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 The yoke flux of a conductor in an eccentric machine is obtained 
analytically.

 A single formula gives the inductance between two phases for every rotor 
position,

 This formula is the convolution of the conductors' distributions and the 
yoke flux.

 The convolution is computed as a pointwise multiplication in the 
frequency domain.

 The fast Fourier transform is used to switch between spatial and  frequency 
domains.
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Abstract

Condition based maintenance systems (CBM) of induction machines (IMs)
require fast and accurate models that can reproduce the fault related har-
monics generated by different kinds of faults, in order to help in developing
new diagnostic algorithms for detecting the faults at an early stage, to anal-
yse the physical interactions between simultaneous faults of different types,
or to train expert systems that can supervise and identify these faults in an
autonomous way. To achieve these goals, such models must take into account
the space harmonics of the air gap magnetomotive force (MMF) generated
by the machine windings under fault conditions, due to the complex inter-
actions between spatial and time harmonics in a faulty machine. One of the
most common faults in induction machines is the rotor eccentricity, which
can cause significant radial forces and, in extreme cases, produce destructive
rotor-stator rub. But the development of a fast, analytic model of the ec-
centric IM is a challenging task, due to the non-uniformity of the air gap.
In this paper, a new method is proposed to obtain such a fast model. This
method, which is theoretically justified, enables a fast calculation of the self
and mutual inductances of the stator and rotor phases for every rotor posi-
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tion. The proposed method is validated first using a finite elements method
(FEM) model, and then, through an experimental test-bed using commercial
induction motors with a forced mixed eccentricity fault.
Keywords: Inductance, Induction Machines, Convolution, Discrete Fourier
Transforms, Fault Diagnosis, Air Gap Eccentricity

1. Introduction1

Induction machines (IMs) are present in most industrial processes, either2

as driving motors [1, 2] or as generating units [3–5]. Their preponderance3

relies on their inherent robustness and reliability. Nevertheless, they are sub-4

jected to mechanical and electrical ageing, with the risk of suffering different5

kinds of faults during their operational life. Their unexpected failure can6

provoke heavy economical losses, depending on its impact on the sudden7

stoppage of the production lines or the power generating stations. The im-8

plementation of CBM systems for IMs [6] can reduce these risks, with the9

goal of detecting machine problems prior to failure [7], and can also help10

to optimize the schedule of maintenance stops, with the goal of reducing11

the production losses during the stop. From a broader point of view, CBM12

systems for IMs can be integrated in maintenance systems for electrical in-13

stallations, along with CBMs for inverters [8], generators [9], transformers14

[10–13], power systems [14], transmission lines [15, 16] or microgrids [17, 18].15

Different techniques that can be used for implementing a CBM system16

for IMs [19], such as the analysis of currents [20–24], vibrations [24–27], in-17

stantaneous power [28], reactive power [29], apparent power [21], voltages18

[30, 31], back EMFs induced tooth-coil windings [32, 33], voltage injection19

[34], thermal images [35, 36], internal flux [37, 38], acoustic emissions [39, 40],20

etc. Among these methods, the analysis of the machine current signature21

(MCSA) method has attracted an special interest [24, 41], because it is non22

invasive (it requires only a current probe that can be attached to the line23

which feeds the machine), fast an easy to implement online (it uses a FFT to24

obtain the current spectrum, where the characteristic fault signatures can be25

detected), and is able to detect different, and possibly simultaneous [42–44],26

types of faults, and it can be operated on line. In spite of its conceptual27

simplicity, the practical application of MCSA in harsh industrial environ-28

ments is a challenging issue. The amplitude of the fault harmonics is very29

small, compared with the fundamental component, so that electromagnetic30
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noise produced by electronic converters [45, 46], harmonics generated by os-31

cillating loads, or even the spectral leakage of the FFT can hide the fault32

harmonics generated by the fault, avoiding its detection until the fault is33

severe. The use of a fast, analytical model that can reproduce the fault34

harmonics in the current spectra, under many different controlled working35

conditions, becomes then a valuable resource for the development of robust36

MCSA algorithms and expert systems for CBM systems [5, 47–49].37

Eccentricity is a common type of IM fault [21, 28, 29, 50–55], which is38

caused primarily because of maladjustment of bearings, load imbalance, shaft39

flexibility, thermal deformations, or misalignments [56]. The asymmetry of40

the magnetic field in the non-uniform air gap of the eccentric IM produces41

radial forces [53], that is, an unbalanced magnetic pull (UMP) [57–61], which42

generates abnormal vibrations, damages in the shaft bearings, destructive43

rotor-stator rub [62] or even sparks during the starting of the motor [63].44

Diverse models of the eccentric IM have been proposed recently. The45

most accurate ones are based in the finite elements method (FEM). Transient46

finite-element models of the eccentric IM have been applied to assess the47

influence on the UMP of the series/parallel winding connections [64]. A time-48

stepping FEM model is used in [65] to analyze the influence of load variation49

on the diagnostic indexes of an eccentric motor; in [53] to compute the power50

balance of an eccentric IM; and in [66] to obtain the characteristic harmonic51

components generated by an eccentricity fault. Despite its great accuracy,52

FEM models of an eccentric IM require important computer resources and53

computing time. To overcome this drawback, an hybrid FEM/superposition54

approach is proposed in [67], which is able to model an eccentric motor with a55

saving in time of several orders of magnitude, with a mere 3% of relative error56

compared with a full FEM model. In [33] a 3D field reconstruction method57

(3D-FRM)is applied to built stator and rotor basis using reduced number58

of FEM simulations, which provides the same accuracy as 3-D FEM at a59

lower computational cost. To further reduce the computing requirements, in60

time and memory resources of the FEM model of the eccentric IM, several61

analytic models have been presented in the technical literature, with times of62

calculation several orders of magnitude lower than in the case of FEMmodels,63

while maintaining a similar level of accuracy regarding the calculation of64

fault harmonics. For example, [68] reports a few seconds for the analytical65

model versus more than three hours for the FEM model, and [69] reports66

4 minutes for the analytical model versus 50 hours for the equivalent FEM67

model. A 3D magnetic equivalent circuit model has been presented in [70],68
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as a high resolution analytical replacement of FEM models. Nevertheless,69

in most cases simpler 2D equivalent circuit models are used for diagnostic70

purposes. One approach for building such 2D analytical models relies on71

finding the analytical solution of the magnetic field in the air-gap of the72

eccentric machine [71]. In [37] this solution is obtained considering only the73

fundamental component of the stator airgap flux density, and in in [72–76] a74

conformal transformation is applied to the expressions of the magnetic field of75

a healthy machine. Nevertheless, the conformal transformations presented in76

these works result in infinite series expansions for the air-gap magnetic field,77

which converge slowly. Other approaches make use of the inverse air-gap78

function of the eccentric machine to compute the matrix of phase inductances,79

via a modified winding function approach (MWFA), as in [4, 20, 51, 54, 77–80

80]. But MWFA has some drawbacks: to account for coil pitch, slot skewing81

or the rise of the air gap MMF across the slot, different winding functions82

must be used in each case. Besides, the winding function of a phase must83

be computed using both the winding functions of the coils that constitute84

the phase and the coils distribution. Finally, the winding functions must85

be integrated to obtain the phases inductances, and complex integrals must86

be solved in this process, which may be very cumbersome in the case of87

arbitrary winding distributions. As it is stated in [81], this task typically88

consumes a high amount of time, so that only discrete curves of inductance89

versus rotor position are calculated and linear interpolation is applied at90

intermediate rotor positions. But this approach requires different winding91

functions for each type of winding, and difficult its application for complex92

winding distributions.93

In a previous paper [82], after a critical review of the MWFA, a completely94

different way of attacking the problem was under-taken and a new method for95

computing winding inductances in uniform air gap machines was presented96

and developed. In this paper, the method introduced in [82] is extended to97

include the effects of static and dynamic eccentricity, in a two stage process:98

