1. INTRODUCTION

1.1. Structures, Diseases and Drug Design

1.2. Targeting Trypanosomatid’s TryR

1.2.1. Tropical Neglected Parasitic Diseases

1.2.2. In Need of New Therapies

1.2.3. Therapeutic Alternatives: The Trypanothione Metabolism

1.2.3.1. Unique Characteristics of Trypanosoma and Leishmania Genres

1.2.3.1.1. The Polyamine-Trypanothione Pathway

1.2.3.2. Trypanothione and the Thiol-Redox Metabolism

1.2.3.2.1. Trypanothione vs. Glutathione

1.2.4. Trypanothione Reductase

1.2.4.1. Trypanothione Reductase vs. Glutathione Reductase

1.2.5. Trypanothione Reductase Inhibitors

1.2.5.1. Tricyclic Derivatives

1.2.5.2. Diphenylsulfide Derivatives

1.2.5.3. Bicyclic and Heterocyclic Derivatives

1.2.5.4. Polyamine Derivatives

1.2.5.5. Subversive Substrates

1.2.5.6. Organometallic Compounds

1.2.5.7. Irreversible Inhibitors

1.2.6. Novel TryR Inhibition Strategy

1.3. The Many Roles of Eukaryotic Elongation Factor 1A

1.3.1. The “Canonical Function”: Protein Synthesis

1.3.1.1. A Structural Overview on eEF1A and Nucleotide Exchange

1.3.2. eEF1A1 and eEF1A2: Two Isoforms of eEF1A

1.3.2.1. eF1A2 and Oncogenesis

1.3.3. Functionality of eEF1A

1.3.3.1. Macromolecular Partners of eEF1A and Other Non-Canonical Functions

1.3.4. eEF1A as a Drug Target in Cancer Therapy

1.4. Phage Therapy and Biotechnological Applications of Endolysins

1.4.1. Phage Therapy in the Post-Antibiotic Era

1.4.2. À la Carte Bioengineered Endolysins

1.4.2.1. Lysins and the Lytic Cycle of Phages

1.4.2.2. Endolysin Classification

1.4.2.3. Structural Basis for Cell Wall Recognition

1.4.2.4. Medical and Biotechnological Applications of
Endolysins: Bioengineering à la Carte

1.4.3. Listeria monocytogenes and its Cell Wall

1.4.3.1. Listeria Phages: Endolysins and Applications

1.4.3.2. Ply35 and L. monocytogenes Teichoic Acids

2. OBJECTIVES

3. EXPERIMENTAL PROCEDURES

3.1. Obtaining a Pure Protein Sample

3.1.1. Cloning and Protein Expression

3.1.1.1. Bacterial Strains

3.1.1.2. Expression Vectors

3.1.1.3. Culture Medium

3.1.1.4. Protein Expression

3.1.1.4.1. Expression Conditions for TryR

3.1.1.4.2. Expression Conditions for CBDP35

3.1.2. Protein Purification from Natural Sources (eEF1A2)

3.1.3. Protein Purification

3.1.3.1. Cell Lysis

3.1.3.1.1. Cell Lysis Conditions for TryR

3.1.3.1.2. Cell Lysis Conditions for CBDP35

3.1.3.2. Chromatography Techniques

3.1.3.2.1. Affinity Chromatography

3.1.3.2.2. Ion Exchange Chromatography

3.1.3.2.3. Size Exclusion Chromatography

3.1.3.3. Tag Cleavage

3.1.3.4. TryR Purification

3.1.3.5. CBDP35 Purification

3.2. Protein Crystallization

3.2.1. Growing Crystals

3.2.1.1. Factors Influencing Crystallization and Crystal Growth

3.2.1.2. Protein-Ligand Crystallization

3.2.1.3. Crystallization Techniques

3.2.1.3.1. Vapor-Diffusion Techniques

3.2.1.3.2. Batch Crystallization

3.2.1.3.3. Dialysis

3.2.1.3.4. Free Interface Diffusion

