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Abstract

Stochastic fluctuations in gene expression trigger both beneficial and harmful con-

sequences for cell behavior. Therefore, achieving a desired mean protein expression

level while minimizing noise is of interest in many applications, including robust pro-

tein production systems in industrial biotechnology. Here we consider a synthetic gene

circuit combining intracellular negative feedback and cell-to-cell communication based

on quorum sensing. Accounting for both intrinsic and extrinsic noise, stochastic sim-

ulations allow us to analyze the capability of the circuit to reduce noise strength as a

function of its parameters. We obtain mean expression level and noise strength for all

species under different scenarios showing good agreement with system-wide available

experimental data of protein abundance and noise in E. coli. Our in silico experiments,

validated by preliminary in vivo results, reveal significant noise attenuation in gene
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expression through the interplay between quorum sensing and negative feedback, and

highlight the differential role they play in regard to intrinsic and extrinsic noise.
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Introduction

Noise is pervasive in the cellular mechanisms underlying gene expression (1 ). It propagates

to downstream genes at the single cell level, and eventually causes variation within an iso-

genic population (2 , 3 ) that may determine the fate of individual cells and that of a whole

population (3 , 4 ).

At the gene level, noise can be traced back to intrinsic sources due to stochastic fluc-

tuations in transcription and translation mechanisms, and extrinsic ones corresponding to

gene independent fluctuations in protein expression due to external factors (4–6 ). To mini-

mize the deleterious effects of noise, cells have evolved different strategies at the single-cell

level: from different transcription and translation efficiency so as to reduce translation burst

rates in key genes (7 ) to more elaborated strategies, such as negative feedback regulation

to reduce noise by shifting the noise spectrum to a higher frequency region (1 ). Yet, cells

live in communities, forming a population. At this level, extracellular signaling propagates

intracellular stochastic fluctuations across the population (8 ). Thus, cells have adapted their

communication mechanisms in order to improve the signal-to-noise ratio (9 ). One of such

communication mechanisms is quorum sensing.

Quorum sensing (QS), initially discovered in V. fisheri and P. putida, is a cell-to-cell

communication mechanism whereby bacteria exchange chemical signaling molecules, called

autoinducers, whose external concentration depends on the cell population density. It is

known that synchronization and consensus protect from noise (10 ). Cells detect a threshold
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concentration of QS autoinducers and alter gene expression accordingly (11 ), driving the

population as a whole to achieve a desired consensus gene expression level despite the indi-

vidual noise of each member of the population. Cells consensus induced by QS is thought to

reduce extrinsic noise by reducing the transmission of fluctuating signals in the low-frequency

domain (12 ), enhances intrinsic stochastic fluctuations (8 ), and allows entrainment of a noisy

population when faced to environmental changing signals (13 ). Therefore QS seems an ef-

fective tool to control the phenotypic variability in a population of cells (9 ).

Phenotypic variability has important practical relevance in many applications in the areas

of biomedicine, biotechnology and other branches of biological science (14 ) as the presence

of heterogeneous subpopulations may have significant impact on the yield and productivity

of industrial cultures (15–17 ). Thus, improving homogeneity of protein expression in in-

dustrial cultures is a goal of economic relevance for microbial cell factory processes that has

traditionally been attempted either by optimizing environmental conditions in the culture

or by careful selection of the strain. Open loop strategies based on sensitivity analysis have

been used to provide guides as to how properly tune transcriptional and translational param-

eters so that the noise levels can be controlled while the mean values can be simultaneously

adjusted to desired values (18 ). While sensitivity analysis gives very valuable insights, open

loop control is not robust against system uncertainty and/or variations. There is an ever-

growing appreciation that biological complexity requires new bioprocess design principles.

Synthetic biology, sometimes defined as the engineering of biology, has the potential

to engineer genetic circuits to perform new functions for useful purposes in a systematic,

predictable, robust, and efficient way (19 ). In the last years, several synthetic circuits

have been proposed with the ultimate goal of dealing with gene expression noise (20 , 21 ).

