

The distribution function of a probability measure on the completion of a space with a fractal structure

J. F. Gálvez-Rodríguez and M. A. Sánchez-Granero¹

Departamento de Matemáticas, Universidad de Almería, 04120 Almería, Spain (josegal1375@gmail.com, misanche@ual.es)

Abstract

In this work we show how to define a probability measure with the help of a fractal structure. One of the keys of this approach is to use the completion of the fractal structure. Then we use the theory of a cumulative distribution function on a Polish ultrametric space and describe it in this context. Finally, with the help of fractal structures, we prove that a function satisfying the properties of a cumulative distribution function on a Polish ultrametric space is a cumulative distribution function with respect to some probability measure on the space.

Keywords: probability; fractal structure; non-archimedean quasimetric; measure; cumulative distribution function; ultrametric; Polish space.

MSC: 60B05; 54E15.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0 Editorial Universitat Politècnica de València

¹M. A. Sánchez-Granero acknowledges the support of grant MTM2015-64373-P (MINECO/FEDER, UE).

J. F. Gálvez-Rodríguez and M. A. Sánchez-Granero

1. INTRODUCTION

This work collects and advances some results on a research line on the construction of a probability measure with the help of a fractal structure, which is in current development ([2], [3], [4], [5]).

First, we show how to define a probability measure on the completion of a fractal structure. Second, we show a theory of the cumulative distribution function on Polish ultrametric spaces. Finally, we use fractal structures to prove that a probability measure on a Polish ultrametric space can be fully described by a cumulative distribution function.

2. FRACTAL STRUCTURES AND NON ARCHIMEDEAN QUASI METRICS

Fractal structures were introduced in [1] to study non archimedean quasi metrization, but they have a wide range of applications (see for example [6]).

Let X be a set and Γ_1 and Γ_2 be coverings of X. Γ_2 is said to be a strong refinement of Γ_1 if it is a refinement (that is, each element of Γ_2 is contained in some element of Γ_1) and for each $A \in \Gamma_1$ we have that $A = \bigcup \{B \in \Gamma_2 : B \subseteq A\}$.

Definition 1. A fractal structure Γ on a set X is a countable family of coverings $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ such that each cover Γ_{n+1} is a strong refinement of Γ_n for each $n \in \mathbb{N}$. Cover Γ_n is called level n of the fractal structure.

A quasi pseudo metric on a set X is a function $d: X \times X \to [0, \infty]$ such that:

- (1) d(x, x) = 0, for each $x \in X$.
- (2) $d(x,z) \le d(x,y) + d(y,z)$ for each $x, y, z \in X$.

d is called a pseudo metric if it also satisfies that d(x, y) = d(y, x) for each $x, y \in X$. A quasi pseudo metric (resp. a pseudo metric) is said to be a T_0 quasi metric (resp. a metric) if d(x, y) = d(y, x) = 0 implies that x = y, for each $x, y \in X$.

If d is a quasi (pseudo) metric, the function defined by $d^{-1}(x, y) = d(y, x)$ is also a quasi (pseudo) metric, called conjugate quasi (pseudo) metric of d. Furthermore, the function $d^*(x, y) = \max\{d(x, y), d^{-1}(x, y)\}$ is a (pseudo) metric.

Distribution function on the completion of a space with a fractal structure

A quasi pseudo metric is said to be non archimedean if $d(x, z) \leq \max\{d(x, y), d(y, z)\}$ for each $x, y, z \in X$.

If d is a non archimedean quasi (pseudo) metric, then d^{-1} is also a non archimedean quasi (pseudo) metric and d^* is a non archimedean (pseudo) metric. A non-archimedean metric is also called an ultrametric.

A fractal structure Γ induces a non archimedean quasi pseudo metric d_{Γ} given by:

$$d_{\Gamma}(x,y) = \begin{cases} \frac{1}{2^n} & \text{if } y \in U_{xn} \setminus U_{x,n+1} \\ \\ 1 & \text{if } y \notin U_{x1} \end{cases}$$

where $U_{xn} = X \setminus \bigcup \{A \in \Gamma_n : x \notin A\}$ for each $x \in X$ and $n \in \mathbb{N}$.

In this work, we will assume that the induced topology is T_0 , and hence d_{Γ} is a non archimedean T_0 -quasi metric. It follows that d_{Γ}^* is an ultrametric.

Given $x \in X$ and $n \in \mathbb{N}$, we will denote by $U_{xn}^* = \{y \in X : d^*(x, y) \leq \frac{1}{2^n}\}$ the closed ball, with respect to the ultrametric d^* , centered at x with radius $\frac{1}{2^n}$. The collection of these balls will be denoted by $\mathcal{G} = \{U_{xn}^* : x \in X; n \in \mathbb{N}\}.$

2.1. Completion of a fractal structure. The completion of a fractal structure is constructed from the following extension of X introduced in [1].

