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Desarrollo de índices multiespectrales para el monitoreo de la fertilización 

orgánica de plantas de tomate en estadios iniciales. 

 

Resumen 

Se ha desarrollado un sistema de monitoreo de cultivos para supervisar el estado 

nutricional de las plantas de tomate en las primeras etapas de desarrollo. Se utilizó un 

enfoque automático y no destructivo para analizar las plantas de tomate con diferentes 

niveles de fertilizante orgánico soluble en agua (3 + 5 NK) y humus de lombriz. El 

sistema de evaluación estaba compuesto por una cámara multiespectral con cinco 

lentes: verde (550nm), rojo (660nm), borde rojo (735nm), infrarrojo cercano (790nm) + 

16MP RGB y un sistema de procesamiento de imágenes computacional. El fertilizante 

soluble se aplicó semanalmente en cuatro tratamientos diferentes: (T0: 0 ml, T1: 6.25 

ml, T2: 12.5 ml y T3: 25 ml) y el vermicompost se añadió en la primera (T0: 0 ml; ml, T2: 

150 ml, T3: 300 ml) y en la quinta semana (T0: 0 ml, T1: 237.5 ml, T2: 475 ml, T3: 950 

ml). El ensayo se realizó en invernadero y se tomaron 192 imágenes con cada lente. Se 

desarrolló un algoritmo de segmentación y múltiples índices de vegetación fueron 

calculados: Índice de Vegetación de Diferencia Normalizada (NDVI), Índice de 

Vegetación de Diferencia Normalizada Verde (GNDVI), Índice de Vegetación de 

Diferencia Normalizada de Borde Rojo (RENDVI), Índice de Vegetación No Lineal (NLI), 

Índice de Vegetación Ajustado y Optimizado para el Suelo (OSAVI), Índice de 

Vegetación de Proporción Verde (GRVI), Proporción Simple (SR), Proporción Simple 

Modificada (MSR), Índice de Pigmento Intensivo de Estructura 2 (SPI2) e Índice de 

Clorofila de la Hoja (LCI). Adicionalmente al cálculo de índices, se obtuvieron múltiples 

características morfológicas a través del procesamiento de imágenes y los resultados 

se compararon entre los tratamientos utilizando la prueba HSD de Tukey con un 1% de 

probabilidad. Las características morfológicas tales como: Área, Área rellena, Área 

convexa, Perímetro, Longitud del eje mayor, Longitud del eje menor y Diámetro 

Equivalente se revelaron más útiles para distinguir entre el control y las plantas 

fertilizadas orgánicamente que los índices de vegetación. El sistema fue desarrollado 

para ser ensamblado en una plataforma robótica de fertilización orgánica de precisión. 

Palabras clave: imagen multiespectral, visión computacional, agricultura de precisión, 

índices de vegetación. 
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Development of multispectral indices for organic fertilization monitoring of 

tomato plants at early stages 

 

Abstract 

A crop monitoring system was developed for the supervision of organic fertilization status 

on tomato plants at early stages. An automatic and nondestructive approach was used 

to analyze tomato plants with different levels of water-soluble organic fertilizer (3+5 NK) 

and vermicompost. The evaluation system was composed by a multispectral camera 

with five lenses: green (550nm), red (660nm), red edge (735nm), near-infrared (790nm) 

+ 16MP RGB and a computational image processing system. The water-soluble fertilizer 

was applied weekly in four different treatments: (T0: 0 ml, T1: 6.25 ml, T2: 12.5 ml and 

T3: 25 ml) and the vermicompost was added in the 1st (T0: 0ml; T1: 75 ml; T2:150ml; T3: 

300 ml) and in the 5th week (T0: 0ml; T1: 237,5 ml; T2:475ml; T3: 950 ml). The trial was 

conducted in a greenhouse and 192 images were taken with each lens. A plant 

segmentation algorithm was developed and several vegetation indices were calculated: 

Normalized Difference Vegetation Index (NDVI), Green Normalized Difference 

Vegetation Index (GNDVI), Red-Edge Normalized Difference Vegetation Index 

(RENDVI), Nonlinear Vegetation Index (NLI), Optimized Soil Adjusted Vegetation Index 

(OSAVI), Green Ratio Vegetation Index (GRVI), Simple Ratio (SR), Modified Simple 

Ratio (MSR), Structure Intensive Pigment Index 2 (SPI2)  and Leaf Chlorophyll Index 

(LCI). On top of calculating the indices, multiple morphological features were obtained 

through image processing techniques, and the results were compared between 

treatments using Tukeyôs HSD test with 1% of probability. The morphological features 

such as Area, Filled Area, Convex Area, Perimeter, Major Axis Length, Minor Axis Length 

and Equivalent Diameter revealed to be more feasible to distinguish between the control 

and the organic fertilized plants than the vegetation indices. The system was developed 

in order to be assembled in a precision organic fertilization robotic platform. 

Keywords: multispectral image, computer vision, precision agriculture, vegetation 

indices 

 

Author of the Master Thesis: Matheus Cardim Ferreira Lima 

Academic Tutor: Dr. Josep Armengol Fortí 

External Tutor: Dr. Constantino Valero Ubierna 

 



iv 
 

Acknowledgements 

I would like to express my sincere gratitude to my supervisors Dr. Josep Armengol Fortí, 

and Dr. Constantino Valero for providing their invaluable guidance, comments and 

suggestions through the course of the project. I would also thank Anne Krus for the 

assistance with the code optimization and the Centre of Automatics and Robotics of the 

CSIC for providing the Parrot Sequoia Camera. I express my cordial gratitude to all my 

Plant Health colleagues, especially to Clara Bazzo, Maria Elisa Damascena, Murilo 

Sandroni and Franscesca Laurini, for all the nights of study and support during these 

years. I am also pleased to express my sincere gratitude to all my family and Hanwool 

Sung for the unconditional support, and to the European Commission for making this 

Master happened. 

