UNIVERSITAT POLITECNICA DE VALENCIA
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION
DOCTORADO EN INFORMATICA

Partial E‘t{aluation
)
Equational Logic Theories

PHD THESIS

Presented by: Supervisors:
Angel Cuenca Ortega Maria Alpuente Frasnedo

Santiago Escobar Romén

Valencia, September 2019

UNIVERSITAT POLITECNICA DE VALENCIA
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION

Partial Ext{aluation
0
Equational Logic Theories

A dissertation submitted by Angel Cuenca Ortega in fulfillment for the degree of Doctor of
Philosophy in Computer Science at the Universitat Politécnica de Valéncia

Valencia, September 2019

Partial Evaluation
of

Equational Logic Theories

Author:
Angel Cuenca Ortega

Supervisors:
Maria Alpuente Frasnedo
Santiago Escobar Roman

External Evaluators:
Mateu Villaret Auselle
Ginés Moreno Valverde
Pascual Julian Iranzo

Jury:
Silvia Abrahao Gonzales
Mateu Villaret Auselle
Marisa Navarro Gémez

Valencia, September 2019

Universitat Politécnica de Valéncia
Universitat Politecnica de Valeéncia

Universidad de Girona
Universidad de Castilla-La Mancha
Universidad de Castilla-La Mancha

Universitat Politeécnica de Valéncia (President)
Universidad de Girona (Secretary)
Universidad del Pais Vasco (Vocal)

This work has been supported by the SENESCYT, Ecuador (scholarship program 2013)

“Work gives you meaning and purpose and life is empty without it.”

“El trabajo te da sentido y propdsito, y la vida estd vacia sin éL."

Stephen Hawking

A mi madre, hermanos y hermana, sobrinos y sobrinas, y amigos

por su apoyo incondicional.

To my mother, brothers and sister, nephews and nieces, and friends

for their unconditional support.

Abstract

Partial evaluation is a powerful and general program optimization technique that preserves pro-
gram semantics and has many successful applications. Optimization is achieved by specializing
programs w.r.t. a part of their input data so that, when the residual or specialized program is
executed on the remaining input data, it produces the same outcome than the original program
with all of its input data. Existing PE schemes do not apply to expressive rule-based languages
like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which support: 1) rich type structures with
sorts, subsorts, and overloading; and 2) equational rewriting modulo various combinations of
axioms such as associativity, commutativity, and identity. This thesis develops the foundations
of equational order sorted partial evaluation and illustrates the key concepts by showing how
they apply to the specialization of expressive programs written in Maude. Our partial evaluation
scheme is based on an automatic unfolding algorithm that computes term variants and relies on
high-performance order-sorted equational least general generalization and order-sorted equa-
tional homeomorphic embedding algorithms for ensuring termination. We show that our partial
evaluation technique is sound and complete for order-sorted equational theories that may contain
various combinations of associativity, commutativity, and/or identity axioms for different binary
operators. Finally, we present Victoria, the first partial evaluator for Maude’s order-sorted equa-
tional theories, and demonstrate the effectiveness of our partial evaluation scheme on several

examples where it shows significant speed-up.

Resumen

La evaluacién parcial de programas es una técnica general y potente de optimizacién de pro-
gramas que preserva su semdntica y tiene muchas aplicaciones relevantes. La optimizacion se
consigue al especializar programas con respecto a una parte de sus datos de entrada, lo que pro-
duce un nuevo programa llamado residual o programa especializado tal que, al ejecutarlo con
los datos de entrada restantes, producird el mismo resultado que produce el programa original
con todos sus datos de entrada. Los esquemas de evaluacién parcial existentes no son aplicables
a lenguajes expresivos basados en reglas como Maude, CafeOBJ, OBJ, ASF+SDF y ELAN, los
cuales soportan: 1) sofisticados tipos estructurados con subtipos y sobrecarga de operadores;
y 2) teorias ecuacionales modulo varias combinaciones de axiomas tales como asociatividad,
conmutatividad e identidad. Esta tesis desarrolla las bases tedricas necesarias e ilustra los con-
ceptos principales para su aplicacién a programas expresivos escritos en el lenguaje Maude. El
esquema de evaluacion parcial presentado en esta tesis estd basado en un algoritmo automadtico
de desplegado que computa variantes de términos. Para asegurar la terminacién del proceso
de especializacién se han disefiado algoritmos de alto rendimiento para la generalizacion ecua-
cional menos general con tipos ordenados y subsuncion homeomdrfica ecuacional con tipos
ordenados. Se muestra que la técnica de evaluacidn parcial desarrollada es correcta y completa
para teorias de reescritura convergentes que pueden contener varias combinaciones de axiomas
de asociatividad, conmutatividad y/o identidad para diferentes operadores binarios. Finalmente
se presenta Victoria, el primer evaluador parcial para teorfas ecuacionales de tipos ordenados
para el lenguaje Maude, y se demuestra la efectividad y el incremento en eficiencia ganado a

través de experimentos realizados con ejemplos reales.

Resum

L’avaluacié parcial de programes és una tecnica general i potent d’optimitzacié de programes
que preserva la seua semantica i té moltes aplicacions rellevants. L’ optimitzacié s’aconseguix
a D’especialitzar programes respecte a una part de les seues dades d’entrada, la qual cosa pro-
duix un nou programa cridat residual o programa especialitzat tal que, a I’executar-ho amb les
dades d’entrada restants, produira el mateix resultat que produix el programa original amb totes
les seues dades d’entrada. Els esquemes d’avaluaci6 parcial existents no son aplicables a llen-
guatges expressius basats en regles com Maude, CafeOBJ, OBJ, ASF+SDF i ELAN, els quals
suporten: 1) sofisticats tipus estructurats amb subtipus i sobrecarrega d’operadors; i 2) teories
equacionals modul diverses combinacions d’axiomes com asociativitat, conmutativitat i identi-
tat. Esta tesi desenrotlla les bases tedriques necessaries i il-lustra els conceptes principals per a
la seua aplicaci6 a programes expressius escrits en el llenguatge Maude. L’esquema d’avaluacié
parcial presentat en esta tesi estd basat en un algoritme automatic de desplegat que computa
variants de termes. Per a assegurar la terminacié del procés d’especialitzacié s’han dissenyat
algoritmes d’alt rendiment per a la generalitzacié ecuacional menys general amb subtipus orde-
nats i subsuncion ecuacional homeomorfica amb subtipus ordenats. Es mostra que la técnica
d’avaluaci6 parcial desenrotllada és correcta i completa per a teories de reescriptura convergents
que poden contindre diverses combinacions d’axiomes d’asociativitat, conmutativitat i identitat
per a diferents operadors binaris. Finalment es presenta Victoria, el primer avaluador parcial
per a teories equacionals de tipus ordenats per al llenguatge Maude i es demostra I’efectivitat i

I’increment en eficiencia guanyat a través d’experiments realitzats amb exemples reals.

Acknowledgement

Many people have contributed at this stage of my life, without them I would not have been

able to finish this thesis.

First of all I would like to thank my supervisors, Maria and Santiago, for their guidance and
dedication during all these years. Without a doubt, I think there are no better supervisors than
them. They always find a space in their busy schedules to help their students and share their
knowledge. Their passion for research makes them an example for many young researchers. In
truth, I feel very happy and fortunate to have been part of the ELP Group and, much more, to

have done my thesis under the supervision of Maria and Santiago.

I am very grateful to José Meseguer with whom I have had the pleasure to collaborate these

years. I can only feel gratitude to him for allowing me to learn from his enriched experience.

I also thank to all the members of the ELP Group, and particularly to my laboratory mates

during all these years: Fernando, Lidia, David, Julia, and Danny.

I want to extend this gratitude to Demis Ballis for giving me the opportunity to work with

him in my research stay at Universita degli Studi di Udine.

Especial thanks to my lunch mates: Ana, José, Beatriz, Lenin, Nana, Sipan, Julio, Carlos,

Jairo, and Xavier. All of them made me feel like in a family.

I cannot forget all my dear friends with whom I shared great moments: Priscas and her
family, Juanjo, Joty and his family, Karlita and her family, Pepita and her family, Gaby and
Oscar, Pablo and his family, Miguel and Gela, Alex and Doris, Patty, Carolina, William, D.

César, Riccardo, Renaud, Luis, Jona and his family, Adridn, and Francisco.

Furthermore, a deep thanks to my closest friends who helped me in different ways: Miguel
D., Joha O., Manuel, Luis V., Bismar, Alberto S., Pail, Edith, Markus, Elias, Gaby C., Yoselyn,
Jordy, BL., BC, Ronald, Jorge M., Jessica G., Max, Jhonny, Liston, Ivonne, Julio, Lorenzo, José
G., Mario G, Bryan C., Carlos V., Fernando T., Fatima, Cristoffer, Abel, Filippo, Giuseppe,
Alberto M., Emilio, and Daniele.

Finally, I extend my thanks to SENESCYT for the support provided for my studies. Also, I

thank the Universidad de Guayaquil that is my place of work.

Angel Cuenca Ortega.
Valencia, September 2019

Contents

1 Introduction

1.1

1.2

1.3
1.4
1.5
1.6
1.7
1.8

Partial Evaluation

1.1.1 Narrowing-driven Partial Evaluation

Partial Evaluation of Maude Equational Theories

1.2.1 Equational Theories in Maude
1.2.2 Variant generation

1.2.3 Order-sorted Equational closedness
1.2.4 Termination of the Equational Partial Evaluation process

1.2.5 Post-processing renaming modulo axioms

The Partial Evaluator Victoria
Equational NPE in practice
Contributions of the Thesis
Plan of the Thesis
List of Publications
Developed Tools

2 Preliminaries

2.1
2.2
23
24
2.5
2.6

Rewriting Logic and Term Rewriting .

Equational Theories as Rewrite Theories

Narrowing in Rewriting Logic
Term Variants
The variant narrowing strategy
The folding variant narrowing strategy

3 Inspecting Maude Variants with GLINTS

3.1
3.2
33

34

Overview

Folding variant narrowing trees in GLINTS: a running example

GLINTS ataglimpse

3.3.1 Interactive tree unfolding and querying
3.3.2 Automated tree unfolding, enriched views and exporting

Implementation
3.4.1 Architecture of GLINTS . . .

3.4.2 Extending Maude’s variant meta-operations

4 Order-sorted Homeomorphic Embedding modulo Combinations of Associativity
and/or Commutativity Axioms

4.1

Overview

0 00 N O Lt W —

— e e e
N 9 0N o O O

19
19
21
22
23
25
27

29
29
31
34
34
36
37
38
38

41

4.2 Pure homeomorphic embedding 43

4.2.1 Mechanizing the Homeomorphic Embedding 44
4.2.2 Symbolic Homeomorphic Embedding 44
423 Addingsortsand subsorts 45
424 Gettingridof variables 0L 47
4.3 Homeomorphic embedding modulo equational axioms 48
4.4 Goal-driven homeomorphic embedding moduloB 52
4.4.1 An order-sorted homeomorphic embedding calculus moduloB 52
4.42 Reachability-based, (order-sorted) goal-driven homeomorphic embed-
ding formulation oL oo 53
4.5 Meta-Level deterministic (order-sorted) goal-driven homeomorphic embedding
moduloB 55
4.6 Optimizations based on the term B-ordering and reachable kinds 58
47 EXPeriments it it e e e e e e e e e 61
5 ACUOS?: A High-performance System for Modular ACU Generalization with
Subtyping and Inheritance 67
5.1 Least General Generalization modulo A, C,andU 68
5.2 ACUOS?: A High Performance Generalization System 69
5.3 ACU Generalization in a Biological Domain 71
5.4 Experimental Evaluation 73
5.5 Relatedwork 74

6 A Partial Evaluation Framework for Order-sorted Equational Programs modulo

Axioms 77
6.1 Relatedwork 78
6.2 Specializing Equational Theories modulo Axioms 78
6.2.1 TheNPE Approach 78

6.2.2 Partial evaluation of convergent rules modulo axioms 80

6.2.3 Equational closedness and the generalized Partial Evaluation scheme . 81

6.2.4 Termination of the PEprocess 86

6.2.5 Global Termination of Equational NPE 87

6.2.6 Post-processing renaming modulo axioms 92

6.2.7 Specializing the interpreter of an imperative programming language . . 94

6.3 Experiments e e e e 97
7 Conclusions 929

Bibliography 101

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

3.1
3.2
33
34

3.5
3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10

6.1
6.2
6.3
6.4

The essence of Partial Evaluation.
Narrowing trees for the goal X + suc(suc(0)) and X +0.
Specialized programs for the goals X + suc(suc(0)) and X +0.
Narrowing-driven Partial Evaluation
Folding variant narrowing tree forthe goal X * Y..
Architecture of Victoria. o
Input panel of Victoria.
Output panel of Victoria.
Folding variant narrowing tree for the goal init | L |I.
Folding variant narrowing tree for the goal S | L | I.

The FVP test for the modified non-FVP exclusive-or theory.
Inspecting variant computations of the modified non-FVP exclusive-or theory. .
Comparisonof nodes Vaand Vg.
The FVP test for the newly modified exclusive-or theory with true verdict and
variants for _*_. L
Result of the query “_ * ?” for the VNT of the non-FVP exclusive-or theory. .
Enriched view showing equational unifiers for the original exclusive-or theory
(fragment). e e e
Architecture of GLINTS.

Symbolic homeomorphic embedding
Signature graph of Example 4.1
Order-sorted extended homeomorphic embedding
Signature graph of Example 4.2 o oL,
Extra coupling rules for A, C,and ACsymbols
Coupling rules for flattened terms with associative and associative-commutative
symbols e
Meta-level homeomorphic embedding modulo axioms
Evaluation sequence for *+[’ 1,2, ’3]%211 +[%4,°2,°3,°1] ..o
Signature graph of Example 4.13 o L.
Comparison of < in Prolog vs. é’g,""”’ for the NatList example (no axioms in
goals) e

Folding variant narrowing tree for the goal £1ip(£f1ip(T)).
A binary graph (left) and its flipped version (right).
Folding variant narrowing tree for the goal f1ip(f1ip(BG)).
Fixingagraph.

iii

)

11
12
14
14

32
32
32

33
35

6.5
6.6
6.7
6.8
6.9

Folding variant narrowing tree for the goal fix(2, e, {R1 I R2} ; BG?).
Folding variant narrowing tree for the goal f1ip(fix(2, e, f1lip(BG))). . .
Folding variant narrowing tree for the goal f1ip(fix(2, e, £1ip(BG) ; BG’)).
Folding variant narrowing tree for the goal f1ip(BG”?).
Folding variant narrowing tree for the goal £1ip(fix(2, e, f1ip(BG))). . .

Chapter 1

Introduction

Specialization is Nature’s Strategy for Winning.
Marcus Buckingham
GO, Put Your Strengths to Work, 2007

In an evolving world, the best way to survive is to show your strengths. You need those char-
acteristics that make you differentiate and specialize. Specialize to win. Specialize something
to achieve better results, without changing the objective of that something. This fantastic idea
is applied in computer science to specialize programs, called program specialization or partial
evaluation, where new correct and more efficient programs are obtained from a generic or more
inefficient program version sometimes achieving speedups of several orders of magnitude.

Partial evaluation (PE) is an automatic program transformation technique for program op-
timization that preserves program semantics [Jones et al. 1993]. The program that undertakes
the partial evaluation process is called a partial evaluator. The partial evaluation process re-
lies on some stopping criterion to guarantee termination of the specialization process [Alpuente
et al. 1998a, 2018]. The number of applications of partial evaluation is extremely extensive,
e.g., in the fields of pattern recognition, neural network training, scientific computing, model-
driven development, domain-specific language engineering, generic programming, and test-case
generation, just to mention a few [Cadar and Sen 2013; Cook and Lammel 2011; Jones et al.
1993].

Partial evaluation has proven to be useful in many programming paradigms. For instance, in
the area of functional programming [Consel and Danvy 1993; Jones et al. 1993; Turchin 1986]
and logic programming (also known as partial deduction) [Gallagher 1993; Komorowski 1982;
Lloyd and Shepherdson 1991; Pettorossi and Proietti 1994]. Also for imperative languages such
as C [Consel et al. 1998] and Java [Ji and Bubel 2012; Singh and King 2014], and in declarative
languages such as Prolog [Leuschel and Bruynooghe 2002], Haskell [Jones 1990], and Curry
[Albert et al. 1999; Alpuente et al. 1999; Hanus and Peemoller 2014].

1.1 Partial Evaluation

Partial evaluation is a source-to-source program transformation technique in which a program
P is specialized to a part S of its input data I, with I = (S, D). More precisely, given a program

2 Introduction

P and static known input data S, the partial evaluator generates a new program P’ (called the
residual program), which is semantically equivalent to P when P is fed with data /. That is, given
the remaining (unknown) input data D (also called dynamic), P’ will produce the same outcome
O that P produces with the input I = (S, D), ensuring correctness of the transformation. Figure
1.1 shows the essence of a partial evaluator called mix by using the following visual notation:
data values are enclosed in ellipses, programs are in boxes, and data programs are in both.
Furthermore, continuous arrows are used for the partial evaluation process, while the dashed
arrows feeds program with their inputs and delivers outcomes of their execution. The underlying
idea of the PE process consists of: 1) performing as many computations as possible with the
static input data and with the results of those computations and 2) producing the specialized
program from the resultants of those computations. The partially evaluated resulting program
is able to run with the remaining unknown input data. Thus, a partial evaluator performs a
mixture of computation and code generation actions; this is the reason why PE was called mixed
computation in [Ershov 1982].

>

C;\ Partial Evaluator . P’>
| “mix” ’

FIGURE 1.1: The essence of Partial Evaluation.

When a partial evaluator performs the corresponding computations using the static input data,
we can say that there exists some information propagation. Partial evaluation aims to produce
the best possible specialized program while maximizing the propagation of the information.
Therefore, it is expected that the specialized program runs faster (on the remaining input data)
than the original (on all of its input data), since it is possible to avoid some computations that
are performed once (and for all) during the specialization process.

Example 1.1. Consider a program P that defines the factorial and power functions on integer
numbers:

ifn=0

| 1 ife=0
n! =
nx(n—1)! ifn>1

power(b,e) =
bx power(b,e—1) ife>1

We can specialize the program P w.r.t. the input call power(X,2!), with X being a variable.
After applying the partial evaluation process, the resulting program is:

power (X) =X xX

where any calls to the factorial and power functions have been removed, while it is able to
execute power(X,2!) for any given X.

Introduction 3

However, the main issues related to automatic PE concern the preservation of the (opera-
tional) semantics, the termination of the process, and the effectiveness of the transformation,
i.e., attaining a significative execution speedup for a large class of programs [Sgrensen et al.
1996].

Partial evaluation relies on well-known techniques from the literature on program trans-
formation, such as the folding and unfolding transformations, which were first introduced by
[Burstall and Darlington 1977] for functional programs and are exploited in different ways by
the various PE techniques. Unfolding is essentially the replacement of a call by its definition,
with appropriate substitutions. Folding is the inverse transformation, that is, the replacement of
some piece of code by an equivalent function call. The partial evaluation of functional programs
is usually based on unfolding expressions and constant propagation, while partial evaluation for
logic languages exploit the power of unification for parameter propagation [Gliick and Sgrensen
1994]. The unfolding of functional logic programming languages is based on narrowing [Fay
1979; Slagle 1974], which is a combination of unification for parameter passing and term rewrit-
ing. This is the operational principle of integrated functional logic languages, and is complete in
the sense of functional programming (computation of normal forms) as well as logic program-
ming (computation of answers).

1.1.1 Narrowing-driven Partial Evaluation

Narrowing-driven PE (NPE) [Alpuente et al. 1996, 1997a, 1998a,b] is a generic algorithm for
the specialization of multiparadigm functional logic languages that are executed by narrowing.
The NPE method generalizes the theoretical framework for the partial deduction of logic pro-
grams established in [Lloyd and Shepherdson 1991; Martens and Gallagher 1995] to functional
logic programs, with the key concepts being extended to suitably cope with functions and nested
function calls (e.g., the closedness condition that ensures that all calls that might occur during
the execution of the specialized program are covered by the specialized program). NPE has
better opportunities for optimization than the more standard PE of functional programs thanks
to the combination of the functional dimension of narrowing with the power of logic variables
and unification. The NPE scheme of [Alpuente et al. 1998a] is parametric w.r.t. an unfolding
rule used to construct finite derivations for an expression and an abstraction operator used to
guarantee that only finitely many expressions are evaluated. In the remaining of this section, we
recall the key ideas of the NPE scheme [Alpuente et al. 1998a].

We consider a set R of rewrite rules and a set Q of program calls (i.e., input terms). The aim
of NPE [Alpuente et al. 1998a] is to derive a new set R’ of rules (called a partial evaluation of
R w.rt. Q, or a partial evaluation of Q in R) which computes the same answers and irreducible
forms (w.r.t. narrowing) than R for any term ¢ that is inductively covered (closed) by the calls
in Q. This means that every subterm of the leaves of the execution tree for ¢ using the rules
R that can be narrowed (modulo associativity, commutativity, and identity axioms) in R can
also be narrowed in R’. Roughly speaking, R’ is obtained by first constructing a finite (possibly
partial) narrowing tree for the input term ¢ and then gathering together the set of resultants
10; — t1,..., 10 — t; that can be constructed by considering the leaves of the tree, say #1,...,#,
and the computed substitutions for the leaves, say 0y, ..., 6; of the associated branches of the
tree (i.e., a resultant rule #6; — ¢; is associated to each root-to-leaf derivation of the narrowing
tree). Resultants perform what in fact is an n-step computation in R, with n > 0, by means of a
single step computation in R'. The unfolding process is repeated for the set . of all narrowable
subterms of ¢1,...,1; that are not covered by Q. In order to ensure that the gathered resultants
form a complete description covering all calls that may occur at run-time in the final specialized

4 Introduction

theory R', partial evaluation must rely on a parametric general notion of Q-closedness that is not
a mere syntactic subsumption check, that every subterm occurring in the leaves of the tree(s)
is a substitution instance of one of the terms being specialized. However, in order to properly
deal with nested function calls, the closedness notion recurses over the structure of the subterm.
Informally, a term ¢ rooted by a defined function symbol is Q-closed w.r.t. R iff it is an instance
of a term of Q by the matching substitution 6 and the terms in 6 are recursively closed by
Q. For instance, given a function symbol e, the term t = a e (Ze a) is closed w.r.t. the call set
Q1 ={aeX,Y ea} and also w.r.t. the call set O, = {X @Y }, but it is not closed w.r.t. O3 = {ae X }.
The following example illustrates the NPE method.

Example 1.2. Consider the following theory for addition of natural numbers where 0 and suc
are constructor symbols, + is a defined symbol, and X and Y are variables:

0+Y Y (1)
suc(X)+Y — suc(X+7Y) ()

Following the NPE approach, in order to specialize the program w.r.t. the goals X + suc(suc(0))
and X + 0, we compute the narrowing trees depicted in Figure 1.2. Observe that, in both trees,
all of the calls in their leaves are closed w.r.t. the tree root.

X + suc(suc(0)) X+0
w7 y [”0}/ N,
X —0} {X — suc(X")} = {X — suc(X')}
S 4 / N
suc(suc(0)) suc(X' + suc(suc(0)))| 0 suc(X'+0)
(@) (b)

FIGURE 1.2: Narrowing trees for the goal X + suc(suc(0)) and X + 0.

The resulting programs for the given theory are shown in Figure 1.3:

0+ suc(suc(0)) = suc(suc(0)) 0+0 =0
suc(X') + suc(suc(0)) = suc(X’ + suc(suc(0))) suc(X') +0 = suc(X'+0)
(a) (b)

FIGURE 1.3: Specialized programs for the goals X + suc(suc(0)) and X + 0.

As mentioned before, the main issues related to automatic PE (besides performance im-
provement) concern both termination (i.e., given any input goal, partial evaluation should always
reach a stage at which there is no way to continue) and (partial) correctness (i.e., the residual
program behaves as the original one for the considered input terms, provided the PE process
terminates).

As for termination, any partial evaluation algorithm deals with two classical termination
problems: the so-called local termination problem (the termination of the unfolding, i.e., how to
control that the deployment of the narrowing-trees is finite, which is managed by an unfolding
rule), and the global termination problem (which concerns termination of repetitive unfolding,
i.e., stopping the repetitive construction of narrowing-trees while still guaranteeing that the de-
sired amount of specialization is retained and that the closedness condition is reached).

As for local termination, NPE [Alpuente et al. 1998a] relies on the notion of homeomorphic
embedding (<) for controlling the unfolding during the construction of the narrowing trees. As

Introduction 5

for the global control, NPE relies on an abstraction operator which is based on the classical
notion of least general generalization (lgg) that is used to compute a safe approximation A of
QU.Z, as depicted below. Figure 1.4 illustrates the general NPE scheme.

~®

'd N\
UNFOLD é o
| J
A o
ABSTRACT

FIGURE 1.4: Narrowing-driven Partial Evaluation

1.2 Partial Evaluation of Maude Equational Theories

Functional rule-based languages that are encoded with equational reasoning capabilities offer a
high-level approach to programming and analyzing complex software systems. However, partial
evaluation has never been investigated in the context of expressive rule-based languages such as
Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which support:

1. rich type structures with sorts, subsorts and overloading; and
2. equational rewriting modulo combinations of associativity, commutativity, and/or identity

axioms.

When we consider such advanced features, a more general framework extending NPE is needed.
This thesis extends the NPE scheme of [Alpuente et al. 1998a] to deal with Maude programs
(or more specifically, with Maude functional modules defining order-sorted equational theo-
ries). This means that, the key NPE components of [Alpuente et al. 1998a] have to be properly
generalized to corresponding (order—sorted) equational notions (modulo axioms):

* order-sorted equational unfolding,

* order-sorted equational closedness,

* order-sorted equational embedding, and

* order-sorted equational abstraction.

6 Introduction

As a result, the associated partial evaluation techniques become more sophisticated and power-
ful, but also more complex. Note also that the previous existing NPE framework is an instance
of the equational NPE framework developed in this thesis.

In the remaining of this section, we briefly describe the different key NPE components of
[Alpuente et al. 1998a] that have been generalized in this PhD thesis to corresponding (order—
sorted) equational notions (modulo axioms) as they are the core of the partial evaluator Victoria
[Victoria Website] that implements all the techniques developed in this thesis.

This section is organized as follows. In Section 1.2.1, we briefly summarize the main fea-
tures of the Maude language. In Section 1.2.2, we recall the folding variant narrowing strategy
that is used in Maude to narrow terms in convergent equational theories, together with an exam-
ple that illustrates how it works. Section 1.2.3 presents the novel notion of equational closedness
and how it is used within the specialization process. In Section 1.2.4, we describe the stopping
criteria that are used to guarantee that the specialization process terminates. Finally, Section
1.2.5 describes a convenient post-processing renaming transformation that achieves further spe-
cialization by getting rid of redundant function symbols in the specialized program.

1.2.1 Equational Theories in Maude

Maude' is a high-level and high-performance language that implements Rewriting Logic (RWL)
[Meseguer 1992] a very general logical and semantic framework in which different models of
concurrent systems, distributed algorithms, programming languages, and software and hardware
modeling languages can be naturally represented, executed, and analyzed as rewrite theories
[Meseguer 2012]. Recently, an experimental open platform has been developed in [Garavel
et al. 2018] that allows the performance of functional and algebraic programming languages to
be compared, including CafeOBJ, Clean, Haskell, LNT, LOTOS, Maude, mCRL2, OCaml,
Opal, Rascal, Scala, SML, Stratego/XT, and Tom (see references in [Garavel et al. 2018]). In
the top 5 of the more efficient tools, Maude ranks second after Haskell. This is remarkable for at
least two reasons: (i) Maude is not a compiled language but runs under an interpreter; (ii) Maude
has quite sophisticated features (subtype polymorphism, pattern matching modulo associativity,
commutativity and identity, reflection, strategies, objects, etc.) that have no equivalent in Haskell
or other functional languages.

Roughly speaking, a rewriting logic theory seamlessly combines a term rewriting system
(TRS) with an equational theory that may include equations and axioms so that rewrite steps
are performed modulo the equations and axioms. In this thesis, we only consider Maude’s
equational theories and avoid any presentation of rewriting logic in general. An order-sorted
equational theory is a triple (Z,B,FZ) where X is a typed signature of functions symbols, B is a
set of commonly occurring algebraic axioms such as associativity, commutativity, and unity, and
E is a collection of (possible conditional) X-equations and membership axioms (i.e., axioms that
assert the type or sort of some terms). In addition, to rewriting in an equational theory (X, B, E)s
an order-sorted equational theory (Z,B,E) can also be symbolically executed in Maude by per-
forming narrowing with the oriented equations E modulo the axioms B [Clavel et al. 2016]. This
form of narrowing is useful for equational unification and variant computation [Escobar et al.
2012], as well as for partial evaluation [Alpuente et al. 2018]. The folding variant narrowing
strategy of [Escobar et al. 2012] is used for the case of narrowing with E modulo B in Maude.
The main idea is to fold, by subsumption modulo B, the narrowing tree for E, B, which can in

IThe Maude system and full documentation are available at http://maude.cs.uiuc.edu.

http://maude.cs.uiuc.edu

Introduction 7

practice result in a finite narrowing graph that symbolically and concisely summarizes the (gen-
erally infinite) (E, B) narrowing tree. When a convergent theory (£, B, E) additionally satisfies
the finite variant property [Comon-Lundh and Delaune 2005; Escobar et al. 2012], there exists
a finite complete set of most general (E ,B)-variants for each term 7 in the theory, where each
(E ,B)-variant of ¢ consists of a substitution ¢ and the (E ,B)-irreducible form of to. This notion
is exemplified in the following section.

1.2.2 Variant generation

The unfolding technique for the specialization of equational theories, called functional modules
in Maude, on which this thesis is based, is the folding variant narrowing strategy of [Escobar
et al. 2012], which is able to memorize previous narrowing steps so that it avoids to reproduce
useless or unnecessary narrowing steps. That is, folding variant narrowing allows the deployed
folding variant narrowing tree to be seen as a graph, where certain “repeated” leaves are con-
nected to other nodes by implicit “fold” arrows [Escobar et al. 2012].

Maude provides the following command for variant generation:
get variants [n] in (ModId) : (Term)

where 7 is an optional argument that indicates the number of variants requested and (ModId) is
the module where the command is executed [Clavel et al. 2016].

Example 1.3. Consider the following equational theory [Clavel et al. 2016] (written in Maude
syntax) for the “exclusive-or” symbol _*_ that defines an exclusive union of sets of natural
numbers, NatSet, such that X1 * X2 is the set of natural numbers appearing in X1 or X2, but not
both, and mt represents the (empty set) identity element.

fmod EXCLUSIVE-OR is
sorts Nat NatSet
subsort Nat < NatSet
op 0 : -> Nat
op s : Nat -> Nat
op mt : -> NatSet
op _*_ : NatSet NatSet -> NatSet [assoc comm]
vars X Y Z : NatSet
eq [E1] : X *x X
eq [E2] : X * mt
eq [E3] : X *x X * Z
endfm

mt [variant]
X [variant]
Z [variant]

The corresponding variant narrowing tree for the goal X * X is shown in Figure 1.5. This theory
has the finite variant property, i.e., the set of variants for each term is finite.

In Maude, we can generate the variants for the given goal term as follows.

Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant 1 Variant 2 Variant 7
NatSet: #1:NatSet * #2:NatSet NatSet: mt ... NatSet: %2:NatSet
X --> #1:NatSet X --> %1:NatSet X --> %1:NatSet

Y --> #2:NatSet Y --> %1:NatSet Y --> %1:NatSet * %2:NatSet

8 Introduction

X xY

[E1] / \\\ [E3]

{X—z (X=X

Y Z} Y X2 ox Y7}

. / - 2 {XH[iz-:]* .. [E3) \Y’
X m X . X X x Y
m /{Y:Yt} {YH"“:} Yz % Y7} {Y:Y 1 \
Y’ X’ X2 x Y’ X’

FIGURE 1.5: Folding variant narrowing tree for the goal X * Y.

Note that Maude delivers seven variants instead of the six ones depicted in Figure 1.5. This is
because Variant 1 corresponds to the normalized goal term (modulo variable renaming). Also,
note that Maude introduces fresh variables of two classes: #n:Sort (variables that are generated
by the built-in unification modulo axioms algorithm) and %n:Sort (variables that are generated
by variant-based unification or variant generation) [Clavel et al. 2016].

1.2.3 Order-sorted Equational closedness

Roughly speaking, the process of partially evaluating the equational theory (X, B, E) W.r.t. a term
t consists of: (i) deploying a finite (E , B)-narrowing-tree for ¢ by using the folding variant nar-
rowing strategy, and (ii) extracting the specialized rules to = r (resultants) for each narrowing
derivation ¢ m»:; in’ in the tree. The closedness condition ensures that all calls that might oc-
cur during the épécialization process are covered by the specialized program. Therefore, the
closedness condition is critical for ensuring the completeness of the transformation. Informally,
a term ¢ is considered equationally closed w.r.t. a set of calls Q, iff it is an equational instance
of a term of Q and the terms in the matching substitution are recursively E-closed by Q. For
instance, consider an associativity function symbol & and the term ¢ = 0&X&Z. We can say
that 7 is closed w.r.t. Q) = {X&Y }. However, it is not closed w.r.t. Q> = {X&X}. In this thesis,
equational closedness has been formally defined and very efficiently implemented in Maude as
a part of our partial evaluator Victoria [Victoria Website].

1.2.4 Termination of the Equational Partial Evaluation process

A partial evaluator must ensure that the specialization process ends, so it has to deal with the
local and global termination problems mentioned in Section 1.1.1 for the original NPE approach.
In the following, we briefly describe the termination criteria applied in our partial evaluation
framework.

Local Termination

The main idea of the local termination control is to ensure that, by observing some stop cri-
terion, no narrowing tree is infinitely unfolded. The local termination strategy on which our
partial evaluation framework is based on is the equational homeomorphic embedding relation.
Homeomorphic embedding is a structural preorder under which a term ¢ is greater than (i.e., it
embeds) another term ¢/, written as ¢>¢', if ¢ can be obtained from 7 by deleting some parts.
The usefulness of embedding for ensuring termination is given by the following well-known

Introduction 9

property of well-quasi-orderings: given a finite signature, for every infinite sequence of terms
t1,t2,- -+, there exist i < j such that #;>¢;. Therefore, to guarantee that the iterative computation
of a sequence t1,1,...,t,, the embedding can be used as a whistle [Leuschel 1998a]. That is,
if a new expression ¢, has to be added to the sequence, we first check whether ¢#,,; embeds
any of the expressions already in the sequence. If that is the case, we say that > whistles, i.e., it
has detected (potential) non-termination and the computation must stop. Otherwise, #,,| can be
safely added to the sequence and the computation proceeds. For instance, if we have a sequence
where the term u = suc(0 + suc(X)) * suc(X +7Y) is found after v = suc(Y) * suc(X 4+ 0), we
must stop since # embeds v modulo the commutativity of + and x.

In this thesis, we have defined and implemented two extensions of the homeomorphic em-
bedding (“syntactically simpler”) relation on nonground terms given in [Leuschel 1998a] to the
order-sorted, modulo axioms, case of equational theories:

1. In [Alpuente et al. 2017a], we defined a naive order-sorted equational extension of the
homeomorphic embedding relation <. However, this formulation did not scale to real-
istic problems. Furthermore, it did not consider types so that an embedding test such as
X:Bool <g 0 + suc(N:Nat) succeeds.

2. In order to improve the preliminary proposal of [Alpuente et al. 2017a], we defined a more

. « kosml
efficient formulation of order-sorted homeomorphic embedding modulo axioms <y

that may contain sorts, subsort polymorphism, and overloading in [Alpuente et al. 2018].

The formulation éff;’””l given in [Alpuente et al. 2018] runs up to 6 orders of magnitude faster
than the original definition of the homeomorphic embedding modulo equational axioms <p in
[Alpuente et al. 2017a]. This improvement in performance is achieved by taking advantage of
Maude’s powerful capabilities such as the efficiency of deterministic computations with equa-
tions versus non-deterministic computations with rewriting rules, or the use of non-strict defi-
nitions of the Boolean operators versus more speculative standard Boolean definitions [Clavel
et al. 2007].

