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Introduction 

One of the most important characteristics of a magnetron is its Rieke diagram [1], [2]. The 
diagram visualizes the dependence of the generated frequency fg and the net power PL 
delivered to load on a specifically defined magnetron load reflection coefficient R. The 
diagram is a (rotated) polar chart in the complex plane of R, plotted as a family of isolines 
of constant fg and of constant PL (Fig. 1). Rieke diagrams are essential in the design of 
magnetrons and in magnetron applications without isolators, such as domestic or 
professional microwave ovens. 

 

 
Fig. 1. Example Rieke diagram. 

 

Traditionally, the construction of Rieke diagrams (see e.g. [1], [3], [4]) has been a tedious 
and time-consuming task that requires highly specialized equipment. This has prevented 
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systematic studies of the dependence of Rieke diagrams on operating conditions, such as, 
for example, anode current and its ripple, filament current, and mounting repeatability. 

We have devised a procedure centered around a standard, commercially available, high-
power automatic impedance matching device (autotuner). This procedure enables fully 
automatic measurement and plotting of the isolines of choice. The measurement process 
consists of stepping through a grid of n suitably predetermined reflection coefficients R, 
covering a desired area of the polar chart. Each R is measured accurately by the autotuner, 
along with the corresponding fg and PL. A dedicated MATLAB routine then reads this raw 
data, approximates them by 2-dimensional splines, and uses the splines to plot smoothed 
isocontours for chosen constant values of fg and PL, thus completing the Rieke diagram 
construction. In what follows, we present the details of this procedure as well as a real-life 
example. 

 

Reference Launcher  

A magnetron's Rieke diagram-related load reflection coefficient, conveniently named the 
Rieke reflection coefficient [3]  

 expR R R R Rx jy j       

is defined as the reflection coefficient observed looking toward the load in an agreed 
magnetron-to-rectangular-waveguide coupling structure called the reference launcher (Fig. 
2). The launcher is characterized by three main parameters: the waveguide inner dimensions 
ar (not shown in Fig. 2) and br, and the distance ds of the magnetron antenna axis from the 
short-circuited waveguide end. The distance dR between the antenna axis and the waveguide 
output is not critical; it should only be long enough to sufficiently attenuate higher-order 
modes potentially excited by the antenna. Conceptually, the reference launcher can serve to 
directly measure R, as shown in Fig. 2b. 

 

 
Fig. 2. a) Magnetron in reference launcher. b) Definition of Rieke reflection coefficient R. 
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Basic reference launcher dimensions for 2.45-GHz magnetrons with powers up to about 2 
kW have been standardized by the Electronic Industries Association of Japan (EIAJ). The 
launcher uses a waveguide with the inner dimensions ar = 95.3 mm and br = 54.6 mm. We 
will refer to it as the launcher waveguide (LWG). The antenna-short distance is ds = 18.6 
mm. The antenna-flange distance dR  150 mm ensures that the attenuation of the lowest 
higher-order mode (TE01) exceeds 33 dB. 

 

Experimental Setup 

A block diagram of the experimental setup is shown in Fig. 3a. The magnetron under test is 
coupled to a reference launcher and fed from a high-voltage DC power supply. A low-
reflection transition (taper) connects the launcher with the standard WR340 waveguide 
autotuner. The autotuner is terminated in a high-power matched load, such as a waterload. 
In this configuration, the autotuner can accomplish a task inverse to impedance matching: 
realizing any desired Rieke reflection coefficient R. During the measurement process, the 
autotuner accurately measures each R it produces, along with the corresponding generated 
frequency fg and net delivered power PL. These are the three data a collection of which is 
necessary for creating a Rieke diagram. The whole process is controlled from an external 
computer (PC).  

The setup is fairly simple: the only specialized components required are the reference 
launcher and the tapered LWG-to-WR340 transition1.  

 

 
Fig. 3. Rieke diagram measurement setup. 

 

Reflection Coefficient and Delivered Power Transformation 

The high-power vector reflectometer incorporated in the autotuner inherently measures the 
reflection coefficient A at a reference plane A as well as the net power PA absorbed in the 
load. In order to compute R and PL, we need to know the scattering matrix S of the circuit 
between planes R and A (Fig. 3b). The transform is accomplished by the formulas [7] 

                                        
1 For measurements with magnetron antenna probes, an LWG-based calibration kit is also 
required [5], [6]. 
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where D = S11S22 – S12S21 is the determinant of the S-matrix. The inverse transform to (1) is 

11

22

R
A

R

S

S D

 
 

 
 (3) 

In our case (a typical situation), the circuit between planes R and A is a cascade of a launcher 
waveguide section with length dR, a well-matched LWG-to-WR340 transition, and a section 
of WR340 waveguide with length dh. Neglecting the circuit losses and mismatches (justified 
for a properly designed transition) the S-parameters are 

 11 22 12 21 210; 0; expS S S S j     (4) 

which results in 

 21exp 2 ;R A L Aj P P     (5) 

reducing the transform to merely a phase-shifting (rotation) of A. The S21 phase angle is 

 21 21

22 hR
T

gr g

dd
f


 

 
     (6) 

where gr is the launcher guide wavelength, g is the WR340 guide wavelength, and T21 is 
the taper transmission coefficient phase. All three quantities are frequency-dependent.  