This masterôs thesis has been developed as a result of a mobility stay funded by the 

Erasmus+ - KA1 Erasmus Mundus Joint Master Degrees Programme of the European 

Commission under the PLANT HEALTH Project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Contents 

 

Table of Contents ........................................................................................................  v 

List of Tables ................................................................................................................vi 

List of Figures ...............................................................................................................vi 

Introduction ................................................................................................................. 1 

Research Methodology .............................................................................................. 4 

Location and Growing Conditions ...................................................................... 4 

Trial Design and Fertilization ............................................................................. 5 

System Overview .............................................................................................. 7 

Computational System for Image Analysis ................................................... 7 

  Image Pre-Processing ........................................................................... 7 

 Vegetation Indices ................................................................................. 8 

 Plant Extraction (Image Segmentation) ................................................ 10 

            Morphological Analysis ........................................................................ 11 

 Statistical Analysis ............................................................................... 13 

Results and Findings ................................................................................................ 13 

Discussions .............................................................................................................. 24 

Conclusions .............................................................................................................. 28 

Bibliography .............................................................................................................. 29 

        

 

 

 

 

 

 



vi 
 

List of Tables 

Table 1 ï Shift factors (x- and y-direction) used for overlaying the different images using 
parrot sequoia in shorter distance of plant samples. (Red image used as reference). ... 7 
 
Table 2 ï Vegetation Indices (VIs) used to create spectral profiles of the tomato plants 
from the multispectral data with formulae and traditional applications.  ......................... 9 
 
Table 3 ï Morphological properties calculated for the tomato plants at early stages 
images with different levels of organic fertilization ....................................................... 12 

Table 4 ï Significance ANOVA test with 99% of confidence for the relation between 
Vegetation Indices with the fertilization treatments per week. (ns: non-significant, +: 
significant). ................................................................................................................. 16 

Table 5 ï Significance ANOVA test with 1% of probability for the relation between 
morphological aspects derived from multispectral images with fertilization treatments per 
week. (ns: non-significant, +: significant) ..................................................................... 17 

Table 6 ï p-values for the most significant parameters analyzed with multispectral 
images in tomato plants with different organic fertilization levels. (ANOVA Significance 
test 99%) .................................................................................................................... 17 

Table 7 ï Tukeyôs HSD test with 99% of confidence for the relation between vegetation 
indices and morphological aspects derived from multispectral images with organic 
fertilization treatments per week.................................................................................. 18 

Table 8 ï Linear and polynomial regressions correlating morphological parameters 
acquired using multispectral images with weeks after transplant in different organic 
fertilization levels in tomato plants at early stages. ...................................................... 21 
 

List of Figures 

Figure 1 ï Overview of the image acquisition system. a) Conceptual image acquisition 
scheme (Parrot Drones, 2017). b) Bracket support with camera and signal correction 
device measuring tomato plants in early stages. ........................................................... 6 
 
Figure 2 ï Methodology implemented to develop a system for automatic fertilization in 
organic tomato plants at early stages.  .......................................................................... 6 
 
Figure 3 ï Types of images produced by the sensor after shifting and clipping the area 
of interest (700 x 800 resolution). (Bluish colours indicate regions with lower levels of 
reflectance and reddish colours indicates regions with higher levels of reflectance)...... 8 

Figure 4 ï Computer vision process based in NDVI image used to extract the plant from 
the background. Top images: Near-infrared (left), NDVI (center), and RGB (right); bottom 
images: binarized images. .......................................................................................... 11 

Figure 5 ï Example of vegetation indices obtained through the Parrot Sequoia camera 
and segmentation algorithm. Top: NDVI image of the T0 treatment (left) and the T3 
treatment (right). Bottom: Modified Simple Ratio image of the T0 treatment (left) and the 
T3 treatment (right)  .................................................................................................... 14 

Figure 6 ï Evolution of the morphology and Normalized Difference Index of the tomato 
plants according to the fertilization treatments and the DAT (days after transplant). ... 15 



vii 
 

Figure 7 ï Examples of boxplots created for each week. (T0: control, T1: 25% of 
recommended dose, T2: 50% of recommended dose, T3: recommended dose .......... 16 

Figure 8 ï Boxplots and Tukey Test with 99% of probability using all data (50 days) 
representing morphological parameters of tomato plants with different levels of organic 
fertilization. ................................................................................................................. 19 

Figure 9 ï Boxplots and Tukey Test with 99% of probability using all data (50 days) 
representing Vegetation Indices of tomato plants with different levels of organic 
fertilization. ................................................................................................................. 20 

Figure 10 ï Linear and Polynomial regression curves relating the morphological 
parameters of tomato plants acquired using multispectral images with the number of 
weeks after transplant and different organic fertilization levels.  .................................. 22 

Figure 11 ï Functional boxplots showing morphological responses extracted from 
multispectral images correlating with the number of weeks after transplant and 
fertilization treatments with a confidence interval of 95%. ........................................... 23  

Figure 12 ï Functional boxplots showing morphological and spectral responses 
extracted from multispectral images correlating with the number of weeks after transplant 
and fertilization treatments with a confidence interval of 95%. .................................... 24 
 

 

 

 

 

 

 

 

 

 

  



1 
 

Introduction 

Environmental protection allied with health concerns are increasingly important trends in 

the consumers' behaviour and leading to the development of green products and organic 

markets (Hidalgo-Baz et al. 2017).  

