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Chapter 1

Introduction

This work studies and compares di�erent solutions to the problem of Machine Trans-
lation (MT), with the aim of obtaining a system that is able to produce accurate
translations in an e�cient way. The techniques presented in this work have been
applied in order to develop MT systems for a variety of language pairs in an online
context, that allows the possibility of providing live translations.

This chapter introduces the motivation and context of this work, as well as the
key concepts that will be necessary for the reader to understand the rest of this work.

1.1 Motivation

Due to recent technological developments, the idea that machines could be able to
automatically generate translations has become a reality. A few years ago, most
people did not imagine that MT systems that achieved good performance in a variety
of domains could be developed in a short period of time. And yet, thanks to the
combination of a series of research developments coming both from the academia and
the industry, the performance of MT systems has surpassed many of its previously
believed limits. While there are still many challenges and research areas to explore,
we are now at a moment where MT has achieved a level of performance that makes
it possible to leverage this technology in a variety of ways that were not possible
until now. This opens up new avenues for the development of systems that are able
to provide cheap solutions for the translation of massive amounts of text, either as
standalone systems or as a tool to reduce time for human translators. The importance
of this technology and the business value that it can bring has not been ignored by
key technology players. Nowadays, all technological giants such as Google1, Facebook

1https://translate.google.com

1
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Chapter 1. Introduction

2, Microsoft3, eBay4 and Amazon5 have all developed their own MT systems that
they use in their day-to-day operations, and some of them also o�er the use of those
translation systems to their clients. Many organizations have adapted their processes
to use MT services in order to translate massive quantities of text as required by their
business needs. In a way, it can be said that MT is quickly becoming ubiquitous, and
this trend will continue to increase in the future as new research developments continue
to improve the quality and reduce the cost of generating these automatic translations.

1.2 Machine Translation

MT can be seen as an application of Pattern Recognition that seeks the development
of computer systems that are able to automatically translate texts. When given a
sentence, the system should produce a good translation of it into another language,
with the goal of preserving the original meaning as much as possible.

Formally, given a sentence in one language, x = x1, x2 . . . , xJ , the goal is to �nd
the best translation, that is, the y = y1, y2 . . . , yI that maximizes p(y|x).6

This probability is learned from parallel corpora, collections of text that contain
sentences in one language paired with their translations into another language. Unlike
monolingual text, that is available in places such as books, articles, and websites,
parallel data is a much scarcer resource that can be di�cult to obtain for certain
language pairs. It is vital to obtain as much parallel data as possible in order to train a
system that achieves good performance. Other important aspects are the data quality
and the domain. One source of such parallel data is the Opus7 project, that provides
free access to a series of open source corpora. The Opus website hosts the data for
dozens of language pairs, and is a good starting place for obtaining parallel data.
The parallel data is then used by the model to obtain the appropriate translation
knowledge. The system is presented with sentences from the source language (the
language we are translating from), and their translations into the target language
(the language we are translating into), and learns the relationship from there. This
means that we obtain systems that are able to translate only from one language into
another, for example, from Spanish into English, but we would have to train another
system to translate from English into Spanish.8

The same way that in the general case, it it usual to decompose the translation
probability using Bayes' rule:

p(y|x) =
p(x|y)p(y)

p(x)
(1.1)

2https://code.facebook.com/posts/289921871474277/transitioning-entirely-to-neural-machine-
translation/

3https://www.microsoft.com/en-us/translator
4http://labs.ebay.com/research-areas/research-machine-translation
5https://aws.amazon.com/es/translate/
6It is common to use the letters f and e instead of x and y in MT texts, both notations are

equivalent.
7http://opus.nlpl.eu/
8There exists research both for training multilingual models and for unsupervised learning, but

they both remain open research areas.

2 MLLP-DSIC-UPV
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1.2. Machine Translation

One can imagine that a sentence was originally written in the language we want,
but it somehow got corrupted along the way, and we ended up with a sentence in the
source language. This means, that for some possible translation y the probability of
that sentence being the translation, p(y|x) can then be interpreted as the probability
that the sentence was the one that was emitted originally, p(y), multiplied by the
probability that this sentence was disrupted and became the sentence in the source
language, p(x|y). This model is known as the noisy-channel model [57], p(y) as the
language model, and p(x|y) as the translation model.

Learning a conditional probability distribution for translations is not enough for
a fully functional MT system, since by itself, knowing how good of a translation is a
certain sentence does not provide us enough information to know if it is the best one,
as there could be others that are much better. Our ideal goal is to �nd a translation
ŷ such that:

ŷ = arg max
y

p(y)p(x|y) (1.2)

As in the previous case, we have dropped p(x) from the equation since it does not
depend on y.

We require an additional step, known as decoding, that tries many possible trans-
lations in order to search for the best �nal translation. Since there are in�nitely many
possible translations in the search space, the search is carried out only in a subset of
this space, with the hope that the best translation, or at least one that is good enough,
is present on that subset. Techniques such as stack decoding [20] or beam-search [28]
are used to carry out this task.

The following sections explain the main three models that have been historically
used in MT: word-based models, phrase-based models and neural network models.
The models are explained in chronological order.

1.2.1 Word-Based Models

Translation model

Word-based models [8, 9] estimate the translation probability by assuming that trans-
lations are produced by individually translating each word of the sentence. We will
now explain a word-based model known in the literature as IBM-1. Due to the ap-
plication of Bayes' rule, the translation direction has been inverted, but we will refer
to x as the source sentence and y as the target sentence in order to maintain co-
herence with the nomenclature used in the rest of this work. This model uses two
main concepts, a lexical translation model, that gives the probability of each possible
translation for a certain word, and an alignment. An alignment indicates, for each
of the source positions, which is the target position that corresponds to the word
they are a translation of. We can imagine this alignment as a function that returns a
position i for every position j given as input.

A word-based model for producing a translation x given an input sentence y can
be de�ned as:

p(x|y) =
∑
a

p(x,a|y) (1.3)

MLLP-DSIC-UPV 3
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Chapter 1. Introduction

a is an alignment vector that indicates, for each of the source words, which is the
target word that produced them. If aj = n, it means that the word in position j is a
translation of the target word in position n. A NULL token is appended to position
0 of the target sentence to allow for source words that are not aligned with any of
the other target words. The alignment vector provides us with a mapping that we
can consult in order to know which is the target word that corresponds with a certain
source word.

For some �xed alignment a and target sentence y, the probability of a translation
x is de�ned as:

p(x,a|y) =

J∏
j=1

p(xj , aj |xj−11 , aj−11 ,y) =

J∏
j=1

p(aj |xj−11 , aj−11 ,y)p(xj |xj−11 , aj1,y)

(1.4)
We are going to make a series of assumptions in order to compute this probability.

First, we assume that the alignment probability between target and source words is
given by a uniform probability distribution:

p(aj |xj−11 , aj−11 ,y) :=
1

I + 1
(1.5)

Additionally, and because we are working with a word-based model, we assume
that the translation of each word of the source sentence only depends on the corre-
sponding target word it is aligned to.

p(xj |xj−11 , aj1,y) := p(xj |yaj ) (1.6)

The previous two assumptions allow us to obtain a simpli�ed computation for
Equation 1.4:

p(x,a|y) =
1

I + 1

J∏
j=1

p(xj |yaj ) (1.7)

Provided with an alignment for every sentence, we can estimate the lexical translation
probabilities for pair of words by counting the number of times it has been translated
and normalizing the results:

p(u|v) =
N(u, v)∑
u′ N(u′, v)

(1.8)

where N(u, v) is a count function that computes the number of times a word v has
been translated as u. For a single sentence pair and its alignment vector a, this
function is computed as:

N(u, v) =

J∑
j=1

δ(xj = u)δ(yaj = v) (1.9)

The previous function can be extended to a corpus containing N parallel sentences
in a straightforward way. The problem is that our parallel corpus does not provide us

4 MLLP-DSIC-UPV
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1.2. Machine Translation

with an alignment between words, so we can not directly compute the lexical transla-
tion probability. In this case, the alignment acts as a hidden variable. The parameters
of the model (the lexical translation probability distribution) can be trained with the
expectation maximization algorithm (EM) [15], an iterative algorithm that computes
an estimation of the alignment on each step.

Once we have obtained our translation probability distribution, the probability of
translating an entire sentence, p(x|y), can be computed as:

p(x|y) =
1

(I + 1)J

J∏
j=1

I∑
i=1

p(xj |yi) (1.10)

Language model

A language model estimates the a priori probability that a sentence occurs in a lan-
guage, pLM (y).

The inclusion of a language model provides a MT system with information about
the expected structure of sentences in a certain language. This addition means that
the system has some knowledge about what a "proper" sentence in that language is,
and this can provide a more �uent output and help to decide in case of ambiguities
in translation.

As far as language models are concerned, a sentence is made up of words, so one
initial approach to language modelling consists in using the chain rule to decompose
the probability of a sentence.

pLM (yI0) =

I∏
i=1

p(yi|yi−10 ) (1.11)

In practice, this theoretical assumption is not used due to the exponential growth of
possible histories. One option in order to avoid this exponential growth is to make
the assumption that a word only depends on the n preceding words, therefore:

p(yi|yi−10 ) ' p(yi|yi−1i−(n−1)) (1.12)

This model is known as the n-gram model, and it has a very simple estimation based
on counting the number of appearances of sequences of n-words.

p(yi|yi−1i−(n−1)) =
N(yi−(n−1), . . . , yi−1, yi)∑
v N(yi−(n−1), . . . , yi−1, v)

(1.13)

Language models are usually evaluated in terms of perplexity computed over a
text y1, y2, . . . , yn.

PP = 2−
1
N log p(y1,y2,...,yn) (1.14)

The perplexity is a estimation on how many di�erent words on average can follow
a given word according to the language model. The lower this number is, the more
con�dent the model is about what the next word will be.

MLLP-DSIC-UPV 5
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Chapter 1. Introduction

src: 28 @-@ jähriger Koch in San Francisco Mall tot aufgefunden

tgt: the 28 @-@ year @-@ old Koch in San Francisco mall found dead .

Figure 1.1: Example of the phrase segmentation used by a SMT model when
translating sentence from the WMT corpus.

1.2.2 Phrase-Based Models

Phrase-based models [37] translate sentences by decomposing them into phrases, a
small set of contiguous words, and translating each of those phrases in order to obtain
the translated sentence. Words can only belong to a single phrase, so there is no
overlap between phrases. The use of phrases as the basic unit of translation instead
of words allows these models to achieve greater performance, and until the arrival of
neural-based systems, they were the state of the art.

Figure 1.1 shows the phrase segmentation selected by a phrase-based model built
using the Moses toolkit [35], for the translation of a sentence from German into
English.

Log-Linear Models

We have previously used Bayes' rule in order to split the computation of p(x|y) into
two parts. However, it might be bene�cial to consider more components for our
model, even if their inclusion can not be mathematically justi�ed. For example,
in phrase-based models, the translation model is further split into two models, the
lexicon translation model, a measure of how good is the translation of a phrase, and
the reordering model, that tells us how likely it is that the translated phrases are
ordered that way.

Log-linear models are models whose logarithm equals a linear combination of a
set of feature functions of the model, hi, that depend on a random variable R.

p(R) = exp

n∑
i=1

λihi(R) (1.15)

A combined model that assigns weights to the di�erent components,

p(y|x) = pt(x|y)λtpr(x|y)λrpLM (y)λLM (1.16)

is equivalent to a log-linear model de�ned as:

• R = (x, y, start, end)

• n = 3

• h1 = pt(x|y)

• h2 = pr(x|y)

6 MLLP-DSIC-UPV
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1.2. Machine Translation

• h3 = pLM (y)

Treating the translation model as a log-linear model opens up the possibility of
including additional feature functions that we might �nd useful for translation. We
will now describe each one of the three components that form the basic phrase-based
model:

Language model

The language model is independent of the translation model, so the same explanation
used in the word-based model applies to the phrase-based model.

Translation model

For a certain segmentation of x into I di�erent xi phrases, the translation model is
de�ned as:

pt(x̄
I
1|ȳI1) =

I∏
i=1

φ(x̄i|ȳi) (1.17)

φ(xi|yi) is a phrase translation table that scores the goodness of a translation. This
table is estimated in a two step process. Given a corpus, we �rst extract a series of
correct phrase pairs for each sentence pair. Once we have obtained all those pairs, we
estimate the transition probability for a pair based on the number of times that pair
has been extracted, de�ned as N(x̄, ȳ), and normalize the result.

φ(x̄|ȳ) =
N(x̄, ȳ)∑
x′ N(x̄′, ȳ)

(1.18)

The concept of what constitutes a correct phrase pair, meaning one that is consistent
with a given word alignment is outside the scope of this work. We refer interested
readers to chapters 4 and 5 of [34] in order to learn more about word alignments and
phrase extraction.

Reordering model

Each phrase in the source sentence is translated into another phrase in the target
language, but this does not mean that the target phrases must appear in the same
order, as sometimes it is better to alter their order to better convey the meaning of the
sentence. The reordering model is in charge of estimating this reordering probability.

pr(x̄
I
1|ȳI1) =

I∏
i=1

d(starti − endi−1 − 1) (1.19)

The reordering function d is computed with respect to the distance between the start
of phrase i (starti) and the end of the previous phrase (endi−1), computed in the
source sentence.

One possible de�nition for d is that of an exponential decay function, d(x) = a|x|,
in order to penalize bigger movements.

MLLP-DSIC-UPV 7
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Chapter 1. Introduction

1.2.3 Neural-Based Models

This section brie�y introduces the basic concepts of neural networks. Readers are
recommended to consult chapter 6 of [19] in order to gain a more profound under-
standing.

Neural networks started being applied to MT quite recently, but they are not a
new technology. The Perceptron[51], precursor of the neural network, was introduced
in 1957, and the backpropagation algorithm [52] that allowed the training of multi-
layer neural networks was introduced in the 1980's. Since then, these models have
been applied to a variety of Pattern Recognition problems.

In contrast with phrase-based models, Neural Machine Translation (NMT) models
do not decompose p(y|x) using Bayes' rule, instead they estimate it directly.

The most basic type of neural network is the multilayer perceptron (MLP). The
MLP is a feedforward neural network (whose nodes do not form cycles), and is the
most commonly used model in almost all types of classi�cation problems. These
models are made up of an input layer, a variable number of hidden layers and an
output layer. Each layer applies some computation to the outputs of the previous
layer, and this result is then used by the next layer. We will now describe the equations
governing how an MLP functions.

The �rst hidden layer receives as input the feature vector x:

h(1) = g(1)(W (1)x + b(1)) (1.20)

For the other layers, the output of a hidden layer i is computed as:

h(i) = g(i)(W (i)h(i−1) + b(i)) (1.21)

where W (i) is the weight matrix of the layer and b(i) is the bias term of the layer.
g(i) is the activation function of the layer, and this is usually a non-linear function
that allows the model to learn non-linear relations. The input to the function g(.) is
sometimes denoted as a.

The output layer is in charge of applying a transformation to the set of features
produced by the hidden layers in order to obtain the �nal result of the computation.
For example, in the case of a classi�cation problem, the output layer produces a
probability distribution over all possible classes by applying a softmax function.

softmax(z)i =
exp(zi)∑
j exp(zj)

(1.22)

p(c|x) = softmax(W (out)h(I) + b(out)) (1.23)

The set of weight matrices and biases that de�ne the parameters of the model (θ)
is iteratively trained by using gradient descent and the backpropagation algorithm
[52]. Gradient descent is an iterative technique that performs an optimization with
respect to a cost function, J(θ), that measures the performance of the parameters of
our model with respect to the training data. On each step, we subtract the gradient
of the cost function with respect to the parameters.

8 MLLP-DSIC-UPV
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1.2. Machine Translation

θ ← θ − α∇θJ(θ) (1.24)

being α the learning rate or step size that controls how big is the update we make on
each step. Because the cost function is usually de�ned as computing the average of a
loss function over each of the training samples, this computation becomes unfeasible
when dealing with big datasets. That is why it is common to use minibatch gradient
descent instead, where we compute the cost function with regards to a small subset
or minibatch of the training data. Conceptually, this can be understood as updating
the parameters with a noisy estimation of the gradient.

θ ← θ − α(∇θJ(θ) + ε) (1.25)

The previous explanation applies to the architecture and training of any neural
network, but we will now introduce a special type of neural network that is better
suited for MT. Because we are working with sequential data, it is desirable to use
a network that is able to model dependencies between words. Recurrent Neural
Networks (RNN) are a type of neural networks that are specialized in working with
sequential data. These networks compute a state that depends on the state on the
previous time step. The equation for the hidden layer of a basic recurrent network at
time t is given by:

h
(i)
t = g(i)(W (i)h

(i−1)
t +U (i)h

(i)
t−1 + b(i)) (1.26)

Compared with Equation (1.21), the di�erence is the addition of weight matrix
U , that controls the e�ect of the previous state.

Even so, learning long-term dependencies is very hard, due to the gradients' ten-
dency of either becoming in�nitesimally small or exponentially big due to the ap-
plication of the same weight matrix over multiple time steps. This is know as the
gradient vanishing or gradient explosion problem, and is studied in more detail in
works such as [23]. In order to �ght this problem, the use of special units that are
better suited for this task, such as the LSTM unit [24] has become standard. The

hidden layer output for these networks depends not only on h
(i−1)
t and h

(i)
t−1, but also

on an internal state ct that can store values between each time step.
Having explained the basics of neural networks, we can are now ready to move

on to how they are applied to MT in what is known as Neural Machine Translation
(NMT). NMT systems are explained in detail in Chapter 2.1.

1.2.4 Computational graphs

As explained in Section 1.2.3, the weights of a neural network are usually trained
by gradient descent using the backpropagation algorithm. This means that for each
training step, we need to compute the derivative of the cost function with respect to
each variable of our model. Because this is one of the most time-consuming parts of
the training procedure, it is interesting to have tools that make this process as easy
as possible.

MLLP-DSIC-UPV 9
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W (i)

×

. . .

h(i−1)

b(i)

+ a(i)

g(.) h(i)

. . .

Figure 1.2: Computational graph representation of the operations carried
out in one of the hidden layers of a neural network.

