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Highlights  

1. Random eco-friendly copolyesters were successfully synthesized  

2. Nanocomposites based on cellulose nanocrystals (CNC) were developed by extrusion 

3. CNC modulated polymer mechanical properties  

4. Extruded films displayed a tunable range of degradation rate 

 

Abstract 

A new class of biodegradable materials developed by a combination of random eco-friendly 

copolyesters containing butylene succinate (BS) and triethylene succinate (TES) sequences 

with cellulose nanocrystals (CNC), is proposed and studied. Polymers and nanocomposite 

films were prepared by an optimized extrusion process to improve the processability and 

mechanical response for flexible film manufacturing. Poly(butylene succinate) (PBS) 

homopolymer and two random copolyesters containing different amounts of TES co-units, 

P(BS85TES15) and P(BS70TES30), were synthesized by melt polycondensation. The effect 

of TES and CNC presence and content on the microstructure, tensile properties, thermal 

characteristics and disintegration under composting conditions, as well as on the toughening 

mechanism of the blends was investigated. 

Material properties were modulated by varying the chemical composition. CNC were used 

as reinforcement additive and their effect is modulated by the interaction with the three 

polymeric matrices. The extruded films displayed tunable degradation rates, mechanical 

properties and wettability, and showed promising results for different industrial applications. 

 

Keywords: random copolyesters; cellulose nanocrystals; bionanocomposite; extrusion 

process. 
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1.Introduction 

The development of new bio-based, biodegradable and sustainable polymeric systems, by 

using innovative processing technologies, is an important strategy to reduce the dependence 

of fossil fuels and support the transition towards a greener and more sustainable future. 

In this respect, poly(butylene succinate) (PBS) is undoubtedly an interesting member of the 

aliphatic polyester class. In view of its good mechanical properties that are comparable with 

low-density polyethylene and other polyolefins, good thermal resistance and melt 

processability (Zhang&Zhang, 2016; Gigli, et al., 2016), PBS can be considered a 

promising candidate for the packaging industry. To widen the PBS application range and to 

improve some of its properties, such as the slow biodegradation rate, different pathways 

have been followed. Copolymerization and realization of blends and composites are the 

most explored strategies in this respect (Gigli, et al., 2016; Fabbri, et al., 2014; Khalil, et al., 

2014; Kim, et al., 2006; Zakharova, et al., 2015). In particular, the introduction of ether and 

thio-ether linkages has proven to be a winning strategy to upgrade the characteristics of PBS 

and of other aliphatic polyesters. By mainly acting on the degree of crystallinity and on the 

surface wettability, it has been possible to deeply modify the mechanical properties and the 

biodegradability of the parent homopolymer. (Gigli, et al., 2014; Gigli, et al., 2013).  

Cellulose is the most abundant and inexhaustible carbohydrate polymer in nature. Its 

physical and chemical properties permit to develop different kind of materials and products 

(Klemm et al. 2005). In particular, cellulose nanocrystals (CNC) are widely employed as 

reinforcing agents in lightweight and bio-based polymeric nanocomposites (Habibi, Lucia, 

& Rojas 2010; Moon, et al., 2011). CNC show nanosized dimensions with rod-like shape, 

high aspect ratio, low density (1.566 g/cm3), and reactive surface (Bitinis, et al., 2013), and 

mechanical properties comparable to other reinforcement materials. 
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The dispersion in the thermoplastic polymers is a key issue to be improved and evaluated in 

order to transfer the CNC properties to the polymeric materials and to obtain multifunctional 

nanostructured polymers with modulated behavior (Dufresne, 2013). In particular, the 

dispersion of the CNC in hydrophobic thermoplastic polymers is difficult due to the 

dominant hydrophilic nature of cellulose (Song, Xiao, & Zhao, 2014), and this can limit 

their efficiency as reinforcing elements (Dufresne, 2013). Different CNC surface 

modification methods, by using both chemical and physical approaches, have been 

developed including esterification, etherification, silylation, polymer grafting, adsorbing 

surfactants or polymer coating (Braun, Dorgan, & Hollingsworth, 2012; Fortunati, et al., 

2012; Lizundia, et al., 2016). 

The goal of this research is to develop high innovative renewable bionanocomposites by 

combining newly synthesized biodegradable copolymers with cellulose nanocrystals as 

reinforcement phase. The thermal, mechanical, chemical and disintegration properties of the 

novel developed films were investigated and correlated to CNC content and polymer chain 

microstructure. The final results could take to the production of biodegradable 

nanocomposites with cellulose nanocrystals as reinforcing fillers that display comparable 

properties to inorganic-based reinforced nanocomposites. 

