusiveness level required for a service. The tasks carried out in this
stage are highlighted in Figure 4.5.

Detect
user needs

Detect
services

and
contexts of

use

Specify
obtrusiveness

level

User modeling

Figure 4.5: The different tasks in the user modeling stage.

Personas are used to gather the relevant information of the audi-
ence to help drive design and detect common functionalities between
users. From the software engineering side, different mechanisms exist
in order to define the relationship between users and their performed
activities such as UML Use Case Diagrams (Rumbaugh et al., 1998),
ConcurTaskTrees (Mori et al., 2002), and Business Process Modeling
Notation (BPMN) (OMG, 2006). Personas are usually used in the de-
sign of user centered approaches. According to the users, personas give
a much more concrete picture of typical users providing features that
directly address specific user needs (Gulliksen et al., 2003). Thus, it is
interesting the use of them in this work where we have directly address
specific user needs.

Moreover, this work allows to express the user needs and contexts
of use in terms of obtrusiveness. In order to describe the obtrusiveness
level required for each service, we use the conceptual framework defined
in (Ju & Leifer, 2008). In this way we can define to which extent

58 Designing unobtrusive mobile interactions

an interaction must intrude each user’s mind and adapt the system
accordingly.

1. Detecting user needs

The first step in the adaptation of pervasive services is to understand
who the users will be. In order to do this we make use of personas.

Personas describe a target user of the system, giving a clear picture
of how they are likely to use the system, and what they will expect from
it (Brown, 2010). Personas have become a popular way for design teams
to capture relevant information about customers that directly impact
the design process: user goals, scenarios, tasks, and the like. Scenarios
are little stories describing how typical user tasks are carried out. They
help to anticipate and identify the decisions a user will have to make at
each step in their experience and through each environment or system
state they will encounter.

There is no standard format for personas, and different approaches
are offered. Regardless of the approach selected, personas should ex-
press what users need and what they expect. In this work, we follow the
notation defined in (Brown, 2010) to determine the needs of each user
and the functionality required. Aditionally, we introduce the obtrusive-
ness concept expressing this functionality in terms of obtrusiveness.

In this notation, the information is structured following three layers
of detail. Figure 4.6 shows the elements of a persona prioritized into
this three layers. Layer 1 contains the fundamental elements to estab-
lish user requirements. These elements are: the name of the persona,
some key features that distinguish the user group from others, a de-
scriptive dimensions that are individual scales representing knowledge,
tasks, interests and characteristics, the objectives and motivations of
the persona within the scope of the system and annotations of the data
sources. These elements can be complemented with information of the
other layers such as the concerns of the personas that will influence their
experience with the system, the scenarios and circumstances that set
the stage for an interaction between a user and a system, the personal
background, and a photograph of the persona.

4.2 Design stage 59

Layer 1:
Establishing
Requirements

Layer 2:
Elaborating
Relationships

Layer 3:
Making 'em Human

Name

Key Distinguishing

Descriptive
Dimensions

Objectives &
Motivations

Source

Concerns

Scenarios

Quotes

Personal Background

Photo

System Features

Demographic
Information

Technology Comfort

Figure 4.6: The elements of a persona prioritized into three layers

According to these elements that characterize a persona, we can de-
fine the functionalities and tasks that user needs to achieve their objec-
tives and motivations. Moreover, we can detect common functionalities
between personas and express these functionalities in terms of obtru-
siveness. Establishing the degree of user attention that a task need, we
avoid to develop overwhelming services.

Figure 4.7 shows an example of a persona for a Smart Home system.
This persona gives a detailed picture of a typical “busy user” that wants
to use Smart Home services for optimize his time. This excerpt of a
persona provides the basics of a user’s needs and behaviors. From this
persona, we deduce that the user has an advanced profile that wants
a Smart Home services for helping him in home tasks to do not waste
time, he wants be aware of pending tasks related to home and work and
he hopes to be alerted of the updates that services perform. He prefers
as many services as possible.

Some other personas could require other functionalities and different
information presentation and interaction with the services depending on
their needs. Thus, personas will guide subsequent adaptations in infor-
mation presentation, modality and interaction style. By the definition
of personas, we can detect functionalities and we can also determine
different contexts of use for the services. In the following section, we

60 Designing unobtrusive mobile interactions

Bob Berry · The busier
Familiar to Smart Home services

Behaviors Objectives

ACTIVITYLow High

BREADTH
One

service
Many
services

VENUE
One

channel
Many
channels

· Optimize time

· Don't forget tasks

· Feel in control of housekeeping

· Keep track the items to buy

· Keep the house up-to-date

· Record favorite programs

Scenarios Concerns

· How can I do not forget important tasks and

events?

· If the system do something, will it inform me

about it?

· I am very busy. How can I make sure I maintaing

the house up-to-date?

· Be aware of pending tasks

Bob has a busy lifestyle and he sometimes forgets important tasks he has to do such as deadlines

or meetings and other tasks that are less important but they are essential such as water the

plants, birthdays, etc. He hopes be aware of pending tasks and events when it was required.

· Optimize time

Bob usually goes walking to the work. He passes in front of several supermarkets backing home

but he never remembers that he has items to buy and he has to return later. He wants to be

aware that he has items to buy when he is nearby to the supermarket avoiding having to return

later.

Background

Bob is a single man who works in a big company

and he lives alone in a house with swimming pool.

He has 32 years old. He works a lot because ...

Figure 4.7: Excerpt of a persona

describe the different kinds of context that can be considered to adapt
the services.

2. Detecting services and contexts of use

Once user needs and the functionalities are identified, we have to deter-
mine the services that are going to give support to these functionalities.

For the example of persona defined previously (see Figure 4.7), the
services detected are: a shopping list to keep track the items to buy, an
agenda that notifies him important tasks, a video recorder that records
his favorite programs, and a supermarket notification to remember him
that he has items to buy.

Aside from the user needs, mobile information systems are charac-
terized by frequent changes in the context of the user. Different kinds of
context can be considered when a mobile system is developed (Maiden,
2009): computing context, environmental context, user context, and time
context (see Figure 4.8). The computing context is everything related
to computational resources, such as available networks, network band-

4.2 Design stage 61

Environment:
People,
devices,
things

Light,
temperature,

noise
Location

Time, day,
month,

year

User:
Knowledge,
background,

needs,
motivations

Activity

Platform:
Screen size,

screen
resolution

Connectivity

Sensors

Figure 4.8: Sources of contextual information

width, communication costs, and nearby computational resources. The
environmental context involves factors in the environment of the device
with which the user interacts, such as temperatures, noise levels, and
speed and lighting levels. It can include the time context information.
Time context captures information such as absolute time, date, and
day of the week. The user context is information about the user inter-
acting with the device, such as a profile (for example, age, expertise,
needs, motivations and preferences), location (for example, geographic
position), and proximity (for example, distance to another person).

In this work, the adaptation of the obtrusiveness level can be the
result of changes in these sources of contextual information. In partic-
ular, in this work we have taken into account contextual information
such as user location, mobile location or the engagement of the user in
other activities. According to this contextual information and the user
needs, services will be adapted in terms of obtrusiveness. For example,
if the user is engaged in an important activity, a notification will appear
in a subtle manner avoiding to disturb him/her.

In order to adapt the services and provide them in an unobtrusive
manner for each persona, we define the services in terms of obtrusive-
ness. In the following section we provide a detailed description of the

62 Designing unobtrusive mobile interactions

obtrusiveness concept as it has been defined for the present work.

3. Specifying the obtrusiveness level

The adaptation space is normally defined in terms of some relevant
properties for the system. For example, some user interface adaptation
approaches define their adaptation space in terms of the environment
and the platform properties (Calvary et al., 2003). When this criteria
is followed, different variants of the system are provided to the user
depending on whether a desktop or a mobile device (platform) is used;
of the system is used in a noisy or a quiet room (environment). Our
approach defines the adaptation space for the system in terms of obtru-
siveness.

With more devices added to our surroundings, users increasingly
seek simplicity (Maeda, 2006). Since user attention is a valuable but
limited resource, an environment full of embedded services must behave
in a considerate manner, demanding user attention only when it is re-
quired (Gibbs, 2004). In the mobile environment, interaction must be
adapted in order not to intrudes on user attention. It is the task of the
designer to determine which tasks the system can perform automatically
and which ones must the user be aware of.

We make use of the conceptual framework presented in (Ju & Leifer,
2008) to determine the obtrusiveness level for each interaction in
the system. This framework defines two dimensions (see Fig. 4.9) to
characterize implicit interactions: initiative and attention. According
to the initiative factor, interaction can be reactive (the user initiates the
interaction) or proactive (the system takes the initiative). With regard
to the attention factor, an interaction can take place at the foreground
(the user is fully conscious of the interaction) or at the background of
user attention (the user is unaware of the interaction with the system).

Other frameworks exist for the definition of implicit interactions (Bux-
ton, 1995; Horvitz et al., 2003). However, we found it very useful to
consider initiative and attention as independent concepts. In the case
of mobile interaction adaptation, automation and user awareness are
factors that usually vary independently from service to service.

4.2 Design stage 63

Figure 4.9: Framework for characterizing implicit interactions (Ju & Leifer,
2008).

According to our proposal, once services of the pervasive system are
defined based on personas, designers must indicate the obtrusiveness
level for each service depending on the user needs and the contexts of
use. For the application of our proposal, we introduce an order in the
values that define the initiative and attention axes. On the one hand,
the extreme values for the attention axis are Background and Fore-
ground. Since this axis represents user attention demands, we could
order these values as Background < Foreground to indicate that Fore-
ground interactions require more attention than Background interac-
tions. On the other hand, the initiative axis is related to automation,
so we consider that the Reactive value provides lower degree of automa-
tion than the Proactive value (i.e., Reactive < Proactive).

A consequence of introducing this ordering in our approach is that
we can express changes in the obtrusiveness level as increments and
decrements in the different axes. The only rule that must be followed
when dividing an axis is that the ordering must be preserved in each
axis for the defined values.

Figure 4.10 illustrates an example of different services in the obtru-

64 Designing unobtrusive mobile interactions

Tasks reminders such as meeting
notification, water the plants...

re
ac

ti
ve

p
ro

ac
ti

ve

awareslightlyinvisible

in
it

ia
ti

ve

attention

The user adds an item to the shopping list

The system adds an item to the
shopping list automatically

when it runs out

Bob Berry · The busier
Familiar to Smart Home services

Objectives

· Optimize time
· Don't forget tasks
· Feel in control of housekeeping
· Keep track the items to buy
· Keep the house up-to-date
· Record favorite programs

Mery Jane · The housewife
Novice in Smart Home services

Objectives

· Optimize displacements to the city
· Manage and remember tasks
· Organize the activities to perform
· Keep track the items to buy
· Remember when water the plants
· Dicrease workload

Provide a shopping list

Automate the shopping list

Provide video recorder

Notify supermarkets

Tasks reminders

Contextual help

Bob Mery

B

M

M

B

B

M

M

B

The system records a program
without notifying the user

The system informs the user about
a supermarket nearby

The user goes to the supermarket and
the system provides the shopping list

The system informs the user
about a program to record

Program recording
service (adapted
according to each user
need)

Figure 4.10: Services at different obtrusiveness level

siveness space for two personas. The different services were detected
from personas. In order to highlight the similarities and differences of
the needs and tasks of each persona we can create a simple table of
needs comparison, using circles with shaded pie pieces to indicate the
priorities. This table indicates the relative level or importance of a task
for each persona.

In this particular example, the initiative axis is divided in two parts:
Reactive and proactive. The attention axis is divided in three segments
which are associated with the following values: Invisible (there is no way
for the user to perceive the interaction), slightly-appreciable (usually the
user would not perceive it unless he/she makes some effort), and user-
awareness (the user becomes aware of the interaction even if he/she is
performing other tasks). Designers can divide the obtrusiveness space
into many disjoint fragments as they need to provide specific semantics.

In the example, we can see that the same activity for different per-
sonas makes sense to be in different obtrusiveness level because their
needs are different. For example, for Bob the system is more likely
to add an item to the shopping list automatically because he prefers

4.2 Design stage 65

to automate the shopping list. However, the same service for Mery
is completely aware since she prefers to add the items manually. An-
other example is the service to record programs. For Bob, this task is
really important because he does not have time to see his favorite pro-
grams and he prefers the system records automatically the programs.
For Mery, this is not very important because she has time to see the
programs she likes. She prefers that the system informs her about to
record a program. Although the general relevance of a service can be
the same for different users at design time, the relevance varies on the
different executions of the services. For example, we have considered
the notification service to be relevant for Bob and Mery, however, they
are not equally prone to be interrupted by the same kind of notifications
(e.g., watering the plants or meeting notifications).

Nevertheless, these preferences can also change from time to time
due to changes in the context. For example, the obtrusiveness level for
the notification of a supermarket nearby can be changed depending on
the user’s location, but can be also changed depending on the priority it
has for the user (e.g., demanding more attention when the supermarket
is closer or when items to buy exceed a fixed number).

4.2.2 Interaction specification

The following step is to make use of the adequate interaction mecha-
nisms to provide the functionality according to the obtrusiveness level.
The tasks carried out in this stage are highlighted in Figure 4.11

Compose
concrete

components

Select the
interaction
technique

Decompose
interaction

Interaction specification

Figure 4.11: The different tasks in the interaction specification stage.

On the one hand, for the selection of the adequate interaction mech-

66 Designing unobtrusive mobile interactions

anism we make use of Feature Models. Feature Models allow to describe
the essential aspects of each technology and the ways in which they can
be combined. In this way, the complexity introduced by the technology
heterogeneity can be mastered. By providing an intensional description
of the interaction possibilities (as opposed to an extensional description
of all the possibilities), we avoid having to define the interaction for each
combination of context, obtaining “common aspects” between context
factors.

On the other hand, the concrete interaction components that are
going to represent the user interface elements available for a specific
platform have to be described. The composition of these concrete com-
ponents is going to represent the final user interface. The following
subsections provide more detail on these aspects.

4. Decomposing the interaction

To make use of the interaction mechanism that supports the adequate
obtrusiveness level, this work proposes decomposing the context condi-
tions and user needs (adaptation aspects) in their features (capabilities
and limitations), and using these features to describe the interaction in
an abstract manner.

The Feature Model is introduced to reflect the terms in which the in-
teraction is perceived. With this model, analysts can capture functional
and non-functional aspects that are relevant to the system interaction.

Feature Modeling is a technique to specify the variants of a system
in terms of features (coarse-grained system functionality) (Czarnecki &
Kim, 2005). The relevant aspects of each platform and the possibili-
ties for their combinations are captured by means of the feature model.
Features are hierarchically linked in a tree-like structure through vari-
ability relationships. There are four relationships related to variability
concepts in which we are focusing:

Optional. A feature can be selected or not whenever its parent feature
is selected. Graphically it is represented with a small white circle
on top of the feature.

4.2 Design stage 67

Visual Auditory

Graphical Text Sound Speech

Haptic

Vibration

Interaction
Optional

Mandatory

Single-Choice

Status-based

Expression

Change-based

Figure 4.12: Interaction mechanisms Feature Model

Mandatory. A feature must be selected whenever its parent feature is
selected. It is represented with a small black circle on top of the
feature.

Or-relationship. A set of child features have an or-relationship with
their parent feature when one or more child features can be se-
lected simultaneously. Graphically it is represented with a black
triangle.

Alternative. A set of child features have an alternative relationship
with their parent feature when only one feature can be selected
simultaneously. Graphically it is represented with a white trian-
gle.