These markets are experiencing exponential growth in the last years, especially the 

organic markets that address multiple consumer concerns relating to health, food safety 

and environmental conservation (Pino et al., 2012). 

On a global level, the organic agricultural land area increased by 6.5 million hectares 

compared with 2014. The vegetable organic production, for example, increased from 

299.301 ha in 2014 to 675.980 ha in 2017 (IFOAM, 2019). Tomatoes command a larger 

share of fresh vegetables market worldwide, the organic tomato sales continue to rise, 

increasing the market value in 20% between 2015 and 2016 (IndexBox, 2017). 

The economical healthy growth of the sector is expected to continue; however, some 

challenges are presented in the horizon regarding the concentration of the demand, the 

rising number of standards, supply shortfalls among other factors (Willer et al., 2019)  

Tomatoes are one of the vegetable crops with higher demand for fertilization, with 

recommended doses close to 400kg.ha-1 depending on soil type (Ribeiro et al., 1999). 

Deficient use of organic fertilization can cause ñabiotic diseasesò on plants, decrease the 

suppressive effect of the soil and the readiness of plants to defend themselves against 

attacks of plant pathogens (Agrios, 2005; Kenelly et al., 2012).   The nutrient deficiency 

affects the plant growth, with consequences in the production and the profitability of the 

organic field; on the other hand, indiscriminate use of manure and soluble fertilizers 

prolong the vegetative state of the plant with abundance of young tissue, making the 

plants more susceptible for plant pathogens attacks and vulnerable for a longer time 

(Agrios, 2005; Brown and Ogle, 1997); besides that a considerable amount of the 

fertilizers cannot be totally absorbed by the plants.  

These compounds can also run off into waterways, leached into groundwater or lost in 

gaseous form. The leachate liquid derived from the organic fertilizer can cause pollution 

of groundwater producing toxic algae blooms, accelerating eutrophication and reducing 

biodiversity (Wang et al. 2019). 

These damaging effects are causing changes in the legislation in many regions ï 

including Europe ï in order to reduce or minimize the use of organic and mineral 

compounds such as manure and copper (Ghorbani et al., 2010; IFOAM, 2019). 
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Meta-analysis studies indicate that the optimization of the use of nitrogen fertilization in 

tomatoes can decrease costs and environmental impact maintaining the same yield 

levels (Du et al., 2018). 

Focusing on that, the European commission fomented projects to study cost-efficiency 

technologies and bring innovations to reduce the dependency of contentious inputs in 

the organic production systems. Projects such as RELACS and SUREVEG are examples 

of European efforts to understand the dynamics of organic systems in order to reduce 

the use of external inputs. 

RELACS seeks to promote the development and adoption of environmentally safe and 

economically viable tools and technologies to reduce the use of external inputs in organic 

farming systems. 

SUREVEG is funded by the Coordination of European Transnational Research in 

Organic Food and Farming Systems and seeks to develop and implement innovations 

for the intensive cropping systems using strip-cropping and fertility strategies. One of the 

research lines aims the development and test of smart technologies for the management 

of strip-cropping systems. 

These smart technologies are focused on the use of precise fertilization methods to 

reduce the dependency of biopesticides and non-organic fertilizers, improve soil fertility 

in intensive vegetable cropping systems and therefore bring a positive impact on water 

quality and landscape biodiversity (Kristensen, 2019). 

The field of precision fertilization aims to optimize the use of resources in time and space. 

Smart technologies were developed for monitoring the nutrient status of plants and 

control variable rate applications in broad, monocrop, and conventional fields (Stafford, 

2019). 

Initially these technologies were based on soil samples, yield mapping and automatic 

guidance (Chen et al. 2014). After that, the advances in sensor technology-enabled 

nondestructive optical approaches and the use of satellite and unmanned aerial vehicles 

images were added to the system (Candiago et al., 2015). Nowadays new embedded 

devices have been implemented in order to analyze the nutrient status of the crop in real-

time using high-resolution image sensors at plant level (Pallottino et al. 2019). 

These sensors are based on multispectral images and use vegetation indices to obtain 

the best correlation with the nutrient status of the arable crops (Prey et al., 2018; Kitíc et 

al., 2019; Freidenreich et al., 2019). 

https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Stafford%2c+J.%22
https://www.mdpi.com/search?authors=Ariel%20Freidenreich&orcid=0000-0002-0665-3569
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In real-time sprayer systems, these devices are embedded in conventional tractors and 

are connected to Global Navigation Satellite System (GNSS) and computer system that 

controls selectively foliar spray applications (Pedersen et al., 2017). 

Other systems based in real-time analysis were developed in order to deliver site-specific 

herbicide applications in arable crops. Besides the multispectral images and the 

vegetation indices, these systems use a bicameral system, binarization techniques and 

morphological algorithms to differentiate between the crop and spontaneous plant 

species (Gerhards, 2006; Christensen 2009; Ávila-Navarro et al., 2019; Partel et al., 

2019). 

Both types of real-time precision spraying systems are commercially available or in 

process of being commercialized, and showed a positive reduction in the use of chemical 

compounds with a reduction of costs and with an increase in the yield levels (in the case 

of precision fertilization) compared to traditional sprayers (Pedersen et al., 2017). 