Global Termination

For global termination, NPE relies on an abstraction operation ensuring that the iterative con-
struction of a sequence of partial narrowing trees terminates while still guaranteeing that the de-
sired amount of specialization is retained and that the equational closedness condition is reached.
Consider the set .Z of non-closed terms in the leaves of the unfolded narrowing trees (that have
been stopped by applying the embedding test), and the current set Q of specialized calls (for
which the unfolded narrowing trees have been generated). In order to avoid the construction of
an infinite number of narrowing trees, instead of just taking the union of the sets . and Q, both
sets (Q and %) are generalized. Hence, the abstraction operation returns a safe generalization
A of QU .Z so that each expression in the set QU.Z is closed w.r.t. A. For the generaliza-
tion of terms, the new, equational abstraction operator is based on order-sorted equational least
general generalization (lggp) [Alpuente et al. 2014b]. Roughly speaking, the generalization
problem (also known as anti-unification) for two or more expressions means finding their least
general generalization, i.e., the least general expression ¢ such that all of the expressions are
instances of ¢ under appropriate substitutions. For instance, the expression father (X,Y) is a
generalizer of both father (john, sam) and father (tom, sam), but their least general general-
izer (Igg), also known as the most specific generalizer (msg) and the least common anti-instance

10 Introduction

(lcai), is father (X,sam). Unlike the syntactical, untyped case, there is in general no unique
least general generalization modulo axioms B, [ggp, but a finite, minimal and complete set of
Iggp’s for any two terms, so that any other generalizer has at least one of them as a B-instance
[Alpuente et al. 2014b]. Formally, given an order-sorted signature X and a set of algebraic ax-
ioms B, a generalization modulo B of the nonempty set of X-terms {#1,...,t,} is a pair (r,0),
where ® = {6),...,0,} is a set of substitutions, such that, for all i = 1,...,n, 16; =g t;. The
pair (t,0) is the least general generalization modulo B of a set S of terms, written lggg(S), if
(1) (¢t,@) is a generalization of S and (2) for every other generalization (¢',®’) of S, ' is more
general than r modulo B.

In this thesis, we develop and implement [Alpuente et al. 2019a], a high-performance order-
sorted least general generalization modulo B algorithm that runs up to 5 orders of magnitude
faster than [Alpuente et al. 2014b].

1.2.5 Post-processing renaming modulo axioms

So far, by extending the NPE approach, we have been able to ensure the delivery of a resulting
program whose equations only contain, in their right hand sides, expressions that are closed
w.r.t. the final set of specialized calls. However, some redundant and unnecessary informa-
tion might exist in the resulting program (e.g., redundant function symbols and unnecessary
repetition of variables), so a post-partial evaluation process is necessary to eliminate such infor-
mation and thus obtain a more efficient and readable program that can even get rid on the costly
ACU-matching operations. Roughly speaking, the renaming process essentially introduces new
function symbols for each specialized term and then replaces each call in the resulting program
by a call to the corresponding renamed function.

Example 1.4. Consider the following independent renaming for the specialized calls of Figure
1.3: {X +suc(suc(0)) — addy(X)} and {X +0 — addy(X)}.

The post-processing renaming derives the final renamed programs:

add,(0) = suc(suc(0)) addy(0) =0
add, (suc(X')) = suc(add,(X'")) addy(suc(X")) = suc(addy(X"))
(a) (b)

1.3 The Partial Evaluator Victoria

Victoria is the first automatic narrowing-driven partial evaluator for order-sorted equational the-
ories written in Maude. Victoria is publicly available from [Victoria Website] and efficiently
implements the different extensions developed in this thesis of the components of the equational
NPE procedure of [Alpuente et al. 1998a] that are provided in this thesis. Figure 1.6 below
shows the architecture of Victoria that corresponds to a classical web application. This consists
of two main components, the front-end and the back-end, which are connected via a JSP-based
layer that is implemented in Java (500 lines of Java source code). The front-end (or presentation
layer) consists of 2.5K lines of JavaScript, HTMLS5, and CSS source code, and provides Victoria
with an intuitive Web user interface. The back-end (or core engine) supports Victoria services
and consists of about ten thousand lines of Maude code.

Introduction

11

Input
Term

Maude
Theory
CLIENT Specialized
Program

FIGURE 1.6: Architecture of Victoria.

Victoria is provided with an input panel, where we can enter the Maude program (or select a
predefined Maude program example from the drop-down list) and the goal term, and then select
the type of output program from the drop-down list (before or after renaming), before pressing
the button “Evaluate »”. Figures 1.7 and 1.8, respectively, show the input and output panels of
Victoria, where we have the evaluated program and the independent renaming applied in Figure

1.8.
Select a default input program (or write your own): ((Empty (write it yourself) ¢) Evaluate >
Select output program: ((After renaming 4
fmod EXCLUSIVE-OR is
sorts Nat NatSet .
subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .
op mt : -> NatSet .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .
vars X Y Z : NatSet
eq [E1l] : X * X = mt [variant] .
eq [E2] : X * mt =X [variant] .
eq [E3] : X * X * Z = 7 [variant] .
endfm
Input term:
X:NatSet * Y:NatSet
Z

FIGURE 1.7: Input panel of Victoria.

The source code of the Victoria core, together with some benchmark problems, is available
at [Victoria Website]. It can be executed in a localhost terminal console on the most recent

version of Maude (version 2.7.

1.

12 Introduction

Evaluated program

fmod EXCLUSIVE-OR-EP is

including BOOL .

sort Nat .

sort NatSet .

subsort Nat < NatSet .

op 0 : => Nat .

op _*_: NatSet NatSet -> NatSet [assoc comm]
op f1 : NatSet NatSet -> NatSet .

op mt : -> NatSet .

op s : Nat -> Nat .

eq [egl-1] : f1(X11%1:NatSet, X11%1:NatSet) = mt .

eq [egl-6] : fl(X11%1l:NatSet, f1(X11%1:NatSet, X11%2:NatSet)) = X11%2:NatSet .

eq [egl-5] : fl(X1l%1l:NatSet, f1(X11%2:NatSet, X11%2:NatSet)) = X11l%1l:NatSet .

eq [egl-4] : f1(X11%1:NatSet, f1(X11%3:NatSet, X11%2:NatSet * X11%2:NatSet)) =
fl1(X11%1:NatSet, X11%3:NatSet)

eq [egl-2] : fl(mt, X1l%1l:NatSet) = X11%l:NatSet .

eq [egl-3] : fl(mt, X11%1:NatSet) = X11%1:NatSet .

endfm

Independent renaming

[*] X:NatSet * Y:NatSet ==> fl(X:NatSet, Y:NatSet)}

FIGURE 1.8: Output panel of Victoria.
1.4 Equational NPE in practice

The main motivation for building a partial evaluator is the efficiency that can be gained in the
resulting specialized programs. This is why a partial evaluator is required to run fast and aims
to produce residual programs that are semantically equivalent to the original program, but hope-
fully faster.

Let us show the power of our specialization technique through the following example that is
borrowed from [Alpuente et al. 2017a], which illustrates the specialization of a program parser
(w.r.t. a given grammar) into a very specialized parser that is similar to the approach proposed
in [Jones et al. 1993].

Example 1.5. Consider the following definition of a generic parser for languages that are gener-
ated by simple, right regular grammars (written in Maude® syntax). The PARSER module defines
a constructor symbol _| _| _ that represents the parser configurations, where the underscores
correspond to its arguments. The first one represents the (terminal or non-terminal) symbol be-
ing processed. The second one represents the current string pending recognition. And finally, the
third one stands for the considered grammar. It provides two non-terminal symbols, init and
S, and three terminal symbols, 0, 1, and the finalizing mark eps (for €, the empty string). These
have been chosen to keep things simple, however they can be easily generalized to any terminal
and non-terminal symbol by defining a Maude parameterized theory. Parsing a string (init |

2In Maude 2.7.1, only equations with the attribute variant are used by the folding variant narrowing strategy.

Introduction 13

st | I') consists of using the rules of the grammar (in the opposite direction) to incrementally
transform st until the final configuration (eps | eps | I') is reached.

fmod PARSER is
sorts Symbol NSymbol TSymbol String Production Grammar Parsing .
subsort Production < Grammar .
subsort TSymbol < String .
subsorts TSymbol NSymbol < Symbol .
ops 0 1 eps : -> TSymbol .
ops init S : -> NSymbol .

op mt : -> Grammar .

op __ : TSymbol String -> String [right id: eps].

op _->_ : NSymbol TSymbol -> Production .

op _->_._ : NSymbol TSymbol NSymbol -> Production .

op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt]
op _|_I_ : Symbol String Grammar -> Parsing .

var E : TSymbol . wvar L : String . var G : Grammar . vars N M : NSymbol .

eq [end] : N | eps | (N->eps) ; G=
eps | eps | (N -> eps) ; G [v
eq [continue] : N | EL | (W->E . M) ; G =
M| L | (N->E .M ; GIl[v

ariant]

ariant]
endfm

The second equation (labelled [continuel) defines the general case of the parser, which
given the configuration (N | E L | T') where (E L) is the string to be recognized, searches
for the grammar production (N -> E . M) in I to recognize symbol E and then proceeds to
recognize L starting from the non-terminal symbol M. We assume that the theory is convergent
modulo axioms, i.e., there are no two grammar productions in I of the form (N -> E.M;) and
(N -> E.Mp), which implies that there is always only one possible application of the equation
[continue]. Also, note that the combination of subtypes and equational (algebraic) axioms
allows for a very compact definition.

For example, given the following grammar I" with five rules that generates the language
0*1*:

init -> eps ; init -> 0 . init ; init ->1 . S ; S ->eps ; S ->1 . S

the initial configuration (init | 0 0 1 1 eps | I') is simplified into (init | 0 0 1 1 |
I) by using right identity and is then deterministically rewritten as follows

(init10 0 1 111 —
(initl 01111 —
(init | 111D —
(s | 11 —

%

(S | eps 1D
(eps | eps |IID

14 Introduction

The parser is encoded as a Maude equational theory that contains several language features
that are unknown territory for state-of-the-art (narrowing-driven) standard partial evaluation:

(i) a hierarchy of sorts that defines the sets TSymbol (terminal symbols) and NSymbol (non-
terminal symbols) as two subsorts of the set Symbol of all grammar symbols; and

(ii) a symbol _; _ that obeys the associativity (A), commutativity (C), and identity (U) axioms
for representing grammars (meaning that they are handled as a multiset of productions),
together with the symbol __ that is used to represent the input string and obeys right

identity.

We can specialize the parsing program to the productions of a given grammar. For instance,
consider the given grammar I shown above and the input term (init | L | '), where L is
a logical variable of sort String. By using our partial evaluator Victoria, we construct the
corresponding folding variant narrowing tree that is shown in Figure 1.9. The leaves (eps |
eps | 1) of the tree are constructor terms and cannot be unfolded, and the leaf (init | L’
| T is closed modulo ACU w.r.t. the root of the tree. However, the leaf (S | L’ | T') is not
closed w.r.t. the root of the tree and, therefore, we need to apply the abstraction operation to
it and obtain a new set of terms that are subsequently taken as the roots of the new narrowing
trees.

init | L |T

{LHEPS}A L,}l \Hl Lo}

eps | eps | T init | L> | T s| L | T
%eps} {m
eps | eps | T s | L | T
FIGURE 1.9: Folding variant narrowing tree for the goal init | L |T.
After applying the abstraction operation, the tree resulting for the new call (S | L | T')

is shown in Figure 1.10. Now all leaves in the trees of Figures 1.9 and 1.10 are closed w.r.t. their
corresponding roots.

s | L | T
{L,,Hi/ {L,"—)l\
eps | eps | I’ s|rv» | T
FIGURE 1.10: Folding variant narrowing tree for the goal S | L’ | T.

Therefore, Victoria successfully returns the following specialized parsing equations:

eq [1] : dinit | eps | I' = eps | eps | ' [variant]
eq [2] : dnit | OL | I’ = init | L | I' [variant]
eq [3] : dinit | 1 | T = eps | eps | I' [variant]
eq [4] : init | 11 LI T = 8 | L | I' [variant]
eq [6] : S | eps | I = ‘eps | eps | I' [variant]
eq [6] : S 1L | T"” = '8 | L | I' [variant]

Introduction 15

eq [1] : init || eps = eps || eps [variant]
eq [2] : dinit || OL = init || L [variant]
eq [3] : imit || 1 = eps || eps [variant]
eq [4] : dnit || 11 L = S [l L [variant]
eq [6] : S || eps = eps || eps [variant]
eq [6] : S [l 1L = 8 [l L [variant]

where the third and fourth equations are specialized versions of the following equation
eq init | 1 L | I'=8 | L | I' [variant]

This is because the embedding test does not whistle in Figure 1.9 until the expression
S | L’ | T isreached twice.

By applying the post-processing renaming, we get a more readable specialized program
that is still able to recognize the string st by rewriting the simpler configuration (init | st
| I') to the final configuration (eps | eps | I'). For instance, note that the third argument
of the constructor symbol _| _| _ in the left and right hand sides of the equations corresponds
to the grammar I, and it is no longer necessary for the specialized program. By applying the
indepent renaming {init | L | T’ — finit(L), S | L | T — £S(L), eps | eps |
' — feps}, we finally get the following specialized parsing equations:

eq [1] : finit(eps) = feps [variant]
eq [2] : finit(0 L) = finit(L) [variant]
eq [3] : finit(1) = feps [variant]

eq [4] : finit(1 1 L)
eq [5] : fS(eps)
eq [6] : £S(1 L)

£S(L) [variant]
feps [variant]
fS(L) [variant]

This residual specialized program achieves a significant improvement in execution time com-
pared to the original program, both before and after the renaming process, but even more no-
ticeable after renaming. For example, given an input data string of five million elements, the
parsing time with the original parser program is 275.334 ms, while for the specialized programs
are: 2.058 ms before renaming (corresponding to 99.25% of improvement) and 1.685 ms after
renaming (corresponding to 99.39% of improvement). Moreover, the final program after renam-
ing moves from a program with ACU and Ur operators to a specialized program without axioms
[Alpuente et al. 2017a].

1.5 Contributions of the Thesis

The main objective of this thesis is to develop a partial evaluation framework for order-sorted
equational theories, that supports subsorts, subsort polymorphism, convergent rules (equations),
and equational axioms. The contributions of this thesis are summarized as follows:

1. We develop Victoria, the first partial evaluator for Maude equational theories, which is
based on a suitably extended version of the general NPE procedure of [Alpuente et al.

16 Introduction

1998a] and is not only parametric w.r.t. the unfolding rule used to construct finite com-
putation trees, but also w.r.t. an abstraction operator that is used to guarantee that only
finitely many expressions are evaluated. For deploying narrowing-trees, Victoria relies on
the folding variant narrowing strategy, which is optimal for convergent equational the-
ories and efficiently computes most general variants modulo algebraic axioms [Escobar
et al. 2012].

2. Folding variant narrowing computations can be extremely involved and are simply pre-
sented in constructed text format by Maude, often being too heavy to be debugged or even
understood. We develop a graphical tool for exploring (variant) narrowing computations
in Maude called GLINTS that allows: (i) exploring variant computations, (ii) determin-
ing whether a given theory satisfies the finite variant property, (iii) automatic checking
of node embedding and closedness modulo axioms, and (iii) querying and inspecting se-
lected parts of the variant trees [Alpuente et al. 2017b].

3. For the local termination control, our partial evaluator Victoria is based on using the equa-
tional homeomorphic embedding relation of [Alpuente et al. 2018], which efficiently han-
dles sorts, subsort polymorphism, and overloading, and greatly improves the original for-
mulation at [Alpuente et al. 2017a]. We develop the equational homeomorphic embedding
checker in Maude called HEMS that implements all equational homeomorphic embedding
formulations presented in [Alpuente et al. 2019b].

4. For the generalization process, we rely on the order-sorted equational least general gen-
eralization, first investigated in [Alpuente et al. 2014b], which we efficiently implemented
in ACUOS?, a high-performance order-sorted least general generalization modulo B tool
for Maude described in [Alpuente et al. 2019a].

1.6 Plan of the Thesis

This thesis is structured as follows:

1. In Chapter 2, we recall some preliminary definitions that are needed to understand this
thesis.

2. In Chapter 3, we describe GLINTS, the graphical tool for exploring variant narrowing
computations in Maude. This chapter summarizes [Alpuente et al. 2017b].

3. In Chapter 4, we formalize the order-sorted homeomorphic embedding module axioms for
Maude equational theories. This chapter summarizes [Alpuente et al. 2019b] that extends
the work presented in [Alpuente et al. 2018].

4. In Chapter 5, we present ACUOS?, the order-sorted equational least general generalization
system. This chapter summarizes [Alpuente et al. 2019a].

5. In Chapter 6, we formulate our partial evaluation framework and the partial evaluator
Victoria. This chapter summarizes [Alpuente et al. 2019c¢] that extends the work presented
in [Alpuente et al. 2017a].

6. Finally, we present our conclusions in Chapter 7 and discuss direction for future work.
Note that we have grouped together here the conclusions to each chapter.

Introduction 17

1.7 List of Publications
The publications derived from this thesis are:

1. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Partial Evaluation of
Order-sorted Equational Programs modulo Axioms. In Proc. of the 26th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Ed-
inburgh, UK, September 6-8, 2016, volume 10184 of Lecture Notes in Computer Science,
pages 3-20. Springer, 2017.

2. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Sapifia. Inspecting maude variants
with GLINTS. Theory and Practice of Logic Programming, 17(5-6):689-707, 2017.

3. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Homeomorphic Embed-
ding modulo Combinations of Associativity and Commutativity Axioms. In Proc. of
the 28th International Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR 2018), Frankfurt/Main, Germany, September 4-6, 2018, volume 11408 of
Lecture Notes in Computer Science, pages 38-55. Springer, 2018.

4. M. Alpuente, D. Ballis, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. ACUOS2: A
High-performance System for Modular ACU Generalization with Subtyping and In-
heritance. In Proc. of the 19th European Conference on Logics in Artificial Intelligence
(JELIA 2019), Rende, Italy, May 8-10, 2019, volume 11468 of Lecture Notes in Artificial
Intelligence, pages 171-181. Springer, 2019.

5. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Order-sorted Homeo-
morphic Embedding modulo Combinations of Associativity and/or Commutativity
Axioms. Fundamenta Informaticae Journal, 2019. Accepted for publication.

6. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. A Partial Evaluation
Framework for Order-sorted Equational Programs modulo Axioms. Journal of Log-
ical and Algebraic Methods in Programming, 2019. Accepted for publication.

1.8 Developed Tools

The following software tools have been implemented during the development of this thesis.

1. GLINTS, a graphical tool for exploring (variant) narrowing computations in Maude. Avail-
able at [GLINTS Website].

2. HEMS, an equational homeomorphic embedding checker for Maude. Available at [HEMS
Website].

3. ACUOS?, a high performance least general generalization system for Maude rewrite the-
ories. Available at [ACUOS? Website].

4. Victoria, a partial evaluator tool for Maude order-sorted equational theories. Available at
[Victoria Website].

Chapter 2

Preliminaries

In this chapter, we provide some technical concepts that are required for the proper compre-
hension of this thesis. More specifically, Section 2.1 recalls some key concepts of order-sorted,
rewriting logic theories and term rewriting [Meseguer 1992]. Section 2.2 introduces the notion
of decomposition of an equational theory (X,&). In Section 2.3, we give an overview of narrow-
ing modulo equations [Meseguer and Thati 2007]. Term variants are explained in Section 2.4.
In Section 2.5, we describe the variant narrowing strategy. Finally, Section 2.6 is devoted to the
folding variant narrowing strategy of [Escobar et al. 2012].

2.1 Rewriting Logic and Term Rewriting

In this section, we recall some key concepts of order-sorted rewriting logic theories. More
details can be found in [Meseguer 1992].

Terms, sorts and positions

We consider an order-sorted signature (£,S, <) that consists of a poset of sorts (S, <) and an
S* x S-indexed family of sets £ = {¥s, s, s}(s,...s,5)e5*xs Of function symbols. The poset (S, <)
of sorts for X is partitioned into equivalence classes Cy,...,C, (called connected components)
by the equivalence relation (< U >)*. We assume that X is preregular, so each term ¢ has
a least sort, denoted /s(r) (see [Goguen and Meseguer 1992]). X is also assumed to be kind-
complete, that is, for each sort s € S, its connected component in the poset (S, <) has a top sort
under <, denoted [s| and called the connected component’s kind, and for each function symbol
f €Xs,. 5,5, there is also an f € X [s,]/s]- An order-sorted signature can always be extended
to be kind-complete [Meseguer 2016]. Maude automatically checks preregularity and adds a
new “kind” sort [s] at the top of the connected component of each sort s € S specified by the
user and automatically lifts each operator to the kind level. For technical reasons, it is useful
to assume that X has no ad-hoc overloading. However, this assumption entails no real loss of
generality: any X can be transformed into a semantically equivalent signature with no ad-hoc
overloading (by symbol renaming). Finally, X is also assumed to be sensible, in the sense that
for any two typings f :s;...s, —> sand f:s|...s, — s’ of an n-ary function symbol f, if s;
and sg are in the same connected component of (S,<) for 1 <i <n, then s and s’ are also in

20 Preliminaries

the same connected component; this provides the right notion of unambiguous signature at the
order-sorted level.

We assume an S-sorted family 2™ = { Z¢}ses of disjoint variable sets. .73(2"), and .J; ¢
denote the sets of terms and ground terms of sort s, respectively. Note that s < s’ (s is a subsort
of §') implies the set of terms of sort s are a subset of the set of terms of sort ¢/, i.e., 92(3{) < C
T (Z)gy. We also write Jx (") and i for the corresponding term algebras, i.e., 75 (2) =
Uses 72 (Z), and Fx = Uses.Zy .. Throughout this thesis we assume that ,7275 # 0 for every
sort s because this affords a simpler deduction system. The set of variables occurring in a term
t is denoted by ¥ ar(t). In order to simplify the presentation, we often disregard sorts when no
confusion can arise. Let — C A X A be a binary relation on a set A. We denote its transitive
closure by —, and its reflexive and transitive closure by —*. A sequence of syntactic objects
o1,...,0, is denoted by 0,.

A position p in a term t is represented by a sequence of natural numbers (A denotes the
empty sequence, i.e., the root position). Positions are ordered by the prefix ordering: p < g, if
3w such that p.w = ¢. Given a term ¢, we let Pos(t) and Posx(t) respectively denote the set
of positions and the set of non-variable positions of ¢ (i.e., positions where a variable does not
occur). The expression ¢, denotes the subterm of t at position p, and ¢[u],, denotes the result of
replacing the subterm t|, by the term u.

Equational Theories and unification

A substitution o is a sorted mapping from a finite subset of 2" to 75 (Z"). Substitutions are
written as ¢ = {X| — t1,...,X, — 1, } where the domain of ¢ is Dom(c) = {Xi,...,X, } and the
set of variables introduced by terms 71, ..., is written Ran(c). The identity substitution is id.
Substitutions are homomorphically extended to .75 (.2"). The application of a substitution ¢ to
aterm ¢ is denoted by ro. For simplicity, we assume that every substitution is idempotent, i.e., G
satisfies Dom(o) N Ran(o) = 0. Substitution idempotency ensures (t6)0 = to. The restriction
of o to a set of variables V C 2" is denoted o|y; sometimes we write o, to denote oy
where V = Var(t;) U---UVar(t,). Composition of two substitutions is denoted by c¢’ so that
t(oo’) = (to)o’.

A X-equation is an unoriented pair r =t', where ¢, € 75 (2"), for some sort s € S. Given
¥ and a set & of X-equations, order-sorted equational logic induces a congruence relation =g
on 7 (Z") (see [Meseguer 1997]). An equational theory (£,&) is a pair with X an order-sorted
signature and & a set of X-equations. We omit £ when no confusion can arise.

A term ¢ is more (or equally) general than ' modulo &, denoted by t <e ¢/, if there is a
substitution y such that #' =4 ty. A substitution 8 is more (or equally) general than ¢ modulo &,
denoted by 8 <. o, if there is a substitution ¥ such that 6 =¢ 07, i.e., forall x € 2" ,xc =5 x07.
Also, 6 <z o [V]iff for all x € V,x0 <z xo. We also define t ~¢ " iff t <z ¢ and ' <g r; and
similarly 6 ~¢ ©.

An &-unifier for a Z-equation t = ¢’ is a substitution ¢ such that 16 =5 1'c. CSU+(t =1')
denotes a complete set of unifiers for the equation ¢ = ' modulo &. A set U of unifiers for the
equation t =t is complete if, for any unifier y of t = ¢’ there is a more general unifier ¢ in U.
This means that all possible unifiers are subsumed or derivable from the ones in the complete set
U. An &-unification algorithm is complete if for any equation ¢ = ¢’ it generates a complete set
of &-unifiers. Note that this set needs not be finite. A unification algorithm is said to be finitary

Preliminaries 21

if it always terminates. Note that a complete and finitary &-unification algorithm may not exist
even if a complete and finite set of &-unifiers exists.

Note that we use the words identities, equations and axioms to refer to algebraic properties
although they have a different operational behaviour (see Baader et al. 2001). Note also that we
often overload the equality symbol = for equations in theories, for unification problems, and for
syntactic equality (without any algebraic properties).

Rewrite Theories and Term Rewriting

A rewrite theory is a triple Z = (X,8,R), where (X,&) is the equational theory modulo which
we rewrite and R is a set of rewrite rules. Rules are of the form / — r where terms [,r € 75 (27),
for some sort s are respectively called the left-hand side (or lhs) and the right-hand side (or rhs)
of the rule and ¥ ar(r) C #ar(l). The set R of rules is required to be sort-decreasing, i.e., for
each [— rin R, each s € S, and each substitution ¢, ro € F5(2), implies [€ T3 ().

We define the one-step rewrite relation on F5(Z") for the set of rules R as follows: 7 —g ¢/
if there is a position p € Pos(t), a rule | — r in R, and a substitution ¢ such that t|, = [o
and ' = t[ro],. The relation — /s for rewriting modulo & is defined as =g 0 —g 0 =¢. A
term 7 is called R/&-irreducible iff there is no term u such that t —p /& U. A substitution o is
R/&-irreducible if, for every x € 27, xo is R/&-irreducible. We say that the relation —g /s is
terminating if there is no infinite sequence #; —g/¢ t2 —g/& = In —>R/& tnt1 -+ . We say that the
relation —p/ ¢ is confluent if whenever t =3 t"and 1 —7 16 t", there exists a term " such that
=% /& " and 1" =7 /6 """, A rewrite theory (X,&,R) is convergent if R is sort-decreasing and
the relation —p /¢ is confluent and terminating. In a convergent order-sorted rewrite theory, for
each term 1 € 75 (Z"), there is a unique (up to &-equivalence) R/&-irreducible term ¢’ that can
be obtained by rewriting 7 to R/ & -irreducible or normal form, which is denoted by ¢ —>}e /& t', or
tlg/& whent'is not relevant. For each x € Dom(0), O/« is defined as (G lg/s)(x) =X Lg/s- A
substitution ¢ is R/&-irreducible (normalized) iff xo is R/& -irreducible for each x € Dom(o).
For a set of terms O, we denote by Q |/« the set of normal forms of the elements in Q.

Since &-congruence classes can be infinite, —g/¢-reducibility is undecidable in general.
Therefore, R/&-rewriting is usually implemented [Jouannaud et al. 1983] by R,& -rewriting.
We define the relation —g o on F5(2") by t =, g t' (or simply t —¢ ¢ t) iff there is a non-
variable position p € Poss(t), arule [— r in R, and a substitution ¢ such that ¢, =¢ /o and
t" = t[ro],. To ensure completeness of R,&-rewriting w.r.t. R/&-rewriting, we require strict
coherence, ensuring that =, is a bisimulation for R,&-rewriting [Meseguer 2017]: for any
X-terms u,u’,v if u =4 u' and u —g & v, then there exists a term v/ such that ' —¢ s V' and
v =¢ V. Note that, assuming &-matching is decidable, — ¢ is decidable and notions such
as confluence, termination, irreducible term, and normalized substitution are defined for —¢ »
straightforwardly [Meseguer 2017]. It is worth noting that Maude automatically provides &-
coherence completion for rules and equations.

2.2 Equational Theories as Rewrite Theories

Algebraic structures often involve axioms like associativity and/or commutativity of function
symbols, which cannot be handled by ordinary term rewriting [Eker 2003] but instead are han-
dled implicitly by working with congruence classes of terms. This is why an equational theory

22 Preliminaries

is often decomposed into a disjoint union & = E'& B, where B is a set of algebraic axioms (which
are implicitly expressed in Maude as attributes of their corresponding operator using the assoc,
comm, and id : keywords) that are used for B-matching, and E consists of (possibly conditional)
equations that are implicitly oriented from left to right as a set E of rewrite rules (and opera-
tionally used as simplification rules modulo B). By doing this, a (well-behaved) rewrite theory
(Z,B,E) is defined, with E = {r — ' |t =1 € E}, which satisfies all of the conditions that
we need. This is formalized by the notion of decomposition of the equational theory (X,&’) as
follows.

Definition 2.1 (Decomposition [Escobar et al. 2009b]). Let (X, &) be an order-sorted equational
theory. We call (£, B, E) a decomposition of (%,&) if & = EwWB and (X, B, E) is an order-sorted
rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t =" in B, we have Var(t) = Var(t'), and linear, i.e., for each
t =" in B, each variable occurs only once in ¢ and in .

2. B is sort-preserving, i.e., for each t =" in B and substitution ¢, we have ro € F5(2"),
iff o € F5(Z),. Furthermore, for each equation t =’ in B, all variables in Var(t) and
Var(t") have a common top sort.

3. B has a finitary and complete unification algorithm, which implies that B-matching is
decidable.

4. The rewrite rules in E are convergent, i.e., confluent, terminating, and strictly coherent
modulo B, and sort-decreasing.

We often abuse notation and say that (Z,B,E) is a decomposition of an order-sorted equa-
tional theory (X, &) even if & # E W B but E is instead the explicitly extended B-coherent com-
pletion of a set E’ such that & = E' WB.

Given the rewrite theory (Z,B,E), it is common to split the signature X into two disjoint
sets: defined symbols and constructor symbols. Defined symbols are defined as 7z = {f € L |

3f(t,...,t,) = r € E}, and constructors are defined as €z = X\ 7.

In the following, we often consider rewrite theories (X, B, R) that are a decomposition of an
order-sorted equational theory.

2.3 Narrowing in Rewriting Logic

Narrowing generalizes term rewriting by allowing free variables in terms (as in logic program-
ming) and by performing unification (at non-variable positions) instead of matching in order
to (non—deterministically) reduce the term. Function definition and evaluation are thus embed-
ded within a symbolic logical framework and features such as existentially quantified variables,
unification, and function inversion become available.

Definition 2.2 ((R, B)-narrowing [Meseguer and Thati 2007]). Let #Z = (X, B,R) be an order-
sorted rewrite theory. The (R, B)-narrowing relation on 95 (2") is defined as t ~»4 g g t' (or just
t~ ¢ t') if there exist p € Posy (1), a (renamed apart) rule [— r in R, and a B-unifier ¢ of f| pand
[such that t' = (t[r],)o. The narrowing step r ~¢ g g t' is also called a (R, B)-narrowing step.
A term ¢ is (R, B)-narrowable if there exist o and ¢’ such that t ~»5 g 5 t'. Given the narrowing

Preliminaries 23

sequence « : (fo ~+g, 11 -+ ~+g, In), the computed substitution of a is 0 = (0} ... 6,)|var(,) and
We may write fo ~>g fy.

Since (R, B)-narrowing has quite a large search space, suitable strategies are needed to im-
prove the efficiency of narrowing by getting rid of useless computations.

First, we define the notion of a narrowing strategy. Given a (R, B)-narrowing sequence o : (o
~rg, 11+ ~>g, 1), we denote by @; the narrowing sequence @; : (fo ~>g, 11 - - - ~>g, 1;), Which is
a prefix of a. Given an order-sorted rewrite theory %, we denote by Fulls(t) the (possibly
infinite) set of all (R, B)-narrowing sequences stemming from z.

Definition 2.3 (Narrowing Strategy). A narrowing strategy is a function of two arguments: a
rewrite theory # = (£,B,R) and a term 1 € 7 (Z"), which we denote by .(t), such that
F#(t) C Fullgp(t). We require .#%(t) to be prefix closed, i.e., for each narrowing sequence
o € S(t) of length n, and each i € {1,...,n}, we also have o; € .S (1).

Narrowing strategies for rewrite theories that are complete (i.e., for every solution, it com-
putes a more general answer) under suitable conditions have been investigated in [Meseguer and
Thati 2007; Thati and Meseguer 2006].

Example 2.1. The equational theory for exclusive—or has a decomposition into E consisting
of the (implicitly oriented) equations (3)—(5) below, and B the associativity and commutativity
(AC) axioms for symbol &:

Xa0=X (3) XeX=0 4 XeXaY =Y (5

Note that equations (3)—(4) are not strictly AC-coherent, but adding equation (5) is sufficient to
recover that property (see [Durdn and Meseguer 2010; Viry 2002]).

Given the term t = X @Y, the following (E ,B)-narrowing steps can be proved (we only
include the bindings for the variables in the input term)

X®Y ~y X' using ¢ ={X — 0,Y — X'} and Equation (3)

X®Y ~4, X' using ¢ ={X — X',Y — 0} and Equation (3)

X®Y ~4, 0 using ¢3 = {X — X',Y — X'} and Equation (4)

X®Y ~p, Y using o4 ={X —»Y' &X' Y — X'} and Equation (5)

X@Y ~g Y using s ={X — XY = Y' &X'} and Equation (5)

X®Y ~4, UBY' using oo ={X — X' @U,Y — X' ®Y'} and Equation (5)

As explained above, in order to provide a finitary and complete unification algorithm for
a decomposition (X, B, E), two narrowing strategies are defined in [Escobar et al. 2012]: vari-
ant narrowing and folding variant narrowing. These notions are formalized in the following
sections.

2.4 Term Variants

Intuitively, an (E,B)-variant of a term ¢ is the (E,B)-irreducible form of an instance tc of t.
That is, the variants of # are all of the possible (E,B)-irreducible terms to which instances of ¢
evaluate. Note that variant terms are normalized.

24 Preliminaries

Definition 2.4 (Term variant [Comon-Lundh and Delaune 2005]). Given a term ¢ and an equa-
tional theory (X, E W B) with a decomposition (X, B,E), we say that (¢, 0) is a variant of t if
t' =p (t0)lz g, where Dom(0) C Var(t) and Ran(0)NVar(t) = 0.

Example 2.2. Consider the following specification for addition of natural numbers:

0+M=M
S(N)+M =s(N+M)

The set of variants for the term N + 0 is infinite, since we have (0,{N — 0}), (s(0),{N —
s(0)}), ..., (s5(0), {N = sX(0)}). Analogously, the variants of the term 0+M are (0,{M + 0}),
(5(0), {M > 5(0)}), ..., (s°(0),{M = s*(0)}).

In order to capture when a newly generated variant is subsumed by a previously generated
one, we introduce the notion of variant preordering with normalization.

Definition 2.5 (More General Variant [Escobar et al. 2012]). Given a decomposition (Z,B,E)
and two term variants (¢, 6;), (f2,6,) of a term 7, we write (71, 6;) <& (t2,6,), meaning (t1,0;)
is a more general variant of ¢ than (2, 6,), iff there is a substitution p such that (610) |y, =5
(6207 p)lvar(ry and 11p =p 12.

Example 2.3. The term N + M has an infinite set of most general variants in the theory of Exam-
ple 2.2, since we have (M,{N + 0}), (s(M),{N > s(0)}), ..., (s*(M),{N + s*(0)}). However,
note that the variant (0,{N +— 0,M — 0}) is subsumed by (M,{N + 0}) and is therefore dis-
carded from the set of most general variants. The set of most general variants of the term 0+ M
is finite and is {(M, €)}.

An equational theory has the finite variant property (FVP) iff there is a finite and complete
set of most general variants for each term. We say an equational theory is a finite variant theory
if it has the FVP. The specification of natural numbers of Example 2.2 is not a finite variant
theory, since the term N + M has an infinite number of most general variants, as shown in
Example 2.3. The equational theory for exclusive-or of Example 2.1 is a finite variant theory as
it is the following theory for Boolean expressions.

Example 2.4. Consider the following theory that declares the two Boolean constants true and
false. The key things to note are the special attributes assoc and comm, meaning that the infix
operators “and” and “or” obey associativity and commutativity axioms:

fmod BOOL is

sort Bool .

ops true false : -> Bool .

op not : Bool -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm]

vars X Y : Bool .
eq not(true) = false [variant]
eq not(false) = true [variant]

eq X and true = X [variant]
eq X and false = false [variant]
eq X or true = true [variant]
eq X or false = X [variant]

endfm

Preliminaries 25

There are five most general variants modulo AC for “X and Y”, which are:
(X and Y,id), (Y,{X — true}),(X,{Y+— true}), (false,{X+> false}),(false,{Y — false}).
Similarly, there are five most general variants for “X or Y”.

It is generally undecidable whether an equational theory has the FVP [Bouchard et al. 2013];
a semi-decision procedure is given in [Cholewa et al. 2014; Meseguer 2018] that works well in
practice, and another technique based on the dependency pair framework is given in [Escobar
et al. 2012]. The procedure in [Cholewa et al. 2014] is implemented in [Alpuente et al. 2017b]
and works by computing the variants of all flat terms f(Xj,...,X,) for any n-ary operator f in
the theory and pairwise-distinct variables X1, ..., X, (of the corresponding sort); the theory does
have the FVP iff there is a finite number of most general variants for every such term [Cholewa
et al. 2014].

2.5 The variant narrowing strategy

Given a decomposition (X, B E), applying narrowing without any restriction can be very waste-
ful due to two main sources: (i) for axioms B such as associativity-commutativity, the number of
B-unifiers of an equation can be quite large; and (ii) if we narrow a term in all possible positions,
the narrowing tree may grow in an explosive way. Let us first motivate the variant narrowing
strategy with two ideas. First, for computing variants in a decomposition we are only interested
in normalized terms and normalized substitutions, so we can restrict our interest to narrowing
derivations that provide only normalized substitutions and end in normalized terms, whereas the
unrestricted narrowing formalized in Definition 2.2 does not ensure that.

