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Rationale and objetives of the

Master Thesis

Biological and biomedical systems (biosystems) are becoming one of the

challenging research topics in the �eld of systems and control. Those systems

are complex systems with the main characteristics of them, that is, high

state-space dimension, multiple inputs and outputs, external disturbances,

signi�cant non-linearity and uncertainty...

Apart from their scienti�c interest, biosystems attractiveness lies also in

their multidisciplinary character and their relation with life sciences.

Biomedical systems involve a multitude of interacting subsystems and

networks, with multiple feedforward and feedback loops, and interactions at

many levels. The dynamics vary from one individual to another, and within

the same individual over time. Usually internal states can not be measured,

and are di�cult to estimate.

In a similar way, biological systems and metabolic networks, also o�er

interesting properties for control. Usually the variables that want to be

controlled can not be measured and have to be estimated. This estimation

has to be carried out taking into account uncertainty and the low ratio
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Rationale and objectives of the Master Thesis XII

between measured variables versus model variables. The recent availability

of experimentally validated models has impulsed de�nitively the analysis and

control of this kind of problems.

Constraints and non-linearities are often present in biosystems. Some-

times the internal variables of the processes have bounded ranges of

operation. And, in other occasions theses restrictions are imposed in order to

improve the performance of the system. They can be applied in the output,

to keep it between two values or below/above one limit, or to internal states

or combinations of states.

It is important not to forget the academic motivation of this work. Indeed,

the master thesis presentation is the last necessary step to obtain the Master's

Degree In Automation And Industrial Computing.

The main objective of this thesis is:

�To study di�erent strategies to deal with control of processes subject to

constraints in the context of biomedical and biological systems�.

The methodologies used to carry out this main objective, together with

its chapter distribution, is shown in �gure 1.

In a �rst phase a study of the possible tools to deal with problems when

constraints are present in one or another way was carried out. As a result,

chapter 1 explains the main theoretical concepts of the tools that are used

in this work. In that way, interval techniques to deal with constraints under

uncertainty, and the speci�c features of sliding modes when used to solve

control problems where constraints exist or are imposed in some state or

combinations of states, are exposed in detail.

The second phase consisted in adapting and applying those tools to

di�erent �bio-problems�. On one hand, chapter 2 deals with the complicated
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Figure 1: Methodology and thesis structure

problem of glucose control in type 1 diabetes mellitus, proposing two

strategies to improve postprandial control. And, on the other hand, chapter

3 introduces the problem of internal �uxes control in metabolic networks.

Finally, the third phase, which in fact was developed in parallel with

the rest of the phases, was focused on the search of opportunities to extend

the tools used here. The objective is to solve more interesting and realistic

problems in bio-systems, where uncertainty and lack of measures is the

common denominator. These conclusions and future work possibilities can

be found in chapter 4.





Chapter 1

Theoretical framework

1.1 Introduction

In this chapter, the main theoretical concepts that will be used in the

following chapters are explained in detail. On one hand, concepts of interval

analysis, particularly suitable to deal with constraints under uncertainty,

and their application to solve set inversion problems (SIVIA) are provided

(section 1.2). On the other hand, the basis of sliding mode reference

conditioning (SMRC) techniques are explained thoroughly in section 1.3.

1.2 Interval Analysis and Set Inversion

Interval analysis arose in the context of numerical analysis and the study of

propagation of computational errors in �nite number systems [56, 65]: if real

numbers are substituted by compact subsets of the digital scale (intervals)

which contain it, and real operators by interval operators, computations will

lead to intervals that contain the actual solution, whose width is a measure of

the approximation error. It is precisely this property of inclusion of the actual

1
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solution that makes interval analysis and methods derived very interesting

when a mathematical guarantee is desired.

Inclusion functions are thus one of the fundamental tools in interval

analysis.

In the following, during this section and section 2.4, [x] will denote a real

interval, and x, x are its left and right endpoints. Interval vectors, or boxes,

will be denoted in boldface, [x]. The set of all real intervals will be denoted

by IR and the set of n-dimensional boxes as IRn.

A formal de�nition follows.

De�nition 1.2.1 Given a function f : Rn → Rm, the interval function [f ] :

IRn → IRm is an inclusion function for f if for any box [x] = [x,x] ∈ IRn

[f ]([x]) ⊇ [min
x∈[x]

f(x),max
x∈[x]

f(x)].

The simplest way to get an inclusion function for f is replacing the real

variable x with an interval variable [x] and the real arithmetic operations

with corresponding interval operations. The result [f] is called a natural

inclusion function of f[56]. However, this may yield signi�cant overestimation

when multiple instances of a variable appear in the expression to evaluate

(multiincidences problem). Other inclusion functions have been studied to

reduce this problem like centered forms or Taylor expansion forms. See for

instance [2, 65, 56, 38] for more details on this topic.

Currently, interval analysis is a mature technology that has been suc-

cessfully applied in �elds aside numerical analysis such as robotics, control,

computer graphics, economy, global optimization, and fault detection, among

others [38].

An important application of interval analysis is the solution of set

inversion problems. Let X ⊆ Rn and Y ⊆ Rm be an input and output
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space, respectively. Given a set Y ⊆ Y and a map f : X → Y, the

set X := {x ∈ X | f(x) ∈ Y} is sought. The set Y is usually de�ned

through constraints on the output space. The SIVIA algorithm [38] makes

use of a branch-and-bound technique together with interval analysis to get

an approximation of the solution set X . This approximation is done in terms

of subpavings (collection of boxes of the appropriate dimension with non-

overlapping interiors). An inner and outer subpaving, which will be denoted

as [X ]i and [X ]o respectively, are built so that [X ]i ⊆ X ⊆ [X ]o. Hence, it

is guaranteed that [X ]i will contain only solutions while the complementary

set of [X ]o, denoted as [X ]o, will contain only non-solutions (see �gure 1.1).

Figure 1.1: Plot that illustrates the concept of inner and outer subpaving.
The dark rectangles represent the inner subpaving and guarantee the
ful�llment of the constraints. The outer subpaving is made up of both the
dark and the light rectangles. Its complementary set (in white) is guaranteed
to contain only non-solutions that violate some of the constraints. Results
in the boundary (light rectangles) are unknown a priori.

Some previous de�nitions follow before presenting the SIVIA algorithm.

De�nition 1.2.2 The width of a box [x] = [x,x] ∈ IRn is w([x]) :=

maxi∈{1,...,n}(xi − xi).

De�nition 1.2.3 The midpoint of a box [x] = [x,x] ∈ IRn is m([x]) :=

(x+ x)/2.
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De�nition 1.2.4 The left and right children of a box [x] = [x,x] ∈ IRn are

L([x]) := [x1, x1]× · · · × [xj,m([xj])]× · · · × [xn, xn]

R([x]) := [x1, x1]× · · · × [m([xj]), xj]× · · · × [xn, xn]

where j is the �rst component of [x] with maximum width, that is, j =

min{i | w([xi]) = w([x])}.

Algorithm 1.2.1 [SIVIA, [38]]

Let X be the solution set sought and [X ]i and [X ]o be two subpavings

corresponding to inner and outer approximations of X as de�ned above. Let

[t] : IRn → IB be a test interval function from the set of n-dimensional

interval vectors (box in the input space) to the set of interval booleans, IB =

{0, 1, [0, 1]} (where 0 stands for false, 1 for true and [0, 1] for indeterminate).

Finally, let [x] ∈ IRn be an initial box in the input space and ϵ be a positive

precision factor that can be chosen arbitrarily low. The SIVIA algorithm is

as follows:

SIVIA(in: [t],[x],ϵ, out: [X ]i,[X ]o)

if [t]([x]) = 0, return;

if [t]([x]) = 1,

then {[X ]i := [X ]i ∪ [x]; [X ]o := [X ]o ∪ [x]; return; };

if w([x]) < ϵ,

then {[X ]o := [X ]o ∪ [x]; return;};

SIVIA([t],L([x]),ϵ,[X ]i,[X ]o);

SIVIA([t],R([x]),ϵ,[X ]i,[X ]o);

The inner subpaving will thus consist of the boxes classi�ed as true, while

the outer subpaving contains the true and indeterminate boxes (of width

smaller than the tolerance de�ned). Not small enough indeterminate boxes

will be splitted in two subboxes by the midpoint of its largest dimension and

the procedure repeated.
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1.3 Sliding mode

A variable structure system (VSS) is composed by two or more subsystems

and a logic which decides when the switching between those systems will

take place. The resulting control law is a discontinuous function of the states

of the system. When the switching frequency is elevated, a very interesting

operation mode is obtained: the states of the system are constrained to a

manifold in the state space. This particular operation mode is named sliding

mode (SM), and it presents very attractive features.

In the end of the 70's the interest in VSS started to grow and, since

then, great theoretical advances have been carried out in the �eld. Several

general revisions of VVS can be found in literature [79, 33, 17, 80, 90, 61, 16].

Moreover, the interesting properties of the SM and the last technological

development has allowed the implementation of many practical applications

of SM algorithms [27, 11, 42, 34].

The SM control principles will be explained in this section, following the

general lines of [71, 72]. Finally, the algorithm that is going to be used in

part of this work which is based in those principles is presented.

1.3.1 Description of the sliding mode

Consider the following non-linear dynamical system:
dx

dt
= f(x) + g(x)u,

y(t) = h(x),
(1.1)

where x ∈ X ⊂ Rn is the system state, u ∈ R the control signal (possibly

discontinuous), f : Rn −→ Rn and g : Rn −→ Rn two vectorial �elds in Cn

(many times di�erentiable) and h(x) : Rn −→ R a scalar �eld also in Cn, all
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de�ned in X, with g(x) ̸= 0, ∀x ∈ X. This kind of systems are named a�ne

in control systems.

De�ne s(x) as a smooth function on X like s : X −→ R, with ∇s ̸=
0,∀x ∈ X. Then the set

S = {x ∈ X : s(x) = 0} , (1.2)

de�nes a locally regular manifold of (n− 1) dimension on X, named sliding

manifold or switching surface.

A variable structure control law can be de�ned to enforce the control

action u to take one of two di�erent values according to the sign of the

switching function s(x) (often addressed as an auxiliary output),

u =

{
u+(x) if s(x) > 0

u−(x) if s(x) < 0
u−(x) ̸= u+(x) (1.3)

where the upper and lower values of u are smooth functions of x and, without

loss of generality, they are assumed to satisfy u−(x) < u+(x) and u−(x) ̸=
u+(x) locally in X.

s(x)=0
  f+gu+

s(x)>0

s(x)<0

  f+gu-

ds

Figure 1.2: Sliding regime on the switching manifold s(x) = 0

Then, a sliding mode will exist on S as a result of the switching law
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(1.3), when the system reaches the manifold S and stays locally in its

neighbourhood. For a sliding regime to exist on S, both controlled vector

�elds of each continuous subsystem, (f + gu+) and (f + gu−), should point

locally towards the manifold S.