Besides describing the relevant aspects to the system, feature mod-
els have proven to be effective in hiding much of the complexity in the
definition of the adaptation space (Cetina et al., 2009). Adaptation
requirements can be described in a declarative manner instead of defin-
ing each particular combination. We make use of Feature Models to
describe the possible interaction mechanisms and the constraints that
exist for their selection. For example, according to our model showed
in Fig. 4.12 an auditory element must either be speech or sound. In the
same way, information or feedback can either be expressed change-based

68 Designing unobtrusive mobile interactions

(it reports only the changes) or status-based (it is continually informing
about the status).

The definitions that are contained in the feature model are by no
means considered universal. The Feature Model is intended to capture
the perspective that analysts have about interaction. Features are only
agreed abstractions that will be used to define the rest of the interaction
models from a specific perspective. We can define the visual concept
as “something that is perceivable using the eyes”. In the example, we
have considered that an interaction element is either visual or auditory,
which is obviuosly a simplification since many common widgets normally
combine these aspects (e.g., to offer feedback to the user).

In order to have a more precise notion of the role that the Feature
Model plays in the specification of interaction, the consequences derived
from the introduction of this model are detailed below.

Benefits of the decomposition into features

This work proposes the description of adaptation aspects by decompos-
ing them into features. Discretizing the existing spectra of platforms
is not an easy task. Mobile phones can be considered as a single plat-
form with similar characteristics; however, this includes different kinds
of devices: a conventional mobile phone, a phone with a GPS receiver,
a phone with accelorometers and multi-touch screens, etc.

We propose to define adaptation aspects such as platforms, user
needs or environments by the features that they support. As illustrated
in Figure 4.13, a mobile device platform can be defined as a platform
where the auditory, visual and compact is required. The same is valid
for users, environments or any other kind of context conditions. In
the example, the “noisy environment” is a kind of environment where
the auditory interaction is not allowed. Feature models allow us to
decompose the interaction in different aspects without explicitly having
to define adaptation for each possible combination of context conditions.
This avoid duplicating efforts in the development.

In addition, expressing adaptation aspects by means of features en-

4.2 Design stage 69

Platform

User Environment

Interaction
features

Large-display
device

Mobile
device

No-screen
device

Intuitive Auditory Visual Compact

Novice Visual
impaired

Noisy

Figure 4.13: Decomposition of context conditions

ables the interaction to be context-aware. When a context change is
performed, interaction is migrated to fulfill the requirements for the
new context. For example, if a noisy environment is entered by the
user, the auditory features are replaced by other features that are not
auditory. This is because the noisy environment does not allow auditory
interaction.

5. Selecting the interaction technique

Designers must define the appropiate interaction technique for each ob-
trusiveness level. This is done through the mapping between each frag-
ment in the obtrusiveness space into a set of interaction features rep-
resenting interaction mechanisms available. These set of features are
the interaction aspects preferred for a specific obtrusiveness level. Note
that the set of interaction features selected must fulfill the constraints
among them represented by their relationships.

Figure 4.14 shows an example of the selection of the adequate in-
teraction features for the obtrusiveness levels. For example, when a
service is in the proactive-aware space, interaction is offered in a graph-
ical and speech manner and the feedback is change-based which means
that only the changes are reported (these features are activated for this

70 Designing unobtrusive mobile interactions

Interaction mechanisms

attention

initia
tiv

e

reacti
ve

proacti
ve

invis. app. aware

Visual

Auditory

Text

Haptic

Vibration

Interaction

Sound

Graphical

Speech

Expression

Status-based

Change-based

Figure 4.14: Selecting the interaction feature for an obtrusiveness level.

obtrusiveness aspect).

6. Composing concrete components

In this step, designers have to define the concrete user interface com-
ponents that support the interaction techniques available defined by
features (previous step).

For representing the concrete user interface components, we assume
a user interface model that is organized in a tree structure. In this
structure, components can be contained in other components following a
hierarchical representation that allows an easier definition of UIs and an
easier support for animation, multitouch interaction and visual effects.
This interface model can be used for any platform that has a node-

4.2 Design stage 71

Group

Group
Widget

Status
Bar
Notif.

Text Button

Group

Speech

Figure 4.15: Concrete Interface model of the “Supermarket Notification”

based user interfaces such as Android, JavaFX1 or the iPhone. This
node-based user interface model provides an easier node substitution
(to adapt UIs at run-time) and an advanced management of interaction
events.

In our work, the nodes represent concrete interaction objects. They
are any UI component that the user can perceive such as graphical
objects, text, image viewers, UI controls, widgets, video viewers, etc.

An example of the concrete user interface model is shown in Fig. 4.15.
This example shows the user interface components for a supermarket no-
tification. Depending on the user needs and preferences, the notification
will be shown by either a widget (left branch) or a status bar notification
(right branch). If the status bar notification is chosen, speech interac-
tion could be used at the same time (it has an optional constraint).
The final user interface corresponding to the right branch of the tree is
shown at the right of the figure.

We have taken from the notation of Feature Models the relation-
ships (optional, mandatory, etc.) to indicate the constraints between
the nodes. The constraints defined on them determine when they can
be enabled or disabled according to the resource availability and the

1http://javafx.com/

72 Designing unobtrusive mobile interactions

interaction features activated.

In our approach we do not impose any particular semantics for nodes
and the relationships represented in the model. For example, nodes can
be visual elements and relationships can be visual containment relation-
ships but it is not mandatory. The particular semantics depend on the
final interaction components used.

Is worth noting that when a node is activated, all the constraints
defined in the model must be fulfilled. For example, the activation of a
node can trigger the deactivation of a sub-tree of the model. In order
to determine the impact of a change in the subset of active nodes, anal-
ysis tools such as FAMA (Benavides et al., 2005) can be used. FAMA
provides analysis capabilities to determine whether a selection of nodes
from a feature model is consistent with the constraints defined and pro-
pose possible changes in the case some constraint is no fulfilled.

Linking interaction to components

Designers must define how each feature in the interaction model is spec-
ified in the concrete interface model. To achieve this, each feature is
mapped into a set of nodes representing concrete interaction objects.
This determines which UI components must be used to support each
interaction technique in a concrete manner. This model also allows the
automatic generation of user interfaces for a concrete platform.

In this way, when an interaction mechanism will be activated for a
given service, corresponding concrete UI components will be activated
too.

Figure 4.16 shows the mapping between the interaction features and
the concrete user interface components. In this case, the interaction
should be produced in a status-based text manner (these features are
activated in the Feature Model). For these features, the corresponding
nodes in the concrete UI model will be activated. In particular for
this concrete example, it is activated the Group node that contains
the Status Bar Notif. node to support the change-based and graphical
interaction and the Speech node to obtain auditory feedback.

4.2 Design stage 73

Visual Auditory

Text

Haptic

Vibration

Interaction

SoundGraphical

Interaction Features

UI Components

Speech

Group

Group
Widget

Status
Bar

Notif.
Text Button

Group

Speech

Expression

Status-basedChange-based

Figure 4.16: Mappings between interaction features and concrete compo-
nents

4.2.3 Architecture description

The last step in the design phase is to describe the architecture compo-
nents of the system (see Figure 4.17).

Specify
the

architecture

Architecture
description

Figure 4.17: The task involved in the architecture description stage.

The modeling primitives introduced in the section above allow the
specification of unobtrusive services where user attention is the main

74 Designing unobtrusive mobile interactions

resource that we take into account. Using these primitives, require-
ments for determine the adequate interaction mechanisms in terms of
obtrusiveness are defined in an abstract manner and the concrete com-
ponents for a specific platform are specified. In order to determine the
way these components are integrated with the other components of the
system, designers have to describe the component architecture of the
whole system.

This architecture is also captured by means of models in order to
(1) explicitly state their rationale and (2) to use this knowledge for
automating the development in later steps. Further detail of this de-
scription is provided below.

7. Specifying the architecture

With this model, designers define the way user interfaces of the different
services are integrated with the different components from the current
and external systems. This allows to express the dependencies of an
application in terms of data and functionality and detect the sources of
context information that can trigger user interface adaptation.

In order to do so, the components of the specific mobile platform
used for the system are captured in a model. In this case, we have
defined a Domain Specific Language (DSL) (van Deursen et al., 2000)
to capture the components from the Android application framework. A
simple notation has been designed to represent the Android components
and their communication mechanisms. This notation uses concepts that
are familiar to Android developers in order to describe the setting in
which the user interfaces take place. When the approach is applied to
a different platform a new DSL must be defined.

We have chosen Android to apply our approach since adaptation
plays a key role in this platform. Android applications should consider
(1) different kind of context conditions, and (2) different hardware con-
figurations. On the one hand, much of the available Android devices
are capable of determining context information such as the user loca-
tion and orientation. On the other hand, Android devices of different
kinds are available today including mobile phones, netbooks or e-book

4.2 Design stage 75

readers. In addition, these devices are usually provided with different
screen sizes and input (e.g., physical or virtual keyboard).

Using this model, we focus on the general components defined for
a mobile architecture, instead of dealing with technical implementation
details of the platform. Some of these components are similar to com-
ponents defined by traditional software architectures. For example, the
notion of Service and Repository used in Android are the same than the
described by the Domain Driven Design (Evans, 2003). Additionally,
another specific components are included to support a mobile architec-
ture such as intents.

The Android platform provides loosely-coupled components such as
Activity, Service, Content Provider and Broadcast Receiver. An Ac-
tivity presents a visual user interface designed around a well-defined
purpose (e.g., viewing, editing, dialing the phone, taking a photo, etc.).
A Service provides functionality that is executed in the background
(e.g., a service that plays music). A Content Provider makes data
available to other applications and a Broadcast Receiver is a compo-
nent that reacts to announcements from other components. Broadcasts
can originate from system code (e.g., indicate that the battery is low)
or other applications and they are useful to support reactive behavior.
The communication mechanism defined among Android components is
based on Intents. An Intent is an abstract description of a desired
action (e.g., obtaining an image) regardless of the component that pro-
vides this functionality. The intent mechanism allows components from
different applications to integrate their functionality in an open manner.

Figure 4.18 illustrates the notation used to describe Android com-
ponents. The main components from the Android application frame-
work are represented in a graphical manner. The notation is aligned
with other common notations such as Business Process Management
Notation (BPMN) (OMG, 2006) or the Unified Modeling Language
(UML) (Rumbaugh et al., 1998) for the sake of intuitiveness.

The intent-based communication mechanism among components is
also represented in our notation (see Fig. 4.18, right) to indicate their
possibilities for the components to interact. The way in which compo-

76 Designing unobtrusive mobile interactions

Activity

Content
provider

Service

Intent filter

Intent launch
Intent broadcast

Broadcast receiver

Figure 4.18: Graphical notation used to represent components of the An-
droid application framework

nents handle intents is depicted in a different manner depending whether
we are describing the capabilities of a component to either launch or
receive a certain kind of intent. When the broadcast mechanism is
used, the previous notations are slightly modified to indicate so. The
capability of a component to launch an intent is depicted by means of
an arrow. If the broadcast mechanism is used, the arrow is decorated
with an asterisk to indicate that it can reach multiple receivers. Since
intents are used as abstract descriptions of an action, the target compo-
nent is not always known at design time. When an arrow connects two
components, it describes an explicit intent. However, arrows are not
forced to be connectec with a target element. In order to indicate that
a component can respond to a given intent we make use of the lollypop
primitive (used in UML for declaring an exported interface). When the
component is a broadcast receiver the lollypop is decorated to resemble
an antenna that can receive the broadcast.

Figure 4.19 shows the model for the components of a shopping list
and supermarket notification services using the notation introduced.
The system is composed by four activities corresponding to the user
interfaces provided. These activities have defined the intent filters
associated to the actions they can perform such as ADD ITEM or
VIEW ITEMS. Show Location activity launches the intent VIEW to
show the map of the location. Moreover, the Show Services activity
has the intent filter MAIN to mark this activity as the initial activity.
There are two content providers: one for offering the items of the shop-
ping list and another for offering the information to update the Widget
Supermarket receiver. There are also two services in the system: the
Shopping List service in charge of orchestrating the communication be-

4.2 Design stage 77

Figure 4.19: Component Architecture Model

tween the components and the Notify Supermarket service in charge of
launching a notification.

On mobile platforms, such as Android, it is difficult to precisely de-
termine the way in which the different interfaces are tight together just
by observing the final user interfaces since different components influ-
ence in the user interface navigation. The introduced model captures
relevant aspects for interaction such as (1) the components that require
a user interface (i.e., Android Activities), (2) the possibilities for user
navigation by means of intents, and (3) the different goals that each
user interface must fulfill (e.g., add items or view items). Having these
aspects separately, it is possible to define a combination of components
for each user, personalizing the system to each user.

Although the approach has been applied to the Android platform,
it has been designed to be general. Android-specific components are
decoupled from adaptation aspects. Thus, a different component model
(e.g., based on iPhone, Symbian, etc.) can be used instead without the
need for redefining adaptation.

78 Designing unobtrusive mobile interactions

4.3 Tool support

The design method proposed in this chapter defines a set of concepts
that are used to describe mobile service adaptation at different ab-
straction levels. Designers can combine these concepts to specify the
architecture components of the application, the services offered by the
system and the requirements for their interaction, the components of
the concrete interface and the deployment configuration for supporting
a given set of context conditions. A well-defined language must be used
for this specification to avoid ambiguities.

This work follows a model-based approach for the development of
mobile service adaptation. A model is a simplification of a system, built
with an intended goal in mind, that should be able to answer questions
in place of the actual system (Bézivin & Gerbé, 2001). Some examples
of models are a scale plane in a wind tunnel, a plan of a house or a user
interface described in a paper. In this case, we are dealing with descrip-
tions of service interaction adaptation to guide their development. A
modeling language can be defined as a set of models (Favre, 2004).

A metamodel is the description of a modeling language. A meta-
model defines which models are part of this language. Plenty of models
have been produced without metamodels or at least without making
explicit metamodels (e.g., in the form of a hand drawing in a mat).
Nevertheless, metamodels are useful to formalize and exchange models.
By defining a metamodel that formalizes the concepts presented in our
design method, we provide a clear rules about how to model service
obtrusiveness adaptation according to our approach.

The modeling community has developed several projects to support
the MDE paradigm under the Eclipse Modeling Project. Different tasks
comprised by the MDE approach are supported: definition of a modeling
language (metamodeling), description of a system using this language
(modeling). For the implementation of the graphical tool we have used
the possibilities offered by the Eclipse Graphical Modeling Framework
(GMF) which is part of the Eclipse Modelling Project. GMF provides a
generative component and runtime infrastructure for developing graph-
ical editors based on EMF (Eclipse Modeling Framework).

4.3 Tool support 79

This section formalizes the concepts used for describing unobtrusive
mobile services. We have implemented a graphical editor tool that
is based on Eclipse. Eclipse tools are defined by combining a set of
plug-ins with different functionalities. We have developed some plug-
ins to support the technique presented for the modeling of adaptation
in mobile interaction, and we have integrated existing plug-ins that
provide feature modeling capabilities that meet our requirements. These
descriptions (expressed by means of models) facilitate the definition of
dynamic aspects.