• First, a novel analytical expression is derived for representing the yoke99

flux generated by a single conductor, placed at any angular position in100

the air-gap, for any rotor position and for any degree of eccentricity.101

• And, second, a new procedure, based on the spatial convolution of this102

expression and the distributions of the phases conductors, is developed103

for obtaining the phases inductances of the eccentric IM, which are104

used in the equivalent circuit model. This new procedure is expressed105
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as a single equation which gives the mutual inductances of two phases106

corresponding to all of their possible relative positions, and for all of107

the rotor positions, taking into account the air gap MMF harmonics.108

This algorithm it is very fast, because it is based on the FFT. And109

the calculation time is independent of the complexity of the windings110

layout.111

The structure of this paper is as follows: in Section 2 the general system112

equations for an induction machine are briefly reminded, since they are the113

base of subsequent developments and also for introducing the nomenclature.114

In Section 3, the inverse air-gap function of the eccentric IM is presented,115

and in Section 4 it is used for deriving the general expression of the yoke116

flux generated by a single conductor in an eccentric IM, for any position of117

the rotor centre, and for any degree of eccentricity. Section 5 establishes118

the relationship between the rotor centre coordinates and the rotor turning119

position, depending on the type of eccentricity, static, dynamic or mixed.120

Both expressions are combined in Section 6, using a new convolution-based121

method, for obtaining the mutual inductance between every two phases of122

the machine for any relative angular position, and for any rotor position,123

and in Section 7, it is implemented using the FFT. The proposed method is124

validated in Section 8, comparing it with numerical results obtained through125

a FEM model, and through experimental results obtained with a commercial126

IM with a forced eccentricity fault. Finally, in Section 9, the conclusions of127

this work are presented.128

2. Induction Machines General Electromechanical Equations Sys-129

tem130

The following equations system [83–85] can be written for an induction131

machine with m stator and n rotor phases with arbitrary layout (that is,132

even under winding fault conditions like inter-turn short circuits or rotor133

asymmetries)134

[Us] = [Rs][Is] + d[Ψs]/dt (1)
135

[0] = [Rr][Ir] + d[Ψr]/dt (2)
136

[Ψs] = [Lss][Is] + [Lsr][Ir] (3)
137

[Ψr] = [Lsr]T [Is] + [Lrr][Ir] (4)
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138

[Us] = [us1, us2, ...usm]T (5)
139

[Is] = [is1, is2, ...ism]T (6)
140

[Ir] = [ir1, ir2, ...irn]T (7)

where [U ] is the phase voltages matrix, [I] is the phase currents matrix,141

[R] is the resistances matrix, [Ψ] is the flux linkages matrix and [L] is the142

inductances matrix. Subscripts s and r are used for the stator and for the143

rotor, respectively. The mechanical equations are:144

Te = 1
2[I]T ∂[L]

∂θ
[I] (8)

145

Te − TL = J
dΩ
dt

= J
d2θ

dt2
(9)

where Te is the electromechanical torque of the machine, TL is the load torque,146

J is the total system inertia (rotor plus load), Ω is the mechanical speed and147

θ is the mechanical angle position of the rotor. To solve (3), (4) and (8), the148

self and mutual phase inductance matrices must be calculated for every rotor149

position. Due to the presence of the derivatives in (1), (2) and (8), it is nec-150

essary to achieve a very good accuracy in this process, especially if different151

fault conditions are to be detected and diagnosed in a sure way. The elements152

of the matrices LSS, LRR and LSR, are computed in this work using a novel153

approach based on the FFT, which provides the mutual inductance between154

two phases for all of their relative angular positions, taking into account the155

air gap MMF harmonics. End turn and slot leakage inductances need to be156

pre-calculated, and are included in the L terms in (3) and (4), as usual in157

the technical literature, where explicit expressions for these inductances can158

be found in [86–88].159

3. Modelling of the Eccentric Air Gap Length160

Under the assumption of infinite iron permeability and smooth, constant161

air gap, the mutual inductances of the phases only change with their relative162

position [1]. For non uniform air gaps, the relative position between the163

phases, as well as the rotor position, have to be taken into account. If both164

the stator and rotor cores are cylindrical, the eccentricity can be fully defined165

just by the position of the rotor geometric centre, Or with respect to the166
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stator geometric centre Os. To analyze the eccentric machine, a coordinate167

system attached to the stator will be used in this paper, as shown in Fig. 1168

ϕ

Θr
g 0
· δ r

Or

Os

Figure 1: Coordinate system used in this paper, attached to the stator. ϕ is the angular
coordinate of a generic point on the rotor external surface or on the stator internal one.
The position of the rotor centre in the eccentric machine, Or, is given by its angular
position, Θr, and its distance to the stator centre, δr, in p.u. of the air gap length of the
healthy machine, g0. That is,

−−−→
OsOr = g0 · δr · ejΘr .

In this coordinate system, the degree of eccentricity can be fully charac-169

terized by the position of the rotor centre, shown in detail in Fig. 2170
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g0
· δr

Os

Or

Θr

−−−→
OsOr = g0 · δr · ejΘr

Figure 2: Parameters used for characterizing the degree of eccentricity: distance from the
rotor axis to the stator axis (g0 · δr), and angular position of the rotor centre, measured
in a stator reference frame (Θr).

−−−→
OsOr = g0 · δr · ejΘr 0 ≤ δr < 1, 0 ≤ Θr < 2π (10)

where g0 is the air gap width of the healthy machine, δr is the distance from171

the rotor axis to the stator axis (in p.u. of g0), which is assumed constant172

along the machine axial length, and Θr is the angular position of the rotor173

centre, measured in a stator reference frame.174

Assuming, without any loss of generality, that the rotor centre lies in the175

stator d-axis, that is, Θr = 0 in Fig. 1, the air gap length at an angular176

position ϕ, g(ϕ) in Fig. 3, is given by the distance between a point on the177

external surface of the rotor at this coordinate PR, and a point on the inner178

surface of the stator at the same coordinate, PS. That is,179
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ϕ

Or

Os

PR

PS

Rr

g0 · δr

g(ϕ)

Rs

Figure 3: Air gap length g(ϕ) of an eccentric machine as a function of the angular coor-
dinate ϕ, measured in a stator reference frame.

g(ϕ) = |OsPS −OsPR| = Rs − |OsPR| (11)

where Rs is the stator radius. The rotor radius, Rr, can be expressed as180

a function of OsPR as181

R2
r = |OsPR|2 + (g0 · δr)2 − 2|OsPR| · g0 · δr · cos(ϕ) (12)

that is,182

|OsPR| =
2g0 · δr · cos(ϕ)±

√
(2g0 · δr · cos(ϕ))2 − 4(g2

0 · δr2 −R2
r)

2 (13)
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and, substituting (13) in (11) gives183

g(ϕ) = Rs − g0 · δr cos(ϕ)±
√

(g0 · δr · cos(ϕ))2 − g2
0 · δr2 +R2

r (14)

Assuming that the radius of the rotor is much greater than the air gap184

length, Rr >> g0 · δr, then (14) becomes185

g(ϕ) ≈ Rs −Rr − g0 · δr cos(ϕ)) ≈ g0(1− δr cos(ϕ)) (15)