In order to compute these derivatives in an easy and e�cient way, libraries such as
PyTorch and MXNet internally de�ne models as a computational graph. A compu-
tational graph is a directed graph composed by a series of variables, each represented
by a node, and operations between those variables. The operations are represented
with the help of edges, so that a node with incoming edges de�nes an operation (or
function) over the input variables. Nodes usually de�ne simple operations such as
the sum or multiplication of its inputs. The combination of di�erent operations,
whose input is usually the output of a previous node, allows the de�nition of a graph
that represents a set of mathematical computations and the existing dependencies
between them. Additionally, computational graphs o�er an explicit representation
that helps avoid many kinds of ambiguities that can occur when trying to understand
a mathematical process. Figure 1.2 shows an example of one computational graph
that represents the computations carried out in the layers of a neural network.

We can take advantage of these graphs in order to facilitate processes such as
training Machine Learning (ML) models. The de�nition of a model as a series of
simple operations enables fast parallel computation of the model's output, since the
edges de�ne the existing dependencies between operations. The user is therefore freed
from the burden of needing to manually de�ne the execution order for its model. Fur-
thermore, if each operation also de�nes how to compute its derivative with respect to
each of its inputs, the backpropagation algorithm can be applied in an straightforward
way.

Both PyTorch and MXNet o�er a graph language that already de�nes a series of

10 MLLP-DSIC-UPV
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1.2. Machine Translation

di�erent mathematical operations and their respective derivative computation. This
allows us to use any arbitrary model just by de�ning its model graph according to
the language de�nition of the chosen library.

1.2.5 Evaluation of results

The question of how to best assess the translation quality of MT systems remains
open. Manual evaluation, that is, evaluation made by humans about the quality
of the translated text, could very well be the best evaluation measure, but it has
the disadvantage of needing a human to carry out the task. Carrying out manual
evaluations every time we de�ne a new system con�guration and translate a large
amount of test sentences quickly becomes unfeasible.

This has given rise to search for automatic evaluation metrics that are ideally
correlated with human judgement. Automatic evaluation is carried out by comparing
the output of a system with a reference translation produced by a human. The
most basic evaluation metric is the precision, the ratio between correct output words
(shared words between the system output and the reference translation) and the
number of words present on the output sentence. The problem with this metric is
that it does not penalize short sentences and therefore can be easily fooled 9. A
better evaluation measure that takes the idea of precision into account together with
hypothesis length is the Bilingual Evaluation Understudy (BLEU) [44] score. The
BLEU score computes a modi�ed precision, pn, at di�erent n-gram levels. Unlike
regular precision, the clipped-precision used by the BLEU metric requires that an
n-gram appears the same number of times both in the reference translation and in
the candidate translation. If a certain n-gram appears more times in the candidate
than in the reference, it will only be counted as correct as many times as it appears
in the reference.

AveragePrecision(N) =
1

N

N∑
n=1

log pn (1.27)

This score also includes a Brevity Penalty term that is detrimental if the length
of the candidate translation (c) is smaller than the length of the reference (r).

BrevityPenalty =

{
1 : if c > r
exp(1− r

c ) : if c ≤ r (1.28)

The usual de�nition of the BLEU is calculated over the concatenation of all test
sentences, and is usually computed up to n-grams of order 4, such that:

BLEU(4) = BrevityPenalty ∗AveragePrecision(4) (1.29)

The �nal result is a value ranging from 0 to 1, higher values are better. The value is
usually multiplied by 100 to obtain better readability.

9A system that emitted the translation "the" for any given input sentence would achieve an
unusually high precision, since "the" is the most common English word. [34]

MLLP-DSIC-UPV 11



i
i

�memoria� � 2019/7/13 � 23:34 � page 12 � #16 i
i

i
i

i
i

Chapter 1. Introduction

Another common automatic evaluation measure is the Translation Error Rate
(TER) [58]. The TER measures the number of edits required to transform the candi-
date hypothesis into the reference, divided by the number of words in the reference.

TER =
Number of required edits

Length of the reference
(1.30)

The available type of edits are:

• Insertion of a word

• Deletion of a word

• Substitution of a single word by another

• Movement of a block of contiguous word to another part of the sentence

The optimal number of edits is approximately computed with a greedy algorithm.
Since this is a score that measures how many edits are required, lower scores of TER
are better. As in the case of BLEU, the value is usually multiplied by 100 when being
reported.

Both measures should be evaluated with tokenized reference and hypothesis (See
Section 3.1). Ideally, we want to use an agreed-upon tokenization, in order to be
able to measure them consistently across works carried out by di�erent authors. This
can be achieved by using a tool such as SacreBLEU [48], that carries out a standard
tokenization without user intervention. In case this is not possible (for example,
because the detokenized version has not been made public), we have to rely on tools
that use a user-supplied tokenization such as multi-bleu from Moses.

1.3 Framework of this work

This work has been made possible thanks to author's research position at the Machine
Learning and Language Processing (MLLP) research group of Universitat Politècnica
de València (UPV). The research leading to these results has received funding from
the European Unions Horizon 2020 research and innovation programme under grant
agreement no. 761758 (X5gon). The work explained in this document was carried
out during UPV's participation in this project.

1.4 Document structure

This document is organized into 7 chapters. The �rst chapter serves as an introduction
to the �eld of Machine Translation, how MT systems work and how they are evaluated.
The motivation of this work has also been introduced.

Chapter 2 introduces the principles behind Neural Machine Translation. We de-
scribe the current NMT architectures, Attention-based RNN and Transformer, as well
as outlining some practical issues for training NMT models. Chapter 3 describes the

12 MLLP-DSIC-UPV
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experiments performed for the WMT18 competition, using the previously described
architectures. These experiments have been used as a starting point point for the rest
of experiments described in this Master's Thesis. Chapter 4 introduces the X5gon
H2020 project and describes the data, techniques and architectures that have been
used in order to develop MT systems for language pairs that are relevant to the
project. Chapter 5 and 6 describe the work carried out for two translation tasks
of the WMT19 competition. They describe the systems developed for the Similar
Language Translation Task and for the Online News Translation Task, respectively.
Chapter 7 describes the work carried out in order to integrate the translation systems
obtained as output of the previous process into a live production environment. Addi-
tionally, the case of implementing online NMT systems, as well as the challenges that
this brings, is studied in detail. The work �nishes with an overview of the di�erent
conclusions that have been obtained as a result of this project as well as a summary
of the work carried out, available on Chapter 8.

MLLP-DSIC-UPV 13
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Chapter 2

Neural Machine

Translation

This chapter o�ers a detailed description of Neural Machine Translation and its cur-
rent architectures. This is done in order to describe the theoretical background re-
quired for understanding the rest of the work. We will describe two of the most
relevant architectures: Attention-RNN and Transformer, as well as the practical is-
sues faced and computer tools used for training NMT systems.

2.1 Attention-based RNN NMT models

This section describes the RNN Attention-based model. We start with a general
description of the components that form the basis of any modern NMT system. Once
those concepts have been introduced, we describe the theoretical model behind the
Attention-based model, how it relates with the previously described approach, and
its corresponding architecture.

2.1.1 Overview of NMT models

The basic principles behind neural networks have been introduced in Section 1.2.3.
Those concepts are common to all use cases of neural networks, and serve as a starting
point for building systems with di�erent applications. This section introduces the
speci�c considerations adopted for building NMT systems.

One of the �rst speci�c decisions that need to be made in MT, and in general
most applications of Natural Language Processing, is how to consume the input data,
which is made up of words, and obtain a numerical representation that can be used by
the neural network, because these systems and associated training procedures work
with numerical data. The solution adopted in NMT is to �rst code the words as one
hot vectors, a vector of a dimension equal to the number of words in the vocabulary,
whose values are all 0 except for the dimension of that word. Because these vectors
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Chapter 2. Neural Machine Translation

usually have a very high number of dimensions, the vectors are then multiplied by a
word-embedding matrix, E, that condenses this representation into a lower number
of dimensions. A desirable property for this embedding is that they represent similar
words (or words with similar meanings) with similar embeddings. A similar process is
applied to the output of the last hidden layer of the network. In order to transform the
output of the last hidden layer of the network into a vector of the same shape as the
output vocabulary, the hidden representation is multiplied by an output embedding
matrix Eo. In contrast with other NLP applications, in NMT the embedding matrices
are considered parameters of the model that need to be learned, and are trained with
the rest of the model using gradient descent.

Previous attempts at using neural networks for MT, such as [13], used the output
of the NMT system as an additional feature for a phrase-based model, following
the log-linear framework explained in Section 1.2.2. Those systems played only a
small part in a model that combined many di�erent features, most of them usually
trained independently of each other. The �rst stand-alone NMT system that obtained
competitive results was the RNN-Attention model [4], whose main contribution was
the introduction of an attention mechanism.

On its most basic form, a NMT system has an architecture that contains an en-
coder neural network, a decoder neural network and, optionally, an attention mecha-
nism, although the last component is mandatory if one wishes to obtain a competitive
system.

The encoder component is a recurrent neural network, tasked with producing a
representation of the input sentence, that will be then used by the rest of the system
for obtaining the translations. This component is usually a recurrent neural network
with hidden layers of LSTM[24] or GRU[13] units, and the representation produced
by the encoder consists in the hidden state of the encoder neural network. Our hope
is that, once trained, this encoder extracts a good representation ci of the meaning of
the input sentence, also called context vector. The context vector will be then used
as the basis for producing the output translation.

The decoder recurrent neural network receives the encoded representation of the
input sentences and emits the output words one at a time. This decoder is usually
autoregressive, that means that the choice of which word is emitted depends not
only on the encoded representation, but also on the previously word emitted by the
decoder. This way, the decoder is in fact acting in a similar way to a language model.
Both the encoder and the decoder are jointly trained.

Although here we have described the encoder and the decoder as RNN since they
were used in the �rst approach to this problem, that is only one of the available
options. The encoder-decoder architecture, or in its general form of sequence-to-
sequence models, does not restrict us to use only one speci�c type of encoder/decoder
component. In fact, as we will see later in Section 2.2, there are alternative proposals
that use components that di�er from a RNN. The encoder-decoder framework simply
uses some sort of encoder component, that extracts a representation from the input
sentence, and a decoder component that uses that representation in order to produce
the output.

16 MLLP-DSIC-UPV



i
i

�memoria� � 2019/7/13 � 23:34 � page 17 � #21 i
i

i
i

i
i
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x1

h1

x2

h2

xj

hj

xJ

hJ

Figure 2.1: Encoder

2.1.2 RNN-Attention

Having described the basic building blocks of a NMT system, we will now explain in
detail the architecture of the RNN-Attention model [4]. Figure 2.1 shows a represen-
tation of the encoder component.

The encoder is a Bidirectional RNN (BiRNN) formed by two individual Recurrent
Neural Networks, one forward and one backward. The only architectural di�erence
between these two networks is that the forward one reads the input sentence in order
(from x1 to xJ), and the backward network reads it starting from the end (from xJ to
x1). When reading input word xj , each network emits a representation or encoding

for that word. Therefore, for each word, we obtain a forward representation
←−
hj and a

backward representation
−→
hj . The two representations are then concatenated together

to obtain the �nal representation for each word, so that the representation of a word
contains information about both preceding and following words, in order to preserve
as much meaning as possible.

−→
hj = fenc_forward(

−→
h j−1,xj) (2.1)

←−
hj = fenc_backward(

←−
h j+1,xj) (2.2)

hj = [
−→
hj ;
←−
hj ] (2.3)

The type of function implemented by the encoder depends on the type of RNN
unit selected to form the hidden layer, and the same holds true for the hidden layer
of the decoder. As previously mentioned, usual choices are either LSTM[24] or GRU
[13] units.

This information produced by the encoder will be then used by the decoder to
output the translation. Figure 2.2 shows the structure of the decoder component.

The decoder is a unidirectional RNN that maintains an internal state, si, that is
updated after each step by a function that depends on the previous state si−1, the
last word emitted yi−1 and a context vector ci that will be explained later.

si = fdec(si−1,yi−1, ci) (2.4)

MLLP-DSIC-UPV 17
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ci, yi−1

si

Figure 2.2: Decoder

h1 h2 hj hJ

ci

si−1

yi

Figure 2.3: Alignment (Attention)

Attention Mechanism

Up to now, the components we have seen present a challenge in how to properly encode
the information of the source sentence. Because the input to the neural network must
be a �xed-length vector, we are forced to encode all input sentences, no matter their
length, using a vector with a �xed size. This also means that the input representation
remains constant during the decoding process. The context vector was traditionally
considered to be the �nal state of the encoder network, hT . It has been shown that
the translation quality of these systems quickly degrades when having to produce
translations for long sentences.

The introduction of an attention mechanism allows us to feed the decoder network
with a potentially di�erent context vector for each time step. This allows the decoder
to receive a representation that is more suitable for choosing what is the next word
to produce. For example, it would be bene�cial to stop receiving information about
parts of the input sentence whose meaning has already been translated and provide
no further useful information. The attention mechanism allows us to do exactly that
by producing the context vector, ci, fed to the decoder. Figure 2.3 illustrates how the
context vector ci is produced.

An attention function is described by [62] as a function whose arguments are a

18 MLLP-DSIC-UPV
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2.1. Attention-based RNN NMT models

query, q, and a set of key-value pairs, grouped into matrices K and V , and whose
output is a weighted sum of the values. The weights for each value are computed by
a compatibility function between its key and the query.

ci =
∑
j

α(j|i)Vj (2.5)

α(j|i) = softmax(attention(q,K))j (2.6)

In NMT, we compute the context vector as the weighted sum of the di�erent
encoder representations at each time step. The generic attention mechanism described
in Equations (2.5) and (2.6) can be speci�ed to produce a context vector at a generic
step i from a series of encoder representations h1, . . . , hJ by using the decoder state
as the query and the encoder representations as key-value pairs. Therefore, q = si−1,
Kj = hj, and Vj = hj, leaving us with:

ci =
∑
j

α(j|i)hj (2.7)

attention(si−1,hj) = vTa tanh(Wasi−1 +Uahj) (2.8)

where va,Wa and Ua are the di�erent trainable weights of the attention mechanism.

This allows us to obtain a representation of the input sentence that assigns more
weight to the appropriate parts for translating each part of the sentence. This vector
is the weighted sum of the di�erent encoder representations at each time step. In
fact, these α(j|i) can be interpreted as acting as an alignment. At each time step
i, α(j|i) can be understood as the probability that the target word at position i is
aligned with the input word at position j.

The compatibility function of Equation (2.8) is known as additive or Bahdanau
attention. Later works have proposed di�erent scoring functions, such as the dot-
product attention of [41], that computes the scoring function as:

attention(si−1,hj) = sTi−1hj (2.9)

The advantage of the later approach is that the attention mechanism does not
contain any parameter and works only by computing the dot product between the
query and the key.

The output layer of the decoder component emits the probabilities for each possible
word to be produced. First, a feedforward layer is applied, whose inputs are the
context vector, the state of the decoder at the previous time step, and the last emitted
word, yi−1, that is supplied to the decoder by applying an additional embedding
matrix, Edecoder, sometimes called target embedding. Then, a softmax function is
applied in order to obtain the probability distribution over the target words.

p(yi|si, yi− 1, ci) = softmax(femiss(si−1,yi−1, ci)) (2.10)

MLLP-DSIC-UPV 19
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Chapter 2. Neural Machine Translation

The use of RNN components as the elements of the encoder and decoder com-
ponent, with the addition of the attention mechanism for computing the appropri-
ate context vector, are the basic implementation of the encoder-decoder framework.
These techniques, in combination with the processing steps such as BPE explained in
Section 3.1, form the basic NMT system.

2.2 Transformer Self-Attention NMT models

The Transformer [62] architecture is a recently introduced architecture that replaces
recurrent layers by a new type of layer, Self-Attention layers, as well as a series
of architectural changes in both the encoder and decoder components. This model
achieves signi�cant improvements in both speed and quality of translations, and is
currently considered the state of the art.

This section will give a general overview of the model and the proposed improve-
ments. Due to the model's complexity and the wide variety of introduced changes,
readers should refer to the original article to learn about details of the implementation.

Both the encoder and the decoder are composed of a series of layer blocks stacked
on top of each other. Each of these blocks is made up of a series of sub-layers. A
sub-layer implements a function, such as a neural network hidden layer, jointly with
Residual Connections [21] and Layer Normalization [1]. We will now describe each of
those techniques, starting with the main contribution of the Transformer model, the
introduction of a new way of computing attention.

2.2.1 Generalization of the Attention mechanism

The Attention layers of the Transformer architecture perform multiple Scaled Dot-
Product Attention by using Multi-Head Attention. We have previously introduced
Dot-Product Attention in Equation (2.9). Scaled attention introduces a scaling term
that depends on the dimensions of the key, dk. Remember that in conventional
attention we use q = si−1, Kj = hj, and Vj = hj.

attention(q,Ki) =
qTKi√
dk

(2.11)

If we wish to compute attention with multiple queries, the queries can be packed
in a matrix Q, and the computation may be expressed solely in terms of matrix
multiplication. This means that the entire Attention process is computed as:

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (2.12)

Up to now, the Attention mechanism has provided us with an answer for each
query. Multi-Head attention extends the previous mechanism in order to produce
an answer that is the combination of multiple key-query comparisons. Multi-head
attention consists in performing several attention operations in parallel and combining
the results to obtain the �nal context vector. Each individual attention operation or
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2.2. Transformer Self-Attention NMT models

head is carried out by applying a linear projection to the query, keys and values,
computing attention between them, and then projecting back into a common space:

MultiHead(Q,K,V ) = Concat(head1, . . . , headh)W o (2.13)

headi = Attention(QWQ
i ,KW

K
i ,VWV

i ) (2.14)

The projections are applied by the means of matrices W o,WQ
i ,WK

i and WV
i .

These projection matrices are parameters learned during training. An additional
di�erence of this layers with respect to conventional Attention is the way they are
applied in the Transformer model, something that we will explain once we describe
the architecture.

2.2.2 Layer Normalization

Layer Normalization [1] normalizes the outputs of a neural network layer, so that each
neuron behaves as a normal distribution. To normalize a layer, we compute a mean
and standard deviation from the activations of every unit in that layer, and then
we subtract the mean and divide by the standard deviation. Layer normalization is
applied to the output of the layer operations, a(i), before the activation function g(.)
is applied. Thus, we can apply Layer Normalization to layer i as follows:

LayerNorm(a(i)) =
γ

σ(i)
� (a(i) − µ(i)) + β (2.15)

µ(i) =
1

H

H∑
h=1

a
(i)
h (2.16)

σ(i) =

√√√√ 1

H

H∑
h=1

(a
(i)
h − µ(i))2 (2.17)

where µ(i) and σ(i) are broadcasted to have the same dimension as a(i). γ is the gain
and β is the bias, parameters that are learned during training. They are used so that
the layer can output normal distributions that are di�erent from the standard normal
distribution.

