UNIVERSITAT POLITECNICA DE VALENCIA
DEPARTAMENT DE SISTEMES INFORMATICS I COMPUTACIO
MASTER’S THESIS

UNIVERSITAT
POLITECNICA
DE VALENCIA

Online Multilingual Neural Machine Translation

Master’s Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

Javier Iranzo Sanchez

Supervised by:
Dr. Jorge Civera Saiz
Dr. Alfons Juan Ciscar

Experimental director:
Dr. Adria Giménez Pastor

July 13, 2019

Introduction

1.1 Motivation
1.2 Machine Translation
1.3 Framework of thiswork
1.4 Document structure

Neural Machine Translation

2.1
2.2
2.3
2.4
2.5

Attention-based RNN NMT models.
Transformer Self-Attention NMT models
Practical issues
Computertools
Conclusions

Translation systems for WMT18: News Task

3.1
3.2
3.3
3.4

Data processing and adquisition.
RNN-Attention systems
Transformer systems
Conclusions,

Translation systems for X5gon

4.1
4.2
4.3

The X5gon project
Translation of OER
Conclusions

Translation systems for WMT19: Similar Task

5.1
5.2
5.3
5.4
5.5
5.6

Introduction
2D Alternating RNN
Baseline systems
Fine-tuning
Comparative results
Conclusions

Translation systems for WMT19: News Task

6.1
6.2
6.3
6.4
6.5

Introduction
Data preparation
System description
Experimental evaluation
Conclusions

iii

CONTENTS

33

............. 33
............. 37
............. 39
............. 45

47

............. 47
............. 47
............. 53

55

............. 95
............. 95
............. 57
............. 99
............. 61
............. 62

Contents

7 System Integration and Online MT 71
7.1 System integration into a transcription and translation platform . . . 71
7.2 Development of Online MT systems 75
7.3 Conclusions L 79

8 Conclusions 81
81 Futurework 82
8.2 Contributions 82

1v MLLP-DSIC-UPV

CHAPTER 1

INTRODUCTION

This work studies and compares different solutions to the problem of Machine Trans-
lation (MT), with the aim of obtaining a system that is able to produce accurate
translations in an efficient way. The techniques presented in this work have been
applied in order to develop MT systems for a variety of language pairs in an online
context, that allows the possibility of providing live translations.

This chapter introduces the motivation and context of this work, as well as the
key concepts that will be necessary for the reader to understand the rest of this work.

1.1 Motivation

Due to recent technological developments, the idea that machines could be able to
automatically generate translations has become a reality. A few years ago, most
people did not imagine that MT systems that achieved good performance in a variety
of domains could be developed in a short period of time. And yet, thanks to the
combination of a series of research developments coming both from the academia and
the industry, the performance of MT systems has surpassed many of its previously
believed limits. While there are still many challenges and research areas to explore,
we are now at a moment where MT has achieved a level of performance that makes
it possible to leverage this technology in a variety of ways that were not possible
until now. This opens up new avenues for the development of systems that are able
to provide cheap solutions for the translation of massive amounts of text, either as
standalone systems or as a tool to reduce time for human translators. The importance
of this technology and the business value that it can bring has not been ignored by
key technology players. Nowadays, all technological giants such as Google!, Facebook

Thttps://translate.google.com

Chapter 1. Introduction

2. Microsoft®, eBay* and Amazon® have all developed their own MT systems that
they use in their day-to-day operations, and some of them also offer the use of those
translation systems to their clients. Many organizations have adapted their processes
to use MT services in order to translate massive quantities of text as required by their
business needs. In a way, it can be said that MT is quickly becoming ubiquitous, and
this trend will continue to increase in the future as new research developments continue
to improve the quality and reduce the cost of generating these automatic translations.

1.2 Machine Translation

MT can be seen as an application of Pattern Recognition that seeks the development
of computer systems that are able to automatically translate texts. When given a
sentence, the system should produce a good translation of it into another language,
with the goal of preserving the original meaning as much as possible.

Formally, given a sentence in one language, x = x1,zs ...,z , the goal is to find
the best translation, that is, the y = 41,92 ...,y that maximizes p(y|x).®

This probability is learned from parallel corpora, collections of text that contain
sentences in one language paired with their translations into another language. Unlike
monolingual text, that is available in places such as books, articles, and websites,
parallel data is a much scarcer resource that can be difficult to obtain for certain
language pairs. It is vital to obtain as much parallel data as possible in order to train a
system that achieves good performance. Other important aspects are the data quality
and the domain. One source of such parallel data is the Opus’ project, that provides
free access to a series of open source corpora. The Opus website hosts the data for
dozens of language pairs, and is a good starting place for obtaining parallel data.
The parallel data is then used by the model to obtain the appropriate translation
knowledge. The system is presented with sentences from the source language (the
language we are translating from), and their translations into the target language
(the language we are translating into), and learns the relationship from there. This
means that we obtain systems that are able to translate only from one language into
another, for example, from Spanish into English, but we would have to train another
system to translate from English into Spanish.?

The same way that in the general case, it it usual to decompose the translation
probability using Bayes’ rule:

p(x|y)p(y)
p(x)

Zhttps:/ /code.facebook.com/posts/289921871474277 /transitioning-entirely-to-neural-machine-
translation/

Shttps://www.microsoft.com/en-us/translator

4http://labs.ebay.com/research-areas,/research-machine-translation

Shttps://aws.amazon.com/es/translate/

61t is common to use the letters f and e instead of z and y in MT texts, both notations are
equivalent.

Thttp://opus.nlpl.eu/

8There exists research both for training multilingual models and for unsupervised learning, but
they both remain open research areas.

p(ylx) = (1.1)

2 MLLP-DSIC-UPV

1.2. Machine Translation

One can imagine that a sentence was originally written in the language we want,
but it somehow got corrupted along the way, and we ended up with a sentence in the
source language. This means, that for some possible translation y the probability of
that sentence being the translation, p(y|x) can then be interpreted as the probability
that the sentence was the one that was emitted originally, p(y), multiplied by the
probability that this sentence was disrupted and became the sentence in the source
language, p(x|y). This model is known as the noisy-channel model [57], p(y) as the
language model, and p(x|y) as the translation model.

Learning a conditional probability distribution for translations is not enough for
a fully functional MT system, since by itself, knowing how good of a translation is a
certain sentence does not provide us enough information to know if it is the best one,
as there could be others that are much better. Our ideal goal is to find a translation
¥ such that:

~

y =arg m;txp(y)p(XIY) (1.2)

As in the previous case, we have dropped p(x) from the equation since it does not
depend on y.

We require an additional step, known as decoding, that tries many possible trans-
lations in order to search for the best final translation. Since there are infinitely many
possible translations in the search space, the search is carried out only in a subset of
this space, with the hope that the best translation, or at least one that is good enough,
is present on that subset. Techniques such as stack decoding [20] or beam-search [28]
are used to carry out this task.

The following sections explain the main three models that have been historically
used in MT: word-based models, phrase-based models and neural network models.
The models are explained in chronological order.

1.2.1 Word-Based Models

Translation model

Word-based models [8, 9] estimate the translation probability by assuming that trans-
lations are produced by individually translating each word of the sentence. We will
now explain a word-based model known in the literature as IBM-1. Due to the ap-
plication of Bayes’ rule, the translation direction has been inverted, but we will refer
to x as the source sentence and y as the target sentence in order to maintain co-
herence with the nomenclature used in the rest of this work. This model uses two
main concepts, a lezical translation model, that gives the probability of each possible
translation for a certain word, and an alignment. An alignment indicates, for each
of the source positions, which is the target position that corresponds to the word
they are a translation of. We can imagine this alignment as a function that returns a
position 4 for every position j given as input.

A word-based model for producing a translation x given an input sentence y can
be defined as:

p(xly) = p(x aly) (1.3)

MLLP-DSIC-UPV 3

Chapter 1. Introduction

a is an alignment vector that indicates, for each of the source words, which is the
target word that produced them. If a; = n, it means that the word in position j is a
translation of the target word in position n. A NULL token is appended to position
0 of the target sentence to allow for source words that are not aligned with any of
the other target words. The alignment vector provides us with a mapping that we
can consult in order to know which is the target word that corresponds with a certain
source word.

For some fixed alignment a and target sentence y, the probability of a translation
x is defined as:

J J
-1 -1 -1 j—1 -1 j
p(x,aly) = [[p(zj. a5la a7 y) = [] plaglad ™ ad ™Y y)p(z;lal ™" o, y)
j=1 j=1

(1.4)
We are going to make a series of assumptions in order to compute this probability.
First, we assume that the alignment probability between target and source words is
given by a uniform probability distribution:
j—1

i 1
p(aj|le laal ’y)'

= (1.5)

Additionally, and because we are working with a word-based model, we assume
that the translation of each word of the source sentence only depends on the corre-
sponding target word it is aligned to.

p(xilal ™ al,y) == p()]ya,) (1.6)

The previous two assumptions allow us to obtain a simplified computation for
Equation 1.4:

J
px.aly) = 13] plslon,) (1.7
j=1

Provided with an alignment for every sentence, we can estimate the lexical translation
probabilities for pair of words by counting the number of times it has been translated
and normalizing the results:

N(u,v)
ulv) = =——+——
p(|) Zu/ N(u',’U)
where N (u,v) is a count function that computes the number of times a word v has

been translated as w. For a single sentence pair and its alignment vector a, this
function is computed as:

(1.8)

J

N(u,v) =Y d(x; = u)d(ya, = v) (1.9)

Jj=1

The previous function can be extended to a corpus containing N parallel sentences
in a straightforward way. The problem is that our parallel corpus does not provide us

4 MLLP-DSIC-UPV

1.2. Machine Translation

with an alignment between words, so we can not directly compute the lexical transla-
tion probability. In this case, the alignment acts as a hidden variable. The parameters
of the model (the lexical translation probability distribution) can be trained with the
expectation maximization algorithm (EM) [15], an iterative algorithm that computes
an estimation of the alignment on each step.

Once we have obtained our translation probability distribution, the probability of
translating an entire sentence, p(x|y), can be computed as:

J I
p(xly) = I+ T 11> pt;ly:) (1.10)

j=11=1

Language model

A language model estimates the a priori probability that a sentence occurs in a lan-
guage, pra(y)-

The inclusion of a language model provides a MT system with information about
the expected structure of sentences in a certain language. This addition means that
the system has some knowledge about what a "proper" sentence in that language is,
and this can provide a more fluent output and help to decide in case of ambiguities
in translation.

As far as language models are concerned, a sentence is made up of words, so one
initial approach to language modelling consists in using the chain rule to decompose
the probability of a sentence.

I
pear(e) = [p(wilyg™) (1.11)
i=1

In practice, this theoretical assumption is not used due to the exponential growth of
possible histories. One option in order to avoid this exponential growth is to make
the assumption that a word only depends on the n preceding words, therefore:

p(yilye™") = p(yilyi (1) (1.12)

This model is known as the n-gram model, and it has a very simple estimation based
on counting the number of appearances of sequences of n-words.

. N(yi—(n—1)7 e Yie1, i)
POV (n1) = =70, :
Zv (yzf(nfl)a s Yi—1, U)

Language models are usually evaluated in terms of perplexity computed over a
text y1, Y2, .., Yn-

(1.13)

PP — 2*%10gp(ylyy27---,yn) (1.14)

The perplexity is a estimation on how many different words on average can follow
a given word according to the language model. The lower this number is, the more
confident the model is about what the next word will be.

MLLP-DSIC-UPV 5

Chapter 1. Introduction

src: ’ @-@ jahriger ‘ ’ Koch ‘ ‘ in San ‘ ‘ Francisco ‘ ’ Mall ‘ ’ tot \ ’ aufgefunden ‘
tgt: [the 28 ‘@—@ year @-Q old ‘ ’ Koch ‘ ‘ in San ‘ ‘ Francisco ‘ ‘ mall ‘ ’ found ‘ ‘ dead . ‘

Figure 1.1: Example of the phrase segmentation used by a SMT model when
translating sentence from the WMT corpus.

1.2.2 Phrase-Based Models

Phrase-based models [37] translate sentences by decomposing them into phrases, a
small set of contiguous words, and translating each of those phrases in order to obtain
the translated sentence. Words can only belong to a single phrase, so there is no
overlap between phrases. The use of phrases as the basic unit of translation instead
of words allows these models to achieve greater performance, and until the arrival of
neural-based systems, they were the state of the art.

Figure 1.1 shows the phrase segmentation selected by a phrase-based model built
using the Moses toolkit [35], for the translation of a sentence from German into
English.

Log-Linear Models

We have previously used Bayes’ rule in order to split the computation of p(z|y) into
two parts. However, it might be beneficial to consider more components for our
model, even if their inclusion can not be mathematically justified. For example,
in phrase-based models, the translation model is further split into two models, the
lezicon translation model, a measure of how good is the translation of a phrase, and
the reordering model, that tells us how likely it is that the translated phrases are
ordered that way.

Log-linear models are models whose logarithm equals a linear combination of a
set of feature functions of the model, h;, that depend on a random variable R.

p(R) =exp > _ A;hi(R) (1.15)
i=1
A combined model that assigns weights to the different components,

p(y[x) = pe(x|y) pr(x[y) pra (y) M (1.16)
is equivalent to a log-linear model defined as:

e R = (z,y, start,end)

en=23
o iy :pt(X|Y)
o hy :pr(Xb’)

6 MLLP-DSIC-UPV

1.2. Machine Translation

o hy=pru(y)

Treating the translation model as a log-linear model opens up the possibility of
including additional feature functions that we might find useful for translation. We
will now describe each one of the three components that form the basic phrase-based
model:

Language model

The language model is independent of the translation model, so the same explanation
used in the word-based model applies to the phrase-based model.

Translation model

For a certain segmentation of x into I different x; phrases, the translation model is
defined as:

I
pe(El|yl) = H¢(fz‘|§i) (1.17)

¢(x;|y;) is a phrase translation table that scores the goodness of a translation. This
table is estimated in a two step process. Given a corpus, we first extract a series of
correct phrase pairs for each sentence pair. Once we have obtained all those pairs, we
estimate the transition probability for a pair based on the number of times that pair
has been extracted, defined as N(Z,7), and normalize the result.

