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 4 

ABSTRACT 5 

This paper presents the training of a neural network using consumption data measured in 6 

the underground network of Valencia (Spain), with the objective of estimating the energy 7 

consumption of the systems. After calibration and validation of the neural network using 8 

part of the consumption data gathered, the results obtained show that the neural network is 9 

capable of predicting power consumption with high accuracy. Once fully trained, the 10 

network can be used to study the energy consumption of a metro system and for testing 11 

hypothetical operation scenarios. 12 

Keywords 13 
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 15 

1. INTRODUCTION 16 

The transport sector contributes greatly to global energy consumption. According to the 17 

International Energy Agency [1], overall energy consumption in 2013 was 2 563.52 Million 18 

Tonnes of Oil Equivalent (Mtoe), with the transport sector being responsible of up to 19 

27.6%. 20 

 21 

Railways are generally much more efficient than road transport in terms of energy 22 

consumption for both freight and passengers [2], [3], [4]. Despite this, it is still necessary to 23 

reduce their energy consumption in order to improve their competitiveness and contribute 24 

to a more sustainable world. For this reason, many strategies are implemented to reduce 25 

energy consumption in railways. There are strategies proposed concerning line design, 26 

rolling stock and operation [5].  27 

 28 

Traditionally, energy consumption of an electric train is monitored at the substations. This 29 

provides information about the total energy consumed in an instant, or during a given 30 

period of time. However, substations do not give information on how the energy is 31 

consumed by each element and subsystem of the railway system, and thus it is not possible 32 

to know in detail the impact of any action taken to reduce energy consumption. 33 

The current energy consumption in railways depends on many factors such as gradients, 34 

maximum speeds, loads, patterns of stops, electrical efficiency of train and power supply 35 

system, running resistance, driving style, etc. 36 

 37 

Researchers have estimated the energy consumption and explored improvements in rail 38 

transport through track layout optimisation by means of Geographic Information Systems 39 

(GIS) [6], [7]. Other authors have used genetic algorithms to optimise different aspects 40 

such as track alignments and operator and user costs for rail operation [6], [7], [8] or crew 41 

scheduling [9], [10]. There are methods that aim to optimise travel time and coasting points 42 

by using models based on artificial neural networks and genetic algorithms [11]. But these 43 

methods do not include gradient or real time measured energy consumption as data. 44 



This paper aims to develop, train and validate a neural network to simulate the energy 45 

consumption of a metropolitan line using measured empirical data, and use the neural 46 

network to predict the energy consumption at each instant. This network will be then used 47 

as a tool to study and optimise different variables with an important impact on energy 48 

consumption of the train, like speed, acceleration or gradient. 49 

 50 

2. METHODOLOGY 51 

2.1. Data gathering and processing 52 

In order to check the energy consumption of the train in a global way, three MSAVDC 53 

meters devices, manufactured by Mors-Smitt, were installed in the front car of the train: 54 

one in the pantograph (circuit breaker), another one in the auxiliary converter input, and the 55 

last one in the braking resistors. These devices allow measuring not only the overall train 56 

energy consumption in real time, but also the energy consumed by each subsystem: 57 

traction, auxiliary devices and rheostatic brake. Figure 1Figure 1 shows a diagram of the 58 

MSAVDC meters devices installed in the train. 59 

 60 

 61 
Figure 1. Diagram of the MSAVDC meters devices installed in the train 62 

 63 

The speed was measured by a Knorr sensor model BB0457681100, fed by a phonic wheel 64 

on one axis of another car of the train. 65 

 66 

After verifying the correct operation of all devices, measurements were made with 67 

passengers on board, on August 4th, 2014. Twelve trips were measured in line 5 of 68 



MetroValencia between Marítim-Serrería and Alameda stations, six trips towards Alameda 69 

and six trips towards Marítim-Serrería. 70 

 71 

2.2. Neural networks 72 

A Neural network is a computational model inspired by the structure of biological nervous 73 

systems. It has several elements called neurons which operate in parallel and can be trained 74 

to yield a target output data when supplied with specific input data. 75 

 76 

In this case, neural networks were implemented to evaluate variables with an important 77 

impact on energy consumption. In order to define the framework of the neural network, an 78 

approach adjustment function has been chosen. The neural network, supplied with input 79 

data to be defined (such as speed, acceleration, etc.) and target data (in this case, measured 80 

energy consumption) is trained, which means that the output provided by the network 81 

(simulated energy consumption) is compared with the available target data, and the 82 

network parameters are adjusted through an iterative process until a good agreement 83 

between model and reality is achieved. 84 

 85 

The structure chosen to accomplish this objective is a two layer feed-forward neural 86 

network (Figure 2Figure 2), because it is a common and tested scheme, and with a great 87 

ability to adjust functions [12], [13]. 88 

 89 

 90 
Figure 2. Neural network framework 91 

 92 

The first layer, called hidden layer, has a number of neurons to define. The second layer 93 