The following sections provide detail on the definition of the tools
and the graphical environment. The derivation of a software solution
that implements the requirements described by means of these models
is detailed in Chapter 5

4.3.1 The obtrusiveness level metamodel

The obtrusiveness space metamodel defines the concepts used for de-
scribing the obtrusiveness level of a service. Figure 4.20 shows an ex-
cerpt of the metamodel. The ObtrusivenessSpace is composed by the
InitiativeLevel and AttentionLevel elements that are the levels defined
by the designers to describe the different degrees in which interaction
with the system can be offered. ObtrusivenessElement is an abstract
metaclass to represent the elements that can be mapped to the obtru-
siveness space described. In this case, these elements are the services
defined in the Service metaclass. On the one hand, a service can have
several context conditions (ContextCondition element) and is associated
to one or more Personas (Persona element).

An editor is provided to support the definition of the obtrusiveness
space model using the EMF capabilities. Figure 4.21 shows the envi-
ronment of the editor.

4.3.2 The Feature Model metamodel

In order to model the interaction mechanisms and the concrete user
interfaces we have used Moskitt Feature Modeler (MFM). MFM is a

80 Designing unobtrusive mobile interactions

Figure 4.20: Obtrusiveness space metamodel

Figure 4.21: Obtrusiveness space editor

free open-source tool that is part of the Moskitt modeling suite2. MFM

2http://www.moskitt.org

4.3 Tool support 81

is defined as a set of plug-ins that we could incorporate to enhance our
tool support with feature modeling capabilities.

Figure 4.22: Feature Model metamodel

MFM provides features that are well suited for the use we are mak-
ing of feature models. Figure 4.22 shows the different concepts in the
Feature Model metamodel and the relationships among them. The
metaclass FeatureModel normally is used as the root element of Fea-
ture models. The Feature metaelement represents the different features
of the Feature model. Each feature can have attributes that are repre-
sented by the Attribute metaelement. Features are related among them
through relationships represented by the CardinalityBasedRelationship
metaelement. This metaelement is specialized in the different relation-
ships that the Feature model supports: Or, Alternative, Optional, and

82 Designing unobtrusive mobile interactions

Profile Image

Screen_size = not small
Profile Image

Profile
Image

[0, 1]
[0, 1]

Model detail

+ _

R
el

at
io

n
sh

ip
s

Fe
at

u
re

s

Figure 4.23: Different representations for interface nodes

Mandatory.

MFM is based on the generic formalization of the feature model
syntax defined by Schobbens et al. (Schobbens et al., 2007). According
with the results of their work, MFM incorporates support to multiple
graphical notations. Users can dynamically change the graphic no-
tation of feature models. This is very convenient when dealing with
large user interface models (see Fig. 4.23).

MFM supports customizing the notation at any time between the
following feature representations:

1. Feature with Attributes. Features are graphically represented
by means of rectangles. These rectangles are composed of two
compartments. The top compartment holds the feature name and
the bottom compartment holds the features attributes. These fea-
tures attributes follows the pattern: <name>:<type>=<value>.

2. Rounded Feature. Features are graphically represented by means
of ellipses. The feature name is at the ellipse center, whereas fea-
ture attributes are not shown.

3. Fixed Feature. Features are represented as Rounded features
which diameter depends of the feature name length.

4. Simplified Feature. Features are graphically represented by

4.3 Tool support 83

means of ellipses. Neither the feature name is visible, nor the
feature attributes. The ellipse diameter is set to a constant.

MFM also supports customizing relationship notation as follows:

1. Cardinality-Graphic Relationship. Relationships are repre-
sented by means of decorated lines and a flotating label. The line
decoration indicates the type of relationship. Optional relation-
ships are decorated with a white ellipse and mandatory relation-
ships are decorated with a black ellipse. The label follows the pat-
tern [min, max] to indicate the minimum and maximin cardinality
of the relationship. Both label and decoration are synchronized
between them.

2. Graphic Relationship. Relationships are represented by means
of decorated lines.

3. Cardinality Relationship. Relationships are represented by
means of lines and a flotating label.

4. Simplified Relationship. Relationships are represented only by
means of lines.

By varying the representation a designer can go from a detailed
description of the user interface nodes and their adaptation conditions
to a general overview of the user interface topology. In addition, MFM
allows to apply the different kinds of visualizations for different parts
of the model. This resulted very useful for focusing on specific parts of
the user interface while hiding the complexity for other parts.

Figure 4.24 shows the environment of the MFM.

4.3.3 The component architecture metamodel

The Android component metamodel defines in a formal manner the
modeling concepts of the Android application framework. The meta-
model is shown in Fig. 4.25. The metaclass App is the root element of

84 Designing unobtrusive mobile interactions

Figure 4.24: MFM environment

Figure 4.25: Android components metamodel

the component architecture model. The metamodel includes the defi-
nition of the Android components (Activity, Service, ContentProvider,
and BroadcastReceiver) and the communication mechanisms among them
(LaunchImplicit, LaunghExplicit, IntentFilter, and IntentBroadcast).

A graphical editor was provided for describing the components of
different Android-based applications. As Fig. 4.26 shows, the developed
tool incorporates a palette of Android components that can be labeled

4.4 Conclusions 85

Figure 4.26: Graphical editor for Android components

and linked with other components. The components defined are the
ones introduced in section 4.2.

With this tool developers can determine how an application interop-
erates with third party components (e.g., the contact list of the mobile
device) or mock components defined to be later replaced with the final
ones.

4.4 Conclusions

This chapter introduces a design method to specify services accord-
ing to the user needs and context conditions in terms of obtrusiveness
without duplicating efforts in the development. When defining mobile
interaction many alternatives exist for defining the static structure of
the user interface in a rapid manner (e.g., Visio stencils, paper proto-
types). However, this only allows to validate the aspect of the UI in a
particular moment. Our approach allows to visually represent how the
interface changes according to different conditions. By analyzing the
impact of different factors in the interface we can (1) produce specific

86 Designing unobtrusive mobile interactions

variants of the application to target a particular device kind, and (2)
define how the interface is adapted at run-time acoording to different
context conditions.

A DSL is defined in order to capture the architecture components
required for a specific platform.

The design method provided relies on proven techniques and frame-
works for context-aware modeling and implicit interaction design. The
following chapter make use of the models defined to provide a develop-
ment method for the unobtrusive mobile services.

Chapter 5

Prototyping and automating
the development

The modeling primitives defined in Chapter 4 are useful for cap-
turing user needs and interaction features for unobtrusive mobile

services. The present chapter provides a method to validate the models
defined and applies Model Driven Engineering (MDE) principles (Favre,
2004) to automate the development of context-aware mobile services in
a systematic way. Thanks to the MDE techniques, it has been possible
to traverse the gap between the high-level concepts used at design and
the technical details of the particular mobile platform that is used for
the system implementation.

The presented development process has been designed to allow a
clear separation of concerns and minimize the impact of changes in
requirements. On the one hand, the elaboration of the different models
can be achieved by different development groups with different skills.
On the other hand, the process follows an iterative and incremental
approach for development, so the complexity of requirements changes
can be handled effectively.

88 Prototyping and automating the development

ImplementationPrototypeDesign

User Feedback

Launch

Design revisions based
on feedback obtained

Analysis and
planning

Chapter 5Chapter 4

Figure 5.1: The stages proposed in the user-centered development process.

Fast-prototyping techniques are presented in order to evaluate the
design and obtain feedback from end-users. Figure 5.1 shows an overview
of the stages in the development process proposed introduced in Chap-
ter 4. The unobtrusive mobile services are iteratively designed. The
feedback obtained from the prototype is used to improve the original
design. When no further changes are required, the system specification
is used to guide the implementation of the final system. The design
stage was introduced in Chapter 4. This chapter provides detail on the
stages involved in the prototype and the implementation of unobtrusive
mobile services.

The remainder of this chapter is structured as follows. Section 5.1
provides guidelines to validate in practice the designs obtained with
the method. Section 5.2 describes the way in which the development
process is automated. Finally, Section 5.3 concludes the chapter.

5.1 Prototyping to validate the design

The previous chapter introduced a design method for the definition of
unobtrusive context-aware mobile services. However, when a context-
aware system is designed, there is no guarantee that the resulting adap-
tation could met the user expectations. The User Centered Design cycle
suggest to perform simulations of a scenario before it is finally imple-
mented. Simulations rely on predefined tasks and generally use quan-

5.1 Prototyping to validate the design 89

titative analytic methods including measuring aspects such as timing,
error rates, and workload (Hagen et al., 2005).

This section provides techniques based on User Centered Design
(UCD) for the evaluation of the impact for users of a context-aware
mobile services when they are performed in the real world. De Sá and
Carriço (de Sá & Carriço, 2006) showed that prototyping techniques
can be determinant during the consequent evaluation stages, allowing
users to freely interact with the system, improve them and use them on
realistic settings without being misled. In this section we introduce a
technique for the early-stage evaluation of mobile services by means of
fast-prototyping. Our research results show that even through the pro-
posed prototypes can be built quickly, they are capable of reproducing
a level of user experience that is considered to be very close to what
users expect from a final system. Thus, flaws in the adaptation design
can be detected before efforts are put into the development of the final
system.

5.1.1 Requirements for the evaluation

Researchers have shown that evaluating ubiquitous systems can be dif-
ficult (Neely et al., 2008). Many factors required for the evaluation
of a system cannot be reproduced in a lab, but in-situ evaluation is
also challenging and not feasible in many cases. Since a one-size-fits-all
approach for evaluating ubiquitous systems is unrealistic (Neely et al.,
2008), we have analyzed the specific application domain we are targeting
and propose an evaluation model that fits the detected requirements.
We detected the following challenges for the evaluation of unobtrusive
context-aware mobile services:

Continuos evolution. If a change requirement is detected such as an
interaction mechanisms for a task are not the most adequate, the
system need to be changed. This evolution requires performing an
evaluation of the system and the adaptation at an early stage of
the development process that is both accurate (it provides a good
estimation of the benefits to be obtained) and easily developed (it

90 Prototyping and automating the development

requires minimal effort).

Concurrent environment. The evaluation of an ubiquitous system
must take into account the integration with the rest of the ac-
tivities that the user is involved in (Neely et al., 2008). This is
especially relevant for mobility, where users can be interrupted
and engaged in other tasks at the same time. Thus, a mobile ser-
vice must be evaluated considering the interleaving tasks in which
the user participates.

Physical conditions. Due to environmental changes, physical condi-
tion could get worse for users to perform an interaction (Yamabe
& Takahashi, 2007). In mobile computing scenarios, users move
around and the environment dynamically changes according to
that. Thus, interaction should be evaluated taking into account
these physical conditions.

Evaluation from the user perspective. Software usability and in-
teraction adaptation are the key factors that determine the user
experience in mobile user interface adaptation (Yamabe & Taka-
hashi, 2007). These aspects are affected by different factors such
as the kind of mobile device used or the way in which the service
is presented. When evaluating interaction adaptation, both per-
spectives should be considered: user perception of the adaptability
and the productivity increase for the system.

To fulfill the above requirements, we propose the use of early-stage
prototypes. Even at early-stage prototypes, the need for more detailed
and carefully built prototypes that offer resembling pictures of final
solutions and their characteristics are suggested (de Sá & Carriço, 2009).
These techniques enable iterative design, and provide frequent feedback
about the potential of the designs.

5.1.2 Fast-prototyping for mobile service adaptation

The overall approach for the fast-prototyping of mobile service adapta-
tion is illustrated in Figure 5.2. The goal of our evaluation method is

5.1 Prototyping to validate the design 91

Prototype

Define
scenarios

Develop
screen

mock-ups

Evaluate
the user

experience

Figure 5.2: The different tasks in the evaluation method proposed

to immerse the user in an environment that makes the user feel as if
he/she is using the final system despite the fact that a non-functional
prototype is being used. The first step in the evaluation is to define a
scenario according to the user needs and the adaptation that are be-
ing designed. The scenario should consider the concurrent nature and
physical conditions of mobile environment. According to this scenario,
users are provided a script to guide their actions.

An Android mock-up is designed for each user interface offered in the
different contexts. These mock-ups provide the user with the expected
interaction given a set of context conditions and user needs. Since the
users have to follow a script that conforms a specific role, it is easy to
anticipate the results that can be obtained.

The adaptation of interaction for each service is simulated using
Wizard of Oz techniques (Dahlbäck et al., 1993). An operator provides
the current user interface according to the context using another device.
The operator is in charge of providing the correct user interface depend-
ing on the context of the user. In this way, the user is immersed in an
environment that behaves like a working system with context-aware
capabilities, but it is much easier to produce.

We have followed the steps described below in order to obtain fast-

92 Prototyping and automating the development

prototypes for context-aware mobile services.

1. Define a scenario where interaction adaptation is reflected.
A specific scenario is defined to illustrate the way interaction is
adapted in terms of obtrusiveness. In the scenario, several ser-
vices are presented at different obtrusiveness level depending on
the user needs and context conditions. For example, we can de-
fine a video recorder service presented first in a reactive-invisible
manner because it begins to record automatically in reaction to
the user leave, and then the same service proactively notifies the
user about to record the program in a subtle manner.

2. Define the screen mock-ups for each user interface. De-
pending on the obtrusiveness levels considered, the elements can
be represented in a different manner according to the user needs
(e.g., as taskbar notification). Links between screens must be pro-
vided in a decoupled manner. The screen to be shown depends
on the current context of the user and its needs.

3. Evaluate the user experience. The screen mock-ups support
the interaction that is required for the scenario defined. Eval-
uating the prototype composed by the mock-ups in naturalistic
situations is essential to find key issues to be taken into account
in the next iteration. The prototypes enable developers with a
quick and inexpensive way to evaluate and assess the design ideas
without implementing real and functional solutions.

For the development of Android mock-ups two opposed requirements
are faced. We want mock-ups to be realistic but we also want them to
be very easy to develop. To face both requirements we considered the
use of a set of Android utilities for the development of Android GUI
applications. There are different end-user tools to visually design the
way the app looks instead of writing code. Some of these tools are the
App Inventor for Android1 and the DroidDraw UI Designer2. Using

1http://appinventor.googlelabs.com/about/
2http://www.droiddraw.org

5.1 Prototyping to validate the design 93

these tools, we can quickly design UI layouts and the screen elements
they contain, with a series of nested elements. In particular, Android
has an XML-based layout file for each user interface. So, user interfaces
can be easily defined by means of this layout file.

Specifically, to develop the Android mock-ups we have used the ADT
Plugin for Eclipse that offers a layout preview for the XML file. Also,
we used DroidDraw UI Designer to create the XML file since it is a
graphical user interface builder for the Android platform which gener-
ates the XML files from UI designs. In particular, we used both utilities
to achieve a look-and-feel for Android. Listing 5.1 shows an excerpt of
an XML prototype developed.

Listing 5.1: Excerpt from the Android prototype.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android
"

android:orientation="vertical"
android:layout_height="fill_parent"
android:layout_width="fill_parent">

<TextView
android:id="@+id/SupermarketName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Mercadona"
android:textStyle="bold"
android:layout_marginLeft="10dip"
android:layout_marginTop="5dip">

</TextView>
<TextView

android:id="@+id/SupermarketAddress"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Calle del Gorgos, S/N, 46021 Valencia"
android:layout_marginLeft="10dip">

</TextView>
<ImageView

android:id="@+id/Map"
android:layout_height="wrap_content"
android:layout_width="wrap_content"

94 Prototyping and automating the development

android:layout_marginTop="15dip"
android:scaleType="center"
android:src="@drawable/mapa2">

</ImageView>
</LinearLayout>

The code illustrated above is a layout file that represents one screen
mock-up. Each layout file must contain exactly one root element. Once
the root element is defined, additional layout objects or widgets can be
added as child elements to gradually build a View hierarchy that defines
the layout. Figure 5.3 shows some mock-ups of the Android prototype.
The rendering of the XML layout file showed above is shown in the top
right of the figure.