$(elg) = W)
Zx’ N(x Vy)
The concept of what constitutes a correct phrase pair, meaning one that is consistent
with a given word alignment is outside the scope of this work. We refer interested
readers to chapters 4 and 5 of [34] in order to learn more about word alignments and
phrase extraction.

(1.18)

Reordering model

Each phrase in the source sentence is translated into another phrase in the target
language, but this does not mean that the target phrases must appear in the same
order, as sometimes it is better to alter their order to better convey the meaning of the
sentence. The reordering model is in charge of estimating this reordering probability.

pr(Z1|71) Hd start; —end;—1 — 1) (1.19)

The reordering function d is computed with respect to the distance between the start
of phrase i (start;) and the end of the previous phrase (end;_1), computed in the
source sentence.

One possible definition for d is that of an exponential decay function, d(x) = al®,
in order to penalize bigger movements.

MLLP-DSIC-UPV 7

Chapter 1. Introduction

1.2.3 Neural-Based Models

This section briefly introduces the basic concepts of neural networks. Readers are
recommended to consult chapter 6 of [19] in order to gain a more profound under-
standing.

Neural networks started being applied to MT quite recently, but they are not a
new technology. The Perceptron[51], precursor of the neural network, was introduced
in 1957, and the backpropagation algorithm [52] that allowed the training of multi-
layer neural networks was introduced in the 1980’s. Since then, these models have
been applied to a variety of Pattern Recognition problems.

In contrast with phrase-based models, Neural Machine Translation (NMT) models
do not decompose p(y|x) using Bayes’ rule, instead they estimate it directly.

The most basic type of neural network is the multilayer perceptron (MLP). The
MLP is a feedforward neural network (whose nodes do not form cycles), and is the
most commonly used model in almost all types of classification problems. These
models are made up of an input layer, a variable number of hidden layers and an
output layer. Each layer applies some computation to the outputs of the previous
layer, and this result is then used by the next layer. We will now describe the equations
governing how an MLP functions.

The first hidden layer receives as input the feature vector x:

h® = g W Dx +bD) (1.20)

For the other layers, the output of a hidden layer i is computed as:
h® — g(i)(W(i)h(i—l) 4 b(i)) (1.21)

where W) is the weight matrix of the layer and b(® is the bias term of the layer.
g is the activation function of the layer, and this is usually a non-linear function
that allows the model to learn non-linear relations. The input to the function g¢(.) is
sometimes denoted as a.

The output layer is in charge of applying a transformation to the set of features
produced by the hidden layers in order to obtain the final result of the computation.
For example, in the case of a classification problem, the output layer produces a
probability distribution over all possible classes by applying a softmax function.

exp(z;)
softmax(z); = =———— 1.22
(2) S exp(z) (1.22)
plc|x) = softmaz(WEHh@) 4 ploud)y (1.23)

The set of weight matrices and biases that define the parameters of the model ()
is iteratively trained by using gradient descent and the backpropagation algorithm
[52]. Gradient descent is an iterative technique that performs an optimization with
respect to a cost function, J(8), that measures the performance of the parameters of
our model with respect to the training data. On each step, we subtract the gradient
of the cost function with respect to the parameters.

8 MLLP-DSIC-UPV

1.2. Machine Translation

00— aVeJ(0) (1.24)

being « the learning rate or step size that controls how big is the update we make on
each step. Because the cost function is usually defined as computing the average of a
loss function over each of the training samples, this computation becomes unfeasible
when dealing with big datasets. That is why it is common to use minibatch gradient
descent instead, where we compute the cost function with regards to a small subset
or minibatch of the training data. Conceptually, this can be understood as updating
the parameters with a noisy estimation of the gradient.

0 60— a(Ve(0)+e) (1.25)

The previous explanation applies to the architecture and training of any neural
network, but we will now introduce a special type of neural network that is better
suited for MT. Because we are working with sequential data, it is desirable to use
a network that is able to model dependencies between words. Recurrent Neural
Networks (RNN) are a type of neural networks that are specialized in working with
sequential data. These networks compute a state that depends on the state on the
previous time step. The equation for the hidden layer of a basic recurrent network at
time ¢ is given by:

h() = gOWORIY L UORD, + b)) (1.26)

Compared with Equation (1.21), the difference is the addition of weight matrix
U, that controls the effect of the previous state.

Even so, learning long-term dependencies is very hard, due to the gradients’ ten-
dency of either becoming infinitesimally small or exponentially big due to the ap-
plication of the same weight matrix over multiple time steps. This is know as the
gradient vanishing or gradient explosion problem, and is studied in more detail in
works such as [23]. In order to fight this problem, the use of special units that are
better suited for this task, such as the LSTM unit [24] has become standard. The
hidden layer output for these networks depends not only on hgi_l) and hg?l, but also
on an internal state c; that can store values between each time step.

Having explained the basics of neural networks, we can are now ready to move
on to how they are applied to MT in what is known as Neural Machine Translation
(NMT). NMT systems are explained in detail in Chapter 2.1.

1.2.4 Computational graphs

As explained in Section 1.2.3, the weights of a neural network are usually trained
by gradient descent using the backpropagation algorithm. This means that for each
training step, we need to compute the derivative of the cost function with respect to
each variable of our model. Because this is one of the most time-consuming parts of
the training procedure, it is interesting to have tools that make this process as easy
as possible.

MLLP-DSIC-UPV 9

Chapter 1. Introduction

Figure 1.2: Computational graph representation of the operations carried
out in one of the hidden layers of a neural network.

In order to compute these derivatives in an easy and efficient way, libraries such as
PyTorch and MXNet internally define models as a computational graph. A compu-
tational graph is a directed graph composed by a series of variables, each represented
by a node, and operations between those variables. The operations are represented
with the help of edges, so that a node with incoming edges defines an operation (or
function) over the input variables. Nodes usually define simple operations such as
the sum or multiplication of its inputs. The combination of different operations,
whose input is usually the output of a previous node, allows the definition of a graph
that represents a set of mathematical computations and the existing dependencies
between them. Additionally, computational graphs offer an explicit representation
that helps avoid many kinds of ambiguities that can occur when trying to understand
a mathematical process. Figure 1.2 shows an example of one computational graph
that represents the computations carried out in the layers of a neural network.

We can take advantage of these graphs in order to facilitate processes such as
training Machine Learning (ML) models. The definition of a model as a series of
simple operations enables fast parallel computation of the model’s output, since the
edges define the existing dependencies between operations. The user is therefore freed
from the burden of needing to manually define the execution order for its model. Fur-
thermore, if each operation also defines how to compute its derivative with respect to
each of its inputs, the backpropagation algorithm can be applied in an straightforward
way.

Both PyTorch and MXNet offer a graph language that already defines a series of

10 MLLP-DSIC-UPV

1.2. Machine Translation

different mathematical operations and their respective derivative computation. This
allows us to use any arbitrary model just by defining its model graph according to
the language definition of the chosen library.

1.2.5 Evaluation of results

The question of how to best assess the translation quality of MT systems remains
open. Manual evaluation, that is, evaluation made by humans about the quality
of the translated text, could very well be the best evaluation measure, but it has
the disadvantage of needing a human to carry out the task. Carrying out manual
evaluations every time we define a new system configuration and translate a large
amount of test sentences quickly becomes unfeasible.

This has given rise to search for automatic evaluation metrics that are ideally
correlated with human judgement. Automatic evaluation is carried out by comparing
the output of a system with a reference translation produced by a human. The
most basic evaluation metric is the precision, the ratio between correct output words
(shared words between the system output and the reference translation) and the
number of words present on the output sentence. The problem with this metric is
that it does not penalize short sentences and therefore can be easily fooled ?. A
better evaluation measure that takes the idea of precision into account together with
hypothesis length is the Bilingual Evaluation Understudy (BLEU) [44] score. The
BLEU score computes a modified precision, p,, at different n-gram levels. Unlike
regular precision, the clipped-precision used by the BLEU metric requires that an
n-gram appears the same number of times both in the reference translation and in
the candidate translation. If a certain n-gram appears more times in the candidate
than in the reference, it will only be counted as correct as many times as it appears
in the reference.

N
1
AveragePrecision(N) = N Z log py, (1.27)
n=1

This score also includes a Brevity Penalty term that is detrimental if the length
of the candidate translation (c) is smaller than the length of the reference (7).

1 ife>r

exp(1l — E) vife<r (1.28)

BrevityPenalty = {

The usual definition of the BLEU is calculated over the concatenation of all test
sentences, and is usually computed up to n-grams of order 4, such that:

BLEU(4) = BrevityPenalty x+ AveragePrecision(4) (1.29)

The final result is a value ranging from 0 to 1, higher values are better. The value is
usually multiplied by 100 to obtain better readability.

9A system that emitted the translation "the" for any given input sentence would achieve an
unusually high precision, since "the" is the most common English word. [34]

MLLP-DSIC-UPV 11

Chapter 1. Introduction

Another common automatic evaluation measure is the Translation Error Rate
(TER) [58]. The TER measures the number of edits required to transform the candi-
date hypothesis into the reference, divided by the number of words in the reference.

Number of required edits
TER = 1.30
Length of the reference ()

The available type of edits are:

e Insertion of a word

e Deletion of a word

e Substitution of a single word by another

e Movement of a block of contiguous word to another part of the sentence

The optimal number of edits is approximately computed with a greedy algorithm.
Since this is a score that measures how many edits are required, lower scores of TER
are better. As in the case of BLEU, the value is usually multiplied by 100 when being
reported.

Both measures should be evaluated with tokenized reference and hypothesis (See
Section 3.1). Ideally, we want to use an agreed-upon tokenization, in order to be
able to measure them consistently across works carried out by different authors. This
can be achieved by using a tool such as SacreBLEU [48], that carries out a standard
tokenization without user intervention. In case this is not possible (for example,
because the detokenized version has not been made public), we have to rely on tools
that use a user-supplied tokenization such as multi-bleu from Moses.

1.3 Framework of this work

This work has been made possible thanks to author’s research position at the Machine
Learning and Language Processing (MLLP) research group of Universitat Politécnica
de Valéncia (UPV). The research leading to these results has received funding from
the European Unions Horizon 2020 research and innovation programme under grant
agreement no. 761758 (X5gon). The work explained in this document was carried
out during UPV’s participation in this project.

1.4 Document structure

This document is organized into 7 chapters. The first chapter serves as an introduction
to the field of Machine Translation, how MT systems work and how they are evaluated.
The motivation of this work has also been introduced.

Chapter 2 introduces the principles behind Neural Machine Translation. We de-
scribe the current NMT architectures, Attention-based RNN and Transformer, as well
as outlining some practical issues for training NMT models. Chapter 3 describes the

12 MLLP-DSIC-UPV

1.4. Document structure

experiments performed for the WMT18 competition, using the previously described
architectures. These experiments have been used as a starting point point for the rest
of experiments described in this Master’s Thesis. Chapter 4 introduces the X5gon
H2020 project and describes the data, techniques and architectures that have been
used in order to develop MT systems for language pairs that are relevant to the
project. Chapter 5 and 6 describe the work carried out for two translation tasks
of the WMT19 competition. They describe the systems developed for the Similar
Language Translation Task and for the Online News Translation Task, respectively.
Chapter 7 describes the work carried out in order to integrate the translation systems
obtained as output of the previous process into a live production environment. Addi-
tionally, the case of implementing online NMT systems, as well as the challenges that
this brings, is studied in detail. The work finishes with an overview of the different
conclusions that have been obtained as a result of this project as well as a summary
of the work carried out, available on Chapter 8.

MLLP-DSIC-UPV 13

Chapter 1. Introduction

14 MLLP-DSIC-UPV

CHAPTER 2

NEURAL MACHINE
TRANSLATION

This chapter offers a detailed description of Neural Machine Translation and its cur-
rent architectures. This is done in order to describe the theoretical background re-
quired for understanding the rest of the work. We will describe two of the most
relevant architectures: Attention-RNN and Transformer, as well as the practical is-
sues faced and computer tools used for training NMT systems.

2.1 Attention-based RNN NMT models

This section describes the RNN Attention-based model. We start with a general
description of the components that form the basis of any modern NMT system. Once
those concepts have been introduced, we describe the theoretical model behind the
Attention-based model, how it relates with the previously described approach, and
its corresponding architecture.

2.1.1 Overview of NMT models

The basic principles behind neural networks have been introduced in Section 1.2.3.
Those concepts are common to all use cases of neural networks, and serve as a starting
point for building systems with different applications. This section introduces the
specific considerations adopted for building NMT systems.

One of the first specific decisions that need to be made in MT, and in general
most applications of Natural Language Processing, is how to consume the input data,
which is made up of words, and obtain a numerical representation that can be used by
the neural network, because these systems and associated training procedures work
with numerical data. The solution adopted in NMT is to first code the words as one
hot vectors, a vector of a dimension equal to the number of words in the vocabulary,
whose values are all 0 except for the dimension of that word. Because these vectors

15

Chapter 2. Neural Machine Translation

usually have a very high number of dimensions, the vectors are then multiplied by a
word-embedding matrix, E, that condenses this representation into a lower number
of dimensions. A desirable property for this embedding is that they represent similar
words (or words with similar meanings) with similar embeddings. A similar process is
applied to the output of the last hidden layer of the network. In order to transform the
output of the last hidden layer of the network into a vector of the same shape as the
output vocabulary, the hidden representation is multiplied by an output embedding
matrix F,. In contrast with other NLP applications, in NMT the embedding matrices
are considered parameters of the model that need to be learned, and are trained with
the rest of the model using gradient descent.

Previous attempts at using neural networks for MT, such as [13], used the output
of the NMT system as an additional feature for a phrase-based model, following
the log-linear framework explained in Section 1.2.2. Those systems played only a
small part in a model that combined many different features, most of them usually
trained independently of each other. The first stand-alone NMT system that obtained
competitive results was the RNN-Attention model [4], whose main contribution was
the introduction of an attention mechanism.

On its most basic form, a NMT system has an architecture that contains an en-
coder neural network, a decoder neural network and, optionally, an attention mecha-
nism, although the last component is mandatory if one wishes to obtain a competitive
system.