Though circuits using negative feedback have been proved to decrease gene expression noise

(22 ), single-cell intracellular feedback loops do not take into account that in practice one is

interested in controlling gene expression mean value and noise across a population of cells.

Feedback across a population of cells can be implemented by means of quorum sensing-
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based strategies, and has been shown to reduce noise effects (9 , 12 , 23 ). Indeed, cell-to-cell

communication by means of quorum sensing induces consensus among cells (24 ), that is,

contributes to reduce the difference of internal state among cells in a population. This, in

turn, may contribute to protect from noise (10 ). Thus, the idea of joining both intracellular

negative feedback and extracellular feedback via quorum sensing is a natural one, that has

been suggested in (25 , 26 ).

Figure 1: LuxI noise strength under presence/absence of quorum sensing and negative feed-
back. (A). Proposed synthetic gene circuit. (B) Circuits topologies: NoQS/NoFb (top) and
QS/Fb (bottom). (C) Representative computational (left) and experimental (right) popula-
tion histograms of LuxI noise strength for QS/Fb (orange) presenting a narrower gaussian-
like distribution as compared to the Poisson-like one of NoQS/NoFb (purple). From com-
putational simulations: (D) Sampled combinations of LuxI expression parameters for fixed
LuxR ones show larger values of LuxI noise strength vs. mean for NoQS/NoFb (purple
dots) than for QS/Fb (orange dots). (E) The QS/Fb circuit significantly reduces the aver-
age noise strength for the sampled parameters space by 41%, from 〈η2NoQS/NoFb〉 = 0.1263

down to 〈η2QS/Fb〉 = 0.0744. (F) For varying LuxI parameters the average reduction of noise
strength in LuxI ranges from 30 % up to 60 % and shows dependence on the mean expression
level. Data shown for LuxI means between the biotechnological relevant range [300, 8000]
molecules/cell. (G) Comparison of experimental and computational statistical moments.

In this work we analyze the synthetic gene circuit depicted in Fig 1A, designed to re-

duce gene expression noise while achieving a desired mean expression level in a protein of
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interest (25 ). The circuit uses the repressible promoter Plux designed in (27 ) to imple-

ment a negative feedback loop over the gene of interest, and adds a QS mechanism based

on N-acyl-L-homoserine lactone (AHL) (11 , 28 ) to induce population consensus (Methods,

Circuit description). We used the stochastic Chemical Langevin Equation (29 ) to explore

the impact of some key circuit parameters on noise strength (Methods, Mathematical model

and Computational analysis). To assess the role played by feedback and QS we compared

the proposed circuit, denoted as QS/Fb, with constitutive expression (NoQS/NoFb) (Fig.

1B), and with a circuit with feedback but no quorum sensing (NoQS/Fb). Extrinsic noise

was modeled by randomizing values of the model parameters (30 , 31 ). Our in silico anal-

ysis reveals significant noise attenuation in gene expression through the interplay between

quorum sensing and negative feedback, and explain their different roles for different noise

sources, highlighting the need for proper characterization of extrinsic noise. Preliminary in

vivo results agree with the computational ones.

Results and discussion

Quorum sensing and negative feedback attenuate gene expression

noise

We first addressed the question whether the proposed QS/Fb circuit effectively reduces noise

strength with respect to the circuit NoQS/NoFb (Fig. 1B). The last one consists of the LuxR

expression on the one hand, and the protein of interest (PoI) downstream the Plux repressible

promoter, without the luxI gene coding for LuxI protein, on the other. Since no autoinducer

AHL is neither produced nor externally introduced, there is no repression, so the expression

of PoI is essentially a constitutive one (Methods, Circuit description). This corresponds to

the Poisson distribution observed in the purple population histogram in the left panel of

Fig. 1C. Contrarily, the QS/Fb histogram departs from the Poisson distribution to become

a narrow Gaussian-like one in the orange population histogram in the left panel of Fig. 1C.
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This fact, and the reduction in the mean expression value, indicate the strong presence of

regulation. In both cases we used the nominal circuit parameters (SI Table S1).