Let $G_n = \{U_{xn}^* : x \in X\}$. Note that G_n is a partition of X. Then we can define the projection $\rho_n : X \to G_n$ by $\rho_n(x) = U_{xn}^*$, and the bonding maps $\phi_n : G_{n+1} \to G_n$ given by $\phi_n(\rho_{n+1}(x)) = \rho_n(x)$. We will denote by $\widetilde{X} = \varprojlim G_n = \{(g_1, g_2, \ldots) \in \prod_{n=1}^{\infty} G_n : \phi(g_{n+1}) = g_n, \forall n \in \mathbb{N}\}$. Now, the map $\rho : X \to \widetilde{X}$ defined as $\rho(x) = (\rho_n(x))_{n \in \mathbb{N}}$ is an embedding of X into \widetilde{X} .

Using the previous extension, we can introduce the bicompletion of a fractal structure following [2]. Given Γ a fractal structure, we define level n of the extended fractal structure $\widetilde{\Gamma}$ as $\widetilde{\Gamma}_n = {\widetilde{A} : A \in \Gamma_n}$, where $\widetilde{A} = {(\rho_k(x_k))_{k \in \mathbb{N}} \in \widetilde{X} : x_n \in A}$ for each $A \in \Gamma_n$ and $n \in \mathbb{N}$. We will denote by $\widetilde{U}_{xn}^* = \{y \in \widetilde{X} : \widetilde{d}^*(x,y) \leq \frac{1}{2^n}\}$, where \widetilde{d}^* is the ultrametric induced by $\widetilde{\Gamma}$ on \widetilde{X} . Following a similar notation, we will denote the collection of these balls by $\widetilde{\mathcal{G}} = \{\widetilde{U}_{xn}^* : x \in X; n \in \mathbb{N}\} = \{\widetilde{U}_{xn}^* : x \in \widetilde{X}; n \in \mathbb{N}\}.$

Note that $(\widetilde{X}, \widetilde{d}^*)$ is a complete ultrametric space.

3. Defining a probability measure on \widetilde{X}

In this section we show how to define a probability measure on \widetilde{X} by defining it on \mathcal{G} or $\widetilde{\mathcal{G}}$ (this section is further developed in [3]). From now on, we will assume that $\tau(d^*)$ is separable, and hence $(\widetilde{X}, \widetilde{d}^*)$ is a Polish ultrametric space.

Let ω be a pre-measure $\omega : \mathcal{G} \to [0,1]$. We will say that ω satisfies the mass distribution conditions if:

(1) $\sum \{\omega(U_{x1}^*) : U_{x1}^* \in G_1\} = 1.$ (2) $\omega(U_{xn}^*) = \sum \{\omega(U_{y,n+1}^*) : U_{y,n+1}^* \in G_{n+1}; y \in U_{xn}^*\}$ for each $U_{xn}^* \in G_n$ and each $n \in \mathbb{N}$.

Note that ω can be extended to $\widetilde{\mathcal{G}}$ by letting $\widetilde{\omega}(\widetilde{U}_{xn}^*) = \omega(U_{xn}^*)$, for each $x \in X$ and $n \in \mathbb{N}$. It follows that $\widetilde{\omega}$ also satisfies the mass distribution conditions.

It is proved in [3] that $\widetilde{\omega}$ can be extended to a probability measure μ on the Borel sigma-algebra of $(\widetilde{X}, \widetilde{d}^*)$.

There is an alternative way of defining the pre-measure ω using Γ_n instead of G_n . We refer the interested reader to [3].

4. CUMULATIVE DISTRIBUTION FUNCTION ON A POLISH ULTRAMETRIC SPACE

In this section we elaborate a theory of a cumulative distribution function on a Polish ultrametric space (this section is further developed in [4]). In this section we assume that (X, d) is a Polish ultrametric space (that is, d is a separable complete ultrametric).

First, we define an order in X from the collection of balls $G_n = \{B_{xn} : x \in X\}$, where $B_{xn} = \{y \in X : d(x, y) \leq 2^{-n}\}$ is the closed ball of radius 2^{-n} . Note that G_n is countable since d is separable.

We can enumerate $G_1 = \{g_1, g_2, \ldots\}$. Now we enumerate G_2 such that $g_i = g_{i1} \cup g_{i2} \cup \cdots$ for each $g_i \in G_1$, and define the lexicographical order in G_2 . Recursively, we define an order in G_n for each $n \in \mathbb{N}$.

This order induces an order in X given by $x \leq_n y$ if and only if $B_{xn} \leq B_{yn}$ in G_n . Finally we can define a new order in X given by $x \leq y$ if and only if $x \leq_n y$ for each $n \in \mathbb{N}$.

Definition 2. The cumulative distribution function (in short, cdf) of a probability measure μ on a Polish ultrametric space X is a function $F: X \to [0, 1]$ defined by $F(x) = \mu(\leq x)$, where $(\leq x) = \{y \in X : y \leq x\}$.

