
Use of multivariate statistical
methods for the analysis of

metabolomic data

July 2019

Author: David Hervás Marín

Directors: José Manuel Prats Montalbán
Agustín Lahoz Rodríguez





Acknowledgments

Writing a thesis always involves a lot of working, fighting against adversity
and enduring numerous obstacles. This one is no exception, and it wouldn’t
have been finished without the help of my two directors José Manuel Prats
Montalbán and Agustín Lahoz Rodríguez.

I want to thank also the help and insights given by Alberto Ferrer Riquelme,
who has greatly contributed with his knowledge to the contents of this work.

Special thanks to Victoria Fornés Ferrer for her help with the valencian version
of the abstract and for being such a great colleage.

Finally, some lines to my parents Ana and Tomás, my brother Raúl, my wife
Lucía and my precious daughter Laura. Thank you for your support, for your
patience and your love. This thesis is dedicated to you all.

iii





Resumen

En las últimas décadas los avances tecnológicos han tenido como consecuencia
la generación de una creciente cantidad de datos en el campo de la biología y
la biomedicina. A día de hoy, las así llamadas tecnologías “ómicas”, como la
genómica, epigenómica, transcriptómica o metabolómica entre otras, producen
bases de datos con cientos, miles o incluso millones de variables.

El análisis de datos ómicos presenta una serie de complejidades tanto metodoló-
gicas como computacionales que han llevado a una revolución en el desarrollo
de nuevos métodos estadísticos específicamente diseñados para tratar con este
tipo de datos.

A estas complejidades metodológicas hay que añadir que, en la mayor parte
de los casos, las restricciones logísticas y/o económicas de los proyectos de
investigación suelen conllevar que los tamaños muestrales en estas bases de
datos con tantas variables sean muy bajos, lo cual no hace sino empeorar
las dificultades de análisis, ya que se tienen muchísimas más variables que
observaciones.

Entre las técnicas desarrolladas para tratar con este tipo de datos podemos
encontrar algunas basadas en la penalización de los coeficientes, como lasso o
elastic net, otras basadas en técnicas de proyección sobre estructuras latentes
como PCA o PLS y otras basadas en árboles o combinaciones de árboles como
random forest.

Todas estas técnicas funcionan muy bien sobre distintos datos ómicos presen-
tados en forma de matriz (IxJ). Sin embargo, en ocasiones los datos ómicos
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pueden estar expandidos, por ejemplo, al tomar medidas repetidas en el tiempo
sobre los mismos individuos, encontrándonos con estructuras de datos que ya
no son matrices, sino arrays tridimensionales o three-way (IxJxK). En es-
tos casos, la mayoría de las técnicas citadas pierden parte de su aplicabilidad,
quedando muy pocas opciones viables para el análisis de este tipo de estruc-
turas de datos.

Una de las técnicas que sí es útil para el análisis de estructuras three-way es
N -PLS, que permite ajustar modelos predictivos razonablemente precisos, así
como interpretarlos mediante distintos gráficos.

Sin embargo, relacionado con el problema de la escasez de tamaño muestral
relativa al desorbitado número de variables, aparece la necesidad de realizar
una selección de variables relacionadas con la variable respuesta. Esto es espe-
cialmente cierto en el ámbito de la biología y la biomedicina, ya que no solo se
quiere poder predecir lo que va a suceder, sino entender por qué sucede, qué
variables están implicadas y, a poder ser, no tener que volver a recoger los cien-
tos de miles de variables para realizar una nueva predicción, sino utilizar unas
cuantas, las más importantes, para poder diseñar kits predictivos coste/efec-
tivos de utilidad real. Por ello, el objetivo principal de esta tesis es mejorar las
técnicas existentes para el análisis de datos ómicos, específicamente las encami-
nadas a analizar datos three-way, incorporando la capacidad de selección de
variables, mejorando la capacidad predictiva y mejorando la interpretabilidad
de los resultados obtenidos. Todo ello se implementará además en un paquete
de R completamente documentado, que incluirá todas las funciones necesarias
para llevar a cabo análisis completos de datos three-way.

El trabajo incluido en esta tesis por tanto, consta de una primera parte teórico-
conceptual de desarrollo de la idea del algoritmo, así como su puesta a punto,
validación y comprobación de su eficacia; de una segunda parte empírico-
práctica de comparación de los resultados del algoritmo con otras metodologías
de selección de variables existentes, y de una parte adicional de programación
y desarrollo de software en la que se presenta todo el desarrollo del paquete de
R, su funcionalidad y capacidades de análisis.

El desarrollo y validación de la técnica, así como la publicación del paquete
de R, que ya cuenta con varios cientos de usuarios, ha permitido ampliar las
opciones actuales para el análisis de datos ómicos three-way abriendo un gran
número de líneas futuras de investigación.
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Resum

En les últimes dècades els avançaments tecnològics han tingut com a conse-
qüència la generació d’una creixent quantitat de dades en el camp de la biolo-
gia i la biomedicina. A dia d’avui, les anomenades tecnologies "òmiques", com
la genòmica, epigenòmica, transcriptòmica o metabolòmica entre altres, pro-
dueixen bases de dades amb centenars, milers o fins i tot milions de variables.

L’anàlisi de dades ’òmiques’ presenta una sèrie de complexitats tant metodolò-
giques com computacionals que han portat a una revolució en el desenvolupa-
ment de nous mètodes estadístics específicament dissenyats per a tractar amb
aquest tipus de dades.

A aquestes complexitats metodològiques cal afegir que, en la major part dels
casos, les restriccions logístiques i / o econòmiques dels projectes de recerca
solen comportar que les magnituts de les mostres en aquestes bases de dades
amb tantes variables siguen molt baixes, el que no fa sinó empitjorar les difi-
cultats d’anàlisi, ja que es tenen moltíssimes més variables que observacions

Entre les tècniques desenvolupades per a tractar amb aquest tipus de dades
podem trobar algunes basades en la penalització dels coeficients, com lasso o
elastic net, altres basades en tècniques de projecció sobre estructures latents
com PCA o PLS i altres basades en arbres o combinacions d’arbres com random
forest.

Totes aquestes tècniques funcionen molt bé sobre diferents dades ’òmiques’
presentats en forma de matriu (IxJ), però, en ocasions les dades òmiques
poden estar expandits, per exemple, cuan ni ha mesures repetides en el temps
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sobre els mateixos individus, trobant-se amb estructures de dades que ja no
són matrius, sinó arrays tridimensionals o three-way (IxJxK). En aquestos
casos, la majoria de les tècniques mencionades perden tota o bona part de la
seua aplicabilitat, quedant molt poques opcions viables per a l’anàlisi d’aquest
tipus d’estructures de dades.

Una de les tècniques que sí que és útil per a l’anàlisi d’estructures three-way
es N -PLS, que permet ajustar models predictius raonablement precisos, així
com interpretar-los mitjançant diferents gràfics.

No obstant això, relacionat amb el problema de l’escassetat de mostres relativa
al desorbitat nombre de variables, apareix la necessitat de realitzar una selec-
ció de variables relacionades amb la variable resposta. Això és especialment
cert en l’àmbit de la biologia i la biomedicina, ja que no només es vol poder
predir el que va a succeir, sinó entendre per què passa, quines variables estan
implicades i, si pot ser, no haver de tornar a recollir els centenars de milers de
variables per realitzar una nova predicció, sinó utilitzar unes quantes, les més
importants, per poder dissenyar kits predictius cost / efectius d’utilitat real.
Per això, l’objectiu principal d’aquesta tesi és millorar les tècniques existents
per a l’anàlisi de dades òmiques, específicament les encaminades a analitzar
dades three-way, incorporant la capacitat de selecció de variables, millorant
la capacitat predictiva i millorant la interpretabilitat dels resultats obtinguts.
Tot això s’implementarà a més en un paquet de R completament documentat,
que inclourà totes les funcions necessàries per a dur a terme anàlisis completes
de dades three-way.

El treball inclòs en aquesta tesi per tant, consta d’una primera part teorica-
conceptual de desenvolupament de la idea de l’algoritme, així com la seua
posada a punt, validació i comprovació de la seua eficàcia, d’una segona part
empíric-pràctica de comparació dels resultats de l’algoritme amb altres metodolo-
gies de selecció de variables existents i d’una part adicional de programació i
desenvolupament de programació en la qual es presenta tot el desenvolupament
del paquet de R, la seua funcionalitat i capacitats d’anàlisi.

El desenvolupament i validació de la tècnica, així com la publicació del paquet
de R, que ja compta amb diversos centenars d’usuaris, ha permès ampliar les
opcions actuals per a l’anàlisi de dades ’òmiques’ three-way obrint un gran
nombre de línies futures de recerca .
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Abstract

In the last decades, advances in technology have enabled the gathering of an
increasingly amount of data in the field of biology and biomedicine. The so
called "-omics" technologies such as genomics, epigenomics, transcriptomics or
metabolomics, among others, produce hundreds, thousands or even millions of
variables per data set.

The analysis of ’omic’ data presents different complexities that can be method-
ological and computational. This has driven a revolution in the development
of new statistical methods specifically designed for dealing with these type of
data.

To this methodological complexities one must add the logistic and economic
restrictions usually present in scientific research projects that lead to small
sample sizes paired to these wide data sets. This makes the analyses even
harder, since there is a problem in having many more variables than observa-
tions.

Among the methods developed to deal with these type of data there are some
based on the penalization of the coefficients, such as lasso or elastic net, others
based on projection techniques, such as PCA or PLS, and others based in
regression or classification trees and ensemble methods such as random forest.

All these techniques work fine when dealing with different ’omic’ data in ma-
trix format (I xJ ), but sometimes, these I xJ data sets can be expanded by
taking, for example, repeated measurements at different time points for each
individual, thus having I xJxK data sets that raise more methodological com-
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plications to the analyses. These data sets are called three-way data. In this
cases, the majority of the cited techniques lose all or a good part of their ap-
plicability, leaving very few viable options for the analysis of this type of data
structures.

One useful tool for analyzing three-way data, when some Y data structure is
to be predicted, is N -PLS. N -PLS reduces the inclusion of noise in the models
and obtains more robust parameters when compared to PLS while, at the same
time, producing easy-to-understand plots.

Related to the problem of small sample sizes and exorbitant variable numbers,
comes the issue of variable selection. Variable selection is essential for facili-
tating biological interpretation of the results when analyzing ’omic’ data sets.
Often, the aim of the study is not only predicting the outcome, but also under-
standing why it is happening and also what variables are involved. It is also of
interest being able to perform new predictions without having to collect all the
variables again. Because all of this, the main goal of this thesis is to improve
the existing methods for ’omic’ data analysis, specifically those for dealing
with three-way data, incorporating the ability of variable selection, improving
predictive capacity and interpretability of results. All this will be implemented
in a fully documented R package, that will include all the necessary functions
for performing complete analyses of three-way data.

The work included in this thesis consists in a first theoretical-conceptual part
where the idea and development of the algorithm takes place, as well as its tun-
ing, validation and assessment of its performance. Then, a second empirical-
practical part comes where the algorithm is compared to other variable selec-
tion methodologies. Finally, an additional programming and software develop-
ment part is presented where all the R package development takes place, and
its functionality and capabilities are exposed.

The development and validation of the technique, as well as the publication of
the R package, which has already hundreds of users, has opened many future
research lines.
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Chapter 1

Introduction, contents and aims
of the thesis

1.1 Introduction

Data sets have experienced a rapid growth in size and complexity during the
last years, and biology and biomedicine have been no exception (Marx 2013;
Costa 2014). Few decades ago, a typical data set consisted in dozens of vari-
ables, and a large data set was one with some few hundreds of variables. Nowa-
days, the different ’omic’ technologies have evolved producing data sets ranging
from hundreds of variables, in the case of specific panels or targeted analyses,
to thousands or even hundreds of thousands of variables for untargeted or
whole genome analyses. A specific characteristic of ’omic’ data sets, compared
to data sets from other disciplines is their heterogeneous nature. Individual
variability is huge and experiments have to be repeated many times to reach
conclusions (Lay Jr et al. 2006). This has lead to the so called "reproducibility
crisis", which considers that many research findings could be false (John PA
Ioannidis 2005; Begley and John PA Ioannidis 2015). In fact, as shown in Fig-
ure 1.1, some studies have estimated that more than 70% of published works
in the field of biology may be not reproducible (Baker 2016).
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Chapter 1. Introduction, contents and aims of the thesis

Among the causes for lack of reproducibility, the most prominent ones are the
use of inadequate statistical methods, the misuse of adequate statistical meth-
ods and the misunderstanding of statistical results (J. Ioannidis 2017; Gagnier
and Morgenstern 2017; Diong et al. 2018). There is also an inertia to continue
using the same outdated methods that have been used during the last 30 years
(Leek et al. 2017). These issues are prevalent in all scientific branches, but
in biology, and most specifically in the field of ’omic’ data, they are critical
because of the enormous variability in the data (both technical and biological),
the large number of variables and the prevailing low sample sizes. It is still very
common to find publications in top journals where no corrections for multiple
comparisons have been applied after performing hundreds of tests or using sta-
tistical methods such as the t test without even considering their assumptions
(normality and homocedasticity) (Marino 2014; Eklund, Nichols, and Knutsson
2016). During the last decades, a wide array of statistical methods have been
specifically developed to deal with the issues and hurdles present when ana-
lyzing ’omic’ data sets, but their adoption has been pretty slow in most fields.
In the following chapters, the different methods for analyzing ’omic’ data will
be presented and critically reviewed before presenting a new method for the
analysis of multi-way arrays that also implements variable selection.

Other

Earth and environment

Medicine

Physics and engineering

Biology

Chemistry

0 25 50 75 100
Failure rate

owner

My own

Someone else's

Figure 1.1: Reproducibility problems in different branches of science (data from Baker
2016)
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1.2 Characteristics of ’omic’ data

1.2 Characteristics of ’omic’ data

The word "omics" makes reference to the study of some characteristics of dif-
ferent families of biological molecules, such as genes, proteins, etc. (Palsson
2002). The basic aspect of the ’omic’ approaches is that a complex system
can be understood more thoroughly if considered as a whole. Thanks to this
approach, the advances that have been achieved in the last decades in the un-
derstanding of the different biological processes are huge, and today the future
of medicine and biology cannot be understood outside the view of the different
’omics’ approaches (Karnebeek et al. 2018). In few years, ’omics’ technologies
have given us an unimaginable deep knowledge of many cellular processes and
pathways, helping the scientific community to make huge progresses in the
understanding of living systems. Each year new technologies are developed
allowing for the gathering of more information, increasing the resolution of
the analyses and improving the precision of the determinations. As emerging
fields, the different ’omics’ are still expanding and defining themselves but, in
a general view, ’omic’ data can be classified according to the nature of the
elements being analyzed. Following this approach, 5 different fields can be
delimited (Figure 1.2), (Horgan and Kenny 2011; Barh and Azevedo 2018):

• Genomics: Focused at the structure, function, evolution and mapping of
genomes, that is, the complete set of DNA of an organism.

• Epigenomics: Studies the complete set of epigenetic reversible modifica-
tions of the genome, which regulate expression.

• Transcriptomics: Focused at the whole set of RNA transcripts of an or-
ganism, that is, the expression of an organism’s genes.

• Proteomics: Focused at the whole set of proteins produced or modified
by an organism. Proteomics studies protein composition, structure and
activity.

• Metabolomics: Studies metabolites in a biological entity, which are the
end products of cellular processes.
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Chapter 1. Introduction, contents and aims of the thesis

Figure 1.2: Different ’omic’ technologies and their relationship

1.2.1 Metabolomic data

The term ’metabolome’ is used to address the entire set of metabolites present
in an organism and ’metabolomics’ is defined as the comprehensive and quan-
titative analysis of all metabolites of the biological system under study (Fiehn
2001). Metabolomics studies the downstream products of the so called "omics
cascade" presented in Figure 1.2, so its information is influenced by the actions
of genomic, epigenomic, transcriptomic and proteomic mechanisms. Because
of this, metabolomics is the closest approximation to phenotype among all
’omic’ technologies, thus providing more information about the actual status
of the organism than the other ’omic’ technologies (Beger et al. 2016).

In general metabolomic studies can be classified as targeted or untargeted
depending on whether the researcher measures and quantifies a specific set of
known metabolites or the largest possible number of metabolites contained in a
biological system (Orešič 2009). Among all ’omic’ technologies, metabolomics
is the most complex and heterogeneous in terms of chemical diversity. More
specifically, targeted metabolomic studies focus on accurate identification and
quantification of a defined set of metabolites in biological samples which was
predetermined by the scientific question formulated by the researcher or, in
some cases, by the size of metabolite library that is available in the software
used for the analyses. On the other hand, untargeted metabolomics focuses on
measuring and comparing as many signals as possible in a biological samples,
and then assigning these signals to specific metabolites by using annotation
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1.2 Characteristics of ’omic’ data

databases such as HMDB (D. Wishart, Tzur, Knox, et al. 2007) and Metlin
(Smith et al. 2005). It is important to mention that a significant portion of the
detected signals cannot be identified as the metabolome is not fully annotated
(Viant et al. 2017). A typical raw data spectrum of a metabolomics analysis
is presented in Figure 1.3.
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Figure 1.3: Raw spectrum of a metabolomics analysis

In genomics, epigenomics and transcriptomics, measurement procedures are
reasonably standardized. This is not the case in metabolomics, with many
different technologies being used, which lead to different study designs and dif-
ferent produced data types (Moco et al. 2007). The commonly used analytical
techniques for metabolomic studies are nuclear magnetic resonance (NMR),
spectroscopy and mass spectrometry (Büscher et al. 2009). Another specific
hurdle of metabolomics is the identification of the metabolites in untargeted
analyses. Many of the metabolites found in an untargeted analysis can not be
identified, because the data bases for associating a specific mass and retention
time to a concrete metabolite are still very immature (Mathew and Padmana-
ban 2013). In fact, identification of unknowns is considered as the bottleneck of
untargeted metabolomics (Bingol 2018). In any case, although heterogeneous,
metabolomic data share a common set of properties which define their most
important characteristics for their statistical analysis:

• High correlation among variables

• Complex pre-processing of the signal to obtain the data

7



Chapter 1. Introduction, contents and aims of the thesis

• High range of detection values among variables (i.e., some metabolites
are found in very small concentrations and others are found in very high
concentrations)

• Variables (metabolites) found in one analysis are not guaranteed to be
found in a subsequent analysis (i.e., lack of reproducibility).

All these properties add to the difficulty of analyzing metabolomic data, and
will be further developed in the following sections.
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Chapter 2

Common strategies for the
analysis of metabolomic data

2.1 Classical bivariate tests

As exposed in section 4.1, many metabolomic data analysis are performed
using rudimentary statistical methods such as bivariate tests (Saccenti et al.
2014). These tests, such as the well know t test consist in the test of a specific
hypothesis of equality for each of the means of the variables being studied. The
hypothesis test assesses for each metabolite if its mean (or median depending on
the test being used) is different among the groups being compared. This way,
in a study searching for biomarkers to discern between controls and patients
of a specific disease, one hypothesis test (Equation 2.1) for differences between
both groups is performed for each of the metabolites in the data set, thus
performing hundreds or thousands of hypothesis test in the analysis.