Reduction in noise strength was not due to a particular choice of the circuit parameter

values, but a property of the proposed topology. Fig. 1D depicts LuxI noise strength vs.

mean expression for 60 different combinations of the PLuxR characteristics for both QS/Fb

(orange points) and NoQS/NoFb (purple points). The points in the figure correspond to

the mean values across the cells population for each combination of parameters (Methods,

Computational analysis). The magnitude of noise strength reduction was larger for medium

values of mean protein expression. Noise strength levels were similar for all mean expression

values in the case of the NoQS/NoFb circuit. Mean expression values in this case depend

only on the translation rate pI for which five discrete values were used, inducing the five

mean values seen in the figure. On the contrary, the QS/Fb circuit showed lower values of

noise strength and more graded values of the mean expression level, as it depends on the

combination of all three parameters varied.

More important, noise strength was consistently lower for the QS/Fb circuit. Taking

together all the different combinations of promoter parameters for each circuit, and the

average noise strength was significantly reduced by 41% in the presence of quorum sensing

and negative feedback as shown in Fig. 1E.

For the given fixed LuxR expression parameters, the noise strength reduction in LuxI

showed a clear dependence on its mean expression level. In Fig. 1F the minimum and

maximum values of LuxI noise reduction are plotted as a function of its mean value. In the

range between 600 and 6000 LuxI molecules it was possible to reduce the noise variance at

least in 35% in the worst case scenario, with a maximum reduction of around 70% for means

between 2000 and 3000 molecules. Changing the parameters of LuxR protein expression

showed a trend consistent with the findings in (12 ): the higher values of translation pR and

degradation dR are, the larger the noise reduction is (Fig 5; and SI Section S.7).
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Experimental results confirm computational predictions

Experimental implementation of the proposed QS/Fb circuit would not only allow a pre-

liminary experimental validation of its capability to reduce noise strength, but would also

further validate the model parameters used throughout this study. To this end we exper-

imentally implemented both the NoQS/NoFb and QS/Fb circuits (Methods, Strains and

plasmids), and compared the experimental results with the computational ones (Supplemen-

tary information S.10). As model parameters we used pI = 0.4 min−1, kdlux = 200 molecules,

αI = 0.01, dR = 0.07 min−1, pR = 4 min−1 (Methods, Mathematical model) and nominal

values in (SI Table S1) otherwise.

The steady state population histograms of LuxI for the circuits QS/Fb (orange) and

NoQS/NoFb (purple) under the same experimental conditions are depicted in Fig. 1C. The

computational predictions are in the left panel, while the right panel shows flow cytometry

experimental results. Both results were qualitatively comparable without any tuning, fitting

or change in the model parameters. We only required a common scaling factor to convert

from relative units of fluorescence to number of molecules (SI Section S.10).

The experimental results showed LuxI noise strength reduced by 31.5% meanwhile the

computational simulations predicted a 33.6% reduction (Fig. 1G).

Feedback pays-off when extrinsic noise dominates

At this point the question arises as to what are the roles of quorum sensing and feedback in

noise strength reduction, and what are their effects in view of both intrinsic and extrinsic

noise.

To answer this question we first contextualized the computational results using available

experimental data of noise strength and protein abundance in E. coli. We used experimental

data taken from (32 ), and plotted it against our computational results in three scenarios:

base control circuit with no quorum sensing or feedback (NoQS/NoFb, kA = 0), our circuit

with both quorum sensing and feedback (QS/Fb), and the hypothetical circuit with feedback
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but without quorum sensing (NoQS/Fb, D = 0). For each scenario we considered different

combinations of parameters with values of the mean protein number in the range 100 − 105,

(Methods, Computational analysis).