Figure 5.3: Android prototype

5.1 Prototyping to validate the design 95

Figure 5.4: Some screen mock-ups of the prototype

Another screen mock-ups of the prototype are shown in Figure 5.4.

The proposed technique makes it easy to apply the scenario defined
in an environment that is close to the real one since it does not require
much infrastructure. To apply this approach we only need WiFi con-
nectivity, a mobile device and a physical environment that is similar to
the real one.

In order to obtain valuable feedback from users a questionnaire has
been used. The questionnaire uses questions from the IBM Post-Study
questionnaire (Lewis, 1995) in conjunction with the questionnaire de-
fined by Vastenburt et al. (Vastenburg et al., 2009). On the one hand,
IBM Post-Study is a questionnaire that measure user satisfaction with
system usability. On the other hand, some questions were taken from
the Vastenburg questionnaire to evaluate messages acceptability and
interaction adaptation. Also, we included a NASA task load index
(TLX)3 test. This test assesses the user’s subjective experience of the
overall workload and the factors that contribute to it. An example of
the application of the evaluation technique can be found in Chapter 6.

3http://humansystems.arc.nasa.gov/groups/TLX/index.html

96 Prototyping and automating the development

5.2 Automating the development

Implementation

Generate
arquitecture
components

Generate
user

interfaces

Figure 5.5: The different tasks in the implementation stage proposed

One of the main reasons for following a Model Driven Engineering
(MDE) development is that it is focused on automation. Adaptation
requirements change quite often, and systems need to evolve accord-
ingly. By automating the development process, the system can adapt
to requirement changes without losing quality. With the adequate tool
support, changes in requirements can be mapped automatically to the
particular technology the system relies on, facilitating its evolution.

Provided that modeling concepts are defined in a precise way, mod-
els can be transformed automatically into new models or code by means
of model transformation techniques. This enables automation in sys-
tem development since software artifacts can be derived in a system-
atic way. Many technologies and standards give support to this de-
velopment paradigm. The Object Management Group (OMG) defined
Model Driven Architecture (MDA) (Miller & Mukerji, 2003) to provide
support to these ideas with standards for metamodeling and the def-
inition of model transformations. Either following MDA or any other
paradigm based on MDE ideas, software development can be improved
by the raise in the abstraction level that the use of models provides.
Figure 5.5 shows the tasks carried out in this implementation stage.

5.2 Automating the development 97

From the models obtained in the design stage we can generate the ar-
chitecture components of the system and the user intefaces.

The following sections describe the definition of the architecture
metamodel and the mechanisms applied for obtaining the architecture
components of the system and the user interfaces of the software solu-
tion.

5.2.1 Architecture metamodel

MDE proposes the use of metamodels to formalize concepts and their
relationships. A metamodel defines the constructs that can be used
to describe systems. Using a metamodel, system descriptions become
unambiguous at least at syntactic level. This makes the descriptions
machine-processable.

The metamodel of the system architecture has been defined
as the first step towards the automation of the development process.
This metamodel captures the concepts defined in Chapter 4 such as
the Obtrusiveness Space or the interaction features, and the constraints
between them.

Figure 5.6: Excerpt from the system architecture metamodel

98 Prototyping and automating the development

Figure 5.6 shows a diagram for the system architecture metamodel.
The metaelement ObtrusivenessSpace is composed by the InitiativeLevel
and AttentionLevel elements that are the levels defined by the designers
to describe the different degrees in which interaction with the system can
be offered. ObtrusivenessElement is an abstract metaclass to represent
the elements that can be mapped to the obtrusiveness space described.
In particular, these elements can be services defined in the Service meta-
class and interaction mechanisms defined in the InteractionTechnique
metaclass. On the one hand, a service is defined for one or several
Personas, it can be composed by different components (Component el-
ement) and it can have several context conditions (ContextCondition el-
ement). The Component element extend the Component element from
the Android components metamodel. On the other hand, an interaction
technique can be related to several interaction features from the feature
model of interaction mechanisms. This is represented by the element
InteractionFeature. Note that this element extend the Feature element
from the Feature Model metamodel in order to allow other elements
in the architecture metamodel to be linked to them. These interaction
features can be linked to several concrete nodes (ConcreteComponent
element) that represent the concrete interaction mechanisms. This ele-
ment extend also the Feature element because we have used the notation
of feature models to represent the nodes.

By using the constructs defined in the metamodel, different system
adaptations can be modeled. Since the concepts used for this description
have been formalized, the resulting models can be processed automat-
ically by different MDE tools. For the definition of the architecture
metamodel, concepts have been formalized using Ecore. Ecore, part of
the Eclipse Modeling Framework4 (EMF), is a language targeted at the
definition of metamodels with precise semantics. EMF provides tool
support for the definition of metamodels and the edition of models.

We have defined our metamodel as the first step towards the automa-
tion of the development process. The use of EMF enables metamodels
to be machine-processable. This allows other EMF-compliant tools to

4http://www.eclipse.org/modeling/emf

5.2 Automating the development 99

manipulate the specifications with different purposes (check properties,
define graphical editors for the specification, etc.). In particular, we
make use of code generation techniques in this work to automate the
development as it is illustrated in the following sections.

5.2.2 Glue code generation

The development process generally involves several repetitive tasks. For
our target technology, the definition of each Component involves actions
like the definition of an Android Activity to produce the user interface
and the definition of the component in the Android Manifest config-
uration file. This boilerplate code can be automatically generated by
the information captured in system models. In this way, developers can
focus on implementing only relevant business-logic.

We provide code generation capabilities for the development method
described in the present work. This development considers Android as
the target technology, but the approach followed allows developers to
define different mappings to target other technological platforms.

From the description of a system based on the defined metamodel,
source code can be generated with model-to-text transformation tech-
niques. Model-to-text generation tools provide mechanisms to traverse
models and generate the code associated with them. We applied model-
to-text transformations to formalize the development process defined in
Section 4.1. Glue code generation has been implemented using XPand
templates from the Model-to-Text (M2T) project5, which is part of the
Eclipse Modeling Project. The application of templates to models is
similar to the way templates are used to generate dynamic web pages in
the web application development area. Model elements can be iterated
and pieces of code can be produced instantiating them with values ob-
tained from the model. XPand is a statically-typed template language
with several features that simplify the code generation:

Polymorphic template invocation. Inheritance relationships in the
source metamodels can be leveraged when templates are defined.

5http://www.eclipse.org/modeling/m2t

100 Prototyping and automating the development

Given a set of modeling elements that are involved in inheritance
hierarchy, specific behaviors can be easily defined for the different
sub-types. When multiple templates are available for an element,
the code generation engine applies the template variant that is
more specific to the current kind of element.

Functional extensions. Metamodels can be extended in a non obtru-
sive manner to obtain derived information easily. This information
is accessed as if it were part of the metamodel. However, these
extensions do not affect the metamodel since they are only acces-
sible during the transformation. Thus, generation rules are more
readable and less dependent on the metamodel structure, which
improves the generator maintenance.

A flexible type system abstraction. XPand provides support for some
built-in types including simple types (String, Boolean, Integer,
and Real) and collections (List and Set). In addition to built-in
types, the type system can be extended with the concepts defined
in the different metamodels.

Model transformation and validation facilities. In order to ensure
that the models that are used for the generation meet certain con-
ditions, they can be analyzed prior to the transformation is ap-
plied. By validating the input, we can ensure that the generator
does not find unexpected information (e.g., components with the
same name that would lead to a nameclash when code is gen-
erated). Furthermore, facilities are provided to transform these
models in order to fix the problems detected.

The following listing 5.2 shows a general structure of template files
in order to introduce the basics of the XPAND language. A template
file consists of any number of IMPORT statements, followed by any
number of EXTENSION statements, followed by one or more DEFINE
blocks (called definitions).

Listing 5.2: General structure of a template file.

«IMPORT meta::model»

5.2 Automating the development 101

«EXTENSION my::ExtensionFile»
«DEFINE javaClass FOR Entity»

«FILE fileName()»
package «javaPackage()»;

public class «name» {
// implementation

}
«ENDFILE»

«ENDDEFINE

The basic statements used in the XPAND language are:

IMPORT. This statement is used to import a namespace in order to
use the unqualified names of all types and template files contained
in that namespace.

EXTENSION. Extensions provide a flexible and convenient way of
defining additional features of metaclasses. For example, it is used
to specify additional behavior such as query operations, derived
properties, etc.

DEFINE. The DEFINE block is the smallest identifiable unit in a
template file. By means of the DEFINE statement we can declare
de rules in our template.

FILE. The FILE statement defines the output file for the code gener-
ation.

EXPAND. The EXPAND statement ”expands”another DEFINE block
(in a separate variable context), inserts its output at the current
location and continues with the next statement. This is similar in
concept to a subroutine call.

Iterators. XPAND use iterators primarily for iterating collections of
model elements from a source model. The iterators available are:
FOR, FOREACH, and IF.

102 Prototyping and automating the development

The current implementation provides code-generation capabilities
for two different aspects: (1) the architecture components for the sys-
tem, including the Android Manifest and the different Android classes
that are required for the implementation of the different components
from the component architecture model and (2) the different user inte-
faces for a specific configuration. A detailed description of the artifacts
generated is provided below.

1. Android components

The first step in the development of the system is to generate the
Android components of the whole application defined from the
component architecture model. Figure 5.7 describes the elements that
are produced by the transformation from the model.

Android
Model

Android
Manifest Activity Service Broadcast

Receiver
Content
Provider

AndroidManifest.xml NameActivity.java NameService.java NameReceiver.java NameProvider.java

Figure 5.7: Global schema of the elements generated by the transformation.

The listing 5.3 shows the code of the main template that is used
for orchestrating the generation of all the components. The excerpt of
the transformation declares the main rule by means of the DEFINE
keyword. The main transformation rule is used to generate the com-
ponents of the application. In the example, we show the rule that is
applied to the whole system. The rule named main is defined for the

5.2 Automating the development 103

App element of the Android components metamodel (see the meta-
model in Section 4.3). By means of the EXPAND command, the initial
structure of the application, the Android Manifest file and the rest of
Android components are expanded for the generation.

Listing 5.3: Excerpt of the code generation template that produces the
calls to all the components of an Android application.

«IMPORT AndroidModel»
«EXTENSION template::GeneratorExtensions»
«DEFINE main FOR App»

«EXPAND template::InitialStructure::initialStructure»
«EXPAND template::Manifest::manifest»
«EXPAND template::Activities::activities»
«EXPAND template::Services::services»
«EXPAND template::BroadcastReceivers::broadcastReceivers»
«EXPAND template::ContentProviders::providers»

«ENDDEFINE»

The listing 5.4 shows the code of one of the templates that is used
for generating the Android Manifest. The excerpt of the transformation
declares the manifest rule. The manifest transformation rule is used
to generate the fragment of the Android Manifest that is associated
to each component. In the example, we show that this rule is also
applied to the whole system since it is defined for the App element of the
Android components metamodel. Generation rules control the creation
of new files (e.g., source code, configuration files, resource descriptions,
etc.) and the generation of their correspondent content. The FILE
statement defines the output file for the code generation (in the example,
an AndroidManifest.xml file is generated into a folder named after the
App).

Listing 5.4: Excerpt of the code generation template that produces the
Android Manifest file.

«IMPORT AndroidModel»
«EXTENSION template::GeneratorExtensions»
«DEFINE manifest FOR App»
«FILE name + "/AndroidManifest.xml"»
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res

/android"

104 Prototyping and automating the development

package="«generatePackageName(name)»"
android:versionCode="1"
android:versionName="1.0">

<application android:label="@string/app_name">
«EXPAND activitiesDeclaration FOREACH activities()»
«EXPAND servicesDeclaration FOREACH services()»
«EXPAND broadcastReceiversDeclaration FOREACH

broadcastReceivers()»
«EXPAND providersDeclaration (name) FOREACH

providers()»
</application>

<uses-sdk android:minSdkVersion="3" />
</manifest>
«ENDFILE»
«ENDDEFINE»

The rest of the rule is a code template with static and dynamic
parts. The static parts of code are transferred to the generated code
directly. In the example template, the static parts represent aspects
that are common to any Android manifest, such as the XML header or
the application declaration. The dynamic code is calculated for each
instance to which the rule is applied. Dynamic expressions (defined
between angle quotes) are used for capturing the required information
and expressing it according to the target technology. For example, the
package name for the Android Manifest is obtained from an auxiliary
function generatePackageName that is defined as an extension of the
metamodel. The extension statement in the example is in charge of
importing the extension of the metamodel that implements the gener-
atePackageName operation.

The generation of the rest of the Android Manifest is carried out
by different rules, each one for a specific kind of component. For exam-
ple, activitiesDeclaration rule is applied to Activity components for the
generation of the activity statements. Listing 5.5 illustrates the defi-
nition of the activitiesDeclaration rule applied to Activity components.
This rule declares the activity in the manifest and their intent filters
according to the model defined. For each intent filter declared in the
model, the rule adds an intent filter named with the name declared in
the model. If the component has the Main intent filter, the default

5.2 Automating the development 105

category android.intent.category.LAUNCHER is also added. This de-
termines that the activity can be launched by the user directly. The
template of this example makes use of conditional statements (see the
IF, ENDIF instructions) to add the default category for the generated
intent.

Listing 5.5: Generation rule that produces the Android Manifest frag-
ment corresponding to Activities.

«DEFINE activitiesDeclaration FOR Activity»
<activity android:name="«generateClassName(name, "

Activity")»">
«EXPAND intentFilters FOR this»

</activity>
«ENDDEFINE»

«DEFINE intentFilters FOR Component»
«IF intents.typeSelect(IntentFilter).size > 0»
<intent-filter>
«FOREACH intents.typeSelect(IntentFilter) AS

intentFilter»
<action android:name="«intentFilter.name»" />
«IF intentFilter.name == "android.intent.action.MAIN"

»
<category android:name="android.intent.category.

LAUNCHER" />
«ENDIF»

«ENDFOREACH-»
</intent-filter>

«ENDIF»
«ENDDEFINE»

The code generation supported in this part automates the defini-
tion of the Android Manifest and the Java classes that are required
for the implementation of the different components according to the
models defined in Section 4.1. Intent processing code is also gen-
erated. Although full code generation is not provided for component
implementation, the provided code skeletons let developers focus on the
implementation of the business-logic behavior, avoiding to deal with
particular details of the target technology. Since the Android specific
artifacts are generated, the user of Android application framework is

106 Prototyping and automating the development

made transparent to the developer, who only has to deal with Java
programming.

2. Android user interfaces

The last step to complete the development of the system is to generate
the user interfaces for a specific configuration of context conditions.

As we introduced in Section 4.1, Android platform has a node-based
user interface. In particular, in an Android application, the user inter-
face is built using View and ViewGroup objects. View objects are the
basic units of user interface expression on the Android platform that
serves as the base for subclasses such as widgets. The ViewGroup class
serves as the base for subclasses called layouts which offer different kinds
of layout architecture, like linear, tabular and relative. A View object
is a data structure whose properties store the layout parameters and
content for a specific rectangular area of the screen. A View object
handles its own measurement, layout, drawing, focus change, scrolling,
and key/gesture interactions for the rectangular area of the screen in
which it resides. As an object in the user interface, a View is also
a point of interaction for the user and the receiver of the interaction
events.