Example 2.5. Continuing with Example 2.1, due to the prolific AC-unification algorithm there
are some redundant narrowing steps with non-normalized substitutions, such as

X®Y ~4 X'®U using ¢ ={X — X' ®0,Y — U} and Equation (3)

X®Y ~p, UDX' using g3 ={X — U,Y — 00 X'} and Equation (3)

X®Y ~4 Y using po={X — X' @&X'Y —Y'} and Equation (5)

X®Y ~4, Y using 1o ={X —Y" Y — X' ®X'} and Equation (5)

X@Y ~p, Y QU using ¢y ={X =X &X' @YY — U} and Equation (5)
X®Y ~p, UBY' using g ={X = U,Y = X' &X' @Y'} and Equation (5)

For instance, note that the narrowing step with substitution ¢g is not needed because the same
effect is achieved with the normalized substitution ¢,. Indeed, the narrowing search com-
mand of Maude [Clavel et al. 2009], which performs full (i.e., unrestricted) narrowing, (non—
deterministically) computes 124 different narrowing steps from term X &Y. When we con-
sider narrowing sequences instead of single steps, we can easily get a combinatorial explo-
sion, since we have another 124 different narrowing steps after any of the following ones:
XDY g Z1 D 2o, XDY ~og Z1 D 2o, or X DY ~og, Z1 D Zy. Also, there are many infi-
nite narrowing sequences, such as the one repeating substitution ¢¢ again and again: X &
YM% VARSYZ) ~ g Zi EBZQ g ZYEBZ&”\A -+ where (bé = {Z] — U’@Z/,ZQ — U/@Zé} and
¢ ={Z)—~U"eZ],Z, - U" & Z]}.

Our second idea is to give priority to most general narrowing steps, instead of more in-
stantiated ones, and to select one and only one narrowing step among those having the same
generality, following a don’t care approach. This has three implications. The first is that the

26 Preliminaries

most general narrowing steps are rewriting steps (if any), and thus any (deterministic) rewrite
step should be taken before exploring (possibly non-deterministic) narrowing steps. This resem-
bles the optimization of narrowing known as normalizing narrowing (see, e.g., [Hanus 1994]).
Thanks to convergence modulo B, as soon as a rewrite step —z , is enabled in a term that also
has narrowing steps ~» 5, such a rewrite step is always taken before any further narrowing
steps are applied. The idea of normalizing terms before any narrowing step is taken is consistent
with the implementation of rewriting logic [Viry 2002], where deterministic rewrite steps (with
equations) are given priority w.r.t. more expensive, non—deterministic rewrite steps (with rules).
The second implication is that variant narrowing goes much further than just giving priority to
rewrite steps by filtering out all narrowing steps that do not compute most general substitutions.
Namely, given two narrowing steps ¢ ~» o EB 1l and 7 ~ o EB 12 in a decomposition (Z,B,E)
such that o7 <p 0, we can safely disregard the narrowing step using 6, without losing com-
pleteness (c.f. [Escobar et al., 2012, Theorem 4]). The third implication is that we can pack
together, in the same equivalence class, all narrowing steps with equally general substitutions
and select just one of them as the class representative, thanks to convergence modulo B (see
[Escobar et al. 2012] for further details).

Example 2.6. There are nearly 150 unrestricted narrowing steps for the term X @Y X dY
in the equational theory of Example 2.1 (recall that the subterm X ®Y had 124 narrowing
steps but the variant narrowing strategy defined below computes only the six narrowing steps
of Example 2.1). For the term X &Y & X @Y, variant narrowing recognizes that the term is
not yet normalized, e.g.,, X Y & X &Y — 0 (by using Equation 4), and such a rewriting step is
more general than any other narrowing step from t. Thus, such an exceptionally large number of
narrowing steps can be disregarded by just choosing to rewrite the term. Note that there are two
other rewrite steps X BY X Y — Y &Y (by using Equation 4) and X @Y X BY - X BX
(by using Equation 4), and equational rewriting in Maude will choose the one that rewrites the
maximal @-term possible due to implicit coherence extensions for rewriting (see [Durdn and
Meseguer 2010; Viry 2002]).

On the other hand, one of the 124 unrestricted narrowing steps that are enabled for the more
general term X @Y is

X®Y ~ Uy @Uy®Us DUy using the B-unifier
u= {XHU@U]@UQ,YHU@U3@U4}
and Equation (5)

which is an AC-instance of the narrowing step using substitution ¢¢ shown above:

X®Y ~4, Z1DZy using ¢ ={X = UDZ,,Y — U DZ} and Equation (5)

Both narrowing steps are fired by Equation (5), but variant narrowing does discard the less
general narrowing step with |, keeping only the more general narrowing step with Q.

These optimizations are formalized as follows. First, a preorder between narrowing steps is
introduced that defines when a narrowing step is more general than another narrowing step.

Definition 2.6 (Preorder and equivalence of narrowing steps [Escobar et al. 2012]). Given a
decomposition (X,B,E), consider two narrowing steps ¢ :f ~» o EpStand 0 i1~ g ps).
Let V = Var(r). We write o) <p 0 if 01 < 02[V] and oy <p x if 01 <p 02[V] (i.e., Oy is

Preliminaries 27

strictly more general than 6, on V). We write o) ~p o if 01 ~p 0»[V], i.e. oq <p and
o =p 0.

The relation o ~p ap between narrowing steps defines a set of equivalence classes of
narrowing steps. In what follows, we will be interested in choosing a unique representative
o € [o]~, in each equivalence class of narrowing steps from 7. Therefore, o will always denote
the chosen unique representative ¢ € [0]~, that is minimal w.r.t. the order <p.

The relation <p provides an improvement on narrowing executions in two ways. First,
narrowing steps with more general computed substitutions will be selected instead of narrowing
steps with more specific computed substitutions. As a particular case, when both a rewriting step
and a narrowing step are available, the rewriting step will always be chosen. Second, the relation
~p provides a further optimization, since just one narrowing (or rewriting) step is chosen for
each equivalence class, which further reduces the width of the narrowing tree.

The described strategy is formalized by the notion of variant narrowing.

Definition 2.7 (Variant Narrowing [Escobar et al. 2012]). Given a decomposition (Z,B,E) and
anarrowing step o : 1~ z p t', a is a variant narrowing step if it satisfies: (i) O lvar(r) is (E, B)-
irreducible and (ii) « is the chosen unique representative of its ~g-equivalence class.

Following the notation of [Escobar et al. 2012], a variant narrowing step from ¢ to ¢’ in

(Z,B, E) with substitution & is denoted as 7 ~» cEpt:

2.6 The folding variant narrowing strategy

The variant narrowing strategy defined above is a strategy in the sense of Definition 2.3, i.e., it
always returns a subset of the narrowing steps that are available for each term. Note, however,
that it has no memory of previous steps —just the input term to be narrowed— hence, it incurs
no memory overhead. More sophisticated strategies can be developed by introducing some
sort of memory that can avoid the repeated generation of useless or unnecessary computation
steps. This is the case of the folding narrowing strategy of [Escobar et al. 2012], which, when
combined with the variant narrowing strategy, provides the folding variant narrowing strategy
which is complete for variant generation of a term and it terminates when the input term has a
finite set of most general variants.

In Definition 2.8 below, we introduce a folding narrowing relation on term variants. Fold-
ing narrowing allows the deployed variant narrowing tree to be seen as a graph, where some
leaves are connected to other nodes by implicit “fold” arrows. This definition normalizes each
computed variant, which is not performed in the original definition of [Escobar et al. 2012].
Note that we easily extend the variant narrowing strategy to variants, i.e., (¢,6) ~ (',0)
iff 1 ~» t"and 6’ = 60.

c,EB
o.EB

Definition 2.8 (Folding Variant Narrowing Strategy). Let Z = (E,B,E") be a decomposition.
Given a X-term ¢, the frontier from I = (¢, id) is defined as

Frontier(I)o = (1 p,id),
Frontier(I)p4+1 = {(yiEB7 (po)lg p) | (B(z,p) € Frontier(I), : (z,p) ~4
(iﬂk <n,(w,t) € Frontier(I) : (w,
>0

25 0.PONA
T < (2P0},

28 Preliminaries

The folding variant narrowing strategy, denoted by VN 82, is defined as

VNG (t) ={o | a: IMI;,E",B ' ATk >0:(f,0) € Frontier((t,id))}
Example 2.7. Using the term X @Y, we get the following VN% steps in the equational theory
of Example 2.1, where all substitutions are normalized.
(i) (X®Y,id)~¢, (Z,¢1), using Equation (3) and substitution ¢, = {X — 0,Y — Z},
(ii)

(

(X@Y,id
(iii) (X DY, id) ~¢,

(

(

(

)
~¢, (Z,¢2), using Equation (3) and substitution ¢, = {X — Z,Y — 0},
Z,93), using Equation (5) and substitution ¢3 ={X — Z&aU,Y — U},
)

)~ (
)~y (
)~ g5 (
(iv) (X @Y,id) ~»¢, (Z,04), using Equation (5) and substitution ¢4 = {X — U,Y — ZS U},
(v) (X @Y, id) ~¢, (0,9¢s), using Equation (4) and substitution ¢s = {X — U,Y — U},

)~ g5 (

(vi) (X @®Y,id) ~g, (Z1 B Za,06), using Equation (5) and ¢ ={X — U SZ,,Y = U & Z>}.
Non-normalized narrowing steps such as
(X @Y,id) ~¢, (Z,¢7), using Equation (5) and ¢; = {X — U @ U,Y—Z}

are not in VNSz because they are all subsumed by a variant narrowing step that computes the
normalized version of the same substitution, e.g., (Z,91) <g (Z, ¢7).

For a decomposition (X, B, E), completeness of folding variant narrowing w.r.t. E ,B-normalized
substitutions is proved in [Escobar et al., 2012, Theorem 4].

Chapter 3

Inspecting Maude Variants with
GLINTS

The most recent version of Maude, version 2.7.1, provides quite sophisticated unification fea-
tures, including order-sorted equational unification for convergent theories modulo axioms such
as associativity, commutativity, and identity. Variant narrowing computations can be extremely
involved and are simply presented in text format by Maude, often being too heavy to be de-
bugged or even understood. In this chapter we present GLINTS, a graphical tool for exploring
variant narrowing computations in Maude that provides support for (i) determining whether
a given theory satisfies the finite variant property, (ii) thoroughly exploring variant narrowing
computations, (iii) automatic checking of node embedding and closedness modulo axioms, and
(iv) querying and inspecting selected parts of the variant trees.

First, we present an overview of Maude’s version 2.7.1, and how it implements the folding
variant narrowing strategy in Section 3.1. In Section 3.2 an overall description of GLINTS is
provided together with a leading example for describing GLINTS equational reasoning capa-
bilities based on variant narrowing. We explain the core functionality of GLINTS and extra
inspection features in Section 3.3. Finally, we provide a description of the tool implementation
together with some experiments that assess its performance in Section 3.4.

3.1 Overview

The most recent version of Maude, version 2.7.1 [Clavel et al. 2016], provides quite sophis-
ticated narrowing-based features, including order-sorted equational unification for convergent
theories modulo a set of commonly occurring axioms such as associativity, commutativity, and
identity (ACU). This novel equational unification relies on built-in generation of the set of vari-
ants of a term ¢ [Durdn et al. 2016]. Variants are computed in Maude by using the folding variant
narrowing strategy [Escobar et al. 2012], which adopts from tabled logic programming [Chen
and Warren 1996] the idea of memoizing calls encountered in a query evaluation (along with
their answers) in a set of tables so that, if the call is re-encountered, the information from the
table is reused instead of running the call again. This is useful in two ways: it prevents looping,
which may ensure termination under suitable conditions, and it filters out redundant derivations
to a reachable expression leading to better performance. When a convergent theory satisfies the
finite variant property (i.e., there is a finite number of most general variants for every term in

30 Inspecting Maude Variants with GLINTS

the theory), folding variant narrowing computes a minimal and complete set of most general
variants in a finite amount of time. Many theories of interest have the FVP, including theories
that give algebraic axiomatizations of cryptographic functions used in communication protocols,
where FVP is omnipresent.

Maude’s variant generation mechanism was originally designed as an aid for order-sorted
equational unification modulo axioms and related problems. It delivers the set of most general
variants of the given theory, but it does not allow the user to control the process in any way
nor does it provide the user with thorough information about the variant computation process.
Unfortunately, variant computations delivered by Maude using the folding variant narrowing
strategy can be extremely involved and are simply presented in text format, often being too
heavy to be debugged or even understood.

Recently, the definition and inspection of equational theories for which the variants are gen-
erated has become an interesting application on its own, which requires enhanced support for
exploring the variant narrowing computations. For example, [Yang et al. 2011] considers twenty
equational theories for protocol analysis in the protocol analyzer Maude-NPA. These equational
theories represent under- and over-approximations of the theory of homomorphic encryption
with different variant generation behaviors (see [Yang et al. 2011] for details). As another ex-
ample, [Meseguer 2018] considers distinct axiomatizations of several equational theories of in-
terest for Boolean satisfiability. Given the huge intricacy of variant computations, in both cases
the development of all these equational theories was painful when considering the time and ef-
fort required to analyze the different variant-based properties for the considered versions of the
theories. Often, even an ordinary developer who uses (variant) narrowing as a functional-logic
program execution mechanism needs deeper support than currently provided by Maude.

The GraphicaL Interactive Narrowing Tree Searcher, GLINTS, is an inspecting tool for
exploring variant computations in Maude and is publicly available from [GLINTS Website].
GLINTS does not only visualize the variants generated by Maude; it goes beyond that by show-
ing internal narrowing computations in full detail, including partially computed substitutions,
Ax-matching and equational normalization steps that are concealed within Maude’s variant nar-
rowing and equational rewriting algorithms. Exploration and visualization in GLINTS can be
either automatic or interactive, which allows following promising paths in the narrowing tree
without exploring irrelevant parts of it. This supports the design of efficient heuristics for some
applications. Also, the displayed view can be abstracted when its size requires it, to avoid clut-
tering the display with unneeded details. Important insights regarding the programs/theories
can be gained from controlling the narrowing space exploration. Does the theory have a finite
number of variants? How many variants are there? What do these variants look like and how
do they compare to each other modulo axioms? (For instance, is one of the nodes embedded or
structurally subsumed by one of its ancestors? Is the node closed or an equational instance of the
tree root or input expression?) What is the meta-level representation of a narrowing computation
trace? Moreover, it can also help uncover correctness bugs or even unexpected low performance
(by showing which patterns have been executed more often or dominate the execution), which
might otherwise be very difficult to identify. As far as we know, this is the first graphical tool in
the literature for visual inspection of variant narrowing computations modulo axioms.

In the following section, we show how proving that a theory has the FVP is much easier and
fruitful by using GLINTS. Actually, we might even know that the FVP is not fulfilled and yet be
interested in exploring the variant narrowing computation space of a number of terms in order
to gain insights on how to modify the theory so that the FVP holds.

Inspecting Maude Variants with GLINTS 31

3.2 Folding variant narrowing trees in GLINTS: a running example

Let us consider again the equational specification for the exclusive-or theory above. This theory
has the FVP since only seven most general variants exist for the symbol _*_. However, one
might be interested to grasp why this specification fulfills the FVP, whereas slightly modified
specifications of the exclusive-or theory are known to fail.

Example 3.1. Assume that we test the FVP after replacing the variable declaration X : [NatSet]
of the original specification with X :Nat:

fmod EXCLUSIVE-OR-NOFVP is
sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .
op mt : -> NatSet .
op _*_ : NatSet NatSet -> NatSet [assoc comm]
var X : Nat . var Z : [NatSet]

eq [idem] : X *x X =mt [variant]

eq [idem-Coh] : X * X * Z = Z [variant]

eq [id] : X *mt =X [variant]
endfm

The variant generation process in Figure 3.1 is stopped after computing 43 variants for symbol
* due to timeout, hence the result of the FVP test is uncertain yet this theory is known not
to satisfy the FVP. One could investigate why this simple modification destroys FVP by inspect-
ing the folding variant narrowing tree for the expression X: [NatSet] * Y:[NatSet] shown in
Figure 3.2.

GLINTS can generate the folding variant narrowing tree of a given term in three ways:
(i) stepwisely, by (manually) selecting a down triangle symbol ¥ that is shown below each nar-
rowable node of the tree (see Figure 3.2); (ii) automatically until a fixed depth bound is reached;
or (iii) automatically by using the more sophisticated control mechanism called (equational)
homeomorphic embedding that is commonly used to ensure termination of unfolding-based pro-
gram transformation and other symbolic methods [Alpuente et al. 2017a; Leuschel 2002]. In-
formally, a term ¢’ embeds! another term ¢, in symbols ¢ < ¢, if ¢ (or a term that is equal to ¢
modulo Ax) can be obtained from ¢’ by deleting some symbols of #'; e.g., s (s (X+Y) * (s (X)+Y))
embeds s (Y+(X+Y)), assuming commutativity of the _*_ symbol. Nodes in the folding variant
narrowing tree that embed a previous node in the same branch of the tree are highlighted in
green and are decorated with symbol < below the node, as shown in Figure 3.2 (by clicking on
the symbol, its closest embedded ancestor gets also highlighted).

In Figure 3.2, note that we have interactively produced variants up to Vj¢ and could con-
tinue generating variants indefinitely whereas the folding variant narrowing tree for the original
EXCLUSIVE-OR theory stops at node Vs. Also note that some potential narrowing steps stem-
ming from the nodes of Figure 3.2 are not produced by the folding variant narrowing strategy
as it avoids expanding nodes that are subsumed by previous ones. For instance, for node Vi,
folding variant narrowing does not compute any children nodes equivalent to children V, and V3

I'The order-sorted extension of homeomorphic embedding modulo equational axioms, such as associativity, com-
mutativity, and identity that we use for Maude can be found in [Alpuente et al. 2017a].

32 Inspecting Maude Variants with GLINTS

Finite Variant Property Test

Operator Finite number of variants Total of variants See variants
op 0 : -> Nat . true 1 o
op _*_ : NatSet NatSet -> NatSet [assoc comm] . unknown 43 Fel
op mt : -> NatSet . true 1 e
op s : Nat -> Nat . true 1 0

Result of the FVP Test: Stop Restart

FIGURE 3.1: The FVP test for the modified non-FVP exclusive-or theory.

X:[NatsSet] * Y:[Natset]

' &~
'
, [ren]
[#1:[Natset] * #2:[Natset]]

A%
0 | rey
\L [idem] \l/ [id] J/ [id] \L [idem-Coh] \J, [idem-Coh] \L [idem-Coh]
mt $1:Nat $1:Nat [%2:[Nat5et] * $3:[NatSet] $2:[NatSet] v %2:[NatSet]
A% \% \% \%
\'Z1 2 3 4 | ad a 5 6
\L [idem] \J/ [idem-Coh] \L [idem-Coh] \|/ [idem-Coh]
mt [#3:[NatSet] * #4:[NatSet]] #3:[NatSet] #3:[NatSet]
4 Vg Iv Vg Vio

FIGURE 3.2: Inspecting variant computations of the modified non-FVP exclusive-or theory.

Variant V, Variant Vg
$2:[NatSet] * %3:[NatSet] #3:[NatSet] * #4:[NatSet]
Equation applied Equation applied
eq [idem-Coh] : X:Nat * X:Nat * Z:[NatSet] = Z:[NatSet] [variant] . eq [idem-Coh] : X:Nat * X:Nat * Z:[NatSet] = Z:[NatSet] [variant] .
Equational unifier Equational unifier
lhs substitution input term substitution lhs substitution input term substitution
{X:Nat ~ %1:Nat, Z:[NatSet] ({#l:[NatSet] ~ %1:Nat * %2: {%1:Nat = #l:Nat, %2:
{X:Nat +— #2:Nat, Z:[NatSet]
= %$2:[NatSet] * %3: [NatSet], #2:[NatSet] ~ #3: [Natset] * #4 [NatSet] = #2:Nat * #3:
[nd H a e H
NatSet %l:Nat * %3:[NatSet .
[1} [1} [NatSet]} [NatSet], %3:[NatSet] =
#2:Nat * #4:[NatSet]}
Computed variant substitution Computed variant substitution
{X:[NatSet] ~ %1l:Nat * %2:[NatSet], Y:[NatSet] =~ %1l:Nat {X:[NatSet] = #1l:Nat * #2:Nat * #3:[NatSet], Y:[NatSet]

* %3:[NatSet]} = #l:Nat * #2:Nat * #4:[NatSet]}

FIGURE 3.3: Comparison of nodes V, and V3.

of node Vy. However, the theory EXCLUSIVE-OR-NOFVP does not have the FVP because nodes
V7,Vs, Vo, Vo are not subsumed by their counterpart nodes Vi, Vu, Vs, Vg, respectively, whereas
they are subsumed for the theory EXCLUSIVE-OR, yielding the seven variants Vy, ..., V.

The fact that GLINTS automatically detects that node Vj in Figure 3.2 is trivially embedded
into node V4, and that Vy is embedded into node Vg (actually they are all equal modulo variable
renaming), warns about potentially infinite narrowing computations stemming from Vj (it is
said that < whistles [Leuschel 2002]). However, note that node Vg is not a variant of V4 (nor
Vo). By comparing nodes V,4 and Vg (enabled by pressing Compare nodes in the top-right menu),
we obtain the information of Figure 3.3, which reveals that, even though V, and V3 are equal
modulo renaming, the computed variant substitutions are different.

After considering a negative example where GLINTS could help you to understand when and
why the finite variant property of a theory can be lost after some changes, let us now analyze a
positive example where an equational specification can satisfy the FVP after some changes.

Example 3.2. If we make the original specification and make the _*_ symbol be associative,
commutative, and with identity empty set element mt as shown below, then the theory does have

Inspecting Maude Variants with GLINTS 33

Finite Variant Property Test

Operator

Finite number of variants Total of variants See variants
: -> Nat . .

op 0 a true Computed variants for the operator: _*__
op _*_: NatSet NatSet -> NatSet [assoc comm id: mt] . true N Variant
op _*_ : NeNatSet NatSet -> NeNatSet [assoc comm id: mt] . tyrye Term:
op mt : -> NatSet true 1 #1l:NatSet * #2:NatSet
op s : Nat —> Nat Substitution:

X0:NatSet ~ #l:NatSet,

X1:NatSet #2:NatSet
Result of FVP Test: v/ . @ - a

erm:

%2:NatSet * %3:NatSet
Substitution:

X0:NatSet ~ %1:NeNatSet * %2:NatSet,
X1:NatSet —» %1:NeNatSet * %3:NatSet

FIGURE 3.4: The FVP test for the newly modified exclusive-or theory with true verdict and
variants for _*_.

FVP. This is shown in Figure 3.4; the list of computed variants for the operator _*_ symbol is
also shown, which has been retrieved by simply clicking on the corresponding 9 symbol of the
right column.

fmod EXCLUSIVE-OR-ACU is
sorts Nat NeNatSet NatSet
subsorts Nat < NeNatSet < NatSet
op 0 : -> Nat
op s : Nat -> Nat
op mt : -> NatSet
op _*_ : NatSet NatSet -> NatSet [assoc comm id: mt]
op _*_ : NeNatSet NatSet -> NeNatSet [assoc comm id: mt]
var X : NeNatSet
var Z : [NatSet]
eq [idem-Coh] : X * X * Z = Z [variant]
endfm

Note that this new specification relies on a subsort relation between sets of natural numbers
(sort NatSet) and non-empty sets of natural numbers (sort NeNatSet), and it is simpler than
the previous one because only one equation is needed.

If variable X were given the sort Nat instead of NeNatSet, the mutated theory would not
satisfy the FVP, as the reader could easily verify in GLINTS.

Folding variant narrowing trees can also be checked in GLINTS for the (equational) closed-
ness property, which naturally extends to order-sorted equational theories (being executed by
folding variant narrowing) the standard notion of closedness’ of program calls that is used in
the partial deduction (PD) of logic programs, meaning that the call is an instance of one of the
specialized expressions. GLINTS implements the equational closedness check for the nodes of
the deployed folding variant narrowing tree w.r.t. the root of the tree; this transfers to our setting
the idea of regularity of a symbolic computation (in the terminology of [Alpuente et al. 1998b;
Pettorossi and Proietti 1996]).

2This notion was generalized to the narrowing-driven partial evaluation of functional-logic programs that are
modeled as (unsorted) term rewriting systems in [Alpuente et al. 1997b, 1998a].

34 Inspecting Maude Variants with GLINTS

It is interesting to note that the notion of variant is closely related to the (functional-logic) no-
tion of resultant that is used in unfolding-based symbolic transformation techniques that rely on
(some form of) narrowing, such as the narrowing-driven partial evaluator for TRSs of [Alpuente
et al. 1998a] and the partial evaluator Victoria for Maude equational theories of [Alpuente et al.
2017a], which is based on folding variant narrowing: given a narrowing tree for the term ¢ in the
equational theory &, for each (root—to—leaf) narrowing derivation ¢ ~+ s in the tree, specialized
(oriented) equations ro = s (also called resultants) can be extracted from the tree by piecing
together the last term s of the narrowing derivation with the corresponding instance to of the
initial term 7. Similarly to PD, in the partial evaluator of [Alpuente et al. 2017a], equational
closedness is the key property to ensure that, given a set Q of input expressions, the set resul-
tants that can be extracted from a set of folding variant narrowing trees built in & for the terms
of O (each one as explained above) form a complete description that correctly specializes the
original theory & to the considered set Q. In other words, all calls that may occur at run-time
when any instance (modulo Ax) of a term of Q is executed in the specialized theory .¥ are cov-
ered by . (i.e., folding variant narrowing computes the same solutions in .% as in the original
theory &). This process is being efficiently implemented in Victoria thanks to the folding variant
narrowing machinery developed in this work for GLINTS.

Similarly to the equational embedding test, the equational axioms and the order-sortedness
information are both considered in the equational closedness test that is implemented in GLINTS.
The tool checks this property automatically at any node in which the homeomorphic embedding
whistles, and also when a node is interactively selected. It is signaled by an extra symbol & be-
low the node (except for unnarrowable leaves, which are always trivially closed and are simply
highlighted in orange). In Figure 3.2 all the nodes are equationally closed; actually, they are
either unnarrowable or a syntactic instance of the tree root.

3.3 GLINTS at a glimpse

In this section, the main features of the graphical explorer GLINTS are outlined. Once a Maude
module (or sequence of modules) has been input, the initial GLINTS panel allows: 1) the folding
variant narrowing space to be explored for a given term; and 2) the finite variant property to be
checked (as explained in Section 3.2).

Running the graphical explorer and executing the corresponding textual narrowing com-
mands of Maude is essentially the same regarding the processes that are conducted in the back-
ground (i.e., to some extent, the narrowing tree panel can be interpreted as the visual corre-
spondent of the show-search-graph command from the textual narrower). However, there is a
dramatic difference in the tool output and in the thoroughness of the reasoning support provided
by GLINTS.

3.3.1 Interactive tree unfolding and querying

Given an input term, the graphical narrowing tree panel initially contains two nodes: the input
node and its normalized version w.r.t. the theory. Additions to the graph will be dictated by the
user’s exploration actions, which can be as follows.

Inspecting Maude Variants with GLINTS 35

[X:[NatSet] * Y:[Natsat]]
. A
v [ren]
[#l:[NatSet] * #2:[NatSet]]
Vo
A
\L[id] W [idem-Coh]
$1:Nat [%2:[Natset] * %3:[NatSet]]
Vs Va ad a
[idem-Coh] \l/ [idem-Coh]
I#3:[Nat5et] * #4:[Nat5etl] #3: [NatSet]
Vg Vg
< 4

FIGURE 3.5: Result of the query “_ * ?” for the VNT of the non-FVP exclusive-or theory.

Interactive exploration

GLINTS offers a graphical representation of the variant narrowing trees, including at each step
(1) the narrowing redex, (ii) the applied variant equation, (iii) the equational unifier, and (iv) the
computed variant substitution. GLINTS allows the narrowing tree to be easily navigated while
providing thorough information regarding every node and edge in the tree. This is particular
useful for a rich language such as Maude that supports sorts, subsorts and overloading, and
equational rewriting modulo axioms such as ACU, where intuition is easily lost.

Each variant node is identified with a tag V;,, where n is the variant number assigned by
Maude. When a node is selected (by a simple click), it is shaded in yellow so that the user can be
constantly aware of the current selection. Node selection is useful for centering the node inside
the tree layout and is also used for checking the equational closedness property. Fully detailed
information about each variant can be displayed by double-clicking on the corresponding node.
Multiple variant information windows can be opened without updating the current tree.

As is common in visualization tools, the search trees can be scaled and subtrees can be
hidden. This is done by pressing the A symbol that is displayed below each node. By doing so,
the entire (sub-)tree (except for its root) is removed from the displayed view of the tree. Taking
into account that the size of the tree can become considerably large, zooming capabilities are
also enabled.

Tree querying

A querying box is displayed at the bottom of the narrowing tree panel that allows information
of interest to be easily searched in huge narrowing trees by undertaking a query that specifies
a template for the search. A query is a filtering pattern with wildcards that define irrelevant
symbols by means of the underscore character (_) and define relevant symbols by means of the
question mark character (7). For instance, asking the query “_ * ?” in the tree of Figure 3.2
highlights expressions #2: [NatSet], %3: [NatSet], and #4: [NatSet] in nodes Vj, V4, and Vs,
respectively, as shown in Figure 3.5.

36 Inspecting Maude Variants with GLINTS

3.3.2 Automated tree unfolding, enriched views and exporting

By using GLINTS, variant generation can be easily automated in multiple ways. Specifically, the
user can ask the searcher to do one of the following: (i) deliver the first n variants of the consid-
ered initial term, (ii) compute the entire narrowing tree up to a given depth, or (iii) compute the
entire narrowing tree until the embedding whistles along all branches. In all cases, exploration
of the tree stops whenever the corresponding termination criterion is met, namely (i) no more
variants exist, (ii) bound is reached, (iii) embedding whistles, or (iv) timeout is surpassed.

By clicking the = symbol that appears in the right corner of the window, a command menu
is displayed that automates these capabilities by means of the following accessible buttons.

Depth-k (resp. N-variants) expansion

It unfolds the tree automatically down to its depth-k frontier (resp. until the n-th variant has been
computed). An input box allows one to fix the desired upper bound in the depth of the tree or in
the number of solutions.

Embedding-based expansion

It automatically unfolds the variant narrowing tree by relying on equational homeomorphic em-
bedding to ensuring finiteness. Roughly speaking, whenever a new node 7,1 is to be added to a
branch, GLINTS checks whether 7,1 | embeds any of the terms already in the sequence. If that is
the case, potential non-termination is detected and the computation is stopped. Otherwise, #,,+|
is safely added to the branch and the computation proceeds.

The key to successfully debugging complex applications is to restrict the displayed informa-
tion to sensitive parts of the tree. In GLINTS it is possible to tune the information displayed by
the explorer by using enriched views and reporting facilities as follows.

Enriched views

GLINTS supports two distinct views, namely the standard view and the instrumented view. The
standard view (which is the default mode of GLINTS) focuses on the narrowing steps, whereas
the instrumented view completes the picture with all the internal reduction steps that are per-
formed up to reaching the canonical form of each variant. That is, the instrumented view reaps
every single application of an equation, algebraic axiom, or built-in operation. This view is
enabled by pressing the button Show normalization. The options to show/hide the equation la-
bels and to show/hide the unifiers that enable each narrowing step of the tree (restricted to the
variables of the term, as shown in Figure 3.6) are also available by two corresponding buttons.

Comparing and exporting

Given the currently deployed narrowing tree, the complete list of computed variants can be
shown and exported by clicking the option Export variants. In order to easily discern the dif-
ferences between two variants, a Compare variants button is also provided that confronts two

Inspecting Maude Variants with GLINTS 37

[x: [NatSet] * Y:[NatSet]]
X A
:

\:,r[ren]

{X:[NatSet] > #l:[NatSet], Y:[NatSet] — #2:
[NatSet]}
[#1:[NatSet] * #2:[NatSet]]
Vo
‘ A
l/ [id] \L [idem-Coh]
{#1:[NatSet] — %1:[NatSet], #2:[NatSet] — mt} {#1:[NatSet] — %1:[NatSet] * %2:[NatSet], #2:
[NatSet] P %3:[NatSet] * %2:[NatSet]}
%1:[NatSet]
V3 [$3:[NatSet] * %1:[NatSet]

Vy

ady

FIGURE 3.6: Enriched view showing equational unifiers for the original exclusive-or theory
(fragment).

Maude
Theory

Input Term l Animation

| f

GLINTS Client

GLINTS :?
Core

FIGURE 3.7: Architecture of GLINTS.

variant nodes (selected by just two consecutive clicks) in a new window where they are dis-
played next to each other, one on the left half of the window and the other one on the right half.
GLINTS can export both the entire narrowing tree or any of its branches in two different for-
mats, namely as an object in JSON format and as a term in Maude’s meta-level representation,
both of which are suitable for automated processing. This allows other tools that use GLINTS
for narrowing execution to implement their own analysis on the trees delivered by GLINTS.
The meta-representation of terms can be visually displayed, which is particularly useful for the
analysis of object-oriented computations where object attributes can only be unambiguously
visualized in the meta-level (desugared) terms.

A starting guide that contains a complete description of all of the settings and detailed ses-
sions can be found at [GLINTS Quick Start Guide].

3.4 Implementation

In this section, we discuss some relevant implementation details of the variant explorer GLINTS.

38 Inspecting Maude Variants with GLINTS

3.4.1 Architecture of GLINTS

GLINTS has the classical architecture of a web application, which consists of two main com-
ponents (the front-end and the back-end), as depicted in Figure 3.7. The two components are
connected via a JSP-based layer that is implemented in Java (450 lines of Java source code). The
front-end (or presentation layer) consists of 3K lines of JavaScript, HTMLS5, and CSS source
code, and provides GLINTS with an intuitive Web user interface. The back-end (or core engine)
supports GLINTS services and consists of 200 function definitions (2K lines of Maude source
code).

3.4.2 Extending Maude’s variant meta-operations

One of the main challenges in the implementation of a trace-based Maude tool such as GLINTS
is to make explicit the concrete sequence of internal term transformations occurring in a specific
Maude computation, which is generally hidden and inaccessible within Maude’s rewriting and
narrowing machineries. For the case of variant narrowing computation traces, the basic informa-
tion that is necessary to visually deploy the variant narrowing trees can be essentially obtained
by invoking the metaGetVariant and metaGetIrredundantVariant meta-operations. That
is the only way to retrieve the precise information that makes the structure of the tree explicit.
Specifically, what Maude outputs is the following (in this order): (i) the computed variant term,
(ii) the computed variant substitution, (iii) the largest index n of any fresh variable appearing
in the solutions, (iv) the identifier of the parent variant, and (v) a Boolean flag that indicates
whether or not there are more variants in the current tree level.

However, for the sake of efficiency, other relevant information that is key for variant narrow-
ing debugging and understanding is not disclosed by Maude, either at the meta-level (as returned
by the metaGetVariant and metaGetIrredundantVariant operations themselves) or at the
source-level (as delivered in raw text format by the standard Maude interactive debugger, which
furthermore cannot be manipulated as a meta-level expression by Maude). To provide the user
with a deeper and more agile debugging experience, we have enriched the highly efficient de-
veloper version of Maude that we implemented in previous work, Mau-Dev?® [Alpuente et al.
2016; Mau-Dev Website], with two new meta-operations, namely metaGetVariantsExt and
metaGetIrredundantVariantExt that have been implemented in C++. By doing this, besides
piecing everything together and giving a graphical reconstruction of the variant narrowing tree,
GLINTS also distills the equations, axioms, and built-in operators applied in (simplification and)
narrowing steps, together with the equational unifier that enables each step.

Table 3.1 provides some figures regarding the execution of the new metaGetVariantExt
operation in comparison with the standard metaGetVariant operation. We have tested both
implementations on a 3.3GHz Intel Xeon E5-1660 with 64 GB of RAM by generating a number
of variants for a collection of Maude programs that are all available at the GLINTS website:
Exclusive-or, the classical specification of the Boolean XOR; Fibonacci, a Maude specification
that computes the Fibonacci sequence [Clavel et al. 2016]; Flip-graph, a variant of the classical
flip function for binary graphs (instead of trees) taken from [Alpuente et al. 2017a]; and Parser,
a generic parser for languages generated by simple, right regular grammars also from [Alpuente
et al. 2017a]. Specifically, for each Maude program, we have asked GLINTS to compute three
different numbers of variants, which takes from a few seconds to a few minutes to generate.

3Mau-Dev has been developed under the GPLv2 license (which is the one enforced by Maude) and is fully
compatible with Maude while preserving the efficiency of all standard (meta-level) operations and commands.