2.2.3 Residual Connections

Residual Connections [21], sometimes known as skip connections, is the name of a
technique where the input of a layer skips one or more transformations, and is then
added to the output of those transformations. Suppose we have a vector x and a
series of neural network layers that compute the transformation F (x). The output of
that residual block would be computed as x + F (x). The goal of this technique is to
facilitate the optimization process for networks with many layers.
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2.2.4 Modelling word position

Attentive readers will have noticed that we have yet to describe a mechanism by
means of which we are able to incorporate positional information about word order.
Self-attention layers, by themselves, o�er no way of knowing word order in a sentence,
since they treat all inputs the same way. One simple approach to this problem is to
encode the position of the word by means of a one-hot vector pi, the same way we do
with the di�erent words that form the vocabulary, wi. Given an arbitrary embedding
matrix E, we obtain the representation by simply concatenating the vectors and
multiplying by the embedding matrix.

en = [wn; pn]E (2.18)

That formulation is equivalent to having 2 di�erent embedding matrices, one for
the word embedding (Ew), and one for the positional embedding (Ei).

en = wnEn + pnEp = WE(n) + PE(n) (2.19)

whereWE(n) represents the word embedding information for word n, and PE(n) rep-
resents the positional embedding information for that word. We have not explained
how to obtain those positional encodings yet. The straightforward approach is to
treat them like the word embeddings and let the network learn them during train-
ing. Another option is to use a prede�ned function that produces these positional
embeddings.

In the case of the Transformer model, the positional embeddings are given by two
sine and cosine functions, calculated di�erently for every position pos of the sentence,
∀pos ∈ [1, N ]. These functions compute a positional embedding vector for each word
whose entries are calculated as follows:

PE2i = sin

(
pos

1

100002i/dmodel

)
∀i ∈ [0, dmodel/2− 1] (2.20)

PE2i+1 = cos

(
pos

1

100002i/dmodel

)
∀i ∈ [0, dmodel/2− 1] (2.21)

Experiments carried out in the original paper show that these �xed positional
embeddings do not incur in any performance decrease, and they o�er slightly more
generalization capacity that learned embeddings if we have to translate sentences that
are longer that the ones appearing in the training data.

2.2.5 Model Architecture

In the Transformer architecture, residual connections and layer normalization are com-
bined, and the output of each sub-layer is computed as LayerNorm(x+Sublayer(x)).
There are two types of sub-layers in the Transformer architecture, Feed Forward layers
and the previously described Multi-Head Attention layers. Feed Forward layers are
standard neural network layers consisting on weight matrix multiplication followed
by an activation function.
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Multi-Head
Attention

K V Q

Add & Norm

Feed
Forward

Add & Norm

Figure 2.4: Transformer Encoder Block.

Up to now, the described techniques and layers can be applied to any NMT model,
but the change in the Transformer architecture is how these layers are applied. Figure
2.4 shows a Transformer Encoder block.

The standard Transformer block consists in a Multi-Head attention sub-layer fol-
lowed by a Feed Forward sub-layer. Instead of feeding one input at a time like a
RNN, the entire input sentence is fed to the encoder, and the input sentence repre-
sentation is computed all at the same time. The self attention layers in the encoder
apply Multi-Head attention to the output of the previous layer, using that output
as both query and key-value pairs. Therefore, at each layer, the encoder produces a
representation for each word, that can incorporate information about any other word
in the sentence thanks to the self-attention mechanism. The entire representation can
therefore be produced in a single pass.

Figure 2.5 shows a Transformer Decoder block. Compared with the Encoder
blocks, the decoder blocks include an additional Multi-Head attention sub-layer that
attends to the output of the encoder stack, allowing the decoder to access the input
sentence representations. In the same way as all other NMT models, the decoder
produces one word at a time, conditioned by the previously emitted words. The
decoder is fed by the previously emitted words and its Multi-Head attentions sub-
layers perform their computations over the output of the previous decoder layer.
Decoder blocks contain an additional attention layer that attends to the encoder
output. In those sub-layers, the output of the previous decoder layer acts as query,
while the encoder output acts as key-value pair. One important change is to modify
the decoder self-attention layers so that they can only attend to already emitted
words.
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Figure 2.5: Transformer Decoder Block.

A graphical overview of the Transformer architecture is shown in Figure 2.6. It is
usual to choose one of the following con�gurations, Transformer Base or Big, when
building NMT systems.

• Transformer Base: 6 encoder/decoder blocks, embedding dimension 512, hid-
den layer size of 2048 and 8 attention heads.

• Transformer Big: 6 encoder/decoder blocks, embedding dimension 1024, hid-
den layer size of 4096 and 16 attention heads.

Up to now, we have described the changes introduced by the Transformer model to
the encoder and decoder components. However, the Transformer paper also introduces
some additional considerations used for training the model that are not related to the
architecture of the model itself and can be independently considered.

2.2.6 Weight tying

Weight-tying [49] is a proposed technique for improving the performance of neural
network language models through manipulation of the di�erent embedding layers,
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Figure 2.6: Figure of the Transformer architecture.

while also providing a signi�cant reduction in number of parameters of the model. As
previously explained in Section 2.1.1, NMT models make use of embedding matrices
in order to convert the input text into a numeric format usable for the network. In
NMT encoder-decoder systems, we have 3 of such matrices. First we have an encoder
embedding matrix, Ee, that when applied to the one-hot vectors of the source sen-
tence, produces the representation to be used by the rest of the encoder. This is what
has usually been considered as a proper embedding matrix, and that means that each
of the entries in the matrix can be considered as an embedded representation of its
corresponding input word. There are authors that have evaluated the possibility of
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Chapter 2. Neural Machine Translation

substituting this embedding matrix learned during training by some other di�erent
word-embedding method, usually one that has been previously computed by a di�er-
ent special purpose model tasked with �nding these word embeddings. For example,
[50] studies the e�ects of using di�erent types of pre-trained embeddings.

However, that is not the only embedding matrix used in NMT. Since the decoder
has a dependency on yt−1, we also use a decoder embedding matrix, Ed. Additionally,
the output of the last hidden layer of the decoder must be projected into a space that
has the same dimension as the output vocabulary, so that we obtain a probability
distribution over all possible words once we apply the softmax function. This is
achieved by multiplying by an output embedding matrix, Eo. Putting all of that
together, we have 3 embedding matrices that characterize our models. Ee, Ed, and
Eo are the encoder, decoder and output embedding matrices, respectively.1

Ee has dimension (Embedding dimension, Input vocabulary size), Edr has dimen-
sion (Embedding dimension, Output vocabulary size) and Eo has dimension (Output
vocabulary size, Hidden layer size). The authors of [49] realized that, if we were to
have the same input and output vocabulary, that is, the same dimension, the en-
coder/decoder embeddings could be carried out by a single matrix with the same
shape. Once we have compatible encoder and decoder embeddings, we can see that
the transpose of the output embedding, ET

o , also has the same dimension as the other
2 matrices provided that the embedding dimension and the hidden layer size are also
equal. Therefore, weight tying consists in "tying" these 3 matrices together so that
their job is carried out by a single matrix, by considering that Ee = Ed = ET

o . Ex-
periments have shown that we can carry out this tying without losing performance
since the output embedding shares the same properties of the input embedding by
representing similar words in a similar way. This technique has two main advantages
over using di�erent embeddings. First, it allows the rows of the input embedding to
update at every training step, instead of only when their corresponding word appears
in the input. This helps the model to train faster. Second, and most importantly, it
massively reduces the number of parameters that need to be learned by the model.
We can observe this by comparing the size of the hidden matrices compared with the
size of the embedding matrices. Whereas it is usual to have a hidden layer dimension
of 1024, giving us hidden layer matrices of dimension (1024,1024), it is very com-
mon for the vocabulary to contain 20000 words or higher, which would translate into
embedding matrices of dimension (1024,20000). It is usual to see models where the
majority of parameters are part of the di�erent embedding matrices. If we are able to
use only one embedding matrix instead of 3, we achieve a very signi�cant reduction
in the number of parameters, with the associated gains in training performance and
memory savings. Experiments carried out using weight tying show that the applica-
tion of this technique can produce models that have 53% fewer parameters than the
standard separate embedding approach, while at the same time maintaining or even
improving translation quality.

The Transformer model uses this technique in order to obtain the aforementioned
advantages in terms of performance and reduction of the number of parameters.

1Named as W ,U and V in the weight-tying paper
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2.2. Transformer Self-Attention NMT models

2.2.7 Label smoothing

We have previously explained in Equation (1.24) how we train neural networks by
optimizing a cost function J(θ) that depends on the parameters of the model. We
update the weights by using stochastic gradient descent and processing a batch of
samples at the same time. For a batch of N samples, with yb as the label of the
sample, and ŷn as the output of the network for that sample, the cost function is
usually de�ned as the average of a loss function applied to each sample:

J(θ) =
1

N

N∑
n=1

L(yn, ŷn) =
1

N

N∑
n=1

L(yn, f(xn; θ)) (2.22)

The choice of the loss function is therefore one of the decisions that need to be
made when training a model by gradient descent. In classi�cation problems, the most
common choice of loss function is the cross-entropy function, that computes a measure
of dissimilarity between two probability distributions, p and q. If the distributions
are discrete, this can be computed as:

H(p, q) =
∑
c

p(c)log(q(c)) (2.23)

When working with classi�cation problems, we have already established that we
wish to obtain a system that outputs a probability distribution. Therefore, the distri-
bution emitted by the network will take the place of the q distribution used to compute
the cross-entropy. The label, or assigned class to the sample, can also be considered as
a probability distribution. This is usually done by setting the probability of the label
to 1, so p(y) = 1, and the rest of the possible values will have probability 0 such that
p(z) = 0,∀z 6= y. Having obtained those probability distributions, the cross-entropy
can be applied as the loss function in the following way:

L(y, ŷ) = −
∑
c

plabel(y = c|x) log(pnetwork(ŷ = c|x)) (2.24)

We will now look at the speci�c case of MT. For a single training sample y with
length I, we will denote the i-th token of the target sentence as yi. The loss is the
computed as:

L(y, ŷ) = −
I∑
i=1

∑
c

plabel(yi = c|x) log(pnetwork(ŷi = c|x)) (2.25)

An eager reader will have noticed that, due to the way we have de�ned the prob-
ability distribution given by the label, all the probability mass is given to a single
value, and when computing the cross-entropy, the term of the label distribution can
be ignored in all but one of the possible output values. The computation can be
simpli�ed to:

L(y, ŷ) = log(pnetwork(ŷ = y|x)) (2.26)
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Chapter 2. Neural Machine Translation

While the previous simpli�cation does make sense for some of the general applica-
tions of pattern recognition, it is not quite clear that this is the best possible approach
for MT. Let us look at the way the label probability distribution is constructed. Say
that, in the target sequence, the speaker describes something as "beautiful". Is it
right to assume that such word is the only correct translation? What about other
synonyms such as "gorgeous"?

The label smoothing [61] technique aims to improve model generalization capacity
by reducing the con�dence that the model has to assign to the training predictions.
This technique consists in smoothing the one-hot label distribution. This works by
setting aside a certain quantity of probability mass for the wrong-labels, and to re-
distribute this probability somehow.

So far the label probability distribution was computed as:

plabel(y = c|x) = δy,c (2.27)

Label smoothing introduces the following modi�cation, where we discount some ε
probability mass, and distribute it over all possible label values C by means of the
uniform probability distribution.

p′label(y = c|x) = (1− ε)δy,c +
ε

C
(2.28)

Apart from helping the model to avoid being over-con�dent on its predictions
due to being over�tted to the training data, this can have additional bene�cial e�ects
during the decoding step. We believe that the smoothing distribution helps the model
during decoding by performing a less strict pruning of partial hypothesis, which can
result in a better overall translation after the decoding process �nishes.

Put together, all those changes result in signi�cant improvements in both speed
and quality that we hope to reproduce in the following experimental section.

2.3 Practical issues

Apart from the architectures themselves, there are many experimental decisions and
techniques that need to be taken into account in order to train state of the art sys-
tems. These range from hyperparameters values to be used during training, to speci�c
techniques for data pre-processing and data generation. We will describe some of the
most important issues in this section:

• Model Ensembling & checkpoint averaging. In Machine Learning, en-
semble methods aim to improve system performance by combining a series of
individual models in order to construct an overall better system by combining
the predictions of the individual models.

The combination of multiple models improves the system results if the errors
produced by the models are not strongly correlated between them, smoothing
the mistakes produced by one model thanks to the predictions from the rest.
While this technique has the capacity to improve performance, it also has some
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2.3. Practical issues

drawbacks. The main one is that, due to having to combine multiple systems,
the training time required to obtain the system increases linearly with the num-
ber of systems. This can be o�set if we have multiple GPUs at our disposal
in order to enable training multiple systems in parallel. That still leaves the
problem of needing to run all the models at inference time.

Checkpoint averaging is one technique that deals with both problems while
still retaining some of the bene�ts of constructing an ensemble. This is done
by selecting some of the checkpoints saved at di�erent times that contain the
parameters of one model, and treating the parameters contained on each of those
checkpoints has an as independent model. The checkpoints are then combined in
order to obtain the ensemble. This technique, used by the AMU-UEDIN team at
WMT16 [31], simulates the construction of the ensemble by selecting the desired
checkpoints and computing the average of the parameters they contain. This
way, some of the bene�ts of constructing a checkpoint ensemble are obtained and
at the same time we only need to run the averaged model to obtain translations,
saving both on time and memory. The simulated ensemble is obtained as:

θensemble =
1

M

M∑
m=1

θm (2.29)

As outlined in [2], the big improvements achieved by checkpoint averaging can
be an indicator of a suboptimal training schedule. One of the possible solutions
to that problem is to reduce the learning rate as the training progresses.

• Sequence length. By default, sentences longer than a certain number of tokens
are discarded, in order to speed-up training and to �lter out long sentences that
might not make sense or are very hard to learn for the model. Increasing
this threshold allows for greater use of the training data and better translation
quality for longer sentences, but might also signi�cantly slow-down training,
increase memory footprint and make convergence more di�cult.

• Learning rate. The choice of learning rate a�ects the size of the update
applied to the model's parameters at each training step, and has a signi�cant
e�ect in model convergence. There are many learning rate schedules that are
used in the literature. One of them, plateau-reduce, is of special interest since it
reduces the learning rate if the validation score does not increase for a certain
number of checkpoints. This enables the model to slow down learning once we
have arrived near a good point of the parameter space. This reduction means
that the model is updated more slowly, and therefore it is less susceptible to
making a bad update and diverging from a good area of the parameter space.
This reduction also means that the model is more guaranteed to converge once
the learning rate has been reduced many times, because the gradient descent
updates will have almost no e�ect on the parameters of the model. We denote
the use of this technique with the label lr_reduce. Other schedules modify the
learning rate depending on the current training step. For example, the inverse
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Chapter 2. Neural Machine Translation

square root schedule [62], as its name suggests, updates the learning rate to be
proportional to the inverse square root of the step number.

• Batch size. Recall from Equation (1.25) that minibatch gradient descent up-
dates the model's paramteters using a noisy estimation of the gradient. The
amount of noise depends on the batch size. The closer the batch size is to the
number of training samples, the better estimation of the gradient, and therefore
a smaller amount of noise is added. A smaller batch size might require more
time for training, but the additional noise might be useful in order to improve
model performance and prevent over�tting. However, too much noise might
cause problems optimizing the model. As such, the right batch size will depend
both on the model architecture as well as the training data used. It is there-
fore important to carry out an adequate exploration of possible values of this
hyperparamteter for each experiment that we wish to carry out.

• Synthetic data (Backtranslations). Although the main focus in MT lies
on obtaining additional parallel data, monolingual data can also be used in MT
systems. In traditional phrase-based MT systems, monolingual data can be used
to train the language model component, because a language model is trained for
a single language, and therefore we are not limited to training only with the par-
allel data. The addition of monolingual data di�erent from the parallel corpus
improves the performance of language models thanks to the bigger quantity of
available sentences. Taking advantage of monolingual resources is also possible
in NMT systems. In fact, the decoder of an NMT model can be understood as
a language model (this is explained in detail in Section 2.1.1). A very successful
use of monolingual data is the Backtranslation approach of [55], that consists
in augmenting the training data with synthetic sentences. The synthetic data is
created by producing a translation for each sentence in the monolingual target
corpus, using a NMT system trained in the opposite direction. This approach
allows us to obtain additional parallel sentences, whose target side is a sentence
of a monolingual corpus, and the source side is its automatic translation. Al-
though producing synthetic data is not cheap in terms of computing power, due
to the need of training a backwards system and producing the translations, the
use of synthetic data has been shown to signi�cantly improve the performance
of NMT systems, thanks to the improvement obtained in the language model
by the use of more data.

• Byte-pair-encoding (BPE). Byte Pair Encoding (BPE) [56] is a technique
whose goal is to allow translation with a �xed-vocabulary system in a way that
mimics an open-vocabulary. This is done by transforming rare or unknown
words into a sequence of known subword units. This technique works by �rst
learning a number of merge operations (each merge operation produces one sub-
word unit that will form part of the vocabulary), and then segmenting the words
of the input sentences into sequences of subwords.

Merge operations are learnt by segmenting the text into individual characters,

and appending a special end of word token </w> after every word. The
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Instead of che@@ wing out his ro@@ ok@@ ies in front of the

rest of the team , he encouraged them .

Figure 2.7: Example of BPE segmentation of a text. Notice how rare words
"chewing" and "rookies" have been split into subword units, avoiding a po-
tential Out-of-vocabulary problem.

algorithm performs one iteration per merge operation. On each iteration, we
count how many times each pair of symbols appears. The most frequent pair
is selected to become a merge operation, and every occurrence of the pair is
replaced by the concatenation of both symbols. Once a pair has been merged
back into the original word no further operations are applied to it.