Figure 5.8: Hierarchy for defining Android UIs

5.2 Automating the development 107

Thus, on the Android platform, user interface is defined using a
hierarchy of View and ViewGroup nodes, as shown in the Figure 5.8.
The most common way to define a user interface expressing the view
hierarchy is with an XML layout file. XML offers a human-readable
structure for the layout, much like HTML. Each element in XML is
either a View or ViewGroup object (or descendant thereof). View ob-
jects are leaves in the tree and ViewGroup objects are branches in the
tree.

Thus, for the implementation of the user interfaces we produce the
Android XML layout file for all the user interfaces of the whole system
from the concrete UI model. But, in each generation we will produce
the user interfaces of an specific configuration of context conditions. To
define a configuration we use an auxiliary Configuration metamodel.
The metamodel is shown in Figure 5.9

Figure 5.9: Configuration metamodel used to generate the interfaces.

In this way, we define a configuration that is composed by one or
several context conditions that are active in a specific context. Each
context conditions can have associated several interactors that corre-
spond to the optional features in the Feature Model, since mandatory
features are generated always.

The listing 5.6 shows an excerpt of the template used for generat-
ing the XML layout file. The transformation template is composed by

108 Prototyping and automating the development

different rules that perform the generation. These rules are explained
below:

Listing 5.6: Excerpt of the code generation template that produces the
XML layout for each user interface.

«DEFINE Root FOR FeatureModelPackage::FeatureModel»
«FILE Name+".xml"»

<?xml version="1.0" encoding="utf-8"?>
«EXPAND FindRoot FOREACH Features»
«ENDFILE»

«ENDDEFINE»

«DEFINE FindRoot FOR FeatureModelPackage::Feature»
«FOREACH Attributes AS e»

«IF e.Name=="root" && e.Value=="true"»
«EXPAND PrintFeature FOR this»

«ENDIF»
«ENDFOREACH»

«ENDDEFINE»

«DEFINE PrintFeature FOR Feature»
<«Name»
«FOREACH Attributes AS e»

«IF e.Name == "root"»
xmlns:android="http://schemas.android.com/apk/res/

android"
«ELSEIF»
android:«e.Name»="«e.Value»"

«ENDIF»
«ENDFOREACH»
>
«FOREACH CardinalityBased_Relationships.typeSelect(

Mandatory) AS e1»
«EXPAND PrintFeature FOR e1.To»

«ENDFOREACH»
«IF ! CardinalityBased_Relationships.typeSelect(

Alternative).isEmpty»
«FOREACH CardinalityBased_Relationships.typeSelect(

Optional) AS e1»
«EXPAND PrintFeatureAlternative FOR e1.To»

«ENDFOREACH»
«ELSE»
«FOREACH CardinalityBased_Relationships.typeSelect(

Optional) AS e1»

5.2 Automating the development 109

«EXPAND PrintFeatureOptional FOR e1.To»
«ENDFOREACH»
«ENDIF»
</«Name»>

«ENDDEFINE»

Root rule. The Root rule is applied to the whole concrete UI model
(FeatureModel element). This rule is in charge of the creation of
the XML file and the generation of the corresponding content.
Then, the XML header is declared as a static part of the rule.

FindRoot rule. The FindRoot rule is applied to the different nodes
(Feature element) for the generation of the rest of the XML layout.
FindRoot is a recursive rule in charge of seeking the root node and
calling the PrintFeature rule to begin the generation of the whole
nodes of the hierarchy from the root node.

PrintFeature rule. PrintFeature rule generates the attributes for the
nodes. Depending on the kind of node, the attributes to generate
are different. If the current node to generate is the root node,
the header of the layout is generated. Otherwise, the value of
the attributes are generated. Then, depending on the variability
relationships in which the nodes are linked, the appropiate Print-
Feature rule is expanded (PrintFeature, PrintFeatureAlternative,
PrintFeatureOptional). The generation of this alternative and op-
tional nodes depend on the active context conditions defined in
the Configuration model.

The advantage of declaring the UI in XML is that it enables to
better separate the presentation of the application from the code that
controls its behavior. UI descriptions are external to the application
code, which means that it can be modified or adapted without having
to modify the source code and recompile.

Furthermore, we generate code for a status bar notification since it
can not be implemented by means of the layout file. The status bar
notification is initiated from a Service. In this way, the notification

110 Prototyping and automating the development

Figure 5.10: Different generations of the same service

can be created from the background, while the user is using another
application. This is implemented checking the name of the node in the
PrintFeature rule.

Figure 5.10 shows the generated code for the supermarket notifica-
tion of two different personas. The service is in different obtrusiveness
level for each persona, so the generated code is adapted according to the
obtrusiveness level. On the one hand, for Bob (left branch), the service
is in the proactive-aware obtrusiveness level. Through all the design
process described in the previous chapter, the service is presented by

5.2 Automating the development 111

means of a status bar notification (see Fig. 4.15). An excerpt of the
generated code for the status bar notification and the rendering of this
code is shown at the left of the Figure. On the other hand, for Mery
(right branch), the service is in the reactive-slightly obtrusiveness level
because Mery wants to go to the supermarket without a notification.
For this obtrusiveness level, a widget is used (see Fig. 4.16 to see the
mappings of the models) and the generated code is shown at the right
of the Figure. In this way, the services are generated and adapted for
each persona.

5.2.3 Continuous evolution

Services in the obtrusiveness space could evolve due to changes in user
needs or context conditions. This constitutes an evolution of the system
in terms of obtrusiveness. Thanks to the decoupling role that the models
play in the development process, this evolution is supported by the
method in an easy manner. In this way, system maintenance is carried
out at the modeling level.

First a change requirement is detected. This means that the obtru-
siveness level for a service is not the most adequate. To validate the
correctness of the specification, stakeholders are shown a prototype of
the final user interface, which is more comprehensible for final users
than the models used for the specification. Changes are commonly ex-
pressed in terms of the final interface since it is what the user perceives.
Thus, the analyst needs to set up the properly obtrusiveness level for
the service to fulfill the new requirements that satisfy the user.

Figure 5.11 shows an example of an evolution of the service. In the
obtrusiveness space of context conditions we can see an event evolv-
ing from a reactive space to a proactive one (e.g., caused by a change
in the user’s location or user preferences). In this particular exam-
ple, the notification of a supermarket nearby was in a reactive-slightly
space because the user preferred to go to the supermarket without be-
ing notified explicitly. For this region in the obtrusiveness space, subtle
interaction was preferred, activating the elements status-based and text
and producing the final UI, showed at the left of the Fig. 5.11. But user

112 Prototyping and automating the development
re

ac
ti

ve
p

ro
ac

ti
ve

awareslightlyinvisible

in
it

ia
ti

ve

attention

Visual Auditory

Text

Haptic

Vibration

Interaction

SoundGraphical

Context Conditions Interaction Mechanisms

UI Components

Final UIFinal UI

Notification:
There is a supermarket nearby

1

2

3

4

(Reactive-Slightly Aware) (Proactive-Aware)

Speech

Group

Group
Widget

Status
Bar

Notif.
Text Button

Group

Speech

Expression

Status-based

4

Change-based

Figure 5.11: Service evolution

preferences or needs could change requiring another obtrusiveness level
for the same service. In this example, user preferences changed and
the user wanted to be notified when a supermarket was closer. Thus,
this change in the obtrusiveness level required other interaction meth-
ods more explicit such as change-based, graphical and speech. Thus,
another features was activated producing a different UI showed at the
right of the figure.

5.3 Conclusions

This chapter provides a method to evaluate the designs and the mech-
anisms for automating the development of unobtrusive mobile services.

The designs defined according to the method can be easily put into
practice. Fast prototyping techniques have been used to validate the
adaptation for each service. The feedback obtained from the evaluation

5.3 Conclusions 113

can be used to better adjust the models defined at design-time.

By applying MDE principles, the requirements captured in the de-
sign stage are transformed into a final software solution. In this way,
developers do not have to deal with technological details of the target
platform. In addition, the definition of the architecture at modeling
level, allows the presented approach to be sustainable since it can sup-
port the evolution of the system to new technologies.

Much of the complexity in software development is due to the rules
that the different computing frameworks require but are not enforced by
the programming language in use. Platforms such as Android, OSGi,
Java ME, Enterprise Java Beans, or Google Web Toolkit, make use
of the Java language but they require to follow different programming
models that are not always simple to understand. By avoiding devel-
opers to deal with these technological constraints they can focus on
business logic. Hiding this complexity is the main goal of our approach
for the automation of unobtrusive mobile services. For example, the de-
velopers completing the generated code in our approach do not require
to know how the intent mechanisms works in Android, since the intent
processing code is already generated for them.

114 Prototyping and automating the development

Chapter 6

Validation of the proposal

This chapter describes the application of our approach in practice.
By applying our approach we want to illustrate how interaction can

be adapted to provide an adequate obtrusiveness level in an Ambient
Intelligence (AmI) environment. In particular, our method was applied
in order to support different services in a smart home environment based
on the scenario of service adaptation developed in (Cetina et al., 2009).
We extended the services defined in the original case study in order to
adapt the obtrusiveness level at which they are presented to the user.
Based on this case study, we validate whether the method defined in
this work can cope with the user attention requirements. In particular,
in this chapter we are verifying the following aspects:

Design method. The information captured at design should describe
the aspects that are relevant to capture obtrusiveness and inter-
action requirements. Our research results show that the models
defined are useful for designers to discuss about attention and
interaction requirements.

116 Validation of the proposal

Iterative design. Requirements must be captured in a way that it is
feasible to validate them with fast iterations. In this way, contin-
uous feedback can be obtained to improve designs. Our research
results show that fast-prototyping techniques can be applied in a
way that reproduce the user experience of the final system.

The approach followed for validating the proposal is focused on the
previous aspects. First, we wanted to verify that the design method was
appropriate for describing the adaptation of interaction in pervasive
mobile services in an unobtrusive way. In order to respond to this,
we modeled the requirements for the services. Then, we make use of
fast-prototyping techniques in order to re-design the process. On the
one hand, feedback was gathered from end-users in order to verify how
the design method could deal with the changes iteratively. On the
other hand, we evaluated to which extend the prototypes provided are
representative of a final system. This determined the usefulness of the
fast-prototyping technique in providing quality feedback.

The remainder of this chapter is structured as follows. Section 6.1
introduces the case study and the design of the services involved. Sec-
tion 6.2 describes the validation with end-users by means of early-stage
prototypes. Finally, section 6.3 concludes the chapter.

6.1 Smart Home case study

The scenario of our case study describes a normal day in Bob’s life
and the way interaction mechanisms of different home services change
depending on the context. Bob lives in a smart home with garden and
a swimming pool. Every day, he gets up at 7 a.m. and drinks milk for
breakfast while he watches a TV program before going to work. One
day during breakfast, Bob runs out of milk. In reaction to this, the
refrigerator added this item to the shopping list in an invisible manner
for Bob. While he was watching the TV program, the system reminded
him that he had an important meeting at work and he had to leave the
house sooner. Therefore, the video service started to record it. Before
leaving the house, he realized the pool was dirty

6.1 Smart Home case study 117

During the meeting, the smart home reminded Bob about watering
the plants. Because of he had the mobile at hand, the notification
appeared in a subtle manner suggesting him if he wanted that the system
water the plants automatically. Meanwhile, he manually added some
products to the shopping list using the mobile device.

When he was going back to home, he was nearby of a supermarket
and the mobile notified him about it, showing the map to arrive to the
supermarket. When he was there, the map was changed by the floor
map of the supermarket. At the same time, the mobile suggested him
the items to the shopping list that were available in that supermarket.
While Bob was buying, the mobile suggested him a television series
to record since he usually watched that program. When he arrived at
home, he put the mobile to charge. While it was charging, pool was
cleaned automatically. At the end of the day, Bob realized the pool was
cleaned and the programs were recorded.

For the design of the services defined in the case study we applied
the design method defined in Chapter 4. According to this method, dif-
ferent aspects of the services should be captured in models. The detail
of the information captured in each modeling perspective is shown in
Figure 6.1 through the different tasks. This tasks include the representa-
tion of the system’s intended users thought personas, the obtrusiveness
level for each service, the requirements for the interaction with the ser-
vices, the concrete interaction elements that determine the final user
interface provided, and the architecture components of the system. All
these aspects are detailed below.

Compose
concrete

components

Select the
interaction
technique

Detect
user needs

Detect
services

and
contexts of

use

Decompose
interaction

Specify
obtrusiveness

level

Specify
the

architecture

User modeling Interaction specification Architecture
description

Figure 6.1: A detailed persona

118 Validation of the proposal

6.1.1 User modeling

The goal of this stage is to understand the users and capture their needs
and preferences. Moreover, services and context conditions are detected
and services are specified in terms of obtrusiveness. These aspects are
detailed below.

1. Detecting user needs

In order to give a clear picture of how users are likely to use the sys-
tem and what they will expect from it we define personas. Personas
capture relevant information about customers that directly impact the
design process: user goals, scenarios, tasks, functionalities, and the like.
Figure 6.2 shows the description of the persona for Bob.

2. Detecting services and contexts of use

After describing the persona and study their needs, the services defined
for the Smart Home were the following:

Shopping list. Users are enabled to keep track of the products they
want to buy in order to purchase these products on the next visit
to the supermarket. The shopping list is shared among all the
members of the house, including the smart refrigerator that can
add items to the shopping list.

Video recorder. This service allows to record video in a digital format
to a disk drive, USB flash drive, SD memory card or other mass
storage device. Users can be asked to record a program or the
program can be recorded automatically.

Agenda. It allows users to manage his time giving convenient access
to their tasks alongside their calendar. Also, users are enabled to
get event reminders when the task is going to begin.

Plant watering. Users have a busy lifestyle and they usually forget
to water their plants. This service is in charge of remind and tell

6.1 Smart Home case study 119

Bob Berry · The busier
Familiar to Smart Home services

Behaviors Objectives

ACTIVITYLow High

BREADTHOne
service

Many
services

VENUEOne
channel

Many
channels

· Optimize time

· Don't forget tasks

· Feel in control of housekeeping

· Keep track the items to buy

· Keep the house up-to-date

· Record favorite programs

Scenarios Concerns

· If a product of my refrigerator runs

out, can the system add the item to the

shopping list?

· How can I do not forget important

tasks and events?

· If the system do something, will it

inform me about it?

· If my favorite program begins and I

can't watch it, can the system record it?

· How can I remember when water the

plants?

· I am very busy. How can I make sure I

am maintaing the house up-to-date?

· Remember items to buy

Bob lives alone and he has to take on all the responsabilities in

the home. He always goes shopping and he never remembers

what he need or the finished products. He wastes a lot of time

buying because he has to move along the entire supermarket. He

usually has a paper in the refrigerator to write down the items

but he sometimes forgets to take the paper when he goes to the

supermarket. Bob thinks he should keep track the items to buy in

an electronic manner.

· Recording interesting programs

Bob usually watches a TV program before going to work when he

is having breakfast. Sometimes he has a meeting and he has to

leave home earlier loosing the program. He would like the

program was recorded when he is not watching it.

· Be aware of pending tasks

Bob has a busy lifestyle and he sometimes forgets important tasks

he has to do such as deadlines or meetings and other tasks that

are less important but they are essential such as water the plants,

birthdays, etc. He hopes be aware of pending tasks and events

when it was required.

· Optimize time

Bob usually goes walking to the work. He passes in front of

several supermarkets going back to home but he never

remembers that he has items to buy and he has to return later.