Figure 2: Comparison between experimental data and different scenarios evaluated compu-
tationally. (A) Experimental data of protein abundance and noise in E. coli taken from (32 )
is plotted as black dots. The dashed red and blue lines are the intrinsic noise limit and the
extrinsic noise limits respectively, taken from the same reference. Simulations of the gene
circuits in our study, including both intrinsic and extrinsic noise, are plotted using purple
dots (NoQS/NoFb), green (NoQS/Fb) and orange ones (QS/Fb). Simulations including only
intrinsic noise are plotted as crosses: violet (NoQS/NoFb), green (NoQS/Fb) and orange
(QS/Fb). (B) Zoom of the scenarios considering both intrinsic and extrinsic noise (top) and
only intrinsic noise (bottom).

Fig. 2A shows the experimental data plotted as black dots. The dashed red and blue

lines are the intrinsic and extrinsic noise limits respectively, taken from the same reference

above. Simulations including both intrinsic and extrinsic noise are plotted as purple dots

(NoQS/NoFb), green (NoQS/Fb) and orange ones (QS/Fb) using the same data as in Fig.

1C. Our computational results were in good agreement with the experimental data and

derived limits in (32 ). The results corresponding to the base control circuit NoQS/NoFb

clearly were over the noise limits.
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Unexpectedly, noise strength of both circuits QS/Fb and NoQS/Fb showed very similar

behavior. As shown in the upper panel of Fig. 2B the QS/Fb and NoQS/Fb points lay in the

same region. For medium and high mean protein expression values noise strength in QS/Fb

and NoQS/Fb decreased just below the reported extrinsic noise limit, and well below the

noise strength for the base NoQS/NoFb circuit. Though high protein expression are of main

interest for the intended application of our circuit in an industrial biotechnological context

of heterologous protein production, we were also interested in the performance of the circuits

at low mean protein numbers. Interestingly, the situation in this region was reversed. The

open loop circuit NoQS/NoFb showed consistent lower noise strength values than QS/Fb

and NoQS/Fb. Therefore, feedback contributed to reducing noise strength for medium-high

protein expression where extrinsic noise dominates.

Quorum sensing helps feedback to cope with intrinsic noise

The last result was inconclusive about the contribution of quorum sensing to reduce noise

strength. To settle this issue we concentrated our analysis in the medium-high protein

expression region where feedback contributed to reduce noise strength and extrinsic noise

dominates.

We first wanted to elucidate whether QS mainly contributed reducing the intrinsic com-

ponent of noise. If this was the case, its effect could be masked by the dominant extrinsic

noise. To that end we carried out simulations for the same combinations of parameters as

before, but suppressing extrinsic noise, and considering the three scenarios NoQS/NoFb,

QS/Fb, and NoQS/Fb. The results are shown in Fig. 2A, plotted as violet (NoQS/NoFb,

kA = 0), green (NoQS/Fb, D = 0) and orange crosses (QS/Fb). The bottom panel of

Fig. 2B shows a zoom into the relevant region. Introducing either feedback alone or feed-

back plus quorum sensing increased noise strength values with respect to the minimal base

control circuit representing plain constitutive protein expression. The results for this base

NoQS/NoFb circuit were along the intrinsic noise limit (32 ). These results were consistent
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with the findings at low mean protein values where intrinsic noise dominates. The circuit

NoQS/Fb with feedback and no cell-to-cell communication showed higher values of noise

strength, specially for lower values of mean protein number. Finally, reintroducing quorum

sensing (QS/Fb) was able to slightly improve noise strength.