Once the desired number of merge operations has been learned, we can now
apply BPE to our corpora. The text is once again broken down into individual
characters, and then we apply every merge operation in order. Words that
have not been merged back into a full word are annotated with the su�x @@
in order to be able to restore the original segmentation. The �nal result is
a text that has approximately the same number of unique tokens than merge
operations applied, ensuring that almost no unknown words are given to the
system. Figure 2.7 shows an example of BPE segmentation carried out in a
sentence of the WMT test set. This technique has shown good performance
improvements and its use has become part of the standard data preparation
process of any NMT system.

• Fine-tuning. NMT models perform best when trained with data from the
domain of the test data. However, most available parallel corpora belong to
institutional documents or internet-crawled content domains, so it is common
to �nd situations where there is a domain mismatch between train and test data.
In such cases, small amounts of in-domain data can be used to improve system
performance by carrying out an additional training step, often referred to as the
�ne-tuning step, using the in-domain data after the main training �nishes. This
technique has been used to adapt models trained with general domain corpora
to speci�c domains with only small amounts of in-domain data [40, 55].

2.4 Computer tools

This section describes the software used to train the MT systems presented on this
work, Sockeye, based on the MXNet [12] library, and fairseq, based on the PyTorch
[45] library. Both libraries use the concept of computational graphs and GPU acceler-
ation, introduced in Section 1.2.4, to enable fast training of various machine learning
models. These general purpose libraries o�er the tools to develop any kind of ma-
chine learning models, and are nowadays widely used in both research and industry
applications. fairseq and Sockeye build on top of their respective libraries, and serve
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Chapter 2. Neural Machine Translation

as a more specialized tool that is speci�cally used for developing NMT systems, due
to implementing various theoretical models and improving the process of using them
by avoiding the need to implement them from scratch.

Sockeye [22] is an open-source toolkit for NMT, based on the MXNet library. The
toolkit can be installed from source or a pip package, and includes a series of scripts
for training and translating, as well as a series of helper scripts for di�erent pre-
processing tasks or model combination tasks, such as a tool for checkpoint averaging.
The toolkit implements Attention-RNN, Transformer [62] and Fully Convolutional
(ConvSeq2Seq) [18] models. Apart from the aforementioned architectures, Sockeye
also o�ers a series of di�erent training and inference techniques implemented on top
of those models, including the very important feature of model ensembling. Sockeye
even allows the ensembling of models that use di�erent architectures.

fairseq [42] is another open-source NMT toolkit, based on the Pytorch library.
Apart from the Attention-RNN, Transformer and ConvSeq2Seq, fairseq also imple-
ments the recently proposed LightConv and DynamicConv architectures [63]. Much
work has been put into improving the e�ciency of the training process, and the toolkit
implements techniques such as Half-precision training that signi�cantly reduce model
training times [43]. However, compared with Sockeye, the documentation is less de-
tailed, and overall it o�ers a user experience that is less polished than Sockeye.

2.5 Conclusions

This chapter has described the necessary concepts for the development of the current
state-of-the-art NMT systems, by introducing the relevant techniques and architec-
tures (Attention RNN and Transformer) as well as describing the computer tools
used to train NMT models. The necessary techniques and practical issues faced when
trying to build a state-of-the-art NMT system have also been discussed.
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Chapter 3

Translation systems for

WMT18: News Task

This chapter summarizes the previous work carried out as part of the author's B.S.
Thesis [25] for the WMT18 competition, parts of which have been published in [26].
The participation in this task is described in order to put into context the experiments
carried out for this Master's Thesis. A series of di�erent systems based on the RNN-
Attention and Transformer architectures have been trained for the WMT German→
English task.

The chapter is divided into 2 parts. First, we will introduce the data acquisition
and data processing steps required for training any MT system. Then, the experiments
carried out with RNN Attention and Transformer will be described.

3.1 Data processing and adquisition

We will �rst begin by describing the data processing techniques and decisions applied
to the available data, in order to obtain a prepared form that allows us to maximize
the performance of the developed models. Data processing and preparation is a
crucial step in the development of our systems if we want to obtain competitive
results. We will then move into describing the dataset itself, that has been used for
the experiments described in this chapter.

3.1.1 Data preparation

MT systems are usually limited by the amount of di�erent words that they consider in
the training process, also known as vocabulary size. In the case of NMT systems, the
size of the �nal softmax layer depends on the vocabulary size, and the bigger its size,
the more computationally and memory demanding becomes the training process of the
MT system. Thus, the choices we make when building the vocabulary for our systems
will have considerable e�ects on system performance, and is one of the main areas

33



i
i

�memoria� � 2019/7/13 � 23:34 � page 34 � #38 i
i

i
i

i
i
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Original text: Just because he's wise, doesn't mean that he's honest.

Tokenized text: Just because he &apos;s wise , doesn &apos;t mean

that he &apos;s honest .

Figure 3.1: Example of tokenization with Moses.

that need to be considered when building MT systems. All of this means that we want
to reduce the number of unnecessary words and only consider those that are useful.
This is achieved with a tokenization step, that breaks up a text into the individual
units (tokens) that will be considered by the system. Ideally, we want this step to
produce an output that does not hinder a system ability to generate translations while
at the same time keeping the number of unique tokens as low as possible. There are
many cases where we need to make a decision about what constitutes a word, such
as punctuation, compound words, etc.

Consider for example the case of a word car and that word followed by a comma
car, . It does not make sense to consider both occurrences as di�erent words, and to

repeat the same for every word that appears followed by a comma. Instead, it would
be better to consider car as a word and , as another. Figure 3.1 shows an example

of tokenization carried out with the Moses tokenizer.
Deciding what to do with upper-cased text is another preprocessing decision re-

lated to vocabulary size. Once again, if we do nothing, we can �nd that we end up
with a vocabulary that contains multiple entries for what turns out to be the same
word. For example, any word that appears at the start of a sentence, and is therefore
written with its �rst letter capitalized, can appear with two di�erent spellings. One
simple solution to this problem is to convert the entire text to lower-case characters,
therefore ensuring that we do not waste vocabulary size due to capitalization dif-
ferences. This method is very fast and provides a good reduction in the number of
tokens, but there exist cases where the capitalization of a word does provide some
linguistic information that could be lost otherwise. For example, nouns in German
are always capitalized. A truecasing model tries to transform text to its appropriate
capitalization, by collecting di�erent statistics and building a model that makes a
prediction about the appropriate capitalization for each word. In this work, a true-
casing model was applied to the WMT corpus. The truecasing was carried out with
the Moses Truecaser. This model changes words at the start of a sentence to their
most common form, as well as any word that would be unknown if not changed.

3.1.2 Data �ltering

Data �ltering, sometimes called data selection, is an umbrella term for a variety of
techniques that share the same goal: Selecting a subset of the data of a corpus in order
to train a MT system. Traditionally, the term data selection has been used to put
emphasis in extracting the best set of sentences out of a corpus. This can be carried
out, for example, in the context of Domain Adaptation, which consists in training a
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general purpose system and then adapting it to translate data from a speci�c domain.
For example, one could train a general German to English system, and then take that
base system and �netune it with sentences of the medical domain in order to use it
to translate medical documents.

The focus of this approach changes when taking into account that the performance
of NMT models depends greatly on both quality and quantity of the training data.
Recent works such as [11] and [6], show that NMT systems are very susceptible to
any type of noise in the training data. Whereas with data selection we are looking to
select the best sentences in order to improve performance, when we talk about data
�ltering we want to remove those noisy sentences that degrade MT performance.

If we want to utilize some corpus that contains noisy data, it is therefore very
important that we carry out some sort of data �ltering. Otherwise we could �nd out
that we have achieved the opposite of what we were trying to do: The additional data
might degrade the model instead of improving it.

Techniques

One possible approach to data �ltering is to use a translation model to score the
sentence pairs that form our training corpus. This can be carried out by taking
the translation model and computing the translation probability p(y|x) given by the
model to every sentence pair (x, y). This gives us a score for every pair that we can
use to rank them and select only those that we consider adequate. The drawback
of this approach is the need to build a good enough translation model before being
able to carry out the �ltering. While running the translation model for each sentence
on a small corpus might be feasible, �ltering large corpus with this approach takes
considerable time, time that could be spent on other endeavours such as training
additional systems for an ensemble.

A di�erent approach that is much cheaper computationally is to �lter by using
language models. This can be carried out by �rst selecting an in-domain or clean
corpus, and training two language models with this data, one trained on the source
side of the corpus, and the other trained on the target side of the corpus. Then,
for every sentence pair, we obtain a score by computing the likelihood given to the
sentence pair (x, y) by the language models and combining them by using a function
f(.).

score(x, y) = f(ps(x), pt(y)) (3.1)

This approach uses language models for estimating the quality of a sentence pair,
under the assumption that a low-perplexity sentence is more likely to be an adequate
sentence for training. The score (perplexity) of a sentence pair is the geometric mean
of the likelihoods,

√
ps(x) · pt(y). We select sentence pairs with the lowest score. This

approach can not detect sentences whose source and target parts are valid sentences,
but not a direct translation of each other. However, it is perfectly able to detect the
rest of common data noise, such as sentences in a wrong language, foreign characters
or nonsensical sentences, that can be detected independently of the other sentence in

MLLP-DSIC-UPV 35



i
i

�memoria� � 2019/7/13 � 23:34 � page 36 � #40 i
i

i
i

i
i
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the pair. The main advantage of this approach is that is able to carry out an adequate
amount of �ltering, while being orders of magnitude faster than the translation model
approach. The training of these language models is very fast, because it is carried out
just by counting n-gram occurrences, and the time required to apply it is even lower,
because it consists in looking up the probability of the sentence n-grams.

3.1.3 Data collection: WMT2017 German → English

TheWorkshop on Machine Translation (WMT 1) is an annual international conference
for researchers on the �eld of MT. Apart from the dissemination of recent develop-
ments in this �eld, the conference also organizes each year a series of competitions
to test di�erent aspects of MT. The news translation task, that evaluates the ability
of systems to translate a series of online news articles, is the task that receives the
highest amount of submissions each year and has become the reference task in order
to compare and report results of new research.

The training data of the competition is published by the organizers each year as
well as the corresponding test data. It is common to use the test data of a previous year
as development data, and that has been the approach carried out in this work. The
training data chosen is the one available in the 2017 competition, and the development
data is the test data of 2015. The test data chosen was the one corresponding to the
year 2017 in order to evaluate the results in the same conditions of the participants
in the competition.

Table 3.1 shows basic statistics about the WMT corpus. We have computed the
number of sentences, number of words and the number of unique words for each lan-
guage. The training data consists of almost 6 million parallel sentences used to train
the model. The sentence length in German is shorter than its English counterpart, in
part due to its use of many compound words. This phenomenon appears more clearly
when we compare the number of unique words (vocabulary size). As shown on the
table, the number of unique German words that appear in the text is around twice
the number of unique English words.

Table 3.1: Statistics of the WMT German-English dataset.

Corpus Sentences(K) Words(M) Vocabulary(K)
De En De En

news-commentary-v13 284.2 6.4 6.2 302.8 182.5
europarl-v7 1920.2 44.6 47.9 649.0 304.8
commoncrawl 2399.1 47.0 51.4 2733.7 1718.9
rapid2016 1329.0 22.1 23.0 674.8 387.7
WMT18: paracrawl(v1) 36351.6 450.7 478.8 14054.0 10353.1

dev(newstest2015) 2.2 0.0 0.0 9.9 7.8
test(newstest2017) 3.0 0.1 0.1 12.6 9.2

1http://www.statmt.org/wmt17
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3.2. RNN-Attention systems

The number of training sentences is several orders of magnitude higher than that
used in the dev and test sets, because having at our disposal big amounts of training
data greatly bene�ts the learning of our models, but we can obtain a measure of
system performance with a much lower number of sentences.

WMT2018 and the Paracrawl Corpus

The main di�erence introduced in the 2018 edition of WMT is the addition of the
Paracrawl corpus. This corpus presents some di�erences and unique characteristics
compared with the rest of the training corpora of WMT. Parallel corpus are usually
produced by taking direct translations of documents, such as government records,
that have been published in more than one language, and therefore contain an almost
perfectly aligned document structure. The growing need for additional training data
has motivated the search for new ways of obtaining parallel data. Paracrawl is a
corpus produced by web crawling, searching the Internet for webpages that have
versions in di�erent languages, and trying to align both versions in order to obtain
sentence pairs. This process is very error-prone, because there is no guarantee that
the di�erent document structures contain the same sentence structure or even the
same content. As a result, Paracrawl is a corpus that includes a considerable number
of noisy sentences, but at the same time, due to its size, also contains many useful
sentences that could improve model performance if selected. These characteristics
make Paracrawl a prime target for using data �ltering techniques in order to extract
useful sentence pairs for training, while eliminating poor quality pairs that would
otherwise harm model performance.

The basic statistics of the Paracrawl corpus are included in Table 3.1. This corpus
contains almost 36M sentence pairs, a staggering amount of sentences. This means
that this corpus provides a signi�cant increase in bilingual data compared with the
resources previously available for the WMT competitions. Whereas before we had
only around 6M sentence pairs available, the Paracrawl corpus contains almost 6
times as many sentences.

3.2 RNN-Attention systems

Having explained all the necessary pre-requisites, we are now ready to describe the
di�erent developed systems based on the RNN-Attention model.

System description

The WMT dataset was processed by applying 20000 BPE operations before training.
This process is carried out over the joint source and target corpus as per the rec-
ommendation of [56], and we do not merge operations appearing less than 50 times
over the entire corpus. The operation were undone at testing time in order to recover
the �nal translation and compare it with the test sets. The general policy adopted
for training all systems is that, after a �xed number of training steps, the model
parameters were stored in a checkpoint and the performance was checked against the
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Chapter 3. Translation systems for WMT18: News Task

development set. This performance check is carried out by measuring the perplexity
of the model computed over the sentences of the validation set, previously explained
in Section 1.2.1. Once the perplexity stopped improving on the development set, the
training was stopped and the model was evaluated with respect to the test set. The
models �nished training once their valuation score did not improve for 10 consecutive
checkpoints.

We choose as a starting point a RNN-Attention model with 1 bidirectional layer
both in the encoder and decoder, with hidden dimension=1024 and embedding di-
mension=1024. The type of unit selected for the hidden layers was the LSTM unit.
The Adam optimizer [33], which is a modi�ed version of Gradient Descent, and the
dropout [59] technique were used for training the model.

Results

In this section we present the experimental results achieved in the WMT17 corpora.
Table 3.2 shows the TER and BLEU scores of the di�erent model con�gurations. The
baseline model achieves 21.8 BLEU and 68.5 TER, and this result is improved by 2.7
BLEU and 4.2 TER when we apply checkpoint averaging. The application of the
conceptually simple checkpoint averaging has already considerably boosted perfor-
mance by leveraging the various checkpoints stored while training the model, without
the need of training any additional models. The long-sequences model consists in
increasing the sentence maximum length threshold. Previously this threshold was 50,
so sentences longer than 50 tokens were discarded. In this experiment, we have in-
creased this amount to 75 tokens. In order to compensate this increase in the number
of e�ective training sentences, we bumped-up the minibatch size from 32 to 50, in
order to process a bigger number of sentences per step. These major changes were
accompanied by small hyper-parameter changes to match the con�guration used by
RWTH Aachen at WMT16 [46]. The long-sequences model achieves a higher perfor-
mance over the baseline model and its averaged version by making a better use of
the training data available in the corpus. By not eliminating the longer sequences,
we are providing the model with more data that it can use in order to learn to model
long-term dependencies, and this can then be used to obtain better translations at
inference time. This results in an increase of 3.5 BLEU over the baseline model, and
an increase of 0.8 BLEU over its averaged version. Applying checkpoint averaging on
top of this results in a simulated ensemble that obtains an improvement of 1.7 BLEU
on the test set.

Additionally we have tried a learning rate reduce scheme (lr_reduce). This
lr_reduce model applies the plateau-reduce learning rate schedule, with an initial
learning rate of 0.001. This value is halved every time model performance does not
improve for 3 consecutive checkpoints. When using this lr_reduce schedule, we obtain
a performance improvement of 2.2 BLEU on the test set with respect to not using it.
This means that we have once again obtained a signi�cant improvement by applying
additional changes to the model. The result also con�rms the importance of reducing
the learning rate once we have arrived at a good area of the parameter space, allowing
the optimization procedure to behave better during training, that translates to the
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3.3. Transformer systems

Table 3.2: Results obtained for models trained with the WMT corpus.

newstest2017
RNN-Attention Model BLEU TER

Baseline 21.8 68.5
+ checkpoint averaging 24.5 64.3
+ long-sequences 25.3 63.0
+ checkpoint averaging 27.0 60.8
+ lr_reduce 27.5 60.1
+ checkpoint averaging 27.7 59.9

observed increase in the test scores both in BLEU and TER.

The application of checkpoint averaging to the lr_reduce model does not show
the same improvements that were obtained when applied previously. This technique
has improved 0.1 - 0.2 BLEU with respect to the model without averaging, far less
than the 1.7 improvement when applied to the baseline model. This result that shows
that checkpoint averaging does not translate into a big quality gain when applied
to models whose training has been more carefully carried out, is consistent with the
hypothesis laid out in [2], that states that the improvements obtained by checkpoint
averaging are mostly due to the unstable training regime, and this technique loses its
e�ectiveness if the defects of the training schedule are �xed.

Table 3.3 shows the resources consumed by the models trained using the WMT
corpus. At �rst glance, one can see how the long-sequences model consumes a much
higher amount of VRAM. This is due to 2 facts, the use of longer sequences requires
the creation of a bigger computational graph to propagate the gradient, and the
fact that this model uses a higher minibatch size (50 when compared with size 32
of the base model) that means a higher number of sentences is being processed in
parallel inside the GPU. The bigger minibatch size allows the long-sequences model
to process a signi�cantly higher number of sentences per second, even if they are of
a longer length. Although it has a higher throughput, the model does take longer to
train simply because it must process a bigger quantity of sentences due to the fact
increasing the length threshold means that we are discarding a smaller portion of
the corpus. This is re�ected in the fact that the long-sequences model takes 5 hours
longer to train than the baseline model. We can see how the lr_reduce schedule has
allowed the model to continue training for a much longer amount of time. In fact, the
base model trains for 16 hours, while the reduce schedule allows it to train for 30h,
almost double. The longer training time translates into the higher scores reported in
Table 3.2.