H0 : µcontrols = µpatients

HA : µcontrols 6= µpatients
(2.1)
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Chapter 2. Common strategies for the analysis of metabolomic data

The advantages of bivariate tests are the ease of application and interpretation
of the results (Vetter and Mascha 2018), but they suffer from a lot of issues.
One of the most important issues when performing bivariate tests is the inte-
gration of results (Katz 2011). Usually, even when finding several statistically
significant biomarkers in a study, each of them has a small effect not being able
by itself of discriminating between the groups being studied. Since the analysis
was performed independenly on each variable, there is no way of combining the
different selected biomarkers to perform a prediction, or even to understand
the behavior of the studied biological system. Another important issue is the
inability of controlling for confounders, i.e., variables correlated with both the
biomarker and the response (Heinze and Dunkler 2017). Most sudies are ob-
servational, so groups are usually not directly comparable. Bivariate tests are
not able to take into account possible confounders and this renders many of
their results invalid. There is also no way of assessing possible interactions
among variables (Hassall and Mead 2018). As seen in Figure 2.1, the effect
of one variable in the response can depend on the value of another. All this
important information is completely lost when analyzing data one variable at
a time.
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Figure 2.1: Interaction between two variables (biomarker 1 and biomarker 2). Higher
values of one of the two biomarkers are associated to higher values of the response, but only
if the other biomarker has not high values either.

Finally, there is also a concern with the question being asked by the bivariate
tests. Usually, what these analysis are doing is flipping the question. If one is
looking for biomarkers for detecting a specific disease, it wants to be able to
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2.1 Classical bivariate tests

predict disease with the value of the biomarkers. This is something inherently
different as the question answered by the bivariate hypothesis test: Are the
means (medians) for this biomarker different in each group? (Equation 2.2).

Group ∼ Biomarkeri

vs.

Biomarkeri ∼ Group

(2.2)

In the first case, the response variable is the group and the predictors are
the different biomarkers. In the second case, the responses are the different
biomarkers and the predictor is the group. Since the approaches are different,
it is not surprising that the fact that the means are different is not enough
to achieve a good discrimination power between groups and, on the other
hand, the fact that the means are equal does not mean that the biomarker
is not appropriate for discriminating between groups. Figure 2.2 shows clear
examples of both cases.

Figure 2.2: In A means are different (p < 0.001) but values of the biomarker are not valid
for discriminationg between controls and patients. In B means are exactly equal, but values
of the biomarker allow for a perfect discrimination between both groups.

In summary, while compelling for their simplicity and ease of use, classical
bivariate tests are not appropriate for the analysis of omic data and should
only be used in the context of exploratory analysis or complementary secondary
analyses.
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2.2 Linear modelling of omic data

Linear models are a generalization of the well known statistical tests t test
and ANOVA, where more predictors can be included in the studied association
with the response variable. In fact, the standard t test and ANOVA are just a
linear regression with one categorical predictor (Figure 2.3)

Figure 2.3: Equivalence between the t test and a linear regression with one categorical
predictor. It is easy to notice that the slope of the regression line, defined as ∆y/∆x, equals
the difference between means from group 0 and group 1.

One advantage of linear models compared to their simpler versions t test and
ANOVA is their ability to control for confounding variables. This overcomes
one of the important issues raised in section 2.1 regarding non-comparable
groups in observational studies. The linear model has the form showed in
Equation 2.3. Where β0 is the intercept and βi are the slopes of the different
variables included in the model. The linear model can also accommodate
interactions by introducing a multiplicative term between variables.

y = β0 +
p∑
i=1

βixi + ε (2.3)

At first glance, it seems like the linear model could solve most of the problems
presented in section 2.1, including integration of results, capturing interactions
and answering the right question. One of the assumptions of linear models is
that the response variable is continuous and has a linear relationship with the
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2.3 Corrections for multiple comparisons

predictors, but this assumption can be relaxed using a well known general-
ization of the linear models known as generalized linear models (McCulloch
2000). This way, it would seem possible to perform regressions to predict
or explain relationships of the different metabolites with a continuous vari-
able, and also for discriminating between different groups just by including all
studied metabolites in the model as covariates. Unfortunately, linear models
cannot accommodate an unlimited number of variables, because they are lim-
ited by their degrees of freedom and suffer greatly from overfitting (Babyak
2004; Hawkins 2004). Thus, in the context of omic data analysis, linear models
are only useful for the control of confounding variables. This means that they
are used in a similar fashion as the bivariate tests (Equation 2.4). That is,
performing as many regressions as predictor variables are in the data set.

Biomarkeri ∼ Group+ Confounder + ε (2.4)

2.3 Corrections for multiple comparisons

Each time a hypothesis test is performed, there is a α probability of a false
positive (usually α = 0.05). That means that, when using the techniques
presented in section 2.1 and section 2.2, the probability of false positives grows
to unacceptable levels. The relationship between the number of performed
hypothesis tests and the overall probability of a false positive is presented in
Equation 2.5.

Pr(False positive) = 1− (1− α)ntests (2.5)

This entails that, in a data set with just 100 variables, one expects five false pos-
itives in average. Noteworthy, metabolomic data sets can have up to thousands
of variables producing docens or even hundreds of false positives (Broadhurst
and Kell 2006). This renders the results of the performed hypothesis tests
useless, because there is no way of discriminating between false positives and
true positives.
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2.3.1 Bonferroni correction

One method for dealing with the problem of the large number of false positives
is the Bonferroni correction (Bland and Altman 1995). In this method, the
α value for each comparison is set to α/ntests in order to control the family
wise error rate (the probability of making one or more false discoveries, when
performing all the hypothesis tests). So this method is just setting a lower
threshold for the significance level. The more hypotheses are tested, the lower
is the significance level threshold. This is a very basic correction, and has
a major drawback: it greatly increases the number of false negatives. It is
straightforward to see that only with 20 tests, the significance level is lowered
to 0.05/20 = 0.0025, so only medium to large effects will be detected assuming
that sample size is large enough. But, in the case of metabolomic studies, data
sets tend to have many more variables. With 500 variables, the significance
level would be 0.05/500 = 0.0001 and with 2000 (typical for an untargeted
analysis) it would be 0.05/2000 = 0.000025. Taking into account the limited
sample sizes present in metabolomic studies, only the hugest effects will be
detected at such a low significance level (Johnson et al. 2010).

2.3.2 False Discovery Rate

As explained in the previous paragraph, Bonferroni correction greatly increases
the number of false negatives. The explanation for this increase can be deduced
from the pseudo formula presented in Equation 2.6. In this pseudo formula,
both error types are at the same place of the equation and the other parameters
are fixed for a specific data set. This means that, when one decreases one of
the two error types, the other has to increase accordingly.

N ∼
variance

effect size+ Type I error + Type II error
(2.6)

In the case of Bonferroni correction, the lowering of type I error is huge, so
the increase in type II error is correspondingly large. In practice, this usually
means that the analysis yields no positive results after a Bonferroni correction.
To overcome this problem, an alternative, less aggressive correction named
False Discovery Rate was developed (Benjamini and Hochberg 1995). The
false discovery rate method is not concerned with the family wise error rate
(FWER) as the Bonferroni method. It is focused in controlling the number
of false positives among all the discovered positives. So, in the case of false
discovery rate, it is assumed that some false positives are going to happen, but
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2.3 Corrections for multiple comparisons

one wants to control their proportion in relation with all the positives. The
difference between this approach and the classical control of type I error is
explained in Table 2.1.

H0 is true H0 is false

Rejected H0 FP TP
Not rejected H0 TN FN

Table 2.1: Difference between FWER and FDR. FP, TP, TN and FN stand for false
positives, true positives, true negatives and false negatives, respectively. In the classic FWER
procedures such as Bonferroni, one is interested in maintaining the overall proportion of
false positives under a specific threshold α. In FDR, on the other hand, the interest is in
maintaining the ratio of FP/(FP+TP) under a specific threshold.

It is easily shown that controlling the ratio FP/(FP+TP) is less stringent than
controlling the overall proportion of false positives. Thus, FDR has greater
statistical power, although it has a larger amount of type I error compared to
Bonferroni. This is expected since FDR is also subject to the formula presented
in Equation 2.6.

2.3.3 Other corrections

As explained in the preceding paragraph, there is no way out of the formula pre-
sented in Equation 2.6 when performing hypothesis tests. Several alternative
methods have been provided during the last decades (Benjamini and Yekutieli
2001; Gao, Starmer, and Martin 2008; Castro-Conde and Uña-Álvarez 2015),
but all of them are just playing with the balance between type I and type II er-
ror rate. Some researchers even support that the loss of power is so high, even
when performing false discovery rate, that in many cases it would be better to
not correct at all and consider the results as exploratory or hypotheses gener-
ators instead of forcing an unacceptable low power for confirming hypotheses
(Bender and Lange 2001). In summary, hypothesis testing for the analysis of
metabolomic data suffers from many issues that are difficult or, in some cases,
impossible to overcome. From the exposed methods in this section, the lin-
ear modelling approach seems a promising tool, specially when considering its
ability to use the different metabolites as predictors. However, issues concern-
ing overfitting and limited number of variables, due to the degrees of freedom,
should be considered when using this approach.
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2.4 Principal Component analysis

It has already been exposed that linear models could be an appropriate solution
for analyzing metabolomic data sets. One of the important issues concerning
their use is the saturation of their degrees of freedom when the number of
variables is large. Principal component analysis (PCA) is a dimensionality
reduction technique, that can be used to reduce the number of variables prior
to modeling, thus helping to overcome one of the problems of linear models
in the context of high dimensionality data sets (Hotelling 1933; K. Wang and
Abbott 2008). An illustration of the dimensionality reduction capability of
PCA is provided in Figure 2.4.

Figure 2.4: Plot of the first three principal components of a miRNA dataset. These
components carry enough information to be able to discriminate four different groups of
samples.

Formally, PCA is defined as an orthogonal linear transformation that projects
the data in a new coordinate system such that the greatest variance of the
data lies in the first dimension, the second greatest variance in the second
dimension, and so on until the number of components is equal to the number
of original dimensions. The full principal components decomposition of X is
given by (Equation 2.7).
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2.4 Principal Component analysis

T = XP (2.7)

Where P is a p × p matrix of loadings whose columns are the eigenvectors
of XTX. Since the last components are the ones accounting for the least
part of the variability, they carry almost no information from the original
data matrix. Thus, it is reasonable to remove them keeping only the first
components and effectively reducing the dimensionality of the data. Principal
component regression (PCR) then uses these first components as predictors in
a linear regression model to predict the response (Jolliffe 1982).

Another common use of PCA is as an exploratory analysis method (F. S.
Tsai and Chan 2007). Since it is very hard to represent more than three
dimensions in a surface such as a sheet of paper or a screen, multidimensional
data sets such as those coming from ’omic’ technologies are difficult to visualize.
The dimensionality reduction produced by PCA allows for the representation
of such data sets and the performing of exploratory analyses such as outlier
detection, batch effect assessment, etc. (Meglen 1992).
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Chapter 3

Modern techniques for the
analysis of metabolomic data

3.1 Projection based methods

In the previous chapter, the projection technique known as PCA has been
introduced. As explained in section 2.4, this method works by performing a
dimension reduction to an original data matrix with dimensions I × J , to a
projected data matrix with dimensions I ×M , where M ≤ J . Each new com-
ponent of the projected data matrix is built trying to capture as much of the
variability from the original data matrix as possible. So PCA is a projection
technique that tries to reduce the dimensionality of the data while trying to
maximize the information kept from the original data. This approach can be
great for performing exploratory analysis of a data set or unsupervised analysis,
but can be inefficient for performing supervised analysis such as regression or
classification. The reason for this is that, while variables with the highest vari-
ability carry most of the information of the original data matrix, they do not
necessarily have to be the ones able to explain the response that one is trying
to predict (Kettaneh, Berglund, and Wold 2005). A conceptual explanation of
this is presented in Figure 3.1.
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Figure 3.1: Variables with less variability can be the ones related to the response, thus
being infrarepresented in the first components of PCA. In this example, if one wanted to
predict the amount of shadow dropped by the tree, the PCA projection would not be efficient,
while the other presented projection fully captures the target prediction. On the other hand,
the PCA projection makes the tree fully recognizable, while the other projection makes it
hard to even guess there is a tree.

Thus, if the aim is prediction, projection for maximizing the explained vari-
ability on the original data matrix is not the best approach. It is much better
to maximize covariance with the response. This is how the technique Partial
Least Squares (PLS) works.

3.1.1 Partial Least Squares

In linear regression, there is a limit on the number of variables that can enter a
model for a specific sample size. Recent studies have shown that a minimum of
two independent observations per variable are needed for estimating regression
coefficients with reasonable bias (Austin and Steyerberg 2015). Metabolomic
data sets usually have many more variables than observations, so linear regres-
sion models are not a viable alternative for analyzing these data sets. Linear
regression also suffers from multicollinearity, so when highly correlated predic-
tors are used together in a model their coefficients get unstable and standard
errors grow wildly (Alin 2010). PLS can be seen as an extension of multiple lin-
ear regression designed to overcome the mentioned drawbacks. It can analyze
data sets with strongly correlated variables and handle situations where the
number of variables far exceeds the number of observations (Wold, Sjöström,
and Eriksson 2001). Additionally, PLS can also simultaneously model several
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response variables. It is important to note that results of PLS (and of pro-
jection methods in general) depend on the scaling of the data so, before the
analyses, pre-processing of the X and Y variables should be considered. A
scheme of the PLS model is depicted in Figure 3.2.

Figure 3.2: Scheme of the PLS model (Wold, Sjöström, and Eriksson 2001). X is the
matrix of predictors and Y is the matrix of responses. Additional matrices are generated at
the different modelling steps.

The PLS model finds latent variables (denoted by ta, where a = 1, 2, . . . , A)
that are predictors of Y (with dimensions I ×M) and also model X (with
dimensions I ×K), by maximizing the covariance between their latent struc-
tures. These latent variables are also called X-scores and are orthogonal. They
are estimated as linear combinations of the original variables using different
weights denoted by w∗ka (Equation 3.1).

T = XW∗ (3.1)

X-scores are multiplied by the loadings pak in order to obtain the residuals in
X, denoted as E (Equation 3.2).

X = TP′ + E (3.2)

Analogously, the Y-scores are multiplied by the weights (denoted by cam) min-
imizing residuals in Y, denoted as G (Equation 3.3).
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Y = UC′ + G (3.3)

As stated before, X-scores are good predictors of Y (Equation 3.4).

Y = TC′ + F (3.4)

Where F is the residuals matrix from Y. Alternatively, Equation 3.4 can be
rewritten as follows (Equation 3.5):

Y = XW∗C′ + F = XB + F (3.5)

Which resembles a multiple linear regression model where the predictors matrix
X is multiplied by the coefficients matrix B to predict Y.

PLS is, consequently, a modelling technique able to effectively deal with metabolomic
data. Correlated variables and data sets with many more variables than ob-
servations can be properly analyzed and results are easily interpreted with
the help of useful plots of the scores, weights and predictions of the model
(Figure 3.3).

3.2 Penalization methods

Another set of techniques able to manage metabolomic data sets are the pe-
nalization methods. These methods are motivated by the relationship between
model complexity and prediction error, also known as bias-variance trade-off
(Hastie, Friedman, and R. Tibshirani 2001). As depicted in Figure 3.4, pre-
diction error in the same data set used to fit a specific model always decreases
when increasing the complexity of the model. On the other hand, prediction
error in new data decreases at first, reaching a minimum at a specific model
complexity, and increases later again as model complexity keeps growing larger.

As previously described, metabolomic data sets are characterized by having a
large number of variables and relatively a low number of observations. Trying
to fit a model with all the variables in this situation would correspond to the
extreme right side of the plot in Figure 3.4 with low bias and high variance.
This is the reason why multiple regression models cannot be fit to these data,
variance grows to infinite as the number of predictor variables increases in
the model. But this relationship between bias-variance and model complexity
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3.2 Penalization methods

Figure 3.3: Plots of a PLS model. A shows the weights for each variable in the two
first components. B shows the scores for each observation in the first two components. C
represents the correlations between each variable and the first two components. D shows
the regression coefficients of the model.

Figure 3.4: Behavior of prediction error in training (in-sample) and test (out-of-sample)
data.
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gives us the key for improving the standard linear models: increasing bias will
reduce the variance, potentially obtaining a lower out-of-sample prediction
error because model complexity has been decreased. Thus, the solution for
being able to fit linear models to metabolomic data is to bias them. The
full reasoning behind this last sentence can be better understood with the
explanation provided in Figure 3.5.

Figure 3.5: In both targets each black cross represents an estimation of a specific model to
different samples of the same population and the orange dot represents the average estimation
of all of them. In the left target there is no bias, with the orange dot right at the bullseye,
but estimation from the different samples are wildly spread with a very high variability. In
the right target, there is a perceptible amount of bias, the orange dot lies out of the bullseye,
but all estimations from the different samples are concentrated in a small area around the
average estimation. Usually, only one sample (one data set) is available for performing the
estimation, so the advantage of introducing bias to lower variance is evident.

3.2.1 Ridge regression

The first developed penalization method for linear regression was ridge regres-
sion (Hoerl and Kennard 1970). This method consists in solving the ordinary
least squares problem, but introduces a restriction to the solution. This restric-
tion consists in setting an upper bound on the sum of the squared coefficients
(L2 norm) (Equation 3.6).

β̂ridge = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

Subject to the restriction:
p∑
j=1

β2
j ≤ s

(3.6)
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The inclusion of this restriction to the ordinary least squares problem imposes
a reduction in the value of the coefficients, thus biasing their estimation and
producing a reduction in the complexity of the model. A graphical explanation
of the functioning of the method is represented in Figure 3.6.

Figure 3.6: Ridge regression for a linear model with two predictors. As the restriction
is intensified (lower value of s), the estimation of the coefficients is more biased to zero.
Dashed red lines represent least squares contour lines. Grayed area represents the restriction
imposed by s.

The solution offered by ridge regression is very similar to that obtained by
PLS. A regression model suitable for metabolomic data sets with many, highly
correlated variables. Both methods use all the variables for adjusting the model
and both models shrink the estimates of the coefficients (De Jong 1995), thus
reducing model complexity and therefore variance at a cost of increasing bias.