The geometrical representation of the previous situation is depicted in

�gure 1.2.

Sliding mode existence necessary condition

It has been mentioned before that, in order to ensure that a sliding mode

sets up in the surface s(x) = 0, both controlled vector �elds switched by 1.3

should point towards the manifold S. This implies mathematically that:

If the next inequalities hold for the switching function, locally on S as a

result of the control action (1.3):{
ṡ(x) < 0 if s(x) > 0

ṡ(x) > 0 if s(x) < 0
(1.4)

then the state trajectories of the system (1.1) locally reach the sliding

manifold S and, from there on, their motion is constrained to immediate

vicinity of S.

To take advantage of the natural geometric interpretation of some sliding

mode related concepts, in the following Lie derivative will be used:

Lfh(x) : Rn −→ R

that is, the derivative of the scalar �eld h(x) : Rn −→ R in the direction

of the vectorial �eld f(x) : Rn −→ Rn:
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Lfh(x) =
dh

dx
f

Like every derivative, Lie derivative is a linear operator. Then taking

derivative of the switching function s(x) one gets

ṡ(x) = Lf+gus(x) = Lfs(x) + Lgs(x)u (1.5)

The using the last di�erential geometry tools, equation (1.4) can be

rewritten using the �rst equality of (1.5),
lim

s(x)→0+
Lf+gu+s(x) < 0

lim
s(x)→0−

Lf+gu−s(x) > 0
(1.6)

This last equation implies the rate of change of the scalar surface coordinate

function s(x), measured in the direction of the controlled �eld, is such that

a crossing of the surface is guaranteed, from each side of the surface, by use

of the switching policy (1.3). The same can be written in a more compact

form:

lim
s(x)→0

s(x) · ṡ(x) < 0. (1.7)

Then thanks of the linearity properties of the Lie derivative, equation

(1.5) can be expressed in a equivalent way:{
Lfs+ Lgsu

+ < 0 if s > 0

Lfs+ Lgsu
− > 0 if s < 0

(1.8)

Note: From now on, we will drop parenthesis unless we want to expressly

show some function dependance from a particular variable.

So in order to establish the sliding mode on s(x) = 0 the following should
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be satis�ed

Lgs =
∂s

∂x
g ̸= 0 (1.9)

locally in S. The previous condition is a necessary reaching condition for

sliding mode, and is known as transversality condition.

Remark 1.3.1 Supposing, without loss of generality, that u−(x) < u+(x) is

satis�ed, then the necessary existence condition of a slinging regime over S
is given by

Lgs =
∂s

∂x
g < 0 (1.10)

locally in a vicinity of S.

The demonstration is immediate from (1.8): subtracting both expressions

for ṡ it must hold (
u+(x)− u−(x)

)
Lgs < 0

And as it was u+(x)− u−(x) > 0, the condition becomes Lgs < 0.

As a particular case, we will analyze some properties of the sliding mode

control in linear systems with the structure described in �gure 1.3. In this

particular case the system description is

ẋ = Ax+ bu,

y = cTx,
(1.11)

where the control action u is determined by (1.3). Then the functions de�ned

for the systems (1.1) are in the system (1.11) given by

f(x) = Ax, (1.12)

g(x) = b, (1.13)

h(x) = cTx. (1.14)



Chapter 1. Theoretical framework 10

Consider the following switching law:

s(x) = kTx− krr (1.15)

where the constant kr must be choose in such way the value of the steady state

output will be equal to the set-point r and the constants kT will determine

the linear dynamics when the system is working in sliding mode.

The trajectories of the states should point to wardsthe surface s(x) = 0

from both sides. So, when s(x) > 0, s(x) should decrease. The same in

the inverse sense. This is guaranteed by the transversality condition, which

according to (1.13) and (1.15) here is given by

Lgs =
∂s

∂x
g = kT b ̸= 0 (1.16)

So for the system (1.11) and the switching function (1.15) it results

ṡ(x) < 0 ⇒ ṡ(x, u+) = kTAx+ kT bu+ < 0 (1.17)

ṡ(x) > 0 ⇒ ṡ(x, u−) = kTAx+ kT bu− > 0 (1.18)

In both inequalities, the �rst two terms are equal at both sides of the

switching surface, then the las term is the only one which can change the

sign of the expression.

Now, considering the set-point r = 0, the transfer function between

discontinuous action and the switching surface is given by:

S

U
= −kT (sI − A)−1 b. (1.19)
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k
r

r

kT
x

y
r

s(x) uu+

u-
R

+

-

Figure 1.3: Conventional scheme of sliding mode control.

Which can be developed into its Taylor series:

S

U
= (−kT )bs−1 + (−kT )Abs−2 + (−kT )Ambs−(m+1) + . . . (1.20)

So, the transversality condition imposes the �rst term of Taylor decomposi-

tion (kT b is also the �rst Markov parameter of the system) has to be di�erent

from zero. This can be translated in the following condition:

The transfer function between the discontinuous action and the switching

surface must have unitary relative degree [72].

Anyway, the transversality condition is only a necessary condition, but

not a su�cient one to guarantee the existence of the sliding mode.

Equivalent control method

The system in a sliding regime, ideally implies in�nite frequency switch-

ing, i.e., is discontinuous at every time instant. This precludes obtaining an

analytical solution of the state equation. One way to obtain the sliding mode

dynamics consist in �nding a continuous system equivalent to the sliding

mode.

To this end, the ideal sliding mode is the regime of ideal operation

in which the manifold S is an invariant manifold of the system. In this

conditions, once the system trajectories reach the manifold, they slide exactly

on the manifold and never leave it.
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The invariance condition of the manifold S is given by:

{
s(x) = 0

ṡ(x) = Lfs(x) + Lgs(x)ueq = 0
(1.21)

The second equation of (1.21) indicates the trajectories will remain on

the surface, meanwhile ueq(x) represents a smooth control law for which S
is an invariant manifold of the system. Then the control ueq(x) is known as

equivalent control and it can be cleared from (1.21), resulting:

ueq(x) = −Lfs(x)

Lgs(x)
(1.22)

In equation (1.22) is possible to see the transversality condition (1.9) is a

necessary and su�cient condition for the well de�nition of the equivalent

control. For the system (1.11) and the switching surface (1.15), the invariance

condition is given by:

s(x) = kTx− krr = 0 (1.23)

ṡ(x) = kT (Ax− bueq) = 0 (1.24)

From equations (1.22) and (1.24) is possible to obtain

ueq(x) = −Lfs(x)

Lgs(x)
= −

(
∂s

∂x
b

)−1
∂s

∂x
Ax = −

(
kT b

)−1
kTAx (1.25)

Here again, its possible to see transversality condition
(
kT b ̸= 0

)
should

hold so the equivalent control of the sliding mode is well de�ned.

A necessary and su�cient condition for existence of Sliding

Mode

By de�nition, the equivalent control action, is the necessary continuous
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control to make the trajectories of the system remain in the invariant

manifold. As a consequence, the derivative of the switching function, should

also be zero along that trajectory:

ṡ(x) = Lfs+ Lgsueq = 0 (1.26)

which was established in the invariance condition (1.21) of the manifold S.

The next theorem, demonstrated in [71], de�nes a necessary and su�cient

condition for the existence of a sliding mode, in terms of the equivalent control

ueq.

Theorem 1.3.1 Let u−(x) < u+(x) and Lgs < 0, a necessary and su�cient

condition for the local existence of a sliding regime on S, that is locally in X

fox x ∈ S,
u−(x) < ueq(x) < u+(x) (1.27)

In other words, the equivalent control ueq(x) is a kind of average between

the lower and upper bounds of the control action. The discontinuous control

action can be interpreted as the sum of a low frequency component (ueq(x))

and a high frequency one which is �ltered out by the system.

Ideal sliding mode dynamics From the expression of the equivalent

control, found in (1.22), it follows that the dynamics on S, due to the

equivalent control, are governed by

ẋ = f + gueq(x) =

[
I − g

(
∂s

∂x
g

)−1
∂s

∂x

]
f = F (x)f(x) (1.28)

Equation (1.28) represents an idealized version of the dynamics in the sliding

manifold S and they constitute an average description for the behaviour of

the controlled trajectories of (1.1) and (1.1) on the sliding manifold S. Its

easy to notice that the manifold invariance condition (1.21) implies that

F (x)f(x) ∈ ker(∇s). (1.29)
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Figure 1.4: Ideal sliding dynamics. Geometric Interpretation of the operator
F .

Which means that F (x) can be considered as a projection operator that

applies on the vector f(x) and projects it into the tangent plane of S in x.

Then, considering a vector v(x) collinear with g(x), i.e.v ∈ span(g)

v(x) = g(x)µ(x), with µ(x) ∈ R (1.30)

and applying to this vector v the operator F (x) we obtain

F (x)v(x) =

[
I − g

(
∂s

∂x
g

)−1
∂s

∂x

]
g(x)µ(x) = 0 (1.31)

This means that F (x) annihilates any vector in the direction of g(x), i.e.

along span(g).

In the �gure 1.4 is possible to see that F (x)f(x) is the projection of f(x)

onto S in the direction of g, and then the value of ueq is such that F (x)f(x)

is tangent to S. This restriction in the state space implies the the system
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looses dimension, because it establishes that one state is dependent of the

rest of n− 1 states.

In terms of di�erential geometry, the following interpretation can be

made: The matrix F (x) is a projection operator taking any vector in TxX

onto ∆S along the span(g), with ∆S being the mapping assigning to each

x, a subspace of the tangent space to X denoted by TxX and such that

⟨ds,∆S(x)⟩ = 0, i.e., ∆S(x) := ker(ds).

The reduced dynamics in the SM can be obtained for the system (1.11).

Taking ueq from (1.22) we get

ẋ = Ax+B
[
−(kT b)−1kTAx

]
. (1.32)

Then reordering we obtain:

ẋ = F (x)f(x) =
(
I − b(kT b)−1kT

)
A︸ ︷︷ ︸

ASM

x, (1.33)

Is worth to remark that equation (1.33) describes the sliding mode dynamics

in a redundant way. One of the state equation is linearly dependent of the

other n−1 equations. This happens because the state, in the sliding regime,

satis�es the restriction s(x) = 0, i.e. the system trajectories are on the sliding

manifold.

The matrix ASM has an eigenvalue at the origin which can be attributed

to this redundancy, and does not imply the sliding mode is unstable.