The usefulness of expressing the conversion in terms of S-parameters lies in the fact that the 
PC program controlling the measurement process is capable of loading a text file with 
tabulated frequency dependence of Sij, performing the mappings (1) and (2) internally, and 
then immediately outputting the Rieke reflection coefficient R and the delivered power PL.  

 

Realizing Reflection Coefficients 

The procedure of obtaining a Rieke diagram calls for realizing a sufficiently dense set of 
predetermined Rieke reflection coefficients R, and consequently, autotuner input reflection 
coefficients A. Any A within the tuner's capability can be realized by proper tuning stub 
insertions h1, h2, h3 of a match-terminated autotuner. The method of determining the 
insertions is intimately linked with the autotuning algorithm. An equivalent circuit for an 
impedance matching arrangement with a matched generator (G = 0) is shown in Fig. 4. The 
tuner is a loss-free adjustable circuit characterized by its S-matrix SA defined for reference 
planes 1 and 2. A load with reflection coefficient 3 is connected at plane 3, that is usually 
separated from plane 2 by a transmission line with electric length . To achieve a matching 
of load 3, the tuner must be adjusted so that its input reflection coefficient is 1 = 0. The 
theory [8] proves that in this case, the condition 2 = (x) is satisfied at plane 2, where 2 is 
seen looking into port 2 of the tuner and x = 3 exp(-j2) is seen looking toward the load. 
The asterisk indicates the complex conjugation. In fact, 2 is the reflection coefficient 
"realized" by the reversed tuner. The matched termination at the other port (port 1) is 
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provided by the generator. Based on these facts, the following algorithm can be formulated 
for realizing any input reflection coefficient A: 

 Choose a desired input reflection coefficient A and frequency f. 

 Run the autotuning algorithm, using as input values the conjugated and rotated 
reflection coefficient 

 3 exp 2A j     (7) 

and frequency f. The algorithm will output the tuning stub insertions h1m, h2m, h3m. 

 "Reverse" the tuner, i.e. set the tuning stubs to insertions h1 = h3m, h2 = h2m, h3 = h1m. 
Then the tuner input reflection coefficient at frequency f will be 1 = A. 

 

 
Fig. 4. Equivalent circuit for an impedance matching arrangement. 

 

Rieke Diagram Measurement Procedure 

The procedure for obtaining a Rieke diagram consists of the following basic steps: 

1. Define a grid of Rieke reflection coefficients Ri, i = 1…n, that cover with a sufficient 
density the desired area of the polar chart. The grid need not be regular; it can be, for 
instance, finer wherever we need a greater detail. 

2. Using (3), create from Ri a set of corresponding tuner input reflection coefficients Ai, 
i = 1…n, to be realized by the autotuner. 

3. Create the stubs motion scenario: a sequence {h}i  {h1, h2, h3}i, i = 1…n, of autotuner 
stub insertions realizing the set Ai. 

4. Run the scenario, i.e. step through the sequence {h}i, i = 1…n, and, for each setting: 

a) Move the tuning stubs to the corresponding insertions. 

b) Use the autotuner to measure the reflection coefficient A, the generated frequency 
fg, and the power PA absorbed in the load (note that the measured A will generally 
differ from the scenario value). 

c) Transform A to the Rieke reflection coefficient R, and transform PA to the net power 
PL delivered by the magnetron. For all practical purposes, the simplified equations 
(4) – (6) are appropriate for this purpose. 

In this way, raw data for constructing a Rieke diagram are obtained. The data is a 
collection of n triplets {R, fg, PL}i, i = 1…n, with R = xR + jyR being, in general, 
scattered irregularly and arbitrarily in the complex plane.  

5. Choose a range of constant values of fg and of PL for which the Rieke diagram isolines 
should be drawn. 

6. Apply a mathematical routine that 

a) uses the acquired data to create tabulated functions fg = f(xR, yR), PL = f(xR, yR); and 
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b) approximates the two obtained functions by a 2D smoothing spline surface each. 

7. Using the approximations, make plots of smoothed isocontours for the chosen values of 
fg and PL, thus completing the desired Rieke diagram construction.  

We have developed a dedicated MATLAB routine that implements steps 6 and 7.  

 

Experiments 

To illustrate the developed procedure, we performed experiments using a Panasonic 2M244 
magnetron (nominal frequency f0 = 2460 MHz, nominal power into a match P0 = 1010 W). 
The datasheet Rieke diagram (Fig. 1) was reportedly obtained using a single-phase full-wave 
rectifier without filter, with peak anode voltage 4.35kV. However, in our experiments, we 
used an available single-phase half-wave rectifier that was only able to reach 900 W rather 
than the rated magnetron power P0. The time dependence PL(t) of power delivered to a 
matched load is shown in Fig. 5. 