Image processing techniques with multispectral cameras from visible to near-infrared 

spectrum are also being used to provide non-destructive plant phenotype image 

datasets. These approaches allowed more precise and real-time, high throughput and 

high-resolution data for modelling and prediction of plant growth and morphological 

development in different conditions, with recent applications in plant health analysis 

(Ampatzidis et al., 2017; Chawade et al., 2019; Veys et al., 2019). 

More advanced prototypes were made in order to insert these types of sensors in 

autonomous vehicles. Several terrestrial robotic platforms were developed using 

multispectral cameras seeking for a more automatic, low-energy cost and accurate 

analysis of the crop parameters compared to conventional equipped tractors and 

unnamed aerial vehicles (Grimstad and From 2017; Shamshiri et al., 2018; Pallottino et 

al., 2019). 

Some of these autonomous agricultural devices were capable of identifying weeds and 

control them using low-dose spraying, mechanical control or thermal control (King, 

2017). Other platforms can spray fertilizers in arable crops without the need for heavy 

tractors, reducing the compaction of the soil and the physical damage to the crops 

(Cavender-Bares and Bares., 2019). 

Most recently, modular agricultural robots were developed for mapping different aspects 

of the cereal plants in parcels of breeding trials, these machines can also control fungal 

pathogenic spore dispersion using guided UV light inside greenhouses (Grimstad and 

From 2017). 

https://www.mdpi.com/search?authors=Yiannis%20Ampatzidis&orcid=0000-0002-3660-3298
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Besides the advances in the robotic agricultural platforms, most of them were developed 

for conventional orchards and arable crops, presenting a lack of technologies in the 

context of organic horticulture. 

This work aims to acquire multispectral images of Tomato plants with different levels of 

organic fertilization and estimate the nutritional state of the plant in the early stages using 

multiple vegetation indices and morphological features by using computer vision 

techniques.  

The obtained knowledge will be implemented into a robotic platform prototype used to 

monitor and apply organic fertilizers in real-time, in order to optimize the use of this 

components within the organic horticultural context. 

 

Research Methodology 

Location and Growing Conditions 

The experiment was carried out on a greenhouse in order to obtain the different spectral 

responses of plants. The experimental area was located in Madrid, Spain (40°26'19.9"N 

3°44'15.7"W). The tomato (Mina F1 cv.) seedlings were initially cultivated at 3-litre pots 

with a diameter of 15 centimeters, filled with a substrate mix of turf and coconut fiber.  

After 5 weeks the plants were transplanted to 8-litre pots. 

Trial Design and Fertilization 

The experiment was designed as randomized blocks, with four treatments and six 

repetitions. The fertilizations were carried out weekly using water-soluble organic 

fertilizer (3+5 NK) obtained from beet vinasse and phosphorite, and registered for use in 

organic production. The initial volume of the irrigation and fertilization was 300ml of 

solution. One week after transplant, plants were assigned to the different treatments 

according to the fertilizer label (T0: 0 ml, T1: 6.25 ml, T2: 12.5 ml and T3: 25ml). The 

plants also received two supplements of vermicomposting (T0: 0ml; T1: 75 ml; T2:150ml; 

T3: 300 ml) and another one after the second transplant (T0: 0ml; T1: 237,5 ml; 

T2:475ml; T3: 950 ml). Images of the plants were acquired with 7-days interval. The 

statistics were analyses were carried out through the ANOVA and Tukeyôs test at 99% 

of confidence for average comparisons. The images were processed through the 

software MatLab, using the image processing toolkit. The methodology was composed 

by the following steps: Image pre-processing, vegetation indices, plant extraction, 
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morphological analysis and statistical analysis. The statistical analysis was carried out 

using the statistical and machine learning toolbox present in the same software.  

System Overview 

The general system was composed of images acquired from the greenhouse experiment 

with different levels of fertilization, the computational processing system and the 

statistical analysis.  

The evaluation system was composed by a Bracket Support Stands Clamp supporting 

the sensor and the power supply (battery). The platform has the possibility of height 

adjustment for the sensor. The distance between the sensor and the bottom of the pot 

was set at 0.7 m during the first 5 weeks and moved to 1.4m after the 5th week (Figure 

1). 

The pots used in the early stages (until 5 weeks after transplant were of 3-litre with 15 

cm of height and 15 cm of diameter, in the subsequent weeks the plants were 

transplanted to 8-litre pots both with a mixture of 50% of coconut fibre and 50% of turf. 

The camera used for image acquisition was a multispectral camera (model Sequoia, 

Parrot Drones, 2017) which was originally designed for use in agricultural Unmanned 

Aerial Vehicles (UAVôs). Its internal sensor is composed of four spectral bands which 

register the reflected light coming from the vegetation and can be used to distinguish 

plant vigour based on reflectance levels (Xue et al. 2019). These bands are: Green 

(550nm wavelength, 40nm bandwidth), Red (660nm wavelength, 40nm bandwidth), Red 

Edge (735nm wavelength, 10nm bandwidth) and Near Infrared (790nm wavelength, 

40nm bandwidth). Additionally, a 16-megapixel RGB camera is also fitted into the 

commercial system. 

The Sequoia Camera has also a sunshine sensor that is used to calibrate the images 

depending on the sunlight. This makes it possible to compare photos over time, despite 

variations in light during photo shoots. The sunshine sensor is attached on the upper 

part to the system, facing the sky and correcting the signal and it also contains a 

GPS/GNSS module, a magnetometer and inertial measurement system (Parrot Drones, 

2017) (Figure 1).  