From (15), the air gap length at any given angular coordinate ϕ can be186

approximated by a function of the rotor centre coordinates δr and Θr as187

g(ϕ,Θr, δr) ≈ g0 · (1− δr · cos(ϕ−Θr)) (16)

3.1. Inverse of the Air-Gap Function188

For computing the phases’ inductances, it is needed the inverse of the air189

gap function to obtain the permeance function of the machine. The inverse190

of (16) is given by191

g(ϕ,Θr, δr)−1 = g−1
0 ·

1
(1− δr · cos(ϕ−Θr))

(17)

The mean air gap radius of the machine, r(ϕ,Θr, δr), can be defined in192

terms of the stator inner radius Rs and the rotor’s outer one, Rr as193

r(ϕ,Θr, δr) ≈ r = Rs +Rr

2 (18)

Neglecting the variations of the mean air gap radius (18), the function194

given by (17) can be expressed as the series [89]195

1
1− δr · cos(ϕ−Θr)

= 1√
1− δr2

+2
∞∑
m=1


1−

√
1− δr2√

1− δr2

m cos
(
m(ϕ−Θr)

)
)


(19)

Only the first term of the series in (19) have been used in [90–95] and two196

terms in [89]. In this paper, the equations are derived for a generic number197

nt of terms, where the value of nt can be freely chosen to achieve the desired198

precision.199
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Applying (19) to (17) gives200

g(ϕ,Θr, δr)−1 = g−1
0 ·

(
A0 +

nt∑
m=1

Am · cos
(
m(ϕ−Θr)

))
(20)

where201

A0 = 1√
1− δr2

(21)

and202

Am = 2
1−

√
1− δr2√

1− δr2

m m = 1 . . . nt (22)

4. Yoke Flux Generated by a Single Conductor in an Eccentric203

Induction Machine204

Let’s consider a conductor of the eccentric induction machine, placed in205

the air-gap at a given angular position α (Fig. 4).206

α

Figure 4: Single conductor of the eccentric induction machine, placed in the air-gap, at a
given angular position α.

To obtain the yoke flux distribution that this single conductor generates207

for any given rotor centre position −−−→OsOr = δr · ejΘr when it is fed with a unit208

current, the following steps are taken in this work:209

1. The air gap MMF generated by a one-turn, short pitched coil is deter-210

mined for an eccentric machine, with the rotor centre at the arbitrary211
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position −−−→OsOr = δr · ejΘr (Section 4.1).212

2. Based on the air gap MMF of a short pitched coil, the air gap MMF of213

a single conductor is obtained (Section 4.2).214

3. From the air gap MMF of the conductor, the magnetic flux density215

distribution that it generates along the non-uniform air gap of the ec-216

centric machine is obtained (Section 4.3).217

4. Finally, the yoke flux generated by the conductor is calculated, based218

on its MMF (Section 4.4).219

Using the yoke flux of this single conductor in the eccentric machine’s airgap,220

the convolution theorem will be used in Section 6, first, to compute the yoke221

flux produced by an arbitrary phase A, and, thereafter, the flux linkage of222

a phase B due to phase A, for any position of the rotor and any relative223

position of both phases.224

4.1. Air Gap MMF Generated by a One-turn, Short Pitched Coil in an Ec-225

centric Induction Machine226

The air gap MMF generated by a coil along the air gap of an eccentric227

induction machine at an angular coordinate ϕ, Fc(ϕ,Θr, δr), is given by the228

relation229

Fc(ϕ,Θr, δr) = Hc(ϕ,Θr, δr) · g(ϕ,Θr, δr) (23)

where ϕ is the angular coordinate, −−−→OsOr = g0 ·δr ·ejΘr is the position of the ro-230

tor geometric centre, Hc(ϕ,Θr, δr) is the mean value of the radial component231

of the magnetic field intensity at ϕ and g(ϕ,Θr, δr) is the air gap length at the232

angular coordinate ϕ. Let’s consider the general case of a short-pitched, one-233

turn coil, with its first conductor placed at the origin ϕ = 0, and the other234

one at position ϕ = α (see Fig. 5a), fed with a unit current, and with the235

rotor centre placed at the arbitrary position −−−→OsOr = g0 ·δr ·ejΘr . The air gap236

MMF generated by this coil at a generic coordinate ϕ, F0α(ϕ,Θr, δr), can be237

calculated applying Ampere’s law to a path as the one labelled ’abcd’ in Fig.238

5, under the assumption of infinite iron permeability, straight conductors and239

uniform air gap length along the machine axis, in the z direction.240
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Or

Os

d

b

Θr

c

a

ϕ

α

1 − α
2π

− α
2π

K0α(Θr, δr)

K0α(Θr, δr)

F0α(ϕ,Θr, δr)

Healthy machine

Eccentric machine

a) b)

Figure 5: a) Short pitched coil fed by a dc current of 1 A. b) MMF generated by a short
pitched coil F0α(ϕ,Θr, δr) in a healthy machine (red, dashed line) and in an eccentric
induction machine (blue, solid line), as a function of the angular coordinate ϕ, and of the
position of the rotor centre −−−→OsOr = g0 · δr · ejΘr .


F0α(ϕ,Θr, δr)− F0α(0,Θr, δr) = 1 0 ≤ ϕ < α

F0α(ϕ,Θr, δr)− F0α(0,Θr, δr) = 0 α ≤ ϕ < 2π
(24)

The total flux crossing a cylindrical surface of radius r and unit length,241

parallel to the stator bore axis, amounts to zero. Therefore242

µ0 · r ·
2π∫
0

Hc(ϕ,Θr, δr) · dϕ = 0 (25)

and, taking into account (23) and (24), (25) gives243

α∫
0

(1 + F0α(0,Θr, δr))
g(ϕ,Θr, δr)

dϕ+
2π∫
α

F0α(0,Θr, δr)
g(ϕ,Θr, δr)

dϕ = 0 (26)
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that is,244

F0α(0,Θr, δr) = −

α∫
0
g(ϕ,Θr, δr)−1dϕ

2π∫
0
g(ϕ,Θr, δr)−1dϕ

(27)

Replacing (20) in (27) gives245

F0α(0,Θr, δr) = − α

2π −
nt∑
m=1

Am
2πA0

sin(mΘr)− sin(m(Θr − α))
m

(28)

and, combining (28) and (24), gives finally246

F0α(ϕ,Θr, δr) =


1− α

2π −
nt∑
m=1

Am

2πA0

sin(mΘr)−sin(m(Θr−α))
m

0 ≤ ϕ < α

− α
2π −

nt∑
m=1

Am

2πA0

sin(mΘr)−sin(m(Θr−α))
m

α ≤ ϕ < 2π
(29)

that is247

F0α(ϕ,Θr, δr) =
{

1− α
2π −K0α(Θr, δr) 0 ≤ ϕ < α
− α

2π −K0α(Θr, δr) α ≤ ϕ < 2π (30)

with248

K0α(Θr, δr) =
nt∑
m=1

Am
2πA0

sin(mΘr)− sin(m(Θr − α))
m

(31)

It should be noted that the expression of the MMF generated by a short249

pitched coil of a healthy (non-eccentric) IM [82, 96] can be deduced as a250

particular case of (30) in which δr = 0 (and, therefore K0α(Θr, δr) = 0); Fig.251

5.b shows the waves of MMF of the short pitched coil in a healthy machine252

(red line) and in eccentric one (blue line). It is remarkable that the MMF253

wave of the eccentric machine can be obtained shifting down the wave of254

the healthy machine a distance K0α, that only depends on the rotor centre255

position.256

4.2. Air Gap MMF Generated by a Single Conductor in an Eccentric Induc-257

tion Machine258

The MMF generated by the short pitched coil (29) can be expressed also259

as the sum of the MMFs generated by each of its conductors, taking into260
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account the opposite direction of their currents, that is261