To confirm this result we assessed the difference between the LuxI noise strength values for

each combination of parameters in both circuits QS/Fb and NoQS/Fb. We measured noise

strength reduction as ((1 − η2NoQS/Fb/η
2
QS/Fb) · 100%) and used it to obtain Fig. 3. First,

we analyzed the case when only intrinsic noise is present as a function of circuit parameters

associated to LuxI expression. As the LuxR parameters used before were close to be a

best case scenario (see Fig 5) this time we used a smaller translation rate pR = 2 min−1

corresponding to an average scenario. Fig. 3A shows the noise strength map difference for

several combinations of the dissociation constant kdlux vs. the LuxI translation rate pI for a

tight promoter Plux, α = 0.01 and a leaky one α = 0.1 in both noise scenarios. The noise

strength reduction when QS was added reached a 100% for low values of pI. Increasing the

dissociation constant improved noise reduction, specially for a leaky promoter.

The previous result suggested that the results reported in the literature showing a re-

duction in noise strength when QS was used were a result of modeling extrinsic noise as an

additive signal. This hypothesis was confirmed when besides intrinsic noise we introduced

an additive extrinsic noise to our system, with variance independent of the system states.

Fig. 3B shows that in this case there also was a generalized noise strength reduction for

most parameter combinations.

Finally, in case we restored extrinsic noise as parametric variability the results showed

that adding QS may increase or decrease noise strength (Fig. 3C) strongly depending on the

values of the circuits parameters, and suggesting that getting benefit of QS for medium-large

mean expression values requires fine-tuning and optimizing the circuit parameters.
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Figure 3: LuxI noise strength reduction as a function of circuit parameters. Color map of
the reduction of LuxI noise strength when QS is added to Fb w.r.t. the dissociation constant
kdlux and the LuxI translation rate pI. All other parameters were set to their values from
(SI Table S1) . Left) Tight promoter α = 0.01. Right) Leaky promoter α = 0.1. (A) Only
intrinsic noise is present. (B) Intrinsic noise and additive extrinsic noise. (C) Intrinsic and
parametric extrinsic noise.
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Tuning LuxI expression allows minimising noise-strength

Dependence of mean expression and noise strength on the Qs/Fb circuit parameters is a

key factor to understand for the circuit to be of potential practical usage. To this end we

performed thorough in silico experiments to estimate the noise strength and mean expression

value of LuxI, as a proxy of the protein of interest, for different sets of the circuit parameters

associated to LuxI expression (Methods, Computational analysis). We only evaluated two

values for the basal expression, corresponding to a tight Plux promoter (α = 0.01), and a

leaky one (α = 0.1).

As for LuxR, we also considered two values corresponding to the scenarios we had before: a

strong ribosome binding site (RBS) with (pR = 10 min−1) close to a best scenario for noise

reduction, and a medium-weak RBS (pR = 2 min−1). We kept all other parameters to their

nominal values (SI Table S1). Notice that although we considered variations in the trans-

lation rates pI and pR, in our model these are tantamount to consider equivalent variations

in the lumped values of the corresponding products of protein burst size, transcription rate

and gene copy number (Methods, Computational analysis).

Fig. 4 shows the noise strength map for different combinations of the dissociation constant

kdlux vs. the LuxI translation rate pI when we consider both a tight promoter Plux, α = 0.01

(Fig. 4A) and or a leaky one α = 0.1 (Fig. 4B). The means of LuxI protein number are

shown as contour lines.

The mean expression levels of LuxI presented general monotonous trends in all cases.

It increased for simultaneous rising of the dissociation constant and the LuxI translation

rate. On the other hand, increasing leakiness of the LuxI promoter did tend to lower mean

expression levels of LuxI for low values of the dissociation constant. Finally, using a weaker

RBS controlling the translation of LuxR (Fig. 4B) produced a steeper increasing of the mean

expression level as the dissociation constant and the LuxI translation rate increase.

Noise strength did not show simple patterns as a function of the circuit parameters.