Remark 1.3.2 In �gure 1.2 is possible to observe the geometric implications

of transversality condition (1.9). It establishes the vector �eld g(x) cannot

be tangent to the sliding manifold (g ∋ ker(∇s)).
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1.3.2 Sliding Mode Reference Conditioning

The concept of reference conditioning to achieve a realizable reference, arises

in the context of control with restrictions. Speci�cally, Hanus and Walgama

([24, 84]) applied this kind of solutions to solve the problem of saturation in

the actuators (windup). Based on these approaches and getting advance of

the possibilities of sliding modes, Mantz and collegues([52, 51, 22]) have

applied sliding mode reference conditioning (SMRC) to obtain realizable

references under restrictions both in the actuators, in the outputs or in any

state or combination of states.

The sliding control loop appears here as an additional loop that makes the

reference realizable under certain constraints instead of representing the main

control loop. In that way,in contrast with conventional variable structure

controllers and sliding modes, the sliding regime is intended as a transitional

mode of operation. The conditioning loop is inactive until the system state

reaches by itself the sliding surface. It becomes inactive again, when the

closed loop system is able to operate again in the non-constrained zone.

It is important to note that, due to the special characteristic of this

application, the typical drawbacks of variable structure control and sliding

modes (i.e. chattering and reaching modes) are avoided.

Let the system


dx

dt
= f(x, p) + g(x)u,

y = h1(x)

v = h2(x)

(1.34)

where x ∈ X ⊂ Rn is the state vector, p ∈ P ⊂ Rn an unmeasured

perturbation, u ∈ R is a control input (possibly discontinuous), f : Rn → Rn



17 Chapter 1. Theoretical framework

a vector �eld, and h1(x), h2(x) : Rn → R, scalar �elds; all of them de�ned

in X.

Variables y and v are both real valued system outputs, y being the main

controlled variable, while v is a variable (e.g. a measurable state or given

function of the states and/or control signal) to be bounded so as to ful�l

user-speci�ed system constraints. The bounds on v de�ne the set:

Φ =
{
x | ϕ(v∗) = v − v+ ≤ 0

}
(1.35)

From a geometrical point of view, the goal is to �nd a control input u

such that the region Φ becomes invariant (i.e. trajectories originating in Φ

remain in Φ for all times t), while y is driven as close as possible to its desired

value r.

U

z

d

i

Figure 1.5: Geometric interpretation of invariance conditions

To ensure the invariance of Φ, the control input u must guarantee that

the right hand side of the �rst equation in (1.34) points to the interior of Φ
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at all points on the border surface ∂Φ = {x | ϕ(v∗) = 0}, as shown in �gure

1.5.

Mathematically, this condition can be expressed as:

∥∇ϕ∥∥f + gu∥ cos θ = ∇ϕ⊤ẋ = ϕ̇(x, u) ≤ 0,∀x ∈ ∂Φ (1.36)

which constitute, in standard form the implicit invariance condition [3, 54]:

sup
u

.

ϕ (x, u)≤0, with x ∈ ∂Φ (1.37)

Solving 1.37 for u, the explicit invariance control for system 1.34 is

obtained.

In that way,

u= (Lgϕ)
−1[ϕ̇−Lfϕ]=uϕ+(Lgϕ)

−1ϕ̇ (1.38)

with uϕ = −Lfϕ/Lgϕ.

u must be chosen so as to �t equation 1.37.

(u−uϕ)Lgϕ≤0, ∀x ∈ ∂Φ =⇒ (1.39)

u=


≤ uϕ : x ∈ ∂Φ ∧ Lgϕ>0

≥ uϕ : x ∈ ∂Φ ∧ Lgϕ<0

@: x ∈ ∂Φ ∧ Lgϕ=0

free : x ∈ Φ/∂Φ

(1.40)

with Lfϕ assumed to be possitive.

Note that the transversality condition (equation 1.9) must hold on ∂Φ for

uϕ to exist. If this is not the case, Φ should be rede�ned accordingly.

Also note that once the surface Φ and the control �eld g are de�ned,
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only one of the two inequalities will hold. And because of the transversality

condition , Lgϕ will remain either positive or negative, but will never change

its sign.

SMRC implementation

R

zSM

v

y

r

u

v*

r
f

Figure 1.6: SM Reference conditioning general scheme.

Figure 1.6 shows a generic implementation of a reference conditioning

loop. It consists of two elements: a �lter F which purpose is to smooth

out the conditioned signal rf , and a discontinuous decision block driving the

search so as to ful�l the constraints and force the system to remain in the

invariance set. Notice that the block Σ in the �gure may represent a control

loop, in which case r is the set-point, and x in equation (1.34) is the extended

state comprising the process, controller, and �lter states. The discontinuous

decision block is implemented by means of the variable structure control law:

u =

{
u+ if ϕSM(v∗) > 0

0 if ϕSM(v∗) ≤ 0
(1.41)
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where

ϕSM(v∗) = v − v∗ +
l−1∑
i=1

τi v
(i) (1.42)

with l being the relative degree between the output v and the input v, v(i)

the ith derivative of v, and τi constant gains. The �lter F is implemented as

the �rst-order �lter

ṙf = −α (rf + u− r) , (1.43)

with α a design parameter.



Chapter 2

Glucose control in type 1

Diabetes Mellitus

2.1 Introduction

Type 1 diabetes mellitus is a chronic and incurable medical condition that

a�ects millions of people all around the world. It is characterized by a

complete lack of insulin production, with the consequence of high blood

glucose levels. Since 1921, when insulin was �nally isolated for clinical

use in humans, and �rst glucose monitoring techniques were developed, the

intensive insulin treatment has undergone important advances.

The Diabetes Control and Complications Trial (DCCT)[15] and the UK

Prospective Diabetes Study UKPDS)[78] �rst demonstrated that chronic

hyperglycaemia1 is responsible for diabetic complications, both in type 1

(T1DM) and type 2 diabetes mellitus (T2DM). A growing body of evidence

has stressed the importance of postprandial2 hyperglycaemia and glycemic

variability as possible determinants of diabetes-related complications, as

well as increased cardiovascular risk in diabetic people [23, 91]. Indeed,

1abnormally high levels of blood glucose concentrations
2after-meal

21
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impairment of postprandial control has been shown to be the �rst alteration

of glycaemia homoeostasis contributing to chronic hyperglycaemia [55],

and it is associated with an increase of oxidative stress and accelerated

atherosclerosis [14, 7].

The need to optimize postprandial control has prompted the development

of insulin analogues3 with more physiologic pharmacokinetic properties

[28]. It has also stimulated the research in the �eld of subcutaneous

continuous glucose monitoring (CGM) and continuous subcutaneous insulin

infusion (CSII), with the introduction of di�erent bolus strategies and

bolus calculators to counteract meal-related blood glucose excursions and to

prevent insulin stacking [25, 93]. However, despite the development of these

new tools, optimization of postprandial control is still an empiric process,

based on both physicians' and patients' experience.

Control of postprandial glycemia excursions is also a barrier to the

development of the arti�cial pancreas4. Certainly, meals are one of the

major perturbations to counteract and the main challenge found in current

clinical validations of the few existing prototypes of automated glycemia

control systems [74, 19, 30, 29, 88, 18, 8, 12]. Di�erent approaches have

been suggested to deal with meal disturbances in this context, including

fully closed-loop systems, semi-closed-loop with meal announcement and

hybrid approaches, using Proportional-Integral-Derivative (PID) controllers

[74] or algorithms like Model Predictive Control (MPC )[19, 18, 8, 12, 30].

Fully closed-loop systems have shown poor performance, with postprandial

glucose higher and post-meal nadir5 glucose lower than desired [74]. The

less-ambitious semi closed-loop and hybrid approaches, have demonstrated

improved e�cacy as compared with fully closed-loop systems. However,

3An altered form of insulin, di�erent from any occurring in nature, but still available
to the human body for performing the same action as human insulin in terms of glycemic
control.

4Technology in development to help people with diabetes automatically control their
blood glucose level by providing the substitute endocrine functionality of a healthy
pancreas

5Lowest point



23 Chapter 2. Glucose control in type 1 Diabetes Mellitus

currently published clinical trials showed unsatisfactory results in terms of

postprandial glucose control [8, 12, 30], failing to demonstrate superiority

to open-loop control[8, 12]. Indeed, despite the use of meal announcement,

the main challenge of currently used control algorithms is still the avoidance

of overcorrection and subsequent hypoglycemia6. In an attempt to solve

this problem, constraints on residual insulin activity (insulin on-board) have

been introduced both in PID [74] and MPC-based systems [19] showing an

improvement in the incidence of hypoglycemia.

In this chapter, two di�erent approaches are used to try to improve the

performance of postprandrial glucose control. Both can be interpreted as

solutions to control of processes subject to constraints. First, a constraint

satisfaction problem based on the mathematically guaranteed techniques

(interval analysis) explained in chapter 1 is posed to calculate the best

prandial basal-bolus combination leading to a tight (according to constraints

de�ned by the user) postprandial glucose control. The procedures and

results of this work are published in [6, 67, 68]. In the second approach,

concepts of SMRC are used to avoid the main problem of current closed loop

strategies, the overcorrection and subsequent hypoglycemia. Once a closed

loop system is implemented, constraints in the IOB are set so as to reduce

that overcorrection, using the same idea as in [74, 19]. The distinguishing

feature of this proposal is that it is independent of the controller. That is, it

is implemented as an additional control loop that modi�es the reference of

the main control loop to ful�l the constraints on IOB.

In section 2.2 an introduction of the type of control strategies more used in

glucose control and the main problems that can be found is provided. Section

2.3 introduces the types of models used in diabetes and the one that will be

used in this work. Section 2.4 is dedicated to the application of interval

analysis techniques to obtain tight glucose control. In section 2.5, the details

of the application of SMRC to improve the performance of glucose close loop

control is provided. Both proposals are validated using the Food and Drug

6Blood glucose concentrations abnormally low (bellow 60-70 mg/dL)
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Administration (FDA)-accepted University of Virgina (UVa) simulator [37].

Finally, section 2.6 analyzes the potentiality of these techniques and presents

future work in this area.

2.2 Closed-loop control in type 1 diabetes

Since the 70s, closed loop glucose systems are focussing attention of many

researchers. Parallel evolution in the last years both in sensors and insulin

delivery devices and in the development of new types of insulins capable of

dealing with postprandial glucose excursions (fast-acting analog insulins) has

de�nitely stimulated the development of this kind of systems. In fact, in 2006

the Juvenile Diabetes Research Foundation (JDRF) launched the Arti�cial

Pancreas Project setting up a consortium of Universities and other research

organisations to promote collaboration in diabetes research. 7

The typical control scheme using glucose subcutaneous monitors and

insulin external pumps is shown in �gure 2.1. Other approaches such as

intravenous or intra-peritoneal sensors or insulin infusion systems can be

also used, but they are less common than the subcutaneous approaches due

mainly to their invasive nature, that makes them less feasible nowadays.