3.2.2 Lasso

In many studies there is the need or interest of not only fitting a predictive
model, but also selecting the most important predictors among all the variables
present in the data. As it has been exposed in the previous sections, neither
PLS nor ridge regression provide a direct method for variable selection. They
both use all the variables in the data set for adjusting the model. It is true that
there are some post-model-fitting methods for assessing variable importance
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in the case of PLS (Mehmood et al. 2012), but they require and additional
filtering step after the model has been fitted and are not inherent to the PLS
model. The method known as lasso is similar to ridge regression. But instead
of setting a bound on the sum of the squared coefficients, it is set on the sum
of the absolute values of the coefficients (L1 norm) as seen in Equation 3.7 (R.
Tibshirani 1996). This change in the method of penalization of the coefficients
allows that some of them are set to zero when the model is adjusted, thus
producing a variable selection at the model-fitting step.

β̂lasso = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

Subject to the restriction:
p∑
j=1

|βj| ≤ s
(3.7)

Figure 3.7: Lasso regression for a linear model with two predictors. As the restriction is
intensified (lower value of s), the estimation of the coefficients is more biased to zero. Since
it is more easier to land in a vertex than in an edge, reducing s forces one of the coefficients
to zero. Dashed red lines represent least squares contour lines. Grayed area represents the
restriction imposed by s.
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Figure 3.7 shows how increasing the penalization by reducing s forces the
parameters to zero, producing a simpler model by deselecting some features.
Thus, assuming data are standardized (i.e., mean centered and scaled to unit
variance), Lasso automatically selects the most relevant features and discards
the others.

The fact that lasso allows for variable selection makes it a very appealing
solution for modelling ’omic’ data. Unfortunately, unlike PLS and ridge re-
gression, lasso is not able to deal with multicollinearity in an optimal manner
(Chong and Jun 2005), which is a prominent characteristic of metabolimic
data. When two (or more) variables are highly correlated, lasso will select one
of them discarding the others and, potentially, losing predictive performance
and important variables.

3.2.3 Elastic net

Two different penalization methods have been presented, each one with its
own benefits and drawbacks. Ridge is able to deal with multicollinearity but
does not perform variable selection and lasso performs variable selection but
does not deal adequately with multicollinearity. The elastic net algorithm
(EN) was developed in order to merge the good qualities of ridge and elastic
net and overcome their limitations (Zou and Hastie 2005). EN is a flexible
combination of the two constrains defined for ridge and lasso. The L1 penalty
provides variable selection and the L2 penalty provides stability in the selection
of correlated variables. The balance between both penalties is defined by the
parameter α (Equation 3.8). When α = 0, elastic net is equivalent to ridge
regression, since the L1 constraint is set to zero. On the other hand, when
α = 1, elastic net is equivalent to lasso, since the L2 constraint is set to zero.
Values between α = 0 and α = 1 provide different balances between L1 (more
variable selection) and L2 (better handling of multicollinearity) penalizations.

β̂elasticnet = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

Subject to the restriction: α
p∑
j=1

|βj|+ (1− α)
p∑
j=1

β2
j ≤ s

(3.8)
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Figure 3.8 depicts the elastic net in a two-variable case and shows how, while
keeping the vertices present in lasso, the edges are convex and allow for grouped
selection of correlated variables. This is a very attractive solution for the
modelling of metabolomic data sets and has been used widely during the last
years (Lankinen et al. 2010; Bowling and Thomas 2014; X. Liu et al. 2015;
Ferrario et al. 2016). The only drawback of elastic net compared to lasso and
ridge is the inclusion of another parameter in the model. Instead of optimizing
only for the value of s, elastic net models have also to optimize for the value
of α, thus requiring more tuning for an appropriate fitting of the data.

Penalization methods have been used by the author of this thesis for the anal-
ysis of different ’omic’ data sets with very positive results (Yáñez et al. 2015;
Gonzalez-Billalabeitia et al. 2017; Ibáñez et al. 2018).

Figure 3.8: Elastic net regression for a linear model with two predictors. As the restriction
is intensified (lower value of s), the estimation of the coefficients is more biased to zero. As
in lasso, it is more easier to land in a vertex than in an edge, so many coefficients can be
potentially set to zero. But, as in ridge, edges are convex, so highly correlated variables will
be selected together. Dashed red lines represent least squares contour lines. Grayed area
represents the restriction imposed by s.
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3.3 Other methods

Projection based methods and penalization methods are extensions of the stan-
dard linear model and can also be extended to generalized linear models and
survival models without much effort (Nygård et al. 2008; Simon et al. 2011).
But there are other methods worth mentioning when thinking about dealing
with metabolomic data sets. Among them stand out neural networks (Day-
hoff and DeLeo 2001), which are highly parametrized models inspired by the
functioning of the human brain, support vector machines (Mahadevan et al.
2008) based on kernel methods, bayesian networks (Bartel, Krumsiek, and
Theis 2013) and tree based methods such as regression and classification trees
(Venables and Ripley 2002; Loh 2014), Figure 3.9, random forests (Breiman
2001) (based on bootstrap resampling (Efron and R. J. Tibshirani 1994) of
classification trees), and boosting (Freund, Schapire, et al. 1996; Auret and
Aldrich 2011).

Figure 3.9: Classification tree for predicting relapse in breast cancer patients. Starting
from the top one, each node tests a boolean condition which determines the direction of the
next node to test until a terminal node is reached and a prediction is made.
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Chapter 4

Challenges for analyzing
metabolomics data. Strategies

and aims of the thesis

4.1 Challenges for analyzing metabolomic data

Traditionally, ’omic’ data analyses have been performed using classical sta-
tistical methods from last century. In most cases, these methods consisted in
bivariate tests such as t test or Wilcoxon-Mann Whitney test, followed by some
sort of multiple comparissons correction such as Bonferroni or False Discovery
Rate (Hochberg and Benjamini 1990; Benjamini and Hochberg 1995). These
approaches suffer from several drawbacks including lack of statistical power,
lack of interpretability of results, and omission of complex relationships among
variables (Strasak et al. 2007). Thus, classical statistical methods based on bi-
variate tests are not adequate to extract all the information available in ’omic’
data sets. Some of the mentioned problems such as the lack of interpretability
or the omission of complex relationships could be adressed using statistical
models such as linear models or generalized linear models, but these methods
also suffer from other problems when dealing with ’omic’ data, such as the

31



Chapter 4. Challenges for analyzing metabolomics data. Strategies and aims of the thesis

large number of variables and the low sample size, which produces overfitting,
and the high correlation among variables, which produces multicollinearity.
All these limitations associated with ’omic’ data analysis have motivated the
development of numerous novel statistical techniques during the last decades
specifically aimed at solving them. Prediction methods such as PLS (Wold,
Ruhe, et al. 1984), lasso (R. Tibshirani 1996), elastic net (Zou and Hastie 2005)
and random forest (Breiman 2001), among others, can deal with most of the
problems exposed in the preceding lines. Nevertheless, other challenges remain
partially unresolved, such as the analysis of repeated measures data or, more
generally, data organized in multiway arrays. Also, in a discipline where the
number of variables is so large, the development of variable selection methods
is of utmost importance.

4.2 Strategies and aims of the thesis

As presented in the previous sections, ’omic’ data sets and, more specifically,
metabolomic data sets contain a large amount of information in the form of
huge data structures. The magnitude of this data sets dificults their handling as
well as their analysis and interpretation. Additionally, metabolomics presents
specific singularities that make necessary the use of complex pre-processing
and analysis techniques. First, depending on the technology used, baseline
correction, phasing, peak alignment and binning in the case of NMR or peak
detection, aligmnment and gap filling in the case of MS have to be performed on
the raw data. Then, different normalization and data pretreatments methods
are applied to the data depending on the aims of the study (Karaman 2017).

The aim of metabolomic analyses is the identification of those metabolites
related to the specific biological question being studied. As of today, the ma-
jority of statistical analyses performed on metabolomic data sets are based
on classical methods or, in the best cases, on adequate but limited modern
statistical methods. Among these adequate methods stand out principal com-
ponent analysis (PCA), partial least squares (PLS), penalization methods such
as ridge or lasso and other machine learning techniques such as random forest
or boosting. However, these techniques are not able no deal effectively with
all the particularities of metabolomic data sets. Their limitations get clearly
exposed when dealing with data sets with repeated measurements over time
or, more generally, three-way or multi-way data sets. An important part of the
work on this thesis consisted on critically reviewing an assessing the usefulness
of the different presented tools for metabolomic data analysis.
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Some useful tools for analyzing three-way data are the Tucker3 and PARAFAC
models and, when some Y data structure is to be predicted, the N -PLS model.
Related to the problem of these datasets with a large number of features, comes
the issue of variable selection. Variable selection is essential for facilitating e.g.
biological interpretation of the results when analyzing ’-omic’ data sets. It is
often the case that the aim of these analyses is to find a new biomarker or
a specific set of biomarkers, also called signature, to diagnose or predict the
onset of a disease. For these cases, the N -PLS algorithm does not provide
variable selection implemented within the algorithm, although some methods
have been developed to perform it after the fitting of the model. One of the
main research lines of this thesis will be the introduction of L1-penalization in
the N -PLS algorithm to allow for variable selection within the model-fitting
step. This approach should not only facilitate interpretation by producing
a reduced model including fewer variables, but should also reduce prediction
error by completely eliminating noise features instead of downweighting them
as N -PLS does. The full list of objectives for this thesis is presented below:

• Try, assess and evaluate different preprocessing techniques for metabolomic
data

• Study and critically evaluate the use of different modern data analysis
techniques for dealing with metabolomic data sets.

• Develop novel algorithms for embedding variable selection methods with
N -PLS for the analysis of three- or multi-way datasets that allow for
variable selection at the model-fitting step

• Develop a software package based in the R language, that implements the
new algorithm along with all the extra functions needed for performing
complete analyses of three-way data sets and their posterior interpreta-
tion.
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Chapter 5

Multiway data, methods for its
analysis

5.1 From 2D matrices to 3D arrays

In most fields, data sets are usually represented by two dimensional matrices,
where the rows are the observations and the columns are the different variables
(I × J). But in metabolomics, and in general in many other ’omic’ sciences,
sometimes these I × J data sets can be expanded by taking, for example,
repeated measurements at different K time points for each observation and
producing a three-dimensional data structure (I×J×K) called three-way array
(Figure 5.1) or, more generally, a multidimensional data structure called multi-
way array (Kroonenberg et al. 2016). Most of the modelling methods that have
been explained in chapter 3 are not able of dealing with such data structures,
which raise many methodological complications to the analyses. Therefore,
different three-way or multi-way specific methods have been developed during
the last decades to deal with this sort of data.
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Figure 5.1: Representation of a three-way array.

5.2 Exploration and description of N-way arrays

5.2.1 Unfolding

One of the straightforward solutions for dealing with N -way arrays is perform-
ing an unfolding of the array into a two-dimensional matrix. This unfolding
is performed by regrouping the elements of the higher order dimensions, also
called modes, by extending the dimension of the second mode, as showed in Fig-
ure 5.2. After the unfolding, all statistical methods valid for two-dimensional
matrices are applicable to the new structure, although the tridimensional struc-
ture of the data is lost, leading to a list of potential issues such as more complex
models (too many parameters), loss of predictive power, loss of the multi-way
information and greater difficulty in the interpretation of results.

Figure 5.2: Unfolding of a three-way array (I × J × K) into a two-dimensional matrix
(I × JK).
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5.2.2 Tucker3

When studying multi-way structures, the most general model that can be used
is the Tucker3 model (Tucker 1966), also explained in detail by Kiers and
Mechelen (2001).

Assuming a three-way structure of the data, the Tucker3 model has the struc-
ture defined in Figure 5.3. This figure shows that the model is a weighted sum
of all possible outer products, where the loadings of the outer product between
the ith factor from A, the jth factor from B and the kth factor from C is
determined by element gijk of the core.

Model parameters are estimated by minimizing the squared sum of residuals
elmn as shown in Equation 5.1

xijk =
w1∑
l=1

w2∑
m=1

w3∑
n=1

ailbjmckn + elmn (5.1)

If the Kronecker product is used, defined as ⊗, unfolding the X array, the G
core and the residuals E into matrices X, G and E by fixing the first mode,
the matrix expression of the model is as follows (Equation 5.2):

X = AG(CT ⊗BT ) + E (5.2)

where A is the loadings matrix corresponding to the first mode, G is the
matrix obtained after unfolding the G core fixing the first mode, B and C are
the loading matrices of the second and third mode respectively and E is the
residuals matrix. The fact that the number of components is not forced to be
the same in the different modes allows for the different loadings matrices to
have different dimensions for each mode.

Of note, the compression performed by the model can be applied also to the
first mode. This way, the G core can be considered as an approximation to X,
which approximates the original array by the three matrices A, B and C.

It is important to take into account that the model has not a unique solution,
because it has rotational freedom. In fact, the model can be so redundant that
many elements of G can be set to zero without altering the fit of the model, thus
meaning they are associated to noise (José Manuel Prats-Montalbán 2005).
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Figure 5.3: Scheme of the Tucker3 model. The model consists on a weighted sum of outer
products between the different factors stored in matrices A, B and C.

5.2.3 PARAFAC

The PARAFAC method is also a decomposition method for multi-way arrays.
It can be derived from the Tucker 3 model by imposing superdiagonallity and
identity in the structure of the G core. Essentially, it is a generalization of
PCA to three- or multi-way data structures (Bro 1997). The method was first
developed by Harshman (1970) and Carroll and Chang (1970), who named the
method as CANDECOMP. In this method, the decomposition of the data is
made into trilinear components, with each component consisting of one score
vector and two loading vectors. The general structure of the PARAFAC model
is presented in Figure 5.4.

Figure 5.4: General structure of a PARAFAC model.

A PARAFAC model of a three-way array is given by three loading matrices,
A, B and C with elements aif , bif and ckf . The model minimizes the sum of
squares of residuals in Equation 5.3.
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xijk =
F∑
f=1

aijbjfckf + eijk (5.3)

The matricial expression of the PARAFAC model can be obtained by Using
the Khatri-Rao product (S. Liu and Trenkler 2008) and by unfolding the X
array into matrix X (Equation 5.4).

X = A(C| ⊗ |B)T + E =
F∑
f=1

af (cTf ⊗ bTf ) + E (5.4)

In the PARAFAC model, af , bf and cf are the fth columns of the loading
matrices A, B and C, respectively.

The main advantage of PARAFAC over Tucker3 models is the impossibility
of alternative solutions, that is, there is no posibility of rotation. This makes
PARAFAC models more easily interpretable.

5.3 Regression methods for N -way arrays, N -PLS

The N -PLS model is an extension of the standard PLS model to multi-way
arrays based in the decomposition performed by the PARAFAC model (Bro
1996). Its aim is studying relationships between some three-way (or N-way) X
(e.g. I × J ×K) data structure and any Y (e.g. I ×L×M) data structure by
maximizing the covariance between X and Y data arrays. For achieving this,
a multilinear model is fitted simultaneously to the X and the Y arrays with a
regression model relating them together. The structure of the N -PLS model
is presented in Figure 5.5.

Considering X (I ×JK) the unfolded version of X, N -PLS tries to find latent
spaces WJ and WK that maximize the covariance between X and Y, so it can
be expressed as:

X = T(WK | ⊗ |WJ)T + R (5.5)

Afterwards decomposing X from X using the improved N -PLS version expres-
sion (Bro, A. K. Smilde, and Jong 2001), in order to obtain residuals with
better statistical properties:

41



Chapter 5. Multiway data, methods for its analysis

Figure 5.5: General structure of a N -PLS model.

X = TGu(WK ⊗WJ)T + R′ (5.6)

In the same way, Y can be decomposed by unfolding Y (I × L ×M) into Y
(I × LM) as:

Y = U(QM | ⊗ |QL)T + R′′ (5.7)

In this case, WK and WJ refer to the weights of the third and of the second
mode, respectively; whereas T matrix gathers the scores of the samples at
each component extracted, in the first mode. | ⊗ | is the Khatri-Rao product
and ⊗ the Kronecker product, which forbid or allow (respectively) to take
interactions between the different modes components into account. Gu is the
core array (unfolded) of a Tucker3 decomposition when using T, WK and WJ

as loadings, in order to obtain a better (or at least not worse) approximation
of the X array (A. Smilde, Bro, and Geladi 2005). Finally, R′ incorporates
the residuals. Analogously, U refers to the Y scores, and QM and QL to the
loadings of the array Y. Finally, from the scores T and U, as well from the
W weights, a BPLS regression matrix can be obtained (Bro 1998) so

Y = XBPLS + R′′′ (5.8)
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In summary, N -PLS allows for the application of the well known standard PLS
model to multi-way arrays, being able to exploit the multidimensional structure
of the data, reducing the inclusion of noise, and producing more parsimonious
models than standard PLS models applied to unfolded matrices.

5.4 Software for analyzing three-way data

5.4.1 R programming language

R (Ihaka and Gentleman 1996; R Core Team 2018) is a programming language
designed for statistical programming, derived from the S language, which was
developed in the Bell Laboratories by Rick Becker, John Chambers and Allan
Wilks in the 60s. It is free software and open source, and was designed specifi-
cally for performing data analysis and statistical tasks. Since it is open source,
R has thousands of developers, which results in more than 10000 packages in
the main software repository for R named CRAN (Figure 5.6) and more than
1300 packages in the Bioconductor repository, specialized in packages for the
analysis of ’omic’ data. For this reasons, R has become a standard for data
analysis in many scientific fields such as physics, biology and medicine among
others (Goztepe 2017).
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Figure 5.6: Number of R packages on CRAN has been growing at an exponential rate since
2002.
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With the huge number of packages at the disposal of R users, many advanced
functions have already been programmed and are available for their use or
reuse when programming new functionalities. Apart from the main repository
(CRAN) there are other important repositories with thousands of packages
more such as R-Forge, Bioconductor or even Github. All this functionallity
and the fact that R is open source motivated the election of R as the language
for developing all the techniques and tools presented in this thesis.

5.4.2 R packages for the analysis of three-way data

Most three-way data procedures are implemented in MATLAB® (MATLAB
2018) (or previous versions of the software). Concretely, the N -way toolbox
by Andersson and Bro (2000) provides a comprehensive set of functions for
dealing with three- and multi-way arrays in MATLAB®. R, on the other hand,
only has two packages dedicated to the analysis of three- or multi-way data.
The packages PTAk (Leibovici 2010) and ThreeWay (Giordani, Kiers, Del Fer-
raro, et al. 2014), offer a suit of functions for handling three-way arrays in R.
These functions include Tucker3 and PARAFAC models and also some pro-
cessing methods for three-way data such as centering, scaling, unfolding and
normalizing arrays. However, N -PLS is notably missing from these packages,
so no prediction method for three-way arrays was implemented in R before the
release of the sNPLS package developed in this thesis. In this way, with the de-
velopment of the package, it has not only been implemented a newly developed
method such as sparse N -PLS, but also enabled the use of standard N -PLS
regression models to R users.
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Variable selection techniques

6.1 VIP scores

As explained in the previous chapter, although N -PLS does not provide vari-
able selection at the model-fitting step, some methods have been developed to
implement variable selection on the fitted model. The variable importance in
the projection (VIP) method is a ranking method for variable selection that
was first developed for standard PLS regression models in two-way data ma-
trices (Wold, Sjöström, and Eriksson 2001; Chong and Jun 2005). For this
two-way case, the variable importance in the projection is a measure of the
influence of each of the variables in the data matrix X on the response matrix
Y (Equation 6.1)

V IP 2
j = Sfw

2
jf · SSYf · J/(SSYtot.expl. · F ) (6.1)

where J is the number of variables inX and F is the number of latent variables
in the model.