(output layer) has a single neuron with a linear transfer function. Eq. 1 shows the 94 

formulation of the neural network: 95 

 96 

𝑂𝑘 = 𝑔̃(∑ 𝑤2𝑘𝑗
𝑀
𝑗=0 ∙ 𝑔(∑ 𝑤𝑗𝑖 ∙ 𝐼𝑖))

𝑁
𝑖=0        (1) 97 

 98 

Where Ok is the network output, M is the number of output elements, Ii is the input data, N 99 

is the number of input variables, wji is the synaptic weight of the first layer and w2kj is the 100 

synaptic weight of the second layer. The synaptic weight wji, for example, defines the 101 

strength of a synaptic connection between two neurons, the presynaptic neuron j and the 102 



postsynaptic neuron i. This structure can identify non-linear relations between input and 103 

output data [12] using the Log-Simoid function as a transfer function between the hidden 104 

layer and the output layer. 105 

 106 

The training method used is called Back-Propagation: The network is evaluated, the results 107 

are checked based on certain criteria, and the synaptic weights are changed in an iterative 108 

loop [14]. The chosen calibration criterion is the minimization of the Mean Square Error 109 

(MSE) between the network output and the target data, which is verified by deriving the 110 

MSE with respect to the network synaptic weights. The specific training algorithm used is 111 

called Levenberg-Marquardt algorithm, very efficient and widely checked [12]. 112 

 113 

When a neural network is evaluated, it is not only important to assess whether it agrees 114 

with the training data. A well trained network must encompass the subjacent patterns of the 115 

data, a feature called generalisation. In order to assess this aspect of the network, after the 116 

training phase the network is once again checked using previously unused data [15]. To 117 

accomplish this, the data available is divided randomly in three subsets, one for training 118 

(70%), one for validation (15%) and one for testing (15%). The network is trained with the 119 

first data block, and after each iteration a check-up with the second block (validation) is 120 

performed. When the validation MSE begins to increase (while the training MSE continues 121 

to drop), the network is starting to adjust the data error (overfitting) and the training is 122 

stopped. At this point, the third block (testing) is used to perform a final check-up to the 123 

validity of the neural network. 124 

 125 

In order to avoid overfitting, the early stopping training method is employed, which stops 126 

the training process when the training criteria (i.e. minimising the MSE) has not been 127 

fulfilled completely. This method helps ensuring that the network is capable of 128 

generalisation, i.e. it is not conditioned by the specific error of the training data and has 129 

learned the subjacent pattern of the modelled phenomenon [16]. 130 

 131 

The use of an early-stopping method limits the possibility of overfitting, and therefore there 132 

is not a theoretical limitation for the size of the network (i.e. the number of neurons in the 133 

hidden layer) [17]. However, this number determines the degrees of freedom of the neural 134 

network, and certainly influences its generalisation ability. In order to determine the 135 

optimal size, different network sizes were tested and the training and validation MSE were 136 

compared. The first one will always tend to drop as the number of neurons grows, while the 137 

validations MSE will start to grow up when a certain size is reached. This specific size is 138 

considered the optimum, as further increasing the number of neurons will cause overfitting 139 

[18]. 140 

 141 

The neural network presented in this paper uses speed, acceleration and gradient as input 142 

data and measured empirical energy consumption as target data. Once trained, the neural 143 

network may predict the train energy consumption (output data) with high accuracy as 144 

proven when compared to the measured empirical data (target data). 145 

 146 



3. CASE STUDY 147 

3.1. Introduction 148 

MetroValencia has six subway lines (lines 1, 2, 3, 5, 7 and 9) and three tram lines (lines 4, 6 149 

and 8). MetroValencia has 132 stations with a total length of 146.8 km, and 121 trains [19]. 150 

Trips along line 5 were analysed, between stations Marítim-Serrería and Alameda.  151 

Regarding the traction and power systems of the network, there is only a single input 152 

voltage to the substations with a magnitude of 20 kV AC. However, there are two different 153 

output voltages: 1 500 V DC, (used in all six subway lines) and 750 V DC (used in all three 154 

tram lines), with annual energy consumption around 64.4 GWh and 18.1 GWh, respectively 155 

(78% for the subway lines and 22% for the tram lines). This energy is consumed by all 156 

elements and systems of MetroValencia. If the energy consumption of each network 157 

component is considered, 70% of the overall energy goes to traction (53 GWh) and 24% 158 

goes to stations, other power consumptions being negligible. [20]. 159 

 160 

3.2. Input data 161 

3.2.1. Gradient profile and stations along the line 162 

Focusing on Line 5 of MetroValencia, particularly between the stations of Marítim-Serrería 163 

and Alameda, there are three stations in between with a total length of 2 720 m and the 164 

route has four stops. Figure 3Figure 3 shows a diagram of the vertical track layout of the 165 

studied route, indicating the stations (Marítim-Serrería, Ayora, Amistat, Aragón and 166 