However, some problems arise with this approach. One of the most critical

is the input delay caused by the delay of subcutaneous insulin absorption

and action, even with fast-acting analog insulin. This problem is specially

important after meals, since this delay leads to late and often excessive insulin

delivery, leading in turn to hypoglycaemia (overcorrection hypoglycaemia).

Stated in engineering terminology, there is an instability characterized by

large oscillations in the controlled variable (glucose) due to marked input

7Consortium participants include Cambridge University, Boston University, Oregon
Health and Science University, Sansum Diabetes Research Institute, Stanford University,
University of Colorado, University of Virginia, Yale University, and University of California
Santa Barbara.
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Figure 2.1: Typical glucose closed-loop system

delay. This poor postprandial performance [74] has promoted the use of

feed-forward strategies (meal announcement). Patients indicate the time and

optionally the carbohydrates (cho) grams of the meal and either a constant or

a partial proportional bolus is infused (see �gure 2.2). This semi-closed loop

or hybrid system involving open-loop insulin delivery before meals has been

shown to lead to tighter glycemic control than fully closed loop treatment

[88] although they can not eliminate the overcorrection problem.
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Figure 2.2: Glucose closed-loop system with meal announcement

It must be taken into account that the e�ect of a meal in the blood glucose

depends on many factors, not only on the ingestion time, and the grams of

cho. Factors such as the nutritional composition of the meal, the way it has
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been cooked and the e�ect of previous meals makes the meal a no completely

measurable perturbation.

Moreover, another important issue that must be considered when thinking

in glucose control is variability. This variability is not only referred to inter-

patient variability, but also to changes in the insulin sensitivity in the same

patient during a day. The insulin sensitivity is subject to circadian variations

that a�ect the insulin requirements for a speci�c glucose levels [83]. Other

sources of intra-patient variability are stress, exercise, infections...

Finally, additional technological problems complicate even more the

control. The precision of the glucose subcutaneous sensor is still a challenge

due to the presence of relative errors above 20% that, moreover, are often

presented as bias errors, inducing again sobreactuation. Problems in the

actuator (insulin pumps) arise when they get blocked up or there is a leak.

For all these reasons it is important to note that glucose blood control is

a complex problem where �nding a solution for all the problems mentioned is

a very di�cult task. For this reason, partial solutions helping to solve some

of the problems mean a big step in the �eld.

An ideal glucose controller would be one capable of limiting the insulin

infusion, minimizing the hypoglycaemia events and robust in the presence of

intra-patient variability and errors in the measures. In addition it can not

be too complex, and needs to be adjustable according to clinical practice.

Many control algorithms have been proposed, from classic strategies to

more advanced control methodologies. Di�erent PID controllers [53, 74],

predictive control [29], H∞ [60, 70, 64], sliding mode control with glucose

prediction after meals [21], neural networks and fuzzy logic [76, 9], adaptative

control structures [35] and algorithms inspired in the molecular biology of

beta cells [59], are some of the controllers that have been tested in silico.

However, due to their good relation between simplicity and performance,
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PID and MPC control strategies are the most used ones, and the ones which

have demonstrated more clinical evidence.

2.3 Models in diabetes: Cobelli model

In order to obtain information related to the limitations of the closed loop

systems and help patients and physicians in the understanding of the body

responses to di�erent stimulus and therapies, computer simulations using

models that re�ect the physiology of diabetic patients are very useful.

Moreover, the in vivo validation of controllers without a previous in silico

validation can lead to unnecessary risks for the patient.

So as to model the physiology of a diabetic patient body, the main parts of

the organisms that take part, in one o another way, in the glucose regulation

and may be a�ected by the disease must be taken into account. Many

factors, di�cult to be modelled, such as stress, exercise, the presence of

infections. . . are present in this regulation. However, the main systems that

basically govern the behaviour of a diabetic patient are:

• Insulin absorption model

• Glucose absorption model

• Glucorregulatory model

Figure 2.3 shows the block diagram of these three systems, where the

outputs of the two formers act as the inputs of the glucorregulatory system.

In this diagram, the inputs are the doses (measured in insulin units

(IU)) of insulin and the cho of the meal (measured in gr), entering each one

in the insulin absorption model and glucose absorption model respectively.

The �uxes Ip (plasma insulin) and Gex (exogenous glucose) entering in the
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Figure 2.3: Diabetic body physiology

glucorregulatory system represent the insulin units per litre and the glucose

grams per minute that enter in the organism. Finally, the output of the

regulatory model is the plasma glucose concentration that can be measured

by a blood sample or using a glucose sensor.

During the last years many mathematical models have been developed

with di�erent purposes, as educational models [43], models for estimating

insulin sensitivity [10], and models for developing new drugs [92]. But, lately,

a lot of e�ort is concentrating in the the development of models to test new

algorithms and strategies, in virtual patients (simulation). Most of them

are phenomenological models, based on prior knowledge of the physiological

principles that regulate our body. In fact, in 2008 the US FDA accepted the

UVa simulator developed by Virginia University as a substitute to animal

trials in the preclinical testing of closed-loop control strategies.The simulator

provides a set of virtual subjects based on real individual data, a simulated

sensor that replicates the typical errors of continuous glucose monitoring, and

a simulated insulin pump. The insulin, gastrointestinal and glucorregulatory

models used in the UVa simulator are fully described in [48], [50] and [49].

Here, these models will be explained brie�y since the UVa simulator will

be used to validate the proposals developed in this work and its equations

will be necessary to prove de SM existence in section 2.5.

Insulin model
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The model proposed by Cobelli's group has two compartments for the

interstitial space, and it considers that the elimination of insulin takes place

entirely after the absorption to plasma. The structure of the model and the

equations that govern it are shown in �gure 2.4 and equations 2.1 respectively.

Note that the elimination of insulin takes places both by degradation in

the plasma compartment and in the liver, that is considered as another

compartment (Ip and Il respectively).

Figure 2.4: Cobelli's insulin model

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)

İl(t) = −(m1 +m3)Il(t) +m2Ip(t)

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t) + ka2S2(t)

(2.1)

Gastrointestinal

The glucose absorption model, developed by Chiara Dalla Man follows

the structure shown in 2.5. This model considers a two-compartment model
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for digestion and a simple single-compartmental model for the absorption in

the gut.

Figure 2.5: Dallaman's gastrointestinal model

The compartmental model equations are:

q̇sto1(t) = −K21qsto1(t) +Dδ(t)

q̇sto2(t) = −Kempt(qsto)qsto2(t) +K21qsto1(t)

q̇gut(t) = −Kabsqgut(t) +Kempt(qsto)qsto2(t)

Gex(t) = fKabsGgut(t)

(2.2)

where δ(t) is the Dirac delta, simulating an impulse input to the model.

The rest of parameters added are �ux constants, for the transfer of glucose

through the system, except for the Kempt parameter, which is time-varying

and de�nes the form of the gastric emptying. The equations describing the

transfer rate de�ning the �ow of glucose from the stomach to the intestine

are:
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Kempt(qsto) = Kmin+ Kmax−Kmin

2
· {tanh[α(qsto − b ·D)]−

− tanh[β(qsto − c ·D)] + 2}
qsto(t) = qsto1(t) + qsto2(t)

α = 5
2D(1−b)

; β = 5
2Dc

(2.3)

Endogenous model

The endogenous model is the part of the glucose-insulin model that

describes the di�erent regulatory pathways of blood glucose concentration.

The core structure of Cobelli glucorregulatory model is pretty simple, as

shown in �gure 2.6:

Figure 2.6: Cobelli's glucorregulatory model

The model equations are:

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t)

G(t) = Gp(t)/V G

(2.4)
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Where,

• Ra is the exogenous fux of glucose coming from the gut.

• Uii is the utilization of glucose that is non dependent on insulin. It is

usually considered constant and equal to Fcns.

• Uid is the utilization that depends on the insulin concentration, and it

follows the following set of equations:

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib]

Vm(t) = Vm0 + VmxX(t)

Uid(t) =
V m(t)Gt(t)
Km+Gt(t)

(2.5)

where X(t) is the remote insulin, I(t) is the plasma insulin, Ib is the

basal insulin and Vm(t) is the transfer rate for the Michaelis-Menten

equation shown in equation 2.89.

• E(t) represents the renal excretion, which occurs if plasma glucose

exceeds a certain threshold. Is modeled as follows:

E(t)=

{
ke1 [Gp(t)−ke2]

0

}
if Gp(t)>ke2

otherwise
(2.6)

where ke1 is the glomerular �ltration rate and ke2 is the renal threshold

of glucose.

• EGP(t) is the Endogenous Glucose Production, and it depends on a

delayed insulin signal as follows:

.

I1(t)=−ki [I1(t)−I(t)]
.

Id(t)=−ki [Id(t)−I1(t)]

EGP (t)=max {0,kp1−kp2Gp(t)−kp3Id(t)}
(2.7)

where I(t) is the insulin concentration in plasma.
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A more detailed description of Dallaman-Cobelli model and other insulin-

gastrointestinal-glucose models can be found in [41].

2.4 Set-Inversion-Based prandial insulin deliv-

ery

In this section, interval techniques explained in section 1.2 will be used to

obtain prandial insulin infusion that leads to a glucose response ful�lling

certain constraints.

Coming back to SIVIA algorithm (1.2.1), with a proper instantiation of

the input and output spaces, X and Y, and the test interval function [t], it

can be used to gain insight on the di�erent dosage strategies that can be

applied depending on the patient and the nature of the meal and to select

the best basal-bolus combination that will yield a good postprandial control.

For this purpose, the following set inversion problem is posed:

The input space X corresponds to the bolus insulin dose, the modi�ed

basal insulin infusion at meal time and the time of restoration of basal to its

baseline value.

For a given box in the input space, [x], and a set of constraints C on

postprandial glycemia, the test function [t]([x]) will determine whether: (1)

all the insulin therapies contained in [x] ful�ll the constraints C (True case);

(2) none of the insulin therapies contained in [x] ful�ll the constraints C (False

case); (3) some of the therapies in [x] ful�l the constraints, while others do

not (Indeterminate case).