 

2. Experimental section 

2.1. Materials and methods 

2.1.1. Polymer synthesis 

Dimethylsuccinate (DMS), 1,4-butanediol (BD), triethylene glycol (TEG), glycerol and 

titanium tetrabutoxide (TBT) (Sigma-Aldrich) were reagent grade products. All the reagents 

were used as supplied with the exception of TBT that was distilled before use. 
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Poly(butylene succinate) (PBS) and poly(butylene/triethylene glycol succinate) random 

copolymers (P(BSxTESy)) were synthesized in bulk by two step melt polycondensation, by 

employing DMS and BD (PBS synthesis) or DMS and different ratios of BD and TEG 

(P(BSxTESy) synthesis). In particular, two copolymers containing respectively 15% and 

30% of TES co-units have been prepared.A 20 mol% excess of total glycol with respect to 

DMS was used. A low amount of glycerol (1 mg/g of polymer) was also added to the 

reaction mixture. TBT was employed as catalyst (about 150 ppm of Ti/g of polymer). 

The first stage was run at 180°C under pure nitrogen flow. When more than 90% of the 

theoretical amount of methanol was distilled off, the pressure was reduced to about 0.08 

mbar and the temperature was gradually risen to 230°C to facilitate the removal of the 

excess of glycol. The reactions were carried out until a constant torque was measured. 

 

2.1.2. Cellulose nanocrystals 

Commercial microcrystalline cellulose (MCC, supplied by Sigma–Aldrich®, size 10–15 µm) 

was used as precursor for cellulose nanocrystal extraction, while an acid phosphate ester of 

ethoxylated nonylphenol (Beycostat A B09 (CECCA S.A.)) was used for their modification. 

All the other chemicals used for cellulose nanocrystal synthesis were supplied by Sigma–

Aldrich®. Cellulose nanocrystals (CNC), 100 to 200 nm in length and 5–10 nm in width, 

were obtained by sulfuric acid hydrolysis, and modified by the Beycostat surfactant (s-CNC) 

(Fortunati, et al., 2014; Heux, et al., 2000). The surfactant was added to the water 

suspension containing nanocrystals in portion of 1/1 (wt/wt) using an estimated weight of 

CNC directly after the hydrolysis process. 

 

2.2. Nanocomposite film processing  
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P(BSxTESy) random copolymers and modified cellulose nanocrystals were dried before 

processing to eliminate moisture traces and to avoid hydrolysis reactions. Polymers were put 

into an oven at 50°C for 24 h, while s-CNC was dried at 70 °C for 4 h. P(BSxTESy) 

copolymers and nanocomposite based formulations were processed and mixed by using a 

twin-screw microextruder (Dsm Explore 5&15 CC Micro Compounder). Screw speed, 

mixing time and temperature profile were optimized during the extrusion procedure. Two 

different s-CNC concentrations were selected: 1%wt, and 5%wt as shown in Table 1. 

Polymer and nanocomposite films with thicknesses between 20 and 60 μm were obtained by 

extrusion with the adequate filmature tip. Screw speed at 100 rpm was set to optimize the 

material properties, while the temperature profile was set up according to the different 

melting temperature of the selected copolymers, as reported in Table 1, in the three different 

extrusion areas. The total processing time was equal to 3 min: pure polymers were mixed for 

3 min, while for the nanocomposites preparation the s-CNC were added after 1 min.  

2.3. Polymer molecular characterization 

Polymer structure and composition were determined by means of proton nuclear magnetic 

resonance (1H-NMR) spectroscopy at 20°C, employing a Varian Inova 400-MHz instrument 

(Agilent Technologies, USA). Polymer samples were dissolved in deuterated chloroform at 

a concentration of about 20 mg/mL. 

Molecular weights were evaluated by gel-permeation chromatography (GPC) at 30°C using 

a 1100 HPLC system (Agilent Technologies, USA) equipped with PLgel 5-μm MiniMIX-C 

column (Agilent Technologies, USA). A refractive index was employed as detector. 

Chloroform was used as eluent with a 0.3 mL/min flow and sample concentrations of about 

2 mg/mL. A molecular weight calibration curve was obtained with polystyrene standards in 

the range of molecular weight 2000-100,000 g/mol. 
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2.4. Nanocomposite characterization 

All samples were stored over P2O5 under vacuum at 20°C before characterization.  

 

2.4.1. Microstructure  

Microstructure of the fracture surfaces of polymers and s-CNC based nanocomposite films 

were investigated by field emission scanning electron microscope (FESEM Supra 25, Zeiss, 

Germany). Films were previously freeze-cut in liquid nitrogen, gold coated with an Agar 

automatic sputter coater and then analysed. Optical images were also performed by an 

inverted microscope, Nikon Epiphot 300. 

 

2.4.2. Thermal characterization 

Differential scanning calorimetry (DSC) (DSC6, Perkin Elmer, Waltham, MA, USA) was 

used for the calorimetric measurements. Aluminium pans containing about 10 mg of 

polymeric samples were heated up from -70°C to 40°C above fusion temperature (Tm) (I 

scan), held for 3 min and then rapidly quenched (about 100 °C/min) to -70°C. Finally, the 

samples were reheated to Tm + 40°C (II scan). Both scans were run at a rate of 20°C/min. 

The samples were heated to Tm + 40°C and then cooled at 5°C/min after holding for 3 min at 

a constant temperature in order to determine the crystallization rate under non-isothermal 

conditions. 