3.3 Transformer systems

The Transformer architecture that was described in Section 2.2 currently achieves
the best results in MT benchmarks. In order to try to replicate those performance
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Chapter 3. Translation systems for WMT18: News Task

Table 3.3: Resource consumption for WMT models.

Sockeye

RNN-Attention Model RAM
Training
time Tokens/s

Baseline 3.9 GB 11 h ±5.5K
+ long-sequences 5.2 GB 16 h ±7K
+ lr_reduce 5 GB 30 h ±7K

improvements, and compare this model with the previous RNN-Attention architec-
ture, we are now going to train a series of systems using this con�guration. Sockeye
implements this novel architecture, and we have used it to train a Transformer model
that closely follows the parameters laid out in the original paper. We are �rst going
to train a model that uses the same con�guration as the Transformer Base model, but
without label smoothing and weight tying. Then, we will add back those techniques
and train another system. This will allow us to compare the performance of the
Transformer model architecture without taking into consideration those 2 techniques
that could also be applied to other models such as RNN-Attention.

Results

Table 3.4 shows the result of the di�erent Transformer model con�gurations. The
Transformer reduced model, without label smoothing and weight tying, obtains a
BLEU score of 30.5 and a TER of 56.5, and is the model that has obtained the
highest score in both the dev and test sets with respect to all previous models, with
an improvement of 2.8 BLEU over the previous best model. The only other di�er-
ence with the original paper was the learning rate schedule, we used the lr_reduce
as with the previous RNN-Attention models. These results re�ect its current status
as the state of the art architecture for MT, due to the di�erent quality and speed
improvements laid out in [62]. The application of checkpoint averaging does not yield
any improvement over the base model, further con�rming the previous �ndings. The
complete Transfomer model obtains 32.2 BLEU and 54.7 TER. This represents an
additional improvement of 1.7 BLEU and 1.8 TER over the model that does not use
the two aforementioned techniques. These results highlight that, although the Trans-
former architecture obtains a massive performance boost over the RNN-Attention
architecture, some of this di�erence is not only because of the architecture, instead
the improvement is obtained by the combination of the Transformer architecture with
the label smoothing and weight tying techniques.

Table 3.5 shows the statistics concerning the training of the models. The reduced
Transformer model consumes 6.5GB of memory, and takes around 49h to train. This
represents an increase of around 16h with respect to the best RNN-Attention model,
but brings with it a non-negligible performance improvement. The complete Trans-
former takes much longer to train, 140h, in part due to label smoothing, since we are
telling the model to be unsure about its predictions, so we are e�ectively reducing
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3.3. Transformer systems

Table 3.4: Results obtained for Transformer models trained with the WMT
corpus.

newstest2017
Model Transformer BLEU TER

- label smoothing & w.tying 30.5 56.5
Complete model 32.2 54.7
+ checkpoint averaging 32.3 54.7

Table 3.5: Resource consumption for the WMT task.

Model Transformer VRAM consumption Training time Tokens/s
- label smoothing & w.tying 6.5 GB 49h ±8.5K
Complete model 7.6GB 140h ±4.8K

the learning rate and making the training harder for the model. Once again, we �nd
that even though the training time has signi�cantly increased, we have obtained as a
result a much better system.

The complete model continues training for more time because it is able to contin-
uously obtain better scores in the validation sets, where as other models stop earlier
once the validation performance starts to decrease.

Data �ltering

After all the previous experiments, there is still one avenue of improving performance
that we have yet to study. We have previously introduced the need for data �ltering
in Section 3.1.2, and we have described the Paracrawl corpus included in the WMT18
corpus and the problematic sentences it contains in Section 3.1.3. We will now look
at the task of using data �ltering in order to take advantage of the Paracrawl corpus
to further improve the performance of our German to English models. Additionally,
we are going to combine this technique with additional techniques and con�gurations
that can take advantage of the extra data we plan to introduce by using data �ltering.

Using the previous systems as baselines, we now want to start applying data
�ltering to the WMT18 Paracrawl corpus and to observe its e�ects. For carrying out
this process, we have chosen the dual language model approach described in Section
3.1.2. We trained a language model both for the source and the target side, using
as in-domain data newstest2014 from the WMT competition. The models were built
using the SRI Language Modelling Toolkit [60]. The language models were then
used them to obtain a score for each sentence pair. We carried out this scoring
by computing the perplexity assigned by the language models to each part of the
sentence, and then computing the geometric mean. This means that lower scores are
better, representing sentences that are assigned a high probability by the model, in
contrast with sentences with higher scores that are considered very unlikely. We train
the source (German) and target (English) language models with this data, and then
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Figure 3.2: Number of sentences with perplexity under a given threshold.

apply it to all the sentence pairs that form the training data, including Paracrawl.
The type of language model used is a 9-gram character model. This means that this
model works at character-level instead of word-level. We believe that this is enough
to detect the language of a sentence, while at the same time keeping the number of
parameters low compared to what would happen with a 9-gram word model.

After obtaining this score, we order the sentences from lower to higher perplexity.
Due to having trained the language models with the newstest2014 data, we can con-
sider that this �ltering step is applying both data �ltering and domain data selection
at the same time. Figure 3.2 shows the perplexity of the ordered sentence pairs. Us-
ing this information, we can calculate a threshold in order to carry out data �ltering.
With that threshold, we can simply keep sentence pairs whose score is lower than the
threshold, while discarding pairs that have higher scores. We have calculated di�erent
thresholds in order to obtain 4 data subsets that contain 5M, 7.5M, 10M and 15M
sentence pairs respectively. We then train 4 di�erent models using those subsets, in
order to �nd out which is the best �ltering threshold, so that we can better take
advantage of the training data.

The detailed results of this data �ltering are shown in Table 3.6. We have chosen
as baseline a system trained without the Paracrawl corpus. This model is trained
using around 5.8M sentence pairs and obtains 32.0 BLEU and 54.8 TER. We are now
going to compare its results with the data �ltering models. The one trained with

42 MLLP-DSIC-UPV



i
i

�memoria� � 2019/7/13 � 23:34 � page 43 � #47 i
i

i
i

i
i

3.3. Transformer systems

the 5M subset obtains 31.4 BLEU and 55.5 TER, 0.6 points of BLEU less than the
no-Paracrawl counterpart. This could indicate that the �ltering step is still allowing
some noisy sentences to go through, therefore obtaining a somewhat worse result
than not using Paracrawl. However, once we start using bigger �ltered subsets, we
start to see better results. The 7.5M subset already obtains 33.7, an improvement
of 1.7 BLEU over the reference system, and the 10M systems achieves 34.5 BLEU
and 52.9 TER, a improvement of 2.5 BLEU and 2.3 TER over the reference system.
This shows that, although the �lter might allow some noise sentences through, this
is o�set by the increase in the number of training sentences that allows the model
to learn how to translate better. The system trained with 15M obtains 34.3 BLEU
and 52.7, very similar to the 10M system, but we selected the 10M subset over this
one, because the larger subset does not show any signi�cant improvements while
at the same time being trained using 5M additional sentences that do not convert
into translation improvements. In order to better understand the importance of data
�ltered, we also trained a system that does not apply this technique by using the entire
Paracrawl corpus jointly with the rest of the WMT corpora as training data. The
results obtained by this model that uses all available data for training are 21.3 BLEU
and 70.2 TER. Compared with the baseline model trained without using the Paracrawl
data that obtained 32.0 BLEU and 54.8 TER, we notice a massive performance loss
of 10.7 BLEU points experienced by this non-�ltered model. The results are, in fact,
even worse than the ones obtained by the �rst RNN-Attention models that we tried.
Such a hefty quality di�erence highlights the absolute need for data �ltering if we are
going to use noisy corpora such as Paracrawl.

Knowing this information, we have used the 10M subset in order to produce syn-
thetic data following the method explained in Section 3.1.2. Instead of training a
German to English system, we have used the data in order to train a system that
translates in the opposite direction, English to German. This system was trained
using the exact same hyperparameters and architecture as the other models, the only
change being the translation direction. We can then use that system for obtaining
backtranslations. In order to obtain the arti�cial source-side for the synthetic data,
we �rst need to select a set of monolingual sentences in order to translate them into
the source language. Following the strategy laid out in [54] we have randomly sam-
pled 20M sentences from the English News Crawl 2017 corpus in order to carry out
this task. This corpus contains thousands of online news articles crawled from the
web, and we have selected it because it belongs to the same domain than the news
translation we are interested in. Otherwise, if we had selected data from a di�erent
domain, we could �nd that there is no performance improvement, or even worse, that
the out-of-domain synthetic sentences end up diminishing performance. This mono-
lingual data was pre-processed using the same steps used for the rest of the bilingual
data. The translations were carried in an adequate amount of time by grouping them
into subtasks and executing them in parallel in a computer cluster.

Once we have obtained the backtranslations, we are then ready to train the �nal
systems. In order to train these systems, we combined the 20M synthetic sentences
with the original 10M pairs selected by the LM �ltering. The original 10M pairs
were oversampled by a factor of 2, obtaining a �nal corpus formed by 20M synthetic

MLLP-DSIC-UPV 43



i
i

�memoria� � 2019/7/13 � 23:34 � page 44 � #48 i
i

i
i

i
i

Chapter 3. Translation systems for WMT18: News Task

Table 3.6: Results obtained for di�erent amounts of �ltered sentences,
WMT18 task.

newstest2017
Model Transformer BLEU TER

Baseline (5.8M, no Paracrawl) 32.0 54.8
Data �ltering (5M) 31.4 55.5
Data �ltering (7.5M) 33.7 56.5
Data �ltering (10M) 34.5 52.9
+ Synthetic data (2*10M+20M) 35.9 51.2
+ Ensemble (x4) 36.2 51.0

Data �ltering (15M) 34.3 52.7

sentences and 20M bilingual sentece pairs (2*10M+20M). Additionally, we have pro-
cessed the data using 40K BPE operations instead of 20K, in order to obtain a bigger
vocabulary size that might synergize better with the language model improvements
that we wish to obtain by using synthetic data. We trained 4 systems using this
con�guration, but each of them using a di�erent random seed, in order to obtain
runs that are independent from each other. Then, once the systems �nished train-
ing, we were able to produce translations by making an ensemble that combined the
predictions of the 4 systems.

Recall that we had used the Transformer model trained with 10M sentences in
order to produce a synthetic corpus of 20M sentences. These backtranslations were
used to train the de�nitive Transformer models. A single one of these systems obtains
35.9 BLEU and 51.2 TER. This represents an improvement of over 1.4 points of BLEU
and 1.7 points of TER over the 10M Transformer model. This sizable increase in
model performance is due to the combination of a higher vocabulary size and the
inclusion of the synthetic data. Both changes serve to improve the language model
of the NMT model, and as a result we are able to obtain better quality translations.
An ensemble of 4 independent models trained with the previous con�guration obtains
36.2 BLEU and 51.0 TER, an improvement of 0.3 and 0.2 respectively. Although not
as signi�cant as some of the previous improvements, we can still see how the inclusion
of additional models can be leveraged in order to obtain extra quality improvements
over a single model, due to the error correcting e�ect of the ensemble.

As a result of the e�orts carried out in this work in collaboration with other MLLP
members, this section has described how we obtained a competitive German-English
system that we entered in the news translation task of WMT18, obtaining competitive
results. The detailed system description, results and �ndings are published in an pa-
per titled "The MLLP-Universitat Politècnica de València German-English Machine
Translation System for WMT 2018" [26], that was presented at the WMT 2018 Con-
ference. This section has provided an ample description of the work that was used for
the competition, but interested readers can refer to the system paper in order to have
additional details available at their disposal. Table 3.7 shows the results obtained by
all the primary systems submitted to the WMT18 competition. Our system, tagged
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Table 3.7: WMT18 news track results.

newstest2018
System BLEU
RWTH Trans. ensemble 48.4
UCambridge NMT-SMT 48.0
NTT Trans. 46.8
JHU RNN ensemble+R2L 45.3
MLLP Trans. ensemble 45.1
Ubiqus-NMT single 44.1
UEdin Trans. ensemble 43.9
LMU-München 40.9
NanjingU Trans. 38.3

as MLLP Trans. ensemble obtained 45.1 BLEU. This is a very competitive result
when compared with the systems submitted by other participants, and is a result that
is not far from the one achieved by the winner of the competition, a system submitted
by RWTH Aachen.

3.4 Conclusions

In this chapter, we have carried out experiments using the WMT corpus. The use of
data �ltering techniques has enabled us to obtain competitive results in the WMT18
News Translation task. These results, as well as the lessons learned, will be used
as a starting point in order to carry out the work that is described in the following
chapters.
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Chapter 4

Translation systems for

X5gon

This chapter will describe the work developed for the X5gon project. We will begin
by describing the project itself, and we will then move into describing the translation
systems developed for the language pairs of the X5gon project, as well as the data
used to train them.

4.1 The X5gon project

X5gon's goal is to develop an open platform that will combine scattered OER sites into
an analytics network to improve the learning experience of users. The name X5gon
comes from the 5 types on solutions o�ered to OER sites (cross-site, cross-domain,
cross-modal, cross-language and cross-cultural). Out of the 5 types of solutions
proposed in the project, the presence of a cross-language component that aims to
provide cross-lingual content recommendation, requires the use of e�cient translation
tools that are able to cope with the massive amounts of OER content available.
Combined with Automatic Speech Recognition (ASR) technology, MT can be used
in order to provide multilingual OER content automatically from their monolingual
versions. Apart from the obvious gains in usability, accessibility and target audience
that are obtained by having translated versions of OER, automatic translation can be
used in order to improve other X5gon services such as the recommender engine that
powers the cross-site and cross-lingual components. Therefore, the development of
accurate and e�cient MT systems is a crucial element for ensuring X5gon's success.

4.2 Translation of OER

This section describes the di�erent MT systems developed for the X5gon project
during Y2.
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4.2.1 Experimental setup

Our systems architecture is based on the Transformer model described in Section 2.2.
In order to train our systems, we have the two previously described con�gurations,
Transformer Base and Transformer Big. The Big con�guration has been shown to
achieve better results, but it requires more data to properly estimate its parameters,
and is harder to train. We have also experimented with training systems with more
than 1 GPU.

This section describes the work carried out for the development of NMT systems
for the following language pairs of the X5gon project: Italian-English, English-Italian,
German-English, English-German, French-English, English-French, Spanish-English
and English-Spanish.

For each of those language pairs, we �rst describe the resources used to train the
MT systems. Secondly, we describe the characteristics of the MT systems. Finally,
we describe the evaluation process for the developed systems.

4.2.2 German-English

We chose the data published for the News Translation Shared Task of the WMT
2018 competition in order to train the German-English systems. The data has been
described in Section 3.1.3.

Following the setup of Section 3.3, the training data was �ltered in order to extract
10M sentences from Paracrawl. We also used the 20M backtranslations in order
to increase the amount of available training data. We compare the results of the
Transformer Base model trained for WMT18 with a second Transformer model that
follows the same con�guration than the previous system, but trained using 3 GPU, and
therefore it uses a batch size that is 3 times bigger than the previous one. Additionally,
this second system was trained with longer sentences (maximum sentence length of
100, compared with 75 of the previous one).

In order to evaluate our systems, we have elected to use a set of standard sets from
the news translation task of the WMT competition, using newstest2015 as the devel-
opment set, and newstest2017 as the test set. Table 4.1 shows the results obtained
by the German-English MT systems.

Table 4.1: Evaluation results of the German-English MT systems.

System dev BLEU test BLEU
Transformer Base 34.3 35.9
Transformer Base, 3 GPU 35.3 36.9

The system trained with 3 GPU obtains an improvement of 1.0 BLEU both in the
dev and test sets. This improving can be attributed almost entirely to the increase
in batch size. The only other di�erence between the two systems is the maximum
sentence length, and there are almost no sentences in the test set whose length is
longer than 75 tokens, so we believe that the e�ect of this setting will be quite minor.
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4.2.3 English-German

The resources chosen to build the English-German system are the same as those of the
German-English MT system, as the language pair involved is the same. The data has
been described in Section 3.1.3, and we have followed the same setup in this language
pair, by selecting 10M sentences using �ltering.

We present the results of the two systems developed for English-German, a Trans-
former Base and a Transformer Base model trained with 3 GPU. The second sys-
tem is trained with a maximum sentence length of 100. Additionally, the second
model was trained by augmenting the 10M parallel sentences with an additional 18M
backtranslations. The backtranslations were generated with the Transformer Base
German-English model of Section 4.2.2.

Table 4.2 shows the results obtained by the English-German MT systems on the
news translation WMT dataset.

Table 4.2: Evaluation results of the English-German MT systems.

System dev BLEU test BLEU
Transformer Base 29.1 27.4
Transformer Base, 3 GPU + Backtrans. 31.1 29.4

We see how the 3 GPU model is able to obtains improvements of 2.0 BLEU in
both dev and test sets, following a similar pattern than the German-English system
of Section 4.2.2. The combination of a higher batch size with the additional 18M
backtranslations makes it hard to isolate the individual contribution of each change
to the overall improvement, but based on previous experience, it is very likely that
both changes have signi�cantly contributed to the improvement.

4.2.4 Spanish-English

We will now describe the data used for the Spanish-English language pair. We have
3 distinct type of corpora. The �rst consists in 6M pseudo in-domain data for the
OER domain. This is the data that was used to train our previous phrase-based SMT
systems. We also have a series of general domain corpora (commoncrawl, EUbook-
shop, EU-TT2, eutv and un) as well as a small in-domain corpora from the poliMedia
repository. Table 4.3 shows statistics of the di�erent corpora.

We present the results for two Spanish-English systems, a Transformer Base model,
and a Transformer Big model trained with 3 GPU. The �rst system was trained using
the 6M pseudo in-domain data. The second system has been trained using all the
available data from the general-domain and in-domain corpora, and using a 3 GPU
machine.

The Spanish-English systems have also been evaluated using a set of standard test
sets from the news translation shared task of the WMT competition, as test sets are
also available for this language pair. In this case, we use newstest2012 as development
set and newstest2013 as test set. Table 4.4 shows the results of the Spanish-English
models.
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Table 4.3: Statistics of the data sets used to train the Spanish-English MT
systems.