3.2.1.3.5. Control of Nucleation by Seeding

3.2.1.4. Identifying Crystallization Conditions and Crystal Optimization

3.2.1.5. The Real Growth of a Crystal

3.2.2. Sample Preparation for X-Ray Diffraction Experiments

3.2.2.1. TryR Crystallization

3.2.2.2. eEF1A2 Crystallization

3.2.2.3. CBDP35 Crystallization

3.3. X-Ray Diffraction Equipment

3.3.1. X-ray Radiation Sources

3.3.1.1. Rotating Anode Generators

3.3.1.2. Synchrotron Radiation

3.3.2. X-ray Detectors

3.3.2.1. Imaging Plate
4.1.1.7.3. Trypanothione in the Presence of TRL187

4.1.1.7.4. Conformational Changes Upon Ligand Binding

4.1.2. Structure-Inhibition Correlation and Future Work

4.1.2.1. Structure-Activity Relationship of TRLs

4.1.2.2. Other Structurally Characterized TryR Inhibitors

4.1.2.3. TRLs and Crystallization

4.1.2.4. Time-Dependent TryR Inactivation

4.2. Novel Structural Features and PTMs in eEF1A2

4.2.1. Structural Characterization of eEF1A2

4.2.1.1. Crystallization of eEF1A2·GDP

4.2.1.2. Structural Determination of eEF1A2·GDP

4.2.1.3. Structural Analysis of eEF1A2-GDP

4.2.1.3.1. Structure Overview

4.2.1.3.2. Crystal Packing

4.2.1.3.3. Nucleotide Binding Site

4.2.1.3.4. Structural Differences Between Chains A and B

4.2.1.3.5. Switching from GDP to GTP Bound Forms

4.2.1.4. Novel Structural Features of eEF1A2

4.2.1.5. Structural Characterization of PTMs in eEF1A2 by X-ray Crystallography and Mass Spectrometry

4.2.2. Plausible Implications of PTMs and the C-Terminal Helix of eEF1A2

4.2.2.1. The C-Terminal Region as a Source of Regulation in Protein Translation

4.2.2.2. PTMs Lie on the Surface of the eEF1A Dimer

4.2.2.3. PTMs as a Source of Regulation to a “Moonlighting” Protein

4.2.3. Mass Spectrometry and X-ray Crystallography in PTM Identification

4.2.4. Crystallization and Structural Determination of eEF1A2-GTP and eEF1A2-GTP·Plitidepsin

4.2.4.1. Initial Approach

4.2.4.2. A Second Approach Based on Alkaline Phosphatase

4.3. Deciphering the Molecular Basis of Listeria Teichoic Acid Recognition by PlyP35

4.3.1. Structural Characterization of CBDP35 in complex with L. monocytogenes cell-wall teichoic acid

4.3.1.1. CBDP35 Crystallization in Complex with Teichoic Acids

4.3.1.2. Structural Determination of CBDP35-TA

4.3.1.3. Structural Characterization of CBDP35-TA

4.3.1.3.1. Structure Overview

4.3.1.3.2. Crystal Packing

4.3.1.3.3. Apo-CBDP35 vs. PlyPSA

4.3.1.3.4. N-acetyl-glucosamine Binding Sites

4.3.1.3.5. Teichoic Acid Binding Sites

4.3.2. Further Considerations

4.3.2.1. TA Recognition and Specificity is Determined by the Distal Subdomain
4.3.2.1.1. TA Binding Sites in CBDP35 and PlyPSA 156
4.3.2.2. Crystal Packing May Affect TA Stability Within the Binding Sites .. 159
4.3.2.3. Monomeric TA vs. β-D-GlcNAc: Different Molecules, Different Interactions ... 161
4.3.2.4. Final Remarks ... 163

5. CONCLUSIONS .. 165

6. BIBLIOGRAPHY ... 171

SUPPLEMENTARY INFORMATION ... 197