He wants to be aware that he has items to buy when he is nearby

to the supermarket avoiding having to return later.

Background

Bob is a single man who works in a big

company and he lives alone in house

with swimming pool. He has 32 years

old. He works a lot because he wants to

promote in the company. Thus, he has

little free time. In his free time he likes

practice sport and watching TV series

and movies. He is very trendy and he

has a smartphone. He likes new

technology but he has few time to be

up-to-date.

Figure 6.2: A detailed persona

users that their plants need water and water the plants automat-
ically when they need it.

120 Validation of the proposal

Supermarket notification. Many users do not remember that they
have items to buy when they are nearby to the supermarket. So,
the intention of this service is to prevent these situations, notifying
users when they have items to buy in a nearby supermarket.

Clean pool. Swimming pool can be lots of work to keep clean. This
service is in charge of swimming pool maintenance with the pos-
sibility of informing the users about the situation of the pool.

The contextual information relevant for the given persona is:

User location. A service can be adapted depending on the location of
the user. For example, the supermarket notification service can
change the information showed depending on this information.
On the one hand, if the user is outside supermarket, the service
can show the map to arrive to the supermarket. On the other
hand, if the user is inside, the service can show the floor map to
the supermarket.

Mobile location. The location of the mobile is another context factor
that should be taken into account for Bob. Bob can have his mo-
bile with him (e.g., in his hand, in his pocket) or the mobile can be
far of Bob (e.g., if Bob leaves the mobile charging in other room).
If Bob does not have the mobile with him, it is not necessary that
services provide notifications by means of alarms avoiding disturb
other people.

User engagement in other activities. This is an important factor
to be taken into account for notifications. For example, if the user
is engaged in an important activity, a notification will appear in
a subtle manner avoiding to disturb him/her.

Once we have defined the personas, the tasks they can perform and
the relevant contextual information in which the adaptation can de-
pend on, we define the way in which tasks are presented in terms of
obtrusiveness for the case study. This information is detailed below.

6.1 Smart Home case study 121

3. Specifying the obtrusiveness level

Each task can be provided at different obtrusiveness level depending
on the user needs or the context conditions in which the tasks are per-
formed. Figure 6.3 shows the tasks of the Smart Home case study and
their obtrusiveness level for Bob. The obtrusiveness space in this case
was defined by dividing each axis in different parts as it was illustrated
in Chapter 4. The attention axe is divided in three levels depending
whether the interaction should be invisible to the user, slightly notice-
able, or completely aware for the user. The initiative axe is divided in
two parts that represent interactions initiated by the user (reactive) and
interactions initiated by the system (proactive).

Add item

ProactiveReactive

The item is explicitly added to the
shopping list by the user.

Notification supermarket
Users have a supermarket nearby

and the system informs them
about it

Water plants reminder
The system suggests that plants should
be watered

Clean pool
The system activates the service to clean
the pool without notifying the user.

initiative

at
te

n
ti

o
n

in
vi

si
b

le
Sl

ig
h

tl
y

n
o

ti
ce

ab
le

C
o

m
p

le
te

ly
aw

ar
e

Meeting notification
User is notified that he has an important
meeting at work.

Video recorder
The favorite program of the user is
recorded

Figure 6.3: Obtrusiveness level defined for each service in the Smart Home
case study.

During analysis we decided the appropriate obtrusiveness level for
services according to the contextual information and the user needs.
The obtrusiveness level for the different tasks in the Smart Home are
detailed below.

122 Validation of the proposal

Shopping list. The service to add an item to the shopping list can
be placed in different obtrusiveness level. The item can be added
to a shopping list explicitly by the user when he remembers an
item to buy (reactive and completely aware) or it can be added by
the system (proactive) when the user just drops the item to the
garbage in an invisible manner (invisible level of attention).

Video recorder. The service to record a program is also offered in
different obtrusiveness level. On the one hand, the system can
begin to record the program automatically in an invisible manner
for the user (invisible level of attention) in reaction to the user
leave (reactive). On the other hand, the service can notify the
user proactively about to record a TV program because the user
usually watches the program. But the notification is only shown
as a hint (slightly noticeable) because it is not very important for
the user and when the notification appears in the case study Bob
is shopping (engaged in other activity). Thus, it can be later
implemented as a soft vibration or some non-intrusive mark on
the screen to indicate that a notification exists.

Agenda. The notification of a meeting to the user is performed in a
proactive manner in terms of initiative and the user is completely
aware because the message is important for him.

Plant watering. Not all the information provided by the system is
relevant for the user at anytime. Depending on the activities he
is engaged in and the importance of the message, the user will
prefer to be disturbed or not by the system. In this case, water
the plants reminder is not very important for the user and he
prefers to be notified in a subtle manner (slightly noticeable) by
the system (proactive). Moreover, when the plants watering is
notified Bob is engaged in other activities (He is in a meeting).

Supermarket notification. When the user is in the proximity of a
supermarket (user location), he/she is notified about a supermar-
ket nearby. Depending on the distance to the supermarket and
the number of items on the shopping list, the notification will be

6.1 Smart Home case study 123

different. On the one hand, if the user is closer to the super-
market, the system proactively will notify the user in an explicit
manner (the user is completely aware). On the other hand, if the
user is far, the notification will be slightly noticeable. Then, when
the user is in the supermarket, the system suggests the items to
buy that are in the shopping list at the slightly noticeable level of
attention.

Clean pool. The system proactively activates the service to clean the
pool in an invisible manner for the user due to the user does not
have the mobile nearby (mobile location).

In order to support the behavior described above for the tasks per-
formed in the Smart Home case study, different interaction techniques
can be applied. The mechanisms used from all the ones available for
interacting with the system in the Smart Home are described below.

6.1.2 Interaction specification

The following step is to make use of the adequate interaction mecha-
nisms to provide the functionality according to the obtrusiveness level.
The tasks carried out in this stage are detailed below.

4. Decomposing the interaction

According to the previous requirements, different interaction techniques
are used to provide the functionality of the services. This information is
decomposed in a Feature Model in order to indicate the commonalities
and differences between adaptation aspects and define the constraints
that exist for the selection of the different features.

In (Chittaro, 2010), Chittaro summarizes the many channels that
can be exploited to send and receive information from a mobile device.
We have defined the feature model utilizing these modalities. For the
constraints between modalities we have followed the study presented
in (Lemmelä et al., 2008) to identify modalities and modality combina-

124 Validation of the proposal

Visual Auditory

Graphical Text Sound Speech

Haptic

Vibration

Interaction

Status-based

Expression

Change-based

Figure 6.4: Decomposition of interaction aspects using the Feature Model.

tions best suited for different situations and information presentation
needs.

Figure 6.4 shows the decomposition of available interaction in the
Feature Model and the constrains for their selection. We have divided
the interaction into groups of expression, visual, auditory and haptic
modalities. These four main features include a set of manifestations of
input and output modalities.

5. Selecting the interaction technique

Then, we have to choose for each task the interaction features that are
going to support the obtrusiveness level defined. Table 6.1 shows a
view of the interaction analysis results performed for the tasks. The
table shows for each task, the obtrusiveness level at which it can be
performed and the interaction features selected for the obtrusiveness
level. The tasks that have two obtrusiveness level associated is because
they depend on context conditions.

6.1 Smart Home case study 125

Task Obtrusiveness Interaction Features

Add item (reactive, aware) Text, graphical

Add item (proactive, invisible) -

Record program (proactive, slightly) Change-based, graphi-
cal, vibration

Record program (reactive, invisible) -

Meeting notification (proactive, aware) Change-based, graphi-
cal, speech

Water plants reminder (proactive, slightly) Change-based, graphi-
cal, vibration

Supermarket notification (proactive, aware) Change-based, graphi-
cal, sound

Items to buy suggestion (reactive, slightly) Status-based, text

Clean pool (proactive, invisible) -

Table 6.1: Interaction features for each task in the obtrusiveness space

6. Composing concrete components

In order to define the concrete user interface components that support
the interaction techniques available we define the node tree of our sys-
tem. For the Smart Home case study, the concrete components are
shown in Figure 6.5.

126 Validation of the proposal

Figure 6.5: Concrete UI components of a Smart Home system.

Linking interaction to components

The concrete UI components that support the different interaction fea-
tures are specified in Table 6.2

6.1.3 Architecture description

The last step in the design phase is to describe the architecture compo-
nents of the system. This step is described below.

6.1 Smart Home case study 127

Interaction feature Concrete components

Change-based Group Notif.

Status-based Group Widget

Group Location,
Graphical Group Notif.,

Group List View + Image

Text,
Text Address,

Group List View

Sound Sound

Speech Speech

Vibration Vibration

Table 6.2: Linking between interaction features and concrete components

7. Specifying the architecture

The final step is to define the way user interfaces of services are in-
tegrated with the different components by means of the component
architecture model.

Figure 6.6 shows the model for the components of the Smart Home
system. We have used a Service to represent the functionality of the
services defined and Activities provide the user interfaces from which
service functionality can be accessed. Also, we use a Service to launch a
notification. A BroadcastReceiver is used to provide the functionality of
the widget. All the components have defined the intent filters associated
to the actions they can perform (e.g. ADD ITEM for the Add Item
activity). Moreover, the Show Services activity has the intent filter
MAIN to mark this activity as the initial activity. There are some
services that launch intents to start an external service (e.g. Show
Location activity launches the intent VIEW to show the map of the
location). This is because the functionality required for these services is
implemented by an external service. There are three content providers:
one for offering the items of the shopping list, another for offering the

128 Validation of the proposal

Figure 6.6: Component arquitecture of the Smart Home services.

information to update the Widget Supermarket receiver, and another
one representing the data of the calendar.

The requirements captured following our method describe the ar-
chitecture and interaction components to support the Smart Home sce-
nario. Since the design method was followed, the different decisions
are organized in different models and consistency is guaranteed among
them. Although the models defined are consistent, this does not guar-
antee that the system described is well accepted by users. Once the
system is designed, the following section detects whether the design
decisions taken were appropriate.

6.2 Early-stage evaluation 129

6.2 Early-stage evaluation

The MDE techniques defined in Chapter 5 can be applied to the previ-
ous requirements to obtain a software solution to support the system.
However, there is still place for fast-prototyping. In the case of context-
aware mobile services, deployment efforts are high if real hardware is
used. Designers need certain guaranties that the adaptation defined will
fit well when it is finally deployed.

Fast-prototyping techniques have been applied in order to immerse
the user in the adaptation designed for mobile services without actually
implementing it. Android interface mock-ups and Wizard of Of tech-
niques are used to simulate the process. From the device perspective,
it has (1) to be running under Android Operating System and (2) to
have wireless connectivity. The physical context was reproduced in a
laboratory, setting all the scenarios that appear in the case study.

6.2.1 Questionnaire and participants

Once the user is immersed in the simulated environment, the user ex-
perience in terms of usability and interaction adaptation is evaluated.
To evaluate these aspects, we used an adapted IBM Post-Study ques-
tionnaire (Lewis, 1995) in conjunction with the questionnaire defined by
Vastenburg et al. in (Vastenburg et al., 2009). On the one hand, IBM
Post-Study is a questionnaire that measure user satisfaction with sys-
tem usability. On the other hand, some questions were taken from the
Vastenburg questionnaire to evaluate home notification systems such
as messages acceptability and interaction adaptation. The three di-
mensions evaluated in our questionnaire were: Usability of the system,
messages acceptability and interaction adaptation. The first dimension
focuses on measuring users’ acceptance with the usability of the system;
the second one focuses on the general acceptability considering the mes-
sages and the user activity at the time of notification; and finally, the
third dimension is about users’ satisfaction in the interaction adapta-
tion. Also, we included a NASA task load index (TLX)1 test. This test

1http://humansystems.arc.nasa.gov/groups/TLX/index.html

130 Validation of the proposal

assesses the user’s subjective experience of the overall workload and
the factors that contribute to it on six different subscales: Mental De-
mand, Physical Demand, Temporal Demand, Performance, Effort, and
Frustration.

A total of 15 subjects participated in the experiment (6 female and
9 male). Most of them had a strong background in computer science.
Participants were between 23 and 40 years old. 8 out of 15 were familiar
with the use of a smartphone, and three own an Android device similar
to the one used in the experiment. We applied a Likert scale (from 1
to 5 points) to evaluate the items defined in the questionnaire. Some
space was left at the end of the questionnaire for positive and negative
aspects, and for further comments.

6.2.2 Procedure

For the evaluation of the Smart Home prototype, users adopted Bob’s
role and perform the activities earlier described. The study was con-
ducted in our laboratory in order to simulate the different scenarios
in which the experiment was based on. In-situ evaluation was possi-
ble since the technique does not require a complex infraestructure. An
HTC Magic mobile device running Android Operating System was used
to interact with the Smart Home services.

When the users evaluated the prototype, they were not told that it
was a non-functional prototype. After the evaluation, when they were
told that it was not a final functional system, more than a third of the
participants confessed that they thought that it was. This means that
it is possible to anticipate the feedback that could be obtained from the
final system with minimal effort.

6.2.3 Results

Figure 6.7 shows a summarized table of the obtained results2.

2The complete dataset of the experimental results can be downloaded from
http://www.pros.upv.es/labs/projects/interactionadaptation

6.2 Early-stage evaluation 131

Figure 6.7: Summarized results

More than 70% of the people strongly agreed that using the sys-
tem they were able to complete the tasks and scenarios effectively and
quickly. All users considered (4 or 5 points) the user interface to be
pleasant and easy to understand. 67% of users strongly agreed about
recommending the system to other people.

With regard to the messages acceptability, the results were also posi-
tive, but more dispersion was found in them. This was due the different
perception each user had about what was considered to be a relevant or
urgent message. In the study made by Vastenburg et al. (Vastenburg
et al., 2009), they pointed out that the more urgent the message was
considered to be, the higher the level of intrusiveness should be. In
our results, the content and presentation of the different messages was
considered appropiate by the 73% of the subjects. Some users (20%)
found some services to be intrusive, but the interruption level was in
general (80%) considered adequate to each situation.

Regarding the interaction adaptation, automated tasks outcomes are
not always discovered (33% of subjects), but 80% of subjects strongly

132 Validation of the proposal

agreed in that automated actions had performed in appropiate situa-
tions and help them to perform routine tasks. There were some ex-
ceptions that were suggested in the comments such as “I would like to
receive the pool notification and can postpone it” or “When the system
clean the pool do not inform the user about that”. Although the adap-
tation provided was considered adequate (more than 80% considered it
appropriate for all the services), most of the complaints were related to
the level of control provided. Some users would like to be able to undo
actions they are notified about such as the video recording, many (67%)
did not considered watering the plants deserving a notification, and the
suddenly change of the outdoor to an indoor map of the supermarket
made some users (33%) feel they were loosing control.

Workload

The results on workload are shown in Figure 6.8. We show each subscale
in a different diagram. The Mental Demand diagram shows that not
all the tasks were simple and easy. Mostly, mental demand was low
but some tasks in the experiment required more attention, increasing
the mental demand. Some users would prefer more automation in the
tasks. Physical demand was low excepting for the tasks that require
more attention. Moreover, some users were not familiar with the use of
a smartphone. For these users, the physical demand was higher.

The low workload was accompanied by good performance. The ma-
jority of users could accomplished the goals of the tasks proposed (see
the Performance diagram) without much effort (see the Effort diagram)
and with a low degree of frustration (see the Frustration diagram). Tem-
poral demand did not provide any significant results since the results
are very scattered. This results show that users do not understand the
question very well.