The images were taken with and without a black background placed to help the 

segmentation. The developed algorithms showed different efficiency in segmentation 

with or without the background. The pots were tagged with a coloured stamp in order to 

take the images in the same position during the experiment. The sensor communicates 
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with a smartphone or computer via Wifi protocol (Figure 2) in order to store the acquired 

images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 ï Overview of the image acquisition system. a) Conceptual image acquisition scheme 

(Parrot Drones, 2017). b) Bracket support with camera and signal correction device measuring 

tomato plants in early stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ï Methodology implemented to develop a system for automatic fertilization in organic 

tomato plants at early stages.  
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Computational system for image analysis 

The computational system used for the image analysis is composed of four major steps: 

pre-processing, calculation of vegetation indices, image segmentation, and 

morphological analysis. 

 

1.1 Image Pre-Processing 

The Sequoia sensor produces Tagged Image File Format (TIFF) images with a size of 

1280 x 960 pixels. The camera was designed to take images from a minimum distance 

of 30 m to the target (Parrot Drones, 2017). When the images were taken with a shorter 

distance a displacement occurs between the 4-channel images due to an unexpected 

geometry between the sensors. In order to correct the displacement of the images, an 

algorithm that shifts an image by a specified number of pixels in either the x- or y-direction 

(or both) was used. 

The parameters used to define the number of pixels and the direction that each image 

should be shifted were obtained using a sample image with a referential point and then 

applied subsequently to all collected data. 

The red image was arbitrarily selected as the reference, and then the green, near-

infrared (NIR) and red-edge images were shifted in order to be in the same position as 

the red image. The parameters used for the distances (0.7m ï 1.3m) are shown in Table 

1. 

 

Table 1 ï Shift factors (x- and y-direction) used for overlaying the different images using parrot 

sequoia in shorter distance of plant samples. (Red image used as reference). 

 

 

 

 

 

 

The central area of the images was defined as Area of Interest (AOI) and the consequent 

processes were used in this area in order to reduce the computational process and 

optimize the plant recognition and binarization. The images were clipped with AOI-x: 

200:900 and AOI-y 200:1000, reducing the size of the image from 960 x 1280 to 700 x 

800 squared pixels (Figure 3). 

 

Images 

 

Shift Factor 

 

Green 

 

[50, 23] 

Near Infrared [41, -34] 

Red Edge [68, -11] 
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Figure 3 ï Types of images produced by the sensor after shifting and clipping the area of interest 

(700 x 800 resolution). (Bluish colours indicate regions with lower levels of reflectance and reddish 

colours indicates regions with higher levels of reflectance). 

1.2 Vegetation Indices 

Obtained from multispectral images, Vegetation Indices (VIs) are quite simple and 

effective parameters for qualitative and quantitative evaluations of vegetation vigour, 

cover and growth dynamics among other applications. There is a vast implementation of 

these indices using different airborne and satellite platforms with recent advances using 

Unmanned Aerial Vehicles (UAV) and tractors. Due to the complexity of the 

instrumentation platforms, light spectra combinations and resolutions used, there is no 

unified mathematical expression that attends all applications of VIs (Xue and Su., 2017). 

According to the same authors, customized algorithms have been studied for several 

applications combining visible light radiation, mainly the spectral region correspondent 

with the green region from vegetation, and nonvisible spectra in order to obtain proxy 

quantifications of the vegetation surface.  

Therefore, for precise measurement applications, the VIs are optimized and usually 

constructed according to the specific application requirements, and a validation 

procedure is needed, along with customized methodologies. 

Seeking for correlations between the fertilization status of the Tomato plants with the 

spectral response, eleven VIs presented in the literature were analyzed and tested. 

One of the vegetation indices were also used as a filter parameter for binarization of the 

plant leaves despite the background (image segmentation). 
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The VIôs were chosen based on the literature and in the available bands present at the 

sensor. The list of indices, abbreviations, formula and traditional application of the VIs 

can be observed in Table 2. For use in this study, some closest Sequoia reflectance 

bands were substituted for the traditional narrowband wavelengths. 

The images were converted from unit8 to double type in order to allow the pixels to admit 

decimal values and calculations. All the image processing analysis was performed in the 

Matlab software (2013b, The MathWorks Inc., Natick, MA, USA). 

Table 2 ï Vegetation Indices (VIs) used to create spectral profiles of the tomato plants from the 
multispectral data with formulae and traditional applications.  

Index Abbreviation Formula Application 

Normalized 

Difference 

Vegetation Index 

NDVI 
ʍ.)2 ɀ ʍ2%$

ʍ.)2 ʍ2%$
 

Measuring green 

vegetation through 

normalized ration ranging 

from -1 to 1. 

Green Normalized 

Difference 

Vegetation Index 

GNDVI 
ʍ.)2  ʍ'2%%.

ʍ.)2 ʍ'2%%.
 

Modification of NDVI, more 

sensitive to chlorophyll 

content. 

Red-Edge 

Normalized 

Difference 

Vegetation Index 

RENDVI 
ʍ.)2  ʍ2ÅÄ%ÄÇÅ

ʍ.)2 ʍ2ÅÄ%ÄÇÅ
 

Modification of NDVI, using 

Red-Edge information 

related to plant health. 