Thermal degradation behavior of P(BSxTESy)-based formulations was evaluated by 

thermogravimetric analysis (TGA, Seiko Exstar 6300, Tokyo, Japan). 5 mg of each sample 

were used and dynamic tests were performed under nitrogen atmosphere (250 mL min-1) 
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from 30 °C to 600 °C at 10 °C min-1. Thermal degradation temperatures (Tmax) for each 

tested material were evaluated.  

2.4.3. Wide-angle X-ray diffractometry 

X-ray diffraction (XRD) patterns of polymeric films were performed in the wide-angle 

region by means of a PANalytical X’PertPro diffractometer (Almelo, The Netherlands) 

equipped with a fast X’Celerator detector. The radiation was supplied by a copper target 

(=0.1548 nm) and 567 points at interval 0.1° (2θ) were scanned for 100s each. The 

crystallinity index Xc was calculated as the ratio between the area subtended by the peaks 

and the total diffraction area, cleaned by the incoherent scattering. 

2.4.4. FT-IR 

Fourier infrared (FT-IR) spectra of the polymer and nanocomposite films in the 400–4000 

cm-1 range, were recorded using a Jasco FT-IR 615 (Japan) spectrometer with attenuated 

total reflection spectroscopy (ATR). 

2.4.4. Mechanical properties 

The tensile properties of polymer and nanocomposite films were evaluated. Tests were 

performed on 50 x 10 mm2 rectangular probes as indicated in the UNI EN ISO 527-5 

standard, with a crosshead speed of 1 mm min-1 and a load cell of 50 N. These tests were 

carried out in a digital Lloyd testing machine (Lloyd Instrument LR 30K Segensworth West, 

Foreham, UK) at room temperature, with the initial grip separation of 25 mm. Tensile 

strength (B), elongation at break (εB), and Young’s modulus (E) were calculated from the 

resulting stress-strain curves. At least six samples were analyzed for each formulation.  
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2.4.5. Optical properties 

The internal transmittance and the gloss of polymer and nanocomposite films were 

investigated. The transparency of the films was determined from the surface reflectance 

spectra by using a spectrocolorimeter CM-3600d (Minolta Co, Tokyo, Japan) with a 30 mm 

illuminated sample area by applying the Kubelka–Munk theory for multiple scattering to the 

reflection spectra. Internal transmittance (Ti) of the films was calculated using Equation 1, 

where R0 is the reflectance of the film using an ideal black background. Parameters a and b 

were quantified by equations 2 and 3, where R is the reflectance of the sample layer backed 

by a known reflectance Rg. The reflection spectra on the white and black background was 

determined from 400 to 700 nm. Measurements were taken in triplicate for each film. 

22

0 )( bRaTi          (Eq. 1) 

)(
2

1

0

0

g

g

RR

RRR
Ra


       (Eq. 2) 

)1( 2  ab                 (Eq. 3) 

Gloss was measured using a surface gloss meter (Multi-Gloss 268, Minolta, Langenhagen, 

Germany) at an incidence angle of 60º, according to the ASTM standard D523 (ASTM, 

1999). Gloss measurements were performed in triplicate over a black matte standard plate. 

Results were expressed as gloss units, relative to a highly polished surface of standard black 

glass with a gloss value close to 100. 

 

2.4.6. Wettability  

The wettability of the polymeric and nanocomposite films has been carried out by measuring 

the water contact angle at room temperature under static conditions. A KSV CAM101 

(KSV, Espoo, Finland) instrument coupled with a Drop Shape Analysis software was used 

for the analysis. The measurements were performed by recording the side profile of 
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deionized water drops deposited in different areas of the films. The values are reported as 

the average value of ten independent measurements.  

 

2.4.7. Overall migration  

The overall migration analysis of P(BS70TES30), P(BS70TES30)/1s-CNC and 

P(BS70TES30)/5s-CNC formulations was run in triplicate in simulant A (10% (v/v) ethanol 

water solution) and alternative simulant to D2 (isooctane) according to current legislation 

Commission Regulation (EU) N° 10/2011. Rectangular strips of 10 cm2 in 10 mL of food 

simulants were used. Samples were kept in the ethanol solution in a controlled atmosphere at 

40 °C for 10 days, while samples in isooctane were kept at 20 °C for 2 days according to EN 

1186-1:2002. At the end of the experiment, films were removed and the simulants 

evaporated in agreement with the European Standard 1186-3:2002 (Materials and articles in 

contact with foodstuffs - Plastics - Part 3: Test methods for overall migration into aqueous 

food simulants by total immersion). The residues were weighed with an analytical balance 

and the migration value in mg kg-1 of each simulant was determined. 

 

2.3.8. Degradation in compost 

The degradation experiments have been carried out on the P(BS70TES30), 

P(BS70TES30)/1s-CNC and P(BS70TES30)/5s-CNC films at 58.0±0.1°C. The mature 

compost employed for the tests was supplied by HerAmbiente S.p.A. (Bologna, Italy) and 

was composed as follows (as declared by HerAmbiente): organic carbon: 22.08% of the dry 

solid, humic and fulvic carbon: 13.44% of the dry solid, C/N ratio: 12.97, pH: 8.15 and 

salinity: 2.88 dS/m.  
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Weighed film specimens of 20 x 30 mm and about 35 mg of weight were used for the 

experiments.  