Inspecting Maude Variants with GLINTS 39

Number of metaGetVariant metaGetVariantExt

variants size (kB) time (s) size (kB) time (s)
40 7.37 2.49 12.34 2.48
Exclusive-or 45 8.81 24.82 14.42 24.56
50 10.37 302.18 16.62 299.29
40 520.23 3.51 1,417.26 3.59
Fibonacci 45 2,198.07 20.52 5,151.39 20.94
50 5,751.55 406.59 15,675.13 415.14
500 4,804.66 3.05 7,259.92 3.09
Flip-graph 1,000 19,520.91 30.33 29,387.01 30.93
2,000 80,372.41 360.29 120,769.01 361.54
2,500 1,961.51 3.91 3,067.46 3.92
Parser 5,000 5,027.82 16.88 7,238.53 17.37
10,000 13,178.03 81.64 17,598.87 81.99

TABLE 3.1: Execution results of the metaGetVariant and metaGetVariantExt operations.

We have measured the metaGetVariant invocations on a statically compiled version of the
alpha release of Maude (alpha 111a), whereas the metaGetVariantExt invocations have been
benchmarked on a Mau-Dev executable that is based on the same alpha version.

The two size columns correspond to the size (in kilobytes) of the generated narrowing tree
(up to the requested variant), whereas the two time columns show the average of five different
measures of the computation time (in seconds). As our experiments show, the incurred over-
heads w.r.t. the original meta-operation are almost negligible. Note that even for extremely huge
narrowing trees, the amount of data handled is much higher w.r.t. the original meta-operation
(with an average increasement factor of 1.8) yet the execution time is practically identical. Actu-
ally, some executions are even faster in the extended version (e.g., computing the fiftieth variant
of the exclusive-or example), which can be explained by the known side-effects of Maude’s
garbage collector and cache memory hits and misses. Further details and source code and ex-
periments can be found at [GLINTS Experiments].

Chapter 4

Order-sorted Homeomorphic
Embedding modulo Combinations of
Associativity and/or Commutativity
Axioms

The Homeomorphic Embedding relation has been amply used for defining termination criteria
of symbolic methods for program analysis, transformation, and verification. However, homeo-
morphic embedding has never been investigated in the context of order-sorted rewrite theories
that support symbolic execution methods modulo equational axioms. This chapter investigates
the generalization of the symbolic homeomorphic embedding relation to order—sorted rewrite
theories that may contain various combinations of associativity and/or commutativity axioms
for different binary operators. We introduce five different formulations of order-sorted home-
omorphic embedding modulo axioms and systematically measure their performance that we
implement in Maude. We propose an order-sorted, equational homeomorphic embedding for-
mulation ﬁ?smz that runs up to 6 orders of magnitude faster than the original definition of the
homeomorphic embedding modulo equational axioms <z in [Alpuente et al. 2017a]. For this
improvement in performance, we take advantage of Maude’s powerful capabilities such as the
efficiency of deterministic computations with equations versus non-deterministic computations
with rewriting rules, or the use of non-strict definitions of the Boolean operators versus more
speculative standard Boolean definitions [Clavel et al. 2007].

This chapter is organized as follows. Section 4.1 recalls the notion of pure homeomor-
phic embedding relation and summarizes our contributions. The pure (syntactic) homeomor-
phic embedding relation is formally described in Section 4.2. Section 4.3 recalls the (order-
sorted) homeomorphic equational embedding relation of [Alpuente et al. 2017a] that extends
the “syntactically simpler” homeomorphic embedding on nonground terms to the order-sorted
case modulo equational axioms. Section 4.4 provides two goal-driven formulations for equa-
tional homeomorphic embedding: first, a calculus for embeddability goals that directly handles
the algebraic axioms in the deduction system, and then a reachability-oriented characterization
that cuts down the search space by taking advantage of pattern matching modulo associativity
and commutativity axioms. Section 4.5 is concerned with an efficient meta-level formulation of
equational homeomorphic embedding that relies on the classical flattening transformation that
canonizes terms w.r.t. associativity and/or commutativity axioms (for instance, 1 + (3 +(240))
gets flattened to +(1,2,3)). This formulation is optimized by replacing the classical Boolean

42 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

operators by short-circuit, strategic versions of these operators. In Section 4.6, two new op-
timizations of the algorithm are defined that can achieve significant speedup by anticipating
failure, which is done by considering Maude’s total order on terms and the compatibility of
kinds for any possible instance of all subterms. In Section 4.7, we provide an experimental
performance evaluation of the proposed formulations showing that we can efficiently deal with
realistic embedding problems modulo axioms.

4.1 Overview

Homeomorphic Embedding is a control mechanism that is commonly used to ensure termination
of symbolic methods and program optimization techniques. Homeomorphic embedding is a
structural preorder relation under which a term ¢’ is greater than (i.e., it embeds) another term ¢
represented by ¢ </’ if ¢ can be obtained from ¢’ by deleting some symbols of #’. For instance,
s(0+5(X)) *s(X +Y) embeds s(X) *s(Y). The usefulness of homeomorphic embedding for
ensuring termination is given by the following well-known property of well-quasi-orderings:
given a finite signature X, for every infinite sequence of terms #,%,, ..., there exist i < j such that
t; 1t;. Therefore, if we iteratively compute a sequence #1,1,...,1,, we can guarantee finiteness
of the sequence by using the embedding as a whistle: whenever a new expression 7,1 is to be
added to the sequence, we first check whether ¢, ; embeds any of the expressions t;,i = 1,...,n
that are already in the sequence. If that is the case, the computation must be stopped because
the whistle () signals (potential) non-termination. Otherwise, #,; can be safely added to the
sequence and the computation proceeds.

Recently, an experimental open platform has been developed in [Garavel et al. 2018] that
allows the performance of functional and algebraic programming languages to be compared,
including CafeOBJ, Clean, Haskell, LNT, LOTOS, Maude, mCRL2, OCaml, Opal, Rascal,
Scala, SML, Stratego/XT, and Tom (see references in [Garavel et al. 2018]). In the top 5
of the more efficient tools, Maude ranks second after Haskell. This is remarkable for at least
two reasons: (i) Maude is not a compiled language but runs under an interpreter; (ii) Maude
has quite sophisticated features (subtype polymorphism, pattern matching modulo associativity,
commutativity and identity, reflection, strategies, objects, etc.) that have no equivalent in Haskell
or other functional languages.

In [Alpuente et al. 2017a], an extension of homeomorphic embedding modulo equational ax-
ioms was defined as a key component of Maude’s symbolic partial evaluator, Victoria, which is
based on (variant) narrowing [Escobar et al. 2012]. Unfortunately, the formulation in [Alpuente
et al. 2017a] was done with a concern for simplicity in mind and degrades the tool performance
because the proposed implementation of equational homeomorphic embedding did not scale
well to realistic problems. This was not unexpected since other equational problems (such as
equational matching, equational unification, or equational least general generalization) are typi-
cally much more costly than their corresponding “syntactic” counterparts and achieving efficient
implementations has required years of significant investigation effort. Furthermore, the equa-
tional homeomorphic embedding relation <p (modulo a set B of axioms) in [Alpuente et al.
2017a] did not consider types so that an embedding test such as X:Bool <p 0 + suc(N:Nat)
succeeds.

The equational homeomorphic embedding relation <Jp of [Alpuente et al. 2017a] was effi-
ciently implemented in [Alpuente et al. 2018]. The novel contributions presented in this chapter
are as follows:

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 43

1. A finer treatment of subtype hierarchies is provided that considers the connected compo-
nents of sorts so that two variables whose respective types (sorts) are not related in the
suptype hierarchy (e.g., Bool and Nat) are considered incomparable.

2. Extended definitions (and corresponding extended results) are formalized dealing with
sorts and subsorts in such a finer way.

3. Two novel optimizations are proposed that can achieve significant improvements in per-
formance. Each optimization is formulated as a pruning rule that anticipates failure by
considering Maude’s total order on terms and the compatibility of kinds for any possible
instance of all subterms.

4. A full treatment of all aspects is given, including more examples and detailed explanations
of the key notions, together with full formal proofs of all technical results.

5. The implementation and experimental section have been improved in two ways: (1) the
prototype implementation itself has been advanced with a new embedding test é’[;”ml
that implements the novel optimizations; and (2) new examples that benchmark these
optimizations with increasingly larger terms are provided. One important difference with
the smaller set of benchmarks in [Alpuente et al. 2018] is that much bigger terms can be

now handled by the tool.

4.2 Pure homeomorphic embedding

The pure (syntactic) homeomorphic embedding relation known from term algebra [Kruskal
1960] was introduced by Dershowitz for fixed-arity symbols in [Dershowitz 1979] and for
variable-arity symbols in [Dershowitz and Jouannaud 1990]. In the following, we consider only
fixed-arity symbols.

Definition 4.1 (Homeomorphic embedding, [Dershowitz 1979]). The homeomorphic embed-

ding relation < over %% is defined as follows:

Jie{l,...,n} : s 2y Vie{l,..,n} 1 s; 44
N : f(ll7"'7tn) f(sl7~-~7sn) : f(t17"'7tn)

with n > 0.

Roughly speaking, the left inference rule deletes subterms, while the right inference rule
deletes context. We write s < ¢ if s is derivable from ¢ using the above rules. When s <¢, we say
that s is (syntactically) embedded in ¢t (or t syntactically embeds s). Note that = C «, where =
denotes syntactic identity.

A well-quasi-ordering (wqo) = is a transitive and reflexive binary relation such that, for any
infinite sequence of terms #;,t,,... with a finite number of operators, there exist i, j with i < j
and 1; < tj.

Theorem 4.2 (Tree Theorem, [Kruskal 1960]). The embedding relation 2 is a well-quasi-
ordering on F.

44 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

4.2.1 Mechanizing the Homeomorphic Embedding

The derivability relation given by 7 < ¢’ is mechanized in [Middeldorp and Gramlich 1995] by
introducing a term rewriting system Emb(X) that is used to rewrite 7’ to 1, i.e., ¢’ —>2mb(2) t.
Similarly to Definition 4.1, order-sorted signatures are not considered.

Definition 4.3 (Rewrite theory for <, [Middeldorp and Gramlich 1995]). Let ¥ be an unsorted
signature. Homeomorphic embedding can be decided by a rewrite theory Emb(¥) = (X,0,R)
such that R consists of rewrite rules of the form

JOxn,) = X

where f € ¥ is a function symbol of arity n > 1 and i € {1,--- ,n}.

Lemma 4.4 ([Middeldorp and Gramlich 1995]). Given an unsorted signature ¥. and two terms
t1,tr € F5, we have t <t iff t’ —>2mb(z) .

Definition 4.1 can be applied to terms of Zx(Z") by simply regarding the variables in terms
as constants. However, this definition cannot be used when existentially quantified variables
are considered (as in logic programming or symbolic execution). The following definition from
[Leuschel 1998b; Sgrensen and Gliick 1995] adapts the pure (syntactic) homeomorphic embed-
ding from [Dershowitz and Jouannaud 1990] by adding a simple treatment of logical variables
where all variables are treated as if they were identical, which is enough for many symbolic
methods such as the partial evaluation of [Alpuente et al. 2017a]. Some extensions of < dealing
with varyadic symbols and infinite signatures are investigated in [Leuschel 2002].

4.2.2 Symbolic Homeomorphic Embedding

The homeomorphic embedding is commonly applied not only to ground terms but also to terms
with variables. The extension to variables is given by [Leuschel 1998b].

Definition 4.5 (Symbolic homeomorphic embedding, [Leuschel 1998b]). The extended home-
omorphic embedding relation < over .75 (.2") is defined in Figure 4.1, where the Variable infer-

Variable Diving Coupling
o Jie{l,...,n} : sy vie{l,...,n} : 5,44
Xﬂy Sﬂf(tlv"'atﬂ) f(sl7"'75}1)3.](-([17"'71")

FIGURE 4.1: Symbolic homeomorphic embedding

ence rule allows dealing with free (unsorted) variables in terms, while the Diving and Coupling
inference rules are similar to the pure (syntactic) homeomorphic embedding definition.

For instance, given variables X and Y, X < g(Y), g(X) < f(g(Y)), and f(X) < f(g(X)) but
g(0) 4 g(X). Note that the embedding relation < does not subsume the relative generality
ordering <, e.g., f(X) 4 f(g(0)) even if f(g(0)) is an instance of f(X). Also note that the
embedding relation < is not closed under instantiation, e.g., the instance of g(X) < f(g(Y))
with substitution {X — 0,Y +— 0} holds, in symbols g(0) < f(g(0)), whereas the instance of
g(X) < f(g(Y)) with substitution {X +— g(Z)} does not hold, in symbols g(g(Z)) € f(g(Y)).

Theorem 4.6 ([Leuschel 1998b; Sgrensen and Gliick 1995]). The embedding relation < is a
well-quasi-ordering on Fx(Z").

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 45

4.2.3 Adding sorts and subsorts

When we are interested in adding sorts and subsorts, the extension of the homeomorphic embed-
ding to the order-sorted setting is not completely trivial. Let us provide a motivating example.

8

a—{4)
«—(8)

FIGURE 4.2: Signature graph of Example 4.1

Example 4.1. Consider the order-sorted signature depicted in Figure 4.2 that defines two sorts
A and B, with B < A. Also, consider an overloaded constant a for sorts A and B, and two
operators g : A — A and h : B — B. Strictly speaking, the no ad-hoc overloading requirement
would rule out ad-hoc overloaded constants such as a. However, this requirement can be relaxed
in a natural and easy way by allowing constants to be qualified by their sort. For instance, in
Maude this is done by enclosing them in parentheses followed by a dot and the sort name. For
example, we can disambiguate the term a by writing either (a).A or (a).B.

In an unsorted setting, where sorts are simply disregarded, both the embedding goals a <
g(a) and a < h(a) hold.

In a many-sorted setting, where sorts are considered but subsort hierarchies are disregarded,
it is immediate to extend the unsorted homeomorphic embedding relation 2 of Definition 4.1 to
the many-sorted case. On the one hand, two constants (a).A and (a).B that belong to different
sorts are distinct and hence incomparable by embedding. On the other hand, since we assume
there is no ad-hoc overloading (except for constants), no extra check must be added to the
Coupling rule because no two symbols f (of different sorts) exist, except for constants, while the
Diving rule should be applied regardless of sorts. Thus, by abusing notation, (a).A ¥ (a).B and
(a).B ¥ (a).A, and hence (a).A < g((a).A) and (a).B <h((a).B), whereas (a).B ¥g((a).A) and
(a).A *h((a).B).

Extending < to the order-sorted case is also easy in kind-complete signatures, where each
constant has a kind (and so does any ground term). Therefore, by lifting all symbol declaration to
the kind level, two constants (c).s1 and (c).sy are only incomparable if the kinds [s\] and [s2] are
different. By abusing notation, this means that all of the four embedding goals (a).A 2 g((a).A),
(a).B2h((a).B), (a).B2g((a).A), and (a).A 2 h((a).B) hold (because [A] = [B]), whereas none
of them would hold if we substitute A (resp. B) by a new sort C such that [A] # [C] (resp.
B £ [C])

Let us now consider the problem of extending Definition 4.5 to the order-sorted case, which
requires to reason about variables. Fortunately, in kind-complete signatures every variable has
a kind (and so does any term). Following Maude syntax, let us qualify any variable X by
appending its name with a semicolon followed by the sort name, e.g. X:A. Then, given sorts
A, B, and C, with B < A, variables X:A and X:B are in the same kind, [A], whereas X:A and X:C
are in different kinds, [A] and [C], respectively.

46 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

Let us define the order-sorted symbolic homeomorphic embedding relation as follows.

Definition 4.7 (Order-sorted symbolic homeomorphic embedding). The order-sorted symbolic
homeomorphic embedding relation < over (.2 is defined in Figure 4.3, where the Variable
inference rule allows dealing with free order-sorted variables in terms while the Diving and
Coupling inference rules are similar to Definition 4.5.

Variable Diving Coupling
[x'\f[y] Jic{l,...n} : sy vie{l,..n} : 5; 4t
xﬁy Sﬁf(l],..,,l‘n) f(S],...,Sn)éf(l],...,ln)

FIGURE 4.3: Order-sorted extended homeomorphic embedding

It is worth noting that, while it seems natural to consider that X:A < Y:B for the case when
A is a subsort of B (which holds because [A] = [B], hence [x] = [y]), the practical usefulness of
having X:A < Y:B is less evident for the case when B is a subsort of A (which holds for the very
same reason). However, consider an overloaded operator g, with g: A — A and g : B — B, with
A > B. In a context of symbolic execution where logical variables are considered, it could be the
case of having a computation sequence (t1,...t;,...,t}, tjt1...), with ; = g(X:A), t; = g(Y:B),
and 111 = g(X:A), where t;;; derives from 7; by a symbolic execution step (e.g., think of a
narrowing step from g(¥:B) by using a program rule g(g(x:A)) — g(x:A)). Hence, the fact that
g(X:A)<g(X:B) allows the risk of non-termination to be detected at ¢;, i.e., before generating
Liv1-
Example 4.2. Consider the order-sorted signature depicted in Figure 4.4 which defines three
sorts A, B, and C, with B < A. Also, consider a constant a of sort A, an operator f : A — B, an
operator d : B — A, the (subsort) overloaded operator g for sorts A and B, with g : A — A and
g : B — B, a constant c of sort C, and an operator h : C — A. Note that there are two different
kinds [A] and [C], where [A] contains sorts A and B,

FIGURE 4.4: Signature graph of Example 4.2

Now consider three variables X:A, Y:B, and Z:C. By applying first the coupling rule and
then the diving rule, the embedding goal g(Y)<g(f(X)) holds because variables X and Y are in
the same kind. However, g(Y)<g(h(Z)) (resp. g(X)<g(h(Z))) does not hold because Y (resp.
X) and Z are in different kinds.

Note that the embedding goal g(X)<g(Y) does also hold even though g(X) is of sort A, g(Y)
is of sort B, and B < A. Similarly, the embedding goal Y <d(X) does also hold even if the term
d(X) is not well-typed but admissible in Maude'; it belongs to the kind [A] but not to sorts A and

IThis is because we are assuming that, as in Maude, each signature is extended to a kind-complete one (recall
Chapter 2).

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 47

B. Actually, d(X) has well-typed instances such as d(Y'), with the sort-decreasing substitution
{X — Y}. Furthermore, the embedding goal Z<d(X) does not hold, which is consistent with
the fact that X cannot be instantiated with a term of sort C.

Similarly to <, it is immediate to see that the order-sorted symbolic embedding relation <
is a well-quasi-ordering on the set of terms 75 (.2").

Theorem 4.8. The embedding relation < is a well-quasi-ordering on Fx(Z").

Proof. The proof is similar to [Leuschel 1997]. We need the following concept from [Der-
showitz and Jouannaud 1990] that we adapt to fixed-arity symbols. Let < be a relation on a set
. of symbols. Then the embedding extension of < is a relation riemb on terms, constructed
(only) from the symbols in .#, which is inductively defined as follows:

< . .
Lot ~emp f(t1,.00sty) if £ Somp 1i fOr some i

2. f(S15y8n) ~emp 8(t1,. . b)) if f N gand Vie {1,...,n} 15 Semp ti.
We define the relation ~ on the set .% = (ZU Z") of symbols as the least relation satisfying:

1. x~yifxe 2,ye 2, and [x] = [y];

2. fRFiffeX.

This relation is a wqo on . because X is finite. Therefore, by the Higman-Kruskal’s theorem
(see e.g., [Dershowitz and Jouannaud 1990]), its embedding extension to terms, 56,,,;,, (which is
by definition identical to <) is a wqo on & (2). O

4.2.4 Getting rid of variables

In the following, we show how it is possible to reformulate the homeomorphic embedding calcu-
lus for order-sorted terms with variables without the hassle of dealing with variables explicitly.

We need the following notation. Given the set %" = {[s| | s € S} of all kinds in the equational
theory (X, E), for each kind k € .#" we consider a fresh constant symbol . Let IT be the set
of all such symbols, I1,» = {tx | k € #}. Given an order-sorted signature ¥, we define X as
the extension of ¥ with the constants in IT 4. For a term t € % (%), let t* € Z: denote the
(ground) instance of ¢ where every variable x of sort s is replaced by the corresponding f;, with
k = [s] being the kind of sort s.

The following result extends [Alpuente et al., 2018, Lemma 1] to the order-sorted case.

Lemma 4.9 (Variable-less characterization of <I). Given two terms t1,t» € F5(Z"), we have
1< iff £ <6 where 4,15 € T,

Proof. Immediate by structural induction. The only relevant case is the base case, i.e., when the

Variable inference rule @%ﬁ] is applied. In the grounded homeomorphic embedding problems
i

t% <1, and t% < tg, the corresponding case is ff; « f; for the same kind &, and the result follows
directly. O

48 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

By abuse of notation, from now on, we will indistinctly consider either terms with variables
or ground terms with corresponding fi; symbols, whenever one formulation is simpler than the
other.

Example 4.3. Consider again the order-sorted signature of Example 4.2. Also consider the
embedding goals g(Y)<g(f(X)) and g(Y)<g(h(Z)), which were respectively proved to hold
(because variables X and Y are in the same kind, i.e., [X| = [Y| = [A]) and not to hold (because
Y and Z are in different kinds). For the corresponding grounded goals, it is immediate to see

that g(fja)) 2 8(f(f}a))) holds whereas g(f4)) 2 g(h(H|c))) does not hold.

4.3 Homeomorphic embedding modulo equational axioms

Let us extend the order-sorted homeomorphic embedding relation on nonground terms < to the
case when we compare terms modulo a set of axioms B.

In [Alpuente et al. 2017a], an equational extension of the “syntactically simpler” homeo-
morphic embedding relation < on nonground terms, called the B—embedding relation <p (or
embedding modulo B), was defined as follows: <zp= (ri"B).(gl)) (@3), where v "= g/ iff there is
a renaming substitution ¢ for v/ such that v =g v'6. We define the corresponding order-sorted

extension <g of <y in the natural way.

Definition 4.10 ((Order-sorted) homeomorphic embedding modulo B). The order-sorted B—
embedding relation <p is (=3).(J).(=Z5p).

Example 4.4. Consider the following rewrite theory (written in Maude syntax) that defines the
signature of natural numbers. The defined sort hierarchy has top sort Nat and (disjoint) subsorts
Zero and NzNat (for non-zero natural numbers). The sort Nat is generated from the constant O
(of sort Zero) and the successor operator suc® (of sort NzNat). We also define the associative
and commutative natural addition operator symbol _+_ for sort Nat but add two extra subsort-
overloaded definitions.

fmod NAT is
sorts Zero NzNat Nat .
subsorts Zero NzNat < Nat .

op 0 : -> Zero .

op suc : Nat -> NzNat .

op _t+_ : Zero Zero -> Zero [assoc comm]

op _+_ : NzNat Zero -> NzNat [assoc comm]

op _+_ : Nat Nat -> Nat [assoc comm]
endfm

Then, we have 1 + X:Nat <g Y:Nat + (1 + 2) because Y:Nat + (1 + 2) is equal to
1 + (2 + Y:Nat) modulo the associativity and commutativity of _+_, and 1 + X:Nat is home-
omorphically embedded into 1 + (2 + Y:Nat). Similarly, 1 + X:Zero <p Y:Nat + (1 + 2)
and 1 + X:NzNat < Y:Nat + (1 + 2) hold. Note that suc(X:Nat) <p suc(Y:Zero) holds

despite the fact that Zero < Nat; this is a deliberate decision as explained in Example 4.2.

ZFor simplicity, we represent natural numbers in normal decimal notation; e.g., 2 for suc (suc((0)) .

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 49

The following result extends Kruskal’s Tree Theorem for the equational theories B consid-
ered in this thesis, which we restrict to class—finite equational theories. B is called class-finite
if all of the B-equivalence classes of terms in the quotient term algebra .7%.(2Z") / =g are finite.
This includes the class of permutative equational theories: an equational theory & is permuta-
tive if for all terms #, ¢/, the fact that t =, ¢’ implies that the terms ¢ and ¢’ contain the same
symbols with the same number of occurrences [Biirckert et al. 1989]. Permutative theories in-
clude any theory with any combination of symbols obeying any combination of associativity
and commutativity axioms.

Theorem 4.11. For class-finite theories, the embedding relation <p is a well-quasi-ordering on

the set F5(Z") for finite ¥.

Proof. A binary relation > is Noetherian (i.e., well-founded) on a set X if and only if its dual
relation < (defined as u < v iff u 3 v) is well-founded on X, i.e., in every sequence (x;);cy of
elements of X, there exist i < j such that x; = x; [Mellies 1998]. Since disa wqo (by Theorem
4.8), the result follows for class-finite theories from the fact that >p is well-founded [Biirckert
et al. 1989], and < is compatible with (=5). O

Similarly to Lemma 4.9, in the equational case, we can also get rid of variables and consider
only ground terms.

Lemma 4.12. Given two terms t1,t» € F5(Z"), we have t; g t iﬁ‘tlji g tg where tf,tg € 5.

Function symbols with variable arity are sometimes seen as associative operators. Let us
briefly discuss by means of an example the homeomorphic embedding modulo axioms <lp of
Definition 4.10 when compared with the variadic extension <" of Definition 4.1 as given in
[Dershowitz and Jouannaud 1990]:

Diving Coupling
Jie{l,..n} s Vie{l,..,m} 1 s; @ t;, ,with 1<j1<jp << jm<n
s A f(tr,etn) FG1sm) * flt1itn)

Example 4.5. Consider a variadic version of the addition symbol + of Example 4.4 that al-
lows any number of natural numbers to be used as arguments; for instance, +(1,2,3). On the
one hand, +(1) 2 +(1,2,3) whereas +(1) 4 + (1,2,3), with B consisting of the associativ-
ity and commutativity axioms for the operator + (actually, +(1) is ill-formed). On the other
hand, we have both +(1,2) < 4(1,0,3,2) and +(1,2)<p + (1,0,3,2). This is because any
well-formed term that consists of the addition (in any order) of the constants 0, 1, 2, and 3 (for
instance, +(4(1,0),+(3,2)) can be given a flat representation +(1,0,2,3). Note that there are
many other equivalent terms, e.g., +(4(1,2),+(3,0)) or +(+(1,+(3,2)),0), all of which are
represented by the flattened term +(0,1,2,3). Actually, because of the associativity and com-
mutativity of symbol +, flattened terms like +(1,0,2,3) can be further simplified into a single®
canonical representative +(0, 1,2,3), hence also +(1,2)<z+(0,1,2,3). A more detailed expla-
nation of flat terms can be found in Section 4.5. However, note that +(2,1)<g+ (1,0,3,2) but
+(2,1) £ +(1,0,3,2) because the relation <" does not consider the commutativity of symbol +.

Roughly speaking, in the worst case, the homeomorphic embedding modulo axioms B of
Definition 4.10, ¢t < t', amounts to considering all of the elements in the B-equivalence classes

3Maude uses a term lexicographic order for the arguments of flattened terms [Eker 2002].

50 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

of t and ¢’ and then checking for standard homeomorphic embedding, u < i, every pair u and
u' of such terms, one term from each class. Unfortunately, the enumeration of all terms in a
B-equivalence class is impractical, as shown in the following example.

Example 4.6. Consider the AC binary symbol + of Example 4.4 and the terms t = +(1,2)
and t' = +(2,4(3,1)). The AC-equivalence class of t contains two terms whereas the AC-
equivalence class of t' contains 12 terms. This implies checking 24 embedding problems u < u'
in order to decide t duc t', in the worst case. Moreover, we know a priori that half of these
embedding tests will fail (those in which 1 and 2 occur in different order in v’ and u; for instance
u' =+4(1,4+(2,3)) and u = +(2,1).

A more effective rewriting characterization of < can be achieved by lifting Definition 4.3
to both the order-sorted and the modulo case in a natural way. However, ill-formed terms can
be produced by naively applying the rules f(xj,...,x,) — x; of Definition 4.3 to typed (i.e.,
order-sorted) terms. For example, “(0 < 1) or true” — “0 or true”.

In the order-sorted context, we can overcome this drawback as follows. We extend X to a
new signature X% by adding a new top sort % that is bigger than all other sorts. Now, for each
fiAL,...,A, = Ain X, we add the rules f(x1:%,...,x: %) — xi:%, 1 <i < n. In this way,
rewriting with —7 (5%)/B becomes a relation between well-formed X% -terms, as first proposed
in [Alpuente et al. 2017a].

The order-sorted homeomorphic embedding modulo B can be decided by the following
rewrite theory that extends the definition in [Alpuente et al. 2017a] with sorts.

Definition 4.13 (Rewrite theory for <Iz). Let X be an order-sorted signature and B be a set of
axioms. Let us introduce the following signature transformation £ > (f :sy...s, —'s) — (f:
U U —U)e Y%, where % conceptually represents a universal supersort of all sorts in X.
Since there is no ad-hoc overloading, any term ¢ € % is well-typed for £% .

We define the rewrite theory Emb(X) = (X, B, R) such that R consists of all rewrite rules
fOr: ... xpU) — xi: U

foreach f:Ay,...,A, > AinXandi€{l,...,n}.

Proposition 4.14. Given X, B, and terms t,t' € Fx(Z), t gt iff 1 Hzmb((zt)"”)/B i
Proof. By Lemma 4.12, t <y ¢ iff 1+ <z % We prove 1 Jp 1% iff
1" —*)

Emb((z9)%)/B

(=) We prove that ¢ g '# implies 1" ezmb((zj)g,) /B t*. By Definition 4.10, there are two

terms w,w’ such that t* =g w, 1" =g w/, and w < w'. By Lemma 4.9 w < w' iff w < w'. By

Lemma 4.4, w < w' implies w' —7 w. And this implies 1" —%

Emb((Z)%) b((Z%)%)/B .

(<) We prove that ¢"* —>2mb((=7 /B t* implies ¥ <p t"* by induction on the length k of the

rewriting sequence. If k = 0, then there is a constant a such that /" = ¢ = ¢* and a —*

Emb((*)%)/B
a. Thus, a < a by using the Coupling inference rule of Figure 4.3 with n = 0. If k > 0, then there

exists w such that ¢'* _>]1€5;11b((>:i)"”)/3 W = Emb((£4)%) /B t*. Given the form f(x;:%,...,.x; %) —

x;:% of the rewrite rules in Emb((2%)%), we have that w = C[f (11,...,t,)] and there exists

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 51

i€{l,...,n} s.t. C[t;] =g t*. Hence, it is immediate to prove * <l w by a straightforward com-
bination of several applications of the Coupling inference rule to remove the context C[| from
both terms, ¢* and w, one application of the Diving inference rule to extract #; from f (t1,...,t,)

in w, and the remaining applications of the Coupling inference rule that are needed to recognize
the embedding of #; inside #¥. Now, by induction hypothesis we also have that w < 1", which
yields t* < w g 1", O

Example 4.7. Consider the order-sorted signature for natural numbers of Example 4.4. Let us
represent by sort U in Maude the unique (top) sort of the transformed signature:

fmod NAT-U is

sort U .

op 0 : ->T.

op suc : U -> U .

op _+_ : UU -> U [assoc comm]
endfm

Since we have no ad-hoc overloading, there is no need to transform a ground term of module
NAT into a ground term of module NAT-U since any ground term of sorts Zero, NzNat, and Nat
is well typed in the transformed signature. The associated rewrite theory Emb((£)%) contains
the following two rules for the operator +:

+(x1:U,x:U) — x1:U
—i—(xl:U,XQ:U) —x:U

However, when the rules of Emb((Zt)%) are used for rewriting modulo the commutativity of
symbol + (as in Maude), in practice, we can get rid of one of the two rules above since only one
of them is required.

Example 4.8. Following Example 4.6, instead of comparing pairwisely all terms in the equiva-
lence classes of t and t', we use the rewrite rule +(x;:U,xp:U) — x5:U to prove the rewrite step
+(2,4+(3,1)) = gmp(zz)7)/ +(2,1), and finally, we check that +(2,1) =g +(1,2). Recall that
B contains associativity and commutativity of +. However, there are six alternative rewriting
steps stemming from the initial term +(2,4(3,1)). Five of these rewrite steps are useless for
proving the considered embedding (the selected redex is underlined):

+(2,+(3, 1)) _>Emb((2ﬁ)g//)/B +(2, 1) +(2,+(3, 1)) _>Emb((2ﬁ)g//)/B 1
+(2,+3, 1) = gmp(zry7)8 +(2,3) +(2,4+3, 1)) = gmp((st)y7)/8 2
+(2,+(37 1)) %Emb((zﬁ)o//)/B +(3, 1) +(2,+(37 1)) %Emb((zﬁ)%)/l} 3

For a term with k addends, we have (2X) — 2 rewriting steps. This leads to a huge combinatorial
explosion when considering the complete rewrite search tree.

In conclusion, there are three problems when trying to use Definition 4.13 to mechanize the
order-sorted homeomorphic embedding relation modulo axioms <z of Definition 4.10. First,
the intrinsic non-determinism of the rules may unnecessarily produce an extremely large search
space. Second, as shown in Example 4.8, this intrinsic non-determinism in the presence of
axioms is intolerable, that is, unfeasible to handle. Third, the associated reachability problems
do not scale up to complex embedding problems so that a suitable search strategy must be
introduced. We address these problems stepwise in the sequel.

52 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

4.4 Goal-driven homeomorphic embedding modulo B

The formulation of homeomorphic embedding as a reachability problem by using the rewrite
rules of Definition 4.13 generates a blind search that does not take advantage of the actual terms
t and ¢’ being compared for embedding. In this section, we provide a more refined formulation
of homeomorphic embedding modulo axioms that is goal driven in the sense that, given an
embedding problem for 7 and ¢/, it inductively processes the terms ¢ and 7’ in a top-down manner.

First, in the following section, we introduce a calculus that extends the homeomorphic em-
bedding relation of Definition 4.5 to the order-sorted equational case.

4.4.1 An order-sorted homeomorphic embedding calculus modulo B

Let us introduce an order-sorted calculus for embeddability goals té%dt’ that directly handles
the algebraic axioms of B in the deduction system, with B being any combination of A and/or C
axioms for the theory operators. Roughly speaking, this is achieved by specializing the Coupling
rule of Definition 4.5 w.r.t. B. This calculus extends with sorts (kinds) a similar definition given
in [Alpuente et al. 2017a], where kinds were not considered in the Variable inference rule of
[Alpuente et al. 2017a].

Definition 4.15 (Goal-driven (order-sorted) homeomorphic embedding modulo B). The home-
omorphic embedding relation modulo B is defined as the smallest relation that satisfies the in-
ference rules of Definition 4.5 together with the new inference rules given in Figure 4.5. These
are:

1. the three inference rules (Variable, Diving, and Coupling) of Definition 4.5 for any func-
tion symbol;

2. one extra coupling rule for the case of a commutative symbol with or without associativity
(Couplingc);

3. two extra coupling rules for the case of an associative symbol with or without commuta-
tivity (Coupling,); and

4. two extra coupling rules for the case of an associative-commutative symbol (Couplingac).

< gd v gd
Soﬂ% oA Slﬁ% fo

F(s0,s1) 38 F(to,11)

Couplingc

v gd v gd v gd v gd
f(so,51)<pto A 5295 1 s0dg f(to,t1) N s1<p 1

Fls0,f(s1,80) 38 Flto,n) fls0,51) 5 flto, f(11,12))

Coupling

v gd v gd v gd v gd
f(so,s1)<pt1 A 5295 1o s19g f(to,t1) N so<Jp 1

Fls0, fls1,50) 38 Flto,n1) Fls0,s1) S5 F(t0, £(1,12))

Couplingc

FIGURE 4.5: Extra coupling rules for A, C, and AC symbols

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 53

Proposition 4.16. Given X, B, and terms t,t' € Fx(Z), t g t' iff t* ﬁ‘zd 1" where t*,1"* € F..

Proof. Immediate by considering that each inference rule of Figure 4.5 explicitly combines the
Coupling inference rule with the corresponding A and/or C axioms. For example, the inference
rule Couplingc of Figure 4.5 is equivalent to the inference rule Coupling of Figure 4.3, but
when the former considers an embedding problem f(so,s]) ﬁid f(to,11), the latter considers both

F(s1,50)35 £ (t0,11) and f(s0,51) 5" £ (11,10)- O

Example 4.9. Consider the binary symbol + obeying associativity and commutativity axioms,
and the terms t = +(1,2) and t' = +(2,+(3,1)) of Example 4.8. We can prove té%dt’ by

.. lélgdl v gd
[Diving| Wf(ﬂ) 2452

[Couplingac] gd
+(1’2)S]B + (27"_(3’ 1))

We can also prove a more complex embedding goal by first using the right inference rule for AC
of Figure 4.5 and then the generic Coupling and Diving inference rules.

22845 < gd
zgi"iw >l
(23) 35 +(+(4.2).3)
H(1L23)IF + (+(4,2),+6,1))

[Diving]
[Couplingac]—

< od
1351

[Couplingac]

It is immediate to see that, when the size of the involved terms t andt' grows, the improvement
. v gd P
in performance of ﬂ% w.r.t. g can be significant (just compare these two embedding proofs
with the corresponding search trees for <p).