Nonlinear Vegetation 

Index 
NLI 

ʍ.)2  ʍ2%$

ʍ.)2 ʍ2ÅÄ%ÄÇÅ
 

Modification of NDVI used 

to emphasize linear 

relations with vegetation 

parameters. 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI ρȢυz  
ʍ.)2  ʍ2%$

ʍ.)2 ʍ2%$πȢρφ
 

Variation of NDVI in order 

to reduce the soil effect 

Green Ratio 

Vegetation Index 
GRVI 

ʍ.)2 

 ʍ'2%%.
 

Related with leaf 

production and stress 

Modified Simple 

Ratio 
MSR 

ʍ.)2 
 ʍ2%$

ρ 

 
ʍ.)2 
 ʍ2%$

 ρ

 

A combination of 

renormalized NDVI and SR 

to improve sensitivity to 

vegetable characteristics 

Simple ratio SR 
ʍ.)2 

 ʍ2%$
 

Ratio of NIR scattering to 

chlorophyll and light 

absorption used for simple 

vegetation distinction 

Normalized 

Difference Red-

Edge/Red 

NDRER 
ʍ2ÅÄ%ÄÇÅ  ʍ2%$

ʍ2ÅÄ%ÄÇÅ ʍ2ÅÄ
 

Modification of NDVI, using 

Red-Edge instead of NIR. 
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Structure Intensive 

Pigment Index 2 
SPI2 

ʍ.)2  ʍ'2%%.

ʍ.)2 ʍ2%$
 

Index used in areas with 

high variability in canopy 

structure 

Leaf Chlorophyll 

Index 
LCI 

ʍ.)2  ʍ2ÅÄ%ÄÇÅ

ʍ.)2 ʍ2%$
 

Index to assess chlorophyll 

content in areas of 

complete leaf coverage. 

Note: Agapiou et al., 2012, 2013, 2016; Bennet et al., 2012; Birth and McVey, 1968; Challis et al, 2009; 
Deering, 1978; Jordan 1969; Pearson & Miller, 1972; Verhoeven & Doneus, 2011. For use in this study, 
some closest Sequoia reflectance bands were substituted for the traditional narrowband wavelengths. 
Modified from: Moriarty et al., 2019.  

1.3 Plant Extraction (Image Segmentation) 

Digital image processing and computer vision approaches are powerful tools for plant 

analysis because they allow plant physiological and physical features to be measured 

non-destructively with high temporal and quantitative resolution (Fahlgren et al., 2015). 

After the image acquisition, the image analysis process starts with the extraction of the 

numerical data that describes the object in the image. First the background pixels must 

be separated from the object of interest through a process called object segmentation. 

The accuracy of this process decreases as the image quality decreases (Berry et al., 

2018). 

Multiple plant segmentation methods have been proposed to handle the variation among 

different sensors including the use of adaptative thresholding and machine learning 

algorithms (Yogamangalam and Karthikeyan, 2013). Other systems were developed 

using a fixed threshold and image standardization method (Berry et al., 2018). 

Normalized Difference Vegetation Index (NDVI) has been widely used for distinguishing 

between plant and soil and plant species through satellite imagery. This occurs because 

the near infrared (NIR) combined with the red image provides a significantly higher 

reflectance than soil in natural light conditions (Soille, 2010). However, NDVI is known 

for presenting problems related to saturation at extreme values. 

Aiming to design a robust segmentation algorithm that could be used in different soil 

conditions, the fixed threshold was avoided. Instead was used an automatic histogram 

segmentation that extracted the 92% higher reflectance values from the NDVI images 

when the NDVI values were superior to 0.1. Another filter based in the NIR image was 

tested but without reliable results (Figure 4).  

After this step, the bwarefilt function was applied. This function allows extracting all 

connected components from the binary image, where the area of the objects is in the 

specified range producing a new binary image containing only the objects that meet the 

https://scholar.google.com/scholar_lookup?title=Segmentation%20techniques%20comparison%20in%20image%20processing&author=Yogamangalam&publication_year=2013
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criteria. (MatLab R2014b). In this case, the criteria was to extract the larger object of the 

image (with more connected components). This allowed the system to eliminate noises 

and unconnected pixels. The resulting binary image (mask) (Figure 4) was multiplied by 

the vegetation indices images, in order to extract just the values of VIs present in the 

plant tissue (Figure 5) 

 

 

 

 

 

 

 

 

Figure 4 ï Computer vision process based in NDVI image used to extract the plant from the 

background. Top images: Near-infrared (left), NDVI (center), and RGB (right); bottom images: 

binarized images. 

1.4 Morphological Analysis 

Nutrient deficiency in tomato plants can cause several symptoms besides the change in 

reflectance of leaves. It is common to observe changes in the plant growing behavior, 

specially related with morphological aspects of the leaves and shoots. 

Nitrogen deficiency can cause restricted shoot growth and small erect leaflets; 

Phosporous deficiency can cause restricted shoot growth and small stiffed curved 

leaves; Deficiency of potassium can cause scorched and curled symptoms in old leaves; 

Zinc and Iron deficiencies can cause stunting; Boron and Calcium deficiencies can cause 

changes in the leaflets making them curved and deformed. Copper deficiency symptoms 

can be observed in the margins of leaflets and younger leaves that curl into a tube shape, 

the terminal leaves can become very small, stiff and contorted and the stem growth 

become somewhat stunted (Eysinga and Smilde, 1981). 
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From the binary plant datasets it is possible to measure plant size, shape, area and other 

features in an automated way and correlate plant phenotypes with experimental 

treatments (Veley et al., 2017; Liang et al., 2018). 