 

 
Fig. 5. Time dependence of power PL delivered to a matched load. Dashed line – mean 

power (900 W). Red portion – frequency counting interval. 

 

A photograph of the experimental setup is shown in Fig. 6; it corresponds to the block 
diagram of Fig. 3. The setup employs an S-TEAM WR340 autotuner STHT 1.6. Results of 
each individual measurement were obtained by processing 201 samples taken over 40 ms, 
i.e. two periods of the power waveform shown in Fig. 5. Frequency was averaged over the 
red-highlighted 4-ms interval. To improve the terminating match, we preceded the waterload 
by an auxiliary tuner with fixed stub insertions. 
 

 
Fig. 6. Experimental setup. 
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We used a linear taper with optimized length 82.5 mm. We determined its scattering 
parameters STij in the 2400 – 2500 MHz range by both electromagnetic simulation and 
measurement. The difference of the transmission phase T21 was below 1.4. The measured 
magnitude |ST21| deviates from theoretical unity by less than 0.005; the input mismatches 
|ST11| and |ST22| are below 0.01. Therefore, the assumptions |ST21| = 1 and |ST11| = |ST22| = 0 
were justified. 

We implemented the transformation matrix S (Fig. 3) by applying (4) and (6) for frequencies 
in the range 2400 – 2500 MHz in 1-MHz increments, and storing the results in a text file 
that was then read in by the PC controller SW.  

To ready the system for repeated Rieke diagram measurements, we prepared a rectangular 
grid of tuner input reflection coefficients A with maximal magnitude 0.7 and step 0.05 in 
both dimensions (Fig. 7a). We used the resulting n = 614 values in the control SW to generate 
the corresponding stubs motion scenario for an assumed frequency of 2460 MHz. 

During the measurement process, the control SW steps through the scenario. For each step, 
the stubs are moved to the prescribed insertions, and then a wait period (in our case 300 ms) 
is introduced to allow the magnetron to settle. Then, a "burst" of measurements (in our case 
10 of them) is made and recorded. This cycle is repeated for the whole scenario. For our 
settings, the complete process took about 24 minutes. All individual results are stored in a 
text file (in our case 10  614 data lines) for detailed process analysis. In addition, a separate 
".rkd" text file was created with only n = 614 data lines, each containing the burst averages 
and standard deviations for the quantities of interest (R, fg, and PL). These averages are the 
actual input data to be used for creating the Rieke diagram; the deviations are useful for 
detecting possible magnetron instabilities (e.g. jumps in frequency and power).  

An example of a measured collection of the Rieke reflection coefficients, as stored in an rkd 
file, is shown in Fig. 7b. Evidently, the data tend to be "expelled" from the magnetron sink 
area, where the generated frequency is very sensitive to load variations. 

 

 
Fig. 7. a) – A grid of desired tuner input reflection coefficients A; b) – A corresponding 

set of measured Rieke reflection coefficients R. 

 

We used the generated rkd file as an input to a MATLAB program implementing steps 6 
and 7 of the procedure outlined above. Fig. 8 shows examples of the input data and their 
approximation by 2D smoothing spline surfaces, as obtained by the MATLAB function 
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tpaps. Using the approximations, smoothed isocontours (horizontal cuts of the surfaces in 
Fig. 8) can be plotted (e.g. via the MATLAB function contour) for any desired constant 
value of PL and R (solid curves in Fig. 9).  

In a similar way, we processed a digitized datasheet Rieke diagram (dashed lines in Fig. 9). 
The measured and datasheet patterns manifest general similarity but also significant 
discrepancies. The most likely reason may be the insufficient DC power supply that we used. 
For explanation of the differences, a systematic study is required but is beyond the scope of 
this paper. Nevertheless, we have provided an efficient tool that enables, among others, 
studies of this kind. 

 

Conclusions 

We have developed an experimental setup, a measurement procedure, and a MATLAB data 
processing program that enable fully automatic measurement and plotting of magnetron 
Rieke diagrams. The fundamental component of the workplace is a standard, commercially 
available, high-power autotuner. After a one-time processing for preparation of the 
necessary text files (transformation S-matrix and stubs motion scenario), the measurement 
is a matter of practically a single button click. Depending on the length of the scenario, the 
data acquisition process takes typically several tens of minutes, with no involvement 
required from the operator. Given the data, smoothed Rieke diagram contours can be 
generated practically immediately. 

The proposed system and methodology have the potential to enable systematic statistical 
studies of the dependence of Rieke diagrams on magnetron operating conditions, for which 
mass data collection and rapid evaluation are essential.  

 

 
Fig. 8. Input data (red dots) and their spline approximation for (a) delivered power PL and 

(b) generated frequency fg. The bottom surface is R-plane. 
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Fig. 9. Rieke diagram contours for (a) delivered power PL and (b) generated frequency fg. 

The dashed lines correspond to the 2M244 magnetron datasheet. 
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