4.4.2 Reachability-based, (order-sorted) goal-driven homeomorphic embedding
formulation

Let us provide a more operational goal-driven characterization of the order-sorted homeomor-
phic embedding modulo B by means of the relation é;bgd. We formalize it in the reachability
style of Definition 4.13. The main challenge here is how to generate a suitable rewrite theory
R™84(Z, B) that can decide embedding modulo B by running a reachability goal.

Definition 4.17 (Goal-driven homeomorphic embedding rewrite rules modulo B). Given X and
B, a rewrite theory R"%$% (X, B) = (X, B, R) is defined as follows

1. For each particular instance of the inference rules of the form given in Defini-

tion 4.15 (e.g., the Variable Inference Rule from Definition 4.5 or theBCOupling Inference
Rule from Definition 4.5, for the case of a constant symbol c¢), we include in R a rewrite

« rbgd
rule of the form u<g*“v — rrue.

v gd vgd
u1§1§ vl/\w/\ukﬁl%{ Vi

2. For each particular instance of the inference rules of the form <l given in
ulp v

. . . . « rbgd « rbgd
Definition 4.15, we include in R a rewrite rule of the form u<lp*"v — u; g% v A--- A

v rbgd
Uy, ﬁ; & {7
oy . / vgd ;4 . v rbgd
Proposition 4.18. Given X, B, and termst,t' € Tss, t Ip ¢’ iff (1" 1) %;,bgd(zjﬁB)/B true.

54 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

Proof. Immediate by a straightforward transformation of inference rules into rewrite rules. [J

Example 4.10. Consider the binary symbol + of Example 4.4. According to Definition 4.15 and
the use of only ground terms, there are eleven inference rules for é%d:

Diving Coupling
-
—t=pt o
tﬁ%dszc(t’) OS]IZO
135y 15
t ﬁf;d—l—(tl 1) sucg) é%dsuc(t;)
128 n 35 A3
ed ed
15 +(11.12) +(tn02) S+ (#15)
Couplingc Couplinga Couplingac
n<5' G A8y o) 2511 A 1 S5 +(t0,01) 358 A 288
~ed od “ed
+(t1,2) S5 +(17.15) +(f0,j(fl,f2))§‘§ +(’{f§) +(to,jlr(f1 1)) 5 +(’§(}f§)
n Sy) A ny +pH) Ay
~ed < od
+H(t102) S (10, +(17.43)) +(t1,02) S (10,4 (1].13))

However, the corresponding TRS R8¢ (X, B) only contains seven rewrite rules because, due
to pattern matching modulo associativity and commutativity in rewriting logic, the other rules
are redundant:

rbgd rbgd

(Diving) T <Q5%%suc(T’) —T5%T
T i]rbgd + (TI,T2) N T<]rbng1
(Coupling) g S];;bgdﬁ — true
0 %];bgd() — true
suc(T) 2y%suc(ry - TAT
(Couplinggcaac) +(Ti,Ta) <l;bgd +(1], 7)) — T < rbngl T <]rbng2

For example, the rewrite sequence proving +(1,+(2,3))<j e +(+(4,2),+(3,1)) is

rbgd 1

H(1,4(2,3) 255 4 (1(4,2),4(3,1)) = gy gy /5 +(2,3)) D55+ (+(4,2),3) A 125

(¥%.B)
— o528 5) <]rbgd +(4,2)A3 <]rbgd3
—>Rrhgd(2 ,B)/B ZSIB 2
—>Rrbgd(z .B)/B true

Although the improvement in performance achieved by using the rewriting relation — prgi(x: p) /B

versus the rewriting relation — is important, the search space is still huge since the ex-

Emb(%5)/B
pression +(1,+(2, 3))31‘?;1—}— (4+(4,2),+(3,1)) matches the left-hand side +(Tj, Tz)%gd +(1{,T;)
in many different ways (e.g., {Ty — 1,T» — +(2,3),...}, {Ti = 2, L — +(1,3),...}, {Ti —
3,7 — +(1,2),...}).

In the following section, we provide a more efficient calculus of homeomorphic embedding
modulo axioms by considering equational (deterministic) normalization (thus avoiding search)
and by exploiting the meta-level features of Maude (thus avoiding any theory generation).

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 55

4.5 Meta-Level deterministic (order-sorted) goal-driven homeomor-
phic embedding modulo B

The implementation of rewriting modulo equational axioms in high-performance languages such
as Maude relies on a meta-level, flattened representation of terms that is rooted by poly-variadic
versions of the associative (or associative-commutative) symbols of the term [Clavel et al., 2007,
Chapter 14]. For instance, given an associative (or associative-commutative) symbol f with n
arguments and n > 2, flattened terms rooted by f are canonical forms w.r.t. the set of rules given
by the following rule schema

T, ftryeostn)y oo osXm) = F(X1y ety ety ooy X)) Bym > 2

The flattened version of a term ¢ is represented by t. Given an associative (or associative-
commutative) symbol f and a term f(zq,...,t,), those terms among the #1,...,, that are not
rooted by f are called f-alien terms (or simply alien terms). In the following, we implicitly
consider that all terms are in canonical form.

Our first improvement for implementing the order-sorted homeomorphic embedding modulo
equational axioms of Definition 4.15 is based on handling flattened terms explicitly.

Definition 4.19 (Flattened homeomorphic embedding modulo B). The homeomorphic embed-

. . o ml . . .
ding relation modulo B, 51’,5’ , for terms in flattened form is defined as the smallest relation that
satisfies the following inference rules:

1. the three inference rules (Variable, Diving, and Coupling) of Definition 4.5 for any func-
tion symbol;

2. the extra coupling rule of Figure 4.5 for the case of a commutative symbol with or without
associativity (Couplingc);

3. the extra coupling rule of Figure 4.6 for the case of an associative symbol with or without
commutativity (Couplingy); and

4. the extra coupling rule of Figure 4.6 for the case of an associative-commutative symbol
(Couplingac).

Fje{l,.om—n+1} 51yt AL (52 o50) Dl F(tisrs . tm) AV < 251 At
F(S1yeeesn) DRty)

Jj e {17...,m}:slﬁgltj/\f(sz,...,s,,)é}?lf(tl,...,tj,l,tjﬂ,...,tm)
Fstyess) S F (11 t)

Coupling,

Couplingsc

FIGURE 4.6: Coupling rules for flattened terms with associative and associative-commutative
symbols

Proposition 4.20. Given X and B, for terms t and t' in Fx(%), t354 iff t Jp' ¢,

. . - gd .
Proof. Consider an embedding goal zgéB " where both # and ' are rooted by an associate
(resp. an associative-commutative) symbol f. Let us assume that the flattened versions are

56 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

t = f(t1,...,ty) and t = f(¢{,...,t,,), with m > n. For the embedding goal tﬂ‘zdt’, the Coupling
inference rule of Figure 4.1 and the Coupling, (resp. Couplingsc) inference rule of Figure 4.5
can be applied to all of the elements in the equivalence class of ¢, i.e., the terms resulting from
all possible rearrangements of ¢ due to associativity (resp. associativity and commutativity).
However, after several applications of the inference rules of ﬁgd, all of them end up with the
form t,éf;dt} where i < j (resp. 1 <i<nand 1 < j<m). For the embedding goal t_ﬁ’glt_’,
the Couplingy (resp. Couplingsc) inference rule of Figure 4.6 can be applied and after several
applications of the inference rules, all of them end up with the same form. O

Flattened terms are only accessible in Maude through its META-LEVEL functional module.
In the following, we provide a characterization of the order-sorted homeomorphic embedding
relation ﬁ'gl for flattened terms by (i) using a set of equations instead of rules and (ii) using
meta-representations of terms instead of explicit terms of the given signature X. Rewriting
logic is reflective [Clavel and Meseguer 2002], in the sense that some commands of Maude
at the user level can be represented at the object level in a consistent way. In other words,
the meta-level representation correctly simulates the relevant metatheoretic features of Maude
such as loading a module, evaluating a term, or computing the least sort of a term. Reflection
is systematically used in the design and implementation of the Maude language, making the
metatheory of rewriting logic accessible to the user in a clear, principled, and efficient way.
In the sequel, a variable x of sort s is meta-represented as X = ’x:s and a non-variable term
t = f(t1,...,ty), with n > 0, is meta-represented as f = ’f[f,...,7,]. See [Clavel et al., 2007,
Chapter 14] for further details.

Definition 4.21 (Meta-level (order-sorted) homeomorphic embedding modulo B). The meta-
level (order-sorted) homeomorphic embedding modulo B, égl, of Definition 4.19 is defined for
term meta-representations by means of the equational theory E™ given in Figure 4.7, where
the auxiliary meta-level functions any and all implement the existential and universal tests in
the Diving and Coupling inference rules of Figure 4.1, and we introduce two new meta-level
functions all_A and all_AC that implement existential tests of Figure 4.6, which are specific to
A and AC symbols.

Example 4.11. Given the embedding problem for terms +(1,+(2,3)) and +(+(4,2),+(3,1)),

the corresponding call to the meta-level homeomorphic embedding ﬁ;” of Definition 4.21 is
+[°1, 72, ’3]§Zl +[°4, 72, 73, ’1] and its evaluation sequence is given in Figure 4.8, according

to the equational theory E™ of Figure 4.7.

Proposition 4.22. Given X and B, for terms t and t' in F5(Z), tﬁ%dt’ iff (fﬁ'glt_’)! = true.

Proof. Immediate by realizing that the inference rules of Definition 4.19 can be easily trans-
formed into a rewrite theory R (X, B), as we did in Definition 4.17 for the inference rules of
Definition 4.15. This rewrite theory is terminating and can be easily transformed into a set of
rules that are confluent, terminating, and coherent modulo associativity and commutativity ax-
ioms. And then those rewrite rules can be straightforwardly translated into the equational theory
E™ of Definition 4.21 which manipulates flattened terms at the meta-level. O

A further optimized version of Definition 4.21 can be obtained by replacing the Boolean
conjunction (and) and disjunction (or) operators with the computationally more efficient Maude
Boolean operators and-then and or-else which avoid evaluating the second argument when
the result of evaluating the first one suffices to compute the result.

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 57

v ml

i <1B i = true Sforeach §in 11
F[TermList] < lj = false
T ﬁg’lF[TermList] = any(7T, TermList) if root(T) £ F
F[Terml] élglF[TermZ} = TermlélngermZ
F[TermList1] ﬂg]F [TermList2] = any(F [TermList 1], TermList2)
or
all(TermList1, TermList2) if length(TermList;) #1,i€ {1,2}
F[U,V] ﬁglF[X,Y] =any(F[U,V],[X,Y]) if Ax(F) = {C}

or(US)'X and V'Y)
or (UZ)'Y and VAy'x)

F|[TermList1] églF [TermList2] = any(F [TermList1],TermList2) if Ax(F)={A}
or
all_A(TermList1, TermList2)

F[TermList1] ﬁglF[TermListZ} = any(F [TermList1],TermList2) if Ax(F) = {A,C}
or
all_AC(TermList1,TermList2)

any(U,nil) = false
any(U,V:L)=U<} 'V or any(U,L)
all(nil, nil) = true
all(nil,U : L) = false

all(U : L,nil
allU : L1,V : L2

false
U<B V and all(L1,L2)

all_A(U : L,nil) = false
al A({U:L1,V:L2 (U<B V and all_A(L1,L2)) or all_A(U : L1,L2))

all_AC(nil,L) = true
all_AC(U : L1,12) = all_AC_Aux(U : L1,12,12)
all. AC_Aux(U : L1,nil,L3) = false

)=
) =
)=
)
)
)=
all_A(nil,L) = true
)=
)=
) =
)
)
all_ AC_Aux(U : L1,V :L2,L3) =

(U<B V and all_AC(L1,remove(V,L3)))
or
all_AC_Aux(U : L1,L2,L3))

remove (U, nil) = nil
remove(U,V : L) =if U =V then L else V : remove(U, L)

FIGURE 4.7: Meta-level homeomorphic embedding modulo axioms

Definition 4.23 (Strategic meta-level deterministic embedding modulo B). We define ﬁ;ml as
the strategic version of relation é;ﬁ” that is obtained by replacing the Boolean operators and
and or with Maude’s and-then operator for the short-circuit version of the conjunction and the
or-else operator for the short-circuit version of the disjunction [Clavel et al., 2007, Chapter
9.1], respectively.

The optimization idea behind Definition 4.23 was first proposed in [Alpuente et al. 2018].
In the following section, we propose two novel optimizations of order-sorted homeomorphic
embedding modulo equational axioms B that can achieve further speedups.

58 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

v ml

+[21,72,73] Q5 +[74,72,73,71] = pu g any(*+[71,°2,73],[°4,72,°3,71))
orall_AC([’1,°2,73],[74,72,73,1])
—>2m,/3 false
orall_AC([’1,°2,73],[74,72,73,1])
—pmi 5 allLAC([?1,°2,73],[74,°2,73,1])
—pm 5 AlAC_Aux([*1,°2,°3], 1], [*4,72,°3,°1])

*)EmI/B ’légl’l

and all_AC([’2,’3],remove(’1,[’4,°2,°3,°1]))

or all_AC_Aux([’1,2,3],nil,[?4,°2,°3,71])
—>zm,/3 all_AC([’2,°3],[’4,°2,°3))

or all_ AC_Aux([’1,°2,3],nil,[?4,2,73,71])
—>Zm//3 all_AC_Aux([’2,3],[°2,3],[’4,72,3])

or all_ AC_Aux([’1,2,3],nil,[?4,2,73,71])
—>Eml/B ’2§Ztl’2

and all_AC([’3],remove(°2,[’4,°2,°3]))

or all_ AC_Aux([’2,°3],[’3],[’4,°2,73])

or all_AC_Aux([’1,°2,3],nil,[?4,°2,73,71])
— g 1p ALAC([?3],[74,°3])
or all_ AC_Aux([’2,°3],[*3],[’4,°2,73])
or all_ AC_Aux([’1,2,3],nil,[?4,2,73,71])
34513
and all_AC(nil,remove(’3,[’4,*3]))
or all AC_Aux([’2,°3],[?3],[’4,°2,3])
or all_AC_Aux([’1,2,3],nil,[*4,°2,73,71])

*
—pmi /B true

*
—>Eml/B

FIGURE 4.8: Evaluation sequence for *+[’ 1,2, *3] ﬁ;’;l +1[24,°2,°3,°1]
4.6 Optimizations based on the term B-ordering and reachable kinds

Typically hidden inside the B-matching algorithms, some pertinent term transformations allow
terms that contain operators obeying equational axioms to be rewritten into convenient B-normal
forms that facilitate the matching modulo B. In the case of AC-theories, these transformations
not only include translating the term to flattened form (as shown in Section 4.5) but also al-
lowing terms to be reordered and suitably parenthesized in order to enable subsequent rewrite
steps. Basically, this is achieved by producing a single, auxiliary representative of their AC
congruence class (i.e., the AC-normal form). An AC-normal form is typically generated by
replacing nested occurrences of the same AC operator by a flattened argument list under a vari-
adic symbol, sorting these arguments under a fixed linear ordering and combining equal argu-
ments using multiplicity superscripts [Eker 2003]. For example, the congruence class containing
f(fla,f(B,a)), f(f(y,B),B)) where f is an AC symbol and subterms ¢, 3, and y belong to

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 59

alien theories might be represented by f* (a2, 83,), where f* is a variadic symbol that replaces
nested occurrences of f. A more formal account of this transformation is given in [Eker 1995,
2003]. For any set B of axioms, Maude’s total ordering on terms is written <g. This ordering
is closed under context, i.e., t <pt’ = C[t] <p C[¢] for any context C, and size-compatible, i.e.,
t <gt' = size(t) < size(t") where size(t) is the number of symbols in 7.

... vord ! .
Let us formulate a novel optimization ﬁ%r M of the order-sorted homeomorphic embed-

ding modulo B that takes advantage of Maude’s total order on terms <p. The optimization is
based on adding a pruning equation that negatively concludes the test whenever T’ <p T without

actually running the call Té;mlT’ .

Definition 4.24 (Early pruning based on term order <z). We extend the equational theory E™
of Figure 4.7 (but with the strategic optimization given in Definition 4.23) with the following
pruning equation that determines the (meta-level) embedding problem TégrderﬂmlT’ negatively

whenever T/ < T.

v order+sml

T3 T' =if T' <5 T then false else 73" T’

The correctness of the above optimization derives from the following two results.

Lemma 4.25. IfT' <3 T then T<gT' does not hold.

Proof. If T <p T, then T # T'. Since T <p T is equivalentto T’ <g T A T Ap T and <p is
size-compatible, then T’ <p T implies T # T’ and size(T’) < size(T). Let us consider the cases
when size(T") = size(T) and size(T') < size(T) separately. If T # T’ and size(T") = size(T),
then there is at least one clash position, i.e., a position in ¢ and " whose root symbol differ,
hence the successive application of the coupling inference rule can never succeed, which implies
T AT’

For the case when size(T") < size(T), the proof follows directly from the following facts: (i)
B is any combination of associativity and commutativity axioms for the binary function symbols
in X; (ii) every associativity or commutativity axiom / = r in B is size-preserving, i.e., size(l) =
size(r); and (iii) < is size-compatible, i.e., T < T’ implies that size(T) < size(T"). From (i), (ii)
and (iii) it follows that <l is also size-compatible, i.e., T<IgT’ implies that size(T) < size(T").
Therefore, size(T’) < size(T) implies that T €T’ and the result follows. O

Example 4.12. Consider the (flattened) terms t = +(1,2,3) andt' = +(0, 1,2) for the signature
of Example 4.4, and let T, T' be their corresponding meta-level representation. In Maude’s total
order for terms, +(0,1,2) <p +(1,2,3) (and correspondingly T' <p T as well). According to

v order+sml

Definition 4.24, the embedding problem T g T’ immediately fails.
. . . . <kindstsml . v sml .. .
Let us formalize a second optimization < Bm remt of ﬁ;m that anticipates failure whenever

there is a subterm of ¢ whose kind is not in the set of all kinds that can be obtained (by instanti-
ation) from the subterms of ¢’.

Definition 4.26 (Reachable kinds). Given a term ¢, we let kinds(r) denote the set of kinds of all
of the subterms of ¢. Given the signature X, we compute kinds(t) as the solution to a reachability
problem using the following rewrite theory Kinds(X) = (X',0,R), where ¥’ contains the kinds
of X as constants of a universal sort %7 and R consists of all rewrite rules

k—)k,‘

60 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

where (f :s1,...,8, = s)inX, k=[s], ki=si], k#k;andi € {1,...,n}. By using Z = Kinds(X),
we define kinds(t) = {k | [t] =, k}.

The intuition behind Definition 4.26 is that kinds(t) represents the set of kinds of the sub-
terms of any instance of t.

FIGURE 4.9: Signature graph of Example 4.13

Example 4.13. Consider the following order-sorted signature X. (graphically depicted in Figure
4.9), which extends the signature of natural numbers with two new sorts NatPair and NatList,
which are aimed at representing pairs of natural numbers and sequences of natural numbers,
respectively. Pairs are constructed by using the pair concatenation operator _| _, whereas lists
are constructed by using nil and the (associative) list concatenation operator _: _. Note that
there are two different kinds, [NatPair] and [NatList], where [NatList] contains the sorts
Nat and NatList because Nat < NatList.

sorts Nat NatPair NatList
subsort Nat < NatList
op 0 : -> Nat

op suc : Nat -> Nat

op _l_ : Nat Nat -> NatPair .
op nil -> NatList
op _:_ : NatList NatList -> NatList [assoc]

The rewrite theory Kinds(X) consists of:

sort U .
ops [NatList] [NatPair] : -> U .
rl [NatPair] => [NatList]

Now, given the term Z:NatList, we have kinds(Z:NatList) = {[NatList]}, whereas
given the term X:Nat | Y:Nat, we have kinds(X:Nat | Y:Nat) = { [NatPair], [NatList]}.

Definition 4.27 (Early prune based on reachable kinds). We extend the equational theory E™ of
Figure 4.7 (with the strategic optimization given in Definition 4.23) with the following pruning

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 61

equation that decides the (meta-level) embedding problem TélgnstmlT’ negatively whenever

the set of all reachable kinds from 7" does not contain all of the rechable kinds from 7.

TégndﬁsmlT' = if kinds(T) ¢ kinds(T') then false else Téf;ml T’

Example 4.14. Consider again the order-sorted signature X. for pairs and sequences of natural
numbers of Example 4.13. The embedding goal (X:Nat | Y:Nat) <lz Z:NatList does not
hold because the kind [NatPair] of the left term (X:Nat | Y:Nat) is not contained in the set
kinds(Z:NatList) of reachable kinds from the right term, which only contains [NatList].
However; for the inverse goal we cannot conclude Z:NatList Ap (X:Nat | Y:Nat) because
the set kinds(X:Nat | Y:Nat) = {[NatPair], [NatList]} does contain the only reachable
kind [NatList] for the left term Z:NatList. And actually, Z:NatList <l (X:Nat | Y:Nat)
holds according to Definition 4.10 because Z:NatList < X:Nat.

The correctness of the above optimization derives from the following result.

Lemma 4.28. If kinds(T) € kinds(T"), then T<gT’ does not hold.

Proof. (By contradiction). Assume that there is a subterm ¢ of 7 such that [¢] & kinds(T’) and
that 7<IzT’ holds. Since T<zT’ then also t<IzT"’. Let us consider separately the case when ¢
is ground and when ¢ is non-ground. By Definition of <, if 7 is ground, then every symbol of
¢ must appear in T’, hence it cannot happen that [7]| & kinds(T'). If ¢ is non-ground then every
non-variable symbol of ¢ must appear in 7’ and for each variable X of ¢ there must be a variable

Y in T’ such that [X] = [Y]; hence, it cannot happen that [¢] ¢ kinds(T"). O
. . o < order+sml < kinds-+sml
In the following section, we demonstrate that the two optimizations <l o and 5 s

. L. . ~ order+sml
are almost inexpensive and pay off in practice. We consider the two optimizations <

< kinds-+sml . S .
and < Bm shom separately as well as their natural combination in our last optimal order-sorted

equation embedding relation é’;‘”’"l that (lazily) first checks the pruning condition based on

reachable kinds of Definition 4.27 and then checks the pruning condition based on the term
order <p of Definition 4.24. In other words,

v kosml

T " T' =ifkinds(T) < kinds(T")
or-else
T’ < T
then false
< sml

else 7<, T’

Note that, we do not implement a recursive optimization that tries to verify the pruning
conditions recursively within ﬁ%ml. The reason is that the recursive checking of the pruning
conditions would introduce a dramatic, exponential overhead so that the recursive optimization
would prove ineffective.

4.7 Experiments

We develop HEMS, an equational homeomorphic embedding checker in Maude that implements
all five equational homeomorphic embedding formulations <, ﬂ;bgd, ﬁ}?l, ﬁ%ml, and ﬁ?sml of

62 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

Benchmark 1 Axioms s ﬁgbgd ﬁg l’ ﬁ};ml’ ﬁgosml

0 |A| C|AC| {E| ¢R|GT(ms)| fE| R |GT(ms)| 2E| tR | GT(ms)
Kmp 91 0| 0| O O] 15 1| 0| 57 2121 O 0
NatList 50 1] 1 21 010 1| 0] 26 1121] O 0
Maze 51 1|0 1| 0] 36 71 0]787 151 21 O 0
Dekker 16| 1| 0| 2| 0] 59 8| 0823 18121 O 0

TABLE 4.1: Size of generated theories for naive and goal-driven definitions vs. meta-level
definitions

the previous sections. The HEMStool is publicly available at [HEMS Website]. The implemen-
tation consists of approximately 2.5K lines of Maude source code and is publicly available at
[HEMS Website]. In this section, we provide an experimental comparison of the five equational
homeomorphic embedding implementations by running a significant number of equational em-
bedding goals. In order to compare the performance of the different implementations in the
worst possible scenario, all benchmarked goals return false, which ensures that the whole search
space for each goal has been completely explored, while the execution times for succeeding
goals whimsically depend on the particular node of the search tree where success is found.

We tested our implementations on a 3.3GHz Intel Xeon E5-1660 with 64 GB of RAM run-
ning Maude v2.7.1, and we considered the average of ten executions for each test. We have cho-
sen four representative programs: (i) KMP, the classical KMP string pattern matcher [Alpuente
et al. 1998a]; (ii) NatList, a Maude implementation of lists of natural numbers; (iii) Maze, a
non-deterministic Maude specification that defines a maze game in which multiple players must
reach a given exit point by walking or jumping, where colliding players are eliminated from
the game [Alpuente et al. 2015]; and (iv) Dekker, a Maude specification that models a faulty
version of Dekker’s protocol, one of the earliest solutions to the mutual exclusion problem that
appeared in [Clavel et al. 2007]. As testing benchmarks, we considered a set of representa-
tive embeddability problems for the four programs that are generated during the execution of
Maude’s partial evaluator, Victoria [Alpuente et al. 2017a].

Tables 4.1, 4.2, 4.3, and 4.4 below analyze different aspects of the implementation. In Ta-
ble 4.1, we compare the size of the generated rewrite theories for the naive and the goal-driven

definitions versus the meta-level definitions. For ﬂgl, ﬁ;ml, and ﬁﬁ;’”’"’, there are the same
number (21) of generated equations (HE), whereas the number of generated rules (§R) is zero
because both definitions are purely equational (deterministic) and just differ in the version of
the Boolean operators being used. As for the generated rewrite theories for computing <l and
élgbgd, they contain no equations, while the number of generated rules increases with the com-
plexity of the program (that heavily depends on the equational axioms that the function symbols
obey). The number of generated rules is much bigger for é;bgd than for < (for instance, é;bgd
is encoded by 823 rules for the Dekker program versus the 59 rules of <lg). Columns 0, A, C,
and AC summarize the number of free, associative, commutative, and associative-commutative
symbols, respectively, for each benchmark program. The generation times (GT) are negligible

for all rewrite theories.

To make the comparison on equal terms, in Tables 4.2 and 4.3, we compare the equational
embedding implementations <, é;bgd, ﬁ;”, and ﬁ%ml without adding the pruning conditions
of Section 4.6 as they could be applicable to any of them. Our figures demonstrate that the
implementation of ﬁ;mz is the most efficient one among the four formulations. The performance

. S . < sml . .
improvement of the two optimizations of Section 4.6 w.r.t. ﬁ%m is evaluated in Table 4.4 below.

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 63

. %] %]rbgd %]ml %]sml
Benchmark § Symbols| Size s Zp g)
A | AC |T1| T2 |Time(ms)|Time(ms) | Time(ms) | Time(ms)
5 10 6 1 1
10 150 125 4 1
Kmp 01 01 S0 TO TO 280 95
500 TO TO 714 460
1000 TO TO 2184 1324
5000 TO TO 7528 5152
5 2508 2892 1 1
) 10| 840310 640540 1 1
NatList 1 2 5 100 TO TO 3 5
500 TO TO 60 5
1000 TO TO 102 10
5000 TO TO 210 85
5 40 25 1 1
10 TO 20790 4 1
Maze E T 300 TO TO 256 2
500 TO TO 1980 10
1000 TO TO 10148 20
5000 TO TO| 1057912 46
5 50 40 1 1
10| 111468 110517 2 1
Dekker 1 1 5 100 TO TO 5
500 TO TO 20 13
1000 TO TO 45 20
5000 TO TO 80 38

TABLE 4.2: Performance of equational homeomorphic embedding implementations w.r.t.
problem size

For all benchmarks 7'1 311‘}‘ T2 in Table 4.2, we have fixed the size of T'1, which is measured
in the depth of (the non-flattened version of) the term, to five. As for 72, we have considered
terms with increasing depths: 5, 10, 100, 500, 1000, and 5000. The § Symbols column records
the number of A (resp. AC) symbols occurring in the benchmarked goals.

The figures in Table 4.2 confirm our expectations regarding g and ﬁ;bgd that the search
space is huge and increases exponentially with the size of 72 (discussed for < in Example 4.8
and for é;bgd in Example 4.9). Actually, when the size of T2 is 100 (and beyond), a given
timeout (represented by TO in the tables) is reached that is set for 3.6e+6 milliseconds (1 h).
The reader can also check that the more A,C, and AC symbols occur in the original program
signature, the bigger the execution times. An odd exception is the Maze example, where the
timeout is already reached for the size 10 of 72 even if the number of equational axioms is
comparable to the other programs. This is because the AC-normalized, flattened version of the
terms is much smaller than the original term size for the NatList and Dekker benchmarks but
not for Maze, where the flattened and original terms have similar size. On the other hand, our
experiments demonstrate that both ég’l and él;;ml bring impressive speedups, with é;;ml working
outstandingly well in practice even for really complex terms where, taking into account the
generous one hour time-out, the achieved speedup is at least 10° (and in Table 4.4 is further
improved by one additional order of magnitude by enabling the optimizations of Section 4.6).

64 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

T1 T2 ﬁB é;bgd é;f;l gsBml
OS'll‘Zlfl (le Séml:)l: C O,IS,IZET 0 g %ymb:ls AC Time(ms) Time(ms) Time(ms) Time(ms)
50 5 5 O O O 100 100, 100, 0O 0O O 165 70 1 1
50 5 3] 21 O O 100 100, 50, 50, 0O O TO TO 24 1
5| 2 4 0 1] 01000 2/ 50 0 50 O TO TO| 108035 3
5/ 2 4 0 0 1 1000 2/ 50 0 0O 50 TO TO 42800 4
5/ 31 8§ 0O 1| 2/ 100, 3] 50 0 25 25 TO TO 22796 5
5| 5 5 O O 0] 500 500, 5000 0O 0O O 48339 34000 12 4
5| 5 3] 20 O 0] 500[500] 250, 250, 0O O TO TO 1360 10
5| 21 4 0 1] 0 500, 2/ 250, 0 250 O TO TO TO 30
50 21 4 0 O 1] 500 2250 0 0 250 TO TO TO 27
5 3 8§ 0O 1 2[500 3] 250 0] 125 125 TO TO TO 50
5 5 5 O O 0]1000[100010000 0 0 0O 202224 88000 18 8
5| 50 3] 20 0] 01000/1000] 500 500, O O TO TO 10184 40
5| 2 4 0 1] 01000, 2/ 500 0 500, O TO TO TO 50
5! 2| 4 0 0 11000 2/ 500 0 0 500 TO TO TO 56
5| 3] 8 0O 1] 21000, 3] 500 0] 250 250 TO TO TO 87
50 5 5 O 0O 05000500010000 0 0 O TO TO 27 15
5| 5 3] 20 0 050005000250025000 0 O TO TO| 1159236 80
5 21 4 0 1] 05000 22500, 02500 O TO TO TO 114
50 21 4 0 O 15000 225000 0 02500 TO TO TO 240
50 3] 8§ 0O 1] 25000 32500, 0]1250/1250 TO TO TO 368

TABLE 4.3: Performance of equational homeomorphic embedding implementations w.r.t. ax-
iom entanglement for the NatList example

T1 T2 Case gsBml gl;inds—}—sml ggrder-‘rsml ﬁ/;osml
Size | Size Time(ms) Time(ms)| Time(ms) Time(ms)
1000 1000kinds(T1) € kinds(T2) & (T2 £ T1) 12 2) 15 2
5000] 5000kinds(T1) € kinds(T2) & (T2 £p T1) 80 10 105 11
10000{10000/kinds(T1) € kinds(T2) & (T2 A T1) 240 15 270 18
50000(50000kinds(T1) £ kinds(T2) & (T2 £ T1) 550 28 580 33
1000| 1000kinds(T1) C kinds(T2) & (T2 <p T1) 10 12 4 6
5000] 5000kinds(T1) C kinds(T2) & (T2 <p T1) 40 50 8 12
10000/10000/kinds(T1) C kinds(T2) & (T2 < T1) 140 160 14 20
50000[50000kinds(T1) C kinds(T2) & (T2 <p T1) 290 330 40 60

TABLE 4.4: Comparison of é;;ml vs. the optimizations éj‘{”"“‘*“‘m’, é%rde%vml, and é’;’“‘mz

The reader may wonder how big is the impact of having A, C, or AC operators. In order
to compare the relevance of these symbols, in Table 4.3 we fix one single benchmark program
(NatList) that contains all three kinds of operators: two associative operators (list concatenation
; and natural division /), a commutative (natural pairing) operator (||), and two associative-
commutative arithmetic operators (+,*). With regard to the size of the considered terms, we
compare the size of the original term (OT) with the size of its flattened version (FT); e.g., 500

. . . . < < rbgd
versus 2 for the size of T2 in the last row. We have included the execution times of <p and 51; 8

. o rbgd . y
for completeness, but they do not reveal a dramatic improvement of ﬁ; ¢ with respect to <p

Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms 65

for the benchmarked (false) goals, contrary to what we initially expected. This means that é;bgd
cannot be generally used in real applications due to the risk of intolerable embedding test times,

.. vrbgd y
even if 51; ¢ may be far less wasteful than < for succeeding goals, as discussed in Section 4.4.

For égl and é;ml, the figures show that the more A and AC operators comparatively occur in
the problem, the bigger the improvement achieved. This is due to the following: (i) these two
embedding definitions manipulate flattened meta-level terms; (ii) they are equationally defined,
which has a much better performance in Maude than doing search; and (iii) our definitions are
highly optimized for lists (that obey associativity) and sets (that obey both associativity and
commutativity).

Homeomorphic embedding has been extensively used in Prolog for different purposes, such
as termination analysis and partial deduction. In Figure 4.10, we have compared on a logarithmic
scale our best embedding definition*, é’;‘”’”l, with a standard meta-level Prolog® implementation
of the (syntactic) pure homeomorphic embedding < of Definition 4.5. We chose the NatList
example and terms 7'1 and 72 which do not contain symbols obeying equational axioms as this
is the only case that can be handled by the syntactic Prolog implementation. Our experiments
show that our refined deterministic formulation é,’;”””’ (i.e. without search) outperforms the
Prolog version, so no penalty is incurred (actually, performance is increased) when syntactic
embeddability tests are run in our equational implementation.

10° - |—o— Prolog < E

| | —o—Maude 33" 27938]

100

g I]
o 103 E
.é F 302 g
i 143 |

102 | El
O 5%
7 66]

I 34]
e

102 10° 10*
Term size

FIGURE 4.10: Comparison of < in Prolog vs. é’g,“””’ for the NatList example (no axioms in
goals)

. o < order-+sml < kinds-+sml
Finally, Table 4.4 evaluates the two optimizations <5 o and 4 5 s separately as

well as their combination with respect to our best implementation of order-sorted equational

embedding, ﬂ’,‘;s’”l. In order to identify the optimization that achieves the best improvement,
we have chosen eight pairs of terms 7'1 and 72 of (increasingly) equal size (1000, 5000, 10000,
and 50000) and such that the embedding test fails because either (i) kinds(T1) Z kinds(T2)

although T2 £ T'1 or (ii) kinds(T1) C kinds(T2) but T2 <p T1. In case (i), the optimization

v kinds+sml « sml v order+sml
<p is enabled and the failure is anticipated without running <, whereas <

fruitlessly checks its pruning condition 72 <p T'1 and then runs é;ml anyway. In case (ii), the

optimization é’;"”d””’” fruitlessly checks its pruning condition kinds(T'1) Z kinds(T2) and then

< sml ... vord [. . . -
runs il};m anyway, whereas the optimization ﬁlo; erom is enabled and the failure is anticipated

. . ~ kosml . v sml .
“4For this comparison, note that < Bmm boils down to gl}m since Prolog terms are unsorted and functors obey no

axioms, hence no optimization based on sorts or term order is applicable.
5To avoid any bias, we took the Prolog code for the homeomorphic embedding of the ECCE system [Leuschel
et al. 1998] that is available at https://github.com/leuschel/ecce, and we run it in SWI-Prolog 7.6.3.

66 Order-sorted Homeomorphic Embedding modulo Combinations of A and/or C Axioms

without running é;;ml. Our figures reveal that the penalty that is incurred by checking the pruning

condition of ﬁ;rderﬂml is slightly worse than for ﬁ’;’”"“’“’"l, with the difference being more

. ord !
evident as terms grow (e.g., it takes twice as long for the term size of 5000: 580 ms in gg’ erom

versus 330 ms in é’g”"”""’). This justifies our final choice to first check kinds(T'1) kinds(T2)
and then eventually 72 <p T'1 in the definition of the optimal embedding relation formulation,

< kosml . .
< Bmm , which achieves the best overall speedup.

Chapter 5

ACUOS?: A High-performance System
for Modular ACU Generalization with
Subtyping and Inheritance

Computing generalizations is relevant in a wide spectrum of automated reasoning areas where
analogical reasoning and inductive inference are needed, such as analogy making, case-based
reasoning, web and data mining, ontology learning, machine learning, theorem proving, pro-
gram derivation, and inductive logic programming, among others [Armengol 2007; Muggleton
1999; Ontandén and Plaza 2012].