The encoder component is a recurrent neural network, tasked with producing a
representation of the input sentence, that will be then used by the rest of the system
for obtaining the translations. This component is usually a recurrent neural network
with hidden layers of LSTM|[24] or GRU[13] units, and the representation produced
by the encoder consists in the hidden state of the encoder neural network. Our hope
is that, once trained, this encoder extracts a good representation c; of the meaning of
the input sentence, also called context vector. The context vector will be then used
as the basis for producing the output translation.

The decoder recurrent neural network receives the encoded representation of the
input sentences and emits the output words one at a time. This decoder is usually
autoregressive, that means that the choice of which word is emitted depends not
only on the encoded representation, but also on the previously word emitted by the
decoder. This way, the decoder is in fact acting in a similar way to a language model.
Both the encoder and the decoder are jointly trained.

Although here we have described the encoder and the decoder as RNN since they
were used in the first approach to this problem, that is only one of the available
options. The encoder-decoder architecture, or in its general form of sequence-to-
sequence models, does not restrict us to use only one specific type of encoder/decoder
component. In fact, as we will see later in Section 2.2, there are alternative proposals
that use components that differ from a RNN. The encoder-decoder framework simply
uses some sort of encoder component, that extracts a representation from the input
sentence, and a decoder component that uses that representation in order to produce
the output.

16 MLLP-DSIC-UPV

2.1. Attention-based RNN NMT models

hl h2 hj hJ

T T2 €Lj Tj

Figure 2.1: Encoder

2.1.2 RNN-Attention

Having described the basic building blocks of a NMT system, we will now explain in
detail the architecture of the RNN-Attention model [4]. Figure 2.1 shows a represen-
tation of the encoder component.

The encoder is a Bidirectional RNN (BiRNN) formed by two individual Recurrent
Neural Networks, one forward and one backward. The only architectural difference
between these two networks is that the forward one reads the input sentence in order
(from z; to x), and the backward network reads it starting from the end (from z; to

x1). When reading input word z;, each network emits a representation or encodlng
for that word. Therefore, for each word, we obtain a forward representation h and a
backward representation h The two representations are then concatenated together
to obtain the final representatlon for each word, so that the representation of a word
contains information about both preceding and following words, in order to preserve
as much meaning as possible.

— —
hj = fenciforward(hj—lvxj) (21)
%
hj = fencibackward(ﬁj'«#lu Xj) (22)
—
h; = [h;; h;] (2.3)

The type of function implemented by the encoder depends on the type of RNN
unit selected to form the hidden layer, and the same holds true for the hidden layer
of the decoder. As previously mentioned, usual choices are either LSTM[24] or GRU
[13] units.

This information produced by the encoder will be then used by the decoder to
output the translation. Figure 2.2 shows the structure of the decoder component.

The decoder is a unidirectional RNN that maintains an internal state, s;, that is
updated after each step by a function that depends on the previous state s;_1, the
last word emitted y; 1 and a context vector c; that will be explained later.

Si = fdec(Si—1,¥i—1,Ci) (2.4)

MLLP-DSIC-UPV 17

Chapter 2. Neural Machine Translation

Sq

Cis Yi—1

Figure 2.2: Decoder

I

hl hQ hj]’LJ Si—1

Figure 2.3: Alignment (Attention)

Attention Mechanism

Up to now, the components we have seen present a challenge in how to properly encode
the information of the source sentence. Because the input to the neural network must
be a fixed-length vector, we are forced to encode all input sentences, no matter their
length, using a vector with a fixed size. This also means that the input representation
remains constant during the decoding process. The context vector was traditionally
considered to be the final state of the encoder network, hr. It has been shown that
the translation quality of these systems quickly degrades when having to produce
translations for long sentences.

The introduction of an attention mechanism allows us to feed the decoder network
with a potentially different context vector for each time step. This allows the decoder
to receive a representation that is more suitable for choosing what is the next word
to produce. For example, it would be beneficial to stop receiving information about
parts of the input sentence whose meaning has already been translated and provide
no further useful information. The attention mechanism allows us to do exactly that
by producing the context vector, c;, fed to the decoder. Figure 2.3 illustrates how the
context vector c; is produced.

An attention function is described by [62] as a function whose arguments are a

18 MLLP-DSIC-UPV

2.1. Attention-based RNN NMT models

query, q, and a set of key-value pairs, grouped into matrices K and V', and whose
output is a weighted sum of the values. The weights for each value are computed by
a compatibility function between its key and the query.

ci = a(jli)V; (2.5)

J
a(jli) = softmax(attention(q, K)), (2.6)

In NMT, we compute the context vector as the weighted sum of the different
encoder representations at each time step. The generic attention mechanism described
in Equations (2.5) and (2.6) can be specified to produce a context vector at a generic
step ¢ from a series of encoder representations hq,...,hy by using the decoder state
as the query and the encoder representations as key-value pairs. Therefore, q = s;_1,
K; = hj, and V; = h;, leaving us with:

ci =Y _a(jli)h; (2.7)

J
attention(s;_1,h;) = v tanh(Wys,_1 + U,h;) (2.8)

where v,, W, and U, are the different trainable weights of the attention mechanism.

This allows us to obtain a representation of the input sentence that assigns more
weight to the appropriate parts for translating each part of the sentence. This vector
is the weighted sum of the different encoder representations at each time step. In
fact, these «(j]i) can be interpreted as acting as an alignment. At each time step
i, a(j|i) can be understood as the probability that the target word at position i is
aligned with the input word at position j.

The compatibility function of Equation (2.8) is known as additive or Bahdanau
attention. Later works have proposed different scoring functions, such as the dot-
product attention of [41], that computes the scoring function as:

attention(s;—1,h;) = s_,h; (2.9)

The advantage of the later approach is that the attention mechanism does not
contain any parameter and works only by computing the dot product between the
query and the key.

The output layer of the decoder component emits the probabilities for each possible
word to be produced. First, a feedforward layer is applied, whose inputs are the
context vector, the state of the decoder at the previous time step, and the last emitted
word, y;_1, that is supplied to the decoder by applying an additional embedding
matrix, Fgecoder, sometimes called target embedding. Then, a softmax function is
applied in order to obtain the probability distribution over the target words.

p(yilsi, yi — 1,¢;) = softmax(femiss(Si—1,¥i-1,¢:)) (2.10)

MLLP-DSIC-UPV 19

Chapter 2. Neural Machine Translation

The use of RNN components as the elements of the encoder and decoder com-
ponent, with the addition of the attention mechanism for computing the appropri-
ate context vector, are the basic implementation of the encoder-decoder framework.
These techniques, in combination with the processing steps such as BPE explained in
Section 3.1, form the basic NMT system.

2.2 Transformer Self-Attention NMT models

The Transformer [62] architecture is a recently introduced architecture that replaces
recurrent layers by a new type of layer, Self-Attention layers, as well as a series
of architectural changes in both the encoder and decoder components. This model
achieves significant improvements in both speed and quality of translations, and is
currently considered the state of the art.

This section will give a general overview of the model and the proposed improve-
ments. Due to the model’s complexity and the wide variety of introduced changes,
readers should refer to the original article to learn about details of the implementation.

Both the encoder and the decoder are composed of a series of layer blocks stacked
on top of each other. Each of these blocks is made up of a series of sub-layers. A
sub-layer implements a function, such as a neural network hidden layer, jointly with
Residual Connections [21] and Layer Normalization [1]. We will now describe each of
those techniques, starting with the main contribution of the Transformer model, the
introduction of a new way of computing attention.

2.2.1 Generalization of the Attention mechanism

The Attention layers of the Transformer architecture perform multiple Scaled Dot-
Product Attention by using Multi-Head Attention. We have previously introduced
Dot-Product Attention in Equation (2.9). Scaled attention introduces a scaling term
that depends on the dimensions of the key, dy. Remember that in conventional
attention we use q = s;_1, Kj = hj, and Vj = h;.

q'K;
Vdy
If we wish to compute attention with multiple queries, the queries can be packed

in a matrix @, and the computation may be expressed solely in terms of matrix
multiplication. This means that the entire Attention process is computed as:

attention(q, K;) = (2.11)

Attention(Q, K, V) = soft (QKT> 1% (2.12)
ention(Q, K, = softmax .
Vi

Up to now, the Attention mechanism has provided us with an answer for each
query. Multi-Head attention extends the previous mechanism in order to produce
an answer that is the combination of multiple key-query comparisons. Multi-head
attention consists in performing several attention operations in parallel and combining
the results to obtain the final context vector. Each individual attention operation or

20 MLLP-DSIC-UPV

2.2. Transformer Self-Attention NMT models

head is carried out by applying a linear projection to the query, keys and values,
computing attention between them, and then projecting back into a common space:

MultiHead(Q, K,V') = Concat(heady, . .., head,)W?° (2.13)
head; = Attention(QW2, KWK VW) (2.14)

The projections are applied by the means of matrices W°, W2 WK and WY.
These projection matrices are parameters learned during training. An additional
difference of this layers with respect to conventional Attention is the way they are
applied in the Transformer model, something that we will explain once we describe
the architecture.

2.2.2 Layer Normalization

Layer Normalization [1] normalizes the outputs of a neural network layer, so that each
neuron behaves as a normal distribution. To normalize a layer, we compute a mean
and standard deviation from the activations of every unit in that layer, and then
we subtract the mean and divide by the standard deviation. Layer normalization is
applied to the output of the layer operations, al), before the activation function g(.)
is applied. Thus, we can apply Layer Normalization to layer i as follows:

LayerNorm(a®) = % o @Y -+ (2.15)
o K3
1k,

u = 7 S ay (2.16)

h=1

LN, 0
= | = 0)2 2.17
=gy o) (2.17)

where () and ¢ are broadcasted to have the same dimension as a!). 4 is the gain
and 3 is the bias, parameters that are learned during training. They are used so that
the layer can output normal distributions that are different from the standard normal
distribution.

2.2.3 Residual Connections

Residual Connections [21], sometimes known as skip connections, is the name of a
technique where the input of a layer skips one or more transformations, and is then
added to the output of those transformations. Suppose we have a vector x and a
series of neural network layers that compute the transformation F(x). The output of
that residual block would be computed as x + F'(x). The goal of this technique is to
facilitate the optimization process for networks with many layers.

MLLP-DSIC-UPV 21

Chapter 2. Neural Machine Translation

2.2.4 Modelling word position

Attentive readers will have noticed that we have yet to describe a mechanism by
means of which we are able to incorporate positional information about word order.
Self-attention layers, by themselves, offer no way of knowing word order in a sentence,
since they treat all inputs the same way. One simple approach to this problem is to
encode the position of the word by means of a one-hot vector p;, the same way we do
with the different words that form the vocabulary, w;. Given an arbitrary embedding
matrix E, we obtain the representation by simply concatenating the vectors and
multiplying by the embedding matrix.

en = [Wn;pn]E (2.18)

That formulation is equivalent to having 2 different embedding matrices, one for
the word embedding (E,,), and one for the positional embedding (E;).

en = wn B, + ppE, = WE™ + PE™ (2.19)

where W E(™ represents the word embedding information for word n, and PE(™ rep-
resents the positional embedding information for that word. We have not explained
how to obtain those positional encodings yet. The straightforward approach is to
treat them like the word embeddings and let the network learn them during train-
ing. Another option is to use a predefined function that produces these positional
embeddings.

In the case of the Transformer model, the positional embeddings are given by two
sine and cosine functions, calculated differently for every position pos of the sentence,
Vpos € [1, N]. These functions compute a positional embedding vector for each word
whose entries are calculated as follows:

PE5; = sin (pos) Vi € [0, dmoder /2 — 1] (2.20)

1
100002/ dmodet

1 .
10000/> Vi € [0, dmodet /2 — 1] (2.21)

Experiments carried out in the original paper show that these fixed positional
embeddings do not incur in any performance decrease, and they offer slightly more
generalization capacity that learned embeddings if we have to translate sentences that
are longer that the ones appearing in the training data.

PFEs;+1 = cos (pos

2.2.5 Model Architecture

In the Transformer architecture, residual connections and layer normalization are com-
bined, and the output of each sub-layer is computed as Layer Norm(x+ Sublayer(z)).
There are two types of sub-layers in the Transformer architecture, Feed Forward layers
and the previously described Multi-Head Attention layers. Feed Forward layers are
standard neural network layers consisting on weight matrix multiplication followed
by an activation function.

22 MLLP-DSIC-UPV

2.2. Transformer Self-Attention NMT models

Add & Norm

Add & Norm

Multi-Head
Attention

Klvlq

Figure 2.4: Transformer Encoder Block.

Up to now, the described techniques and layers can be applied to any NMT model,
but the change in the Transformer architecture is how these layers are applied. Figure
2.4 shows a Transformer Encoder block.

The standard Transformer block consists in a Multi-Head attention sub-layer fol-
lowed by a Feed Forward sub-layer. Instead of feeding one input at a time like a
RNN, the entire input sentence is fed to the encoder, and the input sentence repre-
sentation is computed all at the same time. The self attention layers in the encoder
apply Multi-Head attention to the output of the previous layer, using that output
as both query and key-value pairs. Therefore, at each layer, the encoder produces a
representation for each word, that can incorporate information about any other word
in the sentence thanks to the self-attention mechanism. The entire representation can
therefore be produced in a single pass.

Figure 2.5 shows a Transformer Decoder block. Compared with the Encoder
blocks, the decoder blocks include an additional Multi-Head attention sub-layer that
attends to the output of the encoder stack, allowing the decoder to access the input
sentence representations. In the same way as all other NMT models, the decoder
produces one word at a time, conditioned by the previously emitted words. The
decoder is fed by the previously emitted words and its Multi-Head attentions sub-
layers perform their computations over the output of the previous decoder layer.
Decoder blocks contain an additional attention layer that attends to the encoder
output. In those sub-layers, the output of the previous decoder layer acts as query,
while the encoder output acts as key-value pair. One important change is to modify
the decoder self-attention layers so that they can only attend to already emitted
words.

MLLP-DSIC-UPV 23

Chapter 2. Neural Machine Translation

Add & Norm J—

Add & Norm J—

Multi-Head
Attention

Multi-Head
Attention

Figure 2.5: Transformer Decoder Block.

A graphical overview of the Transformer architecture is shown in Figure 2.6. It is
usual to choose one of the following configurations, Transformer Base or Big, when
building NMT systems.

e Transformer Base: 6 encoder/decoder blocks, embedding dimension 512, hid-
den layer size of 2048 and 8 attention heads.

e Transformer Big: 6 encoder/decoder blocks, embedding dimension 1024, hid-
den layer size of 4096 and 16 attention heads.