Each sample was placed in a 100 mL bottle in between two layers of compost. Each layer 

consisted of 20 g of compost. On top of the second layer, 10 mL of deionized water were 

added.  

The samples were withdrawn from the compost at determined time intervals, washed in 

accordance to the protocol previously described (Genovese, et al., 2014), and dried over 

P2O5 under vacuum to constant weight. The residual mass was calculated by using the 

following equation: 

((mi – mf) / mi)*100     (Eq. 4) 

where mf is the final weight and mi is the initial weight. The surface microstructure was 

analysed by visual observation and by scanning electron microscopy on gold sputtered films 

glued with carbon tape on aluminum stabs by using a Philips 515 instrument (Amsterdam, 

The Netherlands). 

 

3. Results and discussion 

3.1.  Polymer synthesis 

The molecular characterization data of the synthesized polyesters are reported in Table 1. 

The samples were characterized by relatively high molecular weights indicating that 

appropriate synthesis conditions were achieved. 1H-NMR investigations displayed that the 

chemical structure is consistent with the expected one and that the composition of the 

P(BSxTESy) copolymers is close to the feed (Table 1). As an example, the 1H-NMR 

spectrum of P(BS70TES30) is shown in Figure 1, together with the chemical shift 

assignments.  

The copolymer composition was calculated from the relative areas of the 1H-NMR 

resonance peak of the b aliphatic proton of the butanediol subunit located at 4.11 ppm and of 
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the d protons of the methylene groups of the triethylene glycol subunit at 4.25 ppm, as 

previously reported (Soccio, et al., 2012). 1H-NMR analysis allowed also for the 

determination of the arrangement of the comonomeric units along the polymer backbone, by 

the calculation of the degree of randomness (b). The calculation of b was carried out taking 

into consideration the resonance peaks of the aliphatic protons of the succinic subunit in the 

region δ = 2.61 – 2.65, as reported elsewhere (Soccio, et al., 2012). As expected, due to the 

catalyst employed and the high temperatures involved in the reactions, the P(BSxTEsy) 

copolymers showed a random distribution of the comonomeric sequences (Table 1). 

 

3.2. Morphological investigations 

Field emission scanning electron microscopy investigations of neat homopolymer, 

copolymer films and s-CNC based nanocomposites were performed to evaluate the sample 

morphology and to analyze cellulose nanocrystal dispersion in the polymer matrices.  

 

Microstructural properties are critical since they affect the final material optical, migration 

and mechanical behavior. Figure 2 shows FESEM images of the cryogenic fractured 

surfaces of neat polymer and nanocomposite films with 5%wt of cellulose nanocrystals at 

different magnifications. Neat PBS showed a homogeneous and smooth surface, with the 

presence of round uniform microstructure of around 500 nm in diameter. The fracture 

surface of the copolymers P(BS85TES15) and (BS70TES30) changed, displaying a two-

phases like microstructure, visible only at higher resolution. FESEM images underline as the 

copolymer film morphology varies with the TES content, thus affecting all the final film 

properties. Hence the microstructure variations for the P(BSxTESy) copolymers may be 

associated to the differences in the viscosity of PBS and P(BSxTESy), along with the 

varying chemical compositions. After adding a small amount of s-CNC, 1%wt (Figure S1) a 

different microstructure was observed, without evidence of multiple s-CNC aggregates, 
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while some individual cellulose nanocrystals can be identified  in samples with high content 

(5%wt, Figure 2). The surfactant used for the CNC dispersion that contains polyethylene 

glycol units shows good affinity with the co-units due to the very similar chemical structure. 

Indeed, these last are characterized by the presence of two -CH2-CH2-O- sequences per 

repeating unit that well resemble the PEG chemical structure, thus promoting the interaction 

between s-CNC and copolymers. This can guarantee an improved CNC dispersion in the 

copolymer with respect to the PBS homopolymer. Furthermore, individual s-CNC overlap 

the micro and nanostructure of neat PBS and its copolymers, as identified by some arrows in 

the fractured surface images.  

 

3.3. Thermal properties, X-Ray characterization and FT-IR analysis 

DTG curves obtained by TGA analysis as a function of the temperature for PBS, 

P(BS85TES15) and P(BS70TES30) polymeric films and their nanocomposites are shown in 

Figure S2, whereas the maximum degradation temperature values (Tmax) are summarized in 

Table 2. Neat PBS homopolymer, P(BS85TES15) and P(BS70TES30) copolymers based 

films displayed thermal degradation within a relatively narrow interval centered at 402°C, 

407°C, and 404°C respectively. This underlines that the presence of TES co-units does not 

influence the thermal stability of the PBS homopolymer. Moreover, the data observed 

underline that the addition of s-CNC does not affect the maximum degradation temperatures 

and the degradation behavior of the different polymer matrices. Table 2 summarizes the 

thermal properties obtained by DSC analysis.  