In this chapter, we present ACUOS?, a highly optimized implementation of the order-sorted
ACU least general generalization algorithm formalized in [Alpuente et al. 2014b]. ACUOS? is a
new, high-performance version of a previous prototype called ACUOS [Alpuente et al. 2014a].
ACUOS? runs up to five orders of magnitude faster than ACUOS and is able to solve complex
generalization problems in which ACUOS fails to give a response. Both systems are written in
Maude [Clavel et al. 2007], a programming language and system that implements rewriting logic
[Meseguer 1992] and supports reasoning modulo algebraic properties, subtype polymorphism,
and reflection. However, ACUOS was developed with a strong concern for simplicity and does
not scale to real-life problem sizes, such as the biomedical domains often addressed in inductive
logic programming and other Al applications, with a substantial number of variables, predi-
cates and/or operators per problem instance. Scalability issues were not really unexpected since
other equational problems (such as equational matching, equational unification, or equational
embedding) are typically much more involved and costly than their corresponding “syntactic”
counterparts, and achieving efficient implementations has required years of significant investi-
gation effort.

In Section 5.1 we briefly summarize the problem of generalizing two (typed) expressions in
theories that satisfy any combination of associativity (A), commutativity (C) and unity axioms
(U). Section 5.2 explains the main functionality of the ACUOS? system and describes the novel
implementation ideas and optimizations that have boosted the tool performance. A nontrivial
application of equational generalization to a biological domain is described in Section 5.3. An
in-depth experimental evaluation of ACUOS? is given in Section 5.4. Finally, in Section 5.5 we
briefly discuss some related work.

68 ACUOS?: A High-performance System for Modular ACU Generalization

5.1 Least General Generalization modulo A, C, and U

Computing a least general generalization (1gg) for two expressions #; and ¢, means finding the
least general expression ¢ such that both #; and #, are instances of ¢ under appropriate substitu-
tions. For instance, the expression olympics(X,Y) 1is a generalizer of both
olympics(1900,paris) and olympics(2024,paris) but their least general generalizer, also
known as most specific generalizer (msg) and least common anti-instance (Icai), is
olympics(X,paris).

Syntactic generalization has two important limitations. First, it cannot generalize common
data structures such as records, lists, trees, or (multi-)sets, which satisfy specific premises such
as, e.g., the order among the elements in a set being irrelevant. Second, it does not cope with
types and subtypes, which can lead to more specific generalizers.

Consider the predicates connected, flights, visited, and alliance among cities, and
let us introduce the constants rome, paris, nyc, bonn, oslo, rio, and ulm. Assume that the
predicate connected is used to state that a pair of cities C1;C2 are connected by transportation,
with “;” being the unordered pair constructor operator so that the expressions
connected(nyc;paris) and connected(paris;nyc) are considered to be equivalent modulo
the commutativity of “;”. The expressions connected(nyc;paris) and
connected(paris;bonn) can be generalized to connected (C;paris), whereas the syntactic
least general (or most specific) generalizer of these two expressions is connected (C1;C2).

Similarly, assume that the predicate £1ights(C,L) is used to state that the city C has direct
flights to all of the cities in the list L. The list concatenation operator *“.” records the cities'
in the order given by the travel distance from C. Due to the associativity of list concatenation,
ie.,(X.Y).Z = X.(Y.Z), we can use the flattened list rio.paris.oslo.nyc as a very compact
and convenient representation of the congruence class (modulo associativity) whose members
are the different parenthesized list expressions ((rio.paris).oslo).nyc, (rio.(paris.
oslo)).nyc, rio.(paris. (oslo.nyc)), etc. Then, for the expressions flights (rome,
paris.oslo.nyc.rio) and flights(bonn,ulm.oslo.rome), the least general generalizer
is flights(C,L1.0slo.L2), which reveals that oslo is the only common city that has a di-
rect flight from rome and bonn. Note that f1ights(C,L1.0slo.L2) is more general (mod-
ulo associativity) than flights(rome,paris.oslo.nyc.rio) by the substitution {C/rome,
L1/paris, L2/(nyc.rio)} and more general than flights(bonn,ulm.oslo.rome) by the
substitution {C/bonn, L1/ulm, L2/rome}.

Due to the equational axioms ACU, in general there can be more than one least general
generalizer of two expressions. As a simple example, let us record the travel history of a
person using a list that is ordered by the chronology in which the visits were made; e.g.,
visited(paris.paris.bonn.nyc) denotes that paris has been visited twice before visiting
bonn and then nyc. The travel histories visited(paris.paris.bonn.nyc) and visited(bonn.
bonn.rome) have two incomparable least general generalizers: (a) visited(L1.bonn.L2) and
(b) visited(C.C.L), meaning that (a) the two travelers visited bonn, and (b) they consecutively
repeated a visit to their own first visited city. Note that the two generalizers are least general and
incomparable, since neither of them is an instance (modulo associativity) of the other.

Furthermore, consider the predicate alliance(S) that checks whether the cities in the set
S have established an alliance. We introduce a new operator “&” that satisfies associativity,
commutativity, and unit element @; i.e., X & 0@ = Xand ® & X = X. We can use the flattened,

LA single city is automatically coerced into a singleton list.

ACUOS?: A High-performance System for Modular ACU Generalization 69

multi-set notation alliance(nyc & oslo & paris & rome) as a very compact and conve-
nient representation (with a total order on elements given by the lexicographic order) for the
congruence class modulo ACU whose members are all of the different parenthesized permuta-
tions of the considered cities. Such permutations include as many occurrences of @ as needed,
due to unity [Clavel et al. 2007]. In this scenario, the expressions (i) alliance(nyc & oslo
& paris & rome) and (ii) alliance(bonn & paris & rio & rome) have an infinite set of
ACU generalizers of the form alliance(paris & rome & S1 & --- & Sn) yet they are all
equivalent modulo ACU-renaming” so that we can choose one of them, typically the smallest
one, as the class representative.

Regarding the handling of types and subtypes, let us assume that the constants rome, paris,
oslo, ulm, and bonn belong to type European and that nyc and rio belong to type American.
Furthermore, let us suppose that European and American are subtypes of a common type City
that, in turn, is a subtype of the type Cities that can be used to model the typed version of
the previous ACU (multi-)set structure. Subtyping implies automatic coercion: for instance, a
European city also belongs to the type City and Cities. Note that the empty set, denoted by the
unity @, only belongs to Cities.

In this typed environment, the above expressions (i) and (ii) have only one typed ACU
least general generalizer alliance(paris & rome & Cl:American & C2:European) that
we choose as the representative of its infinite ACU congruence class. Note that alliance (paris
& rome & S:Cities) is not a least general generalizer since it is strictly more general; it suf-
fices to see that the typed ACU-lgg above is an instance of it modulo ACU with substitution
{S:Cities/(Cl:American & C2:European)}.

For a discussion on how to achieve higher-order generalization in Maude we refer to [Alpuente
et al. 2014a].

5.2 ACUOS?: A High Performance Generalization System

ACUQS? is a new, totally redesigned implementation of the ACUOS system presented in
[Alpuente et al. 2014a] that provides a remarkably faster and more optimized computation of
least general generalizations. Generalizers are computed in an order-sorted, typed environment
where inheritance and subtype relations are supported modulo any combination of associativity,
commutativity, and unity axioms.

Both ACUOS and ACUOS? implement the generalization calculus of [Alpuente et al. 2014b]
but with remarkable differences concerning how they deal with the combinatorial explosion of
different alternative possibilities; see [Pottier 1989] for some theoretical results on the complex-
ity of generalization. Consider the generalization problem

A
connected(paris;bonn) = connected(bonn;paris)

that is written using the syntax of [Alpuente et al. 2014b]. ACUOS already includes some op-
timizations but follows [Alpuente et al. 2014b] straightforwardly and decomposes this problem
(modulo commutativity of “;") into two simpler subproblems:

A A A A
(P)) paris =bonnAbonn =paris (P,) paris = parisAbonn = bonn

2j.e., the equivalence relation ~4¢y; induced by the relative generality (subsumption) preorder <cy, i.e., s Racy t

iff s <pcp t and t <pcp s.

70

ACUOS?: A High-performance System for Modular ACU Generalization

According to [Alpuente et al. 2014b], both are explored non-deterministically even if only the
last subproblem would lead to the least general generalization. Much worse, due to axioms and
types, a post-generation, time-expensive filtering phase is necessary to get rid of non-minimal
generalizers. We have derived four groups of optimizations: (a) avoid non-deterministic explo-
ration; (b) reduce the number of subproblems; (c) prune non-minimal paths to anticipate failure;
and (d) filter out non-minimal solutions more efficiently.

(a)

(b)

(©

(d)

While ACUOS directly encoded the inference rules of [Alpuente et al. 2014b] as rewrite
rules that non-deterministically compute generalizers by exploring all branches of the
search tree in a don’t-know manner, i.e., each branch potentially leads to a different
solution, ACUOS? smartly avoids non-deterministic exploration by using synchronous
rewriting [Baader and Nipkow 1998], also called maximal parallel rewriting, that allows
ACUOS? to keep all current subproblems in a single data structure, e.g. P | Py |---| P,
where all subproblems are simultaneously executed, avoiding any non-deterministic ex-
ploration at all. Synchronous rewriting is achieved in Maude by reformulating rewrite
rules as oriented equations and, thanks to the different treatment of rules and equations in
Maude [Clavel et al. 2007], the deterministic encoding of the inference rules significantly
reduces execution time and memory consumption. Also, built-in Maude memoization
techniques are applied to speed up the evaluation of common subproblems, which can
appear several times during the generalization process.

Enumeration of all possible terms in a congruence class is extremely inefficient, and
even nonterminating when the U axiom is considered. Therefore, it should not be used
to effectively solve generalization problems when A, AC, or ACU axiom combinations
are involved. For instance, if f is AC, the term f(ai,f(az,..., f(an—1,an),...)) has
(2n—2)!/(n—1)! equivalent combinations; this number may grow exponentially for
generalization problems that contain several symbols obeying distinct combinations of
axioms.

ACUQS? avoids class element enumeration (specifically the expensive computation of
argument permutations for AC operators). Instead, it relies on the extremely efficient
Maude built-in support for equational matching to decompose generalization problems
into simpler subproblems, thereby achieving a dramatic improvement in performance.

It is extremely convenient to discard as early as possible any generalization subprob-
lem that will not lead to a least general generalization. For example, trivial generaliza-

. A . . .
tion problems such as paris = paris are immediately solved once and for all without
any further synchronous rewrite. Similarly, dummy generalization problems with sin-

. . A . . .
gle variable generalizers such as nyc = paris are solved immediately. However, note

that paris.oslo 2 nyc.oslo is not a dummy problem. ACUOS? also checks whether a
subproblem is more general than another during the whole process, discarding the more
general one. For instance, P; above contains two dummy subproblems and P, above con-
tains two trivial subproblems, which safely allows ACUOS? to discard P; as being more
general than P;.

Getting rid of non-minimal generalizers commonly implies too many pairwise compar-
isons, i.e., whether a generalizer /; is an instance modulo axioms of a generalizer [, or
vice versa. Term size is a very convenient ally here since a term ¢’ being bigger than an-
other term ¢ prevents 7 from being an instance of #'. Note that this property is no longer
true when there is a unit element. For instance, alliance(nyc & rome & S1:Cities &
S2:Cities) is bigger (modulo ACU) than alliance(nyc & rome & S:Cities); but

ACUOS?: A High-performance System for Modular ACU Generalization 71

the latter is an instance of the former by the substitution {S1/S, S2/0}. Term size can
reduce the number of matching comparisons by half.

The ACUOS? backend has been implemented in Maude and consists of about 2300 lines
of code. It can be directly invoked in the Maude environment by calling the generalization
routine 1ggs (M,t1,t2), which facilitates ACUOS? being integrated with third-party software.
Furthermore, ACUOS? functionality can be accessed through an intuitive web interface that is
publicly available at [ACUOS? Website].

5.3 ACU Generalization in a Biological Domain

In this section, we show how ACUOS? can be used to analyze biological systems, e.g., to extract
similarities and pinpoint discrepancies between two cell models that express distinct cellular
states. We consider cell states that appear in the MAPK (Mitogen-Activated Protein Kinase)
metabolic pathway that regulates growth, survival, proliferation, and differentiation of mam-
malian cells. Our cell formalization is inspired by and slightly modifies the data structures used
in Pathway Logic (PL) [Talcott 2008] —a symbolic approach to the modeling and analysis of
biological systems that is implemented in Maude. Specifically, a cell state can be specified as a
typed term as follows.

We use sorts to classify cell entities. The main sorts are Chemical, Protein, and Complex,
which are all subsorts of sort Thing, which specifies a generic entity. Cellular compartments
are identified by sort Location, while Modification is a sort that is used to identify post-
transactional protein modifications, which are defined by the operator “[-]1” (e.g., the term
[EgfR - act] represents the Egf (epidermal growth factor) receptor in an active state). A
complex is a compound element that is specified by means of the associative ad commutative
(AC) operator “<=>", which combines generic entities together.

A cell state is represented by a term of the form [cellType | locs], where cellType
specifies the cell type® and locs is a list (i.e., an associative data structure whose constructor
symbol is “,”) of cellular compartments (or locations). Each location is modeled by a term of
the form { locName | comp }, where locName is a name identifying the location (e.g., CLm
represents the cell membrane location), and comp is a soup (i.e., an associative and commutative
data structure with unity element empty) that specifies the entities included in that location.
Note that cell states are built by means of a combination of A, AC, and ACU operators. The full

formalization of the cell model is as follows.

fmod CELL-STRUCTURE is
sorts Protein Thing Complex Chemical .
subsorts Protein Complex Chemical < Thing .
op _<=>_ : Thing Thing -> Complex [assoc comm]
ops Egf EgfR Pi3k Gabl Grb2 Hras Plcg Sosl Src : -> Protein .
ops PIP2 PIP3 : -> Chemical .

sort Soup .
subsort Thing < Soup .
op empty : -> Soup .

3For simplicity, we only consider mammalian cells denoted by the constant mce11.

72 ACUOS?: A High-performance System for Modular ACU Generalization

op __ : Soup Soup -> Soup [assoc comm id: empty]

sort Modification .
ops act GTP GDP : -> Modification .
op [_-_] : Protein Modification -> Protein

sort Location LocName Locations .

subsort Location < Locations .

op {_I_} : LocName Soup -> Location .

ops CLc CLm CLi : -> LocName .

op _,_ : Locations Locations -> Locations [assoc]

sorts Cell CellType .
op [_I_] : CellType Locations -> Cell .
op mcell : -> CellType .

endfm

Example 5.1. The term c;

[mcell | { Clc | Gabl Grb2 Plcg Sosl },
{ CLm | EgfR PIP2 },
{ CLi | [Hras - GDP] Src]

models a cell state of the MAPK pathway with three locations: the cytoplasm (CLc) includes five
proteins Gabl, Grb2, Pi3k, Plcg, and Sos1; the membrane (CLm) includes the protein EgfR and
the chemical PIP2; the membrane interior (CL1i) includes the proteins Hras (modified by GDP)
and Src.

In this scenario, ACUOS? can be used to compare two cell states, c; and c,. Indeed, any
ACUOS? solution is a term whose non-variable part represents the common cell structure shared
by c; and ¢, while its variables highlight discrepancy points where the two cell states differ.

Example 5.2. Consider the problem of generalizing the cell state of Example 5.1 plus the fol-
lowing MAPK cell state ¢

[mcell | { CLc | Gabl Plcg Sosl 1,
{ CLm | PIP2 Egf <=> [EgfR - act] },
{ CLi | Grb2 Src [Hras - GDP] +]

For instance, ACUOS? computes (in 4ms) the following least general generalizer

[mcell | { CLc | Gabl Plcg Sosl X1:Soup 1},
{ CLm | PIP2 X2:Thing },
{ CLi | Src X3:Soup [Hras - GDP] }]

where X1:Soup, X2:Thing, and X3:Soup are typed variables. Each variable in the computed
lgg detects a discrepancy between the two cell states. The variable X2:Thing represents a
generic entity that abstracts two distinct elements in the membrane location CLm of the two cell
states. In fact, c¢1’s membrane includes the (inactive) receptor EgfR, whereas c,’s membrane

ACUOS?: A High-performance System for Modular ACU Generalization 73

contains the complex Egf <=> [EgfR - act] that activates the receptor EgfR and binds it
to the ligand Egf to start the metabolic process. Variables X1:Soup and X3:Soup indicate
a protein relocation for Grb2, which appears in the location CLc in ¢ and in the membrane
interior CL1i in cp. Note that the computed sort Soup is key in modeling the absence of Grb2 in
a location, since it allows X1 :Soup and X3:Soup to be bound to the empty soup.

5.4 Experimental Evaluation

To empirically evaluate the performance of ACUOS? we have considered the same generaliza-
tion problems that were used to benchmark ACUOS in [Alpuente et al. 2014a], together with
some additional problems that deal with complex ACU structures such as graphs and biological
models. All of the problems are available online at the tool web site [ACUOS? Website] where
the reader can also reproduce all of the experiments we conducted through the ACUOS? web
interface. Specifically, the benchmarks used for the analysis are: (i) incompatible types, a
problem without any generalizers; (ii) twins, ancestors, spouses, siblings, and children,
some problems borrowed from the logic programming domain which are described in [Alpuente
et al. 2014a]; (iii) only-U, a generalization problem modulo (just) unity axioms, i.e., without
A and C; (iv) synthetic, an involved example mixing A, C, and U axioms for different sym-
bols; (v) multiple inheritance, which uses a classic example of multiple subtyping from
[Clavel et al. 2007] to illustrate the interaction of advanced type hierarchies with order-sorted
generalization; (vi) rutherford, the classical analogy-making example that recognizes the du-
ality between Rutherford’s atom model and the solar system [Gentner 1983]; (vii) chemical, a
variant of the case-based reasoning problem for chemical compounds discussed in [Armengol
2007]; (viii) alliance, the ACU example of Section [5.1]; (ix) graph, the leading example of
[Baumgartner et al. 2018]; and (x) biological, the cell model discussed in Section [5.3].

We tested our implementations on a 3.30 GHz Intel(R) Xeon(R) E5-1660 with 64Gb of
RAM memory running Maude v2.7.1, and we considered the average of ten executions for each
test. Table 5.1 shows our experimental results. For each problem, we show the size (i.e., number
of operators) of the input terms, the computation time (ms.) until the first generalization is
found*, and the number "S of different subproblems that were generated so far, as a measure
of how much the complexity of the problem has been simplified (before the optimizations, the
number of produced subproblems was typically in the thousands for a term size of 100). In many
cases, we cannot compare the time taken by each system to compute the set of all 1ggs, since
the previous prototype ACUOS times out (for a generous timeout that we set to 60 minutes).
Indeed, when we increase the size of the input terms from 20 to 100, the generalization process
in ACUOS stops for most of the benchmarks due to timeout.

Considering the high combinatorial complexity of the ACU generalization problem, our
implementation is highly efficient. All of the examples discussed in [Alpuente et al. 2014a],
except for incompatible types, twins (C), and synthetic (C + AU), fail to produce a
generalization in ACUOS when the problem size is 100, whereas the time taken in ACUOS?
is in the range from 1 to 11067ms (~11s). In all of the benchmarks, our figures demonstrate
an impressive performance boost w.r.t. [Alpuente et al. 2014a]: a speed up of five orders of
magnitude for all of the ACU benchmarks.

4The computation time for the incompatible types benchmark is the same for any input term since we provide
two input terms of incompatible sorts.

74 ACUOS?: A High-performance System for Modular ACU Generalization

. [ACUOS | ACUOS? | Speedup
Benchmark §S | Size Ti(ms) | T2(ms) | x (T1/T2)
.) 0] 20 30 1 30
incompatible types 0| 100 30 1 30
twins (C) 16 20 o ; a
42°[100 | 23934 70 340
ancestors (A) 10 20 - : &
31 | 100 TO 48 >10°
spouses (A) 10 20 e ; >
spouses 31] 100 TO 50 >10°
10| 20 | 531747 5 ~10°
spouses (AU) 61 1 100 TO 30 >10°
— 16| 20 TO] >10°
siblings (AC) 23 | 100 TO 150 >10°
. 2] 20 TO 2 >10°
children (ACU) 39 1100 TO 3451 >10°
9 20 24 2 12
only-U (U) 9 | 100 TO 630 >10°
) 50 20 55 1 55
synthetic (C+AU) 5 100 | 31916 50 038
o 17 [20 TO 10 >10°
multiple inheritance (AC) (—=——55 TO 11067 >10°
5[20 48 1 48
rutherford (AC+A+C) 42 | 100 TO 320 >10°
. 15| 20 112 1 112
chemical (AU) 31 T 100 TO 10 >10°
11| 20 TO 1 >10°
graph (ACU+AU) 31 1 100 TO 1002 >10°
— 2| 20 TO 4 >10°
biological (ACU+AC+A) 1T 100 TO 30 >10°
. 11| 20 TO 1 >10°
alliance (ACU) 31T 100 TO 9159 >10°

TABLE 5.1: Experimental results

5.5 Related work

Related (but essentially different) problems of anti-unification for feature terms have been stud-
ied by [Ait-Kaci and Sasaki 2001], [Armengol 2007], and [Armengol and Plaza 2006]. The
minimal and complete unranked anti-unification of [Baumgartner et al. 2013] and the term graph
anti-unification of [Baumgartner et al. 2018] (together with the commutative extension) are also
related to our work. The unranked anti-unification problems of [Baumgartner et al. 2013, 2018]
can be directly solved by using our techniques for associative anti-unification with the unit el-
ement by simply introducing sorts to distinguish between term variables and hedge variables
(and their instantiations) [Baumgartner et al. 2013]. Conversely, it is possible to simulate our
calculus for associative least general generalization with the unit element in the minimal and
complete unranked anti-unification algorithm of [Baumgartner et al. 2013], but not the rules for
associative-commutative least general generalization with the unit element.

As for the generalization of feature terms, this problem has two main similarities with com-
puting (least general) generalizations modulo combinations of A, C, and U axioms: 1) feature
terms are order-sorted (in contrast to the unsorted setting of unranked term anti-unification);
and 2) there is no fixed order for arguments. However, the capability to deal with recursive,
possibly cyclic data structures such as graphs in ACU anti-unification does not seem to have

ACUOS?: A High-performance System for Modular ACU Generalization 75

its counterpart in feature term anti-unification. Moreover, to generalize theories with a different
number of clauses/equations (or a different number of atoms per clause), feature generalization
algorithms resort to ad hoc mechanisms such as background theories and projections [Gentner
1983], whereas our approach naturally handles these kinds of generalizations by defining oper-
ators that obey the unity axiom.

Chapter 6

A Partial Evaluation Framework for
Order-sorted Equational Programs
modulo Axioms

This chapter focuses on the foundations of our order-sorted equational partial evaluation system,
i.e., the core notions, principles, and algorithms. To the best of our knowledge, this is the first
partial evaluation framework in the literature for order-sorted equational theories that is able to
cope with subsorts, subsort polymorphism, convergent rules (equations), and equational axioms.
We base our partial evaluator, Victoria, on a suitably generalized version of the general NPE pro-
cedure of [Alpuente et al. 1998a], which is parametric w.r.t. the unfolding rule used to construct
finite computation trees and also w.r.t. an abstraction operator that is used to guarantee that
only finitely many expressions are evaluated. For unfolding, we use folding variant narrowing
[Escobar et al. 2012], which is an optimal narrowing strategy for convergent equational theories
that computes most general variants modulo algebraic axioms and is efficiently implemented in
Maude. For the abstraction, we rely on the order-sorted equational least general generalization
recently investigated in [Alpuente et al. 2014b, 2019b]. As in [Alpuente et al. 1996], we follow
the on-line approach to PE that makes control decisions about specialization on the fly, which
is simpler to describe and offers better opportunities for powerful automated strategies than off-
line partial evaluation [Christensen and Gliick 2004; Jones et al. 1993], where decisions are
made before specialization by using abstract data descriptions that are represented as program
annotations. Nevertheless, we are able to tune the power of the specialization by distinguishing
two groups of equatlons the set of equations E that are used for rewriting modulo B and the
set of equatlons G C E that are only used for narrowing modulo B, where both (X, B, E) and
(X,B, G) are convergent.

We introduced the idea in the paper [Alpuente et al. 2017a], but we did not present a fully au-
tomated tool where both a Maude equational program and an initial call were given and the tool
would return the specialized program. In contrast, in this chapter we present a fully automated
mature system that scales up to bigger and more complex specialization problems.

This chapter is organized as follows. In Section 6.1 we briefly discuss some related work.
Section 6.2 formalizes our partial evaluation scheme by generalizing to the order-sorted and
modulo axioms setting the key ingredients of NPE, namely unfolding (based on narrowing),
closedness, homeomorphic embedding, and abstraction (based on generalization). Section 6.3
presents some experiments with the partial evaluator Victoria that implements our technique

78 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

which demonstrate the usefulness of our approach, with some specialized programs running up
to two orders of magnitude (100 times) faster than the original one.

6.1 Related work

Program specialization has been investigated within different programming paradigms and ap-
plied to a wide variety of languages. Among the vast literature on program specialization, the
partial evaluation of functional logic programs is the closest to our work. For the (rewriting-
based) functional logic language Escher, a partial evaluator was described in [Lafave and Gal-
lagher 1998]. The work by Darlington and Pull [Darlington et al. 1991] is the most clear pre-
decessor of narrowing-driven partial evaluation. They proposed the use of narrowing as an al-
ternative to the combination of instantiation and unfolding—in the sense of Burstall and Dar-
lington [Burstall and Darlington 1977]—to perform partial evaluation. Their approach yielded
a partial evaluator for the functional language HOPE extended with unification. For the func-
tional logic language Curry [Hanus 2013], a partial evaluator based on needed narrowing was
first proposed in [Albert et al. 1999]. The most recent partial evaluator for functional logic pro-
grams is described in [Hanus and Peemdoller 2014], which is able to deal with Curry programs
that may contain non—deterministic operations. For a recent discussion regarding the practical
partial evaluation of mainstream languages such as JavaScript, Ruby, and R, see [Wiirthinger
et al. 2017]. Obviously, none of these PE systems can deal with the salient features (subtype
polymorphism and computing modulo axioms) considered in this work.

6.2 Specializing Equational Theories modulo Axioms

In this section, we introduce a partial evaluation algorithm for the decomposition (Z,B,E) of an
equational theory (X,&’), with & = E W B, that is based on computing folding variant narrowing
trees, and we establish the correctness of the transformation system. Our partial evaluation algo-
rithm extends the general NPE procedure of [Alpuente et al. 1998a], which is parametric w.r.t.
an unfolding rule to construct finite derivations for an expression and an abstraction operator
used to guarantee that only finitely many expressions are evaluated.

This section is organized as follows. In Section 6.2.1, we recall the key ideas of the NPE
approach. In Section 6.2.2, we discuss how the specialization of programs that contain sorts,
subsorts, rules, and equational axioms is significantly more elaborate. In Section 6.2.3, we
present the general algorithm for order sorted equational partial evaluation modulo axioms based
on folding variant narrowing. Local termination of the general algorithm is discussed in Sec-
tion 6.2.4, whereas global termination is discussed in Section 6.2.5. In Section 6.2.6, a post-
processing algorithm is presented that gets rid of unnecessary symbols and further optimizes the
program. Finally, in Section 6.2.7, we illustrate our equational NPE framework by specializing
the interpreter of an imperative programming languages w.r.t. some input configurations.

6.2.1 The NPE Approach

Let us illustrate the classical NPE method with the following example that shows its ability
to perform deforestation [Wadler 1990], a popular transformation that neither standard partial
evaluation nor partial deduction can achieve [Alpuente et al. 1998a]. Essentially, the aim of

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 79

deforestation is to eliminate useless intermediate data structures, thus reducing the number of
passes over data.

Example 6.1. Consider the following Maude program that computes the mirror image of a (non-
empty) binary tree, which is built with the free constructor _{_} _ that stores an element as root
above two given (sub-)trees, its left and right children. Note that this is a simple specialization
problem, where the considered program does not contain any equational attributes either for
{}_ or for the operation £1ip defined therein:

fmod FLIP-TREE is

protecting NAT .

sort NatTree .

subsort Nat < NatTree .

var N : Nat

vars R L : NatTree .

op _{_}_ : NatTree Nat NatTree -> NatTree

op flip : NatTree -> NatTree .

eq flip(N) = N [variant]

eq flip(L {N} R) = flip(R) {N} flip(L) [variant]
endfm

By executing in Maude the input term £1ip(£1ip(T)), this program returns the original tree
T back, but it first computes an intermediate, mirrored tree £1ip(T) of T, which is then flipped
again.

flip(£f1ip(T))
£1ip(N) flip(£f1ip(R) {N} £lip(L))
\ \
N flip(flip(L)) {N} flip(flip(R))

FIGURE 6.1: Folding variant narrowing tree for the goal £1ip(£f1ip(T)).

Let us partially evaluate the input term £1ip(£1ip(T)) following the NPE approach. We
compute the folding variant narrowing tree depicted' in Figure 6.1. This tree does not contain,
altogether, uncovered calls in its leaves. Thus, after introducing the new symbol df1ip, we get
the following residual program:

eq dflip(N) = N .
eq dflip(L {N} R) = dflip(L) {N} dflip(R)

which is completely deforested, since the intermediate tree constructed after the first application
of £1ip is not constructed in the residual program using the specialized definition of df1lip.
This is equivalent to the program generated by deforestation [Wadler 1990] but with a much
better’ performance (see Section 6.3). Note that the fact that folding variant narrowing [Esco-
bar et al. 2012] ensures normalization of terms at each step is essential for computing the calls

'We show narrowing steps in solid arrows and rewriting steps in dotted arrows.
2Similarly to [Wadler 1990], the optimal program df1ip(T) = T cannot be produced by our equational NPE
technique.

80 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

flip(£1ip(R)) and £1ip(£1ip (L)) that appear in the rightmost leaf of the tree in Figure 6.1,
which are closed w.r.t. the root node of the tree.

When we specialize programs that contain sorts, subsorts, rules, and equational axioms,
things get considerably more involved, as discussed in the following section.

6.2.2 Partial evaluation of convergent rules modulo axioms

Let us motivate the problem by considering the following variant of the £1ip function of Exam-
ple 6.1 for (binary) graphs instead of trees.

Example 6.2. Consider the following Maude program for flipping binary graphs whose nodes
may contain explicit, left and right references (pointers) to their child nodes in the graph. We
use symbol # to denote an empty pointer. The BinGraph constructor _;_ obeys associativity,
commutativity, and identity (ACU) axioms so that it can be seen as a multiset of nodes {R1 I
R2}, with R1 and R2 being references and 1 the node identifier. We provide for an unbounded
number of (natural) node identifiers by establishing the subsort relation Nat < Id.

fmod GRAPH is
sorts BinGraph Node Id Ref .
subsort Node < BinGraph .
subsort Id < Ref .
op {___} : Ref Id Ref -> Node .
op mt : -> BinGraph .

op _;_ : BinGraph BinGraph -> BinGraph [assoc comm id: mt]
op # : -> Ref . --- Void pointer

ops 01234 : ->1Id.

var I : Id .

vars R1 R2 : Ref .
var BG : BinGraph .
endfm

We are interested in flipping a graph and define a function £1ip that takes a binary graph and
returns the flipped graph.

op flip : BinGraph -> BinGraph .
eq [E1] : flip(mt) = mt [variant]
eq [E2] : flip({R1 I R2} ; BG) = {R2 I R1} ; flip(BG) [variant]

We can represent the graph shown on the left-hand side of Figure 6.2 as the following term
g of sort BinGraph:

{102} ; {#1#r; {324} ; {#34} ; {# 4 0}
By invoking £1ip(g), the graph shown on the right-hand side of Figure 6.2 is computed.

In order to specialize the previous program for the call £1ip(£1ip(BG)), we need several
PE ingredients that have to be generalized to the corresponding (order—sorted) equational no-
tions: (i) equational closedness, (ii) equational embedding, and (iii) equational generalization.
These notions are discussed in the following sections.

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 81

FIGURE 6.2: A binary graph (left) and its flipped version (right).

6.2.3 Equational closedness and the generalized Partial Evaluation scheme

In order to extend the NPE approach to equational theories (Z,B,E), we need to start by con-
structing a finite (possibly partial) (E,B)—narrowing tree for the input call ¢ using the folding
variant narrowing strategy [Escobar et al. 2012], and then extracting the specialized rules to = r
(resultants) for each narrowing derivation ~" _ r in the tree. In order to guarantee that all

[Ed)

possible executions for 7 in the original program (Z,B,E) are covered by the specialization, we
need to formalize an extended notion of closedness ensuring that any (E , B)-narrowable subterm
in the leaves of the tree can also be narrowed modulo B in the specialized rules. This ensures
that resultants form a complete description covering all calls that may occur at run-time.

Let us define a general notion of equational closedness which relies on subsumption modulo
B for theories whose function symbols (both defined and constructor symbols) can obey a set B
of equational axioms.

Definition 6.1 (Equational Closedness). Let (Z,B,E) be an equational theory decomposition
and Q be a finite set of X-terms, i.e., terms that are built from ¥ and a countably infinite set of
variables 2. Assume the signature ¥ splits into a set & of defined function symbols and a set
% of constructor symbols, so that ¥ = 2 W ¢. We say that a Z-term ¢ is closed modulo B (w.r.t.
Q and X), or simply B—closed, if closedp(Q,t) holds, where the predicate closedp is defined as
follows:

true ifte &
closedg(Q,t1) \...Nclosedp(Q,t,) ift=c(ty),c€€,n>0
closedp(Q,t) < ¢ Npsreocloseds(Q,t) if 3¢ € 0,36 such that
root(t) = root(q) € & and
q0 =pt

A set T of terms is closed modulo B (w.r.t. Q and) if closeds(Q,t) holds for each z in T'. A set
R of rules is closed modulo B (w.r.t. Q and X)) if the set that can be formed by taking the right-
hand sides of all of the rules in R also is closed modulo B. We often omit £ when no confusion
can arise.

Example 6.3. In order to partially evaluate the program in Example 6.2 w.r.t. the input term
flip(£f1ip(BG)), we ser Q = {£f1ip(£1ip(BG))} and start by constructing the folding variant
narrowing tree that is shown® in Figure 6.3.

3To ease reading, the arcs of the narrowing tree are labelled with the corresponding equation applied at each
narrowing step.

82 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

When we consider the leaves of the tree, we identify two requirements for Q-closedness,
with B being ACU: (i) closedg(Q,t,) with t; = mt and (ii) closedp(Q,t;) withty = {R1 I R2}
; £lip(£1ip(BG?)). The call closedp(Q,t)) holds straightforwardly (i.e., it is reduced to true)
since the mt leaf is a constant and cannot be narrowed. The call closedp(Q,t;) also returns true
because {R1 I R2} is a flat constructor term and £1ip (£1ip(BG’)) is a (syntactic) renaming
of the root of the tree.

We now show an example that requires using B-matching in order to ensure equational
closedness modulo B.

flip(f1ip(BG))
\
e @
/[BGH'“} {R1 I R2} ; BG’}
T~
flip(mt) flip({R2 I R1} ; flip(BG’))
[E1] [E2]
v v
mt {R1 I R2} ; flip(£1ip(BG’))

FIGURE 6.3: Folding variant narrowing tree for the goal £1ip(£1ip(BG)).

Example 6.4. Let us introduce a new sort BinGraph? to encode bogus graphs that may contain
spurious nodes in a supersort 1d? and homomorphically extend the rest of symbols and sorts.
For simplicity, we just consider one additional constant symbol e of sort 1d7.

sorts BinGraph? Id? Node? Ref? .

subsorts BinGraph Node? < BinGraph? .
subsort Node < Node? .

subsort Id < Id? .

subsorts Ref Id? < Ref? .

op e : -> 147 .

op {___} : Ref? Id? Ref? -> Node? .

op _;_ : BinGraph? BinGraph? -> BinGraph? [assoc comm id: mt]
vars I I1 : Id . var 17 : Id4d7? .

vars R1 R2 : Ref . vars R17 R27 : Ref? .
var BG : BinGraph . var BG? : BinGraph? .

Let us consider a function £ix that receives an extended graph BG?, an unwanted node 17, and
a new content 1, and that traverses the graph replacing 17 by 1.

op fix : Id Id? BinGraph? -> BinGraph .
eq [E3] : fix(I, I?, {R1? I? R27} ; BG?) =
fix(I, I?, {R1? I R2?7} ; BG?) [variant]
eq [E4] : fix(I, I7, {I? I1 R27} ; BG?) =
fix(I, I?, {I I1 R27} ; BG?) [variant]
eq [E5] : fix(I, I?7, {R1? I1 I?} ; BG?) =
fix(I, I?, {R1? I1 I} ; BG?) [variant]
eq [E6] : fix(I, I?, BG) = BG [variant]

For example, consider the following term t of sort BinGraph?:

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 83

{#t1e}; {e0#}; {e e 3 ; {e 3#}

that represents the graph shown on the left-hand side of Figure 6.4. By invoking £ix(2, e,
1), we can fix the graph t, by computing the corresponding transformed graph shown on the
right-hand side of Figure 6.4, where the unwanted node e has been replaced.

/’ va
s 0

3 3

N <— —

FIGURE 6.4: Fixing a graph.

Now assume we want to specialize the above function £ix w.r.t. the input term £ix(2, e,
{R1 I R2} ; BG?), that is, a bogus graph with at least one non-spurious node {R1 I R2}
(it is non-spurious because of the sort of variable 1). Following the proposed methodology,
we set Q = {fix(2, e, {R1 I R2} ; BG?)} and start by constructing the folding variant
narrowing tree shown in Figure 6.5.

fix(2, e, {R1 I R2} ; BG?)