When the response is a vector y it holds that

SSYf = b2fft
T
f tf (6.2)
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and

SSYtot.expl. = b2TTT (6.3)

where T is the score matrix and b are the PLS coefficients. Following this,
VIP values for each variable can be computed using the PLS weight wjf based
on how much of y is explained in each latent variable. It is considered that
VIP values greater than one have an above average influence and should be
considered as relevant variables in explaining Y, although the limit is arbitrary
and can be modified depending on the requirements of the study (Akarachan-
tachote, Chadcham, and Saithanu 2014).

In their work, Favilla, Durante, et al. (2013), expanded the applicability of the
VIP scores to the three-way case as follows:

In the case of a two-dimensional Y (I ×M), the relation presented on Equa-
tion 6.1 applies to each mode of a three-way X array. For each latent variable
f and for each y-variable ym it holds that:

V IP 2
j = Σfw

2
jf · SSYmf · J/(SSYtot.expl.,m · F ) (6.4)

and

V IP 2
k = Σfw

2
kf · SSYmf ·K/(SSYtot.expl.,m · F ) (6.5)

where

SSYtot.expl.,m = Σi(T(I×F )B(F×F )qT(m,F ))
2 (6.6)

and

SSYmf = Σi(tfbffqmf )2 (6.7)

where I is the number of samples, J is the number of variables in the second
mode of X and K is the number of elements of the third mode in X. T is
the first mode score matrix, B the inner relation coefficients matrix and Q the
loadings matrix of Y.
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6.1 VIP scores

For any model dimension f and variable j the corresponding VIP value is
estimated by the squared weight w2

jf multiplied by the percent of Y explained
by that dimension. Then, importance values are normalized constraining the
V IP 2 value to equal the number of variables.

Taking Equation 6.6 and Equation 6.7, when considering all Y variables to-
gether, it holds that

SSYtot.expl. = Σi(T(I×F )B(F×F )QT
(M,F ))

2 (6.8)

SSYf = ΣmΣi(tfbffqTmf )2 (6.9)

and

V IP 2
j = Σfw

2
jf · SSYf · J/(SSYtot.expl. · F ) (6.10)

From this, extension to other Y modes can be easily obtained.

An example of the VIP score computation results of a PLS analysis performed
on an arbitrary data set is provided in Figure 6.1, where the first eleven vari-
ables and the 28th variable have a VIP score greater than one and are consid-
ered as relevant for predicting y.
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Figure 6.1: Plot of the VIP scores from the different variables in a PLS model. The dashed
red line marks the VIP=1 threshold.
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6.2 Selectivity Ratio

In the majority of cases, several components are needed to adequately fit a
model for a specific response y. By using the y vector as a target, it is possible
to transform the PLS components to obtain a single predictive target-projected
component, which is analogous to the predictive component in orthogonal par-
tial least squares (Bylesjö et al. 2006). The selectivity ratio (SR) is estimated
by calculating the ratio between explained and residual variance of the vari-
ables on that target-projected component (Rajalahti et al. 2009). Briefly, by
selecting the normalized regression coefficients as PLS weights

wTP = bPLS/‖bPLS‖ (6.11)

and calculating target-projected scores by projection on the matrix of variables

tTP = XwTP = XbPLS/‖bPLS‖ = ŷ/‖bPLS‖ (6.12)

it is showed that the target-projected scores are proportional to the vector of
predicted responses.

The target-projected loadings can be calculated as

pTTP = tTTPX/(t
T
TP tTP ) = bTPLS/‖bPLS‖ ∗ (XTX)/‖tTP‖2 (6.13)

This shows that the target-projected loadings are the product of the normal-
ized regression coefficients and the covariance matrix of the variables scaled
by the inverse of the variance of the target-projected scores. So the target-
projected loading vector combines the predictive ability of a variable with its
X explanatory power.

The target projection model can then be expressed as

X = XTP + ETP = tTPpTTP + ETP (6.14)

From here, explained and residual variance (vexpl,j and vres,j can be computed
for each variable j. Then the selectivity ratio is obtained by dividing explained
and residual variance as follows
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SRj = vexpl,j/vres,j, j = 1, 2, 3 . . . (6.15)

As with the case of VIP scores and any other ranking method, the limit or
threshold of SR value for considering a variable as relevant is arbitrary. Nev-
ertheless, the authors of the original paper considered a 75% of explained
variance, corresponding to a SR of three, a reasonable threshold for selecting
variables as relevant in predicting y.

An example of the SR computation results on the same PLS analysis presented
in Figure 6.1 for VIP scores is provided in Figure 6.2. It can be seen that
conclusions from this method regarding relevant variables are coincident with
those obtained using the VIP scores methods, so there is good agreement
between both methods. There is only a slight disagreement regarding the first
three variables, which are selected by the VIP scores methods and discarded
by the selectivity ratio when using the standard threshold values for both
methods.
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Figure 6.2: Plot of the SR from the different variables in a PLS model. The dashed red
line marks the SR=3 threshold.

As of today. there are no published studies comparing the use of both methods
in a comprehensive set of different data sets for the three-way case. However,
a study of Farrés et al. (2015) compared both methods regarding variable
selection performance and prediction capability in different two-way data sets.
This study concluded that, for most data sets, the SR method selected fewer
variables than the VIP method. In many cases, some of the variables selected
by the VIP method were false positive candidates and some of the variables
not selected by the SR were false negative candidates. Regarding prediction
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accuracy, each method was better that the other in a similar number of data
sets, so final decision about the best of the two approaches should be based on
the aims of the specific study being performed.

6.3 Variable selection through L1 penalization

As explained in chapter 3, lasso applies a bias to the model fitting step of a
linear or generalized linear model by shrinking all the coefficients using L1-
penalization. This shrinkage reduces the complexity of the model, reducing
variance and forcing some of the coefficients to be exactly zero, effectively per-
forming variable selection at the same time as it increases predictive capacity
reducing prediction error. Unfortunately the application of lasso, or its gen-
eralization elastic net, to three-way or multi-way data is not straightforward.
The only approximations of these techniques for dealing with three-way data
have been based on unfolding of the X array (Chiu and Yao 2013).

In chapter 5, the standard N -PLS algorithm has been presented as an ap-
pealing technique for modelling three- or multi-way data sets when there is
a response to be predicted. However, in this chapter it has been exposed
that, although there are some post modelling methods for estimating variable
importance such as VIP (Favilla, Durante, et al. 2013) and selectivity ratio
(Rajalahti et al. 2009), it does not perform in-model variable selection, which
would greatly increase its utility for analyzing metabolomic data sets. A suit-
able approach, recently published in (Hervás, J. Prats-Montalbán, Lahoz, et al.
2018), would consist in applying the L1 penalization from lasso inside the N -
PLS algorithm to be able to perform variable selection at the model-fitting step
while maintaining the capability of N -PLS of dealing with multi-way arrays.

For this, it is proposed to use the soft-thresholding operator which can be
derived from the lasso problem as follows:

1. Assuming X (matrizied version of X) is composed of orthogonal columns,
the least squares solution is

β̂LS = (XTX)−1XTy = XTy (6.16)

2. Using the Lagrangian form, an equivalent problem to that considered
would be
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min
β

1

2
||y −Xβ||22 + λ||β||1 (6.17)

3. Expansion of the first term gives

1

2
yTy − yTXβ +

1

2
βTβ (6.18)

Since yTy does not contain any of the variables of interest, it can be
discarded, and one can consider the following equivalent problem

min
β

(−yTXβ +
1

2
||β||2) + λ||β||1 (6.19)

Which can be rewritten as

min
β

p∑
j=1

−β̂LSj βj +
1

2
β2
j + λ|βj| (6.20)

So, there is a sum of objectives as the objective function. Since each of
them corresponds to a separate βj, this means that each variable may be
solved individually.

4. For a certain j, the aim is to minimize

Lj = −β̂LSj βj +
1

2
β2
j + λ|βj| (6.21)

If β̂LSj > 0, then βj ≥ 0, otherwise one could just change its sign and
get a lower value for the objective function. Correspondingly, if β̂LSj < 0,
then βj ≤ 0

5. In the first case, if β̂LSj > 0 and βj ≥ 0, then

Lj = −β̂LSj βj +
1

2
β2
j + λβj (6.22)

After differentiating respect to βj amd setting equal to zero, the result is
βj = β̂LSj −λ. Since βj ≥ 0, the right-hand side must be non-negative, so
the solution would be
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βlassoj = sgn(βLSj )(|βLSj | − λ)+ (6.23)

Which is the soft-thresholding operator.

6. In the other case, if β̂LSj < 0 and βj ≤ 0, then

Lj = −β̂LSj βj +
1

2
β2
j − λβj (6.24)

After differentiating respect to βj and setting equal to zero the result is
βj = β̂LSj + λ. Since it is needed that βj ≤ 0 the solution is

βlassoj = sgn(βLSj )(|βLSj | − λ)+ (6.25)

Which, again, gives the soft-thresholding operator.

The soft-thresholding operator is well known in signal processing and image
analysis, since it is used as a denoising filter in noisy images to obtain an
approximation of the original image which gives the minimum mean square
error (Khare and Tiwary 2005; Joy, Peter, and John 2013). To understand
how it works, the soft-thresholding function for a threshold of 3 has been
represented in Figure 6.3. Its use to create sparsity in projection methods was
first introduced by Zou, Hastie, and R. Tibshirani (2006) in sparse Principal
Component Analysis.
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6.3 Variable selection through L1 penalization

Figure 6.3: Soft-thresholding function in the range x = [-10, 10] with a threshold λ of 3.
Values with |x| higher than λ have the threshold value substracted and values with |x| equal
or less than λ are set to zero. Black dashed line represents the original values and red line
represents the thresholded values.
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Chapter 7

Sparse N -PLS, a method for
variable selection in multiway

data sets

7.1 Sparse N -PLS, integration of L1 penalization in the
N -PLS algorithm

As commented in the previous chapter, it is proposed to introduce the L1-
penalization in the N -PLS algorithm. Since there are three modes, the aim
is to perform selection not only on the second mode (variables), but also on
the third mode. To this aim, a similar approach to that of Lê Cao et al.
2008 is used. Briefly, to achieve sparse versions of wJ and wK for each latent
variable, the soft-thresholding penalty function βlassoj = sgn(βLSj )(|βLSj | − λ)+

is introduced in the N -PLS algorithm right after the SVD at the wJ and wK

determination. The complete algorithm is as follows (Figure 7.1):

CenterX andY, and unfoldX (andY when necessary) into a two-way matrix.
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Let u be some column of Y, and set f=1

1. wT = uTX/uTu

2. Build Z by refolding w according to the modes dimensions

3. Determine wJ and wK by SVD

4. L1-penalization inclusion

(a) Apply soft-thresholding on wJ: ŵj∗i = sgn(ŵji )(|ŵ
j
i | − λj)+

(b) Apply soft-thresholding on wK: ŵk∗i = sgn(ŵki )(|ŵki | − λk)+

(c) Input the new w as kronecker(wK,wJ)

5. t = Xw/wTw

6. q = YTt/norm(YTt)

7. u = Yq

8. Check for convergence. If it is achieved, continue; otherwise, go to 1

9. b = (TTT)−1TTu; where T = [t1 t2. . . tf ]

10. X = X− twT and Y = Y− tbqT

11. f = f+1. Continue from step 1 until a good description of Y

This algorithm is applicable to both the standard regression (continuous re-
sponse) and the discriminant version of the N -PLS model, i.e. N -PLS-DA. In
the case of N -PLS-DA, Y is a y vector formed by ones and zeros, each of the
two values related to one of the two classes to be segregated.

7.2 Hyperparameters of the sparse N -PLS algorithm

Hyperparameters are tuneable parameters of the model, whose values are spec-
ified before starting the algorithm instead of determined inside the algorithm
as standard parameters. L1-penalization has one hyperparameter, called the
penalization factor (the amount of L1-penalization to apply). However, since
the L1-penalization is applied to both wJ and wK the number of hyperparam-
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Figure 7.1: Scheme detailing the different steps of the sNPLS algorithm as explained in
the previous page.

eters for a sparse N -PLS model (sNPLS) is three: the number of components
(shared with the standard N -PLS model), the number of variables to select
at each component, and the number of elements of the third mode to select
at each component. The number of components can range between one and
J , and the number of variables per component or elements of the third mode
per component can range between zero and J and zero and K, respectively.
It is necessary that at least one component includes one selected variable and
one element of the third mode to fit a valid model. A sparse N -PLS model
where all variables and all elements of the third mode are forced to be selected
reduces to a general N -PLS model, where only the number of components acts
as hyperparameter.
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7.2.1 Tuning of the parameters

Optimization of the hyperparameter values is necessary to achieve optimal pre-
diction power or optimal variable selection performance in the case of sNPLS.
One important point to take into account is that consistency (selecting the
right variables) and minimizing prediction error appear to be non-compatible
(Yang 2005), so the tuning criterion has to be adapted depending on the main
objective of the analysis. For the objective of variable selection, Zou and Hastie
(2005) mention the option of just choosing the desired number of non-zero co-
efficients as a viable alternative for interpretation purposes. In the present
approach, the focus is set on minimizing prediction error, so to perform this
tuning of the parameters, a grid search of the hyperparameter space (Lameski
et al. 2015) is proposed guided by the mean squared prediction error evaluated
by cross-validation (Duarte and Wainer 2017). More specifically, the approach
consists on performing K-fold cross-validation repeatedly and averaging their
results, to alleviate instability in the selection of parameters because of high
variance in the single cross-validation results (Krstajic et al. 2014). This high
variance entails that different runs of the cross-validation procedure can yield
different results regarding the estimated best set of the parameters and also
that the estimation of the best set of parameters is prone to overfitting (bias-
variance tradeoff).

Briefly, K-fold cross-validation consists on randomly splitting the data set in
a number of folds, K, and perform K iterations of model fitting and testing,
where a different fold is used as test set in each iteration while the other
folds are used to train the model. This way, an out-of-sample estimate for the
prediction error of the model is estimated at each iteration. Later, all estimates
are averaged to get the mean cross-validated error.

The procedure is performed as follows:

1. Divide the data set in K subsets (ideally of equal size)

2. For each k in 1, . . . K:

• Train the model on (xi, yi) where i /∈ Fk

• Estimate prediction error on (xk, yk) as Ek

3. Average all errors to get the CV E estimate
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A scheme of the procedure for K-fold cross-validation is represented in Fig-
ure 7.2.

Figure 7.2: Scheme of a K-fold cross-validation procedure. At each iteration, one different
fold acts as test fold while all the others act as training folds. At the end, the different
prediction errors are averaged.

There are alternative ways to select or tune the hyperparameters apart from
cross-validation (Vujačić, Abbruzzo, and Wit 2015; Zhang, Li, and C.-L. Tsai
2010). These alternatives have the advantage of being computationally faster
than cross-validation, but one important advantage of cross-validation is the
possibility to estimate the standard error of the estimated cross-validated error
performing the following steps:

1.
Ek = (y − ŷ)2 (7.1)

2.
CV E =

1

K

K∑
i=1

Ei (7.2)

3.
SDCV E =

√
var(E1, E2, . . . , Ek) (7.3)
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4.
SECV E =

SDCV E√
K

(7.4)

Performing a grid search on a three-dimensional hyperparameter step is com-
putationally very demanding, so the fact that grid search is an embarrass-
ingly parallel task (McGibbon et al. 2016) is exploited to parallelize the cross-
validation procedure and be able to perform the repeated cross-validation in a
reasonable time for medium and large data sets. Details on the parallelization
algorithm will be presented in next chapter.

62



Chapter 8

sNPLS package, a
comprehensive software for
N -PLS and sparse N -PLS

analysis

8.1 Implementation of the sNPLS algorithm in R

In this section the key functions of the code for the sNPLS package imple-
menting the sNPLS method will be exposed and commented. These include
the main sNPLS function, the R-matrix function and the cross-validation func-
tions. The full code for the package will be included in the appendix.
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8.1.1 Main algorithm

This is the code of the main function of the package. It performs N -PLS
regression as explained in section 5.3 and includes an L1-penalization step at
the determination of wJ and wK as explained in section 7.1.