Larger variations between high and low noise strength values were observed for stronger
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Figure 4: LuxI noise strength and mean as a function of circuit parameters. Color map of
LuxI noise strength w.r.t. the dissociation constant kdlux and the LuxI translation rate pI.
The level curves correspond to the mean number of LuxI molecules. (A) Strong LuxR RBS
with pR = 10 min−1. (B) Medium-weak LuxR RBS with pR = 2 min−1.
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LuxR RBS (Fig. 4A) independent of the leakiness of the promoter Plux. In this case, the

lowest values of noise strength were achieved for values of the dissociation constant kdlux in

the range [100− 500] molecules, and values of LuxI translation rate pI in the range [2− 10]

min−1. The mean expression levels in this region were between 2 · 103 and 4 · 103 proteins,

in agreement with the results shown in Fig. 1. Decreasing the LuxR RBS strength kept the

the values of minimal noise strength essentially in the same region, but with higher values

(Fig. 4B). The same trend towards higher values of noise strength was observed when the

tight promoter Plux was changed for a leaky one. This was more evident when a stronger

LuxR RBS was used (Fig. 4A).

Fast LuxR turnover reduces LuxI noise strength

Finally, we analyzed the effect of LuxR expression parameters over LuxI mean expression

level and its noise strength. In particular, we were interested in the effect of the LuxR

translation rate pR, as the main tuning knob of LuxI mean expression level, and the one of

the degradation rate dR.

On the one hand, LuxR synthesis rates proved to be a good sensitive tool to tune the

desired LuxI mean expression level, with larger values of the last as the former decreased.

Fig. 5 shows the LuxI noise strength maps and mean expression level curves as a function

of values of the LuxR translation rate in the range 0.2 to 10 min−1, and LuxR degradation

rate in the range 0.02 to 0.2 min−1. We fixed the LuxI translation rate to two values

pI = 2 min−1 and pI = 4 min−1 around its nominal value, and considered both a tight Plux

promoter (α = 0.01) and a a leaky one (α = 0.1). All other parameters were kept to their

nominal values described in (SI Table S1).

On the other hand, we confirmed that LuxI noise strength decreased with LuxR fast

turnover. Unlike suggested in (12 ), the decrease is not uniform, having optimal values for

dR in the range 0.07 to 0.2 min−1 when LuxR translation rate pR had medium to high values

in the range 2 to 10 min−1 (SI Section S.7). The mean expression level was not very sensitive
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to the LuxR degradation rate, with a slight increase as the degradation rate increased.

Figure 5: LuxI noise strength vs. LuxR parameters. LuxI noise strength maps and mean
expression level curves for a tight Plux promoter (α = 0.01, top) and a a leaky one (α = 0.1,
bottom) with LuxI translation rates pI = 2 min−1 (left) and pI = 4 min−1 (right) around its
nominal value.

Conclusion

Our results show that gene synthetic circuits benefiting from the interplay between feedback

and cell-to-cell communication allow control of the mean expression level and noise strength

of a protein of interest. A few circuit parameters easy to tune in the wet-lab can be used to
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achieve noise strength reductions up to a 60% with respect to constitutive expression of the

protein of interest.

Mean expression level and noise strength are not independent goals. At low mean values

intrinsic noise dominates and sets the minimum noise strength attainable. At high mean

values extrinsic noise dominates. Thus, there is a trade-off between expression level and

noise strength, as revealed both by system-wide experimental data and theoretical analysis

reported in the literature. Our computational results fitted well in this scenario, and suggest

that tuning synthetic gene circuits to minimize noise while achieving a desired expression

level will require a multi-objective optimization approach.

For high mean expression values we observed a clear benefit of having feedback as com-

pared to constitutive expression. Even if achieving best noise suppression requires an optimal

feedback tuning, as already seen e.g. in (31 ), noise reduction due to feedback was essentially

structural, i.e. almost independent of its parameters, in this high mean expression region.