Up to now, we have described the changes introduced by the Transformer model to
the encoder and decoder components. However, the Transformer paper also introduces
some additional considerations used for training the model that are not related to the
architecture of the model itself and can be independently considered.

2.2.6 Weight tying

Weight-tying [49] is a proposed technique for improving the performance of neural
network language models through manipulation of the different embedding layers,

24 MLLP-DSIC-UPV

2.2. Transformer Self-Attention NMT models

Yi

Output
Probabilities

h1 ho

Encoder

Encoder

Positional
Embeddings

20

Embeddings

Decoder

—®)

Positional

Tl T2

71 U2

Figure 2.6: Figure of the Transformer architecture.

while also providing a significant reduction in number of parameters of the model. As
previously explained in Section 2.1.1, NMT models make use of embedding matrices
in order to convert the input text into a numeric format usable for the network. In
NMT encoder-decoder systems, we have 3 of such matrices. First we have an encoder
embedding matrix, E., that when applied to the one-hot vectors of the source sen-
tence, produces the representation to be used by the rest of the encoder. This is what
has usually been considered as a proper embedding matrix, and that means that each
of the entries in the matrix can be considered as an embedded representation of its
corresponding input word. There are authors that have evaluated the possibility of
25

MLLP-DSIC-UPV

Chapter 2. Neural Machine Translation

substituting this embedding matrix learned during training by some other different
word-embedding method, usually one that has been previously computed by a differ-
ent special purpose model tasked with finding these word embeddings. For example,
[50] studies the effects of using different types of pre-trained embeddings.

However, that is not the only embedding matrix used in NMT. Since the decoder
has a dependency on y;_1, we also use a decoder embedding matrix, E;. Additionally,
the output of the last hidden layer of the decoder must be projected into a space that
has the same dimension as the output vocabulary, so that we obtain a probability
distribution over all possible words once we apply the softmax function. This is
achieved by multiplying by an output embedding matrix, F,. Putting all of that
together, we have 3 embedding matrices that characterize our models. E., E,;, and
E, are the encoder, decoder and output embedding matrices, respectively.!

E. has dimension (Embedding dimension, Input vocabulary size), E4, has dimen-
sion (Embedding dimension, Output vocabulary size) and E, has dimension (Output
vocabulary size, Hidden layer size). The authors of [49] realized that, if we were to
have the same input and output vocabulary, that is, the same dimension, the en-
coder/decoder embeddings could be carried out by a single matrix with the same
shape. Once we have compatible encoder and decoder embeddings, we can see that
the transpose of the output embedding, EZ', also has the same dimension as the other
2 matrices provided that the embedding dimension and the hidden layer size are also
equal. Therefore, weight tying consists in "tying" these 3 matrices together so that
their job is carried out by a single matrix, by considering that E, = E; = EI. Ex-
periments have shown that we can carry out this tying without losing performance
since the output embedding shares the same properties of the input embedding by
representing similar words in a similar way. This technique has two main advantages
over using different embeddings. First, it allows the rows of the input embedding to
update at every training step, instead of only when their corresponding word appears
in the input. This helps the model to train faster. Second, and most importantly, it
massively reduces the number of parameters that need to be learned by the model.
We can observe this by comparing the size of the hidden matrices compared with the
size of the embedding matrices. Whereas it is usual to have a hidden layer dimension
of 1024, giving us hidden layer matrices of dimension (1024,1024), it is very com-
mon for the vocabulary to contain 20000 words or higher, which would translate into
embedding matrices of dimension (1024,20000). It is usual to see models where the
majority of parameters are part of the different embedding matrices. If we are able to
use only one embedding matrix instead of 3, we achieve a very significant reduction
in the number of parameters, with the associated gains in training performance and
memory savings. Experiments carried out using weight tying show that the applica-
tion of this technique can produce models that have 53% fewer parameters than the
standard separate embedding approach, while at the same time maintaining or even
improving translation quality.

The Transformer model uses this technique in order to obtain the aforementioned
advantages in terms of performance and reduction of the number of parameters.

INamed as W,U and V in the weight-tying paper

26 MLLP-DSIC-UPV

2.2. Transformer Self-Attention NMT models

2.2.7 Label smoothing

We have previously explained in Equation (1.24) how we train neural networks by
optimizing a cost function J(#) that depends on the parameters of the model. We
update the weights by using stochastic gradient descent and processing a batch of
samples at the same time. For a batch of N samples, with y, as the label of the
sample, and ¢, as the output of the network for that sample, the cost function is
usually defined as the average of a loss function applied to each sample:

1 & 1 X
NZ (nsG) = = D Ly f(0:6) (2.22)

The choice of the loss function is therefore one of the decisions that need to be
made when training a model by gradient descent. In classification problems, the most
common choice of loss function is the cross-entropy function, that computes a measure
of dissimilarity between two probability distributions, p and ¢. If the distributions
are discrete, this can be computed as:

) =>_ p(c)log(g(c)) (2.23)

When working with classification problems, we have already established that we
wish to obtain a system that outputs a probability distribution. Therefore, the distri-
bution emitted by the network will take the place of the ¢ distribution used to compute
the cross-entropy. The label, or assigned class to the sample, can also be considered as
a probability distribution. This is usually done by setting the probability of the label
to 1, so p(y) = 1, and the rest of the possible values will have probability 0 such that
p(z) = 0,Vz # y. Having obtained those probability distributions, the cross-entropy
can be applied as the loss function in the following way:

L(y7 Zplabel - c|x) log(pnetwork(- C|£C)) (224)

c

We will now look at the specific case of MT. For a single training sample y with
length I, we will denote the i-th token of the target sentence as y;. The loss is the
computed as:

I
L(ya g) = - Z Zplabel(yi = Cll‘) log(pnetwm’k(yi = C|l‘)) (225)

=1 c¢

An eager reader will have noticed that, due to the way we have defined the prob-
ability distribution given by the label, all the probability mass is given to a single
value, and when computing the cross-entropy, the term of the label distribution can
be ignored in all but one of the possible output values. The computation can be
simplified to:

L(y, §) = log(Pnetwork (§ = y|x)) (2.26)

MLLP-DSIC-UPV 27

Chapter 2. Neural Machine Translation

While the previous simplification does make sense for some of the general applica-
tions of pattern recognition, it is not quite clear that this is the best possible approach
for MT. Let us look at the way the label probability distribution is constructed. Say
that, in the target sequence, the speaker describes something as "beautiful". Is it
right to assume that such word is the only correct translation? What about other
synonyms such as "gorgeous"?

The label smoothing [61] technique aims to improve model generalization capacity
by reducing the confidence that the model has to assign to the training predictions.
This technique consists in smoothing the one-hot label distribution. This works by
setting aside a certain quantity of probability mass for the wrong-labels, and to re-
distribute this probability somehow.

So far the label probability distribution was computed as:

Dravel(y = c|x) =y c (2.27)

Label smoothing introduces the following modification, where we discount some ¢
probability mass, and distribute it over all possible label values C' by means of the
uniform probability distribution.

€
p;abel (y = C|I) = (1 - E)5y,c + 6 (228)

Apart from helping the model to avoid being over-confident on its predictions
due to being overfitted to the training data, this can have additional beneficial effects
during the decoding step. We believe that the smoothing distribution helps the model
during decoding by performing a less strict pruning of partial hypothesis, which can
result in a better overall translation after the decoding process finishes.

Put together, all those changes result in significant improvements in both speed
and quality that we hope to reproduce in the following experimental section.

2.3 Practical issues

Apart from the architectures themselves, there are many experimental decisions and
techniques that need to be taken into account in order to train state of the art sys-
tems. These range from hyperparameters values to be used during training, to specific
techniques for data pre-processing and data generation. We will describe some of the
most important issues in this section:

e Model Ensembling & checkpoint averaging. In Machine Learning, en-
semble methods aim to improve system performance by combining a series of
individual models in order to construct an overall better system by combining
the predictions of the individual models.

The combination of multiple models improves the system results if the errors
produced by the models are not strongly correlated between them, smoothing
the mistakes produced by one model thanks to the predictions from the rest.
While this technique has the capacity to improve performance, it also has some

28 MLLP-DSIC-UPV

2.3. Practical issues

drawbacks. The main one is that, due to having to combine multiple systems,
the training time required to obtain the system increases linearly with the num-
ber of systems. This can be offset if we have multiple GPUs at our disposal
in order to enable training multiple systems in parallel. That still leaves the
problem of needing to run all the models at inference time.

Checkpoint averaging is one technique that deals with both problems while
still retaining some of the benefits of constructing an ensemble. This is done
by selecting some of the checkpoints saved at different times that contain the
parameters of one model, and treating the parameters contained on each of those
checkpoints has an as independent model. The checkpoints are then combined in
order to obtain the ensemble. This technique, used by the AMU-UEDIN team at
WMT16 [31], simulates the construction of the ensemble by selecting the desired
checkpoints and computing the average of the parameters they contain. This
way, some of the benefits of constructing a checkpoint ensemble are obtained and
at the same time we only need to run the averaged model to obtain translations,
saving both on time and memory. The simulated ensemble is obtained as:

1 M
eensemble - M Z Hm (229)
m=1

As outlined in [2], the big improvements achieved by checkpoint averaging can
be an indicator of a suboptimal training schedule. One of the possible solutions
to that problem is to reduce the learning rate as the training progresses.

e Sequence length. By default, sentences longer than a certain number of tokens
are discarded, in order to speed-up training and to filter out long sentences that
might not make sense or are very hard to learn for the model. Increasing
this threshold allows for greater use of the training data and better translation
quality for longer sentences, but might also significantly slow-down training,
increase memory footprint and make convergence more difficult.

e Learning rate. The choice of learning rate affects the size of the update
applied to the model’s parameters at each training step, and has a significant
effect in model convergence. There are many learning rate schedules that are
used in the literature. One of them, plateau-reduce, is of special interest since it
reduces the learning rate if the validation score does not increase for a certain
number of checkpoints. This enables the model to slow down learning once we
have arrived near a good point of the parameter space. This reduction means
that the model is updated more slowly, and therefore it is less susceptible to
making a bad update and diverging from a good area of the parameter space.
This reduction also means that the model is more guaranteed to converge once
the learning rate has been reduced many times, because the gradient descent
updates will have almost no effect on the parameters of the model. We denote
the use of this technique with the label Ir_reduce. Other schedules modify the
learning rate depending on the current training step. For example, the inverse

MLLP-DSIC-UPV 29

Chapter 2. Neural Machine Translation

square root schedule [62], as its name suggests, updates the learning rate to be
proportional to the inverse square root of the step number.

e Batch size. Recall from Equation (1.25) that minibatch gradient descent up-
dates the model’s paramteters using a noisy estimation of the gradient. The
amount of noise depends on the batch size. The closer the batch size is to the
number of training samples, the better estimation of the gradient, and therefore
a smaller amount of noise is added. A smaller batch size might require more
time for training, but the additional noise might be useful in order to improve
model performance and prevent overfitting. However, too much noise might
cause problems optimizing the model. As such, the right batch size will depend
both on the model architecture as well as the training data used. It is there-
fore important to carry out an adequate exploration of possible values of this
hyperparamteter for each experiment that we wish to carry out.

e Synthetic data (Backtranslations). Although the main focus in MT lies
on obtaining additional parallel data, monolingual data can also be used in MT
systems. In traditional phrase-based MT systems, monolingual data can be used
to train the language model component, because a language model is trained for
a single language, and therefore we are not limited to training only with the par-
allel data. The addition of monolingual data different from the parallel corpus
improves the performance of language models thanks to the bigger quantity of
available sentences. Taking advantage of monolingual resources is also possible
in NMT systems. In fact, the decoder of an NMT model can be understood as
a language model (this is explained in detail in Section 2.1.1). A very successful
use of monolingual data is the Backtranslation approach of [55], that consists
in augmenting the training data with synthetic sentences. The synthetic data is
created by producing a translation for each sentence in the monolingual target
corpus, using a NMT system trained in the opposite direction. This approach
allows us to obtain additional parallel sentences, whose target side is a sentence
of a monolingual corpus, and the source side is its automatic translation. Al-
though producing synthetic data is not cheap in terms of computing power, due
to the need of training a backwards system and producing the translations, the
use of synthetic data has been shown to significantly improve the performance
of NMT systems, thanks to the improvement obtained in the language model
by the use of more data.

e Byte-pair-encoding (BPE). Byte Pair Encoding (BPE) [56] is a technique
whose goal is to allow translation with a fixed-vocabulary system in a way that
mimics an open-vocabulary. This is done by transforming rare or unknown
words into a sequence of known subword units. This technique works by first
learning a number of merge operations (each merge operation produces one sub-
word unit that will form part of the vocabulary), and then segmenting the words
of the input sentences into sequences of subwords.

Merge operations are learnt by segmenting the text into individual characters,
and appending a special end of word token after every word. The

30 MLLP-DSIC-UPV

2.4. Computer tools

‘Instead‘ ‘che@@‘ M \out\ ‘his‘ ‘ro@@Hok@@‘ ’ies‘ ‘front‘ ‘the‘
\ rest \ ‘ the ‘ \ team \ encouraged lthﬂ‘ -

Figure 2.7: Example of BPE segmentation of a text. Notice how rare words
"chewing" and "rookies" have been split into subword units, avoiding a po-
tential Out-of-vocabulary problem.

algorithm performs one iteration per merge operation. On each iteration, we
count how many times each pair of symbols appears. The most frequent pair
is selected to become a merge operation, and every occurrence of the pair is
replaced by the concatenation of both symbols. Once a pair has been merged
back into the original word no further operations are applied to it.