\ -
{BG? — BG}
\

i3] 5] ,{R1IR2}: BG

{BG?7 ~ {R1?7’> e R27°} ; BG?’} {BG? — {R1?7’ I1 e} ; BG?
[E4]
{BG? — {e I1 R27’}; BG?’}

fix(2, e, {R17> 2R27°} ; fix(2, e, {R17’> I1 2};
BG?’ ; {R1 I R2}) BG?’ ; {R1 I R2})

fix(2, e, {2 I1 R27°} ;
BG?’ ; {R1 I R2})

FIGURE 6.5: Folding variant narrowing tree for the goal fix(2, e, {R1 I R2} ; BG7).

The right leaf {R1 I R2} ; BG is a constructor term and cannot be unfolded. The first two
branches to the left of the tree are closed modulo ACU with the root of the tree in Figure 6.5.
For instance, for the left leaf

t= fix(2, e, {R17’> 2 R27°} ; BG?’ ; {R1 I R2})

the condition closedp(Q,t) is reduced* to true because t is an instance (modulo ACU) of the
root node of the tree, and the subterm t' =({R1?’> 2 R27’} ; BG?’) occurring in the corre-
sponding ACU -matcher is a constructor term. The other branches can be proved ACU-closed
with the tree root in a similar way.

“4Note that this is only true because pattern matching modulo ACU is used for checking closedness.

84 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

Example 6.5 (Example 6.4 continued). Now let us assume that the function £1ip of Example 6.1
is replaced by the following definition extended to (bogus graphs of sort) BinGraph?, where the
former equation E2 is an instance of the new equation E2a:

op flip : BinGraph? -> BinGraph? .
eq [Elx] : flip(mt) = mt [variant]
eq [E2a] : flip({R1? I R27} ; BG?)
eq [E2b] : flip({R17 I? R27} ; BG?)

{R27 I R17} ; flip(BG?) [variant]
{R2? I? R17} ; flip(BG?) [variant]

We specialize the whole program containing functions flip and fix w.rt. input term
flip(£fix(2, e, f1ip(BG))), that is, take a graph BG, flip it, then fix any occurrence of
nodes e, and finally flip it again. The corresponding folding variant narrowing tree is shown in
Figure 6.6. Unfortunately this tree does not represent all possible computations for (any ACU -
instances of) the input term, since the narrowable redexes occurring in the tree leaves are not
a recursive instance of the only partially evaluated call so far, £1ip(£ix(2, e, £1lip(BG))).
That is, the term

flip(fix(2, e, flip(BG’) ; {R2 I R1}))

in the rightmost leaf is not ACU-closed w.r.t. the root node of the tree. As in NPE, we need to
introduce a methodology that recurses (modulo B) over the structure of the terms to augment
the set of specialized calls in a controlled way, so as to ensure that all possible calls are covered
by the specialized program.

flip(£fix(2, e, flip(B®)))

_— T~

[E1x] [E2x]
{BG—mt} {BG—BG> ; {R1 I R2}}
flip(fix(2, e, mt)) flip(fix(2, e, flip(BG’) ;
{R2 I R1}))
[E6)
v
flip(mt)
[E1x]
v
mt

FIGURE 6.6: Folding variant narrowing tree for the goal f1ip(fix(2, e, £1ip(BG))).

We are now ready to formulate the backbone of our partial evaluation methodology for
equational theories that crystallize the ideas of the example above. We define a generic algorithm
(Algorithm 1) that is parameterized by:

1. a narrowing relation (with narrowing strategy .%’) that constructs search trees,

2. an unfolding rule that determines when and how to terminate the construction of the trees,
and

3. an abstraction operator that is used to guarantee that the set of terms obtained during
partial evaluation (i.e., the set of deployed narrowing trees) is kept finite.

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 85

Algorithm 1 Partial Evaluation for Equational Theories

Require:
An order-sorted rewrite theory #Z = (X, B, E) and a set of terms Q to be specialized in #
Ensure:
A set Q' of terms s.t. UNFOLD(Q',%,.) is closed modulo B w.r.t. Q'
1: function EQNPE(Z,0,.7)
2 Q = QxLEB
3 repeat
4: 0 =0
5: % « UNFOLD(Q', Z,.7)
6 0 < ABSTRACT(Q',.Z,B)
7 until O’ =3 O
8 return O’

Note that, by using the notion of decomposition, the partial evaluation of an equational
theory (X, E WB) can be seen as a particular case of this parameterized algorithm that is defined
for rewrite theories (Z,B,E), and we prefer to keep it generic for further instantiations of this
algorithm to deal with more complex rewrite theories.

Informally, the algorithm proceeds as follows. Given the input theory % and the set of terms
0O, the first step consists in applying the unfolding rule UNFOLD(Q,Z#,.¥’) to compute a finite
(possibly partial) narrowing tree in % for each term ¢ in Q and return the set .Z of the (nor-
malized) leaves of the tree. Then, instead of proceeding directly with the partial evaluation of
the terms in .Z, an abstraction operator ABSTRACT(Q,.%, B) is applied that properly combines
each uncovered term in . with the (already partially evaluated) terms of Q so that the infinite
growing of Q is avoided. The abstraction phase yields a new set of terms which may need further
specialization, and, thus, the process is iteratively repeated while new terms are introduced.

Note that Algorithm 1 does not explicitly compute a partially evaluated theory #Z’ = (X, B, E').
It does so implicitly, by computing the set Q" of partially evaluated terms (that unambiguously
determine E’ as the set Ry 4 of resultants 10 = r associated to the root-to-leaf derivations

t M:; 7 Iin the tree, with 7 in Q'), such that the closedness condition for £/ modulo B w.r.t. Q'

is satisfied.

For the correctness of Algorithm 1, we require any instance of the generic abstraction oper-
ator ABSTRACT(Q,.%, B) to agree with the following definition.

Definition 6.2 (Equational Abstraction). Given the finite set of terms 7" and the already evalu-
ated set of terms Q, ABSTRACT(Q, T, B) returns a new set Q' such that:

1. if v € @, then there exists u € (QUT) such that u), = v8 for some position p and
substitution 6, and

2. forallz € (QUT), 1 is closed with respect to Q' modulo B.

Roughly speaking, condition (1) ensures that the abstraction operator does not “create” new
function symbols (i.e., symbols not present in the input arguments), whereas condition (2) en-
sures that the resulting set of terms “covers" (modulo B) the calls previously specialized and that
equational closedness is preserved throughout successive abstractions.

86 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

There are two correctness issues for a PE procedure: fermination, i.e., given any input goal,
execution should always reach a stage at which there is no way to continue; and (partial) cor-
rectness, i.e., the residual program behaves as the original one for the considered input terms
(provided PE terminates). The basic correctness of the transformation is ensured whenever %’
is closed modulo B w.r.t. ¢, i.e., every call in (the right-hand side of the rules in) %’ is a (recur-
sive) instance (modulo B) of a term in Q.

The following theorem is the main result in this section and establishes that the EQNPE Algo-
rithm 1 reaches the B-closedness condition upon termination, independently from the narrowing
strategy, unfolding rule, and abstraction operator. This is a key property of partial evaluation
frameworks that is necessary to achieve completeness of the specialization.

Lemma 6.3. Ler Z = (3,B,E) be a decomposition of an equational theory (£,&), . a nar-
rowing strategy, and Q a set of terms. If EQNPE(Z, Q,.¥) terminates computing the set Q' of
terms, then: (1) Q is B-closed w.r.t. Q', and (2) also the rules in the resulting partially evaluated
theory %' are B-closed w.r.t. Q.

In order to ensure the termination of the algorithm, the partial narrowing trees must be finite
and the iterative construction of the partial trees must eventually terminate while still guaran-
teeing that the desired amount of specialization is retained and that the equational closedness
condition is reached. In the following section, we recall a simple but useful solution to the
termination problem by introducing appropriate unfolding and abstraction functions that fit the
narrowing strategies described in Chapter 2 for specializing equational theories.

6.2.4 Termination of the PE process

Partial evaluation involves two classical termination problems: the so-called local termination
problem (the termination of unfolding, or how to control and keep the expansion of the nar-
rowing trees finite, which is managed by an unfolding rule), and global termination (which
concerns termination of recursive unfolding, or how to stop recursively constructing more and
more narrowing trees).

The problem of obtaining (sensibly expanded) finite narrowing trees essentially boils down
to define sensible unfolding rules that somehow ensure that infinite unfolding is not performed.
In the following section, we introduce an unfolding rule that attempts to maximize unfolding
while retaining termination. In this thesis, we use the high-performance implementation of
the order-sorted symbolic homeomorphic embedding relation < of [Alpuente et al. 2019b]
that is summarized in Chapter 4, where a comparison of increasingly efficient implementations
of <y can be found. State of the art local control rules based on homeomorphic embedding
do not check for embedding against all previously selected expressions but rather only against
those in its sequence of covering ancestors [Bruynooghe et al. 1991]. This increases both the
efficiency of the checking and whistling later. The following unfolding function makes use of
the embedding relation in a constructive way to produce finite narrowing trees and then extract
the leaves from the trees.

We need the following auxiliary notion. We say that a narrowing derivation & is admissible
w.r.t. <p if and only if it does not contain a pair of comparable narrowing redexes (i.e., rooted
by the same operation symbol) s and ¢, where s precedes ¢ in 2, such that s<t.

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 87

Definition 6.4 (Unfolding function). Given the rewrite theory # = (¥, B, E) and a term £ to be
specialized in Z, we define UNFOLD(#,%,.7), for .’ = VN 2, as the set of terms

Unfold™ (1o, %) = {t, | to ~" t, € VN, (o),
to ~""11,_; is admissible w.r.t. <g and
either Aw : g ~" 1, ~ w € VN%(to)
or tp ~" t, is not admissible w.r.t. <p.}

Given a set Q of terms, we also define UnfoldéB(Q,%) =Ureo Unfoldég(t,%).

Hence derivations are stopped when there is no further folding variant narrowing steps or the
embedding whistle blows.

Example 6.6 (Example 6.5 continued). Consider again the (partial) folding variant narrowing
tree of Figure 6.6. The narrowing redex

t=flip(fix(2, e, flip(BG’) ; {R2 I R1})
in the right branch of the tree embeds modulo ACU the tree root
u=1=£lip(fix(2, e, flip(B&)))
Since the whistle u<gt blows, the unfolding of this branch is stopped.

The following result establishes the termination of the unfolding process.

Theorem 6.5 (Local Termination). Let Z = (X, B,E) be a decomposition of an equational the-
ory (X,EWB) and Q be a finite set of terms. The computation of Unfold=#(Q, %) terminates.

Nontermination of the EQNPE algorithm can be caused not only by the creation of an infinite
narrowing tree but also by never reaching the equational closedness condition. Unlike local
control, which is parametric w.r.t. the decision whether to stop or to proceed with the expansion,
since it is safe to terminate the evaluation at any point, the global control does not allow this
flexibility because we cannot stop the iterative extension of the set Q of partially evaluated
expressions until all function calls in this set are B-closed w.r.t. Q itself.

6.2.5 Global Termination of Equational NPE

For global termination, partial evaluation relies on an abstraction operator to ensure that the it-
erative construction of a sequence of partial narrowing trees terminates while still guaranteeing
that the desired amount of specialization is retained and that the equational closedness condi-
tion is reached. In order to avoid constructing infinite sets, instead of just taking the union of
the set .Z of (possibly non-closed modulo B) terms in the leaves of the tree and the set Q of
specialized calls, the sets Q and .# are generalized. Hence, the abstraction operator returns a
safe approximation A of QU.Z so that each expression in the set QU .7 is closed w.r.t. A. Let
us show how we can define a suitable abstraction operator by using the notion of equational
least general generalization modulo B (Iggp) [Alpuente et al. 2014b] so that we do not lose too

88 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

much precision despite the abstraction. For more sophisticated global control, homeormorphic
embedding can be combined with other techniques such as global trees, characteristic trees, or
trace terms (see, e.g., [Leuschel and Bruynooghe 2002] and its references).

For order—sorted theories, neither more general unifiers (mugs) nor least general generaliz-
ers (lggs) are generally unique, but there are always finite sets of them [Alpuente et al. 2014b].
In [Alpuente et al. 2014b], the notion of least general generalization is extended to work modulo
(order-sorted) equational axioms B, where function symbols can obey any combination of asso-
ciativity, commutativity, and identity axioms (including the empty set of such axioms). Unlike
the untyped case, there is in general no unique lgg in the framework of [Alpuente et al. 2014b],
due to both the order-sortedness and to the equational axioms. Instead, there is always a finite,
minimal and complete set of 1ggs so that any other generalizer has at least one of them as a
B-instance.

Given the current set Q of already specialized calls, in order to augment Q with a new set
T of terms, the abstraction operator ABSTRACT(Q,T,B) of Algorithm 1 is particularized to
an abstraction function that relies on the notion of best matching set (BMS), an order-sorted
equational extension of [Albert et al. 1998] that is aimed at avoiding loss of specialization due
to generalization. The notion of BMS is used in the abstraction process when selecting the most
appropriate terms of Q to be selected for generalizing 7', in the sense of providing least general
generalizations.

Example 6.7. [Albert et al. 1998] Ler Q = { f(g(x)), f(g(a), f(z)} andt = f(g(b)). To compute
the best matching set for t in Q, we first consider the set

W = {lgg({f(g(x)), f(g(b))}),lge({f(g(a)), f(g())}),lgg({f(2), f(g(D))})}
={f(g), f(g(y), f(2)}

Now, the minimally general elements of W are f(g(x)) and f(g(y)), and thus we have BMSg(Q,1)
{f(g(x)), f(g(a))}-

In this thesis, we determine the best matching set for 7 in a set U of terms w.r.t. B, BMSg(U 1),
as follows: for each u; in U, we compute the set W; = lggp({u;,t}) and select the subset M of
minimal upper bounds of the union | J; W;. Then, the term u; belongs to BMSp(U, 1) if at least
one element in the corresponding W belongs to M.

Definition 6.6 (Best Matching Set modulo B). Let U = {uj,...,u,} be a set of terms and ¢
be a term. Given the decomposition (£,B,E) of (X,E W B), consider the sets of terms W; =
{w| w,{61,6:}) € lggp({ui,t})}, fori =1,..,n, and W = |J_; W;. The best matching set
BMSg(U,t) for t in U modulo B is the set of those terms u; € U such that the corresponding Wy
contains a minimally general element w of W under <p, i.e., there is no different element w' in
W (modulo the relation ~p induced by <p) such that w <z w'.

The following example illustrates the above definition.

Example 6.8. Lerr =g(1)® 1D g(Y), U={1D¢g(X),X Dg(l),X DY}, and consider B to
consist of the associativity and commutativity axioms for ®. To compute the best matching set
fortin U, we first compute the sets of Iggp’s of t with each of the terms in U:

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 89

Wi =lggac({g(l) @ 1@g(Y),1@g(X)}) ={{({Z&1},{Z/s(1) ©4(Y)},{Z/s(X)}),
{ZoeW)} {Z/1@g(1),W/Y}{Z/1,W/X})}

W =lggac({g() @ 1@g(Y), X @g(1)}) = {{({Z®g(1)},{Z/¢(1) @(Y)},{Z/X})}

Ws =lggac({g() @ 10g(Y),X@Y)}) = {{Z&W} {Z/1,W/e(1) @ g(Y)} {Z/X,W/Y})}

Now, the set M of minimal upper bounds of the set Wy, UWo, UW3 is M ={Z®1,Z® g(1)} and
thus we have: BMSac(S,t) ={1®g(X),X®g(1)}.

Now we are able to instantiate the function ABSTRACT(Q,T,B) of Algorithm 1 with the fol-
lowing equational abstraction function abs¥#(Q, T) that relies on <z, the notion of best match-
ing set, and equational least general generalization.

Definition 6.7 (Equational Least General Abstraction Function). Let O, T be two sets of terms.
We define abs=#(Q, T) as follows:

abs<5(...abs¥ (0, {t}),.... {t,}) T ={t1,....t,},n>0

0 ifT=0or T={X},withX e &
abs=B(Q,{t1,...,tx}) it T ={t},witht =c(t1,...,t,), c€EE
generalizep(Q, Q' 1) if T ={t},witht = f(t1,...,tn), fED

where Q' = {t' € Q| root(t) = root(t') and t' <t }, and the function generalize is:

generalize(Q,0,t) = QU{r}
generalizep(Q,0',t) = Qifris B-closed w.r.t. Q

generalizeg(Q,Q',t) = abs™#*(Q\ BMSg(Q',1),Q"]5) (otherwise)

where Q"={1| g € BMSg(Q',1),(w,{61,60:}) € lggs({q,1}),x € Pom(6,UB), | € {w,x60;,x6,}}.

Roughly speaking, the equational least general abstraction function proceeds as follows. We
distinguish the cases when the considered term ¢ either: i) is a variable, or ii) is not a variable.
In the first case, the term is simply ignored. In the second case, if ¢ does not B-embed any
term in Q, it is just added. However, if ¢ B-embeds some comparable term in Q, we distinguish
two cases. If is already Q-closed, then it is simply discarded. Otherwise, the given term
is generalized by computing the Iggg of ¢+ w.r.t. each of its best matching terms, say ¢, that
is Iggp(t,q) = (w,{61,0,}), and the abstraction function is recursively applied to add the B-
normalized version of w and of the terms in the matching substitutions 6; and 6,.

The following results establish the correctness and termination of the equational least general
abstraction function.

Proposition 6.8. The function abss of Definition 6.7 is an abstraction operator in the sense of
Definition 6.2.

Theorem 6.9. The equational least general abstraction function abs~? terminates.

Finally, the main result of this section follows from Theorem 6.5 and Proposition 6.8.

90 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

Theorem 6.10 (Global Termination). Algorithm 1 terminates for the unfolding function Unfold =
and the equational least general abstraction function abs=5.

Let us illustrate the use of absZ# in the following specialization problem.

Example 6.9. Let us consider again Example 6.8 and assume Q = {1 @& g(X)} and T =
{g(1) ® 1 ®g(Y)}. The call abs=#(Q,T) invokes

generalizep(0,0',g(1) @ 1dg(Y))

with @' = {1 & g(X)}, which in turn calls abs~#(Q\ BMSp(Q',1),Q"), where

BMSp(Q',t) = {1@g(X)}
Q"= {Zol,Zog(W),g(X),g(1)®g(Y),1®g(Y),1®g(X)}

This in turn calls to abs=*(0,Q"), which amounts to the sequence of imbricated calls

absﬁB(absﬁB(Q,ZEB 1) {Zog(W),8(X),g(1)@g(Y), 1dg(y), 1+8(X)})

and since terms ZH 1,Z® g(W) and g(X) do not embed 1 & g(X), then the three terms are added
vielding the new call

abs“r ({Z&1,Z&g(W),g(X)} {g(1) @ g(Y),1&g(y),1+8(X)})

that returns the set {Z®1,Z® g(W),g(X)} since all three terms g(1) © g(Y),1 ® g(y) and
1+ g(X) are AC-closed. That is, abs<#*(Q,T) ={Z®1,Z®g(W),g(X)}.

Example 6.10 (Example 6.6 continued). Consider again the (partial) folding variant narrow-
ing tree of Figure 6.6 with the leaft = £1ip(£fix(2, e, flip(BG’) ; {R2 I R1})) in the
right branch of the tree and the tree root u = flip(£fix(2, e, flip(BG))). We apply the
equational least general abstraction function with Q = {u} and T = {t}.

Since t is operation-rooted, we call generalizep(Q, Q',t) with Q' = Q, which in turn calls to
abs=#(Q \ BMSacy(Q',1),0"), with BMSacy(Q',t) = Q and Q" = {w,v}, where
w=1=F1ip(£fix(2,e,f1ip(BG) ;BG’)) is the only ACU least general generalization of u and t
and v ={R2’> I’ R1’}. Then the call returns the set {w}. However, this means that the previ-
ous folding narrowing tree of Figure 6.6 is now discarded, since the previous set of input terms
Q = {u} is now replaced by Q' = {w}.

We start from scratch and the tree results for the new call w is shown in Figure 6.7. The right
leaf embeds the root of the tree and is B-closed w.r.t. it. The left leaf mt is a constructor term.
For the middle leaf t" = {R2 I R1} ; flip(Bg’’) the whistle £1ip(Bg’) ucy t" blows
and we stop the derivation. However, it is not B-closed w.r.t. w and we have to add it to the set
Q', obtaining the new set of input terms Q" = {w,£1ip(Bg’’’) }. The specialization of the call
f1ip(Bg’’’) amounts to constructing the folding variant narrowing tree of Figure 6.8, which is
trivially ACU -closed w.r.t. its root.

Example 6.11 (Example 6.10 continued). Since the two trees in Figures 6.7 and 6.8 do represent
all possible computations for (any ACU -instance of) u = £f1lip(£fix(2, e, £1lip(BG))), the
partial evaluation process ends. Actually, u is an instance of the root of the tree in Figure 6.7
with {Bg’ +— mt} because of the identity axiom. The computed specialization is the set Q"

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 91

Now we can extract the set of resultants tG = r associated to the root-to-leaf derivations in the

two trees, which yields:

eq flip(fix(2, e, flip(mt)))
eq flip(fix(2, e, flip({R1 I
flip(fix(2, e, flip(BG’)

= mt .
R2} ; BG?))) =
; {R2 I R1}))

eq flip(fix(2, e, flip(mt) ; mt)) = mt .

eq flip(fix(2, e, flip(mt) ; BG ; {R1 I R2})) =
{R2 T R1} ; flip(BG)

eq flip(fix(2, e, flip({R1 I R2} ; BG) ; BG’)) =
flip(fix(2, e, flip(BG) ; {R2 I R1} ; BG’))

eq flip(mt) = mt .

eq flip(BG ; {R1 I R2}) = {R2 I R1} ; flip(BG)

flip(fix(2, e, flip(BG) ; BG?’))

/ \ [E2a]

{BG — BG’> ; {R1 I R2},

BG’ ~— BG”’} \
flip(fix(2, e, BG*’?;
f1ip(BG”) ; {R2 I R1}))

[E1x]
(BG—smt, BG —BG*)

flip(£fix(2, e, BG))

[E6]

N
£1ip(BG™)
| T~
[E1x] [E2a]
{B&* {Be” -
mt} BG ; {R1 I R2}}
mt {R2 I R1} ; flip(BG?)

FIGURE 6.7: Folding variant narrowing tree for the goal

flip(fix(2, e, f1ip(BG) ; BG?)).

f1ip(BG**?)

T~

[E1x] [E2a]
{BG» > mt} {BG’»* —BG” ; {R1 I R2}}

mt {R2 I R1} ; flip(BG’”*)
FIGURE 6.8: Folding variant narrowing tree for the goal £1ip(BG*’?).

The reader may have realized that the specialization call f1ip(fix(2,e,f1ip(BG))) should
really return the same term BG, since the variable BG is of sort BinGraph instead of BinGraph?,
ie., flip(fix(2, e, flip(BG))) = BG. The resultants above traverse the given graph and
return the same graph. Though the code may seem inefficient, we have considered this example
because it allows all the different stages of the PE process to be illustrated.

The following example shows how a better specialization program can be obtained.

Example 6.12. Let us now overload the £1ip operator, having simultaneously two declarations
Jor the £1ip symbol that are related in the subsort ordering Bingraph < Bingraph?:

op flip :
op flip :

BinGraph -> BinGraph .
BinGraph? -> BinGraph? .

92 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

and four equations: El, E2, E2a, and E2b. By specializing the call
t = flip(fix(2,e,f1ip(BG))), the subtype definition of £lip allows Maude to simplify
the term t using equation E6, which eliminates the occurrence of the £ix symbol. All the
leaves in the narrowing tree for t, shown in Figure 6.9, are B-closed w.r.t. the set of calls
{f1lip(fix(2,e,f1lip(BG))),flip(f1ip(BG’))}. This leads to the following, optimal spe-
cialized equations:

eq flip(fix(2,e,flip(mt))) = mt .

eq flip(fix(2,e,flip({R1 I R2} ; BG))) = {R1 I R2} ; flip(flip(BG))
eq flip(flip(mt)) = mt .

eq flip(flip({R1 I R2} ; BG)) = {R1 I R2} ; flip(f1lip(BG))

flip(fix(2, e, flip(BG)))

[E6]

v
flip(£f1ip(BG))
o T~
{BG > mt} {BG+~ {R1 I R2} ; BG’}
/ T

flip(mt) flip({R2 I R1} ; flip(BG’))

[E1] [E2]

v v

mt {R1 I R2} ; flip(£f1ip(BG’))

FIGURE 6.9: Folding variant narrowing tree for the goal f1ip(fix(2, e, £1ip(BG))).

The use of (folding) variant narrowing during partial evaluation provides good overall be-
havior regarding both the elimination of intermediate data structures and the propagation of
information. Moreover, the following result establishes that the executability requirements im-
posed on the original theory are preserved by the transformation; e.g., no infinite o diverging
computations are encoded in the residual program.

Theorem 6.11. The PE of a decomposition (£,B,E) is a decomposition.

Furthermore, in the following section, we extend the classical post-processing transforma-
tion [Alpuente et al. 1998a] to the order-sorted case modulo axioms to deliver a final partially
evaluated program without any redundant or undesirable derivation that could not be proven in
the original program.

6.2.6 Post-processing renaming modulo axioms

The basic PE algorithm of Section 6.2 incorporates only the basic scheme of a complete partial
evaluator. The resulting partial evaluations might be further optimized by eliminating redundant
function symbols and unnecessary repetition of variables. Essentially, we introduce a new func-
tion symbol for each specialized term and then replace each call in the specialized program by
a call to the corresponding renamed function.

Definition 6.12 (Independent renaming [Alpuente et al. 1998a]). An independent renaming p
for a set of terms 7 is a mapping from terms to terms defined as follows: for ¢t € T with root(t) =

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 93

f being a function symbol, p(t) = f;(X,), where X, are the distinct variables in # in the order of
their first occurrence and f; is a new function symbol, which does not occur in & or T and is
different from f and the root symbol of any other p(¢'), with #' € T and ' # . By abuse, we let
p(T) denote the set T = {p(t) |t € T}.

The renaming post-processing can be formally defined as follows.

Definition 6.13 (Post-partial evaluation). Let T a finite set of terms and %’ the (rewrite theory
computed as a) partial evaluation of the rewrite theory Z w.r.t. T s.t. #Z' is T-closed modulo B.
Let p be an independent renaming for 7. We define the post-partial evaluation #” of #Z w.r.t. T
(under p) as follows:

K" =Uier{p(t)0 — reny(r) |10 —re %'}

where the nondeterministic renaming function ren, is defined as follows:

reny(t) =
(1 ifte 2
c(renp(ty)) ift=c(ty), c€€
p(u)6’ if 36,3u € T such thatr =p u6 and
0" = {x > reny,(x0) | x € Zom(6)}
t otherwise

Note that, while the independent renaming suffices to rename the left-hand sides of resultants
(since they are mere instances of the specialized calls), the right-hand sides are renamed by
means of the auxiliary function ren,, which recursively replaces each call in the given expression
by a call to the corresponding renamed function (according to p).

Theorem 6.14. The post-partial evaluation of a decomposition (Z,B,E) is a decomposition.

Finally, we state and prove the strong correctness of our partial evaluation technique. The
proof proceeds essentially as follows. First, we prove the soundness (resp. completeness) of the
transformation, i.e., we prove that, for each answer computed by folding variant narrowing in
the original (resp. specialized) program, there exists a more general answer (modulo B) in the
specialized (resp. original) program. Then, by using the minimality of folding variant narrowing,
we conclude the strong correctness of the method, i.e., the answers computed in the original and
the partially evaluated programs coincide (modulo B).

Theorem 6.15 (Strong Correctness and Completeness of Post-partial Evaluation). Let #Z =
(Z,B,E) be a decomposition of an equational theory (£,E & B), u be a E-term, and Q be a finite
set of E-terms. Let p be an independent renaming of Q, u' = reny(u) and Q' = reny(Q). Let
A= (Z,B,E’) be a partial evaluation of Z w.r.t. Q (under the renaming p). IfE” and u' are
closed modulo B w.r.t. Q', then (MM;,E,B v) € VN (u) if and only if(u’«»’;,E,’B V') € VN3, (u),
where V' =g reny (v).

Example 6.13 (Example 6.12 continued). Consider the following independent renaming for the
specialized calls:

{f1lip(f1ip(BG)) +> dflip(BG), flip(fix(2,e,f1lip(BG))) — £1ix(BG) }

94 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

The post-processing renaming derives the renamed program

eq flix(mt) = mt .

eq flix({R1 I R2} ; BG) = {R1 I R2} ; dflip(BG)
eq dflip(mt) = mt .

eq dflip({R1 I R2} ; BG’) = {R1 I R2} ; dflip(BG’)

that is more efficient and readable than the specialized program before renaming.

6.2.7 Specializing the interpreter of an imperative programming language

As a final example, let us discuss several specializations of the interpreter of an imperative lan-
guage whose implementation as a Maude equational theory is publicly available at the webpage
of our tool, Victoria. The interpreter provides the standard semantics of a simple imperative
language that transforms program configurations P | M, where M belongs to sort Memory and
represents the program memory, and P is an imperative program that may contain assignment
instructions, conditional statements, arithmetic expressions, and loops. For simplicity, the inter-
preter assumes that, in an initial configuration Py | My, the memory M, is initialized with default
values for all the variables in the program Fy and thus it contains pairs [x,v] for each program
variable x in F,.

Consider we want to specialize the interpreter w.r.t. the following input term configuration
x =0 ; if (x = 0) theny := 0 fi ; skip | M

where the Maude variable M stands for an unspecified program memory and is the only logic or
symbolic variable in the input term, whereas program variables x and y are handled as constants
by the interpreter.

Our tool Victoria returns the following extremely specialized version of the interpreter for

the given input term, which can be seen as a compiled version written in Maude

eq x :=0 ; if (x = 0) then y := 0 fi ; skip | M [x,N1] [y,N2]
= skip | M [x,0] [y,0] [variant]
Given the independent renaming

p={“% :=0; if (x = 0) then y := 0 fi ; skip | M"—£1(M),
“skip | M [x,0] [y,0]1”+— f2(M)}

the final, renamed version of the program is

eq f1(M [x,N1] [y,N2]) = £2(M) [variant]

Let us now consider the case when the interpreter is specialized w.r.t. a more interesting config-
uration P | M, where there is a second logic variable N (in addition to M) that appears in P and
belongs to sort Nat of natural numbers.

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 95

X :=2 ;1i:=N;c:=0;
while (i < x) doi :=i+1; c:=c+1iod; skip | M

In this case, Victoria returns the following specialized interpreter

eqx (=2 ;1:=0;c¢c:=0;
while (i < x) doi =1 +1 ; c :=c+1iod;
skip | M [c,N1] [i,N2] [x,N3]
= gkip | M [c,3] [i,2] [x,2] [variant]

eqx :=2;1:=1;c:=0;
while (i < x) doi =i +1 ; c:=c+1iod;
skip | M [c,N1] [i,N2] [x,N3]
= skip | M [c,2] [i,2] [x,2] [variant]

eqx :=2 ;1 :=2+N;c:=0;
while (i < x) doi =1 +1 ; c:=c+1iod;
skip | M [c,N1] [i,N2] [x,N3]
= skip | M [c,0] [i,2 + N] [x,2] [variant]

Given the independent renaming
p={%:=2;1i:=N; ¢c :=0 ;
while (1 < x) doi :=1i+1; c:=c+1iod; skip | M~ £1(N,M),

“skip | M [c,0] [i,N] [x,2]”+— f£2(N,M)}

the final, renamed version of the program is

eq £1(0, M [c,N1] [i,N2] [x,N3]) £f2(0,M) [variant]
eq f1(1, M [c,N1] [i,N2] [x,N3]) f2(1,M) [variant]
eq f1(2 + N, M [c,N1] [i,N2] [x,N3]) = £2(2 + N,M) [variant]

Furthermore, if we make the memory of the previous input configuration more concrete (without
any logic variable M)

Xx =2 ;1 :=N3,; c:=0;
while (i < x) doi =1 +1 ; c :=c+1iod;
skip | [c,0] [i,0] [x,0]

then our tool returns a simpler version of the same specialized program

eq £1(0) = £2(0) [variant]
eq f1(1) = £2(1) [variant]
eq f1(2 + N) = £2(2 + N) [variant]

Note that this specialized program has no axiom, since the memory was defined as a multiset
using an ACU symbol and it has been completely eliminated.

However, consider we specialize the interpreter w.r.t. the following symbolic configuration

96 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

x :=N;i:=0;c:=0;
while (i < x) doi =1 +1 ; c:=c+ 1iod;
skip | [c,0] [i,0] [x,0]

where the logical variable N occurs in the assignment for the program variable x that controls
the number of loop iterations. Then, our tool returns the following specialized version of the
interpreter

eqx :=0;1:=0;c:=0;
while (i < x) doi =1 +1 ; c :=c+1iod;
skip | [c,0] [i,0] [x,0]
= gkip | [c,0] [i1,0] [x,0] [variant]

eqx :=1+N;1:=0;c:=0;

while (i < x) doi (=1 +1 ; c :=c + 1 od;
skip | [c,0] [i,0] [x,0]
=if (i <x) theni =1+ 1 ; c :=c+ i fi;
while (i < x) doi :=i+1; c:=c+1iod;
skip | [c,1] [i,1] [x,1 + N] [variant]
eq if (i <x) theni =1+ 1 ; c:=c+1ifi;
while (i < x) doi =1 +1 ; c:=c+1iod;
skip | [c,N1] [i,N2 + 1 + N3] [x,N2]
= skip | [c,N1] [i,N2 + 1 + N3] [x,N2] [variant]
eq if (1 < x) theni :=1+1 ; c:=c¢c+1ifi;
while (i < x) doi :=i+1; c:=c+1iod;

skip | [c,N1] [i,N2] [x,N2 + 1 + N3]
=if (i1 <x) theni:=1i+1; c:=c+1ifi;

while (i < x) doi :=i+1 ; c:=c+1iod;

skip | [c,N1 + N2] [i,N2 + 1] [x,N2 + 1 + N3] [variant]

Given the independent renaming

p={“% :=N; i :=0; ¢ :=0 ;

while (i < x) doi :=1i+1; c:=c+ 1iod; skip

| [c,0] [i,0] [x,01” = £1(N),
“skip | M [c,N1] [i,N2] [x,N3]” — f2(N1,N2,N3),
“if (1 < x) theni :=1i+1; c :=c + i fi ;

while (i < x) doi :=1i+1; c :=c+1od; skip

| [c,N1] [i,N2] [x,N3]” — £3(N1,N2,N3)}

the final, renamed version of the program is

eq £1(0) = £2(0,0,0) [variant]

eq f1(1 + N) = £3(1,1,1 + N) [variant] .

eq f3(N1,N2 + 1 + N3,N2) = £f2(N1,N2 + 1 + N3,N2) [variant]

eq £3(N1,N2,N2 + 1 + N3) = £3(N1 + N2,N2 + 1,N2 + 1 + N3) [variant]

Note that this specialization does not offer much improvement over the original interpreter, as
expected because the while loop has been unrolled only once.

A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms 97

Interestingly, the specialization time is negligible in all these examples thanks to the (order-
sorted) equational least general generalization of [Alpuente et al. 2019b] and the homeomorphic
embedding modulo equational axioms of [Alpuente et al. 2019a]. This in contrast to our previous
prototype tool in [Alpuente et al. 2017a], which exceeded a generous timeout of several hours
(similar to the specialization times for a comparable language interpreter in [Leuschel et al.
2007]). Furthermore, the size of the specialized program (after renaming) is less than 10% of
the size of the original interpreter.

6.3 Experiments

We have implemented and experimentally evaluated the transformation framework presented in
this section in the automatic Maude partial evaluator Victoria [Victoria Website].

Table 6.1 contains the experiments that we have performed using an Intel Core2 Quad CPU
Q9300(2.5GHz) with 6 Gigabytes of RAM running Maude v2.7 and considering the average of
ten executions for each test. These experiments together with the source code of all examples are
publicly available. We have considered the following four programs: (i) Parser (Example 1.5),
(i) Double-flip (Example 6.1), (iii) Flip-fix (Example 6.2), and (iv) an implementation of the
interpreter for an imperative language (the example discussed in Section 6.2.7). We have also
considered the classical KMP string pattern matcher [Alpuente et al. 1998a]. For all five Maude
programs, we consider input data of three different sizes: one hundred thousand elements, one
million elements, and five million elements. Here elements refer to graph nodes for Double-flip
and Flip-fix, and list elements for Parser and KMP. We have benchmarked three versions of each
program on these data: original program, partially evaluated program (before post-processing
renaming), and final specialization (with post-processing renaming). We do not explicitly show
the specialization times since they are negligible for all problems (< 100 ms.), which means it is
up to 6 orders of magnitude faster than the preliminary prototype tool in [Alpuente et al. 2017a].