Several other morphological properties can be extracted from binary images using the 

regionprops function in MatLab environment. This function uses the distribution of the 

pixels to calculate shape parameters and has been recently used for image analysis in 

medicine studies (Tariq et al. 2019), industry (Jiang et al., 2019), plant pathology (Singh 

et al., 2019) and plant growth analysis (Kim et al., 2019). 

These parameters can provide reliable information about the changes in the plants' area, 

perimeter, shape and growth behaviour. 

Not all parameters resulting from the regionprops function were used, the description of 

the morphological properties used for the tomatoes plants analysis can be observed in 

Table 3. 

Table 3 ï Morphological properties calculated for the tomato plants at early stages images with 

different levels of organic fertilization 

Morphological 

Property 
Description 

Area Actual number of pixels in the region, returned as a scalar. 

Convex Area 

Number of pixels in the Image that specifies the convex hull, with all pixels within 

the hull filled in (set to on), returned as a binary image (logical). The image is the 

size of the bounding box* of the region. 

Eccentricity 

Eccentricity of the ellipse that has the same second-moments as the region, 

returned as a scalar. The eccentricity is the ratio of the distance between the foci of 

the ellipse and its major axis length. The value is between 0 and 1. (0 and 1 are 

degenerate cases. An ellipse whose eccentricity is 0 is a circle, while an ellipse 

whose eccentricity is 1 is a line segment.) 

Diameter 

Equivalent 

Diameter of a circle with the same area as the region, returned as a scalar. 

Computed as τz . 

Euler Number 
Number of objects in the region minus the number of holes in those objects, 

returned as a scalar. 

Extent 
Ratio of pixels in the region to pixels in the total bounding box*, returned as a 

scalar. Computed as the Area divided by the area of the bounding box*. 

Filled Area Number of on pixels in Filled Image, returned as a scalar. 

https://doi.org/10.1002%2Fpld3.23
https://doi.org/10.1093%2Fgigascience%2Fgix117
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Orientation 

Angle between the x-axis and the major axis of the ellipse that has the same 

second-moments as the region, returned as a scalar. The value is in degrees, 

ranging from -90 degrees to 90 degrees. 

Major Axis 

Length 

Length (in pixels) of the major axis of the ellipse that has the same normalized 

second central moments as the region, returned as a scalar. 

Minor Axis 

Length 

Length (in pixels) of the minor axis of the ellipse that has the same normalized 

second central moments as the region, returned as a scalar 

Perimeter 

Distance around the boundary of the region returned as a scalar. This function 

computes the perimeter by calculating the distance between each adjoining pair of 

pixels around the border of the region 

Solidity 
Proportion of the pixels in the convex hull that are also in the region, returned as a 

scalar. Computed as Area/ConvexArea 

*Bounding box: Smallest rectangle containing the region. 

1.5 Statistical Analysis 

The experiment used randomized blocks, with four treatments and six repetitions. Each 

plot was composed of six vases. The statistical analysis carried out through the ANOVA 

and Tukeyôs test at 1% of probability for average comparisons using the statistical and 

machine learning toolbox from MatLab software. 

For the significant predictor factors, a functional boxplot and a regression analysis (using 

the week means) was performed in the same software. 

Results and Findings 

Images were collected weekly (one image per plant) during 8 weeks. The segmentation 

of the plant tissue from the background was needed to quantify the spectral response 

from each plant and to calculate the mean values of the evaluated parameters. This 

process also enabled the morphological analysis of the plant growth behavior. 

Multiple segmentation codes were tested to remove the background, and the code based 

on the Normalized Difference Index was the most efficient. All the other bands (red, red 

edge and green) alone were not able to differentiate the plant tissue from the 

background. 

The vegetation indices results were stored by date and treatment in image format 

seeking a visual confirmation of the segmentation process and a visual representation 

of the spectral responses (Figure 5). 
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Figure 5 ï Example of vegetation indices obtained through the Parrot Sequoia camera and 

segmentation algorithm. Top: NDVI image of the T0 treatment (left) and the T3 treatment (right). 

Bottom: Modified Simple Ratio image of the T0 treatment (left) and the T3 treatment (right)  

The images were taken in the same position during the weeks in order to observe the 

growth behavior of the plants in the different treatments. Both aspects could be observed 

during time: morphological traits and vegetation indices (Figure 6). 
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Figure 6 ï Evolution of the morphology and Normalized Difference Vegetation Index of the tomato 

plants according to the fertilization treatments and the DAT (days after transplant). 

Boxplots were created for each treatment and each date in order to observe the 

dispersion of the Vegetation Indices mean values and morphological parameters for the 

different treatments. Some examples of the measured parameters can be observed 

below (Figure 7). 

In the boxplots, the red line indicates mean values, the superior blue line indicates the 

3rd quartile of values, and the lower blue line indicates 1st quartile. The superior and 

inferior black lines indicate maximum and minimum values, while the red crosses indicate 

outliers. 

The average values of the different vegetation indices per plant were calculated and 

compared during each week of the experiment using ANOVA and Tukey test with 99% 

of confidence (Table 4). 

The average values of the morphological parameters were also calculated, and an 

ANOVA test was performed with 99 % of confidence (Table 5).  
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Figure 7 ï Examples of boxplots created for each week. (T0: control, T1: 25% of recommended 

dose, T2: 50% of recommended dose, T3: recommended dose 

Table 4 ï Significance ANOVA test with 99% of probability for the relation between Vegetation 

Indices with the fertilization treatments per week (ns: non-significant, +: significant). 