F0α(ϕ,Θr, δr) = F0(ϕ,Θr, δr)− Fα(ϕ,Θr, δr) (32)

A close inspection of (29) shows the presence of two terms in the summa-262

tion, each of them corresponding to one of the coil’s conductors:263

• One of them is proportional to sin(mΘr), which can be attributed to264

the MMF of the conductor placed at the origin ϕ = 0265

• The other one is proportional to − sin(m(Θr − α)), which can be at-266

tributed the MMF of the conductor placed at ϕ = α, with the sign267

reversed to account for the direction of the current.268

Therefore, the expression of the MMF of a single conductor placed at269

an angular position α in the eccentric machine, Fα(ϕ,Θr, δr), which satisfies270

(32), can be expressed as271

Fα(ϕ,Θr, δr) =
{

1
2 −

(ϕ−α)
2π −Kα(Θr, δr) 0 ≤ ϕ < α

−1
2 −

(ϕ−α)
2π −Kα(Θr, δr) α ≤ ϕ < 2π

(33)

with272

Kα(Θr, δr) =
nt∑
m=1

Am
2πA0

sin(m(Θr − α))
m

(34)

Fig. 6.b shows the spatial wave of MMF generated by the single conductor273

shown in Fig. 6.a. The red line corresponds to the healthy machine, obtained274

for δr=0, Kα(Θr, δr)=0 in (33). The blue line corresponds to an eccentric275

machine (Kα(Θr, δr) 6= 0 in (33)). It is noticeable that, similarly to the276

case of a short pitched coil, the MMF wave generated by a conductor in the277

eccentric machine can be obtained by shifting down the MMF corresponding278

to a healthy machine a distance Kα, which depends on the rotor centre279

position. Furthermore, it should be noted that the expression of the MMF280

generated by a single conductor of a healthy, non-eccentric IM [82, 96, 97]281

can be deduced as a particular case of (33) in which δr = 0 (and, therefore,282

Kα = 0).283
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Figure 6: a) Single conductor, placed at an angular position α, fed by a dc current of 1 A.
b) MMF generated by a single conductor placed at an angular position α, Fα(ϕ,Θr, δr),
in a healthy machine (red, dashed line) and in an eccentric induction machine (blue, solid
line), as a function of the angular coordinate ϕ, and of the position of the rotor centre
−−−→
OsOr = g0 · δr · ejΘr .

Eq. (37) can be expressed in a more compact way by wrapping the angular284

coordinates to the interval [0, 2π),285

Fα(ϕ,Θr, δr) = 1
2 −

((ϕ− α))2π

2π −Kα(Θr, δr) (35)

where ((ϕ− α))2π stands for the modulo 2π operation286

((ϕ− α))2π = mod
(
(ϕ− α + 2π), 2π

)
(36)

For easy of notation, in the rest of this paper the modulo notation will287

be omitted, and all the angular variables will be assumed to be wrapped to288

the [0, 2π) range, so that (35) will be written as289

Fα(ϕ,Θr, δr) = 1
2 −

(ϕ− α)
2π −Kα(Θr, δr) (37)
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Without eccentricity, Kα(Θr, δr) = 0 and (37) reduces to290

Fα(ϕ) = 1
2 −

(ϕ− α)
2π (38)

which is the air gap MMF generated by a conductor placed at an angular291

position α in a non-eccentric induction machine [82, 96, 97], as shown in Fig292

6b, red line.293

It is worth mentioning that the air gap MMF of an arbitrary coil (e.g. a294

short-pitched coil) obtained by Ampere’s Law, coincides with the one given295

by summing up the air gap MMFs of its conductors, computed through (37).296

Therefore, the air gap MMF of an arbitrary phase can be expressed as the297

sum of the air gap MMFs of all of its conductors. Fig. 7 shows a simple case298

with a phase formed by a one-turn, short-pitched coil.299
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F0α(ϕ,Θr, δr)

Figure 7: Air gap MMF generated by a one-turn short pitched coil, fed with a unit current,
as the sum of the air gap MMFs of both conductors in the eccentric induction machine of
Appendix A, for δr = 0.6 and Θr = 0.

4.3. Magnetic Flux Density of a Single Conductor in an Eccentric Induction300

Machine301

The radial component of the magnetic flux density, or magnetic induction302

B, at a point of angular coordinate ϕ, located at the inner surface of the303

stator bore, that generates a single conductor placed at an angular position304
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α, fed with a unit current, is given by305

Bα(ϕ,Θr, δr) = µ0 ·
Fα(ϕ,Θr, δr)
g(ϕ,Θr, δr)

(39)

and, replacing (20) and (37) in (39), gives306

Bα(ϕ,Θr, δr) = µ0 · g−1
0 ·

(
1
2 −

(ϕ−α)
2π −Kα(Θr, δr)

)
·

·
(
A0 +

nt∑
m=1

Am · cos
(
m(ϕ−Θr)

)) (40)

As in the case of the air gap MMF, the magnetic flux density generated by307

an arbitrary phase can be expressed as the sum of the magnetic flux density308

generated by all of its conductors. Fig. 8 shows a simple case with a phase309

formed by a one-turn, short-pitched coil.310
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Figure 8: Magnetic flux density generated by a one-turn short pitched coil, fed with a
unit current, as the sum of the magnetic flux density of both conductors, in the eccentric
induction machine of Appendix A, for δr = 0.6 and Θr = 0.

4.4. Yoke Flux of a Single Conductor in an Eccentric Induction Machine311

If the conductor is placed at an angular position α and fed with a unit312

current, the differential of the magnetic flux due to the conductor which313
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crosses the corresponding air-gap at an angle ϕ, for a given position of the314

rotor centre, −−−→OsOr = g0 · δr · ejΘr , is (Fig. 9)315

d (Φα(ϕ,Θr, δr)) = Φα(ϕ+ dϕ,Θr, δr)− Φα(ϕ,Θr, δr) (41)

It can be expressed as a function of the induction’s radial component, as in316

[82] (see Fig. 9)317

ϕ

dϕΦα(ϕ + dϕ,Θr, δr)

Φα(ϕ,Θr, δr)

Bα(ϕ,Θr, δr) · l · r(ϕ,Θr, δr) · dϕ

r(ϕ,Θr, δr)

Figure 9: Differential of the yoke flux as a function of the radial component of the induction
on the stator inner surface.

d (Φα(ϕ,Θr, δr)) = −Bα(ϕ,Θr, δr) · l · r(ϕ,Θr, δr) · dϕ (42)

where l is the axial length of the stator bore. As the air-gap width is consid-318

ered to be very small, the radius r(ϕ,Θr, δr) can be approximated by its mean319

value r(ϕ,Θr, δr), given by (18), as done in [90, 94, 95]. The substitution of320

(18), (39) and (20) in (42) yields321

d (Φα(ϕ,Θr, δr)) = −µ0lr
g0

(
1
2 −

(ϕ−α)
2π −Kα(Θr, δr)

)
·

·
(
A0 +

nt∑
m=1

Am cos
(
m(ϕ−Θr)

))
dϕ

(43)
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Equation (43) is integrated, which gives322

Φα(ϕ,Θr, δr) = µ0lr

g0
· Λα(ϕ,Θr, δr)) + C (44)

with323

Λα(ϕ,Θr, δr) = A0
4π (ϕ− α)2 +

nt∑
m=1

Am

2π

 (ϕ−α) sin
(
m(ϕ−Θr)