Once the desired number of merge operations has been learned, we can now
apply BPE to our corpora. The text is once again broken down into individual
characters, and then we apply every merge operation in order. Words that
have not been merged back into a full word are annotated with the suffix Q@
in order to be able to restore the original segmentation. The final result is
a text that has approximately the same number of unique tokens than merge
operations applied, ensuring that almost no unknown words are given to the
system. Figure 2.7 shows an example of BPE segmentation carried out in a
sentence of the WMT test set. This technique has shown good performance
improvements and its use has become part of the standard data preparation
process of any NMT system.

e Fine-tuning. NMT models perform best when trained with data from the
domain of the test data. However, most available parallel corpora belong to
institutional documents or internet-crawled content domains, so it is common
to find situations where there is a domain mismatch between train and test data.
In such cases, small amounts of in-domain data can be used to improve system
performance by carrying out an additional training step, often referred to as the
fine-tuning step, using the in-domain data after the main training finishes. This
technique has been used to adapt models trained with general domain corpora
to specific domains with only small amounts of in-domain data [40, 55].

2.4 Computer tools

This section describes the software used to train the MT systems presented on this
work, Sockeye, based on the MXNet [12] library, and fairseq, based on the PyTorch
[45] library. Both libraries use the concept of computational graphs and GPU acceler-
ation, introduced in Section 1.2.4, to enable fast training of various machine learning
models. These general purpose libraries offer the tools to develop any kind of ma-
chine learning models, and are nowadays widely used in both research and industry
applications. fairseq and Sockeye build on top of their respective libraries, and serve

MLLP-DSIC-UPV 31

Chapter 2. Neural Machine Translation

as a more specialized tool that is specifically used for developing NMT systems, due
to implementing various theoretical models and improving the process of using them
by avoiding the need to implement them from scratch.

Sockeye [22] is an open-source toolkit for NMT, based on the MXNet library. The
toolkit can be installed from source or a pip package, and includes a series of scripts
for training and translating, as well as a series of helper scripts for different pre-
processing tasks or model combination tasks, such as a tool for checkpoint averaging.
The toolkit implements Attention-RNN, Transformer [62] and Fully Convolutional
(ConvSeq2Seq) [18] models. Apart from the aforementioned architectures, Sockeye
also offers a series of different training and inference techniques implemented on top
of those models, including the very important feature of model ensembling. Sockeye
even allows the ensembling of models that use different architectures.

fairseq [42] is another open-source NMT toolkit, based on the Pytorch library.
Apart from the Attention-RNN, Transformer and ConvSeq2Seq, fairseq also imple-
ments the recently proposed LightConv and DynamicConv architectures [63]. Much
work has been put into improving the efficiency of the training process, and the toolkit
implements techniques such as Half-precision training that significantly reduce model
training times [43]. However, compared with Sockeye, the documentation is less de-
tailed, and overall it offers a user experience that is less polished than Sockeye.

2.5 Conclusions

This chapter has described the necessary concepts for the development of the current
state-of-the-art NMT systems, by introducing the relevant techniques and architec-
tures (Attention RNN and Transformer) as well as describing the computer tools
used to train NMT models. The necessary techniques and practical issues faced when
trying to build a state-of-the-art NMT system have also been discussed.

32 MLLP-DSIC-UPV

CHAPTER 3
TRANSLATION SYSTEMS FOR
WMT18: NEWS TASK

This chapter summarizes the previous work carried out as part of the author’s B.S.
Thesis [25] for the WMT18 competition, parts of which have been published in [26].
The participation in this task is described in order to put into context the experiments
carried out for this Master’s Thesis. A series of different systems based on the RNN-
Attention and Transformer architectures have been trained for the WMT German—
English task.

The chapter is divided into 2 parts. First, we will introduce the data acquisition
and data processing steps required for training any MT system. Then, the experiments
carried out with RNN Attention and Transformer will be described.

3.1 Data processing and adquisition

We will first begin by describing the data processing techniques and decisions applied
to the available data, in order to obtain a prepared form that allows us to maximize
the performance of the developed models. Data processing and preparation is a
crucial step in the development of our systems if we want to obtain competitive
results. We will then move into describing the dataset itself, that has been used for
the experiments described in this chapter.

3.1.1 Data preparation

MT systems are usually limited by the amount of different words that they consider in
the training process, also known as vocabulary size. In the case of NMT systems, the
size of the final softmax layer depends on the vocabulary size, and the bigger its size,
the more computationally and memory demanding becomes the training process of the
MT system. Thus, the choices we make when building the vocabulary for our systems
will have considerable effects on system performance, and is one of the main areas

33

Chapter 3. Translation systems for WMT18: News Task

Original text: ‘Just ‘ ‘ because Hhe’s ‘Wise, ‘doesn’t‘ mean ’that Hhe’s ‘honest.‘

Tokenized text: |Just ||because 's ’wise“doesn‘ 't
that 's | | honest | [

Figure 3.1: Example of tokenization with Moses.

that need to be considered when building MT systems. All of this means that we want
to reduce the number of unnecessary words and only consider those that are useful.
This is achieved with a tokenization step, that breaks up a text into the individual
units (tokens) that will be considered by the system. Ideally, we want this step to
produce an output that does not hinder a system ability to generate translations while
at the same time keeping the number of unique tokens as low as possible. There are
many cases where we need to make a decision about what constitutes a word, such
as punctuation, compound words, etc.

Consider for example the case of a word and that word followed by a comma
. It does not make sense to consider both occurrences as different words, and to
repeat the same for every word that appears followed by a comma. Instead, it would
be better to consider as a word and as another. Figure 3.1 shows an example
of tokenization carried out with the Moses tokenizer.

Deciding what to do with upper-cased text is another preprocessing decision re-
lated to vocabulary size. Once again, if we do nothing, we can find that we end up
with a vocabulary that contains multiple entries for what turns out to be the same
word. For example, any word that appears at the start of a sentence, and is therefore
written with its first letter capitalized, can appear with two different spellings. One
simple solution to this problem is to convert the entire text to lower-case characters,
therefore ensuring that we do not waste vocabulary size due to capitalization dif-
ferences. This method is very fast and provides a good reduction in the number of
tokens, but there exist cases where the capitalization of a word does provide some
linguistic information that could be lost otherwise. For example, nouns in German
are always capitalized. A truecasing model tries to transform text to its appropriate
capitalization, by collecting different statistics and building a model that makes a
prediction about the appropriate capitalization for each word. In this work, a true-
casing model was applied to the WMT corpus. The truecasing was carried out with
the Moses Truecaser. This model changes words at the start of a sentence to their
most common form, as well as any word that would be unknown if not changed.

3.1.2 Data filtering

Data filtering, sometimes called data selection, is an umbrella term for a variety of
techniques that share the same goal: Selecting a subset of the data of a corpus in order
to train a MT system. Traditionally, the term data selection has been used to put
emphasis in extracting the best set of sentences out of a corpus. This can be carried
out, for example, in the context of Domain Adaptation, which consists in training a

34 MLLP-DSIC-UPV

3.1. Data processing and adquisition

general purpose system and then adapting it to translate data from a specific domain.
For example, one could train a general German to English system, and then take that
base system and finetune it with sentences of the medical domain in order to use it
to translate medical documents.

The focus of this approach changes when taking into account that the performance
of NMT models depends greatly on both quality and quantity of the training data.
Recent works such as [11] and [6], show that NMT systems are very susceptible to
any type of noise in the training data. Whereas with data selection we are looking to
select the best sentences in order to improve performance, when we talk about data
filtering we want to remove those noisy sentences that degrade MT performance.

If we want to utilize some corpus that contains noisy data, it is therefore very
important that we carry out some sort of data filtering. Otherwise we could find out
that we have achieved the opposite of what we were trying to do: The additional data
might degrade the model instead of improving it.

Techniques

One possible approach to data filtering is to use a translation model to score the
sentence pairs that form our training corpus. This can be carried out by taking
the translation model and computing the translation probability p(y|x) given by the
model to every sentence pair (x,y). This gives us a score for every pair that we can
use to rank them and select only those that we consider adequate. The drawback
of this approach is the need to build a good enough translation model before being
able to carry out the filtering. While running the translation model for each sentence
on a small corpus might be feasible, filtering large corpus with this approach takes
considerable time, time that could be spent on other endeavours such as training
additional systems for an ensemble.

A different approach that is much cheaper computationally is to filter by using
language models. This can be carried out by first selecting an in-domain or clean
corpus, and training two language models with this data, one trained on the source
side of the corpus, and the other trained on the target side of the corpus. Then,
for every sentence pair, we obtain a score by computing the likelihood given to the
sentence pair (z,y) by the language models and combining them by using a function

fO)-

score(x,y) = f(ps(x), pt(y)) (3.1)

This approach uses language models for estimating the quality of a sentence pair,
under the assumption that a low-perplexity sentence is more likely to be an adequate
sentence for training. The score (perplexity) of a sentence pair is the geometric mean
of the likelihoods, \/ps(z) - p:(y). We select sentence pairs with the lowest score. This
approach can not detect sentences whose source and target parts are valid sentences,
but not a direct translation of each other. However, it is perfectly able to detect the
rest of common data noise, such as sentences in a wrong language, foreign characters
or nonsensical sentences, that can be detected independently of the other sentence in

MLLP-DSIC-UPV 35

Chapter 3. Translation systems for WMT18: News Task

the pair. The main advantage of this approach is that is able to carry out an adequate
amount of filtering, while being orders of magnitude faster than the translation model
approach. The training of these language models is very fast, because it is carried out
just by counting n-gram occurrences, and the time required to apply it is even lower,
because it consists in looking up the probability of the sentence n-grams.

3.1.3 Data collection: WMT2017 German — English

The Workshop on Machine Translation (WMT 1) is an annual international conference
for researchers on the field of MT. Apart from the dissemination of recent develop-
ments in this field, the conference also organizes each year a series of competitions
to test different aspects of MT. The news translation task, that evaluates the ability
of systems to translate a series of online news articles, is the task that receives the
highest amount of submissions each year and has become the reference task in order
to compare and report results of new research.

The training data of the competition is published by the organizers each year as
well as the corresponding test data. It is common to use the test data of a previous year
as development data, and that has been the approach carried out in this work. The
training data chosen is the one available in the 2017 competition, and the development
data is the test data of 2015. The test data chosen was the one corresponding to the
year 2017 in order to evaluate the results in the same conditions of the participants
in the competition.

Table 3.1 shows basic statistics about the WMT corpus. We have computed the
number of sentences, number of words and the number of unique words for each lan-
guage. The training data consists of almost 6 million parallel sentences used to train
the model. The sentence length in German is shorter than its English counterpart, in
part due to its use of many compound words. This phenomenon appears more clearly
when we compare the number of unique words (vocabulary size). As shown on the
table, the number of unique German words that appear in the text is around twice
the number of unique English words.

Table 3.1: Statistics of the WMT German-English dataset.

Corpus Sentences(K) Words(M) Vocabulary (K)
De En De En
news-commentary-v13 284.2 6.4 6.2 302.8 182.5
europarl-v7 1920.2 44.6 479 649.0 304.8
commoncrawl 2399.1 470 514 2733.7 17189
rapid2016 1329.0 22.1 23.0 674.8 387.7
WMT18: paracrawl(vl) 36351.6 450.7 478.8 14054.0 10353.1
dev(newstest2015) 2.2 0.0 0.0 9.9 7.8
test(newstest2017) 3.0 0.1 0.1 12.6 9.2

Ihttp://www.statmt.org/wmt17

36 MLLP-DSIC-UPV

3.2. RNN-Attention systems

The number of training sentences is several orders of magnitude higher than that
used in the dev and test sets, because having at our disposal big amounts of training
data greatly benefits the learning of our models, but we can obtain a measure of
system performance with a much lower number of sentences.

WMT2018 and the Paracrawl Corpus

The main difference introduced in the 2018 edition of WMT is the addition of the
Paracrawl corpus. This corpus presents some differences and unique characteristics
compared with the rest of the training corpora of WMT. Parallel corpus are usually
produced by taking direct translations of documents, such as government records,
that have been published in more than one language, and therefore contain an almost
perfectly aligned document structure. The growing need for additional training data
has motivated the search for new ways of obtaining parallel data. Paracrawl is a
corpus produced by web crawling, searching the Internet for webpages that have
versions in different languages, and trying to align both versions in order to obtain
sentence pairs. This process is very error-prone, because there is no guarantee that
the different document structures contain the same sentence structure or even the
same content. As a result, Paracrawl is a corpus that includes a considerable number
of noisy sentences, but at the same time, due to its size, also contains many useful
sentences that could improve model performance if selected. These characteristics
make Paracrawl a prime target for using data filtering techniques in order to extract
useful sentence pairs for training, while eliminating poor quality pairs that would
otherwise harm model performance.

The basic statistics of the Paracrawl corpus are included in Table 3.1. This corpus
contains almost 36M sentence pairs, a staggering amount of sentences. This means
that this corpus provides a significant increase in bilingual data compared with the
resources previously available for the WMT competitions. Whereas before we had
only around 6M sentence pairs available, the Paracrawl corpus contains almost 6
times as many sentences.

3.2 RNN-Attention systems

Having explained all the necessary pre-requisites, we are now ready to describe the
different developed systems based on the RNN-Attention model.

System description

The WMT dataset was processed by applying 20000 BPE operations before training.
This process is carried out over the joint source and target corpus as per the rec-
ommendation of [56], and we do not merge operations appearing less than 50 times
over the entire corpus. The operation were undone at testing time in order to recover
the final translation and compare it with the test sets. The general policy adopted
for training all systems is that, after a fixed number of training steps, the model
parameters were stored in a checkpoint and the performance was checked against the

MLLP-DSIC-UPV 37

Chapter 3. Translation systems for WMT18: News Task

development set. This performance check is carried out by measuring the perplexity
of the model computed over the sentences of the validation set, previously explained
in Section 1.2.1. Once the perplexity stopped improving on the development set, the
training was stopped and the model was evaluated with respect to the test set. The
models finished training once their valuation score did not improve for 10 consecutive
checkpoints.

We choose as a starting point a RNN-Attention model with 1 bidirectional layer
both in the encoder and decoder, with hidden dimension=1024 and embedding di-
mension=1024. The type of unit selected for the hidden layers was the LSTM unit.
The Adam optimizer [33], which is a modified version of Gradient Descent, and the
dropout [59] technique were used for training the model.