 

In order to clarify the nature of the crystalline phase, the structural characterization of 

P(BSxTESy) copolymers was carried out by wide angle X-ray diffraction. The X-ray 

diffraction patterns are reported in Figure S3. Both pattern shape and peak position clearly 
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indicate that the crystalline phase is -PBS (Ichikawa, et al., 2000) independently of the 

chemical composition. The presence of the s-CNC does not appreciably alter the pattern, 

even for the higher s-CNC amount. This effect is probably due to the low content of the s-

CNC in the polymers. Furthermore, an overlap of the s-CNC pattern with low intense 

reflections of -PBS phase is present (Figure S4). 

As to the glass transition, it can be observed that the Tg slightly decreased as TES co-unit 

content increased. The results are due to an enhanced flexibility given by the triethylene 

glycol subunit, which is characterized by the presence of two additional ether-oxygen atoms 

and methylene groups with respect to the butandiol, as already observed in the literature 

(Gigli, et al., 2014). 

Non-isothermal experiments were carried out to evaluate the influence of the TES co-units 

and of the s-CNC presence on the PBS crystallization ability. To do so, the samples were 

cooled with a controlled rate from the melt. The exothermic crystallization peaks of the 

samples under investigation are shown in Figure 3c. The results indicated that the 

crystallization temperature of PBS is significantly decreased by the presence of TES 

comonomeric units, while the s-CNC did not have any appreciable influence.  

The second scan after quenching from the melt did not highlight any variation with respect 

to the first scan, indicating that the crystallinity of the samples cannot be suppressed by 

quenching (Table 2 and Figure 3,b).  

FT-IR spectra of the nanocomposite films (Figure S5) show the main peaks of the polymers, 

confirming the non-covalent interaction with the surfactant modified cellulose nanocrystals. 

 

3.4. Mechanical properties 

The mechanical behavior in terms of strength and elongation at break, and Young’s modulus 

of neat polymers and s-CNC based nanocomposites was evaluated. Tensile test results are 
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reported in Table 2. All studied samples show the typical stress–strain curves of materials 

with a plastic behavior. PBS homopolymer displayed the highest Young’s modulus (430 

MPa) and tensile strength (σB equal to 40 MPa), as compared to the neat copolymers, but 

maintained a good value of elongation at break (220%), probably due to the processing 

technology. In the two investigated copolymers, the Young’s modulus regularly decreased, 

whereas deformation at break regularly increased with the increase of TES content, from 

220% to 350% for PBS and P(BS70TES30), respectively. The observed trend demonstrated 

that the introduction of TES units into PBS chains resulted in a remarkable modification of 

the homopolymer mechanical properties and it can be ascribed to the different chemical 

composition and melting enthalpies (i.e. degree of crystallinity). The intrinsic characteristics 

of the three matrices and the interaction between each polymer and the different amount of 

added s-CNC, strongly affect the mechanical behavior of the studied nanocomposites. In 

particular, as to the stiff PBS homopolymer, the mechanical properties resulted slightly 

reduced, probably due to the presence of surfactant. On the contrary, the behavior of 

P(BS85TES15) copolymer was not affected by 1%wt of s-CNC, whereas 1%wt s-CNC 

already contributed to improve the elastic modulus and stress at break of P(BS70TES30). 

On the other hand, a higher content of cellulose nanocrystals (5%wt) significantly affected 

the mechanical response of the films, inducing an evident increase of the Young’s modulus 

and a decrease of the elongation at break. The decrease of the elongation at break due to the 

presence of micro and nanostructures is a usual trend previously observed in thermoplastic 

and bio-based nanocomposites. The extent of this effect is influenced by various factors, 

such as the weight content of reinforcement, its dispersion in the matrix, and the interaction 

between the reinforcement and the polymer matrix (Fortunati, et al., 2012; Colom, Carrasco, 

Pages, & Canavate, 2003; Gupta, et al., 2009; Gupta, et al., 2010). In addition, s-CNC can 

cause substantial local stress concentrations in the polymer matrices. 

http://www.sciencedirect.com/science/article/pii/S0144861711008654#bib0035
http://www.sciencedirect.com/science/article/pii/S0144861711008654#bib0035
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The mechanical behavior of 5%wt s-CNC nanocomposites is influenced by two main 

factors: the different interaction between cellulose nanocrystals and the three polymeric 

matrices, and the high amount of the added nanoreinforcement. The higher stiffness of 

homopolymeric PBS matrix had indeed a synergic effect with the rigid cellulose 

nanocrystal, producing a general improvement of the mechanical properties as evident in 

PBS/5s-CNC system. On the contrary, the presence of TES units probably emphasized the 

effect of local stress concentration caused by high content of s-CNC, and had a more 

significant effect on the strain at break as compared to the other properties. Finally, a higher 

content of TES units could soften the stress localization, producing improved mechanical 

responses with respect to the neat P(BS70TES30) matrix. 

The surfactant presence improves the dispersion of the s-CNC in the polymer matrix and 

also affects the ductile behavior of the films (Fortunati et al. 2012, Bondeson and Oksman, 

2007). The interaction between cellulose nanocrystals and polymeric matrix is of great 

importance for the functional application of the new developed bio-based films. The 

mechanical properties results confirmed the reinforcement effect of the modified CNC and 

the role of the surfactant in the dispersion of CNC in the polymer matrices. 