)
m

+
cos
(
m(ϕ−Θr)

)
m2

−
(

1
2 −Kα(Θr, δr)

)
·

A0(ϕ− α) +
nt∑
m=1

Am
sin
(
m(ϕ−Θr)

)
m


(45)

The value of constant C in (44) is given by the condition that, due to the324

cyclic nature of the yoke flux generated by a single conductor, its minimum325

value is set to zero. Besides, Λα(ϕ,Θr, δr) depends only on the degree of326

eccentricity, and is independent of the geometric parameters of the machine.327

Therefore, it needs to be evaluated only once, and it is scaled to any given328

machine using the scaling factor µ0lr
g0

.329

As in the case of the magnetic flux density, the yoke flux generated by an330

arbitrary phase can be expressed as the sum of the yoke flux generated by331

all of its conductors. Fig. 10 shows a simple case with a phase formed by a332

one-turn, short-pitched coil.333
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Figure 10: Yoke flux generated a one-turn short pitched coil, fed with a unit current, as the
sum of the magnetic flux density of both conductors, in the eccentric induction machine
of Appendix A, for δr = 0.6 and Θr = 0.

5. Position of the Rotor centre as a Function of the Type and334

Degree of Eccentricity335

Eq. (44) gives the yoke flux generated by a single conductor of an eccentric336

machine as a function of the rotor centre coordinates, Θr and δr. But, when337

the rotor turns around it rotation centre by an angle θr(t), it is necessary338

to obtain an expression that gives the coordinates of the rotor centre as a339

function of the rotor angular position θr(t). Such an expression is derived340

in this section, and depends on the type of rotor eccentricity. Three cases341

will be analyzed in this paper: static eccentricity (SE), dynamic eccentricity342

(DE) and mixed eccentricity (ME). Other types of eccentricity, such as axial343

[60], inclined [98] or curved eccentricity [59, 78], are outside the scope of this344

paper.345

5.1. Static Eccentricity346

SE is characterized (Fig. 11) by a displacement of the axis of rotation347

of the rotor (Or) with respect to the geometric centre of the stator (Os).348

The axis of rotation of the rotor Oθ coincides with the rotor geometrical349

centre. It can be caused by misalignments of the mounted bearings, or of350

the bearing plates. The rotor is not centreed with the stator bore, but it351
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rotates around its geometric centre (46), that is, Θr= constant. In the case352

of static eccentricity, it will assumed in this work, without any of loss of353

generality, that the rotor centre lies in the stator d-axis (Θr=0). Therefore,354

(10) becomes355

Or ≡ OθOs A B

ϕ

OrOs

A

θr(t)

B

g0 · δr g0 · δr

Figure 11: Static eccentricity. Relative position of a rotor conductor, A, and a stator
conductor, B, when the rotor turns an angle θr(t) (right) from the initial line (left), in the
case of SE. The minimum air gap length is always located at the position of the stator
conductor B.

−−−→
OsOr = g0 · δr (46)

The air gap length is non uniform, but its shape does not change when the356

rotor turns (Fig. 11). Therefore, self and mutual inductances of the stator357

windings, Lss in (3), are constant, whereas self and mutual inductances of358

the rotor windings, Lrr in (4), and mutual inductances between stator and359

rotor windings, Lsr in (3), (4) and (8), change when the rotor turns.360

5.2. Dynamic Eccentricity361

DE is characterized (Fig. 12) by a displacement of the rotor geometric362

centre (Or) from its rotating axis (Oθ), which coincides with the stator bore363

axis (Os). It may be caused by a manufacturing defect, a bent shaft, bearings364

defects, etc. Under DE, the rotor centre spins along a circular path with the365

same speed as the rotor does. In this case, (10) becomes (47),366
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A

θr(t)

B

g0 · δr

g0 · δrOs ≡ Oθ

Figure 12: Dynamic eccentricity. Relative position of a rotor conductor, A, and a stator
conductor, B, when the rotor turns an angle θr(t) (right) from the initial line (left), in
the case of DE. The minimum air-gap length is always located at the position of the rotor
conductor A.

−−−→
OsOr = g0 · δr · ejθr (47)

where θr stands for the angle position of the rotor centre in stator coordinates.367

In this case, the position of the minimum air gap rotates with the rotor368

(Fig. 12), so that, contrary to the SE case, self and mutual inductances369

of the stator windings (Lss), and mutual inductances between stator and370

rotor windings (Lsr) change when the rotor turns, whereas self and mutual371

inductances between rotor windings (Lrr) are not affected by the rotation of372

the machine.373

5.3. Mixed Eccentricity374

ME appears when both SE and DE are present. In this case , the rotating375

axis (Oθ in Fig. 13) is displaced both from the stator geometric centre (Os)376

and from the rotor centre (Or). From Fig. 13 and (10), the position of the377

rotor centre can be expressed as a function of the degree of static eccentricity378

(δse) and the degree of dynamic eccentricity (δde) as379
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g0 · δse

g 0
· δ d

eg0
· δr

Os

Or

Oθ

θr

Θr

−−−→
OsOr = g0 · δr · ejΘr

Figure 13: Mixed eccentricity. Position of the rotor geometric centre (Or) in a system of
coordinates fixed to the stator, in case of ME.

−−−→
OsOr = −−−→OsOθ +−−−→OθOr = g0 · (δse + δde · ejθr) = g0 · δr · ejΘr (48)

with380

δr =
√
δse

2 + δde
2 + 2 · δse · δde · cos(θr) (49)

and381

Θr = tan−1
(

δde · sin(θr)
δse + δde · cos(θr)

)
(50)

The expressions for SE and DE, given by (46) and (47) can be considered382

as particular cases of (48), as shown in Fig. 14 and in Table 1.383

g0 · δse
Os Or ≡ Oθ

g0 ·
δde

Os ≡ Oθ

Or

θr = Θr

−−−→
OsOr = g0 · δse · ej0

−−−→
OsOr = g0 · δde · ejθr

Oθ Oθ

δr = δde, Θr = θrδr = δse, Θr = 0

Figure 14: Position of the rotor geometric centre (Or) in a system of coordinates fixed to
the stator, in case of static eccentricity (left) and dynamic eccentricity (right).
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Table 1: Types of rotor eccentricity

Type δr Θr

SE δse 0
DE δde θr

ME
√
δse

2 + δde
2 + 2 · δse · δde · cos(θr) tan−1

(
δde·sin(θr)

δse+δde·cos(θr)

)

Therefore, the loci of the positions of the geometric rotor centre in a384

reference system fixed to the stator defines the type of eccentricity, as seen385

in Fig. 15. In the case of a healthy machine (Fig. 15.a), the rotor centre is386

located on the stator geometric centre. In the case of SE (Fig. 15.b), the387

rotor centre is placed in a fixed position, different from the stator centre.388

In the case of DE, the rotor centre describes a circumference centred in the389

stator centre (Fig. 15.c). Finally, in the ME case, the rotor centre describes390

a circumference whose centre does not coincide with the stator centre (δr 6=391

const., Θr 6= const.).392

Or 6= Os

Os = Oθ Os

Or = Oθ

OrOr

Oθ

(a) (b) (c) (d)

Or ≡ Oθ ≡ Os

Or ≡ Oθ 6= Os Or 6= Oθ ≡ Os Or 6= Oθ 6= Os

Os

Figure 15: Loci of the positions of the rotor geometric centre (Or) in a system of coordi-
nates fixed to the stator, in case of (a) healthy machine, (b) static eccentricity, (c) dynamic
eccentricity and (d) mixed eccentricity.