1 sNPLS <− f unc t i on (XN, Y, ncomp = 2 , conver = 1e−16, max . i t e r a t i o n = 10000 ,
2 keepJ = rep ( nco l (XN) , ncomp) ,
3 keepK = rep ( rev (dim(XN) ) [ 1 ] , ncomp) ,
4 s c a l e .X=TRUE, cente r .X=TRUE, s c a l e .Y=TRUE, cente r .Y=TRUE,
5 s i l e n t = F) {
6
7 mynorm <− f unc t i on (x ) sq r t (sum( diag ( c ros sprod (x ) ) ) )
8 i f ( l ength (dim(Y) ) == 3) Y <− unfold3w (Y)
9 i f ( l ength (dim(XN) ) != 3)

10 stop ( " ’XN’ i s not a three−way array " )
11 i f ( ! i s . nu l l ( rownames (XN) ) )
12 y . names <− x . names <− rownames (XN) e l s e {
13 y . names <− x . names <− 1 : dim(XN) [ 1 ]
14 }
15 i f ( ! i s . nu l l ( colnames (XN) ) )
16 var . names <− colnames (XN) e l s e {
17 var . names <− paste ( "X. " , 1 : dim(XN) [ 2 ] , sep = "" )
18 }
19 i f ( ! i s . nu l l ( dimnames (XN) [ [ 3 ] ] ) )
20 x3d . names <− dimnames (XN) [ [ 3 ] ] e l s e {
21 x3d . names <− paste ( "Z . " , 1 : dim(XN) [ 3 ] , sep = "" )
22 }
23 i f ( ! i s . nu l l ( colnames (Y) ) )
24 yvar . names <− colnames (Y) e l s e {
25 yvar . names <− paste ( "Y. " , 1 : dim(Y) [ 2 ] , sep = "" )
26 }
27 i f ( ! c en t e r .X) cente r .X <− rep (0 , nco l (XN) ∗dim(XN) [ 3 ] )
28 i f ( ! c en t e r .Y) cente r .Y <− rep (0 , nco l (Y) )
29 i f ( ! s c a l e .X) s c a l e .X <− rep (1 , nco l (XN) ∗dim(XN) [ 3 ] )
30 i f ( ! s c a l e .Y) s c a l e .Y <− rep (1 , nco l (Y) )
31
32 # Matr ices i n i t i a l i z a t i o n
33 Tm <− U <− Q <− WsupraJ <− WsupraK <− X <− P <− NULL
34 Yorig <− Y
35 Y <− s c a l e (Y, cente r = cente r .Y, s c a l e = s c a l e .Y)
36 y_cente r <− a t t r (Y, " s ca l ed : c ente r " )
37 y_s c a l e <− a t t r (Y, " s ca l ed : s c a l e " )
38 B <− matrix (0 , nco l = ncomp , nrow = ncomp)
39 Gu <− vector ( " l i s t " , ncomp)
40 S <− svd (Y) $d
41 u <− Y[ , S == max(S) ] #Column with the h ighe s t var iance
42 # Unfolding o f XN en 2−D
43 X <− unfold3w (XN)
44 #Check f o r zero var iance columns and f i x them with some no i s e
45 i f ( any ( apply (X, 2 , sd )==0)) {
46 X[ , apply (X, 2 , sd )==0] <− apply (X[ , apply (X, 2 , sd )==0, drop=F] ,
47 2 , func t i on (x ) j i t t e r ( x ) )
48 }
49 # Center and s c a l e
50 Xd <− s c a l e (X, cente r = cente r .X, s c a l e = s c a l e .X)
51 x_cente r <− a t t r (Xd, " s ca l ed : c ente r " )
52 x_s c a l e <− a t t r (Xd, " s ca l ed : s c a l e " )
53
54 # Main loop f o r each component
55 f o r ( f in 1 : ncomp) {
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56 nj <− nco l (XN) − keepJ [ f ]
57 nk <− dim(XN) [ 3 ] − keepK [ f ]
58 i t = 1
59 whi le ( i t < max . i t e r a t i o n ) {
60 Zrow <− c ros sprod (u , Xd)
61 Z <− matrix (Zrow , nrow = dim(XN) [ 2 ] , nco l = dim(XN) [ 3 ] )
62 svd . z <− svd (Z)
63 wsupraj <− svd . z$u [ , 1 ]
64 # L1 pena l i z a t i on f o r wsupraj
65 i f ( nj != 0) {
66 wsupraj <− i f e l s e ( abs ( wsupraj ) >
67 abs ( wsupraj [ order ( abs ( wsupraj ) ) ] [ n j ] ) ,
68 ( abs ( wsupraj ) −
69 abs ( wsupraj [ order ( abs ( wsupraj ) ) ] [ n j ] ) ) ∗
70 s i gn ( wsupraj ) , 0)
71 }
72 ##########
73 wsuprak <− svd . z$v [ , 1 ]
74 # L1 pena l i z a t i on f o r wsuprak
75 i f ( nk != 0) {
76 wsuprak <− i f e l s e ( abs ( wsuprak ) >
77 abs ( wsuprak [ order ( abs ( wsuprak ) ) ] [ nk ] ) ,
78 ( abs ( wsuprak ) −
79 abs ( wsuprak [ order ( abs ( wsuprak ) ) ] [ nk ] ) ) ∗
80 s i gn ( wsuprak ) , 0)
81 }
82 ##########
83 t f <− Xd %∗% kronecker (wsuprak , wsupraj )
84 qf <− c ros sprod (Y, t f ) /mynorm( cros sprod (Y, t f ) )
85 uf <− Y %∗% qf
86 i f (sum( ( uf − u) ^2) < conver ) {
87 i f ( ! s i l e n t ) {
88 cat ( paste ( "Component number " , f , "\n" ) )
89 cat ( paste ( "Number o f i t e r a t i o n s : " , i t , "\n" ) )
90 }
91 i t <− max . i t e r a t i o n
92 Tm <− cbind (Tm, t f )
93 WsupraJ <− cbind (WsupraJ , wsupraj )
94 WsupraK <− cbind (WsupraK , wsuprak )
95 bf <− MASS : : ginv ( c ros sprod (Tm) ) %∗% t (Tm) %∗% uf
96 B[ 1 : l ength ( bf ) , f ] <− bf
97 Q <− cbind (Q, q f )
98 U <− cbind (U, uf )
99 TM <− MASS : : ginv ( c ros sprod (Tm) ) %∗% t (Tm)

100 WkM <− MASS : : ginv ( c ros sprod (WsupraK) ) %∗% t (WsupraK)
101 WjM <− MASS : : ginv ( c ros sprod (WsupraJ ) ) %∗% t (WsupraJ )
102 Gu [ [ f ] ] <− TM %∗% X %∗% kronecker ( t (WkM) , t (WjM) )
103 P [ [ f ] ] = t ( as . matrix (Gu [ [ f ] ] ) %∗%
104 t ( kronecker (WsupraK , WsupraJ ) ) )
105 Y <− Y − Tm %∗% bf %∗% t ( qf )
106 S <− svd (Y) $d
107 u <− Y[ , S == max(S) ]
108 } e l s e {
109 u <− uf
110 i t <− i t + 1
111 }
112 }
113 }
114 Yadjsc <− Tm %∗% B %∗% t (Q)
115 Yadj <− Yadjsc ∗ y_s c a l e + y_cente r
116 SqrdE <− sum( ( Yorig − Yadj ) ^2)
117 rownames (WsupraJ ) <− var . names
118 rownames (WsupraK) <− x3d . names
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119 rownames (Q) <− yvar . names
120 rownames (Tm) <− rownames (U) <− x . names
121 colnames (Tm) <− colnames (WsupraJ ) <− colnames (WsupraK) <−
122 colnames (B) <− colnames (U) <− colnames (Q) <−
123 names (Gu) <− names (P) <− paste ( "Comp. " , 1 : ncomp)
124 output <− l i s t (T = Tm, Wj = WsupraJ , Wk = WsupraK , B = B, U = U,
125 Q = Q, P = P, Gu = Gu, ncomp = ncomp , Yadj = Yadj ,
126 SqrdE = SqrdE ,
127 Standar i za t i on = l i s t ( ScaleX = x_sca l e ,
128 CenterX = x_center ,
129 ScaleY = y_sca l e ,
130 CenterY = y_cente r ) )
131 c l a s s ( output )<−"sNPLS"
132 re turn ( output )
133 }

Listing 8.1: sNPLS main function

Lines 1-5 define the parameters of the function. Parameters with default val-
ues have that value assigned after an equal sign. Line 7 defines an internal
function for normalization. Lines 8-30 check for inconsistencies in the data
structure, unfold Y (when necessary) and assign variable names. After this,
all necessary matrices are initiallized in lines 33-52, X is unfolded into X and
optional different centering and scaling methods are applied on Y and X (e.g.,
autoscaling, blockscaling, scaling within any mode, etc.). The following lines
(55-113) correspond to the N -PLS algorithm described in section 7.1. Last
lines (114-133) include the estimation of Y, the computing of the squared pre-
diction error, and the generation of the output object of the function, defined
as an S3 object of class sNPLS. This object includes the different output ma-
trices of the model as well as all the information regarding the model fit such
as centering on X and/or Y and used values for the hyperparameters.

8.1.2 R matrix computation

This function is used for computing the coefficients used for prediction of Y
in the predic.sNPLS function.

1 Rmatrix<−f unc t i on (x ) {
2 WsupraK <− x$Wk
3 WsupraJ <− x$Wj
4 R <− matrix ( nrow = dim(x$Wj) [ 1 ] ∗ dim(x$Wk) [ 1 ] , nco l = x$ncomp)
5 ncomp <− x$ncomp
6 kroneckers<−sapply ( 1 : x$ncomp , func t i on (x ) {
7 kronecker (WsupraK [ , x ] , WsupraJ [ , x ] ) )
8 }
9 tkroneckers<−apply ( kroneckers , 2 , f unc t i on (x ) t ( x ) )

10 R[ , 1 ] <− kronecker s [ , 1 ]
11 i f (ncomp>1){
12 f o r ( i in 2 : ncomp) {
13 pi <− pi0 <− Matrix : : Matrix ( diag (dim(R) [ 1 ] ) , spa r s e=TRUE)
14 f o r ( j in 1 : ( i − 1) ) {
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15 pi <− Matrix : : Matrix ( p i %∗% pi0 − kronecker s [ , j ] %∗%
16 t ( tk ronecke r s [ , j ] ) , spa r s e=TRUE)
17 }
18 w <− kronecker s [ , i ]
19 pi <− pi %∗% w
20 R[ , i ] <− Matrix : : as . matrix ( p i )
21 }
22 }
23 re turn (R)
24 }

Listing 8.2: R matrix function

Of note, most of the computations performed inside the Rmatrix function make
use of sparse matrices (lines 12-19), taking advantage of the sparsity created
by the sNPLS function when adjusting the model to greatly reduce computing
times. The Rmatrix function is an internal function (not exported to the end
user) called by the sNPLS and predict.sNPLS functions to get the regression
coefficients in order to be able to perform predictions from new X as explained
in Leardi (2005):

The R matrix is defined as:

R = [w1(I−w1wT
1 )w2 . . . (

F−1∏
f=1

(I−wfwT
f )wF )] (8.1)

From this, it derives that

T = XR (8.2)

So, from the equation

ŷ = Tb (8.3)

it is obtained

bNPLS = Rb (8.4)
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8.1.3 Cross validation (cv_snpls)

The cv_snpls function is used to estimate the best combination of parameters
for adjusting sNPLS models using K-fold cross-validation. Since the hyperpa-
rameter space can be huge when considering a grid search for three different
hyperparameters, it has been parallelized using the parallel package to greatly
speed up computation times. For simple problems or small data sets it can
also be run in single thread mode.

1 cv_snp l s <− f unc t i on (X_npls , Y_npls , ncomp = 1 :3 , keepJ = 1 : nco l (X_npls ) ,
2 keepK = 1 : dim(X_npls ) [ 3 ] , n f o ld = 10 , p a r a l l e l = TRUE,
3 f r e e_co r e s = 2 , . . . ) {
4 #Creat ion o f c l u s t e r and expor ta t i on o f data to the nodes
5 i f ( p a r a l l e l & ( p a r a l l e l : : detectCores ( ) >1) ) {
6 c l <− p a r a l l e l : : makeCluster (max(2 ,
7 p a r a l l e l : : detectCores ( ) − f r e e_co r e s ) )
8 p a r a l l e l : : c lu s t e rExpor t ( c l , l i s t ( deparse ( s ub s t i t u t e (X_npls ) ) ,
9 deparse ( s ub s t i t u t e (Y_npls ) ) ) )

10 p a r a l l e l : : c l u s t e rCa l l ( c l , f unc t i on ( ) r e qu i r e (sNPLS) )
11 }
12 i f ( l ength (dim(Y_npls ) ) == 3) Y_npls <− unfold3w (Y_npls )
13 top <− c e i l i n g (dim(X_npls ) [ 1 ] / n fo ld )
14 f o l d i d <− sample ( rep ( 1 : nfo ld , top ) , dim(X_npls ) [ 1 ] , r ep l a c e = F)
15 #Expansion o f hyperparameters g r id
16 search . g r id <− expand . g r id ( l i s t (ncomp = ncomp ,
17 keepJ = keepJ ,
18 keepK = keepK) )
19 SqrdE <− numeric ( )
20 #Main func t i on
21 app l i ed_fun <− f unc t i on (y ) {
22 sapply ( 1 : nfo ld , func t i on (x ) {
23 tryCatch ( cv_f i t ( x t ra in = X_npls [ x != fo l d i d , , ] ,
24 yt ra in = Y_npls [ x != fo ld i d , , drop = FALSE] ,
25 xval = X_npls [ x == fo ld id , , ] ,
26 yval = Y_npls [ x == fo ld id , , drop = FALSE] ,
27 ncomp = y [ "ncomp" ] ,
28 keepJ = rep (y [ "keepJ" ] , y [ "ncomp" ] ) ,
29 keepK = rep (y [ "keepK" ] , y [ "ncomp" ] ) , . . . ) ,
30 e r r o r=func t i on (x ) NA)
31 })
32 }
33 #Pa r a l l e l i z a t i o n o f main func t i on
34 i f ( p a r a l l e l ) {
35 cv_re s <− p a r a l l e l : : parApply ( c l , s earch . gr id , 1 , app l i ed_fun )
36 p a r a l l e l : : s t opClus t e r ( c l )
37 } e l s e cv_re s <− pbapply : : pbapply ( search . gr id , 1 , app l i ed_fun )
38 cv_mean <− apply ( cv_res , 2 , f unc t i on (x ) mean(x , na . rm = TRUE) )
39 cv_se <− apply ( cv_res , 2 , f unc t i on (x ) sd (x , na . rm=TRUE)/ sq r t ( n fo ld ) )
40 best_model <− search . g r id [ which . min ( cv_mean) , ]
41 output <− l i s t ( best_parameters = best_model , cv_mean = cv_mean ,
42 cv_se = cv_se , cv_gr id = search . g r id )
43 c l a s s ( output )<−"cvsNPLS"
44 re turn ( output )
45 }

Listing 8.3: Cross validation function
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Of note, regarding the cv_snpls function, is the code related to the paralleliza-
tion of the procedure using the parallel package (lines 5-11 for the definition
of the cluster and lines 34-37 for the execution of the parallelized procedure).
The function makes use of the parApply function, which splits the search grid
in n nodes and runs the cross-validation procedure on each split independently,
combining all results at the end of the computations. Lines 21-32 of the func-
tion correspond to the cross-validation procedure defined in section 7.2.

8.1.4 Repeated Cross validation (repeat_cv)

The repeat_cv calls the cv_snpls function repeated times, but it changes the
way of parallelizing the computations.

In this function, each cv_snpls call is run in single thread mode, but assigned
to a different node. So, instead of on subsets of the search grid, the paral-
lelization is performed on repetitions of the procedure on the whole grid. This
handling of the parallelization allows for a more efficient distribution of the
jobs across the different nodes of the defined cluster, assuming the number of
repetitions is greater than the number of folds K of the K-fold cross-validation
procedure.

1 repeat_cv<−f unc t i on (X_npls , Y_npls , ncomp = 1 :3 , keepJ = 1 : nco l (X_npls ) ,
2 keepK = 1 : dim(X_npls ) [ 3 ] , n f o ld = 10 ,
3 p a r a l l e l = TRUE, f r e e_co r e s = 2 , t imes=30, . . . ) {
4 #De f i n i t i o n o f the c l u s t e r and expor ta t i on o f data to the nodes
5 i f ( p a r a l l e l & ( p a r a l l e l : : detectCores ( ) >1) ) {
6 c l <− p a r a l l e l : : makeCluster (max(2 ,
7 p a r a l l e l : : detectCores ( ) − f r e e_co r e s ) )
8 p a r a l l e l : : c lu s t e rExpor t ( c l , l i s t ( deparse ( s ub s t i t u t e (X_npls ) ) ,
9 deparse ( s ub s t i t u t e (Y_npls ) ) ) )

10 p a r a l l e l : : c l u s t e rCa l l ( c l , f unc t i on ( ) r e qu i r e (sNPLS) )
11 #Pa r a l l e l i z a t i o n o f the r e p e t i t i o n s o f K−f o l d cross−va l i d a t i o n
12 rep_cv<−p a r a l l e l : : parSapply ( c l , 1 : times , f unc t i on (x ) {
13 cv_snp l s (X_npls , Y_npls , ncomp=ncomp ,
14 keepJ = keepJ , keepK = keepK ,
15 p a r a l l e l = FALSE, n fo ld = nfo ld , . . . ) )
16 }
17 p a r a l l e l : : s t opClus t e r ( c l )
18 } e l s e {
19 #Sing l e threaded ve r s i on (Not use , s low )
20 rep_cv<−pbapply : : pb r ep l i c a t e ( times , cv_snp l s (X_npls , Y_npls ,
21 ncomp=ncomp , keepJ = keepJ ,
22 keepK = keepK , p a r a l l e l = FALSE,
23 n fo ld = nfo ld , . . . ) )
24 }
25 resdata<−data . frame (ncomp=sapply ( rep_cv [ 1 , ] , f unc t i on (x ) x [ [ 1 ] ] ) ,
26 keepJ=sapply ( rep_cv [ 1 , ] , f unc t i on (x ) x [ [ 2 ] ] ) ,
27 keepK=sapply ( rep_cv [ 1 , ] , f unc t i on (x ) x [ [ 3 ] ] ) )
28 c l a s s ( r e sdata )<−c ( " repeatcv " , "data . frame" )
29 re turn ( re sdata )
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30 }

Listing 8.4: Repeated cross validation function

8.2 The sNPLS package

In the following section, the use of the different functions of the sNPLS package
will be presented, as well as examples of their application to the different parts
of the analysis in two data sets. A special emphasis will be given to the main
sNPLS function, as well as to both cross-validation functions for the selection of
the hyperparameters and to the different plot functions for the interpretation
of results. This section is based on the published paper for the sNPLS package
(Hervás, J. Prats-Montalbán, Lahoz, et al. 2018).

8.2.1 Functions

sNPLS function

Function sNPLS is used to fit N -PLS and sNPLS models to three-way data, de-
pending on the input settings of the algorithm. The following R code shows an
example of a model fit to a simulated three-way dataset with fifty observations
(I), 50 variables (J) and three elements in the third mode (K).

1 R> l i b r a r y ( "sNPLS" )
2 R> X_npls <− array ( r po i s (7500 , 10) , dim=c (50 , 50 , 3) )
3 R> Y_npls <− matrix (2+0.4∗X_npls [ , 5 , 1 ]+0 . 7∗X_npls [ ,10 ,1 ] −
4 + 0.9∗X_npls [ , 1 5 , 1 ] + 0 .6∗X_npls [ , 2 0 , 1 ] − 0 .5∗X_npls [ , 25 ,1 ]+
5 + rnorm (50) , nco l=1)
6 R> f i t <− sNPLS(X_npls , Y_npls , ncomp=3, keepJ = rep (2 , 3 ) ,
7 + keepK = rep (1 , 3 ) )

Note that the function sNPLS needs a N -way array for X and an N -way array,
a two-dimensional matrix or a numeric vector for Y as inputs. If data is in
another format the function will stop and throw an error. In the following
paragraph, a generic call with a short description of each of the arguments of
the function is presented.

1 sNPLS(XN, Y, ncomp = 2 , conver = 1e−16,
2 + max . i t e r a t i o n = 10000 , keepJ = rep ( nco l (XN) , ncomp) ,
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3 + keepK = rep ( rev (dim(XN) ) [ 1 ] , ncomp) , s c a l e .X=TRUE,
4 + cente r .X=TRUE, s c a l e .Y=TRUE, cente r .Y=TRUE, s i l e n t = F)

XN N -dimensional array containing the predictors

Y Array containing the response(s)

ncomp Number of components to use in the projection

conver Convergence criterion

max.iteration Maximum allowed number of iterations to achieve convergence

keepJ Number of variables to keep at each component. If all vari-
ables are kept, NPLS regression is performed, if any variable is
removed then sNPLS is performed.

keepK Number of elements of the third mode to keep at each compo-
nent.

scale.X Perform scaling on X?

center.X Perform centering on X?

scale.Y Perform scaling on Y?

center.Y Perform centering on Y?

silent Allows to choose if information regarding number of iterations
should be displayed

The function sNPLS produces an S3 sNPLS object with defined coef, predict
and plot methods that will be discussed later. The object consists of a list
containing the following components: [1-6] The T,WJ , WK , B (regression co-
efficients between X and Y), Y and Q matrices, [7-8] P and Gu (the unfolded
G core array of the Tucker decomposition), [9] The number of components,
[10] Fitted values, [11] Squared error, [12] Scale and centering information
performed on X and Y.
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cv_sNPLS and repeat_cv functions

Selecting parameter values for the sNPLS function requires choosing values for
the number of components, the number of variables to select and the number
of elements of the third mode to select. An appropriate way of selecting these
parameters is performing a grid search with cross-validation. The function
cv_snpls performs cross-validation on a grid of different ncomp, keepJ and
keepK values estimating RMSE (Root Mean Square Error) for each combina-
tion of values and selecting the best set producing the lowest RMSE.