Corpus Sentences(K) Words(M) Vocabulary(K)
Es En Es En

pseudo in-domain data 6005.7 144.1 133.4 820.7 756.2
commoncrawl 1845.3 43.5 40.8 1555.2 1371.5
EUbookshop.en-es 5215.5 136.8 121.0 2203.1 2052.7
EU-TT2 1039.9 23.0 21.2 223.7 202.6
eutv 180.5 1.8 1.9 70.5 56.9
un 11196.9 366.1 320.1 668.2 651.7
PM 150.0 2.3 2.4 122.5 88.2

Table 4.4: Evaluation results of the Spanish-English MT systems.

System dev BLEU test BLEU
Transformer Base 27.2 25.1
Transformer Big, 3 GPU, Full dataset 34.7 32.3

The Transformer Base model obtains 27.2 BLEU in the dev set and 25.1 BLEU in
the test set. The Transformer Big model obtains 34.7 BLEU in the dev set and 32.3
BLEU in the test set, which represents an improvement of 7.5 BLEU and 7.2 BLEU,
respectively. When comparing this with the results of Section 4.2.5, it is likely that
the big improvement in BLEU is thanks to the additional data, and not to the change
from Base to Big model.

4.2.5 English-Spanish

The resources chosen to build the English-Spanish system are the same as those of the
Spanish-English MT system, as the language pair involved is the same. The details
are shown in Table 4.3.

We present the results for two Transformer Base models. In the same way as
the previous case, the �rst Transformer Base model is trained using a single GPU.
The system was trained using the 6M pseudo in-domain data. The second system
has been trained using all the available data from the general-domain and in-domain
corpora, and using a 3 GPU system. Table 4.5 shows the results obtained by the
English-Spanish MT systems.

Table 4.5: Evaluation results of the English-Spanish MT systems.

System dev BLEU test BLEU
Transformer Base 26.6 25.1
Transformer Base, 3 GPU, Full dataset 35.0 32.2
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4.2. Translation of OER

Following the trend of the Spanish-English systems of Section 4.2.4, the �rst Trans-
former Base obtains 26.6 BLEU in the dev set and 25.1 BLEU in the test set, whereas
the 3 GPU model obtains 35.0 and 32.2 BLEU, respectively. This represents an im-
provement of 8.4 and 7.0 BLEU, respectively.

4.2.6 English-French

The data used for training English-French systems is the WMT14 News Translation
Shared Task English-French data. This is a well known dataset that is frequently
used in order to compare results in the literature, so selecting it allows us to measure
our progress compared with other teams. This datasets contains two medium sized
corpora (europarl and commoncrawl) as well as two signi�cantly larger corpora, un-
doc, which is a collection of UN documents, and the Gigaword corpus, a collection
of news text data with more than 20M parallel sentence pairs. Table 4.6 shows the
statistics of the WMT14 dataset.

Table 4.6: Statistics of the data sets used to train the English-French MT
systems.

Corpus Sentences(K) Words(M) Vocabulary(K)
En Fr En Fr

commoncrawl 3244.2 70.7 76.7 1918.2 2081.8
europarl 2007.7 50.3 52.5 311.9 417.8
giga 22520.4 575.8 672.2 7029.5 6899.5
news-commentary 183.8 4.0 4.7 146.4 175.9
undoc 12886.8 316.5 354.2 2079.8 2548.7

We have trained 2 models for this language pair, a Transformer Base and a Trans-
former Big model using 3 GPUs. All models had a maximum sequence length of 100
tokens.

Following the setup of the WMT14 competition, we have used newstest2013 as the
dev set, and newstest2014 as the test set. The results obtained by the English-French
MT models are shown in Table 4.7.

Table 4.7: Evaluation results of the English-French MT systems.

System dev BLEU test BLEU
Transformer Base 30.9 35.2
Transformer Big, 3 GPU 33.6 37.9

The Transformer Base obtains 30.9 BLEU in the dev set, and 35.2 BLEU in the
test set, whereas the Big model obtains 33.6 and 37.9 BLEU, respectively. This
represents an increase of 2.7 BLEU in both the dev and the test sets.
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4.2.7 French-English

The resources chosen to build the French-English system are the same as those of the
English-French MT system, as the language pair involved is the same. The details
are shown in Table 4.6.

We have trained a Transformer Base as well as a Transformer Big model, this one
trained using 3 GPUs. The models were trained with a maximum sequence length of
75.

In a similar way to the English-French case, we used newstest2013 as dev set, and
newstest2014 as test set. Table 4.8 shows the results obtained by the French-English
systems.

Table 4.8: Evaluation results of the French-English MT systems.

System dev BLEU test BLEU
Transformer Base 33.1 36.8
Transformer Base, 3 GPU 33.0 36.8

In this case, both systems show similar performance, with 33.1 and 36.8 BLEU
in the dev and test sets. This result is di�erent from other language pairs, where
an increase in batch size also meant an improvement in translation quality. Further
experiments using the Transformer Big con�guration as well as bigger batches could
be a way of improving results.

4.2.8 English-Italian

For the English-Italian systems, we have collected a series of public datasets from a va-
riety of domains such as: medical (EMEA) and institutional documents (ECB,Europarl
and JRC-Aqcquis), book translations (EUbookshop) and Wikipedia. The statistics
of these datasets are shown in Table 4.9.

Table 4.9: Statistics of the data sets used to train the English-Italian MT
systems.

Corpus Sentences(K) Words(M) Vocabulary(K)
En It En It

ECB 193.0 5.5 5.8 62.2 77.7
EMEA 1081.1 12.1 13.4 130.3 153.7
EUbookshop 6490.0 144.6 147.4 2332.6 2515.8
Europarl 1944.9 50.7 49.0 380.1 492.3
JRC-Acquis 811.0 15.5 15.4 217.6 248.4
Wikipedia 957.0 20.6 19.2 1530.0 1520.1

We have trained two Transformer Base models, one trained with 1 GPU and the
other with 3 GPU, with a maximum sequence length of 100.
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4.3. Conclusions

The WMT competition has not been held for the English-Italian pair. As such, we
must look elsewhere to �nd reliable test sets. In this case, we have used the tests sets
from IWSLT17 [10], another international MT competition. We used the provided
dev and test sets for English-Italian. Table 4.10 shows the results obtained by the
English-Italian MT systems.

Table 4.10: Evaluation results of the English-Italian MT systems.

System dev BLEU test BLEU
Transformer Base 21.4 21.4
Transformer Base, 3 GPU 23.7 23.3

The 1 GPU Transformer Base models obtains 21.4 BLEU in both the dev and
the test set. The 3 GPU Transformer obtains an improvement of 2.3 and 1.9 BLEU,
respectively. As the only di�erence between these two models is the batch size, this
results prove that the choice of batch size is critical for Transformer models.

4.2.9 Italian-English

The resources chosen to build the Italian-English system are the same as those of the
English-Italian MT system, as the language pair involved is the same. The details are
shown in Table 4.9.

Following the English-Italian setup, we train both a Transformer Base with 1
GPU and another one with 3 GPU. Table 4.11 shows the results obtained by the
Italian-English MT systems.

Table 4.11: Evaluation results of the Italian-English MT systems.

System dev BLEU test BLEU
Transformer Base 25.1 25.4
Transformer Base, 3 GPU 25.1 25.9

The Transformer Base achieves 25.1 BLEU in the dev set, and 25.4 BLEU in the
test set, and the 3 GPU version improves 0.5 BLEU in the test set. Although not as
signi�cant as in the English-Italian case, we also observe performance di�erences due
to di�erent batch sizes.

4.3 Conclusions

We have described the development of MT systems for the X5gon project. Using the
Transformer NMT architecture, we have obtained excellent results in all translation
pairs, without requiring any speci�c model adaptation to each pair, showing the
�exibility and power of modern NMT approaches. These results are not without
caveats. When using the Transformer Big architecture, we have observed that the
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results are very dependent on the batch size. In fact, there are cases where a model
trained using the Base con�guration obtains better results than the Big counterpart.
We must carry out additional experiments in order to explore the e�ects of the batch
size on system performance.
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Chapter 5

Translation systems for

WMT19: Similar Task

5.1 Introduction

In this chapter we describe the NMT systems developed for the Related Languages
Translation Shared Task of the ACL 2019 Fourth Conference on Machine Translation
(WMT19). For this task, we participated in both directions of the Portuguese ↔
Spanish language pair. This chapter introduces a novel NMT model that is currently
being developed. We report results for this approach and compare them with models
based on the well-performing Transformer NMT architecture. A domain adapted
version of this latter system achieves the best results out of all submitted systems on
both directions of the shared task.

The chapter is organized as follows. Section 5.2 describes the architecture and
settings of the novel 2D RNN model. Section 5.3 describes our baseline systems and
the results obtained. Section 5.4 reports the results obtained by means of the �ne-
tuning technique. Section 5.5 reports comparative results with respect to the systems
submitted by the other competition participants. Section 5.6 outlines our conclusions
for this shared task.

5.2 2D Alternating RNN

In this section, we will describe the general architecture of the 2D alternating RNN
model. The 2D alternating RNN is a novel translation architecture in development
by the MLLP group. This architecture approaches the machine translation problem
with a two-dimensional view, much in the same manner as [32, 3] and [17]. This view
is based on the premise that translation is fundamentally a two-dimensional problem,
where each word of the target sentence can be explained in some way by all the words
in the source sentence. Two-dimensional translation models de�ne the distribution
p(ei|fJ0 , ei−10 ) by jointly encoding the source sentence (fJ0 ) and the target history
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Chapter 5. Translation systems for WMT19: Similar Task

(ei−10 ), whereas the usual translation models encode them separately, in separate
components usually called �encoder� and �decoder�.

The proposed architecture is depicted in Figure 5.1. It de�nes a two-dimensional
translation model by leveraging already known recurrent cells, such as LSTMs or
GRU, without any further modi�cation.

Figure 5.1: The 2D alternating RNN architecture. White grids on the top
and bottom represent the input/output of a block. Arrows in grey grids rep-
resent the RNNs, while the arrows on the left depict how the layers are inter-
connected. Arrows on the bottom and bottom right indicate the source and
target dimensions.

As many other translation models, we have a context vector which is projected to
vocabulary size and a softmax (σ) is applied to obtain the probability distribution of
the next word at timestep i:

p(ei = x|fJ0 , ei−10 ) = σ(Wci)x (5.1)

To explain how this context vector is drawn from a two-dimensional processing
style, we need to de�ne a grid with two dimensions: one for the source, and one for
the target. From this point, we will de�ne a layer-like structure called block, where
each block of the model has such a grid as the input, and another one as the output.

The �rst grid that serves as input to this two-dimensional architecture has each
cell s0ij containing the concatenation of the source embedding in position j and the
target embedding in position i− 1:

s0ij =

[
fj
ei−1

]
(5.2)

Each block of the model has two recurrent cells: one along the source dimension
and another one along the target dimension. They process each row or column inde-
pendently of one another. The horizontal cell is bidirectional and receives the grid sl

as its input:
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5.3. Baseline systems

hlij =

[
RNNh1(hli,j−1, s

l−1
ij )

RNNh2(hli,j+1, s
l−1
ij )

]
(5.3)

The vertical cell receives the concatenation of hl and sl:

klij = RNNk(kli−1,j , [s
l−1
ij ;hlij ]) (5.4)

The output of the block is the concatenation of the output of both cells:

slij =

[
hlij
klij

]
(5.5)

From the output of the last block, sL, we generate a context vector as follows:

ci = Attention([sLi0, . . . , s
L
iJ]) (5.6)

The Attention function extracts a single vector from a set of vectors leveraging
an attention mechanism. That is, it scores the vectors according to a learned linear
scoring function, which is followed by a softmax to extract scores; and with those
scores it performs a weighted sum to obtain a context vector.

5.3 Baseline systems

This section describes training corpora as well as the baseline model architectures and
con�gurations adopted to train our NMT systems. As said in Section 5.1, two di�erent
model architectures were trained: the Transformer architecture and our proposed 2D
alternating RNN architecture. BLEU scores were computed with the multi-bleu

utility from Moses.

5.3.1 Corpus description and data preparation

The training data is made up of the JCR, Europarl, news-commentary and wikititles
corpora. Table 5.1 shows the number of sentences, number of words and vocabulary
size of each corpus. The provided development data was split equally in two disjoint
sets, and one was used as development set and the other as test set.

The data was processed using the standard Moses pipeline, speci�cally, punctua-
tion normalization, tokenization and truecasing. Then, we applied 32K BPE opera-
tions. We included in the vocabulary only those tokens occurring at least 10 times in
the training data.

5.3.2 Transformer baseline models

For the Transformer models, we used the �Base� con�guration (512 model size, 2048
feed-forward size), trained on one GPU. The batch size was 4000 tokens, and we
carried out gradient accumulation by temporarily storing gradients and updating the
weights every 4 batches. This setup allowed us to train models using an e�ective batch
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Table 5.1: Statistics of the data sets used to train the Spanish ↔ Portuguese
MT systems.

Corpus Sent.(K) Words(M) Vocab.(K)
Es Pt Es Pt

JCR 1650 42 40 264 264
Europarl 1812 53 52 177 156
news 48 1 1 49 47
wikititles 621 1 1 292 295
Total 4131 98 96 623 604

size of 16000 tokens. We used dropout with 0.1 probability of dropping, and label
smoothing where we distribute 0.1 of the probability among the target vocabulary.
We stored a checkpoint every 10000 updates, and for inference we used the average
of the last 8 checkpoints.

We used the Adam optimizer [33] with β1 = 0.9, β2 = 0.98. The learning rate
was updated following an inverse square-root schedule, with an initial learning rate
of 5 · 10−4 and 4000 warm-up updates.

The models were built using the fairseq toolkit.

5.3.3 2D alternating RNN baseline model

For the 2D alternating RNN models, we used GRU as the recurrent cell, 256 for the
embedding size and 128 as the number of units of each layer of the block. The model
consisted of a single block. The batch size was 20 sentences, with a maximum length
of 75 subword units.

We used the Adam optimizer with β1 = 0.9, β2 = 0.98. The learning rate was ini-
tialized at 10−3 and kept constant, but halved after 3 checkpoints without improving
the development perplexity. A checkpoint was saved every 5000 updates. The model
was built using our own toolkit. Due to time constraints, the 2D alternating model
was only trained for the Portuguese → Spanish direction.

5.3.4 Results

Table 5.2 shows the evaluation results for the Portuguese→Spanish systems, and Table
5.3 shows the evaluation results for our Spanish→Portuguese Transformer system. For
the Portuguese→ Spanish direction, the Transformer model obtains 57.4 BLEU in the
test set, and 51.9 in the hidden test set of the competition. The 2D alternating model
achieves 55.1 and 49.7 BLEU, respectively. These results show how, even though it
is in early stages of development, the 2D alternating RNN model is able to obtain
competitive results for this task that are not very far from those obtained by the state-
of-the-art Transformer architectures. It is worth noting that this has been achieved
with a model that has signi�cantly less parameters than its Transformer counterpart.
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5.4. Fine-tuning

Table 5.2: Baseline BLEU scores on the Portuguese → Spanish task.

BLEU
System test test-hidden

Transformer 57.4 51.9
2D altern. RNN 55.1 49.7

Table 5.3: Baseline BLEU scores on the Spanish → Portuguese task.

BLEU
System test test-hidden

Transformer 51.2 45.5

5.4 Fine-tuning

Section 2.3 has highlighted the importance of carrying out �ne-tuning in case there
exits a domain mismatch between train and test data. In order to empirically test
if this is one of such cases, we have trained two language models, one using only the
presumably out-of-domain data (the train corpora from Table 5.1), and one using
only the in-domain development data. The models were 4-gram language models
trained using the SRI Language Modelling Toolkit. We then computed the perplexity
of the test set using these two language models. The model that was trained with
the out-of-domain data obtains a perplexity of 298.0, whereas the model that used
the in-domain data obtains a perplexity of 81.9. This result shows that there is in a
fact a domain mismatch between the train and test data, which supports the idea of
carrying out �ne-tuning.

We applied this to both translation directions, using the �rst part of the develop-
ment data as in-domain training data, and the second part as a new dev set. One
checkpoint was stored after every �ne-tuning epoch, and we monitored model perfor-
mance on the new dev set in order to stop �ne-tuning once the BLEU results started
decreasing. For the Transformer models, we used the same learning rate as when
training stopped, while for the 2D alternating models we used 10−3.

Tables 5.4 and 5.5 compare the BLEU scores achieved by the �ne-tuned sys-
tems with that of the baseline non �ne-tuned ones on the Portuguese→Spanish and
Spanish→Portuguese tasks, respectively.

Table 5.4 shows that for this particular task, �ne-tuning is a key step for achieving
very substantial performance gains: in the Portuguese→Spanish task, we obtained a
14.1 BLEU improvement in the test set and a 14.7 BLEU improvement in the hidden
test set for the Transformer model. The 2D alternating RNN obtained a 8.9 BLEU
improvement thanks to �ne-tuning. This also applies to the Spanish→Portuguese
task, shown in Table 5.5: we obtained a 18.1 BLEU improvement in the test set, and
a 19.2 BLEU improvement in the hidden test set after applying �ne-tuning.

In order to understand the impact and behaviour of the �ne-tuning process, we
have analyzed the model's performance as a function of the number of �ne-tuning
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Table 5.4: Comparative BLEU scores of the Transformer and 2D alternating
RNN models on the Portuguese → Spanish task.

BLEU
System test test-hidden

Transformer 57.4 51.9
+ �ne-tuned 72.4 66.6
2D altern. RNN 55.1 49.7
+ �ne-tuned 64.0 -

Table 5.5: Comparative BLEU scores of the Transformer model on the Span-
ish → Portuguese task.

BLEU
System test test-hidden

Transformer 51.2 45.5
+ �ne-tuned 70.7 64.7

epochs. Figure 5.2 shows the impact of the �ne-tuning step for the Transformer and
2D alternating RNNmodels on the Portuguese→ Spanish task, while Figure 5.3 shows
the results of the �ne-tuning step applied to the Transformer model on the Spanish
→ Portuguese task. In both language pairs, the �rst epochs are the most bene�cial
for system performance, and additional �ne-tuning epochs bring diminishing returns
until the BLEU curve �attens.

 55

 60

 65

 70

 0  5  10  15  20  25  30

BLEU

Epoch

Transformer

2D

Portuguese-Spanish

Figure 5.2: BLEU scores as a function of the number of �ne-tuning epochs on
the Transformer and 2D alternating RNN models for the Portuguese→Spanish
task.
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Figure 5.3: BLEU scores as a function of the number of �ne-tuning epochs
on the Transformer model for the Spanish→Portuguese task.