3.5. Optical properties 

Figure 4 shows the values of gloss at 60º and internal transmittance (Ti) at 450 nm values of 

PBS and P(BSxTESy) based nanocomposites (a) and the optical microscopy images of the 

surface of PBS, and nanocomposite films (b). 

The gloss and transparency of the films are important properties for final practical 

applications in some different industrial sectors (Muriel-Galet, et al., 2014).  

 

The results of gloss analysis revealed that the presence TES co-units along the PBS 

backbone is able to influence the optical properties of the produced films. A relevant 

http://www.sciencedirect.com/science/article/pii/S0144861711008654#bib0015
http://www.sciencedirect.com/science/article/pii/S0144861711008654#bib0015
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increase of the gloss values was registered when 15% and 30% of TES sequences were 

introduced. Moreover, the gloss values of nanocomposite films reinforced with cellulose 

nanocrystals was greatly affected by both the presence and content of cellulosic 

nanoreinforcements, if compared with those registered for neat polymers (Figure 4a). A 

decrease of the gloss value was indeed observed as a function of filler percentage (Luzi, et 

al., 2016) and this effect was remarkably evident in the case of formulations loaded with the 

higher content (5%wt) of s-CNC that showed the lowest values of gloss at 60°. This result 

can be correlated to the presence of some small filler agglomerates shown on the surface of 

nanocomposite more evident when the highest content of cellulose nanocrystals (5%wt) was 

added, as observed in the optical microscopy images in the Figure 4b for PBS based 

systems. Similar results in terms of surface optical microscopy, were also obtained for 

P(BS85TES15) and P(BS70TES30) based formulations (data do not shown).  

The internal transmittance (Ti) of different formulations was also evaluated and no particular 

differences were detected for P(BSxTESy) copolymers with respect to PBS (all values are 

around 80%). According to Kubelka-Munk theory, high values of Ti are associated to 

structural homogeneity and their degree of transparency, while low values are a consequence 

of a high structural heterogeneity and greater opacity (Jiménez, et al., 2012). The high 

values registered for PBS and P(BSxTESy) highlighted the homogeneity and transparency 

of the matrices used during the process that were poorly affected by the presence of 

cellulosic reinforcements. Lower values of Ti were instead registered for P(BS85TES15) 

based nanocomposites that showed a 72.2±1.2% and 69.5±0.7% for P(BS85TES15)/1s-CNC 

and P(BS85TES15)/5s-CNC, respectively. Heterogeneous structures are able to increase the 

light dispersion and at the same time to cause a reduction of internal transmittance (Cano, et 

al., 2015). 
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These results confirm the greater opacity and the reduction to UV radiation of film 

reinforced with cellulose nanocrystals previously observed by other authors (Arrieta, et al., 

2014). 

 

3.6.Wettability 

To evaluate the relative hydrophilicity of the polymeric films under study, water contact 

angle (WCA) measurements have been performed. The contact angle values are reported in 

Table 2. As to the neat polymers, data showed that PBS is the more hydrophobic material, 

while the copolymer surface wettability is affected by the chemical composition: the higher 

the amount of TES co-units, the higher the wettability. This result is due to the presence 

along the polymeric chain of highly electronegative ether-oxygen atoms contained in the 

TES co-units (Figure 1), as already reported in the literature (Genovese et al. 2014; Gigli et 

al., 2014). The introduction of an increasing amount of s-CNC, influenced the surface 

wettability of each polymer, too. Indeed, by increasing the content of nanofiller, the 

wettability increased (Table 2), as a consequence of the presence of the cellulose hydroxyl 

groups (Moreno, et al., 2016). 

The characterization techniques performed so far highlighted that P(BS70TES30) and its 

nanocomposites displayed the most promising characteristics, especially in terms of 

mechanical properties. In the light of the above reported results, these samples have 

therefore been chosen for further characterization.  

3.7. Overall migration with food simulants 

The results of the overall migration tests for P(BS70TES30), P(BS70TES30)/1s-CNC and 

P(BS70TES30)/5s-CNC formulations are shown in Figure 5. The idea was to demonstrate 

the possible practical application of the produced nanocomposite films as novel food 

packaging solutions.  
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After 2 days of incubation at 20 °C in isooctane, the maximum migration level was 0.11 mg 

kg-1 of simulant measured for all the studied formulations. It is worth noticing that the 

registered value is well below the migration limits for food contact materials (60 mg kg-1), 

established by the European legislation (Commission Regulation EU 10/2011). Furthermore, 

no evident differences were induced by the presence of two percentages of s-CNC added to 

P(BS70TES30) formulations. Higher migration values were registered for all the studied 

formulations after 10 days of incubation at 40 °C in ethanol 10 % (v/v). The higher 

migration values induced by this simulant confirm the contact angle data, suggesting a more 

pronounced hydrophilicity of the system induced by the presence of 30% of TES co-units 

along the PBS main chain. However, all the migration values for the different formulations 

are below the legislative limits, confirming the possibility to employ the proposed materials 

as food-packaging. 