 Time after transplant (Days) 

 08-mar 15-mar 22-mar 29-mar 05-abr 12-abr 19-abr 26-abr 

 0 7 14 21 28 36 43 50 

NDVI ns ns ns ns ns ns + + 

GNDVI ns ns ns ns ns ns + ns 
RENDVI ns ns ns ns ns ns ns ns 
NDRER ns ns ns ns ns ns ns ns 
OSAVI ns ns ns ns ns ns + + 
NLI ns ns ns ns ns ns ns ns 
LCI ns ns ns ns ns ns ns ns 
SR ns ns ns ns ns ns + + 
MSR ns ns ns ns ns ns + + 
GRVI ns ns ns ns ns ns + + 

RGRI ns ns ns ns ns ns ns ns 
SPI2 ns ns ns ns ns ns + ns 
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Table 5 ï Significance ANOVA test with 1% of probability for the relation between Morphological 

aspects derived from multispectral images with fertilization treatments per week (ns: non-

significant, +: significant). 

 Time after transplant (Days) 

 08-mar 15-mar 22-mar 29-mar 05-abr 12-abr 19-abr 26-abr 

 0 7 14 21 28 36 43 50 

Area ns ns ns + + + + + 

MajorAxisLength ns ns ns + + + + + 

MinorAxisLength ns ns ns + + + + + 

Eccentricity ns ns ns ns ns ns ns ns 

Orientation ns ns ns ns ns ns ns ns 

ConvexArea ns ns ns + + + + + 

FilledArea ns ns ns + + + + + 

EulerNumber ns ns ns ns ns + + ns 

EquivDiameter ns ns ns + + + + + 

Solidity ns ns ns ns + + ns + 

Extent ns ns ns ns + + ns ns 

Perimeter ns ns ns + + + + + 

 

After this initial ANOVA analysis, the significant parameters were selected, and the p-

values can be seen in Table 6. 

Table 6 ï p-values for the most significant parameters analyzed with multispectral images in 

tomato plants with different organic fertilization levels. (ANOVA Significance test 99%) 

  

In order to compare the different results for each treatment, a Tukeyôs HSD test was 

performed, for the most significant parameters for each week of the experiment. The 

results can be seen in Table 7 and the order of the letters indicates the treatments T0, 

T1, T2 and T3 respectively. 

 Time after transplant (Days) 

 08-mar 15-mar 22-mar 29-mar 05-abr 12-abr 19-abr 26-abr 

  0 7 14 21 28 36 43 50 

NDVI - - - - - - 2,00E-02 5,00E-02 

MSR - - - - - - 7,40E-02 3,00E-02 

GRVI - - - - - - 1,30E-02 1,03E-01 

Area - - - 2,00E-04 3,06E-06 1,92E-07 1,82E-08 1,96E-05 

MajorAxisLength - - - 2,56E-06 1,04E-09 1,16E-03 8,00E-04 2,97E-06 

MinorAxisLength - - - 7,00E-04 1,26E-05 6,77E-06 1,58E-05 9,24E-05 

ConvexArea - - - 2,90E-05 2,86E-08 7,99E-07 1,88E-06 2,05E-06 

FilledArea - - - 2,00E-04 1,09E-05 5,53E-07 1,80E-08 3,78E-06 

Perimeter - - - 1,60E-03 2,17E-08 4,13E-06 3,72E-06 2,00E-04 

EquivDiameter - - - 6,92E-05 8,12E-07 3,34E-08 2,93E-08 8,53E-06 



18 
 

Table 7 ï Tukeyôs HSD test with 99% confidence for the relation between vegetation indices and 

morphological aspects derived from multispectral images with organic fertilization treatments per 

week. 

 

Aiming to identify the most reliable parameters to predict the fertilization level of organic 

tomato, boxplots were created with the whole amount of data, without week distinction. 

After that, a comparison test (Tukeyôs HSD), with 99% of confidence was performed.  

This analysis can indicate which parameters are more robust to use in an automatic and 

nondestructive fertilization level analysis model. 

The graphical representation of the Boxplots and Tukeyôs comparison test can be seen 

below. In the case of the morphological aspects, some of the parameters presented 

significant results with distinction between the control (T0) and the treatments (T1, T2 

and T3) (Figure 8). 

On the other hand, none of the Vegetation Indices presented a significative difference 

(with a 99% level of confidence) to predict the nutritional level of organic tomato plants 

independent of the week after transplant (Figure 9). 

 

 

 Time after transplant (Days) 

 08-mar 15-mar 22-mar 29-mar 05-abr 12-abr 19-abr 26-abr 

  0 7 14 21 28 36 43 50 

NDVI - - - - - - a, ab, b, ab a,b,ab,ab 

MSR - - - - - - a, ab,b,ab a,b,ab,ab 

GRVI - - - - - - a, ab,b,ab a,b,ab,ab 

Area - - - a, ab, b, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 

MajorAxisLength - - - a, b, b, b a, b, b, b a, b, b, b a, ab,b,ab a, b, b, b 

MinorAxisLength - - - a, ab, b, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 

ConvexArea - - - a, ab, b, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 

FilledArea - - - a, ab, b, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 

Perimeter - - - a, ab, ab, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 

EquivDiameter - - - a, ab, b, b a, b, b, b a, b, b, b a, b, b, b a, b, b, b 
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Figure 8 ï Boxplots and Tukey Test with 99% of probability using all data (50 days) representing morphological parameters of tomato plants with different levels 

of organic fertilization 