In this paper, the most general case, (10), will be analyzed, and the result393

will be applied to each particular type of eccentricity following (48). The394

election of the position of the rotor centre as the variable that characterizes395

the eccentricity is the key point that enables this unified approach.396
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6. Phases Inductances in an Eccentric Induction Machine397

For the simulation of an eccentric induction machine with a given degree398

of static (δse) and dynamic (δde) eccentricity, it is necessary to obtain the399

phase inductances matrix for each rotor position, θr. The goal of this sec-400

tion is to obtain the mutual inductance between two phases of the eccentric401

machine as a function of their angular positions, for a given position of the402

rotor. To achieve this goal, it is advisable to express the yoke flux generated403

by a single conductor as a function of three variables, Φcond(ϕ, α, θr), where404

ϕ is the angular position where the yoke flux is computed, α is the conductor405

angular coordinate, and θr defines the rotor position. This function can be406

derived from (44), making use of (49) and (50), as407

Φcond(ϕ, α, θr) = Φα

(
ϕ,Θr(θr), δr(θr)

)
= Φα(ϕ, θr) (51)

since, for a given degree of SE (δse) and DE (δde), the coordinates of the rotor408

center Θr (50) and δr (49) depend only on the rotor position θr as409

Θr(θr) = tan−1
( δde sin(θr)
δse + δde cos(θr)

)
(52)

and410

δr(θr) =
√
δse

2 + δde
2 + 2δseδde cos(θr) (53)

6.1. Yoke Flux Generated by a Phase in an Eccentric Induction Machine411

Let’s consider a phase A, with an arbitrary distribution of conductors412

ZA(α), 0 ≤ α < 2π, where ZA(α) is the number of conductors of phase A413

on the air gap at angular coordinate α. The yoke flux ΦA that this phase414

generates when it is fed with a unit current, and shifted a given angle ϕA,415

can be obtained as a linear superposition of the yoke flux generated by all of416

the phase’s conductors, (51), as417

ΦA(ϕ, ϕA, θr) =
∫ 2π

0
Φcond(ϕ, α, θr) · ZA(α− ϕA) · dα (54)

6.2. Flux Linkages of a Phase in an Eccentric Induction Machine418

Let’s consider now a second phase B, with an arbitrary distribution of419

conductors ZB(β), 0 ≤ β < 2π. The flux linkages of phase ΨB, due to the420

yoke flux generated by phase A, for any given angular position of phases A421

and B, can be obtained just by adding the values of the yoke flux generated422
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by phase A at the yoke sections corresponding to each one of the conductors423

of phase B. Fig. 16 shows the basis of this method: the flux linkage of an424

arbitrary coil (a, b) can be calculated by replacing the coil by two equivalent425

annular coils, (a, a′) and (b, b′), and summing up the yoke flux that crosses426

them, Φ(ϕa) and Φ(ϕb).427

ϕb

b′

ϕaΦ(ϕb) Φ(ϕa)

b a

a′

Ψab = Φ(ϕa) + Φ(ϕb)

b
a

a) b)

Figure 16: Flux linkage of a single turn coil. a) Actual coil. b) Replaced by two equivalent
annular coils.

Following the proposed method, the flux linkages of phase B due to the428

yoke flux generated by phase A is given by429

ΨBA(ϕB, ϕA, θr) =
2π∫
0

ZB(β − ϕB) · ΦA(ϕ, ϕA, θr) dβ (55)

and, combining (54) and (55) gives430

ΨBA(ϕB, ϕA, θr) =
∫ 2π

0

∫ 2π

0
ZB(β − ϕB) · Φcond(β, α, θr) · ZA(α− ϕA) · dα dβ

(56)
As phase A is fed with a unit current, (56) provides the mutual inductance431

between phases A and B as a function of their angular positions, for a given432

rotor position433

LBA(ϕB, ϕA, θr) =
∫ 2π

0

∫ 2π

0
ZB(β − ϕB) · Φcond(β, α, θr) · ZA(α− ϕA) · dα dβ

(57)
From (51) and (57) it holds that434

LBA(ϕB, ϕA, θr) = LAB(ϕA, ϕB, θr) (58)
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7. Numerical Computation of the Phases Inductances in an Eccen-435

tric Induction Machine using the FFT436

The computation of (57) can be cumbersome, because a double integral437

must be computed for obtaining the mutual inductance between two phases438

A and B for each angular displacement between them, and for every position439

of the rotor. In this section a novel procedure will be applied to simplify440

this calculation using the FFT. For the numerical computation of (57), the441

air gap circumference is divided into N equally spaced angular intervals,442

with a spatial resolution for the angular coordinate ∆ϕ = 2π/N . With443

this discretization, the functions in (57), defined in this discrete mesh, are444

converted into the following matrices:445

Φcond Yoke flux distribution produced by a single conductor (Φcond(ϕ, α, θr)→446

Φcond[i, j, k], with dimension N ×N ×N).447

The element [i,j,k] of the 3D matrix Φcond (59) contains the yoke flux448

– at a generic point of the airgap with an angular coordinate i ·∆ϕ,449

– generated by a single conductor, fed with a unit current, placed450

at an angular position j ·∆ϕ,451

– for an angular rotor position equal to k ·∆ϕ.452

The 3D matrix Φcond is computed, using (51), as453

Φcond[i, j, k] = Φcond(i∆ϕ, j∆ϕ, k∆ϕ) with i, j, k = 0, 1, . . . , N − 1
(59)

ZA Distribution of conductors of phase A (ZA(α)→ ZA[i], with dimension454

N × 1) The element [i] of the 1D matrix ZA (60) contains the number455

of conductors of phase A at an angular position i · ∆ϕ. The position456

of phase A axis is considered to be aligned with the stator d-axis, for457

fixing a common reference frame in the calculation process.458

ZA[i] = ZA(i∆ϕ) with i = 0, 1, . . . , N − 1 (60)

ZB Distribution of conductors of phase B ( ZB(β)→ ZB[i], with dimension459

N × 1) The element [i] of the 1D matrix ZB (61) contains the number460
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of conductors of phase B at an angular position i · ∆ϕ. The position461

of phase B axis is also considered to be aligned with the stator d-axis.462

ZB[i] = ZB(i∆ϕ) with i = 0, 1, . . . , N − 1 (61)

LBA Mutual inductance of phases B and A (LBA(ϕB, ϕA, θr)→ LBA[i, j, k],463

with dimension N ×N ×N)464

The element [i,j,k] of the 3D matrix LBA contains the mutual induc-465

tance between phases B and A when466

– phase B is placed at an angular position i ·∆ϕ,467

– phase A is placed at an angular position j ·∆ϕ,468

– the rotor centre is placed at an angular position k ·∆ϕ.469

These four matrices have been represented in Fig. 17.470

ϕA

θr

LBA

β

ZB

α

ϕ

θr

Φcond ZA

αϕB

Figure 17: Matrices used for computing the mutual inductance between phases B and A,
LBA, for every angular position of phase B, ϕB , of phase A, ϕA, and of the rotor θr.