Yet, adding quorum sensing on top of feedback did not decrease noise strength unless the

circuit parameters are tuned. That is, the benefit from adding cell-to-cell communication

is not just structural, but depended also on proper choice of the circuit parameters. This

result is somewhat counter-intuitive and does not fully agree with previous works reporting

a reduction of extrinsic noise in quorum sensing-based gene circuits, e.g. (12 ), that reported

a structural benefit. This may be explained by the different approaches to model extrinsic

noise. While we modeled it as parametric variability, most often extrinsic noise has been

modeled as an additive stochastic signal essentially analogous to the intrinsic noise term.

Thus, if we considered a scenario with intrinsic noise and no extrinsic one while keeping

medium-high expression means, our results also showed an important reduction of noise

strength when quorum sensing was added to feedback. Though the amount of reduction de-

pended on the circuit parameters, we observed noise reduction for almost any combination

of them. Moreover, if we considered additive extrinsic noise, we got qualitatively similar

results to the ones when only intrinsic noise was present.
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Given two different gene circuits, they will result in different noise because being different

their physiological effect on the cell will be different. Yet, the chances that adding any

extra random structure on top any given circuit results in a reduction of noise is extremely

low. Thus, in the hypothetical scenario with no extrinsic noise we also found that adding

either feedback or feedback and quorum sensing increased the noise strength with respect

to the open loop constitutive gene expression circuit. This result might be explained by the

increased complexity introduced by these circuits (33 ). The increased complexity introduced

by the added circuit components will introduce extra randomness and variability, increasing

noise. Yet, circuit complexity is not the only factor contributing. On the one hand, the

circuit with quorum sensing and feedback achieved lower average noise strength values than

the less complex only-feedback one in this scenario. On the other, when extrinsic noise was

present constitutive expression was clearly noisier than any of the more complex QS/Fb and

NoQS/Fb circuits for high protein mean expression values, though not for low ones where

intrinsic noise dominates. Thus, the circuit complexity contribution to noise depends not

only on its size, but in the interplay between size, noise structure, and circuit structure. An

increased circuit complexity will increase noise unless the new feature can structurally reduce

noise and it is properly tuned. Also, in the mean protein expression medium-high range

of interest for industrial biotechnology, tuning circuit parameters in the circuit with both

quorum sensing and feedback clearly allows coping with both intrinsic noise and extrinsic

one, independently of its structure.

The experimental results, though preliminary, showed a high concordance the computa-

tional ones and confirmed the capability of the proposed circuit to reduce noise strength.
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Methods

Circuit description

The synthetic gene circuit (Fig. 1A) combines two functional subsystems already imple-

mented in E. coli. The first subsystem implements a cell-to-cell communication mechanism

via quorum sensing, based on exchange of the small signaling autoinducer molecule N-acyl-L-

homoserine lactone (AHL) (11 , 34 ). This autoinducer molecule passively diffuses across the

cellular membrane to and from the external environment. Intracellular AHL is synthesized

by the protein LuxI expressed by an homolog of the gene luxI of V. fisheri (28 ). The second

subsystem uses the synthetic repressible promoter Plux designed in (27 ) to control transcrip-

tion of the gene luxI. This promoter is repressed by the transcription factor (LuxR.AHL)2.

Protein LuxR is expressed by gene luxR under the constitutive promoter Pc. Proteins LuxR

and AHL bind creating the heterodimer (LuxR.AHL), which subsequently dimerizes form-

ing the heterotetramer (LuxR.AHL)2. This way, the negative feedback control of the LuxI

expression is effectively implemented.

The circuit acts as a closed loop controller of the mean and variance of a protein of interest

PoI. This protein can be either fused to protein LuxI, or coexpressed with it. In the first

case, a linker is inserted between the fused proteins allowing intracellular self-cleavage using

a TEV protease (35–37 ). Alternatively, if the protein of interest is coexpressed with LuxI,

the controller will only act at the transcriptional level. In cases where transcriptional noise

dominates translational one, e.g. when the average number of proteins made per mRNA

transcript is larger than two (38 ), co-expressing LuxI with the protein of interest is a simple

yet effective approach.