Original PE before renaming PE after renaming

Benchmark | Data | Time (ms) | Time (ms) | Speedup | Time (ms) | Speedup
100k 164 39 76,22 33 79,88

Parser M 10.561 411 96,11 348 96,70
M 275.334 2.058 99,25 1.685 99,39

100k 188 143 23,94 76 59,57

Double-flip M 1.636 1.427 12,78 759 53,61
M 8.425 7.503 10,94 4.100 51,34

100k 203 177 12,81 143 29,56

Flip-fix M 1.955 1.778 9,05 1.427 27,01
M 10.185 9.219 9,48 7.458 26,77

100k 401 57 87,79 36 91,02

KMP M 3.872 531 86,29 331 91,45
M 19.932 2.530 87,31 1.661 91,67

1k 5 3 40,00 2 60,00

Interpreter 10k 53 22 22,64 12 41,51
100k 520 248 21,54 112 47,69

TABLE 6.1: Experimental results

98 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

The relative speedups that we achieved thanks to specialization are given in the Speedup col-
umn(s) and computed as the percentage 100 x (OriginalTime — PETime)/Original Time. For all
of the examples, the partially evaluated programs achieve a significant improvement in execu-
tion time when compared to the original program, both with and without renaming, but even
more noticeable after renaming. The average improvement for these benchmarks is 66.5%. Of
course, the bigger input goals give larger speedups. Often, the price paid is the size of the resid-
ual program, which may grow linearly with the size of the specialized call. For the KMP test, the
average improvement is 91.67%. That is, the achieved speedup is 12 (OriginalTime/PETime),
which is comparable to the average speedup of 14 that is achieved by both the CPD-based partial
evaluator ECCE [Jgrgensen et al. 1996] and the PE tool of [Albert et al. 2002] (actually, the gen-
erated residual programs are identical to [Albert et al. 2002] on this benchmark). This indicates
that our new partial evaluation scheme is a conservative extension of previous approaches on
comparable examples.

Moreover, matching modulo axioms such as associativity, commutativity, and identity are
fairly expensive operations that are massively used in Maude, which can sometimes be dras-
tically reduced after specialization. For instance, when we specialized the Parser of Exam-
ple 1.5 using our tool Victoria, as illustrated in Figure 1.7, it moves from a program with ACU
and U-right operators to a program without axioms, as illustrated in Figure 1.8. This transfor-
mation power cannot be achieved by traditional NPE nor competing on-line partial evaluation
techniques, such as conjunctive partial deduction or positive supercompilation [Alpuente et al.
1998b].

Chapter 7

Conclusions

This thesis develops the first partial evaluation framework for order-sorted equational theories.
The formalized scheme supports sorts, subsorts, subsort polymorphism, convergent rules (equa-
tions), and modular combinations of equational axioms. In the following we provide some
concluding remarks and point out directions for future work.

First, we have laid the theoretical foundations for developing the first practical program spe-
cializer for Maude programs. Our specializer implements novel control criteria that ensure both
local and global termination, which required classical partial evaluation notions to be correctly
and efficiently generalized to the equational case; e.g., the order-sorted symbolic homeomorphic
embedding modulo axioms and the order-sorted equational least general generalization that al-
low us to define equational closedness and abstraction. We have presented our implementation
of the narrowing driven equational partial evaluator Victoria and have shown that it achieves a
significant increase in speed on realistic examples. The development of a complete partial eval-
uator for the entire Maude language requires dealing with some features that are not considered
in this work and experimenting with more refined heuristics that maximize the specialization
power. Future implementation work will focus on: (i) extending the Equational NPE framework
to deal with more complex rewrite theories that may include (conditional) rules, equations, and
axioms; and (ii) developing refined heuristics that can lead to further optimizations under mild
assumptions (e.g., based on identifying subtheories that enjoy the finite variant property and
other commonly occurring properties). We believe that advancing current PE research ideas for
order-sorted rewrite theories may open up new opportunities for optimization in rewriting logic
program semantics development frameworks, e.g., [Rusu et al. 2016]. Also, besides serving as a
powerful tool to boost program performance, it will also be a significant driver of new symbolic
reasoning features in Maude and further improvements in Maude’s narrowing infrastructure.

Second, the visualization of program executions has recently received much attention for
program debugging, optimization, profiling, and understanding in symbolic execution frame-
works such as (Concurrent) Constraint Logic Programming [Deransart et al. 2006]. However,
with the exception of GLINTS, no such visualization tool exists for variant narrowing compu-
tations in Maude, let alone one with the capability to reason about equational properties such
as embedding and closedness modulo axioms and the finite variant property. Besides the ap-
plications outlined in this thesis, further applications could benefit from variant generation in
GLINTS. Actually, an important number of applications (and tools) are currently based on vari-
ant generation: for instance, the protocol analyzers Maude-NPA [Escobar et al. 2009a] and
Tamarin [Meier et al. 2013], proofs of coherence and local confluence [Durdn and Meseguer
2012], termination provers [Duran et al. 2009], variant-based satisfiability checkers [Meseguer

100 Conclusions

2018], the partial evaluator Victoria [Alpuente et al. 2017a], and different applications of sym-
bolic reachability analyses [Bae et al. 2013]. As an application example, protocol analysis tools
that rely on variant computation could identify all of the intermediate variant states that are
associated to a concrete protocol state and how one is generated from the other (which is con-
voluted in the output provided by Maude), thereby allowing deep optimizations to cut down the
search space. Indeed, many protocol analysis tools suffer from huge memory problems due to
complex equational theories that generate lots of variants. In order to give support to all these
applications, as future work we plan to address several extensions of GLINTS, such as com-
puting constructor variants [Meseguer 2018] and irredundant variants [Clavel et al. 2016], and
supporting irreducibility constraints [Erbatur et al. 2012].

Third, we have presented ACUOS?, a highly optimized implementation of the order-sorted
ACU least general generalization algorithm formalized in [Alpuente et al. 2014b]. ACUOS? is
a new, high-performance version of its predecessor ACUOS [Alpuente et al. 2014a]. ACUOS?
runs up to five orders of magnitude faster than ACUOS and scales to real-life problem sizes
in which ACUQS fails to give a response, such as the biomedical domains often addressed in
inductive logic programming and other Al applications.

Finally, regarding the homeomorphic embedding it has been extensively used in Prolog, but
it has never been investigated in the context of expressive rule-based languages like Maude,
CafeOBJ, OBJ, ASF+SDF, and ELAN that support symbolic reasoning methods modulo equa-
tional axioms. We have introduced a new equational and order-sorted definition of homeomor-
phic embedding and efficiently implemented in HEMS, our equational homeomorphic embed-
ding checker for Maude, which gives a remarkably good performance for theories with symbols
satisfying any combination of associativity and/or commutativity axioms. We have also com-
pared different definitions of embedding, identifying some key conclusions: (i) definitions of
equational homeomorphic embedding based on (non-deterministic) search in Maude perform
dramatically worse than their equational counterparts and are not feasible in practice; (ii) defini-
tions of equational homeomorphic embedding based on generated theories perform dramatically
worse than meta-level definitions; and (iii) the flattened meta-representation of terms is crucial
for homeomorphic embedding definitions dealing with A and AC operators in order to pay off
in practice. As future work, we plan to extend our results to the case when the equational theory
B may contain the identity axiom, which is non-trivial since B is not class-finite.

Bibliography

ACUOS? Website, 2018. http://safe-tools.dsic.upv.es/acuos2.

H. Ait-Kaci and Y. Sasaki. An axiomatic approach to feature term generalization. In Proc. of
the 12th European Conference on Machine Learning (EMCL 2001), volume 2167 of Lecture
Notes in Computer Science, pages 1-12. Springer, 2001.

E. Albert, M. Alpuente, M. Falaschi, P. Julidn, and G. Vidal. Improving Control in Functional
Logic Program Specialization. In Proc. of the 5th International Symposium on Static Analysis
(SAS 1998), volume 1503 of Lecture Notes in Computer Science, pages 262-277. Springer,
1998.

E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Framework for Curry
Programs. In Proc. of the 6th International Conference on Logic Programming and Auto-
mated Reasoning (LPAR 1999), volume 1705 of Lecture Notes in Computer Science, pages
376-395. Springer, 1999.

E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for Multi-
Paradigm Declarative Languages. Journal of Functional and Logic Programming, 2002,
2002. URL http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/
S02-01/JFLP-A02-01.pdf.

M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven Partial Evaluation of Functional
Logic Programs. In Proc. of the 6th European Symposium on Programming (ESOP 1996),
volume 1058 of Lecture Notes in Computer Science, pages 45-61. Springer, 1996.

M. Alpuente, M. Falaschi, P. Julidn, and G. Vidal. Specialization of Lazy Functional Logic
Programs. In Proc. of the ACM SIGPLAN Conf. on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM 1997), pages 151-162. ACM, New York, 1997a.

M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with conditional
narrowing. In Proc. of the International Conference on Algebraic and Logic Programming
(ALP 1997), volume 1298 of Lecture Notes in Computer Science, pages 1-15. Springer-
Verlag, Berlin, 1997b.

M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs. ACM
TOPLAS, 20(4):768-844, 1998a.

M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional and Logic Program
Specialization. ACM Computing Surveys, 30(3es):9es, 1998b.

M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of inductively sequential
functional logic programs. In Proc. of the fourth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 1999), Paris, France, September 27-29, 1999,

101

http://safe-tools.dsic.upv.es/acuos2
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-01.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-01.pdf

102 Bibliography

pages 273-283. ACM, 1999. ISBN 1-58113-111-9. doi: 10.1145/317636.317910. URL
https://doi.org/10.1145/317636.317910.

M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. ACUOS: A System for Modular ACU
Generalization with Subtyping and Inheritance. In Proc. of the 14th European Conference
on Logics in Artificial Intelligence (JELIA 2014), volume 8761 of Lecture Notes in Computer
Science, pages 573-581. Springer-Verlag, Berlin, 2014a.

M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A Modular Order-sorted Equational Gen-
eralization Algorithm. Information and Computation, 235:98-136, 2014b. doi: 10.1016/j.ic.
2014.01.006. URL https://doi.org/10.1016/j.1ic.2014.01.006.

M. Alpuente, D. Ballis, F. Frechina, and J. Sapifa. Exploring Conditional Rewriting Logic
Computations. Journal of Symbolic Compututation, 69:3-39, 2015. doi: 10.1016/j.jsc.2014.
09.028. URL https://doi.org/10.1016/j.jsc.2014.09.028.

M. Alpuente, D. Ballis, F. Frechina, and J. Sapifia. Assertion-based Analysis via Slicing with
ABETS. 16(5-6):515-532, 2016.

M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Partial Evaluation of Order-
Sorted Equational Programs Modulo Axioms. In Proc. of the 26th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, UK,
September 6-8, 2016, volume 10184 of Lecture Notes in Computer Science, pages 3-20.
Springer, 2017a. doi: 10.1007/978-3-319-63139-4_1. URL https://doi.org/10.1007/
978-3-319-63139-4_1.

M. Alpuente, S. Escobar, J. Sapifia, and A. Cuenca-Ortega. Inspecting maude variants with
GLINTS. Theory and Practice of Logic Programming, 17(5-6):689-707, 2017b. doi: 10.
1017/S147106841700031X. URL https://doi.org/10.1017/5147106841700031X.

M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Homeomorphic embedding
modulo combinations of associativity and commutativity axioms. In Proc. of the 28th In-
ternational Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2018), furt/Main, Germany, September 4-6, 2018, volume 11408 of Lecture Notes in Com-
puter Science, pages 38-55. Springer, 2018. ISBN 978-3-030-13837-0. doi: 10.1007/
978-3-030-13838-7_3. URL https://doi.org/10.1007/978-3-030-13838-7_3.

M. Alpuente, D. Ballis, A. Cuenca, S. Escobar, and J. Meseguer. ACUOS?: A High-performance
System for Modular ACU Generalization with Subtyping and Inheritance. In Proc. of the
19th European Conference on Logics in Artificial Intelligence (JELIA 2019), Rende, Italy,
May 7-11, 2019, volume 11468 of Lecture Notes in Artificial Intelligence, pages 171-181.
Springer, 2019a. doi: 10.1007/978-3-030-19570-0_11. URL https://doi.org/10.1007/
978-3-030-19570-0_11.

M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Order-sorted Homeomorphic
Embedding modulo Combinations of Associativity and/or Commutativity Axioms. 2019b.
Accepted for publication.

M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. A Partial Evaluation Framework
for Order-sorted Equational Programs modulo Axioms. 2019¢c. Submitted for publication.

E. Armengol. Usages of Generalization in Case-Based Reasoning. In Proc. of the 7th Interna-
tional Conference on Case-Based Reasoning (ICCBR 2007), volume 4626 of Lecture Notes
in Computer Science, pages 31-45. Springer-Verlag, 2007. ISBN 978-3-540-74138-1. doi:
10.1007/978-3-540-74141-1_3.

https://doi.org/10.1145/317636.317910
https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.1016/j.jsc.2014.09.028
https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1017/S147106841700031X
https://doi.org/10.1007/978-3-030-13838-7_3
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/978-3-030-19570-0_11

Bibliography 103

E. Armengol and E. Plaza. Symbolic explanation of similarities in case-based reasoning. Com-
puters and Artificial Intelligence, 25(2-3):153-171, 2006.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

F. Baader, W. Snyder, P. Narendran, M. Schmidt-Schauf3, and K. U. Schulz. Unification theory.
In Handbook of Automated Reasoning, volume 2, pages 445-532. Elsevier and MIT Press,
2001. ISBN 0-444-50813-9. doi: 10.1016/b978-044450813-3/50010-2. URL https://
doi.org/10.1016/b978-044450813-3/50010-2.

K. Bae, S. Escobar, and J. Meseguer. Abstract Logical Model Checking of Infinite-State Systems
Using Narrowing. In Proc. of the 24th International Conference on Rewriting Techniques and
Applications (RTA 2013), volume 21 of LIPIcs, pages 81-96. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2013.

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. A variant of higher-order anti-unification.
In Proc. of the 24th International Conference on Rewriting Techniques and Applications (RTA
2013), volume 21 of LIPIcs, pages 113—127. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. Term-graph anti-unification. In Proc. of the
3rd International Conference on Formal Structures for Computation and Deduction, (FSCD
2018), July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 9:1-9:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018. ISBN 978-3-95977-077-4. doi: 10.4230/LIPIcs.
FSCD.2018.9. URL https://doi.org/10.4230/LIPIcs.FSCD.2018.9.

C. Bouchard, K. A. Gero, C. Lynch, and P. Narendran. On Forward Closure and the Finite
Variant Property. In Proc. of the 9th International Symposium on Frontiers of Combining
Systems (FroCos 2013), volume 8152 of Lecture Notes in Computer Science, pages 327-342.
Springer-Verlag, Berlin, 2013.

M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding Infinite
Unfolding during Partial Deduction of Logic Programs. New Generation Comput., 11(1):
117-131, 1991.

H. Biirckert, A. Herold, and M. Schmidt-Schau3. On Equational Theories, Unification, and
(Un)decidability. Journal of Symbolic Computation, 8(1-2):3-49, 1989.

R. Burstall and J. Darlington. A Transformation System for Developing Recursive Programs.
Journal of the ACM, 24(1):44-67, 1977.

C. Cadar and K. Sen. Symbolic execution for software testing: Three decades later. Commun.
ACM, 56(2):82-90, Feb. 2013. ISSN 0001-0782.

W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM, 43(1):20-74, 1996.

A. Cholewa, J. Meseguer, and S. Escobar. Variants of variants and the finite variant property.
Technical report, CS Dept. University of Illinois at Urbana-Champaign, february 2014. URL
http://hdl.handle.net/2142/47117.

N. H. Christensen and R. Gliick. Offline partial evaluation can be as accurate as online partial
evaluation. ACM Trans. Program. Lang. Syst., 26(1):191-220, 2004.

https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.4230/LIPIcs.FSCD.2018.9
http://hdl.handle.net/2142/47117

104 Bibliography

M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer
Science, 285(2):245-288, 2002. doi: 10.1016/S0304-3975(01)00360-7. URL https://
doi.org/10.1016/S0304-3975(01)00360-7.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All About
Maude: A High-Performance Logical Framework, volume 4350 of LNCS. Springer-Verlag,
2007.

M. Clavel, F. Duran, S. Eker, S. Escobar, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. L.
Talcott. Unification and Narrowing in Maude 2.4. In Proc. of the 20th International Confer-
ence on Rewriting Techniques and Applications (RTA 2009), Brasilia, Brazil, June 29 - July
1, 2009, volume 5595 of Lecture Notes in Computer Science, pages 380-390. Springer, 2009.

M. Clavel, F. Durén, S. Eker, S. Escobar, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott.
Maude Manual (Version 2.7.1), July 2016. Available at: http://maude.cs.illinois.edu.

H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of some algebraic
properties. In Proc. of the 16th International Conference on Rewriting Techniques and Ap-
plications (RTA 2005), volume 3467 of Lecture Notes in Computer Science, pages 294-307.
Springer, 2005. ISBN 3-540-25596-6.

C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. of the 20th Annual ACM
Symposium on Principles of Programming Languages, pages 493-501. ACM, New York,
1993.

C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E. Volanschi. Tempo: Specializing
systems applications and beyond. ACM Comput. Surv., 30(3es):19, 1998. doi: 10.1145/
289121.289140. URL https://doi.org/10.1145/289121.289140.

W. R. Cook and R. Ldmmel. Tutorial on Online Partial Evaluation. In Proc. of the Work-
ing Conference on Domain-Specific Languages, DSL, (IFIP 2011), Bordeaux, France, 6-8th
September 2011., volume 66 of EPTCS, pages 168—180, 2011.

J. Darlington, Y. Guo, and H. Pull. Constraints unify functional and logic programming. Tech-
nical report, Department of Computing, Imperial College, London, 1991.

P. Deransart, M. V. Hermenegildo, and J. Maluszynski. Analysis and Visualization Tools for
Constraint Programming: Constraint Debugging, volume 1870 of Lecture Notes in Computer

Science. Springer-Verlag, Berlin, 2006. ISBN 978-3-540-40016-5.

N. Dershowitz. A Note on Simplification Orderings. Information Processing Letters, 9(5):
212-215, 1979. ISSN 00200190. doi: 10.1016/0020-0190(79)90071-1.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, pages 243-320. Elsevier, Amsterdam,
1990.

F. Durdn and J. Meseguer. A maude coherence checker tool for conditional order-sorted rewrite
theories. In Proc. of the 8th International Workshop on Rewriting Logic and Its Applications
(WRLA 2010), Held as a Satellite Event of ETAPS 2010, Paphos, Cyprus, March 20-21,
2010, Revised Selected Papers, volume 6381 of Lecture Notes in Computer Science, pages
86-103. Springer, 2010. ISBN 978-3-642-16309-8. doi: 10.1007/978-3-642-16310-4_7.
URL https://doi.org/10.1007/978-3-642-16310-4_7.

https://doi.org/10.1016/S0304-3975(01)00360-7
https://doi.org/10.1016/S0304-3975(01)00360-7
http://maude.cs.illinois.edu
https://doi.org/10.1145/289121.289140
https://doi.org/10.1007/978-3-642-16310-4_7

Bibliography 105

F. Durdn and J. Meseguer. On the Church-Rosser and Coherence Properties of Conditional
Order-sorted Rewrite Theories. 81(7-8):816-850, 2012.

F. Durén, S. S. Lucas, and J. Meseguer. Termination Modulo Combinations of Equational Theo-
ries. In Proc. of the 7th International Symposium on Frontiers of Combining Systems (FroCoS
2009), volume 5749 of Lecture Notes in Computer Science, pages 246-262. Springer Berlin
Heidelberg, 2009.

F. Durén, S. Eker, S. Escobar, N. Marti-Oliet, J. Meseguer, and C. Talcott. Built-in Variant Gen-
eration and Unification, and their Applications in Maude 2.7. In Proc. of the 8th International
Joint Conference on Automated Reasoning (IJCAR 2016), volume 9706 of Lecture Notes in
Computer Science, pages 183—-192. Springer-Verlag, Berlin, 2016.

S. Eker. Associative-commutative matching via bipartite graph matching. The Computer Jour-
nal, 38(5):381, 1995. doi: 10.1093/comjnl/38.5.381. URL +http://dx.doi.org/10.
1093/comjnl/38.5.381.

S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Reasoning, 28
(1):35-51, 2002. doi: 10.1023/A:1020122610698. URL https://doi.org/10.1023/A:
1020122610698.

S. Eker. Associative-Commutative Rewriting on Large Terms. In Proc. of the 14th International
Conference on Rewriting Techniques and Applications (RTA 2003), volume 2706 of Lecture
Notes in Computer Science, pages 14-29. Springer, 2003.

S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch, C. Meadows, J. Meseguer, P. Narendran,
S. Santiago, and R. Sasse. Effective Symbolic Protocol Analysis via Equational Irreducibil-
ity Conditions. In Proc. of the 17th European Symposium on Research in Computer Secu-
rity (ESORICS 2012), volume 7459 of Lecture Notes in Computer Science, pages 73-90.
Springer-Verlag, Berlin, 2012.

A. Ershov. Mixed Computation: Potential Applications and Problems for Study. Theoretical
Computer Science, 18:41-67, 1982.

S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic Protocol Analysis
Modulo Equational Properties. In Foundations of Security Analysis and Design V (FOSAD
2007/2008/2009 Tutorial Lectures), volume 5705 of Lecture Notes in Computer Science,
pages 1-50. Springer-Verlag, Berlin, 2009a.

S. Escobar, J. Meseguer, and R. Sasse. Variant Narrowing and Equational Unification. Electronic
Notes Theoretical Computer Science, 238(3):103-119, 2009b.

S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal variant termina-
tion. J. Log. Algebr. Program., 81(7-8):898-928, 2012.

M. Fay. First Order Unification in an Equational Theory. In Proc of the 4th International Conf.
on Automated Deduction (CADE 1979), pages 161-167, 1979.

J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of the Partial Evaluation
and Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993, pages 88—
98. ACM, New York, 1993.

H. Garavel, M. Tabikh, and I. Arrada. Benchmarking implementations of term rewriting and
pattern matching in algebraic, functional, and object-oriented languages - the 4th rewrite
engines competition. In Proc. of the 12th International Workshop on Rewriting Logic and

+ http://dx.doi.org/10.1093/comjnl/38.5.381
+ http://dx.doi.org/10.1093/comjnl/38.5.381
https://doi.org/10.1023/A:1020122610698
https://doi.org/10.1023/A:1020122610698

106 Bibliography

Its Applications (WRLA 2018), Held as a Satellite Event of ETAPS, Thessaloniki, Greece,
June 14-15, 2018, volume 11152 of Lecture Notes in Computer Science, pages 1-25.
Springer, 2018. ISBN 978-3-319-99839-8. doi: 10.1007/978-3-319-99840-4_1. URL
https://doi.org/10.1007/978-3-319-99840-4_1.

D. Gentner. Structure-Mapping: A Theoretical Framework for Analogy*. Cognitive Science, 7
(2):155-170, 1983. ISSN 1551-6709. doi: 10.1207/s15516709c0g0702_3.

GLINTS Experiments, 2017. http://safe-tools.dsic.upv.es/glints/pages/
experiments. jsp.

GLINTS Quick Start Guide, 2017. http://safe-tools.dsic.upv.es/glints/download/
quickstart.pdf.

GLINTS Website, 2017. http://safe-tools.dsic.upv.es/glints.

R. Gliick and M. Sgrensen. Partial Deduction and Driving are Equivalent. In Proc. of the 7th In-
ternational Symposium on Programming Language Implementation and Logic Programming
(PLILP 1994), volume 844 of Lecture Notes in Computer Science, pages 165-181. Springer,
1994.

J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inher-
itance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:
217-273, 1992.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, 19&20:583-628, 1994.

M. Hanus. Functional Logic Programming: From Theory to Curry. In Programming Logics -
Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science,
pages 123-168. Springer, 2013.

M. Hanus and B. Peemoller. A partial evaluator for curry. In Proc. of the 23rd International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2014), volume 1335,
pages 55-71. Universitit Halle-Wittenberg, 2014.

HEMS Website, 2019. http://safe-tools.dsic.upv.es/hems.

R. Ji and R. Bubel. Pe-key: A partial evaluator for java programs. In J. Derrick, S. Gnesi,
D. Latella, and H. Treharne, editors, Integrated Formal Methods, pages 283295, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-30729-4.

N. Jones. Partial Evaluation, Self-Application and Types. In Proc. of the 17th International
Colloquium on Automata, Languages and Programming, volume 443 of Lecture Notes in
Computer Science, pages 639-659. Springer, 1990.

N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

J. Jorgensen, M. Leuschel, and B. Martens. Conjunctive Partial Deduction in Practice. In
Proc. of the 8th International Workshop on Logic Programming Synthesis and Transforma-
tion, (LOPSTR 1996), volume 1207 of Lecture Notes in Computer Science, pages 59-82.
Springer, 1996.

https://doi.org/10.1007/978-3-319-99840-4_1
http://safe-tools.dsic.upv.es/glints/pages/experiments.jsp
http://safe-tools.dsic.upv.es/glints/pages/experiments.jsp
http://safe-tools.dsic.upv.es/glints/download/quickstart.pdf
http://safe-tools.dsic.upv.es/glints/download/quickstart.pdf
http://safe-tools.dsic.upv.es/glints
http://safe-tools.dsic.upv.es/hems

Bibliography 107

J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental Construction of Unification Algo-
rithms in Equational Theories. In Proc. of 10th Colloquium on Automata, Languages and
Programming (ICALP 1983), volume 154 of Lecture Notes in Computer Science, pages 361—
373. Springer, 1983.

H. Komorowski. Partial Evaluation as a Means for Inferencing Data Structures in an Applica-
tive Language: A Theory and Implementation in the Case of Prolog. In Proc. of 9th ACM
Symposium on Principles of Programming Languages, pages 255-267, 1982.

J. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of
the American Mathematical Society, 95:210-225, 1960.

L. Lafave and J. P. Gallagher. Constraint-based partial evaluation of rewriting-based functional
logic programs. In Proc. of the 7th International Workshop on Logic Programming Synthesis
and Transformation (LOPSTR 1997), volume 1463 of Lecture Notes in Computer Science,
pages 168—188. Springer, 1998.

M. Leuschel. Advanced Techniques for Logic Program Specialisation. PhD thesis, 1997.

M. Leuschel. Improving Homeomorphic Embedding for Online Termination. In Proc. of the
8th International Workshop on Logic Programming Synthesis and Transformation, (LOPSTR
1998), volume 1559 of Lecture Notes in Computer Science, pages 199-218. Springer, 1998a.

M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. In Proc.
of Sth International Symposium on Static Analysis, SAS’98, volume 1503 of Lecture Notes
in Computer Science, pages 230-245. Springer, 1998b. ISBN 3-540-65014-8. doi: 10.1007/
3-540-49727-7_14. URL http://dx.doi.org/10.1007/3-540-49727-7{_}14.

M. Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods. In
The Essence of Computation. Essays Dedicated to Neil D. Jones on the Occasion of his 60th
Birthday, volume 2566 of Lecture Notes in Computer Science, pages 379-403. Springer-
Verlag, Berlin, 2002.

M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction: Con-
trol issues. TPLP, 2(4-5):461-515, 2002.

M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Polyvariance in
Partial Deduction of Normal Logic Programs. ACM TOPLAS, 20(1):208-258, 1998.

M. Leuschel, S. Craig, and D. Elphick. Supervising Offline Partial Evaluation of Logic Programs
Using Online Techniques. In Proc. of the 16th International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2006), Venice, Italy, July 12-14, 2006, Revised
Selected Papers, volume 4407 of Lecture Notes in Computer Science, pages 43-59. Springer,
2007.

J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programming. Journal of Logic Pro-
gramming, 11:217-242, 1991.

B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction while Allowing
Flexible Polyvariance. In Proc. of Ithe 12th International Conference on Logic Programming
(ICLP 1995), pages 597-611. MIT Press, 1995.

Mau-Dev Website, 2016. Available at: http://safe-tools.dsic.upv.es/maudev.

http://dx.doi.org/10.1007/3-540-49727-7{_}14
http://safe-tools.dsic.upv.es/maudev

108 Bibliography

S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In Proc. of the 25th International Conference on Computer
Aided Verification (CAV 2013), volume 8044 of Lecture Notes in Computer Science, pages
696-701. Springer-Verlag, Berlin, 2013.

P. Mellies. On a duality between Kruskal and Dershowitz theorem. In The 25th International
Collogquium on Automata, Languages, and Programming (ICALP 1998), volume 1443 of
Lecture Notes in Computer Science, pages 518-529. Springer, 1998. ISBN 3-540-64781-3.

J. Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput.
Sci., 96(1):73-155, 1992.

J. Meseguer. Membership Algebra As a Logical Framework for Equational Specification. In
Proc. of the 12th International Workshop on Recent Trends in Algebraic Development Tech-
niques (WADT 1997), volume 1376 of Lecture Notes in Computer Science, pages 18-61.
Springer, 1997. ISBN 3-540-64299-4.

J. Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic Programming, 81
(7-8):721-781, 2012. doi: 10.1016/j.jlap.2012.06.003. URL https://doi.org/10.1016/
j.jlap.2012.06.003.

J. Meseguer. Order-Sorted Rewriting and Congruence Closure. In Proc. of the 19th Interna-
tional Conference on Foundations of Software Science and Computation Structures (FOS-
SACS 2016), volume 9634 of Lecture Notes in Computer Science, pages 493-509. Springer,
2016.

J. Meseguer. Strict Coherence of Conditional Rewriting Modulo Axioms. Theoretical Computer
Science, 672:1-35, 2017. doi: 10.1016/j.tcs.2016.12.026. URL http://dx.doi.org/10.
1016/j.tcs.2016.12.026.

J. Meseguer. Variant-based satisfiability in initial algebras. Science of Computer Programming,
154:3-41, 2018. doi: 10.1016/j.scic0.2017.09.001. URL https://doi.org/10.1016/j.
scico.2017.09.001.

J. Meseguer and P. Thati. Symbolic Reachability Analysis using Narrowing and its Application
to Verification of Cryptographic Protocols. Higher-Order and Symbolic Computation, 20
(1-2):123-160, 2007.

A. Middeldorp and B. Gramlich. Simple Termination is Difficult. Applicable Algebra in
Engineering, Communication and Computing, 6(2):115-128, 1995. ISSN 09381279. doi:
10.1007/BF01225647.

S. Muggleton. Inductive Logic Programming: Issues, Results and the Challenge of Learning
Language in Logic. Artif. Intell., 114(1-2):283-296, 1999.

S. Ontafién and E. Plaza. Similarity measures over refinement graphs. Machine Learning, 87
(1):57-92, Apr. 2012. ISSN 0885-6125. doi: 10.1007/s10994-011-5274-3.

A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations and Techniques.
Journal of Logic Programming, 19,20:261-320, 1994.

A. Pettorossi and M. Proietti. A Comparative Revisitation of Some Program Transformation
Techniques. In Partial Evaluation, International Seminar, Dagstuhl Castle, Germany, volume
1110 of Lecture Notes in Computer Science, pages 355-385. Springer, 1996.

https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.jlap.2012.06.003
http://dx.doi.org/10.1016/j.tcs.2016.12.026
http://dx.doi.org/10.1016/j.tcs.2016.12.026
https://doi.org/10.1016/j.scico.2017.09.001
https://doi.org/10.1016/j.scico.2017.09.001

Bibliography 109

L. Pottier. Generalisation de termes en theorie equationelle: Cas associatif-commutatif. Tech-
nical Report INRIA 1056, Norwegian Computing Center, 1989.

V. Rusu, D. Lucanu, T. Serbanuta, A. Arusoaie, A. Stefanescu, and G. Rosu. Language defi-
nitions as rewrite theories. Journal of Logic and Algebraic Methods in Programming, 85(1):
98-120, 2016.

R. Singh and A. King. Partial Evaluation for Java Malware Detection. In Proc. of the 24th
International Symposium on Logic-Based Program Synthesis and Transformation (LOP-
STR 2014), Canterbury, UK, September 9-11, 2014. Revised Selected Papers, volume 8981
of Lecture Notes in Computer Science, pages 133-147. Springer, 2014. ISBN 978-3-
319-17821-9. doi: 10.1007/978-3-319-17822-6_8. URL https://doi.org/10.1007/
978-3-319-17822-6_8.

J. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity and As-
sociativity. Journal of the ACM, 21(4):622-642, 1974.

M. Sgrensen and R. Gliick. An Algorithm of Generalization in Positive Supercompilation. In
Proc. of the International Symposium on Logic Programming (ILPS 1995), pages 465-479.
MIT Press, 1995.

M. Sgrensen, R. Gliick, and N. Jones. A Positive Supercompiler. Journal of Functional Pro-
gramming, 6(6):811-838, 1996.

C. Talcott. Pathway logic. Formal Methods for Computational Systems Biology, 5016:21-53,
2008.

P. Thati and J. Meseguer. Complete symbolic reachability analysis using back-and-forth nar-
rowing. Theor. Comput. Sci., 366(1-2):163-179, 2006. doi: 10.1016/j.tcs.2006.07.008. URL
https://doi.org/10.1016/j.tcs.2006.07.008.

V. Turchin. Program Transformation by Supercompilation. In Programs as Data Objects, 1985,
volume 217 of Lecture Notes in Computer Science, pages 257-281. Springer, 1986.

Victoria Website, 2019. http://safe-tools.dsic.upv.es/victoria.

P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285(2):487-517,
2002.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73:231-248, 1990.

T. Wiirthinger, C. Wimmer, C. Humer, A. W68, L. Stadler, C. Seaton, G. Duboscq, D. Simon,
and M. Grimmer. Practical Partial Evaluation for High-performance Dynamic Language Run-
times. In Proc. of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, pages 662-676, New York, NY, USA, 2017. ACM.

F. Yang, S. Escobar, C. Meadows, J. Meseguer, and P. Narendran. Theories of Homomorphic
Encryption, Unification, and the Finite Variant Property. In Proc. of the 16th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2014), pages
123-133. ACM Press, 2011.

https://doi.org/10.1007/978-3-319-17822-6_8
https://doi.org/10.1007/978-3-319-17822-6_8
https://doi.org/10.1016/j.tcs.2006.07.008
http://safe-tools.dsic.upv.es/victoria

	1 Introduction
	1.1 Partial Evaluation
	1.1.1 Narrowing-driven Partial Evaluation

	1.2 Partial Evaluation of Maude Equational Theories
	1.2.1 Equational Theories in Maude
	1.2.2 Variant generation
	1.2.3 Order-sorted Equational closedness
	1.2.4 Termination of the Equational Partial Evaluation process
	1.2.5 Post-processing renaming modulo axioms

	1.3 The Partial Evaluator Victoria
	1.4 Equational NPE in practice
	1.5 Contributions of the Thesis
	1.6 Plan of the Thesis
	1.7 List of Publications
	1.8 Developed Tools

	2 Preliminaries
	2.1 Rewriting Logic and Term Rewriting
	2.2 Equational Theories as Rewrite Theories
	2.3 Narrowing in Rewriting Logic
	2.4 Term Variants
	2.5 The variant narrowing strategy
	2.6 The folding variant narrowing strategy

	3 Inspecting Maude Variants with GLINTS
	3.1 Overview
	3.2 Folding variant narrowing trees in GLINTS: a running example
	3.3 GLINTS at a glimpse
	3.3.1 Interactive tree unfolding and querying
	3.3.2 Automated tree unfolding, enriched views and exporting

	3.4 Implementation
	3.4.1 Architecture of GLINTS
	3.4.2 Extending Maude's variant meta-operations

	4 Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms
	4.1 Overview
	4.2 Pure homeomorphic embedding
	4.2.1 Mechanizing the Homeomorphic Embedding
	4.2.2 Symbolic Homeomorphic Embedding
	4.2.3 Adding sorts and subsorts
	4.2.4 Getting rid of variables

	4.3 Homeomorphic embedding modulo equational axioms
	4.4 Goal-driven homeomorphic embedding modulo B
	4.4.1 An order-sorted homeomorphic embedding calculus modulo B
	4.4.2 Reachability-based, (order-sorted) goal-driven homeomorphic embedding formulation

	4.5 Meta-Level deterministic (order-sorted) goal-driven homeomorphic embedding modulo B
	4.6 Optimizations based on the term B-ordering and reachable kinds
	4.7 Experiments

	5 ACUOS2: A High-performance System for Modular ACU Generalization with Subtyping and Inheritance
	5.1 Least General Generalization modulo A, C, and U
	5.2 ACUOS2: A High Performance Generalization System
	5.3 ACU Generalization in a Biological Domain
	5.4 Experimental Evaluation
	5.5 Related work

	6 A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms
	6.1 Related work
	6.2 Specializing Equational Theories modulo Axioms
	6.2.1 The NPE Approach
	6.2.2 Partial evaluation of convergent rules modulo axioms
	6.2.3 Equational closedness and the generalized Partial Evaluation scheme
	6.2.4 Termination of the PE process
	6.2.5 Global Termination of Equational NPE
	6.2.6 Post-processing renaming modulo axioms
	6.2.7 Specializing the interpreter of an imperative programming language

	6.3 Experiments

	7 Conclusions
	Bibliography