3.8. Degradation in composting conditions 

Composting studies have been carried out on P(BS70TES30), P(BS70TES30)/1s-CNC and 

P(BS70TES30)/5s-CNC, to evaluate the effect of the presence of the nanofiller on the 

biodegradation rate. The proceeding of the degradation has been monitored by weight loss 

measurements and the results obtained have been reported in Figure 6a. The three samples 

underwent a significant mass loss in the time scale explored. After 30 days of incubation 

P(BS70TES30)/1s-CNC and P(BS70TES30)/5s-CNC lost about 57% and 59% of their 

initial mass, respectively. On the other hand, the neat polymer degraded to a higher extent. 

Indeed, the mass loss at the end of the experiment reached 95%. This result is quite 

surprising, considering that both the degree of crystallinity and the surface wettability, two 

well-known parameters affecting the degradation rate of polymers (Gigli et al., 2013), would 

have supported opposite findings. Indeed, the three samples have a comparable crystallinity 

degree (Table 2) and the surface hydrophilicity increases with the increasing of the s-CNC 
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content (Table 2). As already reported in the literature for PLA-based nanocomposites 

containing CNC, the results can be explained as due to higher resistance to water uptake and 

diffusion through the nanocomposites with respect to the neat polymer induced by the CNC 

(Bitinis et al., 2013). Figure S6 displays the images of the partially degraded samples. An 

opacity increase already after 4 days of incubation and a significant fragmentation after 15 

days can be observed, indicating the progress of the degradation. 

 

Opacity increase can be due to different factors, such as formation of low molecular weight 

compounds, water uptake and higher crystallinity degree (Bitinis et al., 2013). It is important 

to point out that more accessible and less packed amorphous regions are preferentially 

attacked during the first stages of degradation. Moreover, the composting temperature, i.e. 

58 °C, is comprised between the Tg and the Tm of the samples under study, thus annealing 

may occur. The above-mentioned phenomena gave rise to an increase of the degree of 

crystallinity during composting. To evaluate the evolution of the degree of crystallinity over 

the composting time, X-ray analyses have been performed and the results are reported in 

Table S1. Figure 6c contains the XRD patterns of the partially degraded films. In all cases, 

an increment of Xc with the increase of composting time can be observed, although some 

differences can be highlighted. The neat polymer displayed in fact a much higher variation 

of the degree of crystallinity as compared to the nanocomposites (Table S1). These findings 

are in good agreements with the weight losses. 

The surface morphology of the partially degraded samples has been observed by SEM 

(Figure 6b). Before composting, the threes samples displayed a quite smooth surface. On the 

contrary, already after four days of incubation, large damaged areas with cracks and holes 

appeared on the film surface. The extent and entity of the degraded areas increased with the 

increase of the incubation time (Figure 5b). 
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4. Conclusions 

The present work has been focused on the preparation of eco-friendly nanocomposites based 

on poly(butylene succinate) and containing ether-oxygen sequences in the polymer 

backbone and modified cellulose nanocrystals as fillers. The main outputs can be 

summarized as follows: 

- the control over the reaction conditions allowed for the synthesis of high molecular 

weight copolymers with a random structure and a chemical composition close to the 

feed; 

- the optimized extrusion process permitted the preparation of bionanocomposite films 

displaying a uniform dispersion of the CNC within the polymer matrix; 

- by combining two different strategies, i.e. copolymerization and nanofiller addition, 

it has been possible to produce thin extruded films with a tunable range of properties 

by varying the amount and comonomeric unit (TES sequences) and/or of the 

nanofiller (s-CNC).  

In particular it can be underlined that: 

- with the increase of the TES co-unit mol%, the degree of crystallinity, the elastic 

modulus and the stress at break of the PBS homopolymer decreased, while the 

surface hydrophilicity increased; 

- the presence of the s-CNC exerted a reinforcement effect on the polymer matrix, 

without compromising its original thermal properties; 

- the migration tests and the optical property evaluations evidenced the suitability of 

the studied nanocomposites for packaging applications; 

- the composting experiments evidenced a significant degradation rate after 30 days of 

incubation. 
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In conclusion, the combination of synthesized biodegradable polymers with bio-based 

nanostructures allowed for the development of advanced functional materials capable of 

meeting the requirements for a wide range of applications. 
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Figure and Table Caption 

Figure 1. Chemical structure and 1H-NMR of the synthetized polyesters. In the insets the 

expansion of the a methylene of the succinic subunit region between 2.75 and 2.55 ppm. 

Figure 2. FESEM fractures of polymer and nanocomposite films 

Figure 3. Calorimetric curves of PBS-based nanocomposites. a) I scan, b) II scan after 

quenching, c) crystallization from the melt. 

Figure 4. a) Gloss at 60º and internal transmittance (Ti) at 450 nm values of PBS and 

P(BSxTESy) based nanocomposites; b) optical microscopy images of the surface of PBS, 

and nanocomposite films. 

Figure 5. Overall migration in 10% (v/v) ethanol and isooctane for PBS and P(BSTES) 

based nanocomposites. 