1 R> X_npls<−array ( r po i s (7500 , 10) , dim=c (50 , 50 , 3) )
2 R> Y_npls<−matrix (2+0.4∗X_npls [ , 5 , 1 ]+0 . 7∗X_npls [ ,10 ,1 ] −
3 + 0.9∗X_npls [ , 15 , 1 ]+0 .6∗X_npls [ ,20 ,1 ] − 0 .5∗X_npls [ , 25 ,1 ]+
4 + rnorm (50) , nco l=1)
5 R> cv1<− cv_snpls (X_npls , Y_npls , ncomp=1:2 , keepJ = 1 :10 ,
6 + keepK = 1 :3 , p a r a l l e l = FALSE)

The generic call for cv_snpls is the following:

1 cv_snp l s (X_npls , Y_npls , ncomp = 1 :3 , keepJ = 1 : nco l (X_npls ) ,
2 + keepK = 1 : dim(X_npls ) [ 3 ] , n f o ld = 10 , p a r a l l e l = FALSE)

It contains the same parameters as sNPLS but now admits vectors of values
for each parameter in ncomp, keepJ and keepK. Since grid search can be com-
putationally intensive, it makes use of the parallel package. Being able to
perform computations in parallel greatly reduces running times, being able to
finish between 1.5 and 6 times faster in an eight-core computer, depending on
the data set. Parallel mode is activated by setting parallel argument to TRUE
and selecting a suitable number of free cores. As explained in subsection 8.1.4,
in the case of cv_snpls, the parallelization applies to the grid search, not to
the different folds of the cross-validation.

To further reduce computation times and improve memory use, sparse matrices
from the R package Matrix (Bates and Maechler 2018) are used whenever
possible in the matrix multiplication steps of the function. Sparse matrices
achieve these goals by using an alternative representation to that of dense
matrices: instead of being stored as two-dimensional arrays, only their non-zero
values are stored, along with an index linking these values with their location
in the matrix. The function cv_snpls returns a cvsnpls object which is a
list with a component containing the best combination parameters and other
components containing information about the grid and its corresponding RMSE.
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cv_snpls objects can be plotted for better interpretation of the results. The
resulting plot is a grid of scatterplots with the different combinations of keepJ,
keepK and ncomp and their resulting cross-validation errors (Figure 8.1).
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Figure 8.1: Results of cross-validation. Lines depicting the cross-validated error (CVE) for
each combination of the parameters are presented in a grid layout combining KeepJ values
(number of variables selected), KeepK values (number of elements of the third mode) and
Ncomp values (number of components).

A known issue of cross-validation is the variance in its results (Krstajic et
al. 2014), which entails that different runs of the cross-validation procedure
can yield different results regarding the estimated best set of parameters and,
more importantly, that the cross-validation procedure can overfit in the es-
timation of the error. This overfitting would entail that repeating the same
cross-validation procedure on another sample of the population would yield
totally different results. A reasonable solution is performing repeated cross-
validation and selecting the most frequently selected set of parameters along
a round of different runs. The function repeat_cv performs repeated cross-
validation by calling the function cv_snpls repeated times and storing each
result in a data.frame object. The syntax is the same as in cv_snpls with
an extra argument times for specifying the number of repetitions to perform.
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In the case of repeat_cv the parallelization applies to the replicates instead
of applying to the grid search. The following code explains how to perform
repeated cross-validation with repeat_cv.

1 R> repcv <− repeat_cv (X_npls , Y_npls , ncomp=1:2 , keepJ = 1 :10 ,
2 + keepK = 1 :3 , p a r a l l e l = FALSE, t imes=10)

The result of the repeat_cv call is a data.frame storing the results (best
combination of ncomp, keepJ and keepK of each cross-validation repetition
(Listing 8.5).

1 R> repcv

ncomp keepJ keepK
1 2 9 1
2 2 9 1
3 2 10 1
4 2 9 1
5 2 11 2
6 2 12 1
7 2 7 1
8 2 10 1
9 2 8 1
10 2 12 2

Listing 8.5: Results of repeat_cv function.

This output can be presented as a cross-tabulation table with the absolute
frequencies of each combination of the different parameters (Listing 8.6. In
this example, the table shows that the combination ncomp=2, keepJ=9 and
keepK=1 is the most recurrent (3 out of 10 repetitions), followed by the com-
bination ncomp=2, keepJ=10 and keepK=1 with two repetitions and five other
different combinations with just one occurrence each. It can also be noticed
that none of the best combinations included only one component.

1 R> f t a b l e ( t ab l e ( repcv ) )

keepK 1 2
ncomp keepJ
2 7 1 0

8 1 0
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9 3 0
10 2 0
11 0 1
12 1 1

Listing 8.6: Cross-tabulation table of the results of repeat_cv.

Results of the repeat_cv function can also be plotted to obtain a kernel density
plot, which can be one-, two- or three-dimensional depending of the number of
constant parameters obtained in the repeated cross-validation procedure. This
density plot depicts the most frequently selected parameters (Figure 8.2).
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Figure 8.2: Kernel density plot with the result of the repeated cross-validation. Highest
density lies around keepJ=9 and keepK=1. Points scaled in size by frequency of appearance
are additionally included on top of the density plot. The number of components is not
represented since it was constant at 2 in all repetitions of the cross-validation.

In this example, according to the plot, the most likely combination after all
repetitions of the cross-validation was between 9 and 10 in the case of keepJ
and keepK=1. Since the optimal number of components did not vary along
all the repetitions, this parameter is not represented in the plot. Instead,
the message ’ncomp is(are) constant with a value of 2’ is returned by
the function. The density plot leads to a similar interpretation of the results
as the cross-tabulation table, but the smoothing can result in more sensible
estimates in the case of multiple and/or wide spread modes. It also provides
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a visual measure of the uncertainty in the selection of the best combination of
parameters.

Full example functionality

To exhibit all package functionality, next it is provided a complete analysis of
the bread dataset (Bro 1998) included in the sNPLS package. This data set
consists on data of five different breads that were baked in duplicate giving a
total of ten samples. Eight different judges assessed the breads with respect to
eleven different sensorial attributes. The data can be regarded as a three-way
array (10 x 11 x 8). The data are quite noisy as opposed to, e.g., spectral data.
The salt content of each bread was also measured and it is considered as the
response variable y.

1 R> data ( bread )
2 R> Xbread <− bread$Xbread
3 R> Ybread <− bread$Ybread
4 R> cv_bread <− repeat_cv (Xbread , Ybread , ncomp=1:3 , keepJ = 1 :11 ,
5 + keepK = 1 :8 , p a r a l l e l = FALSE, t imes=50, n f o ld=3)

After importation of the data set and preparation of the X array and y vec-
tor (first three lines of the code above), repeated cross-validation is performed
on the data to select the optimal combination of hyperparameters. 50 rep-
etitions of 3-fold cross-validation should be enough to get stable estimates,
but using such a large number of repetitions would increase computing times
dramatically. Therefore, using the option parallel=TRUE when performing
repeated cross-validation is recommended. Results of this procedure yield a
cross-tabulation table with the appearance frequencies for each combination of
parameters Listing 8.7.

1 R> f t a b l e ( t ab l e ( cv_bread ) )

keepK 1 2 3 4 5 6 7 8
ncomp keepJ
1 1 1 2 2 4 3 3 1 1

2 0 0 1 1 2 1 0 2
2 1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 2
3 0 0 0 0 0 1 0 4
4 0 0 0 0 0 0 1 1
5 1 0 0 0 0 0 0 1
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6 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 2
9 0 0 0 0 0 0 0 1

3 1 0 0 1 0 0 2 0 1
2 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1

Listing 8.7: repeat_cv results for the bread data set.

This table shows that there are two possible combinations of parameters that
are almost equally selected by cross-validation. One is ncomp=1, keepJ=1
and keepK=4 and the other is ncomp=2, keepJ=3 and keepK=8, both with 4
appearances out of 50 repetitions. Also most of the other combinations are
close to one of these two mentioned ’hotspots’. A plot of the cv_bread object
(Figure 8.3) reveals a similar information with a representation of a sliced
three-dimensional kernel density estimate.
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Figure 8.3: Results of the repeated cross-validation function performed on the bread
dataset. The plot consists on the faceted representation of a three-dimensional density plot
sliced in different planes (one per number of components). The kernel density estimation
is created with the observed frequencies of the combinations of the different parameters.
Additionally, points scaled in size by frequency of appearance are added to the density plots.

Next step would be fitting the sNPLS model using the sNPLS function with
the selected set of parameters. As discussed before, the results point to two
possible combinations and, based on the density plot, the option with ncomp=1,
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keepJ=1 and keepK=4 seems more likely. Nevertheless, the combination with
ncomp=2 will be used to get working examples of the plot function (which
needs, at least, two dimensions). It is important to take into account that
keepJ and keepK have to be specified for each component, so they must be
a vector of length equal to the number of components. Note that, in this
case, the same number of attributes and judges for each component have been
chosen, although this is not necessarily the case.

1 R> f i t <− sNPLS(Xbread , Ybread , ncomp = 2 , keepJ = rep (3 , 2) ,
2 + keepK = rep (8 , 2) , s i l e n t = F)

The summary of the fit shows the number of components, the estimated
squared error and a matrix with rows corresponding to attributes (second
mode) and columns corresponding to judges (third mode). In this matrix
there are five rows with non-zero coefficients which correspond to the 4th, 6th
7th 8th and 9th attributes from all the judges (no selection is performed on
the third mode).

1 R> summary( f i t )

sNPLS model with 2 components and squared e r r o r o f 0 .047

Co e f f i c i e n t s :
Z . 1 Z . 2 Z . 3 Z . 4 Z . 5 Z . 6 Z . 7 Z . 8

X.1 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
X.2 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
X.3 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
X.4 −0.041 −0.041 −0.043 −0.049 −0.074 −0.040 −0.042 −0.029
X.5 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
X.6 0 .019 0 .026 0 .024 0 .027 0 .021 0 .025 0 .018 0 .036
X.7 0 .070 0 .089 0 .086 0 .095 0 .087 0 .088 0 .069 0 .115
X.8 −0.030 −0.038 −0.037 −0.041 −0.038 −0.038 −0.030 −0.050
X.9 −0.009 −0.009 −0.010 −0.011 −0.017 −0.009 −0.009 −0.006
X.10 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
X.11 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000

Listing 8.8: Summary with the coefficients of the fitted model.

To better understand and interpret the results, the plot function can be used
to display different visualizations of the results. Values of the T (Figure 8.4),
U (Figure 8.5), WJ (Figure 8.6 and Figure 8.8), and WK (Figure 8.7 and
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Figure 8.9) matrices can be plotted by changing the type parameter of the
function. 1st and 2nd components are plotted by default, but they can be
changed using the comps parameter.

1 R> plo t ( f i t , type="T" , cex . ax i s =1.2 , cex . lab =1.2 , cex =1.2 ,
2 + l a s =1, bty="L" )
3 R> plo t ( f i t , type="U" , cex . ax i s =1.2 , cex . lab =1.2 , cex =1.2 ,
4 + l a s =1, bty="L" )
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Figure 8.4: Score plot of the two first components in the T matrix

Figure 8.4 shows how the 10 samples spread over the two first components. It
can be seen how the samples evolve every two observations, from left to right,
which seems reasonable attending to their different composition. Figure 8.5 is
similar, but related to the y scores.

1 R> plo t ( f i t , type="Wj" , cex . ax i s =1.2 , cex . lab =1.2 , cex =1.2 ,
2 + l a s =1, bty="L" )
3 R> plo t ( f i t , type="Wk" , cex . ax i s =1.2 , cex . lab =1.2 , cex =1.2 ,
4 + l a s =1, bty="L" )

On the other hand, Figure 8.6 presents the attributes and Figure 8.7 the judges
that help in predicting the y variable, for each of the two components. It can
be seen that the first component of the attributes mode is related to attributes
7, 8 and 6 (in descending order in absolute values); whereas attributes 4, 9
and 6 are related to the second component. This can be also derived from
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Figure 8.5: Score plot of the two first components in the U matrix
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Figure 8.6: Weights Plot of the WJ weights matrix

Figure 8.8, which produces an equivalent graph. In this case, when trying
to see what kind of relationship these attributes have with the judges’ mode,
Figure 8.9 provides easier-to-interpret results.

1 R> plo t ( f i t , type=" va r i a b l e s " , cex . ax i s =1.2 , cex . lab =1.2 ,
2 + cex=1.2 , l a s =1, bty="L" , lwd=2)
3 R> plo t ( f i t , type="time" , cex . ax i s =1.2 , cex . lab =1.2 , cex =1.2 ,
4 + l a s =1, bty="L" , lwd=2, xlab="Judge" )
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Figure 8.7: Weights Plot of the WK weights matrix
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Figure 8.8: Plot of the second mode

It can be seen how, for the first component, there is approximately the same
effect of all judges with respect to variables 7, 8 and 6 (those related to the first
component in the attributes mode) when trying to predict the salt content. In
this case, since the judges’ weights show positive values, the higher the value
of attributes 7 and 6, and the lower the value of attribute 8, the higher the salt
content. For the second component, attributes 4, 9 and 6 are more influenced
by judge 5, even though the rest of judges also have a similar effect on the
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salt content scoring (y variable). Since the weights of the judges’ mode are
all negative for the second component, the higher the value of attributes 4, 9
and 6, the lower the salt content. In this case, Figure 8.7 is less interpretable.
However, depending on the case, one representation or another might provide
easier-to-interpret results; so it is decided to keep both graphs in the package.
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Figure 8.9: Plot of the third mode

As seen on these examples, all plots produced by the plot.sNPLS function are
fully customizable, being able to change the titles, labels, orientation of labels,
axis, size of the plot, etc., by using base plot parameters such as las, cex, bty,
etc. Since they are base R plots, they can be affected by all par options and
also be combined in a single figure by using the mfrow and mfcol options or
the layout function.

Finally, the predict function can be used to make predictions using new X
data. As explained before, it makes use of the coefficients matrix B computed
by the Rmatrix function (subsection 8.1.2). Here it is used to make a prediction
from a new random X array with 10 new observations (Listing 8.9). This
function also has an optional parameter, scale, which defaults to TRUE for
controlling the final scale of the predictions (original scale vs. post-processing
scale).

1 newX <− array ( sample ( 0 : 5 , 10∗11∗8 , r ep l a c e = TRUE) ,
2 + dim = c (10 , 11 , 8) )
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3 p r ed i c t ( f i t , newX)

Y.1
[ 1 , ] 1 .4196482
[ 2 , ] 0 .7819288
[ 3 , ] 0 .9619593
[ 4 , ] 1 .0523621
[ 5 , ] 1 .2585099
[ 6 , ] 0 .7243910
[ 7 , ] 0 .6458718
[ 8 , ] 1 .2693292
[ 9 , ] 0 .8194011
[ 1 0 , ] 1 .2753320

Listing 8.9: Predictions of the model on new data newX.

The output of the function is a Y matrix with the 10 predicted values.

8.2.2 Performance

The package offers a complete set of functions for tuning, fitting and inter-
preting N -PLS and sNPLS models. As tuning is a computationally intensive
method, all cross-validation functions in the package allow the use of par-
allelization through the parallel package and also use sparse matrices from
the Matrix package. These two optimizations allow for speedups of up to
20 times faster computation times compared to non-parallelized computations
with dense matrices. The use of sparse matrices also alleviates the use of RAM
memory which, in the case of large data sets, could be a limiting factor in some
computers. Figure 8.10 shows the improvements in computing times by using
parallelization with different number of cores. As seen in the figure, the mul-
ticore scaling allows for tuning a model with a search grid length of 900 in an
eight-core machine in less time than it takes to tune a model with a search
grid of 90 in a single core running at the same speed.

The package also greatly benefits from the use of specialized Basic Linear
Algebra Subprograms (BLAS) such as OpenBLAS, ATLAS or Intel® MKL,
which can produce additional speedups of up to 10 times faster computation
times (Xianyi, Qian, and Chothia 2014; E. Wang et al. 2014). In this case, the
potential benefit is left to the decision of the end user, that should install and
link one of these BLAS libraries to R.
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Figure 8.10: Computing times of cv_snpls under different conditions of grid length and
number of cores. The function scales efficiently up until 8 cores
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Chapter 9

Validation of the sparse N -PLS
method and sNPLS package

In order to show and assess the performance of the sparse N -PLS model, differ-
ent validations were performed to evaluate its properties regarding prediction
accuracy and variable selection capabilities in different scenarios. It also was
necessary to assess the usability of the sNPLS package in a real-world data set
analysis. For this, simulated and real data sets were used, where the perfor-
mance of N -PLS against the performance of sparse N -PLS was also compared
regarding predictive capability. The following sections are based on the re-
cent publication (Hervás, J. Prats-Montalbán, Garcia-Canaveras, et al. 2019)
regarding the validation of the sNPLS method.

9.1 Random synthetic data sets

The performance of the implementation of the sparse N -PLS was first tested
using data simulation. In total, fourteen different scenarios with different
signal-to-noise ratios and different distributions of the data were assessed. Tun-
ing of the hyperparameters of the models was performed with the repeat_cv
function using 20 repetitions of 10-fold cross-validation following the method-
ology presented in chapter 8. Each simulation generated a three-way X array
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with I=50 samples, J=50 variables and K=3 times, where variables were
randomly sampled from different kinds of distributions (Poisson, Normal and
Uniform) with varying parameters as follows:

1. If Normal: X ∼ N (µ, σ) where µ ∼ N (10, 10) and σ ∼ Γ(5, 1)

2. If Poisson: X ∼ P(λ) where λ ∼ N (10, 2.5)

3. If Uniform: X ∼ U(a, b) where a ∼ N (10, 10) and b ∼ N (100, 10)

Only 5 out of the 50 variables were used to construct the response Y. They
were chosen randomly from the X array and assigned randomly the following
coefficients: 0.4, 0.5, 0.6, 0.7 and 0.9. In the first run, only one of the three
times of the third mode was involved in the creation of, in this case, vector y.
In the second run, the three times were involved, but with different coefficients
for each variable. In all simulations, random Normal and Poisson errors were
added in different amounts to y. For each combination of type and amount of
random error, simulations were repeated 100 times. Ability to select the real
variables involved in y generation as well as median and 1st and 3rd quartiles
of the mean squared error were estimated for each simulation run.