Proposition 3. Let F be the cdf of a probability measure μ on a Polish ultrametric space X. Then:

- (1) F is non-decreasing.
- (2) F is right τ_d -continuous.
- (3) $\lim_{x\to\infty} F(x) = 1$ (this means that for each $\varepsilon > 0$ and $x \in X$ there exists $y \in X$ with $x \leq y$ and such that $1 F(y) < \varepsilon$).

5. DISTRIBUTION FUNCTION OF A PROBABILITY MEASURE CONSTRUCTED FROM A FRACTAL STRUCTURE

In this section we show how to use the theory of a cdf on a Polish ultrametric space in the completion of a space with a fractal structure (this section is further developed in [5]). By using the probability measure constructed from a pre-measure satisfying the mass distribution conditions, we will be able to prove some results of the theory of a cdf on a Polish ultrametric space.

First, we show that the cdf of a probability measure constructed from a premeasure ω satisfying the mass distribution conditions can be described by just using the pre-measure. **Theorem 4.** Let Γ be a fractal structure on a set X, ω a pre-measure on \mathcal{G} (or $\widetilde{\mathcal{G}}$) satisfying the mass distribution conditions, μ the extension of ω to a probability measure on the Borel σ -algebra of $(\widetilde{X}, \widetilde{d}^*)$ and F be the cdf of μ . Then $F(x) = \lim h_n^+(x)$, for each $x \in \widetilde{X}$, where $h_n^+(x) = \sum \{\widetilde{\omega}(g) : g \in \widetilde{G}_n; g \leq_n \widetilde{U}_{xn}^* \}$, for each $x \in \widetilde{X}$ and $n \in \mathbb{N}$.

Next, we prove that any function on \widetilde{X} satisfying the properties of Proposition 3 is in fact the cumulative distribution function of a probability measure on \widetilde{X} defined with the help of a fractal structure.

Theorem 5. Let $F: \widetilde{X} \to [0,1]$ be a non-decreasing, right $\tau_{\widetilde{d}^*}$ -continuous function such that $\lim_{x\to\infty} F(x) = 1$. Then there exists a pre-measure $\omega : \mathcal{G} \to [0,1]$, satisfying the mass distribution conditions, such that F is the cdf of μ , where μ is the extension of $\widetilde{\omega}$ to the Borel σ -algebra of $(\widetilde{X}, \widetilde{d}^*)$.

As a consequence of the previous result, we can prove a similar one in the general context of Polish ultrametric spaces.

Theorem 6. Let X be a Polish ultrametric space and let $F : X \to [0,1]$ be a non-decreasing, right τ_d -continuous function such that $\lim_{x\to\infty} F(x) = 1$. Then F is the cdf of a probability measure μ on X.

By using the previous result, we can give a decomposition theorem for a cdf.

Given a cdf F of a probability measure μ on a Polish ultrametric space, we can define $F_{-}(x) = \mu(< x)$, where $(< x) = \{y \in X : y < x\}$.

Lemma 7. Let F be the cdf of a probability measure μ on a Polish ultrametric space. $F = F_{-}$ is equivalent to $\mu(\{x\}) = 0$ for each $x \in X$. Moreover, if $F = F_{-}$ then F is continuous.

In the decomposition theorem, we will use the condition $F = F_{-}$ instead of the continuity of F in order to get the uniqueness of the decomposition.

Theorem 8. Let X be a Polish ultrametric space and let $F : X \to [0,1]$ be a cdf. Then F can be decomposed as a convex sum $F = \alpha G + (1 - \alpha)H$ with $0 \le \alpha \le 1$, where G is a step cdf, and H is a cdf satisfying that $H_- = H$. Moreover, the decomposition is unique. Distribution function on the completion of a space with a fractal structure

References

- F. G. Arenas, M. A. Sánchez-Granero, A Characterization of Non-archimedeanly Quasimetrizable Spaces, Rend. Istit. Mat. Univ. Trieste, Suppl. Vol. XXX (1999) 21–30.
- [2] J. F. Gálvez-Rodríguez, M. A. Sánchez-Granero, Completion of a fractal structure, Quaestiones Mathematicae 40 (5) (2017), 679–695.
- [3] J. F. Gálvez-Rodríguez, M. A. Sánchez-Granero, Generating a probability measure on the completion of a fractal structure, preprint.
- [4] J. F. Gálvez-Rodríguez, M. A. Sánchez-Granero, The distribution function of a probability measure on a Polish ultrametric space, preprint.
- [5] J. F. Gálvez-Rodríguez, M. A. Sánchez-Granero, The distribution function of a probability measure on the completion of a space with a fractal structure, preprint.
- [6] M. A. Sánchez-Granero, Fractal structures, in: Asymmetric Topology and its Applications, in: Quaderni di Matematica, vol. 26, Aracne, 2012, 211–245.