The 3D matrix LBA, which contains the mutual inductances between471

phases B, and A, for all of their different N possible positions, and for the472

N different positions of the rotor (N3 elements), can be computed in a very473

simple and effective way, making use of the properties of the fast Fourier474

transform (FFT), and its inverse (IFFT), as475

LBA = IFFT
{ (

(FFT{ZA})′ ∗ FFT{Φcond} ∗ FFT{ZB}
) }

(62)

where the symbol ’ stands for the non-conjugate matrix transpose transfor-476

mation, and the symbol * stands for an element-by-element row or column477
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multiplication. That is, each column of the FFT of Φcond is multiplied478

element-by-element by the FFT of ZB, and each row of the resulting matrix479

is multiplied element-by-element by the transposed FFT of ZA. The inverse480

FFT of this product gives directly the inductances matrix LBA.481

Equation (62) is based on the convolution theorem, which states that the482

FT of the convolution of two functions is equal to the product of the FTs483

of both functions. In [82] this theorem was applied to the computation of484

phase inductances, using 1D matrices for representing the phase conductor485

distributions and the yoke flux generated by a single conductor. Equation486

(62) is an extension of this procedure to the case of an eccentric machine,487

where the yoke flux generated by a conductor must be represented using a488

full 3D matrix Φcond, to take into account the influence of the rotor centre489

position.490

The expression (62) can be programmed very easily in commercial soft-491

ware packages. For example, in MATLAB language it is simply written as492

LBA = ifftn( (fft(ZA).′ . ∗ fftn(PhyCond) . ∗ fft(ZB)) ) (63)

For a given IM, it is necessary to compute the inductance matrices Lss,493

Lrr, Lsr and Lrs, which are used in eqs (3) to (8). Denoting Zs as the494

distribution of the conductors or a stator phase (assuming that all the stator495

phases are identical), and Zr as the distribution of the conductors or a rotor496

phase (assuming also that all the rotor phases are identical), (62) must be497

particularized for the following cases:498

• Phases A and B in the stator (ZA = ZB = Zs)499

Lss = IFFT
{ (

(FFT{Zs})′ ∗ FFT{Φcond} ∗ FFT{Zs}
) }

(64)

• Phases A and B in the rotor (ZA = ZB = Zr)500

Lrr = IFFT
{ (

(FFT{Zr})′ ∗ FFT{Φcond} ∗ FFT{Zr}
) }

(65)

• Phase A in the stator (ZA = Zs) and phase B in the rotor (ZB = Zr)501

Lsr = IFFT
{ (

(FFT{Zs})′ ∗ FFT{Φcond} ∗ FFT{Zr}
) }

(66)
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• Phase A in the rotor (ZA = Zr) and phase B in the stator (ZB = Zs)502

Lrs = IFFT
{ (

(FFT{Zr})′ ∗ FFT{Φcond} ∗ FFT{Zs}
) }

(67)

It is worth mentioning that, in equations (64), (65), (66) and (67), the503

term Φcond is the same. Therefore, it must be computed just once. Moreover,504

this term is valid for all IM machines with the same degree of eccentricity,505

except from a scale factor µ0lr
g0

(44). Besides, Lrs = Lsr
′, which makes unnec-506

essary to compute (67).507

The distribution of the phase conductors ZA in (60) and ZB in (61)508

have been assumed aligned with the d-axis, for simplicity of (62). If this509

condition is not met, by choosing other origin of angular coordinates, and the510

distribution of conductors is not symmetric with respect to this new origin,511

then FFT{ZA} and FFT{ZB} in (62) must be replaced by their conjugates,512

that is, conj(FFT{ZA}) and conj(FFT{ZB}).513

8. Numerical and Experimental Validation514

The method proposed in this paper has been validated, both numerically515

and experimentally, using a commercial IM whose characteristics are given516

in Appendix A. A mixed eccentricity is introduced in this IM, characterized517

by δse=0.3 and δde=0.3.518

8.1. Numerical Validation519

For the numerical validation of the proposed method, a finite element520

model (FEM) of the motor has been implemented using FEMM software521

[99]. For this simulation, a value ofN=1008 rotor positions has been selected,522

obtained by multiplying the rotor and the stator number of slots. For each523

rotor position, one of the machine phases is fed with an unit current, and the524

flux linkages of all the phases are computed, giving their mutual inductances.525

The same procedure is repeated for all the IM phases, and for all rotor526

positions, giving a total number of simulations equal to 31 × 1008 = 31248527

simulations, with a total time of 1300 hours, using the computer of Appendix528

C. Fig. 18 shows the simulations for a rotor position at the origin, for the529

first phase of the stator (Fig. 18, top) and of the first rotor loop, constituted530

by two adjacent bars and their end-ring connections (Fig. 18, bottom).531
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Figure 18: Simulation of the IM of Appendix A with an eccentricity degree of δse = 0.3
and δde = 0.3. Top: first stator phase fed with a unit current. Bottom: first rotor loop
fed with a unit current.

The same machine has been simulated with the method proposed in this532

paper. The analytical solution, which gives the mutual inductances between533

all the phases for the N=1008 different angular rotor positions, has been534

obtained in just 10 minutes, using the same computer of Appendix C. Fig.535

19 compares the inductances calculated for 1008 different rotor positions,536

using the FEM, and the proposed analytical method. In both cases, the537

machine of Appendix A is used, with a mixed eccentricity characterized by538

by δse=0.3 and δde=0.3. Fig. 19, top, compares the self inductance of the539
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stator phase A for different positions of the rotor. Fig. 19, middle, compares540

the self inductance of the first rotor loop for different positions of the rotor.541

Finally, Fig. 19, bottom, compares the mutual inductance between stator542

phase A and the first rotor loop for different positions of the rotor. A good543

agreement is observed in the three comparisons of Fig. 19. The analytical544

model, unlike the FEM model, does not take into account the influence of545

slotting, but, except this difference, the changes of the inductances produced546

by the rotor position is very similar with both models.547
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Figure 19: Comparison between the inductances obtained via FEM simulation (blue line)
and with the proposed analytical method (red line), for the IM of Appendix A with an
eccentricity degree of δse = 0.3 and δde = 0.3. Top: self-inductance of the first stator phase.
Middle: self-inductance of the first rotor loop. Bottom: mutual inductance between the
first stator phase and the first rotor loop.
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To further assess the validity of the proposed method, the IM of Appendix548

A has been simulated with six different degrees of static and dynamic eccen-549

tricity (δse, δde), summarized in Table 2550

Table 2: Degrees of static and dynamic eccentricity of the six simulated and
experimental cases used in this work

Case N. δse δde Remark
1 0.0 0.0 Healthy machine
2 0.6 0.0 Static eccentricity
3 0.4 0.2 Mixed eccentricity
4 0.3 0.3 Mixed eccentricity
5 0.2 0.4 Mixed eccentricity
6 0.0 0.6 Dynamic eccentricity

Fig. 20 shows the comparison of the mutual inductance between the first551

stator phase and the first rotor loop obtained for the machine in Appendix552

A via FEM simulation (top) and with the proposed analytical method (bot-553

tom), corresponding to the six cases summarized in Table 2. Fig 21 provides554

the same comparison for the self inductance of the first rotor loop, and Fig.555

22 provides the same comparison for the self inductance of the first stator556

phase.557
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Figure 20: Comparison of the evolution of the mutual inductance against the rotor po-
sition between the first stator phase and the first rotor loop obtained for the machine in
Appendix A via FEM simulation (top) and with the proposed analytical method (bot-
tom). Six different degrees of static and dynamic eccentricity (δse,δde) have been plotted:
(0.0, 0.0),(0.6, 0.0), (0.4, 0.2), (0.3, 0.3), (0.2, 0.4) and (0.0, 0.6).
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Figure 21: Comparison of the evolution of the self inductance of the first rotor loop against
the rotor position obtained for the machine in Appendix A via FEM simulation (top) and
with the proposed analytical method (bottom). Six different degrees of static and dynamic
eccentricity (δse,δde) have been plotted: (0.0, 0.0),(0.6, 0.0), (0.4, 0.2), (0.3, 0.3), (0.2, 0.4)
and (0.0, 0.6).
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Figure 22: Comparison of the evolution of the self inductance of the first stator phase
against the rotor position obtained for the machine in Appendix A via FEM simulation
(top) and with the proposed analytical method (bottom). Six different degrees of static
and dynamic eccentricity (δse,δde) have been plotted: (0.0, 0.0),(0.6, 0.0), (0.4, 0.2), (0.3,
0.3), (0.2, 0.4) and (0.0, 0.6).