The constraints C are de�ned here following the International Diabetes

Federation (IDF) guidelines for postmeal control [36]: non-hypoglycaemia

and two-hour postprandial glucose value below 140 mg/dL, in a �ve-hour
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Figure 2.7: Output of an interval simulation. Upper and lower envelopes
include all possible glucose responses for the input box.

time horizon. The hypoglycaemic threshold is not explicitly de�ned in the

guidelines. A value of 70 mg/dL is adopted here. Additionally, two extra

constraints are de�ned: �ve-hour postprandial glucose value above 90 mg/dL

and a maximum glucose slope of 0.05 mg/dL/min starting four hours after

the meal. These additional constraints are included to minimize both the

risk of hypoglycaemia after the �rst �ve hours and late undesirable glucose

rebounds.

Finally, a patient's model is used to predict postprandial glycemia, G,

that is compared against the above constraints. An interval simulation of

the model is carried out using Modal Interval Analysis [20]. This allows to

obtain tight bounds of the envelopes enclosing the collection of postprandial

glucose pro�les originated from the set of therapies in [x]. For a given time

t, [G](t) will thus be an interval (see �gure 2.7). A time step of 1 minute is

used in the simulation.

Remark that the above additional constraints are imposed on the model

predictions, which may be inaccurate after a few hours compared to the real

patient behaviour. Values were tuned accounting for this mismatch in the

case of the model used here.

The test interval function, [t]([x]) is thus de�ned as:
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True: (∀tk ∈ [0, 300] [G](tk) ≥ 70)∧

(∀tk ∈ [120, 300] [G](tk) ≤ 140)∧

[G](300) ≥ 90)∧

(∀tk ∈ [240, 300] [G](tk+1)−[G](tk)

tk+1−tk
≤ 0.05)

False: (∃tk ∈ [0, 300] [G](tk) < 70)∨

(∃tk ∈ [120, 300] [G](tk) > 140)∨

([G](300) < 90)∨

(∃tk ∈ [240, 300] [G](tk+1)−[G](tk)

tk+1−tk
> 0.05)

Indet.: otherwise

where tk is a discrete time instant. Remark that the above inequalities

correspond to interval inequalities ([x, x] ≤ α ⇔ x ≤ α, [x, x] ≥ α ⇔ x ≥
α, α ∈ R).

The kind of inner subpavings that are obtained after the application of

the algorithm is shown in �gure 2.8 (left). The subpaving consists of 3D

feasible boxes, where these three dimensions correspond to the bolus dose,

the postprandial basal dose and time of restoration of basal to baseline.

The 2D basal-bolus projection (�gure 2.8 right) contains information on the

di�erent basal-bolus combinations that will lead to a good performance for a

particular patient and meal. In this way, combinations in the inner subpaving

are guaranteed (with a proper selection of the time of restoration of basal to

baseline) to yield a glucose pro�le that ful�lls the de�ned constraints. On

the contrary, combinations outside the outer subpaving will violate some

constraint (see �gure 2.9). If the outer subpaving is empty, there is no

solution to the problem unless the constraints are relaxed.

The projected basal-bolus space can be divided into regions corresponding

to di�erent bolus administration modes present in current insulin pumps,

plus a new one called here temporal basal decrement (see �gure 2.10). This
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Figure 2.8: Plot that represents a 3D (basal, bolus and time) feasible set
with its corresponding basal-bolus 2D projection.

Figure 2.9: Plot that shows the glucose response for a basal-bolus
combination inside the inner subpaving (dotted line) and for a combination
outside the outer subpaving (solid line). The glucose response has been
represented for times of restoration from 30 to 300 min demonstrating that
for combinations in the inner subpaving always exists at least one solution,
selecting the appropriate time of restoration of basal from the feasible set,
that ful�lls the constraints whereas, for combinations outside the outer
subpaving is impossible to obtain a proper glucose control.

is especially important since it allows the automatic selection of the best

administration mode. So far this is done based on the physician's heuristics.

To ease interpretability, a normalization is done with respect to the patient's

nominal basal and standard bolus from its insulin-to-carbohydrate ratio

(I:C). The point (1,1) corresponds thus to the standard therapy.

Figure 2.10 shows a situation where all the di�erent bolus administration

modes (standard bolus, square bolus, dual-wave bolus and temporal basal

decrement) will result in a good glucose response, ful�lling the IDF guidelines

of postmeal control. Depending on the patient and on the grams of

carbohydrates of the meal, the number of bolus modes ful�lling the

constraints may be reduced.



37 Chapter 2. Glucose control in type 1 Diabetes Mellitus

Figure 2.10: Normalized feasible set that shows all the possible bolus
administration modes. Therapies with nominal basal correspond to a
standard strategy, therapies with an increment in basal postprandial dosage
result in a dual-wave or square-wave strategy whereas therapies with less
postprandial basal than baseline are called here as temporal basal decrement
mode. The corresponding insulin infusion pro�les are depicted for each
region.

The procedure used to select a speci�c point (basal-bolus combination)

from all the possible ones is done as follows. The 2D basal-bolus subpaving

is divided into two smaller subpavings (when possible) corresponding to

a positive and negative basal deviation from nominal. The �rst one

will correspond to a bolus mode currently available in insulin pumps

(standard/square/dual-wave). The second one will correspond to a new

administration mode, found to be the only solution for big sized meals (see

[6]). The optimal point of each of these new subpavings can be selected in

several ways, and di�erent approaches will be explained here:

• Centroid solution: The basal-bolus combination is chosen as the

geometric centroid of the corresponding subset. This alternative leads

to a conservative solution where the glucose response remains as far as

possible from the constraints. Although this solution does not optimize

the glucose pro�le, it is the most robust solution against mismatches

between patients? model and actual patients.

• Maximal-bolus solution: The basal-bolus combination is chosen by
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applying the highest possible bolus to optimize the 2-hour postprandial

glucose concentration. This solution follows a similar philosophy to the

typical physicians' approach for selecting the appropriate I:C ratio for

each patient. The di�erence here is that the coordinated basal-bolus

action will allow an optimal 2-hour postprandial glucose control, while

avoiding hypoglycaemia.

After the selection of the desired basal-bolus combination, the time of

restoration of basal to baseline is selected from the third dimension in the 3D

feasible set, which corresponds to an interval of feasible times of restoration.

The mid-value is considered here.

Patient's model identi�cation

The algorithm requires obtaining an individual model for each of the

patients, characterizing their postprandial glucose behavior. PAtients used

here are the virtual patients in UVa simulator. UVa simulator uses the Cobelli

model as a mathematical description of type 1 diabetic patients. In order

to force mismatch between patient's model and the virtual patient behavior,

the Hovorka model [32, 31] structurally di�erent, is used as patient's model.

Its parameters are identi�ed from 4-day virtual patient's data for a period

of �ve hours after a meal, following an optimal experiment design (OED)

[45, 87]. The set-up parameters considered in the OED are the ingested

amount of carbohydrates, the bolus insulin dose and the time instant of

bolus insulin infusion. Constraints are added to avoid glucose concentrations

below 70 mg/dL or above 300 mg/dL. The experiment can be carried out

in ambulatory conditions. The optimality criterion used in this study is

D-optimality, corresponding to the maximization of the determinant of the

Fisher information matrix [87].

The use of a model structurally di�erent than the model used in the

UVa simulator is justi�ed by the unavoidable discrepancies that always exist

between the real behaviour of a patient and the response of its model.
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Figure 2.11: 2D basal-bolus projection of normalized feasible sets for a meal
of 40 to 140 grams of carbohydrates and initial normoglycemia. The vertical
line stands for the standard strategy with basal equal to its baseline value.

Choosing a di�erent model for identi�cation than the one used in the

simulator allows evaluating the robustness of the algorithm with respect to

model and patient mismatch.

Validacion

Once the model is obtained, the normalized 2D basal-bolus projections

are computed for meals in the range 40-140 grams of carbohydrates and initial

normoglycemia. Figure 2.11 shows the results obtained for one representative

virtual patient.

The most remarkable issue extracted from �gure 2.11 is that for low

carbohydrate content meals (< 80 gr), di�erent possible strategies lead to a

good glucose control whereas as the carbohydrate content increases, the set

of possible solutions is reduced, as expected. For big sized meals (> 100 gr),

only a temporal basal decrement strategy with an increment in the bolus

dosage with respect to nominal (�a superbolus therapy� [85, 86]) can yield to

a good postprandial control. Similar behavior can be observed in the rest of
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the patients being, the temporal basal decrement strategy the only strategy

that provides good results for big sized meals. Occasionally, for a particular

meal and patient, the feasible set could be empty, in which case the upper

constraint will be relaxed in steps of 20 mg/dL to a maximum of 300 mg/dL.

In order to check the results obtained in �gure 2.11, an intermediate

sized meal (60 gr) and a big sized meal (120 gr) are selected to compare

the glucose response applying the basal-bolus insulin combinations given by

the algorithm for each possible bolus administration mode with the response

using the standard therapy (see �gure 2.12). The centroid solution for the

selection of an speci�c basal-bolus combination from all the possibles is used.

For the 60 gr meal any of the three possible therapies (standard, dual-wave

and temporal basal decrement) yields a good performance whereas for the

120 gr meal, the basal-bolus combination given by the algorithm using a

temporal basal decrement strategy improves signi�cantly the performance of

the standard therapy, incapable of ful�lling the IDF guideless for postprandial

control. In this case, both strategies could produce a very mild hypoglycemia

seven hours after the meal 8. However, this is not at all critical.

See [68] for a thorough comparison of the results obtained for the 30

available virtual patients in the UVa Simulator (adults, adolescents and

children) using the centroid solution and the maximal-bolus solution.

2.5 Use of an additional SMRC loop to deal

with IOB constraints

In this section, the second proposal advanced in the introduction is explained

in detail. The main objective here is to limit the concentrations of residual

8There is no consensus about the hypoglycemic threshold. Some clinicians use a value
of 60 mg/dL. Here, a more restrictive value of 70 mg/dL was used.
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Figure 2.12: Comparison among the postprandial glucose pro�les applying
di�erent therapies for 60 and 120 gr meals. The subpavings corresponding to
each bolus administration mode are represented (when existing) separately.
The speci�c basal-bolus combination selected for each strategy is showed
in the subpavings as a thick dot. Finally, the glucose response using the
basal-bolus combinations given by the algorithm and the standard therapy
are plotted. The solid line corresponds to the standard therapy, computed
from the I:C ratio given by the UVa simulator, whereas the dotted line and
the dotted-dashed line represent the temporal basal decrement (TBD) and
the dual-wave therapy respectively. The horizontal lines represent the IDF
constraints.

insulin (IOB) with the objective of preventing hypoglycaemia. Indeed, that

is a question not solved yet by the closed-loop strategies found in literature.