Results of the different simulations carried out on the synthetic data sets are
provided in Table 9.1. Sparse N -PLS outperformed N -PLS regarding predic-
tion error, with a mean squared error which was significantly lower in almost
all simulation scenarios. This difference in prediction error increased as the
signal-to-noise ratio decreased. Regarding variable selection, when performing
sparse N -PLS, the true variables were almost always included in the selected
model. Since simulations were repeated 100 times for each scenario, their re-
sults were summarized by giving descriptive statistics of the distribution of the
results. Median number of true variables selected in each model was 5 (100%)
in most of the simulations (9 out of 14). In the other 5 simulations, the me-
dian number of true variables selected was 4 (80%). These simulations where
one of the true predictor variables was not selected were the ones consisting in
the more complex and noisy models, with the three times of the third mode
affecting y and lower signal-to-noise ratios. Also, a varying amount of other
noise variables were erroneously included in the models. The amount of false
positives (noise variables) that were included in the sparse N -PLS models in-
creased remarkably as the signal-to-noise ratio of the data decreased, ranging
from a median of 2 (4.4%) in the case of high signal-to-noise ratio data sets,
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to a median of 7 (15.6%) noise variables included in the low signal-to-noise,
worst-case simulations.

Mean Squared Error Variable selection

N-PLS sNPLS 95% CI for
difference

True variables
selected

Noise variables
selected

One time
Normal error 85.58 66.23 [-21.97, -9.72] 5 (5, 5) 3 (1, 6)(sd=1) (71.36, 96.24) (52.72, 90.54)
Normal error 103.16 90.71 [-16.32, 0.61] 5 (5, 5) 2 (1, 6)(sd=1.5) (85.98, 114.21) (70.54, 121.8)
Normal error 116.2 99.17 [-23.93, -8.02] 5 (4.75, 5) 4 (2, 12)(sd=2) (101.05, 135.47) (84.34, 121.62)
Normal error 166.33 149.57 [-26.84, 2.10] 5 (3, 5) 4 (1, 11)(sd=3) (134.1, 199.73) (117.21, 198.9)
Poisson error 86.46 60.03 [-26.66, -9.52] 5 (5, 5) 3 (1, 5)(mean=1) (70.46, 99.98) (45.83, 101.65)
Poisson error 109.21 83.08 [-32.09, -16.21] 5 (5, 5) 3 (1, 6)(mean=3) (92.02, 131.57) (67.22, 107.67)
Poisson error 138.29 99.55 [-40.58, -21.47] 5 (4, 5) 5 (2, 11)(mean=5) (108.9, 153.86) (78.81, 125.76)

Three times
Normal error 165.1 107.97 [-68.02, -46.07] 5 (3, 5) 5 (2, 11)(sd=1) (137.81, 202.86) (91.79, 126.32)
Normal error 171.95 115.75 [-69.71, -49.51] 5 (3, 5) 6 (2, 12)(sd=1.5) (147.6, 206.47) (98.58, 133.18)
Normal error 195.57 122.73 [-85.29, -59.27] 4 (3, 5) 7 (3, 19)(sd=2) (159.96, 230.1) (100.32, 145.4)
Normal error 245.71 130.97 [-125.2, -92.03] 4 (3, 4.5) 7 (2, 18)(sd=3) (199.71, 292.2) (107.48, 169.2)
Poisson error 153.67 103.92 [-65.17, -45.07] 5 (3, 5) 5 (2, 5)(mean=1) (135.87, 193.6) (85.16, 123.6)
Poisson error 186.22 115.77 [-79.64, -57.47] 4 (3, 5) 6 (3, 13)(mean=3) (154.9, 213.56) (91.33, 134.17)
Poisson error 205.18 118.58 [-98.13, -73.24] 4 (3, 5) 6 (3, 15)(mean=5) (169.3, 236.78) (94.83, 140.54)

Table 9.1: Results of the analyses performed using N-PLS and sparse N-PLS on the different
simulations. Median (1st, 3rd quartile) of the mean squared error and a 95% confidence
interval for the difference in mean squared error between sparse N -PLS and N -PLS is also
provided. True variables selected column indicates the median of the occasions these are
included in the models, as well as the 1st and 3rd quartiles (True positives). Noise variables
selected column presents analogous results for the Noise variables (False positives)
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9.2 Data driven synthetic data sets

To further test the performance of the method in selecting highly correlated
variables, simulated data resembling the ones of a toxicogenomics data set
(Heijne et al. 2004) was analysed. In this work, the effect of the hepatotox-
icant bromobenzene in rats was studied. Groups of rats were treated with
different doses of this toxic compound dissolved in corn oil for a 48 hours
period. At three time points from the start of the treatment, rats were sac-
rificed. Liver samples were used to extract mRNA for microarray profiling
and blood and urine was used for metabolite profiling. Additionally, 21 phys-
iological parameters were recorded: Glucose, A/G ratio, GSH, Body Weight,
Creatin, GGT, Urea, Kidneys, Kidney/BW, Triglycerides, Liver, Albumin,
Total Protein, ALP, Liver/BW, Bilirubin, LDH, Phospholipids, Cholesterol,
ASAT, ALAT.

For this study, simulated profiles from 14 of these 21 physiological parameters
were used to discriminate between two of the different groups (High and Low
doses evolution). In order to compute these profiles, since they were not shown
in (Heijne et al. 2004), it was taken advantage of those shown in Conesa et al.
2010, which correspond to the same dataset. 25 samples for high doses and
25 for low doses were simulated, adding to the pattern random normal noise,
with standard deviation 0.1.

Figure 9.1 represents time course levels of the seven patterns corresponding
to the 14 physiological parameters evaluated for high and low dose treatment
groups.

Figure 9.1: Patterns for the 14 different variables in both groups: High doses (red lines)
and low doses (black lines).
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These variables were grouped attending to their common patterns in the fol-
lowing seven groups: i) ALT, AST, LDH and GSH; ii) Creatin and Albumin;
iii) Kidney and Cholesterol; iv) Liver, Phospholipids and Triglycerides; v) Glu-
cose; vi) A/G Ratio and vii) Urea.

The goal with these simulations based on a real data set was to test the ability
of the sparse N -PLS model in selecting those relevant variables that were
associated to the response (discrimination between both groups) even in the
case that these variables were correlated. On one hand, since the original
lasso for least squares is known to suffer from multicollinearity as explained
in chapter 3, there was a concern regarding the performance of the sparse N -
PLS model in such scenarios. But, on the other hand, since the penalization
is included at the model-fitting step of N -PLS, which deals excellently with
multicollinearity, there was confidence that the method would be able to treat
correlated variables adequately. More concretely, the expectations were that
sNPLS would behave similarly to elastic net, where L1 and L2 penalty are
combined chapter 3, since PLS is very similar to L2 penalization in the way
it shrinks the coefficients (De Jong 1995). The results, presented in Table 9.2
which summarizes the model coefficients obtained in the analysis, confirmed
the hypothesis of good performance in the presence of collinearity.

Variable T1 T2 T3

Glucose 0 0 0
Phospoliphids 0 0 0
Kidney 0 0 0
Liver 0 0 0
Cholesterol 0 0 0
Tryglycerids 0 0 0
A/G ratio 0 0 0.077
Urea 0 0 0
Creatinine 0 0 0.082
Albumin 0 0 0.076
ALT 0 0 0.221
AST 0 0 0.221
LDH 0 0 0.221
GSH 0 0 0.101

Table 9.2: Coefficients of the model

Overall, results showed good agreement with the structure of the data. All
the variables following the pattern i (i.e., ALT, AST, LDH and GSH) were
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selected by the method and similar coefficients were assigned. Additionally,
Creatinine and Albumin (pattern ii) were also selected with similar coefficients.
Interestingly, the A/G ratio (pattern vi), a variable uncorrelated to all the
others was also selected. However, kidney and cholesterol were not selected by
the model, probably because selection was also performed on the third mode
and only the third element of the third mode was selected.

9.3 Real data sets

Simulated data sets provide a useful suitable first approach to test the perfor-
mance of the new sNPLS method. However, to exemplify sNPLS and its utility
in a more complex context, the proposed method was faced to the analysis of a
real dataset, which was derived from a metabolomics study. In metabolomics
data sets usually hundreds of variables, with high noise and high correlation,
are obtained. This dramatically hinders biomarker discovery and variable se-
lection for predictive models building. Thus, real processed rat serum samples
were used to artificially generate two different groups by adding a set of stan-
dards at different final concentrations that additionally showed different trends
along time (Figure 9.2). It was expected that this experimental design pro-
vided a suitable frame work for assessing sNPLS capabilities when facing real
’-omics’ data sets.

Figure 9.2: Expected patterns for the four different metabolite classes in group 1 (n=8)
and group 2 (n=6).
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In the following paragraphs, the whole experimental procedure for obtaining
the real metabolomics data set is thoroughly described.

Liquid chromatography–mass spectrometry (LC-MS) analyses of rat serum
samples were performed in an Agilent 1290 Infinity LC system coupled to an
Agilent 6550 Q-TOF mass spectrometer equipped with an ESI source (Agi-
lent Technologies, Santa Clara, CA, USA). LC-MS grade solvents (i.e. wa-
ter, acetonitrile and methanol) were acquired from Fisher Scientific (Lough-
borough, UK). All the LC-MS additives and standards were acquired from
Sigma–Aldrich/Fluka (Madrid, Spain). Metabolites were separated on an Zor-
bax SB-Aq column (100 x 2.1 mm; 1.8 µm (Agilent Technologies, Santa Clara,
CA, USA). Mobile phases consisted of (A) 1mM ammonium fluoride and (B)
acetonitrile. The separation was conducted under the following gradient at a
flow of 0.3 mL/min: 0 min 3% (B); 0–2 min 40% (B); 2-5 min 7% (B); 5-7
min 50% (B); 7-12 min 100% (B); 12-16min 100% (B); 16-16.5 min 3% (B);
16.5-18 min 3% (B). Sample and column temperatures were maintained at 4
ºC and 40ºC, respectively. The injection volume was 5 µL. The instrument
was tuned in the 50-1700 m/z range using an Agilent tune mix in 2GHz ex-
tended dynamic range mode (mass resolving power 25,000 FWHM). Detection
was performed in ESI (-) mode in the 50-1000 m/z range. A reference solution
(m/z 119.0360 and m/z 980.0164) was used to correct small mass drifts during
acquisition. The following conditions were employed: capillary voltage, 3.5 kV;
nozzle voltage -1.0 kV; fragmentor voltage, 175 V; gas temperature, 200 ºC;
drying gas (nitrogen), 14 L/min; nebulizer gas (nitrogen), 35 psi; sheath gas
temperature, 350 ºC; and sheath gas flow (nitrogen), 11 L/min. The acquisi-
tion rate was set at 4 spectra/s in all cases. Data preprocessing was performed
using ProgenesisQI software (Nonlinear Dynamics, UK).

Six-week-old male Oncins France Strain A (OFA) rats (200–240 g) were pur-
chased from Charles River (Barcelona, Spain) and acclimatized to laboratory
conditions for at least 7 days. Animals were housed (12-h light-dark cycle,
21–25°C, 30–70% humidity, woodchip bedding) and fed ad libitum with a stan-
dard chow diet (Scientific Animal Food and Engineering, Augy, France). Rats
were anesthetized with sodium thiobarbital (0.1 g/kg), and blood was col-
lected by cardiac puncture. After coagulation and centrifugation (1,000 g for
10 min at 4°C), serum samples were aliquoted and stored at - 80°C until the
analysis. All the experimental protocols were approved by the Institutional
Animal Ethics Committee. 40 µL of serum sample were mixed with 120 µL
of methanol. After vortexing, samples were kept at -20 ºC for 20 min. Sam-
ples were centrifuged (14000 g, 4 ºC, 15 min) and the supernatants transferred
to clean tubes and evaporated to dryness. Samples were resuspended in 80

91



Chapter 9. Validation of the sparse N-PLS method and sNPLS package

µL of water, centrifuged (14000 g, 4 ºC, 5 min), and the clean supernatants
transferred to HPLC vials for their LC-MS analysis. Rats serum samples were
separated in two groups of sizes 8 and 6 and subsequently fortified with a
set of metabolites to generate the patterns already presented in Figure 9.2.
Metabolites and final concentrations used are summarized in Table 9.3.

Variable Class Metabolites

A

Capric Acid, Lauric, Acid, Myristic Acid,
Myristoleic Acid, Palmitic Acid,

Palmitoleic Acid, Octadecanoic Acid,
Oleic Acid, Linoleic Acid, Linolenic Acid

B

Cholic acid, Glycocholic acid, Taurocholic acid,
Chenoeoxycholic acid, Glycochenodeoxycholic acid,
Taurochenodeoxycholic acid, Deoxycholic acid,
Glycodeoxycholic acid, Taurodeoxycholic acid,

Lithocholic aid, Glycolithocholic acid,
Taurolithocholic acid

C
Valine, Leucine, Isoleucine, Phenylalanine,
Methionine, Cysteine, Proline, Tyrosine,
Aspartic acid, Alanine, Glycine, Lysine

D

Ornithine, Glutamate, Glutamine, Citrulline,
Arginine, Argininosuccinic Acid,

γ-glutamyl-glutamic acid, γ-glutamyl-glutamine,
γ-glutamyl-2aminobutyric acid, ophthalmic acid

Table 9.3: List of metabolites for each variable class. Metabolites are grouped attending
to their physical and chemical properties. Class A, comprises fatty acid; Class B, comprises
bile acids; Class C, comprises amino acids; Class D comprises miscellaneous compounds

Results of the real data set analysis

The cross-validation procedure (20 repetitions of 5-fold cross-validation) se-
lected as the optimum parameter values 30 features of WJ, 3 features of WK

and 2 components. Therefore, 60 variables among the initial 1220 obtained
from the LC-MS analysis (30 in each component) were selected by the final
sparse N -PLS model. Out of the four variable classes which were different
between both groups by design (Table 9.3), the model included at least one
representative variable for each class. The model also included other vari-
ables not present among the four controlled variable classes, but many of them
showed similar patterns to those included and could be derivatives or adducts
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of the original metabolites. Overall, the selection provided by the new model
showed a quite feasible result, where not only the real assignable variables
(added metabolites) but also those interfering ones could be selected. A list
of all the selected variables is presented in Table 9.4. The first column list
those variables selected by sparse N -PLS, while the second column indicates
on which component these variables were selected. The third column shows
wether these variables belong or not to one of the classes described in Ta-
ble 9.3. Finally, column four shows whether those variables that do not belong
to any of the assayed classes follows or not a pattern similar to those variables
included in Table 9.3.

Variable Component Variable Class Profile similar
to class

V8, V16 1 A -

V27, V28, V32 1 B -

V54 1 C -

V58 2 D -

V187, V466, V853 1 - A

V470 1 - B

V388, V405, V422, V660,
V661, V672 1 - C

V112, V151, V179, V434, V449,
V587, V608, V612, V967, V990 2 - D

V95, V180, V527, V955, V1034,
V1056, V1165, V1183, V1512,
V2041, V2463, V2520, V2683

1 - -

V897, V1235, V1322, V1354,
V1378, V1389, V1535, V1601,
V1627, V1647, V1711, V1715,
V1729, V1873, V1935, V1945,
V2011, V2077, V2180, V2616

2 - -

Table 9.4: Variables selected by the final sNPLS model and their corresponding assigned
variable classes

Interestingly, variables of the classes A, B and C and its derivatives or ana-
logues were all exclusively selected in the first component and variables of the
class D and its derivatives or analogues were all exclusively selected in the
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second component. Variables with different patterns to those of the four ex-
perimentally generated classes were included in both components, but were
more prominent in the second one (13 in the first component versus 20 in the
second).

Finally, the performance of the model was compared with the standard N -PLS
model. To this end, the metabolomics data set was analyzed using both ap-
proaches. The sNPLS model clearly discriminated between the two rat groups
(Figure 9.3A). However, similar groups’ separation was also obtained by us-
ing the standard N -PLS (Figure 9.3B). The differences between both models
appear when comparing Figure 9.3B vs Figure 9.3G, and Figure 9.3C vs Fig-
ure 9.3H, related to WJ and WK, respectively; or Figure 9.3D vs Figure 9.3I,
and Figure 9.3E vs Figure 9.3J respectively, which are alternative represen-
tations. For interpretation purposes, it seems better to compare Figure 9.3B
vs Figure 9.3G for WJ, and Figure 9.3E vs Figure 9.3J for WK. For WJ, it
seems quite clear that the selection made from sparse N -PLS allows a clear in-
terpretation of the metabolites responsible for the separation between the two
groups. In the first component are represented those metabolites belonging to
the classes 1, 2 and 3. While, the second component is related to completely
independent metabolites (with respect to component one), which could be re-
lated to the separation of rats 6 and 13. Many of these metabolites are from
class 4, although some of them are not apparently related to any of the de-
signed variable groups. These interpretations are much more hard to do when
using standard N -PLS due to the high number of variables to deal with in the
second (metabolites) mode, so from this perspective the proposed approach
seems to improve the standard N -PLS model when trying to directly select
the variables of interest (metabolites in this case). However, it should be high-
lighted that variable selection is out of the N -PLS scope. These results show
that when variable selection is of prior relevance for interpretation or validation
purposes sparse N -PLS come up as a valid alternative For the interpretation
of WK, Figure 9.3E and Figure 9.3J have been selected. These plots show, for
the first component, a similar pattern, although a slight shift downwards is ob-
served for the standard N -PLS. The similar trend observed for both methods
strengths the use of the sparse N -PLS results, as it provides extra information
as discussed above. However, regarding the second component, they did not
provide the same result, which could be related to the clear separation of rats
6 and 13 observed in sparse N -PLS (Figure 9.3A).
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Figure 9.3: Plots of the sparse N -PLS model (left) and the standard N -PLS model (right).
Score plots of the two first components in the T matrix (A, F); weighting plots of the WJ

matrix (B, G); weighting plot of the WK matrix (C, H); plots of the loadings of the second
(D, I) and third (E, J) modes.
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9.4 Comparison with other methods

As exposed in chapter 5, although N -PLS does not provide variable selection at
the model fitting step, some methods have been developed to perform variable
selection after the fitting of the model. Variable Importance in Projection
(VIP) scores (Favilla, Durante, et al. 2013) and Selectivity Ratio (Rajalahti
et al. 2009) have been used successfully in different studies (Favilla, Huber,
et al. 2014; Mostafapour and Parastar 2015; Yun et al. 2016).