Figures 20, 21 and 22 show a good agreement between the inductances558

calculated using the proposed analytical method, and with the FEM model,559

apart from slotting effects that are not included in the analytical model.560

8.2. Experimental Validation561

For the experimental validation of the suitability of the proposed analyt-562

ical model of eccentric IM for diagnostic purposes, the motor whose char-563

acteristics are given in Appendix A has been endowed with an artificially564

provoked mixed eccentricity fault. For this purpose, each original bearing of565

the motor (see Fig.23.a) has been substituted by a new bearing (Fig. 23.d)566

with smaller outer diameter and greater inner diameter. Also two precision567

eccentric machined steel rings (Fig. 23.b and Fig. 23.c) have been used for568

adjusting the new bearing to the bearing housing (Fig. 23.b) and to the shaft569

(Fig. 23.c). The cylindrical surfaces of both rings are eccentric, 0.4 mm in570

the case of the outer ring b, and 0.4 mm in the case of the inner ring c. Fig.571
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23.e shows the new assembly mounted on the shaft, obtaining in this way a572

rotor with a 30% of static eccentricity and a 30% of dynamic eccentricity.573

Figure 23: Rotor of the eccentric motor unit. Top, from left to right: a) original bearing,
b) external and c) internal eccentric rings, and d) new bearing. Bottom: e) mounted unit
on the shaft.

In the case of mixed eccentricity, it is well known in the technical literature574

[100] that this type of fault generates two different series of harmonics in the575

line current spectrum: a high frequency series of harmonics, which appear as576

sidebands around the principal slot harmonics, and a low frequency series of577

harmonics, which appear as sidebands around the fundamental component,578

at frequencies given by579

fME(s) = f1 ± (k (1− s)f1/p) , k = 1, 2, 3 . . . (68)

where f1 is the power supply frequency, s is the slip and p is the number of580

pole pairs of the machine.581

Focusing on the most dominant component of the series (68), obtained582

with k = 1, a mixed eccentricity fault can be characterized by the presence583

38



in the stator current spectrum of components with frequencies given by:584

fME(s) = f1 ± (1− s)f1/p = f1 ± fr (69)

where fr is the rotational frequency of the motor. In the case of the tested585

motor, with p = 2, (69) becomes586

fME(s) = f1 ± (1− s)f1/2 (70)

To verify the validity of the method proposed in this paper to reproduce587

the fault harmonics at frequencies given by (70), the commercial motor Ap-588

pendix A has been tested at a speed of 1488 rpm (s = (1500−1488)/1500 =589

0.008), under two different conditions:590

• In healthy state, before mounting the eccentricity rings.591

• Under faulty conditions, after mounting the eccentricity rings.592

In both cases, one of the phase currents has been acquired, using the593

current clamp whose data is given in Appendix B, during an acquisition594

time of 10 seconds, with a sampling frequency of 5 kHz. The spectra of these595

currents are shown in 24 for the case of the motor in healthy condition (24,596

top) and with the eccentricity rings mounted (24, bottom). As expected from597

(70), two fault related harmonics appear in faulty conditions at frequencies598

fME(0.008) = 50± (1− 0.008)50/2 = [25.2 Hz, 74.8 Hz].599
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Figure 24: Spectra of the experimental current of the motor Appendix A for the case
of the motor in healthy condition (24, top) and with the eccentricity ring mounted (24,
bottom). As expected from (70), two fault related harmonics appear in faulty conditions
at frequencies fME(0.008) = 50± (1− 0.008)50/2 = [25.2 Hz, 74.8 Hz].

The motor of Appendix A has been simulated under the same conditions600

as the experimental test, 1488 rpm, both in healthy and faulty conditions,601

using the Simulink model given in [82]. In this model, the phases inductance602

matrix at each simulation time step is updated according to the rotor angular603

position, using the inductances matrix and its angular derivative that have604

been computed previously with (64),(65) and (66). The spectra of the stator605

phase current obtained from the simulation are given in Fig. 25,top, for the606

healthy condition, and in Fig. 25,bottom, for the eccentric fault condition.607

As Fig. 25 shows, the inductances matrix obtained with the method proposed608

in this paper is able to correctly reproduce the fault harmonics generated by a609

mixed eccentricity fault (25, bottom), predicting accurately the frequencies610

of the fault components, and also giving a good approximation for their611

amplitudes.612
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Figure 25: Spectrum of the stator phase current obtained from the simulation of the motor
referenced in Appendix A in healthy condition (top), and with a mixed eccentricity of
(δse,δde)=(0.3, 0.3) (bottom). These spectra show that the inductances matrix obtained
with the method proposed in this paper is able to correctly reproduce the fault harmonics
generated by a mixed eccentricity fault.

9. Conclusions613

In this paper, a novel approach for computing the phases inductances614

of an eccentric IM has been presented. These inductances can be used in615

analytical models in order to reproduce the fault harmonics that are char-616

acteristic of an eccentricity fault, which can be used for the development of617

advanced fault diagnostic algorithms, or for training expert systems. The618

proposed method relies on two main novelties: first, an analytical expression619

for the yoke flux produced by a single conductor in an eccentric machine, as620

a function of the conductor and rotor position, and of the degree of static621

and dynamic eccentric, has been obtained; and second, using this expression,622

a convolution-based procedure has been proposed for obtaining the induc-623

tances matrix which gives the self and mutual inductances for every phases624

and rotor positions, by a simple product in the spatial frequency domain, im-625

plemented with the FFT. The proposed convolution-based method enables626
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to calculate the inductances matrix in few minutes, instead of hundreds of627

hours that will take this calculation using a FEM model. It is noticeable628

that, for a given degree of dynamic and static eccentricity, the inductances629

matrix is valid, except for a scale factor, for any IM. The proposed method630

has been validated by comparing it with a FEM model, and with the results631

obtained from experimental tests with a commercial IM with a forced ec-632

centricity fault. The extension of the proposed model to include axial and633

curved eccentricity faults is currently under work.634

Appendix A. Commercial IM635

Three-phase induction machine. Rated characteristics: P = 1.1 kW,636

f = 50 Hz, U = 230/400 V, I = 2.7/4.6 A, n = 1410 r/min , cos ϕ = 0.8.637

Machine dimensions: Effective length of the magnetic core = 70.2 mm,638

radius at the middle of the air gap = 41.1 mm, air gap length = 1.2 mm.639

Stator: Three-phase winding, 36 slots, 78 wires/slot, winding pitch =640

7/9, slot opening width = 2.1 mm, phase resistance 7.68 Ω, end winding641

leakage = 2.3 mH.642

Rotor: Squirrel-cage winding, 28 bars, slot opening width = 1.4 mm,643

skew = one slot pitch, bar resistance = 0.00202 mΩ, end winding leakage =644

2.45× 10−5 mH.645

Appendix B. Current Clamp646

Chauvin Arnoux MN60, Nominal measuring scope: 100 mA–20A, ratio647

input/output: 1 A/100 mV, intrinsic error: ≤ 2% + 50 mV, frequency use:648

400 Hz–10 kHz.649

Appendix C. Computer Features650

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB,651

Matlab Version: 9.4.0.813654 (R2018a).652
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