It is assumed we have a patient controlled using a conventional PID

(for instance [74])9. As the insulin on board is inaccessible and di�cult

to measure, it must be estimated. For doing this, Cobelli's model of the

insulin subsystem is used. In that way, from equation 2.1, the IOB can be

represented as S1 + S2.

9Note that the controller could be whatever, since the additional SMRC loop is
independent of the main loop
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A representation of the proposed closed loop scheme is shown in �gure

2.13 where the inner controller (C) can be expressed in its ideal form as 2.8.
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Figure 2.13: SMRC implementation for diabetes application

u(t)=KP e(t)+
KP

τI

t∫
0

e(τ)dτ+KP τD
de(t)

dt
(2.8)

where e = G − Grf . Notice when u(t) (insulin injected) increases, the

glucose concentration G decreases. This fact explains the error sign.

In order to avoid abrupt changes in u due to changes in the reference,

and due to the fact that for postprandial control, the constant τI is very

large, the realizable expression of the controller used for calculation and

implementation is:

u(t)=KP e(t)+KP τD
dG(t)

dt
(2.9)

The additional SMRC loop consists of two main elements. A discontinu-

ous decision block responsible for remaining IOB inside the desired bounds

and a �rst order �lter F which purpose is to smooth out the conditioned

reference.
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The �rst order �lter takes the form:

Ġrf = −α (Grf + w −Gr) , (2.10)

where Gr is the desired reference when IOB does not reach the de�ned

bounds, Grf is the conditioned reference when the SMRC loop is active, ω

is the discontinuous signal and α is a design parameter.

Combining the expressions related to IOB of the insulin system (2.1), the

controller (2.9) and the �lter (2.10), the complete system can be rewritten

following 1.34 as:

 Ṡ1

Ṡ2

u̇

=

 (−ka1−kd)S1+u

kdS1+ka2S2

kPαGrf

+

 0

0

kPα

w+

 0

0

kP Ġ+kDG̈−kPαGr


(2.11)

where x=

 S1

S2

u

, f=

 (−ka1−kd)S1+u

kdS1+ka2S2

kPαGrf

, g=

 0

0

kPα



and p=

 0

0

kP Ġ+kDG̈−kPαGr


De�ning IOB as S1+S2 the relative degree from IOB to the discontinuous

signal w is gr=2. Moreover, the terms that are seen as perturbation are

collinear with the discontinuous signal w. Notice these terms represent the

dynamics of the glucose. That is, the inner loop is seen as a perturbation.

Two constrains for the IOB are de�ned. One upper constraint to solve, as

explained before, the problem of hypoglycaemia incidence, and an additional
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lower constraint to avoid undesirable glucose rebounds and maintain a

minimum quantity of IOB. Hence, the sliding surfaces will be de�ned as

follows:

σ1=(S1+S2)− IOB+τ
d(S1+S2)

dt
(2.12)

σ2=(S1+S2)− IOB+τ
d(S1+S2)

dt
(2.13)

being the switching logic:

w=


w+ if σ1>0

w− if σ2 <0

0 otherwise

 (2.14)

Note that, because of the way the system is de�ned, w+ will be negative

and w− positive. That is, when the upper bound is going to be violated,

the reference value is incremented so as to diminish the control action, and

vice versa for the lower constraint. In other words, when σ1 > 0, IOB is

higher than IOB. In order to decrease IOB, the insulin injected (u) must

decrease (see equation 2.11). This e�ect is achieved increasing Grf leading to

higher levels of blood glucose and avoiding hypoglycaemia due to an excess

of insulin. In the same way, when when σ2 < 0, IOB is lower than IOB

and Grf must decrease in order to force an increment in u and inject more

insulin. This procedure will avoid undesirable later glucose rebounds once

the e�ect of the meal has already been counteracted.

From 1.3.2, the existence condition that must be ful�lled so as the sliding

mode to exist, is the trasversality condition, that is Lgσ = ∂σ
∂x
g ̸= 0. As,

Lgσ1 = Lgσ2, calculations will be developed for σ1, being the procedure for

σ2 analogous.
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∂σ1

∂x
=
(

1−τ(ka1+kd) 1+τka2 τ
)

(2.15)

Lgσ1=
∂σ1

∂x
g=

(
1−τ(ka1+kd) 1+τka2 τ

) 0

0

kPα

=τkPα (2.16)

where kP , τ and α are design parameters, always di�erent from 0 and

positive. Therefore, the transversality condition holds.

In order to follow the invariance condition stated in 1.3.2, and according

to 1.39,

(w+−wσ1)Lgσ1≤0,∀x ∈ ∂Φ =⇒ (2.17)

Since in this case Lgσ1 > 0, w+ must be chosen to �t equation:

w≤w+σ1=−Lfσ1

Lgσ1

(2.18)

with,

wσ1=
S1(ka1−τ(ka1

2+2ka1kd+kd
2+ka2kd))+S2(−ka2−τka2

2)+u(τka1+τkd−1)−τkPαGrf
τkPα

(2.19)

Recall w+ will be negative. So, in order to �t equation 2.18, wσ1 must

be negative and lower bounded. The states of the systems S1, S2 are always
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positive and also u (we cannot �extract� insulin and the inner loop is designed

according to this constraint). Therefore,

wσ1=ξ1S1−ξ2S2−ξ3Grf+ξ4u (2.20)

with ξ2 > 0 and ξ3 > 0. In tha way, de�ning properly τ , α and w equation

2.18 can be ful�lled.

Dealing with inter-patient variability

As it was said in sections 2.2 and 2.3 a lot of variability from one patient

to other exists. In order to deal with variability, di�erent upper limits for

IOB are de�ned depending on an estimation of the insulin sensitivity of each

patient. This estimation is carried out by computing the total daily dose of

insulin (IDD) (from his basal insulin rate).

The structure that will be follow for the main control loop is the one

showed in 2.2, with meal announcement. In this case, a �xed 2IU bolus will

be infused in the instant of the meal. So, the meal announcement will only

indicate the time of the meal, but neither the quantity nor the composition

of it. Obviously, the upper limit for IOB needs to be di�erent depending on

the grams of cho and also on the absorption of the meal. To deal with these

issues, another criterion to determine IOB, is established. It will be higher

for meals that cause a large glucose slope (supposed to be a big meal) and

lower for lower glucose slopes. The glucose slope will be determined using

glucose measures at the meal time and ten minutes later.

By using those two criteria (IDD and glucose slope) six di�erent upper

limits for IOB will be de�ned ranging from 5 to 15 IU. Additionally, these

limits are reduced, if they are caused by the second peak of the meal

absorption or if the patients initial condition is moderate hypoglycaemia

(values bellow 80 mg/dL). Additionally, initial conditions of hyperglycaemia

will allow higher concentrations of IOB.
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In order to maintain always a minimum of IOB to keep a good basal

glucose concentration, a �xed lower bound for IOB is established for all the

situations.

Remark that although IOB=IOB(G, Ġ, t), IOB, it is not strictly time

variable. Its value is de�ned at the beginning of a meal and remains constant

until a second glucose peak is detected or another meal takes place. It is a

constant interval function with σ̇1=σ̇2=0.

Simulations and Validation

An example of the kind of results obtained with this algorithm is shown in

�gures 2.14 and 2.15. In these �gures the glucose pro�le obtained with a PID

tuned for avoiding hypoglycaemia (conservative PID), with a more aggressive

PID where the main objective is to reduce the time stayed in hyperglycaemia,

and with this same controller with constraints in IOB is shown. In �gure 2.14

it can be seen how the addition of the SMRC loop allows the implementation

of an aggressive control but preventing hypoglycaemia. In that way, this loop

can be seen as a security system. Figure 2.15 shows the periods when the

SMRC is active and how it is capable of keeping the insulin on board bellow

the de�ned upper bound.

Figure 2.16, where the S1 and S2 trajectories on phase are plotted,

illustrates how the SMRC acts. It forces the limited variable (in this case

IOB)not to exit the speci�ed surface, leaving it free when it remains inside

it.

So as to evaluate how robust the strategy is, the acceptable di�erence that

can exist between the estimated IOB and the real one to obtain a glucose

pro�le within prescribed bounds is evaluated. To do this, an optimization

problem was set up. The optimization was carried out in a virtual patient

with medium parameters, and the objective was to see how di�erent could

be the real IOB parameters (ka1, ka2 and kd) from the ones used for IOB
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Figure 2.14: Glucose pro�le using three di�erent strategies

ka1 ka2 kd

CV (%) 78 77 81

Table 2.1: Allowed CV for each parameter

estimation to still avoid hypoglycaemia and obtain basal glucose after 5 hours

near 100 mg/dL.

The optimization reveals that a di�erence near 80% between the medium

parameters used for estimation and the real ones still provides good glucose

responses. Table 2.1 shows the speci�c result for each parameters.

The evaluation of the above explained methodology has been carried

out through an in silico study using the 10 adult virtual patients available

in the educational version of the Food and Drug Administration-accepted

University of Virginia simulator.

Table 2.5 shows the demographic, anthropometric, and metabolic para-

meters of the 30 patients. Nominal basal is taken as the basal infusion
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Figure 2.15: IOB and discontinuous signal

Age Weight (kg) Nominal basal (IU/hour) I:C (g/IU)

Mean 51.6 86.07 1.685 9.92

Standard deviation 16 15.79 0.25 6.33

Table 2.2: Demographic, Anthropometric, and Metabolic Parameters of
the 10 in Silico adult Subjects Available in the Educational Version of the
University of Virginia Simulator

normalizing glucose around 100 mg/dl, and the insulin-to-carbohydrate

ratio (I:C) is estimated through simulations trying to obtain a 2 h glucose

concentration below 140 mg/dl.

By using these cohort of patients, the performance of the algorithm in

the presence of inter-patient variability is evaluated. To incorporate to this

validation the e�ect of intra-patient variability, sinusoidal oscillations of 5%
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Figure 2.16: S1 and S2 trajectories on phase plane with the aggressive PID
(blue), the conservative PID (green) and the aggressive PID with the SMRC
loop (red). The yellow lines represent the variable IOB upper bound and the
�xed IOB lower bound. Remember IOB = S1 + S2

amplitude and 3 h period has been a superimposed in nominal values of

selected model parameters similar than in [89]. Each of those parameters

had a di�erent phase generated randomly from a uniform distribution U[0,3

h].