6.2.4 Adaptation re-design

The feedback from the users was used to re-design the adaptation of
the services iteratively. Some concerns resulted in minor modifications

6.2 Early-stage evaluation 133

Very low Very high

Mental demand
How mentally demanding was the task?

Physical demand
How physically demanding was the task?

Very low Very high

Temporal Demand
How hurried or rushed was the pace of the task?

Very low Very high

Performance
How successful were you in accomplishing what
you were asked to do?

Perfect Failure

Frustration
How insecure, discouraged, irritated, stressed,
and annoyed were you?

Very low Very high

Effort
How hard did you have to work to accomplish
your level of performance?

Very low Very high

Figure 6.8: Nasa TLX results

of the mock-up interfaces (e.g., using graphical metaphors and bigger
buttons). Other suggestions were more relevant to the process redesign
since they involved changing the level of obtrusiveness for some tasks
and providing more contextual information.

For example, the service of cleaning the pool was placed in a proactive-
invisible obtrusiveness level. It means that users was not notified about
the cleaning of pool. However, some users wanted to be notified. As
a consequence, we changed the obtrusiveness level of clean pool to a
slightly-noticeable level of attention.

The context conditions associated at water the plants reminder was
also problematic. In the first iterations of the design, this reminder
was in a slightly-noticeable level of attention with the condition of using

134 Validation of the proposal

vibration if users were engaged in other important activities. In the
case study, this reminder appeared during the meeting. However, users
wanted this reminder only appears when the user was at home.

Users demanded more contextual information for some tasks. For
example, in the notification of supermarket when the user entered the
supermarket, the system showed the floor map of the supermarket, but
this information appeared without any other information and users did
not know what was happening. To solve this, we added a contextual
help.

6.3 Conclusions

Modeling is about abstractions and the conceptualization of the sys-
tem to be built. However, for a problem to be completely understood
analysis hypotheses must be validated with the end-users of the sys-
tem. In this chapter, we put in practice the design method defined.
The application of the development method in the presented case study
has provided valuable feedback at different levels. Our research results
show that the method is capable of producing services with a high level
of user acceptance, and a final software solution can be obtained from
what it is captured at requirements level.

The resulting application from this case study are interesting by it-
self. Although some aspects have been simplified for the development
of the prototype, the technologies in use are production ready. In ad-
dition, the design effort to improve the case study has lead to better
enhancing the user experience and the adaptation fluency.

Chapter 7

Conclusions

The present work has introduced a model-driven development method
for developing unobtrusive service interaction. The work focuses

on decoupling obtrusivenes, interaction features and UI components in
order to minimize efforts in the development. Facing the development
of such services from this decomposition has resulted innovative and
different contributions were produced from this work. In addition, the
research line in which this work is aligned is by no means completed
here. Further work can complement and extend this thesis.

This last chapter introduces the conclusions of the work developed
in this thesis. First, Section 7.1 presents the main contributions to
both the Context-Aware and Considerate communities. Section 7.2
provides an overview of the publications that have emerged from this
work. Finally, Section 7.3 outline the ongoing and future work that can
extend this research line.

136 Conclusions

7.1 Contributions

The main contribution of this work is a development process of mobile
services that can be adapted in terms of obtrusiveness. The development
process comprises from architectural to methodological aspects. So, the
work provides the following contributions:

A design method. A design method has been defined allowing to
specify services according to the context of each user in terms
of obtrusiveness without duplicating efforts in the development.

On the one hand, we have adapted interaction in terms of
attentional demand accoding to the user needs and the context
of use. This has been done by means of the use of (1) personas
and (2) the framework for implicit interactions. Thought per-
sonas we detect the user needs and contexts of use of each kind of
user, define common functionalities and express them in terms of
obtrusiveness by means of the framework for implicit interactions.

On the other hand, we have decomposed interaction in dif-
ferent adaptation aspects to avoid duplicating efforts in the
development. Feature Models allow to decompose interaction as-
pects and set the constraints for their selection.

A development method. A systematic development method has
been defined to guide the developer in the construction of unob-
trusive mobile services. The method comprises from specification
to the final implementation.

As the whole method is supported by models, feedback from users
is easily mapped onto the models enabling future improvements. Our
approach also allows to visually represent how the interface changes
according to different conditions. By analyzing the impact of different
factors in the interface we can (1) produce specific variants of the appli-
cation to target a particular device kind, and (2) define how the interface
is adapted at run-time according to different context conditions.

7.2 Publications 137

7.2 Publications

Parts of the results presented in this thesis have been presented and dis-
cussed before on distinct peer-review forums. The distinct publications
in which the author of this thesis was involved are listed below.

1. Miriam Gil, Pau Giner & Vicente Pelechano. Service Obtrusive-
ness Adaptation. First International Joint Conference on Ambi-
ent Intelligence (AmI), Malaga, Spain, 2010. pp. 11-20. Springer
Berlin / Heidelberg. Lecture Notes in Computer Science, Volume
6439.

2. Miriam Gil, Pau Giner & Vicente Pelechano. Designing context-
aware mobile interactions. 4th Symposium of Ubiquitous Com-
puting and Ambient Intelligence (UCAmI), Valencia, Spain, 2010.
pp. 93-102.

3. Pablo Munoz, Pau Giner & Miriam Gil. Designing Context-
Aware Interactions for Task-Based Applications. 10th Interna-
tional Conference on Web Engineering, ICWE 2010 Workshops,
Vienna, Austria, 2010. pp. 463-473. Springer Berlin / Heidelberg.
Lecture Notes in Computer Science, Volume 6385.

4. Miriam Gil, Pau Giner & Vicente Pelechano. Service Obtrusive-
ness Personalisation. Pervasive Personalisation Workshop held
in conjunction with Pervasive 2010, Helsinki, Finland, 2010. pp.
18-25.

Initial development of the work have been accepted in workshops
from relevant conferences such as Pervasive (Tier-A according to CORE
conference ranking) or ICWE. The modeling approach to adapt user
interfaces according to changes in context has been published in the
4th Symposium of Ubiquitous Computing and Ambient Intelligence
(UCAmI’10), and the development method of mobile services that can
be adapted to regulate the service obtrusiveness has been published
in the First International Joint Conference on Ambient Intelligence
(AmI’10).

138 Conclusions

7.2.1 Relevance of the publications

This section provides some information about the relevance of the con-
ferences where different aspects of this work have been published.

Ambient Intelligence. The AmI conference has an important role
for the social cohesion of the Ambient Intelligence community.
The conference papers are published by Springer (LNCS). The
conference has a major impact in industry with the participation
of relevant corporations in the AmI area such as Nokia, Philips,
NTT DOCOMO or SAP.

Ubiquitous Computing and Ambient Intelligence. UCAmI has been
consolidated as a reference event in Ubiquitous Computing & Am-
bient Intelligence, agglutinating high quality papers.

7.3 Future Work

The research presented here is not a closed work and there are several
interesting directions that can be taken to provide the proposal with a
wider spectrum of application. The following summarizes the research
activities that are planned to continue this work.

End user development. The use of modeling techniques to formalize
concepts allows the automation of software development. In the
present work, the generation of an initial version of the system
that hides infrastructure issues is obtained automatically. The
next big step is to provide developers and end-users with tools
to intuitively develop their unobtrusive mobile services easily en-
abling end-users to set their preferences. In order to do so, the
primitives that capture the requirements for the system should
be provided adequate tool support not only to make feasible the
development but also to provide an optimal user experience for
developers.

7.3 Future Work 139

Adaptation visualization. At the moment, our design tool supports
different kinds of visualizations to represent the information. We
want to extend the tool with a new visualization that highlights
the active nodes for a given set of conditions in order to give a
more intuitive representation of adaptation.

Run-time reconfiguration. Currently, we are considering the impact
of context conditions at design, but we also plan to give support
at run-time in order to perform dynamic changes in response to
context variations. To this end, we plan to integrate it with the
Model-based Reconfiguration Engine (MoRE) (Cetina et al., 2009)
to achieve a dynamic reconfiguration in response to context vari-
ations.

140 Bibliography

Bibliography

Aarts, E., Harwig, R., & Schuur-
mans, M. (2002). Ambient intel-
ligence. The invisible future: the
seamless integration of technol-
ogy into everyday life, (pp. 235–
250).

Abrams, M., Phanouriou, C., Ba-
tongbacal, A. L., Williams,
S. M., & Shuster, J. E.
(1999). UIML: An appliance-
independent XML user interface
language. In WWW ’08: 8th
International Conference on
World Wide Web.

Altosaar, M., Vertegaal, R., Sohn,
C., & Cheng, D. (2006). Au-
raorb: social notification appli-
ance. In CHI ’06: CHI ’06 ex-
tended abstracts on Human fac-
tors in computing systems, (pp.
381–386). New York, NY, USA:
ACM.

Ballagas, R., Borchers, J., Rohs,
M., & Sheridan, J. G. (2006).
The smart phone: A ubiquitous
input device. IEEE Pervasive
Computing , 5 (1), 70.

Balme, L., Demeure, A., Bar-
ralon, N., Coutaz, J., & Cal-
vary, G. (2004). Cameleon-rt: A
software architecture reference
model for distributed, migrat-
able, and plastic user interfaces.
In EUSAI , (pp. 291–302).

Benavides, D., Cortés, R. A.,
& Trinidad, P. (2005). Au-
tomated reasoning on feature
models. LNCS, Advanced In-
formation Systems Engineering:
17th International Conference,
CAiSE 2005 , 3520 , 491–503.

Bézivin, J., & Gerbé, O. (2001).
Towards a precise definition of
the OMG/MDA framework. In

142 Bibliography

ASE ’01: Proceedings of the
16th IEEE international confer-
ence on Automated software en-
gineering , (p. 273). Washington,
DC, USA: IEEE Computer So-
ciety.

Brown, D. M. (2010). Com-
municating Design: Developing
Web Site Documentation for De-
sign and Planning (2nd Edi-
tion). New Riders Press.

Buxton, B. (1995). Integrating the
periphery and context: A new
model of telematics. In Proceed-
ings of Graphics Interface, (pp.
239–246).

Calvary, G., Coutaz, J., Thevenin,
D., Limbourg, Q., Bouillon,
L., & Vanderdonckt, J. (2003).
A unifying reference frame-
work for multi-target user inter-
faces. Interacting with Comput-
ers, 15 (3), 289–308.

Carroll, J. M. (2000). Making
Use: Scenario-Based Design of
Human-Computer Interactions.
The MIT Press, 1st ed.

Cetina, C., Giner, P., Fons, J.,
& Pelechano, V. (2009). Auto-
nomic computing through reuse
of variability models at runtime:
The case of smart homes. Com-
puter , 42 (10), 37–43.

Chittaro, L. (2010). Distinctive as-
pects of mobile interaction and
their implications for the design
of multimodal interfaces. Multi-
modal User Interfaces, 3 , 157–
165.

Clerckx, T., Luyten, K., & Con-
inx, K. (2004). Dynamo-aid: a
design process and a runtime ar-
chitecture for dynamic model-
based user interface develop-
ment. In In The 9th IFIP Work-
ing Conference on Engineering
for Human-Computer Interac-
tion Jointly with The 11th Inter-
national Workshop on Design,
Specification and Verification of
Interactive Systems, (pp. 11–
13). Springer-Verlag.

Clerckx, T., Winters, F., & Con-
inx, K. (2005). Tool support for
designing context-sensitive user
interfaces using a model-based
approach. In TAMODIA ’05:
Proceedings of the 4th interna-
tional workshop on Task models
and diagrams, (pp. 11–18). New
York, NY, USA: ACM Press.

Coninx, K., Luyten, K., Van-
dervelpen, C., V, C., Creemers,
B., Bergh, J. V. D., & Cen-
trum, L. U. (2003). Dygimes:
Dynamically generating inter-
faces for mobile computing de-

Bibliography 143

vices and embedded systems.
In In Human-Computer Inter-
action with Mobile Devices and
Services, 5th International Sym-
posium, Mobile HCI 2003 , (pp.
256–270). Springer.

Cooper, A., Reimann, R., &
Cronin, D. (2007). About Face
3: The Essentials of Interaction
Design. New York, NY, USA:
Wiley Publishing, Inc.

Coplien, J., Hoffman, D., & Weiss,
D. (1998). Commonality and
variability in software engineer-
ing. IEEE Software, 15 (6), 37–
45.

Czarnecki, K., & Kim, P. (2005).
Cardinality-based feature
modeling and constraints: A
progress report. In Proceedings
of the International Work-
shop on Software Factories At
OOPSLA 2005 .

da Silva, P. P., & Paton, N. W.
(2003). User interface modeling
in UMLi. IEEE Softw., 20 (4),
62–69.

Dahlbäck, N., Jönsson, A., &
Ahrenberg, L. (1993). Wizard
of Oz studies: why and how.
In IUI ’93: Proceedings of the
1st international conference on

Intelligent user interfaces, (pp.
193–200). New York, NY, USA:
ACM.

de Sá, M., & Carriço, L. (2006).
Low-fi prototyping for mobile
devices. In CHI ’06: CHI ’06 ex-
tended abstracts on Human fac-
tors in computing systems, (pp.
694–699). New York, NY, USA:
ACM.

de Sá, M., & Carriço, L. (2009).
A mobile tool for in-situ pro-
totyping. In MobileHCI ’09:
Proceedings of the 11th Inter-
national Conference on Human-
Computer Interaction with Mo-
bile Devices and Services, (pp.
1–4). New York, NY, USA:
ACM.

den Bergh, J. V., & Coninx,
K. (2005). Towards modeling
context-sensitive interactive ap-
plications: the context-sensitive
user interface profile (CUP). In
SoftVis ’05: Proceedings of the
2005 ACM symposium on Soft-
ware visualization, (pp. 87–94).
New York, NY, USA: ACM
Press.

Dey, A. K., & Abowd, G. D.
(2000). Towards a better under-
standing of context and context-
awareness. In Computer Hu-

144 Bibliography

man Intraction 2000 Workshop
on the What, Who, Where,.

DiMarzio, J. (2008). Android a
Programmers Guide. McGraw-
Hill Osborne Media.

Duarte, C., & Carriço, L. (2006).
A conceptual framework for de-
veloping adaptive multimodal
applications. In IUI ’06: Pro-
ceedings of the 11th interna-
tional conference on Intelligent
user interfaces, (pp. 132–139).
New York, NY, USA: ACM.

Dunlop, M., & Brewster, S. (2002).
The challenge of mobile devices
for human computer interac-
tion. Personal Ubiquitous Com-
put., 6 (4), 235–236.

Eisenstein, J., Vanderdonckt, J.,
& Puerta, A. (2001). Applying
model-based techniques to the
development of uis for mobile
computers. In IUI ’01: Proceed-
ings of the 6th international con-
ference on Intelligent user inter-
faces, (pp. 69–76). New York,
NY, USA: ACM.

Evans (2003). Domain-Driven De-
sign: Tacking Complexity In the
Heart of Software. Boston, MA,
USA: Addison-Wesley Longman
Publishing Co., Inc.

Favre, J.-M. (2004). Foundations
of Model (Driven) (Reverse) En-
gineering : Models – Episode I:
Stories of the fidus papyrus and
of the solarus. In J. Bezivin, &
R. Heckel (Eds.) Language En-
gineering for Model-Driven Soft-
ware Development , no. 04101
in Dagstuhl Seminar Proceed-
ings. Dagstuhl, Germany: In-
ternationales Begegnungs- und
Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl,
Germany.