Results

In this section we present the experimental results achieved in the WMT17 corpora.
Table 3.2 shows the TER and BLEU scores of the different model configurations. The
baseline model achieves 21.8 BLEU and 68.5 TER, and this result is improved by 2.7
BLEU and 4.2 TER when we apply checkpoint averaging. The application of the
conceptually simple checkpoint averaging has already considerably boosted perfor-
mance by leveraging the various checkpoints stored while training the model, without
the need of training any additional models. The long-sequences model consists in
increasing the sentence maximum length threshold. Previously this threshold was 50,
so sentences longer than 50 tokens were discarded. In this experiment, we have in-
creased this amount to 75 tokens. In order to compensate this increase in the number
of effective training sentences, we bumped-up the minibatch size from 32 to 50, in
order to process a bigger number of sentences per step. These major changes were
accompanied by small hyper-parameter changes to match the configuration used by
RWTH Aachen at WMT16 [46]. The long-sequences model achieves a higher perfor-
mance over the baseline model and its averaged version by making a better use of
the training data available in the corpus. By not eliminating the longer sequences,
we are providing the model with more data that it can use in order to learn to model
long-term dependencies, and this can then be used to obtain better translations at
inference time. This results in an increase of 3.5 BLEU over the baseline model, and
an increase of 0.8 BLEU over its averaged version. Applying checkpoint averaging on
top of this results in a simulated ensemble that obtains an improvement of 1.7 BLEU
on the test set.

Additionally we have tried a learning rate reduce scheme (Ir_reduce). This
Ir _reduce model applies the plateau-reduce learning rate schedule, with an initial
learning rate of 0.001. This value is halved every time model performance does not
improve for 3 consecutive checkpoints. When using this Ir _reduce schedule, we obtain
a performance improvement of 2.2 BLEU on the test set with respect to not using it.
This means that we have once again obtained a significant improvement by applying
additional changes to the model. The result also confirms the importance of reducing
the learning rate once we have arrived at a good area of the parameter space, allowing
the optimization procedure to behave better during training, that translates to the

38 MLLP-DSIC-UPV

3.3. Transformer systems

Table 3.2: Results obtained for models trained with the WMT corpus.

newstest2017

RNN-Attention Model BLEU TER
Baseline 21.8 68.5
+ checkpoint averaging 24.5 64.3
+ long-sequences 25.3 63.0
+ checkpoint averaging 27.0 60.8

+ Ir_reduce 27.5 60.1

+ checkpoint averaging | 27.7 59.9

observed increase in the test scores both in BLEU and TER.

The application of checkpoint averaging to the Ir reduce model does not show
the same improvements that were obtained when applied previously. This technique
has improved 0.1 - 0.2 BLEU with respect to the model without averaging, far less
than the 1.7 improvement when applied to the baseline model. This result that shows
that checkpoint averaging does not translate into a big quality gain when applied
to models whose training has been more carefully carried out, is consistent with the
hypothesis laid out in [2], that states that the improvements obtained by checkpoint
averaging are mostly due to the unstable training regime, and this technique loses its
effectiveness if the defects of the training schedule are fixed.

Table 3.3 shows the resources consumed by the models trained using the WMT
corpus. At first glance, one can see how the long-sequences model consumes a much
higher amount of VRAM. This is due to 2 facts, the use of longer sequences requires
the creation of a bigger computational graph to propagate the gradient, and the
fact that this model uses a higher minibatch size (50 when compared with size 32
of the base model) that means a higher number of sentences is being processed in
parallel inside the GPU. The bigger minibatch size allows the long-sequences model
to process a significantly higher number of sentences per second, even if they are of
a longer length. Although it has a higher throughput, the model does take longer to
train simply because it must process a bigger quantity of sentences due to the fact
increasing the length threshold means that we are discarding a smaller portion of
the corpus. This is reflected in the fact that the long-sequences model takes 5 hours
longer to train than the baseline model. We can see how the Ir _reduce schedule has
allowed the model to continue training for a much longer amount of time. In fact, the
base model trains for 16 hours, while the reduce schedule allows it to train for 30h,
almost double. The longer training time translates into the higher scores reported in
Table 3.2.

3.3 Transformer systems

The Transformer architecture that was described in Section 2.2 currently achieves
the best results in MT benchmarks. In order to try to replicate those performance

MLLP-DSIC-UPV 39

Chapter 3. Translation systems for WMT18: News Task

Table 3.3: Resource consumption for WMT models.

Sockeye
Training
RNN-Attention Model | RAM ‘ time ‘ Tokens/s
Baseline 39GB 11 h +5.5K
+ long-sequences 5.2 GB 16 h +7K
+ Ir_reduce 5 GB 30 h +7K

improvements, and compare this model with the previous RNN-Attention architec-
ture, we are now going to train a series of systems using this configuration. Sockeye
implements this novel architecture, and we have used it to train a Transformer model
that closely follows the parameters laid out in the original paper. We are first going
to train a model that uses the same configuration as the Transformer Base model, but
without label smoothing and weight tying. Then, we will add back those techniques
and train another system. This will allow us to compare the performance of the
Transformer model architecture without taking into consideration those 2 techniques
that could also be applied to other models such as RNN-Attention.

Results

Table 3.4 shows the result of the different Transformer model configurations. The
Transformer reduced model, without label smoothing and weight tying, obtains a
BLEU score of 30.5 and a TER of 56.5, and is the model that has obtained the
highest score in both the dev and test sets with respect to all previous models, with
an improvement of 2.8 BLEU over the previous best model. The only other differ-
ence with the original paper was the learning rate schedule, we used the Ir_reduce
as with the previous RNN-Attention models. These results reflect its current status
as the state of the art architecture for MT, due to the different quality and speed
improvements laid out in [62]. The application of checkpoint averaging does not yield
any improvement over the base model, further confirming the previous findings. The
complete Transfomer model obtains 32.2 BLEU and 54.7 TER. This represents an
additional improvement of 1.7 BLEU and 1.8 TER over the model that does not use
the two aforementioned techniques. These results highlight that, although the Trans-
former architecture obtains a massive performance boost over the RNN-Attention
architecture, some of this difference is not only because of the architecture, instead
the improvement is obtained by the combination of the Transformer architecture with
the label smoothing and weight tying techniques.

Table 3.5 shows the statistics concerning the training of the models. The reduced
Transformer model consumes 6.5GB of memory, and takes around 49h to train. This
represents an increase of around 16h with respect to the best RNN-Attention model,
but brings with it a non-negligible performance improvement. The complete Trans-
former takes much longer to train, 140h, in part due to label smoothing, since we are
telling the model to be unsure about its predictions, so we are effectively reducing

40 MLLP-DSIC-UPV

3.3. Transformer systems

Table 3.4: Results obtained for Transformer models trained with the WMT

corpus.
newstest2017
Model Transformer BLEU TER
- label smoothing & w.tying 30.5 56.5
Complete model 32.2 54.7
+ checkpoint averaging 32.3 04.7
Table 3.5: Resource consumption for the WMT task.
Model Transformer ‘ VRAM consumption ‘ Training time ‘ Tokens/s
- label smoothing & w.tying 6.5 GB 49h +8.5K
Complete model 7.6GB 140h +4.8K

the learning rate and making the training harder for the model. Once again, we find
that even though the training time has significantly increased, we have obtained as a
result a much better system.

The complete model continues training for more time because it is able to contin-
uously obtain better scores in the validation sets, where as other models stop earlier
once the validation performance starts to decrease.

Data filtering

After all the previous experiments, there is still one avenue of improving performance
that we have yet to study. We have previously introduced the need for data filtering
in Section 3.1.2, and we have described the Paracrawl corpus included in the WMT18
corpus and the problematic sentences it contains in Section 3.1.3. We will now look
at the task of using data filtering in order to take advantage of the Paracrawl corpus
to further improve the performance of our German to English models. Additionally,
we are going to combine this technique with additional techniques and configurations
that can take advantage of the extra data we plan to introduce by using data filtering.

Using the previous systems as baselines, we now want to start applying data
filtering to the WMT18 Paracrawl corpus and to observe its effects. For carrying out
this process, we have chosen the dual language model approach described in Section
3.1.2. We trained a language model both for the source and the target side, using
as in-domain data newstest2014 from the WMT competition. The models were built
using the SRI Language Modelling Toolkit [60]. The language models were then
used them to obtain a score for each sentence pair. We carried out this scoring
by computing the perplexity assigned by the language models to each part of the
sentence, and then computing the geometric mean. This means that lower scores are
better, representing sentences that are assigned a high probability by the model, in
contrast with sentences with higher scores that are considered very unlikely. We train
the source (German) and target (English) language models with this data, and then

MLLP-DSIC-UPV 41

Chapter 3. Translation systems for WMT18: News Task

103 4

107 4

Perplexity threshold

101 4

0 10M 20M 30M 40M
Sentences

Figure 3.2: Number of sentences with perplexity under a given threshold.

apply it to all the sentence pairs that form the training data, including Paracrawl.
The type of language model used is a 9-gram character model. This means that this
model works at character-level instead of word-level. We believe that this is enough
to detect the language of a sentence, while at the same time keeping the number of
parameters low compared to what would happen with a 9-gram word model.

After obtaining this score, we order the sentences from lower to higher perplexity.
Due to having trained the language models with the newstest2014 data, we can con-
sider that this filtering step is applying both data filtering and domain data selection
at the same time. Figure 3.2 shows the perplexity of the ordered sentence pairs. Us-
ing this information, we can calculate a threshold in order to carry out data filtering.
With that threshold, we can simply keep sentence pairs whose score is lower than the
threshold, while discarding pairs that have higher scores. We have calculated different
thresholds in order to obtain 4 data subsets that contain 5M, 7.5M, 10M and 15M
sentence pairs respectively. We then train 4 different models using those subsets, in
order to find out which is the best filtering threshold, so that we can better take
advantage of the training data.

The detailed results of this data filtering are shown in Table 3.6. We have chosen
as baseline a system trained without the Paracrawl corpus. This model is trained
using around 5.8M sentence pairs and obtains 32.0 BLEU and 54.8 TER. We are now
going to compare its results with the data filtering models. The one trained with

42 MLLP-DSIC-UPV

3.3. Transformer systems

the 5M subset obtains 31.4 BLEU and 55.5 TER, 0.6 points of BLEU less than the
no-Paracrawl counterpart. This could indicate that the filtering step is still allowing
some noisy sentences to go through, therefore obtaining a somewhat worse result
than not using Paracrawl. However, once we start using bigger filtered subsets, we
start to see better results. The 7.5M subset already obtains 33.7, an improvement
of 1.7 BLEU over the reference system, and the 10M systems achieves 34.5 BLEU
and 52.9 TER, a improvement of 2.5 BLEU and 2.3 TER over the reference system.
This shows that, although the filter might allow some noise sentences through, this
is offset by the increase in the number of training sentences that allows the model
to learn how to translate better. The system trained with 15M obtains 34.3 BLEU
and 52.7, very similar to the 10M system, but we selected the 10M subset over this
one, because the larger subset does not show any significant improvements while
at the same time being trained using 5M additional sentences that do not convert
into translation improvements. In order to better understand the importance of data
filtered, we also trained a system that does not apply this technique by using the entire
Paracrawl corpus jointly with the rest of the WMT corpora as training data. The
results obtained by this model that uses all available data for training are 21.3 BLEU
and 70.2 TER. Compared with the baseline model trained without using the Paracrawl
data that obtained 32.0 BLEU and 54.8 TER, we notice a massive performance loss
of 10.7 BLEU points experienced by this non-filtered model. The results are, in fact,
even worse than the ones obtained by the first RNN-Attention models that we tried.
Such a hefty quality difference highlights the absolute need for data filtering if we are
going to use noisy corpora such as Paracrawl.

Knowing this information, we have used the 10M subset in order to produce syn-
thetic data following the method explained in Section 3.1.2. Instead of training a
German to English system, we have used the data in order to train a system that
translates in the opposite direction, English to German. This system was trained
using the exact same hyperparameters and architecture as the other models, the only
change being the translation direction. We can then use that system for obtaining
backtranslations. In order to obtain the artificial source-side for the synthetic data,
we first need to select a set of monolingual sentences in order to translate them into
the source language. Following the strategy laid out in [54] we have randomly sam-
pled 20M sentences from the English News Crawl 2017 corpus in order to carry out
this task. This corpus contains thousands of online news articles crawled from the
web, and we have selected it because it belongs to the same domain than the news
translation we are interested in. Otherwise, if we had selected data from a different
domain, we could find that there is no performance improvement, or even worse, that
the out-of-domain synthetic sentences end up diminishing performance. This mono-
lingual data was pre-processed using the same steps used for the rest of the bilingual
data. The translations were carried in an adequate amount of time by grouping them
into subtasks and executing them in parallel in a computer cluster.

Once we have obtained the backtranslations, we are then ready to train the final
systems. In order to train these systems, we combined the 20M synthetic sentences
with the original 10M pairs selected by the LM filtering. The original 10M pairs
were oversampled by a factor of 2, obtaining a final corpus formed by 20M synthetic

MLLP-DSIC-UPV 43

Chapter 3. Translation systems for WMT18: News Task

Table 3.6: Results obtained for different amounts of filtered sentences,

WMT18 task.
newstest2017
Model Transformer BLEU TER
Baseline (5.8M, no Paracrawl) 32.0 54.8
Data filtering (5M) 314 555
Data filtering (7.5M) 33.7 56.5
Data filtering (10M) 34.5 52.9
+ Synthetic data (2¥10M+20M) | 359 51.2
+ Ensemble (x4) 36.2 51.0
Data filtering (15M) 343 527

sentences and 20M bilingual sentece pairs (2¥10M+20M). Additionally, we have pro-
cessed the data using 40K BPE operations instead of 20K, in order to obtain a bigger
vocabulary size that might synergize better with the language model improvements
that we wish to obtain by using synthetic data. We trained 4 systems using this
configuration, but each of them using a different random seed, in order to obtain
runs that are independent from each other. Then, once the systems finished train-
ing, we were able to produce translations by making an ensemble that combined the
predictions of the 4 systems.

Recall that we had used the Transformer model trained with 10M sentences in
order to produce a synthetic corpus of 20M sentences. These backtranslations were
used to train the definitive Transformer models. A single one of these systems obtains
35.9 BLEU and 51.2 TER. This represents an improvement of over 1.4 points of BLEU
and 1.7 points of TER over the 10M Transformer model. This sizable increase in
model performance is due to the combination of a higher vocabulary size and the
inclusion of the synthetic data. Both changes serve to improve the language model
of the NMT model, and as a result we are able to obtain better quality translations.
An ensemble of 4 independent models trained with the previous configuration obtains
36.2 BLEU and 51.0 TER, an improvement of 0.3 and 0.2 respectively. Although not
as significant as some of the previous improvements, we can still see how the inclusion
of additional models can be leveraged in order to obtain extra quality improvements
over a single model, due to the error correcting effect of the ensemble.