Alameda) and the gradient profile along the line. The maximum gradient is 2%. 167 

 168 

 169 
Figure 3. Vertical layout between Marítim Serrería and Alameda and the stations (stops) in between 170 

 171 

3.2.2. Speed and acceleration 172 

Speed was measured using an odometer placed in one of the wheels of the monitored train. 173 

Acceleration is directly derived from the speed. Figure 4Figure 4 shows these two variables 174 

as measured during the first trip. 175 

Three variables were chosen as input data (gradient, speed and acceleration). During the 176 

neural network training, all input variables and their combinations were tested until the one 177 

that provided a better fit with the target data was chosen. 178 

 179 

 180 



 181 
Figure 4. Speed (blue) and acceleration (orange) of the first trip between Marítim-Serrería and Alameda 182 

 183 

3.3. Target data 184 

The energy consumption in the pantograph (measured in the circuit breaker) was monitored 185 

in real time while the train performed conventional services with passengers on board. This 186 

measured energy consumption was used as target data. 187 

The monitored train was a Metro Series 4300 (Vossloh) with 4 cars, a maximum speed of 188 

80 km/h, a nominal tension of 1500 V DC and a power of 1480 kW. 189 

 190 

Energy consumption data obtained for each trip is shown in Table 1Table 1. Every trip is 191 

the same, with four stops between the first station and the last one. The stopping time in 192 

every station was not measured. 193 

 194 
Table 1. Global consumption of the registered trips 195 

 
Date 

Travel time 

(min) 

Energy consumption measured in the 

circuit breaker of the train (kWh/km) 

Marítim-Serrería - 

Alameda 

04/08/2014 9.52 7.18 

04/08/2014 11.78 8.11 

04/08/2014 11.68 8.33 

04/08/2014 11.87 9.25 

04/08/2014 11 8.16 

04/08/2014 10.38 9.40 

Alameda – 

Marítim-Serrería 

04/08/2014 10.58 8.18 

04/08/2014 11.1 7.89 

04/08/2014 10.83 8.84 

04/08/2014 10.08 9.56 

04/08/2014 9.82 9.00 

04/08/2014 10 9.96 
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Table 1Table 1 shows that there is not a clear correlation between traction energy and travel 196 

time. This points out that the differences in the total travel time are mainly due to the 197 

variation of the stopping time at each station, while the energy consumption depends on 198 

external factors such as the geometric track layout, temperature, degree of occupation of the 199 

train and driving style of each driver, among others. 200 

 201 

The measuring devices provide the energy consumption measured in the circuit breaker of 202 

the train every second as shown in Figure 5Figure 5. Data presented in Figure 5Figure 5 203 

represents the training target of the neural network. 204 

 205 

 206 
(a) 207 

 208 
(b) 209 

Figure 5. Energy consumption measured in the circuit breaker: (a) the first trip between Marítim-Serrería - 210 
Alameda, (b) the six trips made between Marítim-Serrería – Alameda towards Alameda 211 

 212 

 213 

 214 
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4. RESULTS  216 

Two different criteria were used to assess the performance of the network and to decide 217 

whether the training was successful or not. The first one was the Pearson correlation 218 

coefficient (R) between the neural network output (modelled energy consumption) and the 219 

target data (measured energy consumption), which has to be equal or greater than 90% for 220 

all the three subsets (training, validation and testing). 221 

The second criterion was the relative Mean Square Error (rMSE) defined as follows in eq. 222 

2: 223 

 224 

𝑟𝑀𝑆𝐸 =
𝑀𝑆𝐸

𝑉𝑎𝑟(𝑄)
≤ 0.2          (2) 225 

 226 

Where MSE is the mean square error, and Var(Q) is the variance of the measured 227 

consumption data (target). This rMSE has to be lower than 20% of the variance of the data 228 

for all three subsets (training, validation and testing) [21], in order to control the 229 

dependence of the neural network with respect to the specific data used for training.  230 

 231 

The process of creation, training, and validation of the neural network was performed using 232 

the Neural Fitting Tool, from MATLAB R2014a (The MathWorks, Inc.). 233 

 234 

Different tests with combinations of the three input variables previously defined (speed, 235 

acceleration and gradient) were performed, in order to identify which of them fits better the 236 

energy consumption data. Table 2Table 2 shows the results for each combination studied 237 

considering the criteria defined previously (R coefficient and rMSE) using 12 trips. 238 