Fischer, G. (2001). User mod-
eling in human-computer inter-
action. User Modeling and
User-Adapted Interaction, 11 (1-
2), 65–86.

Gershenfeld, N. (1999). When
Things Start to Think . New
York, NY, USA: Henry Holt and
Co., Inc.

Gibbs, W. W. (2004). Considerate
computing. Scientific American,
292 (1), 54–61.

Giner, P., Cetina, C., Fons, J., &
Pelechano, V. (2010). Develop-
ing mobile workflow support in
the internet of things. IEEE
Pervasive Computing , 9 (2), 18–
26.

Bibliography 145

Greenfield, A. (2006). Everyware:
The Dawning Age of Ubiquitous
Computing . Berkeley, CA: New
Riders Publishing.

Gulliksen, J., Goransson, B.,
Boivie, I., Blomkvist, S., Pers-
son, J., & Cajander, A. (2003).
Key principles for user-centred
systems design. Behaviour &
Information Technolog , 22 , 397
409.

Hagen, P., Robertson, T., Kan,
M., & Sadler, K. (2005). Emerg-
ing research methods for un-
derstanding mobile technology
use. In OZCHI ’05: Proceedings
of the 17th Australia conference
on Computer-Human Interac-
tion, (pp. 1–10). Narrabundah,
Australia, Australia: Computer-
Human Interaction Special In-
terest Group (CHISIG) of Aus-
tralia.

Hansmann, U., Nicklous, M. S.,
& Stober, T. (2001). Pervasive
computing handbook . New York,
NY, USA: Springer-Verlag New
York, Inc.

Henricksen, K., & Indulska, J.
(2005). Developing context-
aware pervasive computing ap-
plications: models and ap-

proach. In Pervasive and Mobile
Computing, In. Press, Elsevier.

Hinckley, K., & Horvitz, E. (2001).
Toward more sensitive mobile
phones. In UIST ’01: Proceed-
ings of the 14th annual ACM
symposium on User interface
software and technology , (pp.
191–192). New York, NY, USA:
ACM.

Ho, J., & Intille, S. S. (2005).
Using context-aware computing
to reduce the perceived burden
of interruptions from mobile de-
vices. In CHI ’05: Proceedings of
the SIGCHI conference on Hu-
man factors in computing sys-
tems, (pp. 909–918). New York,
NY, USA: ACM.

Horvitz, E., Kadie, C., Paek, T., &
Hovel, D. (2003). Models of at-
tention in computing and com-
munication: from principles to
applications. Commun. ACM ,
46 (3), 52–59.

Horvitz, E., Koch, P., & Apaci-
ble, J. (2004). Busybody: cre-
ating and fielding personalized
models of the cost of interrup-
tion. In CSCW ’04: Proceedings
of the 2004 ACM conference on
Computer supported cooperative

146 Bibliography

work , (pp. 507–510). New York,
NY, USA: ACM.

Huberman, B. A., & Wu, F.
(2007). The economics of atten-
tion: maximizing user value in
information-rich environments.
In ADKDD ’07: Proceedings of
the 1st international workshop
on Data mining and audience
intelligence for advertising , (pp.
16–20). New York, NY, USA:
ACM.

Jan Willem Streefkerk, M. P.
v. E.-B., & Neerincx, M. A.
(2006). Designing personal at-
tentive user interfaces in the mo-
bile public safety domain. Com-
puters in Human Behavior , 22 ,
749–770.

Ju, W., & Leifer, L. (2008). The
design of implicit interactions:
Making interactive systems less
obnoxious. Design Issues, 24 (3),
72–84.

Kramer, J. (2007). Is abstraction
the key to computing? Com-
mun. ACM , 50 (4), 36–42.

Krogstie, J., Lyytinen, K., Op-
dahl, A. L., Pernici, B., Siau,
K., & Smolander, K. (2004). Re-
search areas and challenges for
mobile information systems. Int.

J. Mob. Commun., 2 (3), 220–
234.

Lemmelä, S., Vetek, A., Mäkelä,
K., & Trendafilov, D. (2008).
Designing and evaluating mul-
timodal interaction for mobile
contexts. In IMCI ’08: Proceed-
ings of the 10th international
conference on Multimodal inter-
faces, (pp. 265–272). New York,
NY, USA: ACM.

Lewis, J. R. (1995). Ibm com-
puter usability satisfaction ques-
tionnaires: psychometric evalu-
ation and instructions for use.
Int. J. Hum.-Comput. Interact.,
7 (1), 57–78.

Limbourg, Q., V, J., Michotte,
B., Bouillon, L., Florins, M., &
Trevisan, D. (2004). Usixml:
A user interface description lan-
guage for context-sensitive user
interfaces. In in Proceedings
of the ACM AVI’2004 Work-
shop "Developing User In-
terfaces with XML: Advances on
User Interface Description Lan-
guages, (pp. 55–62). Press.

Lucas, P. (2001). Mobile devices
and mobile data: issues of iden-
tity and refence. Hum.-Comput.
Interact., 16 (2), 323–336.

Bibliography 147

Maeda, J. (2006). The Laws of
Simplicity (Simplicity: Design,
Technology, Business, Life).
The MIT Press.

Maiden, N. (2009). Where are we?
handling context. IEEE Soft-
ware, 26 (5), 75–76.

Mao, J.-Y., Vredenburg, K.,
Smith, P. W., & Carey, T.
(2001). User-centered design
methods in practice: a survey
of the state of the art. In
CASCON ’01: Proceedings
of the 2001 conference of the
Centre for Advanced Studies on
Collaborative research, (p. 12).
IBM Press.

March, S. T., & Smith, G. F.
(1995). Design and natural
science research on information
technology. Decis. Support Syst.,
15 (4), 251–266.

Miller, J., & Mukerji, J. (2003).
MDA Guide Version 1.0.1. Tech.
rep., Object Management Group
(OMG).

Mori, G., Paternò, F., & San-
toro, C. (2002). Ctte: Sup-
port for developing and analyz-
ing task models for interactive
system design. IEEE Transac-
tions on Software Engineering ,
28 (8), 797–813.

Mori, G., Paternò, F., & Santoro,
C. (2004). Design and devel-
opment of multidevice user in-
terfaces through multiple logi-
cal descriptions. IEEE Trans.
Softw. Eng., 30 (8), 507–520.

Neely, S., Stevenson, G., Kray,
C., Mulder, I., Connelly, K.,
& Siek, K. A. (2008). Evalu-
ating pervasive and ubiquitous
systems. IEEE Pervasive Com-
puting , 7 (3), 85–88.

O’Grady, M., O’Hare, G., & Kee-
gan, S. (2008). Interaction
modalities in mobile contexts.
In M. Virvou, & L. Jain (Eds.)
Intelligent Interactive Systems
in Knowledge-Based Environ-
ments, vol. 104 of Studies in
Computational Intelligence, (pp.
89–106). Springer Berlin / Hei-
delberg. 10.1007/978-3-540-
77471-66.

OMG (2006). Business Process Mod-
eling Notation (BPMN) Specifica-
tion. OMG Final Adopted Specifi-
cation. dtc/06-02-01.

Pederiva, I., Vanderdonckt, J., Es-
paña, S., Panach, J. I., & Pastor,
O. (2007). The beautification pro-
cess in model-driven engineering of
user interfaces. In 11th IFIP TC
13 Int. Conf. on Human-Computer

148 Bibliography

Interaction INTERACT2007 , (pp.
411–425).

Puerta, A. (1996). The mecano
project: Comprehensive and in-
tegrated support for model-based
interface development. In In
Computer-Aided Design of User
Interfaces, (pp. 5–7). Namur Uni-
versity Press.

Puerta, A., & Eisenstein, J. (2002).
Ximl: a common representation
for interaction data. In IUI
’02: Proceedings of the 7th in-
ternational conference on Intelli-
gent user interfaces, (pp. 214–
215). New York, NY, USA: ACM.

Ramchurn, S. D., Deitch, B.,
Thompson, M. K., Roure, D.
C. D., Jennings, N. R., & Luck, M.
(2004). Minimising intrusiveness in
pervasive computing environments
using multi-agent negotiation. Mo-
bile and Ubiquitous Systems, An-
nual International Conference on,
0 , 364–372.

Rumbaugh, J., Jacobson, I., &
Booch, G. (1998). The Uni-
fied Modeling Language Reference
Manual . Addison-Wesley.

Satyanarayanan, M. (1996). Funda-
mental challenges in mobile com-
puting. In PODC ’96: Proceedings

of the fifteenth annual ACM sym-
posium on Principles of distributed
computing , (pp. 1–7). New York,
NY, USA: ACM.

Schmidt, A. (2000). Implicit human
computer interaction through con-
text. Tech. rep., Personal Tech-
nologies.

Schmidt, D. C. (2006). Guest ed-
itor’s introduction: Model-driven
engineering. Computer , 39 (2), 25–
31.

Schobbens, P.-Y., Heymans, P., Tri-
gaux, J.-C., & Bontemps, Y.
(2007). Generic semantics of fea-
ture diagrams. Comput. Netw.,
51 (2), 456–479.

Seffah, A., Forbrig, P., & Javahery,
H. (2004). Multi-devices ”multiple”
user interfaces: development mod-
els and research opportunities. J.
Syst. Softw., 73 (2), 287–300.

Sharp, H., Rogers, Y., & Preece,
J. (2007). Interaction Design:
Beyond Human-Computer Interac-
tion. John Wiley & Sons.

Siau, K. (2003). Advances in Mobile
Commerce Technologies. Hershey,
PA, USA: IGI Publishing.

Siewiorek, D., Smailagic, A., Fu-
rukawa, J., Krause, A., Moraveji,

Bibliography 149

N., Reiger, K., Shaffer, J., &
Wong, F. L. (2003). Sensay:
A context-aware mobile phone.
In ISWC ’03: Proceedings of
the 7th IEEE International Sym-
posium on Wearable Computers,
(p. 248). Washington, DC, USA:
IEEE Computer Society.

Silva, P. P. D. (2000). User interface
declarative models and develop-
ment environments: A survey. In
Proceedings of DSV-IS2000, vol-
ume 1946 of LNCS , (pp. 207–226).
Springer-Verlag.

Sottet, J.-S., Calvary, G., & Favre,
J.-M. (2005). Towards model-
driven engineering of plastic user
interfaces. In MDDAUI .

Tamminen, S., Oulasvirta, A.,
Toiskallio, K., & Kankainen, A.
(2004). Understanding mobile
contexts. Personal Ubiquitous
Comput., 8 (2), 135–143.

Tedre, M. (2008). What should be
automated? interactions, 15 (5),
47–49.

Thevenin, D., & Coutaz, J. (1999).
Plasticity of user interfaces:
Framework and research agenda.
In A. Sasse, & C. Johnson (Eds.)
Proceedings of IFIP Conference
on Human-Computer Interaction

Interact’99 , (pp. 110–117). IOS
Press Publ.

Vaishnavi, V., & Kuechler,
W. (2004). Design re-
search in information sys-
tems. http://desrist.org/design-
research-in-information-systems.

Van den Bergh, J., & Coninx, K.
(2004). Model-based design of
context-sensitive interactive appli-
cations: a discussion of notations.
In TAMODIA ’04: Proceedings of
the 3rd annual conference on Task
models and diagrams, (pp. 43–50).
New York, NY, USA: ACM.

Van den Bergh, J., & Coninx, K.
(2005). Using uml 2.0 and pro-
files for modelling context-sensitive
user interfaces. In Proceedings of
the MDDAUI2005 CEUR Work-
shop. CEUR.

van Deursen, A., Klint, P., & Visser,
J. (2000). Domain-specific lan-
guages: an annotated bibliogra-
phy. SIGPLAN Not., 35 (6), 26–
36.

Vastenburg, M. H., Keyson, D. V.,
& de Ridder, H. (2008). Consid-
erate home notification systems: a
field study of acceptability of no-
tifications in the home. Personal
and Ubiquitous Computing , 12 (8),
555–566.

150 Bibliography

Vastenburg, M. H., Keyson, D. V.,
& de Ridder, H. (2009). Consider-
ate home notification systems: A
user study of acceptability of no-
tifications in a living-room labora-
tory. Int. J. Hum.-Comput. Stud.,
67 (9), 814–826.

Vertegaal, R. (2003). Attentive user
interfaces. Commun. ACM , 46 (3),
30–33.

Vertegaal, R., Shell, J. S., Chen, D.,
& Mamuji, A. (2006). Designing
for augmented attention: Towards
a framework for attentive user in-
terfaces. Computers in Human Be-
havior , 22 (4), 771–789.

Weiser, M. (1991). The computer for
the 21st century. Scientific Amer-
ican, 265 (3), 66–75.

Weiser, M., & Brown, J. S. (1997).
The coming age of calm technolgy.
(pp. 75–85).

Yamabe, T., & Takahashi, K. (2007).
Experiments in mobile user inter-
face adaptation for walking users.
In IPC ’07: Proceedings of the The
2007 International Conference on
Intelligent Pervasive Computing ,
(pp. 280–284). Washington, DC,
USA: IEEE Computer Society.

www.pros.upv.es

Centro de Investigación en Métodos
de Producción de Software
Universidad Politécnica de Valencia
Camino de Vera s/n
Building 1F
46007 Valencia
Spain
Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Thesis goals
	1.4 The proposed solution
	1.5 Research methodology
	1.6 Thesis context
	1.7 Thesis structure

	2 Background
	2.1 Mobile Computing
	2.1.1 Interaction Modalities
	2.1.2 Challenges in mobile design
	2.1.3 The Android platform
	2.1.4 The Android application framework

	2.2 Context-Aware Computing
	2.2.1 Modeling languages
	2.2.2 Analysis and discussion

	2.3 Considerate Computing
	2.3.1 Analysis and discussion

	2.4 Conclusions

	3 State of the art
	3.1 Context-Aware Mobile User Interfaces
	3.1.1 Analysis and discussion

	3.2 Non-intrusive mobile computing
	3.2.1 Analysis and discussion

	3.3 Attentive User Interfaces
	3.3.1 Analysis and discussion

	3.4 Conclusions

	4 Designing unobtrusive mobile interactions
	4.1 Development method overview
	4.1.1 Why a modeling approach?
	4.1.2 Proposal overview

	4.2 Design stage
	4.2.1 User modeling
	4.2.2 Interaction specification
	4.2.3 Architecture description

	4.3 Tool support
	4.3.1 The obtrusiveness level metamodel
	4.3.2 The Feature Model metamodel
	4.3.3 The component architecture metamodel

	4.4 Conclusions

	5 Prototyping and automating the development
	5.1 Prototyping to validate the design
	5.1.1 Requirements for the evaluation
	5.1.2 Fast-prototyping for mobile service adaptation

	5.2 Automating the development
	5.2.1 Architecture metamodel
	5.2.2 Glue code generation
	5.2.3 Continuous evolution

	5.3 Conclusions

	6 Validation of the proposal
	6.1 Smart Home case study
	6.1.1 User modeling
	6.1.2 Interaction specification
	6.1.3 Architecture description

	6.2 Early-stage evaluation
	6.2.1 Questionnaire and participants
	6.2.2 Procedure
	6.2.3 Results
	6.2.4 Adaptation re-design

	6.3 Conclusions

	7 Conclusions
	7.1 Contributions
	7.2 Publications
	7.2.1 Relevance of the publications

	7.3 Future Work

	Bibliography