Ten simulations for each patient were carried out following a 16h clinical

protocol corresponding to active daily hours (from 8h to 24h) and three meals

(8:00 am, noon, and 6:00 pm) with 20, 80, and 120 g of cho. For each of

these simulations three control strategies, conservative PID, aggressive PID

and aggressive PID plus an addition SMRC loop that impose constraints

on the IOB have been evaluated and compared. In table 2.5 the mean
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% of time G>180 mg/dL % of time G<60 mg/dL

PIDcon PIDaggr PIDaggr + SMRC PIDcon PIDaggr PIDaggr + SMRC

pac 1 34.85 2.57 7.85 0 7.48 0.47

pac 2 29.1 2.91 5.52 0 0.27 0

pac 3 21.29 0.93 12.21 0 19 2.46

pac 4 19.07 6.93 7.67 0 55.21 45.54

pac 5 28 8.21 14.08 0 4.2 1.22

pac 6 32.65 5.39 18.62 9.55 38.21 18.86

pac 7 20.38 0 3.49 0 18.51 1.64

pac 8 16.34 0.19 1.15 0 17.99 0

pac 9 60.69 13.43 45.55 0 0 0

pac 10 38.9 16.45 30.10 0 9.29 0.70

Table 2.3: Percentage of time in Hypo and Hyperglycaemia with the 3 control
strategies

percentage of time above 180 mg/dL and the percentage of time below 60

mg/dL for each patient and each strategy is shown. Remark that although

with the conservative PID hypoglycaemia is avoided (it was designed for that

purpose), in all of the 100 simulation performed, the glucose pro�le reached

values above 180 mg/dL, remaining there 30% of the time whereas with

the aggressive PID only 6% of the total simulation time was above those

glucose values. The aggressive PID with the additional SMRC, continues

o�ering a good hyperglycaemia performance (14% of the total simulation

time) but reduces the hypoglycaemia events considerably (7% of the total

time of the simulations versus 17%) and also the events registered are events

of moderated hypoglycaemia.

Figure 2.17 shows the mean glucose pro�le of the 100 simulations

performed. It can be see that the aggressive PID plus SMRC represents

a compromise solution between a strategy of avoiding hypoglycaemia with

the risk of keeping glucose values too high for a long time, and the more

aggressive strategy where the hypoglycaemia risk is una�ordable.
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Figure 2.17: Mean glucose pro�le of the 10 adult patients using the three
strategies presented

2.6 Discussion and future work

In this chapter two proposals related in certain way to glucose control of

processes subject to constraints are presented.

In the �rst one, an algorithm for calculating the most appropriate

combination of basal and bolus insulin for a good postmeal glucose control is

thoroughly presented. The set inversion methods based on interval analysis

are applied to determine, for a given meal, which bolus-administration mode

will yield a glucose response ful�lling the IDF guidelines of postprandial

control. Clinical trials to evaluate the e�cacy of the algorithm in vivo are

currently ongoing.
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Figure 2.18: Glucose closed loop system implementation wuth SIVIA as feed-
forward algorithm and an additional SRMC loop

A strength of the proposed method is its robustness. The use of a

model signi�cantly di�erent than the virtual patient for the identi�cation

of the patient's postprandial behavior shows the feasibility of the method

in spite of imperfect glucose predictions, due for instance to intra-patient

variability. Robustness of the solution could be further increased, if needed,

with explicit consideration of intra-patient variability (as interval quantities

in model parameters) in the computation of the feasible solution set with

SIVIA (that would yield smaller feasible sets and thus more constrained

solutions). This is a unique feature of the presented algorithm. Another one

is the possibility of determining, in a non-heuristic way, the feasible insulin

administration modes for a given meal, which could be included in smarter

insulin pumps in the future.

The second proposal consisted in adding to a closed loop glucose system,

restrictions in the IOB present in the patients body during the control, using

concepts of SMRC. Potentiality of the use of constraints in the IOB has been

already demonstrated in [19]. The main advantage of this new approach

presented here, is that the additional security SMRC loop that limits the

IOB is independent of the inner control loop. In that way, it can be added

to any existing closed control loop giving more con�dence about its good

hypoglycaemia performance.
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The upper and lower IOB bounds can be de�ned by the physician based

on his knowledge and it can be also adjusted in an adaptive way, in the same

way that it is done usually with the open loop insulin therapy to adapt them

to the behaviour of an speci�c patient.

Another interesting application of this strategy could be its use for tuning

controllers automatically. The percentage of time that the SMRC loop is

activated, could be translated into changes in the controller parameters so

as to relax it and do it less aggressive if those percentages are too high.

Finally, as future work, both proposals presented in this chapter could

be combined. Note that in the SMRC proposal, a �xed feed-forward control

action (2 IU) is given each meal. Better results could be obtained with a

more sophisticated feed-forward control. As future work, the study of the

integration of SIVIA algorithm in the closed loop system with an additional

SMRC loop, acting SIVIA as feed-forward control must be carried out. Figure

2.18 shows the proposed closed loop system implementation combining these

both strategies.



Chapter 3

Limiting ethanol flux in

Saccharomyces cerevisiae

3.1 Introduction

According to the O�ce of Technology Assessment [58], biotechnology

can be de�ned as �commercial techniques that use living organisms, or

substances from those organisms, to make or modify a product, and including

techniques used for the improvement of the characteristics of economically

important plants and animals and for the development of microorganisms

to act on the environment�. Following this de�nition, biotechnology

has existed for a long time. For centuries, people have been using

microorganisms to ferment and obtain beverage and food. Due to its

potentiality, scientists have shown much interest in understanding the

reactions that take place inside the microorganisms in order to exploit

their capabilities. Nowadays biotechnology is applied to numerous �elds

such as, pharmaceuticals, agriculture, chemical applications, environmental

applications and bioelectronics.

In many biotechnological processes, the optimal productivity corresponds

55
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to operating at critical substrate concentration that can be regulated by

controlling the feed rate [81, 57]. Typically, this critical substrate value

changes from experiment to experiment and from strain to strain, and

even in the same experiment due to changing environmental and/or process

conditions. Moreover, if constraints are present (e.g. due the production

of additional toxic or inhibitory metabolites) the optimal point may not

correspond to a maximum of the kinetic rates.

This is the case, for instance, when dealing with the optimal production

of biomass in Saccharomyces cerevisiae. Saccharomyces cerevisiae is a well-

studied eukaryotic system commonly used for making bread, alcohol and

recombinant proteins. It is one of the yeast species classi�ed as �glucose

sensitive� which means that they may produce ethanol also under aerobic

conditions when the sugar concentration is high. This phenomenon is also

known as over�ow metabolism [66, 73]. In this case, the optimal production

of biomass avoiding the production of ethanol remains below the maximum

attainable speci�c growth rate.

In this way, the problem consists in �nding the feeding rate which gives

the closest speci�c growth rate to the desired one and which is compatible

with the critical constraint, so as to avoid over�ow metabolism1.

Several methods have been proposed in the literature to deal with this

problem [13, 1]. In [62] SMRC is already used to optimize the biomass

speci�c growth rate of Saccharomyces cerevisiae compatible with constraints

in the etahnol concentration. Here, a similar procedure where the constrained

variable is not the ethanol concentration but the ethanol �ux is applied. This

work will allow future work in two directions. On one hand the control of

internal �uxes which can not be measured and need to be estimated and, on

1Similar problems could be the need of achieving an optimal behaviour of a
microorganism according to an objective (maximizing the protein expression, the biomass
growth rate, the e�ciency of the biorreaction) subject to constraints in certain �uxes.
Reasons could be the presence of metabolites that are toxics or inhibitors or the need to
force the metabolism to follow a preferential path.
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the other hand the fact of taking into account uncertainty in the measures

that lead to interval or possibilistic �ux estimations [47].

In section 3.2 a description of the model of Saccharomyces cerevisiae that

is going to be used is provided. Section 3.3 deals with technical details of

the SMRC inplementation. In section 3.4 a set of simulations are presented

and, �nally, section 3.5 is a discussion and future work premises.

3.2 Saccharomyces cerevisiae model

The model of Saccharomyces cerevisiae that will be used in this work is a

widely accepted model proposed by Sonnleitner and Kappeli [73]. It is called

the bottleneck principle model and it assumes a limited respiratory capacity

of the cells. The mass balanced macroscopic model is presented in equation

3.1.

ẋ = (γ1r1 + γ2r2 + γ3r3)x− x
F

v

ṡ = −(r1 + r2)x+ (si − s)
F

v

ė = (γ4r2 − r3)x− e
F

v

v̇ = F

(3.1)

where x, s and e are the concentrations of biomass, substrate and ethanol.

v and F are the volume and the inlet �ow.

Biomass is produced through three paths: oxidation of glucose, reduction

of glucose, and oxidation of ethanol, represented by the kinetic terms r1, r2
and r3, respectively. These reactions rates and the kinetics terms are shown

in 3.2 and 3.3. Table 3.2 presents typical values for the parameters in those

equations.
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r1 = min (rs,
ro
γ5

)

r2 = max (0, rs −
ro
γ5

)

r3 = max (0,min (re,
ro − γ5rs

γ6
))

(3.2)

rs = µm,s
s

ks,s + s

re = µm,e
e

ks,e + e

ro = µm,o
o

ks,o + o

(3.3)

Figure 3.1 shows a graphical description of the over�ow metabolism.

Case 1 Case 2 Case 3

CO
2

CO
2

CO
2

ethanol 

+ CO
2

r
s

r
s

r
s

r
2

glucose glucose glucose

r
1

r
1

r
1

Figure 3.1: Over�ow metabolism representation [73]

For Case 1, there is excess capacity and no metabolite is formed. Case

2 represents growth at the critical rate where any excess substrate would

�over�ow� to ethanol. In Case 3, the excess growth above the critical rate is

represented by the ethanol �ux.

Using standard notation and considering an exponential feeding law

F=λxv, with the gain λ to be determined by the control objective, the model

3.1 can be written as:
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γ1 γ2 γ3 γ4 γ5 γ6
0.49 0.005-0.12 0.5-1.2 0.48 0.396 1.104
µm,s ks,s µm,e ks,e µm,0 ks,0
3.5 0.1 0.17 0.1-0.5 0.256 0.1 · 10−3

Table 3.1: Typical parameters values [73, 81]

ẋ=(µx−λx)x

ṡ=−µsx+λ(si−s)x

ė=(µe−λe)x

(3.4)

3.3 Sliding mode existence and SMRC imple-

mentation

The control objective in this work is to control the biomass speci�c growth

rate µx limiting, at the same time, the values of the ethanol �ux. The block

representation of the proposed control scheme, is provided in �gure 3.2.
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Figure 3.2: SMRC implementation for Saccharomyces cerevisiae model

As the SMRC loop is independent of the inner control loop, any of the

controllers found in literature could be used as a inner loop controller with
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the mission of leading µx to the desired reference. Here, it will be used the

one proposed in [5]. Its expression is presented in 3.5.