Table 5.6: Primary submission results of the Portuguese → Spanish shared
task in the hidden test set.

Team BLEU TER

MLLP 66.6 19.7
NICT 59.9 25.3
U. Helsinki 58.4 25.3
Kyoto U. 56.9 26.9
BSC 54.8 29.8
UBC-NLP 52.3 32.9

5.5 Comparative results

We now move on to the results for the primary submissions of all participants in the
Shared Task. We chose to send our �ne-tuned Transfomer systems as primary submis-
sions to both tasks after reviewing the results on the provided test set (Section 5.4).
The submission was made with the checkpoint that achieved the best performance on
the �ne-tuning dev data. Table 5.6 shows the results of the Portuguese→Spanish task,
while Table 5.7 shows the results of the Spanish→Portuguese task; both in BLEU and
TER [58].

In both tasks, our system outperformed all other participants by a signi�cant
margin. In the Portuguese→Spanish task, our submission outperforms the next best
system by 6.7 BLEU and 5.6 TER. In a similar manner, our submission to the Spanish
→ Portuguese task improves the results of the second-best submission by 2.6 BLEU
and 2.2 TER points. We attribute our success to the domain adaptation carried out
by means of the �ne-tuning technique. We have been able to apply this technique by
using part of the competition's development data as in-domain training data.
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Table 5.7: Primary submission results of the Spanish → Portuguese shared
task in the hidden test set.

Team BLEU TER

MLLP 64.7 20.8
UPC-TALP 62.1 23.0
NICT 53.3 29.1
U. Helsinki 52.0 29.4
UBC-NLP 46.1 36.0
BSC 44.0 37.5

5.6 Conclusions

We have taken on the similar language task with the same approaches that we found
useful for other kinds of translation tasks. NMT models, speci�cally the Transformer
architecture, fare well in this task without making any speci�c adaptation to the
similar-language setting. In fact, we achieved the best results among the participants
using a general domain-adaptation approach.

For this particular task, the use of in-domain data to carry out �ne-tuning has
allowed us to obtain remarkable results that signi�cantly outperform the next best
systems in both Portuguese→Spanish and Spanish→Portuguese. We believe these
results are explained by the domain di�erence between training and test data, and
are unrelated to the similarity between Spanish and Portuguese.

We have introduced the 2D alternating RNN model, a novel NMT architecture,
that has been tested in the Portuguese→Spanish task. With small embedding and
hidden unit sizes and a shallow architecture, we achieved similar performance to the
Transformer model, although the di�erence between them increases after applying
�ne-tuning.

In terms of future work, we plan to fully develop the 2D alternating RNN model in
order to support larger embedding and hidden unit sizes as well as deeper architectures
using more regularization. All these improvements should allow us to increase the
already good results achieved by this model.
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Chapter 6

Translation systems for

WMT19: News Task

6.1 Introduction

In this chapter we describe the NMT systems for the News Translation Shared Task of
the ACL 2019 Fourth Conference on Machine Translation (WMT19). For this year's
edition, we participated in both directions of the German ↔ English and German
↔ French language pairs, using the Transformer architecture. Following the lessons
learned from WMT18, we have continued working on data �ltering, and we have
experimented with additional synthetic data techniques and bigger neural network
architectures trained with multi-GPU machines.

This chapter is organized as follows. Section 6.2 describes the data processing steps
(including data �ltering and synthetic data generation) carried out prior to system
training. Section 6.3 describes the architecture and settings used for our NMT models,
and the di�erent experiments and evaluations performed are detailed in Section 6.4.
Our conclusions for this shared task are outlined in Section 6.5.

6.2 Data preparation

Data preprocessing, corpus �ltering and data augmentation are described in the fol-
lowing sections.

6.2.1 Corpus preprocessing

Following the con�guration described in Section 5.3.1, the data was processed using
the standard Moses pipeline (normalization, tokenization and truecasing). Addition-
ally, we applied 40K BPE operations, and excluded from the vocabulary all subwords
that did not appear at least 10 times in the training data. BPE operations are
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learned before adding the data extracted using corpus �ltering, described in Section
6.2.2. Sentences longer than 100 subwords were excluded from the training data.

6.2.2 Corpus �ltering

As was discussed in Section 3.1.2, the addition of the ParaCrawl corpus to the WMT
shared tasks has placed an increasing importance in �ltering and data selection tech-
niques in order to take advantage of this additional data. This is highlighted by the
fact that a majority of participating systems in the WMT18 News Translation Task
[7] apply �ltering techniques to ParaCrawl. Additionally, the experiments carried out
for our 2018 submission [26], described in Section 3.3, show that using a noisy corpus
such as ParaCrawl without �ltering can result in a worse performance compared with
a baseline system that simply excludes the noisy corpus from the training data.

We have compared two di�erent approaches to corpus �ltering:

• LM-based �ltering: This is the approach we used for our WMT18 submission,
and has been described in detail in Section 3.1.2.

• Dual Conditional Cross-Entropy �ltering [30]: This approach computes
the sentence pair score by means of a product of a series of partial scores.

f(x, y) =
∏
i

fi(x, y) (6.1)

We have used the same con�guration sent for the WMT18-�ltering task, which
uses 3 partial scores: a language identi�cation score (lang), a dual conditional
cross-entropy score (adq), and a cross-entropy di�erence score (dom) with a
cut-o� value of 0.25. The full details of each of these partial scores is given in
[30]. The translation models for the adq score are Transformer Base models
trained with the Europarl portion of WMT19. In terms of the data for the dom
score, we randomly sampled 1M sentences from NewsCrawl 2016 as in-domain
data, and 1M sentences from ParaCrawl as out-of-domain data.

6.3 System description

This section describes the con�guration and decisions adopted for training our NMT
systems. We will �rst begin by describing the details that are common to all systems,
and we will then move on to speci�c details for each of the considered translation
directions.

Our models follow the Transformer architecture [62], and are con�gured based on
the Transformer Base and Transformer Big settings.

The Transformer Base models are trained with a batch size of 3000 tokens per
GPU, whereas the Transformer Big models use a batch size of 2300 tokens per GPU.
We store a checkpoint every 10 000 updates, and inference is carried out by averaging
the last 8 checkpoints.
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We used the Adam optimizer with β1 = 0.9, β2 = 0.98. The learning rate was
updated following an inverse square-root schedule, with an initial learning rate of
0.0005, and 4000 warm-up updates. All models use 0.1 label smoothing and 0.1
dropout, with the exception of the German ↔ French models, that use 0.3 dropout
due to having less training data.

The systems from our WMT18 submission (described in described in Section 3.3)
and this year's baseline systems were built using the Sockeye toolkit. The rest of the
systems were built using the fairseq toolkit, in order to train using Half Precision and
gradient accumulation like in [43].

We have produced backtranslations (See Section 2.3) for all the language pairs we
have participated in, using the following con�guration:

• German → English: We have used 20M sentences from our WMT18 submis-
sion [26], and an additional 24M sentences generated using a system with the
same con�guration as WMT18, but trained with 3 GPUs instead of 1. The
monolingual sentences were randomly sampled from News Crawl 2017.

• English → German: We have generated 18M sentences using our German →
English system submitted to WMT18, with monolingual sentences randomly
sampled from News Crawl 2017.

• German → French: We have generated 10M synthetic sentences, using the re-
verse direction baseline system described in Section 6.3. The monolingual sen-
tences were sampled from News Crawl 2015-2018.

• French → German: We have generated 18M synthetic sentences, using the re-
verse direction baseline system described in Section 6.3. The monolingual sen-
tences were sampled from News Crawl 2017.

Prior to selecting sentences, we �ltered out from the German News Crawl 2017 all
sentences that were written in a language di�erent from German, using the langid

tool [39]. When combining bilingual and synthetic data, the original bilingual data
was upsampled in order to achieve a 1:1 ratio.

6.4 Experimental evaluation

This section describes the experiments and evaluation carried out for each of the
language directions, with special emphasis placed in the German ↔ English systems.

For the German ↔ English systems, we have used newstest2017 as dev set, and
newstest2018 as test set. Additionally, we report results on this year's test set, new-
stest 2019. For the German ↔ French systems, we splitted in half the supplied
euelections dev set into two sets, dev 1 and dev 2, and used the former as dev set
and the latter as test set. We also report the results obtained in the o�cial test set
newstest2019. We report BLEU scores computed using SacreBLEU.

As the use of �ne-tuning achieved signi�cant improvements in the WMT19 Similar
Task, we have also elected to carry out �ne-tuning in this task. For the �netuning step,
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Table 6.1: Filtering techniques comparison for WMT18 German → English

BLEU
Filtering technique nt2015 nt2017 nt2018

LM-based 31.2 32.3 40.5
Cross-Entropy 32.2 33.3 41.3

we set the learning rate to the value that was being used when training �nished, and
we reduced the checkpoint interval in order to store a checkpoint every 20 updates.
Finetuning continues as long as the performance does not decrease in the appropriate
dev set. For the German ↔ English systems, we follow the setup of [53], and use
test sets from previous years (newstest08-16) as training data for the �netuning step.
Since this is the �rst time the German ↔ French language pair is included in WMT,
we do not have available test sets from previous editions, so we resort to using the
dev1 set as training data, and stop �netuning when performance drops in dev2.

6.4.1 German → English

In order to test the performance of the two described �ltering techniques, we trained
a Transformer Base model with the WMT18 German → English bilingual data (ex-
cluding ParaCrawl), as well as 10M sentence pairs extracted from ParaCrawl using
each technique. The models were trained on a single GPU with a batch size of 3000
tokens, with the same hyperparameters as in [26]. The results are shown in Table 6.1.

The Cross-Entropy model obtains better results than the LM model, with an
improvement of 1.0 BLEU in newstest2017, and an improvement of 0.8 BLEU in
newstest2018. This is consistent with the fact that the Cross-Entropy �ltering was
the winning submission to the WMT18 Shared Task on Parallel Corpus Filtering [36].
As a result, we have elected to use the Cross-Entropy �ltering method for �ltering
the di�erent versions of the ParaCrawl corpus present in all language pairs.

Table 6.2 shows the results obtained by our systems trained for the German →
English direction. As baselines, we take our WMT18 system, trained with 1 GPU
(this is the con�guration that was used for our WMT18 submission), and the same
setup trained with 3 GPUs. The increase in e�ective batch size from 3000 to 9000
tokens results in an improvement of 1.7 BLEU in newstest2018 and 2.0 BLEU in
newstest2019 without any other change in hyperparameters.

We began our WMT19 experiments by building a system following the Trans-
former Big architecture, trained in a 4-GPU machine and using the 20M backtrans-
lations produced for WMT18 as well as 10M �ltered sentences from ParaCrawl. This
results in an increase of 0.3 BLEU in newstest2018 and 0.6 BLEU in newstest2019.
We then applied gradient accumulation by setting the Update Frequency (UF) to 2.
Under this setting, the model's weights are updated every two steps (this simulates
a batch size equivalent to training on 8 GPUs). This model obtains a signi�cant
improvement in the dev (+0.7 BLEU), and test sets (+1.4 BLEU), however the per-
formance decreases by 0.7 BLEU when evaluating on newstest2019. We have found
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6.4. Experimental evaluation

Table 6.2: Evaluation results of German → English systems

BLEU
System GPUs newstest2018 newstest2019

WMT18 (Transformer Base) 1 44.2 35.6
WMT18 (Transformer Base) 3 45.9 37.6
Transformer Big, 20M backtrans 4 46.2 38.3
+ UF=2 4 47.6 37.7
+ �netuned 4 47.8 39.4
+ 24M backtrans, noise 4 48.0 40.2
+ �netuned 4 47.9 40.1

no explanation for this phenomenon. Finetuning on the news in-domain data results
improves all previous results, resulting in 47.8 BLEU in newstest2018 and 39.4 BLEU
in newstest2019.

For our �nal submission, we trained a system with noisy backtranslations, follow-
ing the work of [16]. We used the previous 20M backtranslations and appended an
additional 24M generated with the system in row 2 of Table 6.2. We added noise
to the source side of the synthetic sentence pairs using the technique described by
[38]. Following the setup of [16], bilingual data was not upsampled, resulting in a
ratio of around 1:3 original to synthetic sentences. The system trained with noisy
backtranslation obtains 48.0 BLEU in newstest2018 and 40.2 BLEU in newstest2019.
An additional �netuning step , however, obtains a decrease of 0.1 BLEU in both
newstest2018 and newstest2019.

We observe that, in the case of the noisy system, �netuning seems to obtain mixed
results, in contrast with other trained systems and language directions (see Sections
6.4.2, 6.4.3 and 6.4.4 for the other WMT19 News systems, Section 5.4 for the WMT19
Similar systems), where �netuning achieves a performance increase in all cases. We
theorize this could be due to the fact that the system was �rst trained with a ratio
that included 3 times as many noisy sentences as clean data, but the �netuning was
carried out only with clean data, without any added noise.

6.4.2 English → German

Table 6.3 shows the results obtained by our systems trained for the English→ German
direction. We began with a baseline system trained using our WMT18 con�guration
and data, plus an additional 18M backtranslations. This system obtains 45.2 BLEU
in newstest2018 and 39.3 BLEU in newstest2019. For our WMT19 submission, we
trained a Transformer Big model, using the WMT19 data (including 10M �ltered
sentences from ParaCrawl), as well as the already mentioned 18M backtranslations.
This system was trained with 2 GPUs and an Update Frequency of 2, giving us an
e�ective batch size equivalent to 4 GPUs. This system obtains an improvement of 0.4
BLEU in newstest2018 and 0.1 BLEU in newstest2019 over the baseline. Increasing
the number of GPUs from 2 to 4 shows no signi�cant di�erences in either newstest2018
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Table 6.3: Evaluation results of English → German systems

BLEU
System GPUs newstest2018 newstest2019

WMT18 (Transformer Base), 18M backtrans 3 45.2 39.3
Transformer Big, 18M backtrans, UF=2 2 45.6 39.4
+ GPU=4 4 45.7 39.4
+ �netuned 4 48.1 41.7

Table 6.4: Evaluation results of German → French systems

BLEU
System GPUs dev2 nt2019

WMT19 - {ParaCrawl} 1 31.1 32.1
Transformer Big, UF=2 2 33.3 34.4
+ �netuning 2 33.5 34.5

or newstest2019. Our �nal submission was generated after applying a �netuning step
to the previous con�guration. This �netuning resulted in an increase of 2.4 BLEU in
newstest2018 and 2.3 BLEU in newstest2019 when compared with the non-�netuned
model.

6.4.3 German → French

Table 6.4 shows the results obtained by our systems trained for the German→ French
direction. Our baseline system is a Transformer Base model trained with all the
WMT19 data excluding ParaCrawl. This system obtains 31.3 BLEU in dev2 and
32.1 BLEU in newstest2019. We then moved on to training a Transformer Big model,
adding 1M sentences �ltered from ParaCrawl, and 10M backtranslations generated
with the French → German baseline system. This system was trained with 2 GPUs
and an Update Frequency of 2. This results in an increase of 2.2 BLEU in dev2 and
2.3 BLEU in newstest2019. An additional �netuning step, carried out using the dev1
data, results in an increase of 0.2 BLEU in dev2 and 0.1 BLEU in newstest2019, and
constituted our submission to the competition.

6.4.4 French → German

Table 6.5 shows the results obtained by our systems trained for the French→ German
direction. The approach and con�gurations for this language directions mirror those
of the German → French direction (Section 6.4.3). We began with a baseline Trans-
former Base model, that obtains 22.8 BLEU in dev2 and 25.7 BLEU in newstest2019.
The Transformer Big model obtains an improvement of 2.1 BLEU in dev2 and 1.2
BLEU in newstest2019, and the �netuning step results in an additional increase of
0.5 BLEU in dev2 and 0.6 BLEU in newstest2019.
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6.5. Conclusions

Table 6.5: Evaluation results of French → German systems

BLEU
System GPUs dev2 nt2019

WMT19 - {ParaCrawl} 1 22.8 25.7
Transformer Big, UF=2 2 24.9 26.9
+ �netuning 2 25.4 27.5

6.5 Conclusions

The experiments carried for WMT19 have allowed us to explore one of the missing
pieces of our WMT18 submission, which is the interaction between the Transformer
architecture and di�erent batch sizes. The results show that the performance of
models following the Transformer architecture is highly dependent on the batch size
used to train the model, requiring multiple GPUs or gradient accumulation in order
to fully take advantage of this architecture. This result is consistent with other works
such as [47].

As future work, we would like to look further into using massive amounts of
synthetic data jointly with noise, as our experiments this year have not provided
conclusive results. Overall, the �netuning steps looks like an e�ective way of obtaining
translation improvements, at the expense of only a small amount of computation. This
domain adaptation step can be carried out as long as we have some amount of in-
domain data available. More work needs to be carried out to explore the interaction
between �netuning and adding noise to the data. Another avenue for improvement is
to look into the optimal amount of �ltered data to extract from ParaCrawl, as well
as the upsampling ratio to mix bilingual and synthetic data. These aspects were not
explored in our WMT19 submission due to time constraints.
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Chapter 7

System Integration and

Online MT

This chapter describes the development and integration of MT systems, with a special
emphasis in the online MT case. We will �rst make a distinction between o�ine and
online systems. An o�ine system begins processing a request once it has all the input
data available. Usually, the requests sent to a system are organized and processed
in such a way that we maximize throughput (for example, through the use of batch
decoding) and minimize expenses of computational resources. Additionally, o�ine
systems might o�er other features that require additional time before the content
can be returned to the user. In contrast, online systems refer to systems that start
processing the data as soon as it arrives, and it is understood that such systems must
work in a real-time fashion, with negligible delays that allow for a live usage of the
system.1

7.1 System integration into a transcription and trans-

lation platform

We have obtained a series of translation systems as an output of all the previous work
described in this document. Now, we are interested in integrating those systems into
a production environment where it can be used to provide quality translations to real
users. Our goal is to integrate it into the Transcription and Translation Platform
(TTP). This cloud-based transcription and translation service has been developed by
the MLLP research group, based on the transLectures-UPV Platform (TLP) software.

The TLP software is released under an open-source license and is the backbone
behind TTP. TTP2 is an active service with many users, and currently o�ers audio
transcription services for 10 di�erent languages, and translation services between 16

1In fact, online systems are also sometimes called real-time or live systems, without much dis-
tinction among the 3 terms.