Figure 6. Degradation in compost. A) gravimetric weight loss, b) SEM micrographs, C) 

evolution of the XRD patterns as a function of the incubation time 
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Figure 1. Chemical structure and 1H-NMR of the synthetized polyesters. In the insets the 

expansion of the a methylene of the succinic subunit region between 2.75 and 2.55 ppm. 
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Figure 2. FESEM fractures of polymer and nanocomposite films 
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Figure 3. Calorimetric curves of PBS-based nanocomposites. a) I scan, b) II scan after 

quenching, c) crystallization from the melt. 
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Formulations 
Gloss Values (°) Internal transmittance (%) 

Gloss at 60 ° Ti (450 nm) 

PBS 32±3 80±1 

PBS/1s-CNC 19±1 78±1 

PBS/5s-CNC 13±2 75±1 

   

P(BS85TES15) 57±1 80±1 

P(BS85TES15)/1s-CNC 45±3 72±1 

P(BS85TES15)/5s-CNC 26±2 70±1 

   

P(BS70TES30) 63±3 80±1 

P(BS70TES30)/1s-CNC 50±2 77±1 

P(BS70TES30)/5s-CNC 32±1 77±1 

 2 

100 m m

100 m m

100 m m

 

Figure 4: a) Gloss at 60º and internal transmittance (Ti) at 450 nm values of PBS and 

P(BSxTESy) based nanocomposites; b) optical microscopy images of the surface of PBS, 

and nanocomposite films. 
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Figure 5. Overall migration in 10% (v/v) ethanol and isooctane for PBS and P(BSTES) 

based nanocomposites. 
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Figure 6. Degradation in compost. A) gravimetric weight loss, b) SEM micrographs, C) 

evolution of the XRD patterns as a function of the incubation time 
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Table 1: Molecular characterization data, material formulations and process parameters. 

Formulations Polymer molecular properties  Component Content Temperature Profiles (°C) 

 

TESa 

(mol%) 

bb Mn
c PDIc 

Polymer 

(%wt) 

s-CNC 

(%wt) 

 

PBS 

/ / 50600 3.0 

100 - 130-135-145 

PBS/1s-CNC 99 1 130-135-145 

PBS/5s-CNC 95 5 130-135-145 

 

P(BS85TES15) 

16.9 1.03 38100 3.1 

100 - 120-125-135 

P(BS85TES15)/1s-CNC 99 1 120-125-135 

P(BS85TES15)/5s-CNC 95 5 120-125-135 

 

P(BS70TES30) 

33.8 1.02 39000 3.3 

100 - 105-110-120 

P(BS70TES30)/1s-CNC 99 1 105-110-120 

P(BS70TES30)/5s-CNC 95 5 105-110-120 

a determined by 1H-NMR 
b degree of randomness, determined by 1H-NMR 
c Mn: number average molar mass and PDI: polydispersity index, determined by gel permeation chromatography (GPC) 
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Table 2: Thermal, wettability and mechanical properties of polymer and nanocomposite films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tg: glass transition temperature, Tm: melting temperature, ∆Hm: enthalpy of fusion, Tc: crystallization temperature, determined by DSC 

Tmax: temperature of the maximum degradation rate, determined by TGA 
WCA: water contact angle 

σB : tensile strength, εB : elongation at break, E: Young’s modulus determined by tensile testing 

 I scan II scan 

 

 

Formulations 

Tg 

(°C) 

Tm  

(°C) 

∆Hm 

(J/g) 

Tg 

(°C) 

Tm  

(°C) 

∆Hm 

(J/g) 

Tc 

(°C) 

Tmax 

(°C) 

WCA 

(°) 

σB 

(MPa) 

εB 

(%) 

E 

(MPa) 

PBS -34±1 114±1 60±3 -34±1 114±1 58±4 89±1 402±1 82 ± 1 40±2 220±60 430±50 

PBS/1s-CNC -33±1 113±1 65±4 -33±1 114±1 62±2 85±1 402±1 79 ± 1 34±8 180±70 372±25 

PBS/5s-CNC -33±1 113±1 65±3 -34±1 113±1 63±2 85±1 402±1 73 ± 1 50±3 220±60 558±20 

 

P(BS85TES15) -36±1 95±1 51±4 -38±1 95±1 47±3 60±1 407±1 73 ± 2 34±4 252±24 391±20 

P(BS85TES15) /1s-CNC -36±1 95±1 48±5 -37±1 96±1 45±3 61±1 407±1 71 ± 1 33±5 230±60 350±50 

P(BS85TES15) /5s-CNC -36±1 96±1 49±3 -37±1 96±1 46±2 61±1 407±1 67 ± 3 27±3 160±50 332±24 

 

P(BS70TES30) -37±1 85±1 30±2 -39±1 85±1 29±2 50±1 404±1 66 ± 2 19±2 350±70 162±27 

P(BS70TES30) /1s-CNC -37±1 84±1 29±1 -40±1 85±1 27±2 50±1 404±1 64 ± 3 26±3 270±60 239±29 

P(BS70TES30) /5s-CNC -37±1 84±1 32±3 -40±1 84±1 31±1 50±1 404±1 56 ± 4 22±2 240±50 233±28 