As aresult of the efforts carried out in this work in collaboration with other MLLP
members, this section has described how we obtained a competitive German-English
system that we entered in the news translation task of WMT18, obtaining competitive
results. The detailed system description, results and findings are published in an pa-
per titled "The MLLP-Universitat Politécnica de Valéncia German-English Machine
Translation System for WMT 2018" [26], that was presented at the WMT 2018 Con-
ference. This section has provided an ample description of the work that was used for
the competition, but interested readers can refer to the system paper in order to have
additional details available at their disposal. Table 3.7 shows the results obtained by
all the primary systems submitted to the WMT18 competition. Our system, tagged

44 MLLP-DSIC-UPV

3.4. Conclusions

Table 3.7: WMT18 news track results.

newstest2018
System BLEU
RWTH Trans. ensemble 48.4
UCambridge NMT-SMT 48.0
NTT Trans. 46.8
JHU RNN ensemble+R2L 45.3
MLLP Trans. ensemble 45.1
Ubiqus-NMT single 44.1
UEdin Trans. ensemble 43.9
LMU-Miinchen 40.9
NanjingU Trans. 38.3

as MLLP Trans. ensemble obtained 45.1 BLEU. This is a very competitive result
when compared with the systems submitted by other participants, and is a result that
is not far from the one achieved by the winner of the competition, a system submitted
by RWTH Aachen.

3.4 Conclusions

In this chapter, we have carried out experiments using the WMT corpus. The use of
data filtering techniques has enabled us to obtain competitive results in the WMT18
News Translation task. These results, as well as the lessons learned, will be used
as a starting point in order to carry out the work that is described in the following
chapters.

MLLP-DSIC-UPV 45

Chapter 3. Translation systems for WMT18: News Task

46 MLLP-DSIC-UPV

CHAPTER 4

TRANSLATION SYSTEMS FOR
X5GON

This chapter will describe the work developed for the X5gon project. We will begin
by describing the project itself, and we will then move into describing the translation
systems developed for the language pairs of the X5gon project, as well as the data
used to train them.

4.1 The X5gon project

X5gon’s goal is to develop an open platform that will combine scattered OER sites into
an analytics network to improve the learning experience of users. The name X5gon
comes from the 5 types on solutions offered to OER sites (cross-site, cross-domain,
cross-modal, cross-language and cross-cultural). Out of the 5 types of solutions
proposed in the project, the presence of a cross-language component that aims to
provide cross-lingual content recommendation, requires the use of efficient translation
tools that are able to cope with the massive amounts of OER content available.
Combined with Automatic Speech Recognition (ASR) technology, MT can be used
in order to provide multilingual OER content automatically from their monolingual
versions. Apart from the obvious gains in usability, accessibility and target audience
that are obtained by having translated versions of OER, automatic translation can be
used in order to improve other X5gon services such as the recommender engine that
powers the cross-site and cross-lingual components. Therefore, the development of
accurate and efficient MT systems is a crucial element for ensuring X5gon’s success.

4.2 Translation of OER

This section describes the different MT systems developed for the X5gon project
during Y2.

47

Chapter 4. Translation systems for X5gon

4.2.1 Experimental setup

Our systems architecture is based on the Transformer model described in Section 2.2.
In order to train our systems, we have the two previously described configurations,
Transformer Base and Transformer Big. The Big configuration has been shown to
achieve better results, but it requires more data to properly estimate its parameters,
and is harder to train. We have also experimented with training systems with more
than 1 GPU.

This section describes the work carried out for the development of NMT systems
for the following language pairs of the X5gon project: Italian-English, English-Italian,
German-English, English-German, French-English, English-French, Spanish-English
and English-Spanish.

For each of those language pairs, we first describe the resources used to train the
MT systems. Secondly, we describe the characteristics of the MT systems. Finally,
we describe the evaluation process for the developed systems.

4.2.2 German-English

We chose the data published for the News Translation Shared Task of the WMT
2018 competition in order to train the German-English systems. The data has been
described in Section 3.1.3.

Following the setup of Section 3.3, the training data was filtered in order to extract
10M sentences from Paracrawl. We also used the 20M backtranslations in order
to increase the amount of available training data. We compare the results of the
Transformer Base model trained for WMT18 with a second Transformer model that
follows the same configuration than the previous system, but trained using 3 GPU, and
therefore it uses a batch size that is 3 times bigger than the previous one. Additionally,
this second system was trained with longer sentences (maximum sentence length of
100, compared with 75 of the previous one).

In order to evaluate our systems, we have elected to use a set of standard sets from
the news translation task of the WMT competition, using newstest2015 as the devel-
opment set, and newstest2017 as the test set. Table 4.1 shows the results obtained
by the German-English MT systems.

Table 4.1: Evaluation results of the German-English MT systems.

System | dev BLEU test BLEU
Transformer Base 34.3 35.9
Transformer Base, 3 GPU 35.3 36.9

The system trained with 3 GPU obtains an improvement of 1.0 BLEU both in the
dev and test sets. This improving can be attributed almost entirely to the increase
in batch size. The only other difference between the two systems is the maximum
sentence length, and there are almost no sentences in the test set whose length is
longer than 75 tokens, so we believe that the effect of this setting will be quite minor.

48 MLLP-DSIC-UPV

4.2. Translation of OER

4.2.3 English-German

The resources chosen to build the English-German system are the same as those of the
German-English MT system, as the language pair involved is the same. The data has
been described in Section 3.1.3, and we have followed the same setup in this language
pair, by selecting 10M sentences using filtering.

We present the results of the two systems developed for English-German, a Trans-
former Base and a Transformer Base model trained with 3 GPU. The second sys-
tem is trained with a maximum sentence length of 100. Additionally, the second
model was trained by augmenting the 10M parallel sentences with an additional 18M
backtranslations. The backtranslations were generated with the Transformer Base
German-English model of Section 4.2.2.

Table 4.2 shows the results obtained by the English-German MT systems on the
news translation WMT dataset.

Table 4.2: Evaluation results of the English-German MT systems.

System ‘ dev BLEU test BLEU
Transformer Base 29.1 274
Transformer Base, 3 GPU + Backtrans. 31.1 29.4

We see how the 3 GPU model is able to obtains improvements of 2.0 BLEU in
both dev and test sets, following a similar pattern than the German-English system
of Section 4.2.2. The combination of a higher batch size with the additional 18M
backtranslations makes it hard to isolate the individual contribution of each change
to the overall improvement, but based on previous experience, it is very likely that
both changes have significantly contributed to the improvement.

4.2.4 Spanish-English

We will now describe the data used for the Spanish-English language pair. We have
3 distinct type of corpora. The first consists in 6M pseudo in-domain data for the
OER domain. This is the data that was used to train our previous phrase-based SMT
systems. We also have a series of general domain corpora (commoncrawl, EUbook-
shop, EU-TT2, eutv and un) as well as a small in-domain corpora from the poliMedia
repository. Table 4.3 shows statistics of the different corpora.

We present the results for two Spanish-English systems, a Transformer Base model,
and a Transformer Big model trained with 3 GPU. The first system was trained using
the 6M pseudo in-domain data. The second system has been trained using all the
available data from the general-domain and in-domain corpora, and using a 3 GPU
machine.

The Spanish-English systems have also been evaluated using a set of standard test
sets from the news translation shared task of the WMT competition, as test sets are
also available for this language pair. In this case, we use newstest2012 as development,
set and newstest2013 as test set. Table 4.4 shows the results of the Spanish-English
models.

MLLP-DSIC-UPV 49

Chapter 4. Translation systems for X5gon

Table 4.3: Statistics of the data sets used to train the Spanish-English MT

systems.
Corpus Sentences(K) ~ Words(M) Vocabulary (K)

Es En Es En
pseudo in-domain data 6005.7 144.1 1334 820.7 756.2
commoncrawl 1845.3 43.5 40.8 1555.2 1371.5
EUbookshop.en-es 5215.5 136.8 121.0 2203.1 2052.7
EU-TT2 1039.9 23.0 21.2 223.7 202.6
eutv 180.5 1.8 1.9 70.5 56.9
un 11196.9 366.1 320.1 668.2 651.7
PM 150.0 2.3 2.4 122.5 88.2

Table 4.4: Evaluation results of the Spanish-English MT systems.

System ‘ dev BLEU test BLEU
Transformer Base 27.2 25.1
Transformer Big, 3 GPU, Full dataset 34.7 32.3

The Transformer Base model obtains 27.2 BLEU in the dev set and 25.1 BLEU in
the test set. The Transformer Big model obtains 34.7 BLEU in the dev set and 32.3
BLEU in the test set, which represents an improvement of 7.5 BLEU and 7.2 BLEU,
respectively. When comparing this with the results of Section 4.2.5, it is likely that
the big improvement in BLEU is thanks to the additional data, and not to the change
from Base to Big model.

4.2.5 English-Spanish

The resources chosen to build the English-Spanish system are the same as those of the
Spanish-English MT system, as the language pair involved is the same. The details
are shown in Table 4.3.

We present the results for two Transformer Base models. In the same way as
the previous case, the first Transformer Base model is trained using a single GPU.
The system was trained using the 6M pseudo in-domain data. The second system
has been trained using all the available data from the general-domain and in-domain
corpora, and using a 3 GPU system. Table 4.5 shows the results obtained by the
English-Spanish MT systems.

Table 4.5: Evaluation results of the English-Spanish MT systems.

System | dev BLEU test BLEU
Transformer Base 26.6 25.1
Transformer Base, 3 GPU, Full dataset 35.0 32.2

50 MLLP-DSIC-UPV

4.2. Translation of OER

Following the trend of the Spanish-English systems of Section 4.2.4, the first Trans-
former Base obtains 26.6 BLEU in the dev set and 25.1 BLEU in the test set, whereas
the 3 GPU model obtains 35.0 and 32.2 BLEU, respectively. This represents an im-
provement of 8.4 and 7.0 BLEU, respectively.

4.2.6 English-French

The data used for training English-French systems is the WMT14 News Translation
Shared Task English-French data. This is a well known dataset that is frequently
used in order to compare results in the literature, so selecting it allows us to measure
our progress compared with other teams. This datasets contains two medium sized
corpora (europarl and commoncrawl) as well as two significantly larger corpora, un-
doc, which is a collection of UN documents, and the Gigaword corpus, a collection
of news text data with more than 20M parallel sentence pairs. Table 4.6 shows the
statistics of the WMT14 dataset.

Table 4.6: Statistics of the data sets used to train the English-French MT

systems.

Corpus Sentences(K) ~ Words(M) Vocabulary(K)

En Fr En Fr
commoncrawl 3244.2 70.7 76.7 1918.2 2081.8
europarl 2007.7 50.3 525 3119 4178
giga 22520.4 575.8 6722 7029.5 6899.5
news-commentary 183.8 4.0 4.7 146.4 175.9
undoc 12886.8 316.5 354.2 2079.8 2548.7

We have trained 2 models for this language pair, a Transformer Base and a Trans-
former Big model using 3 GPUs. All models had a maximum sequence length of 100
tokens.

Following the setup of the WMT 14 competition, we have used newstest2013 as the
dev set, and newstest2014 as the test set. The results obtained by the English-French
MT models are shown in Table 4.7.

Table 4.7: Evaluation results of the English-French MT systems.

System ‘ dev BLEU test BLEU
Transformer Base 30.9 35.2
Transformer Big, 3 GPU 33.6 37.9

The Transformer Base obtains 30.9 BLEU in the dev set, and 35.2 BLEU in the
test set, whereas the Big model obtains 33.6 and 37.9 BLEU, respectively. This
represents an increase of 2.7 BLEU in both the dev and the test sets.

MLLP-DSIC-UPV 51

Chapter 4. Translation systems for X5gon

4.2.7 French-English

The resources chosen to build the French-English system are the same as those of the
English-French MT system, as the language pair involved is the same. The details
are shown in Table 4.6.

We have trained a Transformer Base as well as a Transformer Big model, this one
trained using 3 GPUs. The models were trained with a maximum sequence length of
75.

In a similar way to the English-French case, we used newstest2013 as dev set, and
newstest2014 as test set. Table 4.8 shows the results obtained by the French-English
systems.

Table 4.8: Evaluation results of the French-English MT systems.

System ‘ dev BLEU test BLEU
Transformer Base 33.1 36.8
Transformer Base, 3 GPU 33.0 36.8

In this case, both systems show similar performance, with 33.1 and 36.8 BLEU
in the dev and test sets. This result is different from other language pairs, where
an increase in batch size also meant an improvement in translation quality. Further
experiments using the Transformer Big configuration as well as bigger batches could
be a way of improving results.

4.2.8 English-Italian

For the English-Italian systems, we have collected a series of public datasets from a va-
riety of domains such as: medical (EMEA) and institutional documents (ECB,Europarl
and JRC-Aqcquis), book translations (EUbookshop) and Wikipedia. The statistics
of these datasets are shown in Table 4.9.

Table 4.9: Statistics of the data sets used to train the English-Italian MT

systems.

Corpus Sentences(K) Words(M) Vocabulary (K)

En It En It
ECB 193.0 5.5 5.8 62.2 7.7
EMEA 1081.1 12.1 134 130.3 153.7
EUbookshop 6490.0 144.6 1474 2332.6 2515.8
Europarl 1944.9 50.7 49.0 380.1 492.3
JRC-Acquis 811.0 15.5 154 217.6 248.4
Wikipedia 957.0 20.6 19.2 1530.0 1520.1

We have trained two Transformer Base models, one trained with 1 GPU and the
other with 3 GPU, with a maximum sequence length of 100.

52 MLLP-DSIC-UPV

4.3. Conclusions

The WMT competition has not been held for the English-Italian pair. As such, we
must look elsewhere to find reliable test sets. In this case, we have used the tests sets
from IWSLT17 [10], another international MT competition. We used the provided
dev and test sets for English-Italian. Table 4.10 shows the results obtained by the
English-Italian MT systems.

Table 4.10: Evaluation results of the English-Italian MT systems.