2https://ttp.mllp.upv.es
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language pairs. An example of the TTP dashboard with a collection of transcribed
and translated videos is shown in Figure 7.1. TTP is used to provide the transcrip-
tions and translation of the poliMedia repository. This platform is what provides the
automatically generated Spanish, English and Catalan subtitles that are shown with
these videos.

Figure 7.1: Example of some of the videos uploaded to TTP.

We will now describe the TLP software and its architecture. We will �rst present
a general overview of the whole TLP pipeline, and then we will focus our e�orts in the
translation generation module related to our work as well as describing the technical
decisions taken in order to integrate our translation system.

7.1.1 TLP

TLP is a software for integrating transcription and translation services into media
repositories. Broadly speaking, TLP provides a set of APIs that are available in
order to provide services to media resources stored in a database. Users can request
transcription or translation tasks for some of those media resources. Once received,
these requests are processed by TLP in order to carry out the appropriate steps
to complete the task depending on what was speci�cally requested. The required
transcription and translation tasks can be carried out e�ciently on a computer cluster
by means of a job scheduler that can be used to allocate the di�erent tasks using a
grid engine or job management system. This allows a high-degree of parallelism and
a shorter time to completion for user task even when under heavy load. Once a
job �nishes, the Grid Engine noti�es TLP and the output of the task is processed
and stored in the database so as to make it available to the user. This architectural
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Database

TLP

Grid Engine

Figure 7.2: General TLP architecture.

overview that we have described can be seen in Figure 7.2.

We are now going to describe what is the work�ow used by TLP. Internally, the
TLP software is organized in terms of modules, each of them tasked with carrying
out an speci�c task such as translation. Once a media resource has been stored in
the database and is submitted for that resource, TLP starts the work�ow process
for producing the appropriate output. The database contents are �rst processed in
order to extract the required media �les and their metadata. Then, the di�erent
transcription and translations services are run depending on the user request. Fig-
ure 7.3 illustrates the work�ow followed by TLP. The work�ow shown in the �gure
represents the complete process supported by TLP, but for each request only the
modules that correspond to the tasks required by the user will be run. If the user
requests an audio transcription for a video, the transcription module of the video's
language is activated and produces a textual form of the spoken audio. This tran-
scription can be further used if the user has asked for translation of the text into a
di�erent language, by using the output of the transcription module as the input of
the translation module. This way we can obtain subtitles in many di�erent languages
for a video, a process that allows us to obtain an automatic multilingual version of an
educational video, producing versions that are available on di�erent languages from
the ones it was recorded on. After obtaining the translations, it is also possible to use
a Text-To-Speech module to produce audio �les. As long as this modular structure
is respected, one can carry out improvements and changes to individual components
while maintaining a fully-functional system. Following this scheme, the integration of
our MT systems will be carried out by de�ning new translation modules that can be
selected when a translation involving that language pair is requested.

MLLP-DSIC-UPV 73



i
i

�memoria� � 2019/7/13 � 23:34 � page 74 � #78 i
i

i
i

i
i

Chapter 7. System Integration and Online MT

Figure 7.3: TLP Work�ow.

7.1.2 Translation generation

Now that we have an overview of the TLP software, we can focus our attention in the
developed translation modules. When talking about a trained model, we are actually
referring to a computational graph that de�nes the model architecture and the dif-
ferent weights that de�ne the parameters of the model. Translation is carried out by
executing the computational graph jointly with a decoding algorithm. Our module
will carry out this process by running Sockeye with the trained weights obtained as a
result of training.

The process of integrating a translation system into a live production environment
introduces additional di�culties apart from those inherent in adapting any piece of
software into an already existing system. While we were previously concerned with
the time it takes to train the system, we now are mostly interested in the translation
speed achieved by the system. In order to process signi�cant amount of sentences,
changes in translation speed can greatly a�ect our service's ability to o�er translations
when facing big workloads. Research is interested in expanding human knowledge and
moving the �eld forward. When carrying out experiments, it is often assumed that
they are being carried out in optimal conditions. Even though a technique has a
higher resource consumption than another, it might still be worth it if we obtain
improvements by using it. However, when looking to adapt research developments
into the real world, it is necessary to look at the actual conditions and business needs
that need to be ful�lled by our system in order to choose which decision to make,
because we will often �nd out that the speci�c set of requirements for an application
might make many approaches unfeasible.
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With respect to the data processing aspects, previously we thought of this process
as a simple series of steps to apply to the data before starting training our systems.
Once applied, they could be pretty much forgotten since training is mostly indepen-
dent of those details. However, if we wish to later translate new data, we have to
make sure that we have applied the same preprocessing steps that were used on the
training data. Additionally, it might be necessary to apply some postprocessing to
the resulting translations, for example to recover the original word segmentation if
we have used BPE. In order to carry out this, we have developed preprocessing and
postprocessing scripts containing the appropriate steps. The preprocessing script is
applied to the input data before it is fed to the translation model itself, and the post-
processing script is applied to the system's translations before they are returned by
the system.

7.2 Development of Online MT systems

7.2.1 Motivation

We have described the integration process carried out to include the developed systems
in the TTP environment. As such, the previously described schema is optimized
for maximizing throughout instead of single-sentence translation latency. While the
o�ine approach is adequate for many tasks that do not have strict time requirements,
there exists cases where an online system is needed.

The MLLP research group develops MT, ASR and Text-to-Spech (TTS) systems
with the goal of being able to produce educational content that is automatically
available in di�erent languages than the one they were recorded on. Recently, the
MLLP group has made advances in one-pass decoding for ASR [29], allowing the
development of online ASR systems of exceptional quality. As such, the development
of online MT systems and integration with the ASR step, would allow for real-time
multilingual subtitling of any arbitrary video stream.

We will now described the steps carried out in order to build an online MT system.

7.2.2 Architecture description

In the same way as the previously described o�ine case, when deploying a system in an
online way, we are concerned with the technical challenges involved in integrating our
model into a service that ful�ls the requirements of our use case in terms of e�ciency,
reliability, etc. There is signi�cant research interest in coming up with speci�c models
that exhibit features that make them more suitable for online deployments. However,
when carrying out this deployment, the underlying model and its computational graph
and weights do not change. In fact, for this section, we are going to use the same
systems that were developed in the previous chapters, but they will be deployed in
an online way.

Setting up the service as an HTTP REST endpoint provides maximum �exibility,
as any potential service that needs to call the online system can be easily adapted to
send the inference input in an HTTP POST request, and then receive the system's
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output in the response. This is a popular approach in the ML community, and a series
of di�erent model serving tools have been developed following this model. Some of
the most popular ones are Tensor�ow-serving3, MXNET-model-server4 and Clipper5.
As the underlying framework used by Sockeye is MXNET, we have elected to use
MXNET-model-server for our deployment.

Using a model server has a series of advantages. Fist, it controls all the tasks re-
lated to the web server itself, allowing us to focus on the models. On top of that, these
tools tend to o�er speci�c features tailored for deployment of ML models, such as au-
tomatic batching for requests made in a short interval of time. If one machine is not
enough to serve our needs, this approach can be extended by launching multiple in-
stances of the model server and using a load balancer to distribute incoming requests.
This enables deployments in both a private cluster and a public cloud environment.

In the case of MXNET-model-server, before using a model, we �rst need to package
it. For each model, we de�ne a service, which is simply a piece of code that receives
the data from a request, carries out the appropriate computations using the model,
and returns the response. The service jointly with the ML model (weights) and
any additional �les that might be required for inference, are all then packed into a
compressed �le using the model-archiver tool. The code for serving Sockeye models
is built upon one of the provided examples of the MXNET-model-server repository 6.

Once the model-server is started, di�erent models can be started and stopped
through a management API. Each model is assigned a di�erent HTTP endpoint,
which allows us to serve multiple models in a single model-server instance. You can
also modify the number of workers per each model.

The developed online MT service has then been integrated into an online speech
translation service of TTP, that combines both ASR and MT in order to carry out au-
tomatic multilingual subtitling of videos. Following a cascade model, one of the online
ASR systems developed by the MLLP research group [14] receives an audio stream
and outputs a text transcription. The ASR system itself incorporates a segmentation
model that divides the live transcript into segments. Every time a segment is emitted,
it is then sent to the appropriate online MT system, that returns a translation in the
desired language. The returned text is then rendered to be used as subtitles for the
video.

Figure 7.4 shows a screenshot of the application. The user �rst selects the lan-
guage of the input audio for the ASR step, and then, optionally, can select the target
language for which they want to obtain the subtitles. As for the audio itself, the user
can either upload a pre-recorded video, or can directly speak through their device's
microphone. Once the system begins transcribing, a channel is created in order to
return the results. Provided they know the password, other users can join the chan-
nel as well and receive the subtitles. This enables subtitling for public events and
seminars, where the speaker's voice is captured by a microphone, and the attendees
can, by joining a channel, follow the event by reading the subtitles written in their

3https://github.com/tensor�ow/serving
4https://github.com/awslabs/mxnet-model-server
5http://clipper.ai/
6https://github.com/awslabs/mxnet-model-server/tree/master/examples/sockeye_translate
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Figure 7.4: TTP online speech translation service. The screenshot shows
how the system generates English subtitles for a Spanish video.

own language.

7.2.3 Evaluation

We will now measure the performance of the online MT system. One key setting that
signi�cantly a�ects decoding speed is the beam size used during beam search 7, since
the bigger this parameter is, the more hypothesis kept in memory and tested at each
step of the decoding process. However, a bigger beam size might allow the model
to �nd a better translation that might otherwise have been pruned. It is therefore
desirable to �nd a balance between quality and speed that ful�ls the requirements of
our applications. In order to study the e�ects of these parameters, we have translated
3000 sentences belonging to the WMT14 test set, using the Transformer 3 GPU
English → French model described in Section 4.2.6. Table 7.1 shows the e�ect that
the beam size setting has on the quality of the generated translations and the speed
of the model.

The results show that there is an impact in translation quality and especially
speed depending on the selected beam size. The best BLEU score, 37.9, is achieved
with a beam size of 8. However, this is almost 3 times slower than using a beam
size of 1 (greedy search), in exchange for an increase of 0.8 BLEU. According to the
needs of our application, we have selected a beam size of 1, as we believe that a small
decrease in translation quality is worth it in exchange for a much lower latency. For

7In NMT literature, the search algorithm is usually referred to as beam search, but the actual
technique that is implemented during the search process is histogram pruning, not beam search.
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Table 7.1: E�ects of beam size in translation quality and speed, measured
on the WMT14 En-Fr test set, GPU batch decoding.

Beam size BLEU Total time(s)
1 37.1 129
2 37.6 177
4 37.8 201
8 37.9 355
16 37.8 606

Table 7.2: Translation time and average latency depending on the number of
worker processes, measured for the translation of 100 simultaneous sentences.

GPU CPU
# workers Total time(s) Avg. latency(s) Total time(s) Avg. latency(s)

1 41 3.18 359 27.69
2 24 1.85 185 14.32
4 17 1.32 105 8.24
8 19 1.48 83 6.50

other applications that do not have such strict time requirements, a beam size of 2 or
4 could also be interesting, in order to o�er better translations with acceptable time
delays.

Once we have selected the beam size, we move into evaluating the performance of
the online system under severe workloads. For this test, the online system will receive
100 simultaneous requests (each containing 1 sentence to be translated), and we will
measure the total time required to process them as well as the average latency time
of the requests. In order to carry out these tests, a machine with an i7-3820 CPU and
a GTX1080 GPU was used. We report results depending on the number of workers
that have been used and inference device. The results are shown in Table 7.2.

Using a single GPU worker, translating 100 sentences takes 41.6s with an average
latency of 3.18s/sentence. The time taken by the CPU worker is much higher, 359.0s
and an average latency of 27.69s/sentence. The di�erence is reduced as we increase
the number of workers. Even so, at the best possible con�guration, the GPU worker
has an average latency of 1.32s/sentence compared with the 6.50s/sentence of the
CPU version. Using the consumer-level hardware that we have available, one can see
that GPU inference is the clear winner. The performance of GPU inference decreases
if we increase the number of workers from 4 to 8, as all workers have to compete for
the resources of the single GPU.

The results shown on the table represent a worst-case scenario where the model-
server instance receives a spike of requests, which will inevitably mean that some
delays will appear. We will now measure the number of requests that can be serviced
without signi�cant latency. The latency for a single sentence is 0.8s for the GPU case
and 4.8s for the CPU case. Assuming requests that are equally spaced in time, the
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maximum amount of sentences that can be translated per hour by a single-worker
instance without additional latency would be 4500 sentences for the GPU case and
750 for the CPU case.

7.3 Conclusions

In this chapter we have studied the development of online MT systems. We have
described the need for online MT as well as the unique challenges that need to be
addressed in order to build e�cient systems. We have described the integration
process of an o�ine MT system into the TTP production environment. We have
then moved into the speci�cs of online MT, and how it di�ers from the o�ine case.
After describing the chosen architecture, we have carried out a series of experiments
in order to measure the e�ciency and performance of the developed system. As a
result of this work, we have obtained a general software solution for online MT, that
can be used in order to deploy NMT models in an online way. This allows us to use
the MT models that have been described in the rest of the work. The online MT
pipeline has been integrated into a speech translation service for TTP, that is able to
deliver quality real-time multilingual subtitles.
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Chapter 8

Conclusions

This chapter summarizes the tasks carried out during this work as well as the conclu-
sions and lessons we have obtained as a result of the previous process. Chapter 1 has
highlighted the importance of MT, and serves as an introduction to the theoretical
basics of this �eld. We have described the 3 di�erent approaches to MT: word-based
models, phrase-based models and NMT. Neural networks have also been described in
order to give the reader the tools required to understand the rest of the work.

Chapter 2 and 3 have described previous work carried out prior to this Master's
Thesis, in order to set-up the context of the experiments outlined in this document.
Chapter 2 introduces the Attention RNN and Transformer model architectures that
form the basis of the current state-of-the-art MT systems as well as practical NMT
issues. Chapter 3 reports our participation in the German→ English news translation
task of WMT18 as well as the data �ltering and processing techniques used.

In Chapter 4 we have described the MT systems developed for the language pairs of
the X5gon project. We have described the X5gon project itself as well as illustrating
the need for MT systems. Then, for each language pair, we have described the
collected data, experimental setups and evaluation results of the systems developed
for that language pair. The results have shown the adaptability of NMT architectures,
as we have developed systems across a variety of language pairs without requiring
speci�c changes to the model. At the same time, the results have also shown that a
lack of computational resources might prevent us from fully leveraging the power of
the Transformer architecture.

Chapter 5 describes our participation in the WMT19 Similar Language Transla-
tion Shared Task, where we have submitted systems for the Portuguese ↔ Spanish
language pair. We have compared the results of the Transformer and the 2D alter-
nating RNN model, a novel NMT architecture. The results shown that the 2D RNN
is not far from the Transformer model when the base models are evaluated. Due to
a domain mismatch between train and test data, we have then applied a �ne-tuning
step that obtains massive improvements in translation quality. The use of �ne-tuning
has allowed us to win both translation directions of the shared task.

Chapter 6 describes our participation in the WMT19 News Translation Shared
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Task, where we have submitted systems for the German ↔ English and French ↔
German language pairs. In order to �lter out the noisy data present in the corpora,
two �ltering techniques have been introduced and compared. Through the use of the
backtranslation technique, we were able to generate synthetic data from monolingual
text. The use of multi-GPU machines and gradient accumulation has allowed us
to obtain quality systems that obtain competitive results when evaluated with the
competition's test sets. The results con�rm our previous concerns about Transformer
model performance when using a batch size that is not big enough.

In Chapter 7 we have described the process of development and integration of
online MT systems. We have �rst described the integration of o�ine MT systems,
and we have then moved into the speci�c challenges of online MT. We have described
the architecture and design decisions required to achieve this goal, and we have carried
out experiments in order to measure the performance of the developed solution. The
online MT systems have been integrated into an online speech translation service for
TTP that is able to provide multilingual subtitles.

8.1 Future work

In terms of future work, our �rst goal is to continue working on developing systems for
the X5gon project. Apart from developing systems for new language pairs that might
be of relevance to the project, we also plan to revisit already existing language pairs,
by leveraging our �ndings from both the Similar and the News WMT19 Translation
tasks. This includes generating additional synthetic data as well as using bigger batch
sizes and taking advantage of multi-GPU machines for all language pairs. In addition,
signi�cant increases in translation quality could be obtained by carrying out domain
adaptation.

In this work, the problem of speech translation has been tackled from a cascade
approach, where the ASR and MT systems are independent. In order to obtain
improvements in this area, there are many avenues to explore, from adding ASR-like
noise in order to improve robustness of MT systems, to speci�c MT models that are
able to leverage information from the ASR decoding process, such as receiving the
list of n-best transcriptions. Instead of a cascade approach, we can also use end-to-
end systems, that handle both transcription and translation in a uni�ed way. The
generation of new Speech Translation corpora would also help to improve results by
allowing us to use more training data and to learn speech translation as an end-to-end
task.

8.2 Contributions

The work included in this Thesis has resulted in the following scienti�c publications:

• Pau Baquero-Arnal, Javier Iranzo-Sánchez, Jorge Civera, and Alfons Juan. The
MLLP-UPV Spanish-Portuguese and Portuguese-Spanish machine translation
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systems for WMT19 similar language translation task. In Proceedings of the
Fourth Conference on Machine Translation: Shared Task Papers, 2019

• Javier Iranzo-Sánchez, Gonçal V. Garcés Díaz-Munío, Jorge Civera, and Alfons
Juan. The MLLP-UPV supervised machine translation systems for WMT19
news translation task. In Proceedings of the Fourth Conference on Machine
Translation: Shared Task Papers, 2019

• Javier Iranzo-Sánchez, Pau Baquero-Arnal, Gonçal V. Garcés Díaz-Munío, Adrià
Martínez-Villaronga, Jorge Civera, and Alfons Juan. The MLLP-UPV German-
English machine translation system for WMT18. In Proceedings of the Third
Conference on Machine Translation: Shared Task Papers, pages 418�424, Bel-
gium, Brussels, October 2018. Association for Computational Linguistics

Apart from the previously listed publications, some passages have also been quoted
verbatim from the author's B.S. Thesis [25].
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