9.4.1 The hepatic toxicity data set

To better get a view of the similarities and differences between the sNPLS
method and the VIP scores and Selectivity Ratio methods, a complex biologi-
cal data set was analyzed using the three methods and compared their results.
This data set consisted on measures of eight different toxicity parameters at
four different time points in samples of hepatic cells treated with fifteen differ-
ent drugs at three different concentrations. The study was designed to evaluate
the hepatotoxicity in Upcyte human hepatocytes (UHH) in response to their
exposure to the different selected drugs with Cmax (therapeutic peak plas-
matic concentration), 0.2 Cmax and 5 Cmax concentrations. A scheme of the
structure of the data is depicted in Figure 9.4. A complete description of the
data set can be found in Tolosa et al. (2018).

Exploration of the data set showed clear trends over time for most of the
different toxicity parameters. Some of these trends were highly dependent on
concentration levels and others were more independent (Figure 9.5).

9.4.2 Data pre-processing and preparation

Based on the exploratory analysis and on the nature of the variables, all toxicity
parameters were log-transformed prior to the analysis except for the viability
variable, which was left untransformed. One of the drugs, methotrexate, was
also excluded from the study because it had a high proportion (over 40%) of
missing values. The X array was set up including not only the main variables,
but also the interaction between all toxicity variables and the concentration.
The array was also mean centered and scaled to unit variance prior to mod-
elling.
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Figure 9.4: Structure of the toxicity outcomes data set. It is organized as a three-way
array, with 42 samples (I), 8 variables (K) and 4 time points (K). The two drug groups,
conform the response vector y.

9.4.3 sNPLS results

Results of the repeated cross-validation estimated that the optimal combi-
nation of hyperparameter values was ncomp=2, keepJ=4 and keepK=4. This
combination was selected as the best in 21 of the 30 performed repetitions
of the cross-validation procedure (Figure 9.6). Interestingly, the selection of
the hyperparameter values shows a very low uncertainty compared to other
problems with real data such as the one previously presented in this chapter
(section 9.3) or even the simple bread data set presented in chapter 8.

With these results, a sNPLS model was adjusted using the suggested optimal
combination of hyperparameter values. The coefficients of the model are pre-
sented in Table 9.5. As can be seen in the table, the variables MMP, lipids
and viability were not selected by the model. This is consistent with the data
exploration depicted in Figure 9.5, where these variables show no clear differ-
ences between both groups. Another interesting result is the selection of the
mitosox variable only for the highest (5Cmax) concentration level. This effect
also agrees with the data representation in Figure 9.5. For the other variables,
the day 14 seems to have the highest effect, getting the largest coefficients in
each case. To further interpret the results, different plots of the model are
represented in Figure 9.7.
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Figure 9.5: Exploratory analysis of the toxicity data set. Trends over time at each studied
concentration for the two drug groups for the different toxicity parameters. (A Reactive
Oxygen Species, B Calcium, C Matrix Metalloproteinases, D Mitochondrial Superoxide
Indicator, E Reduced glutathione, F Phospholipids, G Lipids and H Viability.

98



9.4 Comparison with other methods

Day 3 Day 7 Day 14 Day 21
ROS | 0.2Cmax 0.059 0.069 0.090 0.061
Calcium | 0.2Cmax 0.008 0.009 0.012 0.008
MMP | 0.2Cmax 0 0 0 0
Mitosox | 0.2Cmax 0 0 0 0
GSH | 0.2Cmax 0 0 0 0
Phospholipids | 0.2Cmax 0.049 0.048 0.051 0.04
Lipids | 0.2Cmax 0 0 0 0
Viability | 0.2Cmax 0 0 0 0
ROS | Cmax 0.024 0.028 0.037 0.025
Calcium | Cmax 0.034 0.040 0.052 0.036
MMP | Cmax 0 0 0 0
Mitosox | Cmax 0 0 0 0
GSH | Cmax -0.008 -0.009 -0.012 -0.008
Phospholipids | Cmax 0.069 0.067 0.072 0.057
Lipids | Cmax 0 0 0 0
Viability | Cmax 0 0 0 0
ROS | 5Cmax 0 0 0 0
Calcium | 5Cmax 0.028 0.03 0.036 0.026
MMP | 5Cmax 0 0 0 0
Mitosox | 5Cmax 0.006 0.006 0.006 0.005
GSH | 5Cmax -0.105 -0.102 -0.11 -0.087
Phospholipids | 5Cmax 0.029 0.028 0.030 0.024
Lipids | 5Cmax 0 0 0 0
Viability | 5Cmax 0 0 0 0

Table 9.5: Coefficients of the model for predicting drug group in the toxicity data set.
Notably, the variables MMP, Lipids and Viability are not selected by the model in any
concentration level.
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Figure 9.6: Results of the repeated cross-validation procedure for the toxicity data set.
The highest density is located at the combination ncomp=2, keepJ=4 and keepK=4.

9.4.4 Selectivity ratio results

After fitting the sNPLS model, a standard N -PLS model was fitted to the data
and the Selectivity ratio for each variable was estimated. Code for performing
SR on N -way arrays was implemented in R based on Rajalahti et al. (2009)
and is included in the sNPLS package since version 0.4. SR values for each
variable at each component are presented in Table 9.6.

For this data set, estimation of the SR does not yield highly discriminative
results between the different variables. Only MMP at 0.2 Cmax, Lipids at
0.2 Cmax and, to a lesser extent, MMP at 5 Cmax, display a lower SR value
compared to the other variables. This two variables, Lipids and MMP, were
not selected by the sNPLS model, so there is a slight coincidence in these
results. A plot of the different SR values for each variable in each component
is depicted in Figure 9.8.

100



9.4 Comparison with other methods

1

2

3

4

5
6

7

8

910 11

1213
14

15

1617

18

19
20

21
22

23
24

25

26

2728

29

30

31

32

33

34

35

36
37

38

39

40

41

42

−1.0

−0.5

0.0

0.5

1.0

1.5

−0.25 0.00 0.25 0.50
Comp.1

C
om

p.
2

group

0 1

A

1

2
34

5
6

7

8

9
10

11

12

13 14

15

16

17

18
19
20

21

22
2324

25

26

27

28

29

30

31

32
33

34

35

36

37
38
39

40
41 42

−1.0

−0.5

0.0

0.5

1.0

−1.5 −1.0 −0.5 0.0 0.5
Comp.1

C
om

p.
2

group

0 1

B

ros

calcium

phospholipids

concentrationCmax:ros

concentrationCmax:calcium

concentrationCmax:gsh

concentrationCmax:phospholipids

concentration5Cmax:calcium

concentration5Cmax:mitosox

concentration5Cmax:gsh
concentration5Cmax:phospholipids

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

−0.04 −0.02 0.00 0.02 0.04 0.06
Comp.1

C
om

p.
2

C

Day3 Day7

Day14

Day21

−0.6

−0.4

−0.2

0.0

−0.4 −0.2 0.0
Comp.1

C
om

p.
2

D

−0.2

−0.1

0.0

0 5 10 15 20 25
Variable (index)

W
j

Component

1 2

E

−0.6

−0.4

−0.2

0.0

1 2 3 4
Time (index)

W
k

Component

1 2

F

Figure 9.7: Plots of the fitted sNPLS model for the toxicity data set. Score plot of the
two first components in the T matrix (A); Score plot of the two first components in the U
matrix (B); weighting plot of the WJ matrix (C); weighting plot of the WK matrix (D);
plots of the loadings of the second (E) and third (F) modes
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Component 1 Component 2
ROS | 0.2Cmax 1.044 1.052
Calcium | 0.2Cmax 1.047 1.044
MMP | 0.2Cmax 0.532 1.029
Mitosox | 0.2Cmax 1.065 1.035
GSH | 0.2Cmax 1.039 1.043
Phospholipids | 0.2Cmax 1.036 1.068
Lipids | 0.2Cmax 0.717 1.078
Viability | 0.2Cmax 0.966 1.046
ROS | Cmax 1.059 1.051
Calcium | Cmax 1.055 1.046
MMP | Cmax 1.030 1.045
Mitosox | Cmax 1.065 1.046
GSH | Cmax 1.041 1.040
Phospholipids | Cmax 1.042 1.064
Lipids | Cmax 1.085 1.061
Viability | Cmax 1.074 1.049
ROS | 5Cmax 1.067 1.049
Calcium | 5Cmax 1.069 1.047
MMP | 5Cmax 0.979 0.953
Mitosox | 5Cmax 1.068 1.045
GSH | 5Cmax1.060 1.060 1.048
Phospholipids | 5Cmax 1.058 1.048
Lipids | 5Cmax 1.076 1.058
Viability | 5Cmax 1.080 1.048

Table 9.6: Selectivity Ratio values for the N -PLS model fitted to the toxicity data set.
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Figure 9.8: SR plot for the N -PLS model of the toxicity data set. Almost all variables get
a similar score, so almost no variable selection can be performed.

9.4.5 VIP results

Additionally to the SR results, VIP scores were also estimated for the fitted
standard N -PLS model. Code for estimating VIP scores on N -way arrays was
implemented in R based on the paper by Favilla, Durante, et al. (2013) and is
included in the sNPLS package since version 0.4.1. VIP scores for each variable
at each component are presented in Table 9.7.

Interestingly, in the case of VIP scores, the concordance with sNPLS is greater
compared to the concordance between SR and sNPLS. VIP scores, clearly se-
lects the variables ROS Cmax, calcium Cmax, ROS 5Cmax, calcium 5Cmax,
mitosox 5Cmax, phospholipids 5Cmax and lipids 5Cmax as important vari-
ables. Of these seven variables, six were also selected by the sNPLS method.
sNPLS also selected ROS 0.2Cmax, calcium 0.2Cmax, phospholipids 0.2Cmax,
GSH Cmax and phospholipids Cmax as important variables. For these, the
VIP scores method gives a relatively high score to ROS 0.2Cmax and Cal-
cium 0.2Cmax variables, but clearly considers non-important phospholipids
0.2Cmax (VIP score of 0.31), GSH Cmax (VIP score of 0.13) and phospho-
lipids Cmax (VIP score of 0.43). A plot comparing the results of the VIP score
method and the sNPLS method is presented in Figure 9.9.
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VIP score
ROS | 0.2Cmax 0.78
Calcium | 0.2Cmax 0.83
MMP | 0.2Cmax 0.028
Mitosox | 0.2Cmax 0.073
GSH | 0.2Cmax 0.066
Phospholipids | 0.2Cmax 0.31
Lipids | 0.2Cmax 0.041
Viability | 0.2Cmax0.013 0.013
ROS | Cmax 2.47
Calcium | Cmax 1.92
MMP | Cmax 0.033
Mitosox | Cmax 0.21
GSH | Cmax 0.13
Phospholipids | Cmax 0.43
Lipids | Cmax 0.27
Viability | Cmax 0.13
ROS | 5Cmax 5.09
Calcium | 5Cmax 3.42
MMP | 5Cmax 0.079
Mitosox | 5Cmax 1.25
GSH | 5Cmax1.060 0.47
Phospholipids | 5Cmax 3.48
Lipids | 5Cmax 1.97
Viability | 5Cmax 0.50

Table 9.7: VIP score values for the N -PLS model fitted to the toxicity data set.
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Figure 9.9: Comparison of variable selection results of sNPLS method and VIP scores
method for the N -PLS model of the toxicity data set. Variables selected by sNPLS are
depicted as a blue point at the same height as the VIP score value for that variable and
non-selected variables are depicted as a blue point at zero. Ideally, VIP score peaks and blue
points should match.
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Although the agreement is not perfect, most blue points in Figure 9.9 match a
peak of VIP score so, in this specific data set, both methods give comparable
results.
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Chapter 10

Conclusions and future work

10.1 Developed topics and contributions

This thesis has covered the issues and difficulties in analyzing metabolomic data
and the different techniques able to deal with those problems. A special focus
has been given to the treatment and analysis of three-way and, by extension,
multi-way data sets and the development and implementation of a variable
selection procedure integrated at the model-fitting step.

First, a review of the properties and particularities of ’omic’ data and, more
specifically, of metabolomic data was performed. The main characteristics of
these data are their multicollinearity, the large number of variables and their
organization in complex data structures. There are a wide range of methods
available for analyzing metabolomic data sets. In this thesis, many of these
techniques have been presented and explained; after a review of the limitations
of the classical statistical methods, such as univariate tests, the usefulness of
multivariate statistical projection methods (PCA, PLS) as well as penalization
methods (ridge regression, lasso and elastic net) for the analysis of metabolomic
data has been assessed. After this, the thesis has focused on complex data
structures such as three-way or multi-way arrays and the tools for their anal-
ysis regarding compression methods such as Tucker3 and PARAFAC and also
predictive modelling methods such as N -PLS.
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A new method for combining the N -PLS algorithm with L1-penalization has
been developed. Additionally, other variable selection methods such as VIP
and SR have been implemented within the N -PLS algorithm. Related to the
variable selection, these methods allow for the construction of simpler models
than standard N -PLS. This makes the models more interpretable and less
prone to overfitting.

Furthermore, the variable selection performance of the three new methods has
been compared, obtaining similar results with sNPLS and VIP and potentially
different results with SR; with any of them being superior to the other two in
some cases and inferior in other cases.

The new developed methods have been implemented in an R package called
sNPLS. This package includes not only the main sNPLS algorithm but also
a complete set of functions for fitting predictive models with three-way data
structures, including parallelized cross-validation and repeated cross-validation
procedures, processing of the data such as centering, scaling and unfolding and
a wide array of plots for interpretation of the modelling results. Additionally,
this is the only package for performing N -PLS regression models in R, so with
its development the applicability of three-way methods to the R user community
has been expanded.

The methods and their implementation in R has also been validated using
different synthetic data sets, showing lower prediction error than standard N -
PLS and good performance in variable selection. The method has also been
validated for the case of high multicollinearity between variables, proving that
the combination of L1-penalization and N -PLS projection behaves similarly to
elastic net, in the sense that is it is able to select all correlated variables instead
of discarding most of them and selecting only one as happens with lasso.

10.2 Future work and research lines

The current version of the package is the 0.4.01, which is the 59th update of
the initial package. At its current state, the package is fully functional, be-
ing able of fitting sparse and standard N -PLS models, efficiently performing
cross-validation and repeated cross-validation and providing useful plots for the
interpretation of results. It also incorporates VIP and SR variable selection
procedures within the N -PLS algorithm. The package recently incorporated
generic base R functions for models such as coef, summary and predict and
also has fixed all the detected bugs of the first versions of the software. Ac-
cording to the statistics given by CRAN, the sNPLS package averages around
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275 downloads per month and has accumulated more than 6700 downloads.
These are similar statistics to the two other R packages for three-way analysis,
so reception of the package seems to be great among the three-way community
of R users.

For future versions of the package one of the priorities is including more options
for the application of the penalization factor. Currently, the L1-penalty is
determined by choosing the number of non-zero elements in wJ and wK, which
can be determined byK-fold cross-validation or arbitrarily by the user. Ideally,
the L1-penalty values should come from a continuous distribution, being able
to take any value, not just discrete values as of now. Related to the application
of penalty, there is ongoing work being performed on studying the possibility
of adding an option for L0 penalty, This penalty can be applied using the hard-
thresholding operator (Zou 2006), so it should be straightforward to implement
in future versions of the package.

Also the cross-validation procedure does not currently try all the possible com-
binations of the hyperparameter space, because when there is more than one
component, all components are forced to have the same number of keepJ
and keepK values. This constrain is only applied because of computational
constrains, so different alternatives are being studied to be able to improve
efficiency of the cross-validation procedure, thus removing the need for con-
straining the hyperparameter space. One of such alternatives, which will be
implemented in future versions of the package will be the substitution of the
grid search procedure for a random search procedure which has been demon-
strated to be more efficient and also provide better estimates of uncertainty
(Bergstra and Bengio 2012).

Another addition regarding the tuning of the parameters and the cross-validation
will be the possibility of personalizing the objective metric. Currently, the
RMSE is the only option for the optimization of the hyperparameter space.
However, in the case ofN -PLS-DA, other metrics related to classification meth-
ods such as missclassification rate or AUC (Bradley 1997) would be more rea-
sonable and should be implemented in future versions of the package.

Related to the optimization of the model by tuning of the hyperparameter
space, alternative methods to cross-validation will be studied and implemented,
such as information criteria based methods like Akaike information criterion
(AIC) (Akaike 1974) or Bayesian information criterion (BIC) (Schwarz et al.
1978). These alternative methods should be much more efficient computation-
ally, so they would be a great addition to the package.
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It has also been already experimented with the estimation of confidence in-
tervals for the estimates based on resampling, so this will be another addition
to the package in the upcoming versions. Related to this, the possibility of
estimating the uncertainty in the variable selection procedure will be estudied
and implemented if feasible.

Other planned addition is the modification of the plot function so that it creates
objects with all the information about the plot instead of only producing them.
This way, the user will be able to fully personalize their plots and also make
their plots fully reproducible without the new of repeating a large analysis.

Finally, another objective is adding more useful functions to the package for
providing a comprehensive framework for three-way analyses. Functions for
performing Tucker and PARAFAC models like those already implemented in
the ThreeWay and PTAk packages, more pre-processing functions and an ex-
tended documentation of all of them, including some vignettes, will be intro-
duced in future versions of the package.

The development of a new method for performing variable selection at the
model-fitting step in N -PLS and its software implementation as an R package
has opened a large range of research lines that should be explored in the future.
These research lines can be framed in three different categories: methodological
developments, software development and practical application of the method
to real problems in biomedical research.

Regarding methodological developments, future research lines include:

1. Study of other possible penalizations such as L0 or adaptive L1 penaliza-
tion. The field of penalized regression methods is a very active research
branch. Since the sNPLS method is a combination of a projection based
method with a penalization method, advances in both fields could be
incorporated into this technique. Adaptive L1 penalization is specially
appealing for its oracle properties (Zou 2006).

2. Development of alternative methods for the selection and/or tuning of
the hyperparameter space. Using RMSE for the tuning of the hyperpa-
rameters results in a theoretically optimal prediction error performance
at a cost of non-optimal variable selection performance. Finding an ap-
propriate criterion for achieving optimal variable selection performance
would greatly increase the flexibility and utility of the method.

3. Derivation of standard errors and confidence intervals for sNPLS to fur-
ther improve the inference capabilities of the method.
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In the case of software development, the proposed future research lines include:

1. Improvement of the sNPLS R package as exposed in section 10.2. This
includes adding all the functionality developed by the methodological
research lines, but also improving the efficiency of the computations and
adding more data processing options and plots.

2. Developing an alternative to the search grid method. Random search
is one candidate, but other options should be studied such as gradient
search or genetic algorithms.

3. Study the impact of the use of different BLAS libraries on the performance
of the package and implement optimizations in the algorithm based on
this results.

Finally, regarding practical application of the method to real biomedical prob-
lems, the potential number of research lines is immense, so a generic sample is
provided:

1. Application of the sNPLS method to biomarkers search in longitudinal
studies.

2. Development of prediction models for outcome in repeated measures stud-
ies.

3. Use of the sNPLS method for the understanding of complex biological
systems
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