System | dev BLEU test BLEU
Transformer Base 21.4 21.4
Transformer Base, 3 GPU 23.7 23.3

The 1 GPU Transformer Base models obtains 21.4 BLEU in both the dev and
the test set. The 3 GPU Transformer obtains an improvement of 2.3 and 1.9 BLEU,
respectively. As the only difference between these two models is the batch size, this
results prove that the choice of batch size is critical for Transformer models.

4.2.9 Italian-English

The resources chosen to build the Italian-English system are the same as those of the
English-Italian MT system, as the language pair involved is the same. The details are
shown in Table 4.9.

Following the English-Italian setup, we train both a Transformer Base with 1
GPU and another one with 3 GPU. Table 4.11 shows the results obtained by the
Italian-English MT systems.

Table 4.11: Evaluation results of the Italian-English MT systems.

System ‘ dev BLEU test BLEU
Transformer Base 25.1 254
Transformer Base, 3 GPU 25.1 25.9

The Transformer Base achieves 25.1 BLEU in the dev set, and 25.4 BLEU in the
test set, and the 3 GPU version improves 0.5 BLEU in the test set. Although not as
significant as in the English-Italian case, we also observe performance differences due
to different batch sizes.

4.3 Conclusions

We have described the development of MT systems for the X5gon project. Using the
Transformer NMT architecture, we have obtained excellent results in all translation
pairs, without requiring any specific model adaptation to each pair, showing the
flexibility and power of modern NMT approaches. These results are not without
caveats. When using the Transformer Big architecture, we have observed that the

MLLP-DSIC-UPV 53

Chapter 4. Translation systems for X5gon

results are very dependent on the batch size. In fact, there are cases where a model
trained using the Base configuration obtains better results than the Big counterpart.
We must carry out additional experiments in order to explore the effects of the batch
size on system performance.

54 MLLP-DSIC-UPV

CHAPTER 5
TRANSLATION SYSTEMS FOR
WMT19: SIMILAR TASK

5.1 Introduction

In this chapter we describe the NMT systems developed for the Related Languages
Translation Shared Task of the ACL 2019 Fourth Conference on Machine Translation
(WMT19). For this task, we participated in both directions of the Portuguese <>
Spanish language pair. This chapter introduces a novel NMT model that is currently
being developed. We report results for this approach and compare them with models
based on the well-performing Transformer NMT architecture. A domain adapted
version of this latter system achieves the best results out of all submitted systems on
both directions of the shared task.

The chapter is organized as follows. Section 5.2 describes the architecture and
settings of the novel 2D RNN model. Section 5.3 describes our baseline systems and
the results obtained. Section 5.4 reports the results obtained by means of the fine-
tuning technique. Section 5.5 reports comparative results with respect to the systems
submitted by the other competition participants. Section 5.6 outlines our conclusions
for this shared task.

5.2 2D Alternating RNN

In this section, we will describe the general architecture of the 2D alternating RNN
model. The 2D alternating RNN is a novel translation architecture in development
by the MLLP group. This architecture approaches the machine translation problem
with a two-dimensional view, much in the same manner as [32, 3] and [17]. This view
is based on the premise that translation is fundamentally a two-dimensional problem,
where each word of the target sentence can be explained in some way by all the words
in the source sentence. Two-dimensional translation models define the distribution
plei|fd,es™) by jointly encoding the source sentence (fj) and the target history

95

Chapter 5. Translation systems for WMT19: Similar Task

(eéﬁl), whereas the usual translation models encode them separately, in separate
components usually called “encoder” and “decoder”.

The proposed architecture is depicted in Figure 5.1. It defines a two-dimensional
translation model by leveraging already known recurrent cells, such as LSTMs or
GRU, without any further modification.

Attention -» c—»p(e,| ..)

(1 1 -1

Figure 5.1: The 2D alternating RNN architecture. White grids on the top
and bottom represent the input/output of a block. Arrows in grey grids rep-
resent the RNNs, while the arrows on the left depict how the layers are inter-
connected. Arrows on the bottom and bottom right indicate the source and
target dimensions.

As many other translation models, we have a context vector which is projected to
vocabulary size and a softmax (o) is applied to obtain the probability distribution of
the next word at timestep i:

plei =alfi g ") = o(Wei)s (5.1)

To explain how this context vector is drawn from a two-dimensional processing
style, we need to define a grid with two dimensions: one for the source, and one for
the target. From this point, we will define a layer-like structure called block, where
each block of the model has such a grid as the input, and another one as the output.

The first grid that serves as input to this two-dimensional architecture has each
cell s?j containing the concatenation of the source embedding in position j and the
target embedding in position i — 1:

o | fi
S4j Li_l] (5.2)

Each block of the model has two recurrent cells: one along the source dimension
and another one along the target dimension. They process each row or column inde-
pendently of one another. The horizontal cell is bidirectional and receives the grid s’
as its input:

56 MLLP-DSIC-UPV

5.3. Baseline systems

RNNy (AL, si51)
iy = [e (5.3)
! RNNh2(hé,j+1a Séj D)
The vertical cell receives the concatenation of h! and s':
kéj = RNNk(kﬁ—l,jv [52513 hig]) (5.4)
The output of the block is the concatenation of the output of both cells:

L
sij = [kl] (5.5)
From the output of the last block, s”, we generate a context vector as follows:

¢i = Attention([s], . . ., s53]) (5.6)

The Attention function extracts a single vector from a set of vectors leveraging
an attention mechanism. That is, it scores the vectors according to a learned linear
scoring function, which is followed by a softmax to extract scores; and with those
scores it performs a weighted sum to obtain a context vector.

5.3 Baseline systems

This section describes training corpora as well as the baseline model architectures and
configurations adopted to train our NMT systems. Assaid in Section 5.1, two different
model architectures were trained: the Transformer architecture and our proposed 2D
alternating RNN architecture. BLEU scores were computed with the multi-bleu
utility from Moses.

5.3.1 Corpus description and data preparation

The training data is made up of the JCR, Europarl, news-commentary and wikititles
corpora. Table 5.1 shows the number of sentences, number of words and vocabulary
size of each corpus. The provided development data was split equally in two disjoint
sets, and one was used as development set and the other as test set.

The data was processed using the standard Moses pipeline, specifically, punctua-
tion normalization, tokenization and truecasing. Then, we applied 32K BPE opera-
tions. We included in the vocabulary only those tokens occurring at least 10 times in
the training data.

5.3.2 Transformer baseline models

For the Transformer models, we used the “Base” configuration (512 model size, 2048
feed-forward size), trained on one GPU. The batch size was 4000 tokens, and we
carried out gradient accumulation by temporarily storing gradients and updating the
weights every 4 batches. This setup allowed us to train models using an effective batch

MLLP-DSIC-UPV 57

Chapter 5. Translation systems for WMT19: Similar Task

Table 5.1: Statistics of the data sets used to train the Spanish <+ Portuguese

MT systems.
Corpus Sent.(K) Words(M) Vocab.(K)
Es Pt Es Pt
JCR 1650 42 40 264 264
Europarl 1812 53 52 177 156
news 48 1 1 49 47
wikititles 621 1 1 292 295
Total 4131 98 96 623 604

size of 16000 tokens. We used dropout with 0.1 probability of dropping, and label
smoothing where we distribute 0.1 of the probability among the target vocabulary.
We stored a checkpoint every 10000 updates, and for inference we used the average
of the last 8 checkpoints.

We used the Adam optimizer [33] with 51 = 0.9, 82 = 0.98. The learning rate
was updated following an inverse square-root schedule, with an initial learning rate
of 5-10~% and 4000 warm-up updates.

The models were built using the fairseq toolkit.

5.3.3 2D alternating RNNN baseline model

For the 2D alternating RNN models, we used GRU as the recurrent cell, 256 for the
embedding size and 128 as the number of units of each layer of the block. The model
consisted of a single block. The batch size was 20 sentences, with a maximum length
of 75 subword units.

We used the Adam optimizer with 81 = 0.9, 52 = 0.98. The learning rate was ini-
tialized at 10~ and kept constant, but halved after 3 checkpoints without improving
the development perplexity. A checkpoint was saved every 5000 updates. The model
was built using our own toolkit. Due to time constraints, the 2D alternating model
was only trained for the Portuguese — Spanish direction.

5.3.4 Results

Table 5.2 shows the evaluation results for the Portuguese—Spanish systems, and Table
5.3 shows the evaluation results for our Spanish—Portuguese Transformer system. For
the Portuguese — Spanish direction, the Transformer model obtains 57.4 BLEU in the
test set, and 51.9 in the hidden test set of the competition. The 2D alternating model
achieves 55.1 and 49.7 BLEU, respectively. These results show how, even though it
is in early stages of development, the 2D alternating RNN model is able to obtain
competitive results for this task that are not very far from those obtained by the state-
of-the-art Transformer architectures. It is worth noting that this has been achieved
with a model that has significantly less parameters than its Transformer counterpart.

58 MLLP-DSIC-UPV

5.4. Fine-tuning

Table 5.2: Baseline BLEU scores on the Portuguese — Spanish task.

BLEU
System test test-hidden
Transformer 57.4 51.9
2D altern. RNN | 55.1 49.7

Table 5.3: Baseline BLEU scores on the Spanish — Portuguese task.

BLEU
System test test-hidden
Transformer ‘ 51.2 45.5

5.4 Fine-tuning

Section 2.3 has highlighted the importance of carrying out fine-tuning in case there
exits a domain mismatch between train and test data. In order to empirically test
if this is one of such cases, we have trained two language models, one using only the
presumably out-of-domain data (the train corpora from Table 5.1), and one using
only the in-domain development data. The models were 4-gram language models
trained using the SRI Language Modelling Toolkit. We then computed the perplexity
of the test set using these two language models. The model that was trained with
the out-of-domain data obtains a perplexity of 298.0, whereas the model that used
the in-domain data obtains a perplexity of 81.9. This result shows that there is in a
fact a domain mismatch between the train and test data, which supports the idea of
carrying out fine-tuning.

We applied this to both translation directions, using the first part of the develop-
ment data as in-domain training data, and the second part as a new dev set. One
checkpoint was stored after every fine-tuning epoch, and we monitored model perfor-
mance on the new dev set in order to stop fine-tuning once the BLEU results started
decreasing. For the Transformer models, we used the same learning rate as when
training stopped, while for the 2D alternating models we used 1073.

Tables 5.4 and 5.5 compare the BLEU scores achieved by the fine-tuned sys-
tems with that of the baseline non fine-tuned ones on the Portuguese—Spanish and
Spanish—Portuguese tasks, respectively.

Table 5.4 shows that for this particular task, fine-tuning is a key step for achieving
very substantial performance gains: in the Portuguese—Spanish task, we obtained a
14.1 BLEU improvement in the test set and a 14.7 BLEU improvement in the hidden
test set for the Transformer model. The 2D alternating RNN obtained a 8.9 BLEU
improvement thanks to fine-tuning. This also applies to the Spanish—Portuguese
task, shown in Table 5.5: we obtained a 18.1 BLEU improvement in the test set, and
a 19.2 BLEU improvement in the hidden test set after applying fine-tuning.

In order to understand the impact and behaviour of the fine-tuning process, we
have analyzed the model’s performance as a function of the number of fine-tuning

MLLP-DSIC-UPV 59

Chapter 5. Translation systems for WMT19: Similar Task

Table 5.4: Comparative BLEU scores of the Transformer and 2D alternating
RNN models on the Portuguese — Spanish task.

BLEU
System test test-hidden
Transformer 57.4 51.9
+ fine-tuned 72.4 66.6
2D altern. RNN | 55.1 49.7
+ fine-tuned 64.0 -

Table 5.5: Comparative BLEU scores of the Transformer model on the Span-
ish — Portuguese task.

BLEU
System test test-hidden
Transformer | 51.2 45.5
+ fine-tuned | 70.7 64.7

epochs. Figure 5.2 shows the impact of the fine-tuning step for the Transformer and
2D alternating RNN models on the Portuguese — Spanish task, while Figure 5.3 shows
the results of the fine-tuning step applied to the Transformer model on the Spanish
— Portuguese task. In both language pairs, the first epochs are the most beneficial
for system performance, and additional fine-tuning epochs bring diminishing returns
until the BLEU curve flattens.

BLEU Transformer

70 -

60 -

Portuguese-Spanish

55 !Epoch~

0 5 10 15 20 25 30

Figure 5.2: BLEU scores as a function of the number of fine-tuning epochs on
the Transformer and 2D alternating RNN models for the Portuguese—Spanish
task.

60 MLLP-DSIC-UPV

5.5. Comparative results

BLEU

70 -

65 |-

Spanish-Portuguese

Epoch
50 L L L L L L L L
0 5 10 15 20 25 30 35

Figure 5.3: BLEU scores as a function of the number of fine-tuning epochs
on the Transformer model for the Spanish—Portuguese task.

Table 5.6: Primary submission results of the Portuguese — Spanish shared
task in the hidden test set.

Team \ BLEU TER
MLLP 66.6 19.7
NICT 59.9 25.3
U. Helsinki 58.4 25.3
Kyoto U. 56.9 26.9
BSC 54.8 29.8
UBC-NLP 52.3 32.9

5.5 Comparative results

We now move on to the results for the primary submissions of all participants in the
Shared Task. We chose to send our fine-tuned Transfomer systems as primary submis-
sions to both tasks after reviewing the results on the provided test set (Section 5.4).
The submission was made with the checkpoint that achieved the best performance on
the fine-tuning dev data. Table 5.6 shows the results of the Portuguese—Spanish task,
while Table 5.7 shows the results of the Spanish—Portuguese task; both in BLEU and
TER [58].

In both tasks, our system outperformed all other participants by a significant
margin. In the Portuguese—Spanish task, our submission outperforms the next best
system by 6.7 BLEU and 5.6 TER. In a similar manner, our submission to the Spanish
— Portuguese task improves the results of the second-best submission by 2.6 BLEU
and 2.2 TER points. We attribute our success to the domain adaptation carried out
by means of the fine-tuning technique. We have been able to apply this technique by
using part of the competition’s development data as in-domain training data.

MLLP-DSIC-UPV 61

Chapter 5. Translation systems for WMT19: Similar Task

Table 5.7: Primary submission results of the Spanish — Portugue