 239 
Table 2. Results of network training with different variables 240 

 
20 NUMBER OF NEURONS 

Model Input variables 
Training Validation Test 

R rMSE R rMSE R rMSE 

1 Speed 0.49 0.64 0.45 0.65 0.43 0.70 

2 Gradient 0.27 0.79 0.26 0.81 0.28 0.72 

3 
Speed 

0.86 0.21 0.87 0.20 0.84 0.25 
Acceleration 

4 
Speed 

0.63 0.52 0.60 0.50 0.55 0.58 
Gradient 

5 

Speed 

0.91 0.16 0.90 0.17 0.90 0.16 Acceleration 

Gradient 

 241 

Table 2Table 2 shows that if speed is the only input variable, the results are clearly 242 

negative, with a rMSE well over 60%. However, if all three variables are used the network 243 

satisfies all the criteria; with a rMSE lower than 20% and the R coefficient greater than 244 

90%. Therefore those were the input variables chosen for the analysis because they have an 245 

important impact on energy consumption. 246 



Once the input variables were finally defined, the neural network size was determined 247 

studying the rMSE values for training and validation, varying the number of neurons in the 248 

hidden layer. Figure 6Figure 6 shows the results, where each value is the average of 20 249 

simulations. 250 

 251 

 252 
Figure 6. rMSE value by number of neurons in the hidden layer for training (blue) and validation (orange) 253 

 254 

Figure 6Figure 6 shows that the training rMSE decreases while the network size increases 255 

due to the higher capacity of the network. The validation rMSE has the same behaviour 256 

until reaching a size of 40 neurons. At that point the validation rMSE increases, indicating 257 

that the network is experiencing overfitting. Therefore, the optimum size for the hidden 258 

layer is 30 neurons. 259 

Figure 7Figure 7 shows the comparison between the measured energy consumption (target) 260 

and modelled energy consumption (output) yielded by the neural network for twelve trips. 261 

 262 

 263 
(a) 264 
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 265 
(b) 266 

Figure 7. Comparison between the measured energy consumption (target) and modelled energy consumption 267 
(output) by the neural network: (a) in the first trip between Marítim-Serrería and Alameda, (b) in the twelve trips 268 
 269 

5. DISCUSSION 270 

Figure 7Figure 7 shows that the neural network adjusts reasonably well the energy 271 

consumption measured in the circuit breaker, reproducing the peaks due to traction and 272 

valleys where the train is coasting. However, the neural network omitted small oscillations 273 

in energy consumption, and indeed shows small oscillations and negative peaks that do not 274 

correspond to the measurement. This shows that it is possible to refine the training of the 275 

neural network, possibly with a post-processing of the output data. 276 

In any case, the trained neural network shown, with a size of 30 neurons and three input 277 

variables (speed, acceleration and gradient), provides a good estimation of the energy 278 

consumption of the train, always within the range considered for every variable, so the 279 

neural network could be used as a tool to test alternatives in track layout, train operation 280 

and driving style, aiming to reduce energy consumption and improve efficiency. 281 

 282 

When analysing the global consumption by trip (Figure 8Figure 8), the average measured 283 

energy consumption is found to be 8.66 kWh/km, while the average modelled energy 284 

consumption is 8.51 kWh/km, a small deviation of 0.14 kWh/km (1.64%). 285 
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 286 
Figure 8. Global consumption by trip 287 

 288 

6. CONCLUSIONS 289 

This paper describes the training and validation of a neural network to model the energy 290 

consumption of a metro line in the Valencia Metro Network operated by Metro Valencia. In 291 

order to do so, real energy consumption was measured using a monitored train operating 292 

normally along line 5 of the metro network. This data was analysed and used to train and 293 

validate the neural network. Three input variables were chosen: speed, acceleration and 294 

gradient. These input variables combined predict the energy consumed with high accuracy, 295 

proving that just one variable cannot explain this phenomenon by itself. 296 

 297 

The global consumption shows an average measured energy consumption of 8.66 kWh/km, 298 

while the trained neural network estimates an energy consumption of 8.51 kWh/km, a small 299 

deviation of 0.14 kWh/km (just 1.64%). The neural network yields a good estimation of the 300 

real time energy consumed by the train, including traction peaks and coasting. 301 

 302 

The neural network fully trained is a useful tool for studying the energy consumption of the 303 

metro system. The advantages of this method lie in its adjustment speed and simulation, 304 

and, specially, in the fact that the neural network may function as a virtual laboratory where 305 

it is possible to test hypothetical scenarios, modifying variables such as track layout and 306 

train driving style in order to reduce the train energy consumption.  307 

 308 

The next step of research will be to analyse how the model may be improved if energy 309 

recuperation is included, and then to use it to test hypothetical operation and construction 310 

scenarios, seeking to minimise the energy consumption of the system. 311 

 312 
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