λ = λr [1− k(µr − µ̂x)] (3.5)

where λr and k are constant gains, µ̂x is an estimation of the biomass

speci�c growth rate and µr its desired reference value. The estimation µ̂x

can be obtained using high gain observers from measurements of biomass [4].

The SMRC loop consists of a �rst order �lter and a discontinuous block

which is only active when the ethanol �ux reaches the speci�ed bound.

The �lter expression takes the form:

F : µ̇r = −α(µr + w − µ̄r) (3.6)

where µr is the conditioned reference, µ̄r is the desired reference when the

SMRC is not active, w is the discontinuous action and α a design parameter.

Combining equations 3.4, 3.5 and 3.6, and expressing them in a conven-

tional form, the system takes the form:


ẋ

ṡ

λ̇

ė

=


µxx−λx2

−µsx+λ(si−s)x

λrkαµr

(µe−λe)x

+


0

0

λrkα

0

w+


0

0

λrk( ˙̂µx−αµ̄r)

0

 (3.7)

with y1 = µx and y2 de�ned, due to technical issues as y2 = µe − λe

Note that the way y2 is de�ned, helps in the subsequent calculations,
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because with this de�nition, the relative degree from y2 to the discontinuous

signal w is gr = 1. With y2 = µe the relative degree would be gr = 2, forcing

the inclusion of the �rst y2 derivative in the sliding surface σ.

So, σ can be de�ned as:

σ=(µe−λe)−ȳ2 (3.8)

being the switching logic:

w=

{
w+ if σ>0

0 otherwise

}
(3.9)

From 1.3.2, the existence condition that must be ful�lled so as the sliding

mode to exist, is the trasversality condition, that is Lgσ = ∂σ
∂x
g ̸= 0.

Equation 3.1 reveals that µe = γ4r2 − r3 with r2 and r3 depending on s

and e (see equations 3.2 and 3.3). r2 regulates ethanol production whereas r3
represents the rate at which ethanol is oxidized. These reactions can never

occur at the same time, so, when µe is higher than 0, and ethanol is being

produced, r3 = 0 and µe=γ4r2=γ4(µm,s
s

ks,s+s
−(γ5)

−1µm,o
o

ks,o+o
).

In this way,

∂σ

∂x
=
(

0 µm,s
ks,s

(ks,s+s)2
−e −λ

)
(3.10)

and
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Lgσ=
∂σ

∂x
g=

(
0 µm,s

ks,s

(ks,s+s)2
−e −λ

)


0

0

λrkα

0

=−eλrkα (3.11)

Note that the transversality condition is only ful�lled if the ethanol

concentration is di�erent from 0. Fortunately, that is the case when the

sliding mode will be active.

In order to follow the invariance condition stated in 1.3.2 and, noting that

in this case Lgσ1 < 0, w must be chosen to �t equation:

w≥wσ=−Lfσ

Lgσ
(3.12)

with,

wσ=− (µm,s
ks,s

(ks,s+s)2
(−µsx+λ(si−s)x)−eλrkαµr−λ(µe−λe)x) (3.13)

As the process is controlled, all the variables are upper bounded so

choosing, properly α and w equation 3.12 can be ful�lled.

Remark that µe can not be measured, it has to be estimated. This

estimation is carried out using Bastin observer[4] from ethanol measures,

similarly to µx estimation.
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3.4 Simulations

In order to test the e�ciency of the proposed methodology, the model stated

in 3.1 is simulated in a closed loop using 3.13 as a controller. Then, a sudden

perturbation consisting of a temporal limitation in oxygen is considered.

Looking at equation 3.2, it can be noticed that this perturbation activates r2
and the subsequent ethanol production. It is in this moment when the SMRC

loop becomes active, to limit the ethanol �ux (in this case the expression

µe − λe). Initial conditions are set to: biomass x(0) = 0.5, substrate

s(0) = 0.01, ethanol e(0) = 0, volume v(0) = 1, and substrate concentration

in the inlet �ow si = 20.

The reference for the biomass speci�c growth rate when ethanol �ux does

not reach its upper bound (µ̄r) is set to 0.25. The oxygen concentration is

set to 0.4 mg/L, and at a given moment temporarily drops to 0.1 mg/L. y2
(µe − λe) is limited to 0.02.

Figure 3.3, shows how, under a temporally limitation of oxygen, ethanol

begins to be produced and if the ethanol �ux (or the ethanol concentration)

is not limited, the e�ect in the biomass rate µx is very high su�ering an

important drop. The constraints imposed in y2, allows higher levels of µx

even when substrate is in excess.

In �gure 3.4, where the trajectories of the two terms of y2 are plotted it

can be appreciated how it does not exit the de�ned surface when the lack of

oxygen takes part.

3.5 Discussion and future work

The work developed in this chapter has helped a lot in the design of future

steps in this research line. It has been the �rst attemp to face the problem of
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Figure 3.3: Sliding function, discontinuous function, biomass concentration
rate and control action with (in red) and without (in blue) sliding mode
reference conditioning.

controlling metabolic �uxes. In this case, the �ux controlled was an external

�ux, but the idea is to extend this methodology to less accessible internal

�uxes.

The �rst speci�c issue that will be found in this extension is that,

depending on the �ux to be controlled, it is possible that the relative degree

from the �ux to the discontinuous signal is greater than one. That fact, apart

from complicating the mathematical demonstrations, forces to include in the

sliding surface the �rst derivative of the �ux to be controlled. An estimation

of this derivative can be obtained using, for instance, Levant di�erentiators

[44] adding an unavoidable noise to the system. This is the reason why

in this work y2 has been de�ned as µe − eλ. Additionally, usually, neither
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(red) and without it (blue). The yellow line represents the y2 upper bound.
Remember y2 = µe − eλ

the internal �ux nor the concentrations of the internal metabolites can be

measured, so they have to be estimated from measures of the external ones.

This estimation can be carried out using dynamic versions of the

traditional metabolic �ux analysis [82, 75, 26]. But, a more realistic scenario

imposes the use of techniques capable of estimating those �uxes under

uncertainty in the measures. In particular, interval and possibilistic MFA

methods developed by Llaneras et al [46, 47] can be used to face (i) the

uncertainty in the process and measurements, and (ii) the low ratio between

measured variables versus model variables. The way the SMRC works under

interval and possibilistic estimation of the �uxes is the second issue that must

be studied in detail in future work.





Chapter 4

Conclusions and future work

In this chapter, the achievements of this Master thesis will be reviewed, and

a list of future items of pending work will be discussed.

Several tools for dealing with control subject to constraints in the area

of biosystems have been explored in this work. The details of these tools

are given in chapter 1. Then, the techniques are successfully applied to two

di�erent biosystems.

First, glucose control in diabetes type 1 mellitus is tackled in two

ways. On one hand SIVIA algorithm is applied to obtain the set of

basal-bolus combinations that will lead a good postprandial glucose control,

ful�lling the constraints imposed by the IDF (non-hypoglycaemia and two-

hour postprandial glucose value below 140 mg/dL). On the other hand and

additional security SRMC loop is added to a glucose closed loop scheme so as

to reduce the hypoglycaemia risk imposing some constraints in the IOB. Both

approaches are proof of concept studies that may prelude the development of

new robust nonempiric (CGM-based) tools, and more secure glucose closed

loop systems respectively, aiding patients and physicians to attain a better

metabolic control. This diabetes application was explained in chapter 2.

In chapter 3 an early attempt to the control of intracellular �uxes by

67
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external actuation (e.g. substrate feeding rates) is presented. There, SRMC

is used to optimize biomass production in Saccharomyces cerevisiae subject

to constraints in ethanol �ux. The potentiality of this approach and the

di�culties that could be found in its internal �ux extension are analized.

Note, that in both SRMc implementations (diabetes and ethanol applica-

tions) the features of the SM itself are inherited, but not the usual problems

of SM like chattering and others, because the technique is going to be part of

a numeric algorithm in a digital environment, and no discontinuous signals

are actually applied to the processes.

4.1 Future work

This Master thesis has motivated many future work taking advance of

the possibilities that the techniques studied here present. Moreover, the

fact that the work developed here is framed in the context of two larger

research projects, INSULAID21 and MULTISYSBIO2, helps in encouraging

the collaboration and increases the possibilities of future work.

In that way, parallel work is being developed by Alejandro Laguna [39,

40] to improve the most critical part of the SIVIA algorithm presented

here, patients' identi�cation following an OED. Clinical trials to evaluate

the e�cacy of the SIVIA based algorithm presented here in vivo using a

clinical protocol for patients' identi�cation are ongoing. Preliminary results

will be presented in [69].Those experiments may help also to develop the

most appropriate strategies for basal bolus selection, from all the feasible

solutions.

On the other hand, some work is also been done by the research group so

1DPI2007-66728-C02-01 and DPI2007-66728-C02-02
2DPI2008-06880-C03-01, DPI2008-06880-C03-02 and DPI2008-06880-C03-03
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as to reduce the computational cost of the algorithm, a necessary step before

its implementation in future smart insulin pumps.

When talking about the SMRC implementation to avoid hy-

poglycaemia, many possibilities arose. The most evident one is the

improvement of the feed-forward controller used here, in order to prevent

as much as possible the delay in the control action. One possibility could be

the combination of the two tools presented here, using SIVIA algorithm as

feed-forward controller (see �gure 2.18).

Moreover, this proposal could be also used, changing the way the problem

is being seen, to help in the secure automatic tuning of controllers. The

longer the time the SMRC loop is active, the higher is the hypoglycaemic

risk without SRMC loop. In that way the controller parameters can be

automatically regulated according to this strategy. This new potential use

of the tool must be studied more deeply.

Finally, several future work actions can be derived from the application

of SRMC to limit ethanol �ux in Saccharomyces cerevisiae. First of

all, this technique can be adapted to perform the control of less accessible

internal �uxes. Since the intracellular �uxes have to be estimated and they

will take the form of intervals or possibilistic distribution[46, 47], the control

goal cannot be stated in terms of regulating to a single value. On the contrary,

the objective will be to limit �uxes values to a certain regions, so that for

the most possible situations, the regions are more restrictive whereas for the

rest of situations, the restrictions can be relaxed.

The results of the extension of SMRC to the possibilistic frame can be

tested using the model developed by the group of Pichia Pastoris [77] and

CHO cells [63].

The �nal objective of future actions related to this work, will be to

continue developing tools and extending the existing ones to deal with

uncertainty in problems of control of processes subject to constraints in the
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�eld of biosystems. In fact, uncertainty is one of the big problems that arise

when working with this kind of systems.
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