Mathematical model

To analyze how our genetic circuit affects intrinsic and extrinsic noise, we needed an ap-

propriate model and a computationally efficient method. Both aspects are intertwined. We
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considered an equivalent set of pseudo-reactions resulting from the deterministic model of

the circuit, and then derived a stochastic model for a population of N cells whose mean

corresponds to that of the deterministic one. We used the Chemical Langevin Equation

approach (CLE). Though computationally much more efficient than the Chemical master

equation (CME) or even the Gillespie algorithm, the CLE is still computationally demand-

ing when the goal is to simulate a whole population of cells. Since the CLE approximates

the CME by a system of stochastic differential equations of order equal to the number of

species, a reduced deterministic model with as few species per cell as possible was desirable.

Reduced deterministic model

We aimed at obtaining a reduced model more amenable for computational analysis, but

avoiding excessive reduction that would lead to lack of biological relevance. In particular, the

species we obtained in the reduced model are not lumped ones. Reduced models accounting

for total mRNA and total transcription factor have been proposed to match modeled species

with measurable ones (39 ). In our case we explicitly modeled bound and unbound forms

of the transcription factor, but the model accounts for the total LuxI protein. For our

circuit this is a good proxy for the amount of protein of interest if both are co-expressed,

and transcriptional noise dominates. In the best case, when the protein of interest is in

self-cleavable tandem fusion with LuxI, both will express in 1:1 stoichiometric ratio (36 ).

Moreover, the resulting lumped parameters in the reduced model are easy to associate to

tuning knobs available in the wet-lab implementation in the relevant cases (40 ), and their

values are amenable to be obtained experimentally.

Thus, in a first step we used the mass-action kinetics formalism (41 ) to get a deterministic

model of the full reactions network corresponding to the genetic circuit (Supplementary

information S.1). We then got a reduced order model by applying the Quasi Steady-State

Approximation (QSSA) on the fast chemical reactions and taking into account invariant

moieties (42 , 43 ) (SI Section S.2). The resulting deterministic reduced model is described
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by equations (1)-(2).

ṅi1 =
CIpI

dmI

(
kdlux + αni3
kdlux + ni3

)
− dIn

i
1

ṅi2 =
CRpR

dmR

+ k−1n
i
6 −

(
k−1

kd1

ni4 + dR

)
ni2

ṅi3 =
k−2

kd2

(ni6)
2 − (k−2 + dRA2)n

i
3

ṅi4 = k−1n
i
6 + kAn

i
1 + D

(
Vcell

Vext

n5 − ni4
)
−
(

k−1

kd1

ni2 + dA

)
ni4

ṅ5 = D

(
−NVcell

Vext

n5 +
N∑
i=1

ni4

)
− dAen5 (1)

with:

ni6 =
kd2(dRA + k−1)

4k2

[√
8k−2(2k−2kd1ni3 + k−1ni2n

i
4)

kd1kd2(dRA + k−1)2
+ 1− 1

]
(2)

where n(t)i = [n1(t)
i, n2(t)

i, n3(t)
i, n4(t)

i, n6(t)
i]T is the vector of species LuxI, LuxR, (LuxR.AHL)2,

intracellular AHL and (LuxR.AHL) for the ith cell respectively, and n5 is the extracellular

AHLext.

Stochastic model

To model gene expression intrinsic noise we derived a stochastic CLE-based model whose

mean corresponds to that of the deterministic reduced model (1)-(2). To this end we first

considered the equivalent set of pseudo-reactions (3) for the deterministic model in the ith
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cell.
(LuxR · AHL)2

f(n3,t)−→ LuxI + (LuxR · AHL)2

LuxI
kA−→ LuxI + AHL

ttLuxR−→ LuxR

LuxR + AHL
k−1/kd1

�
k−1

LuxR · AHL

2(LuxR · AHL)
g(n6,t)

�
g(n6,t)

(LuxR · AHL)2

AHL
D

�
DVc

AHLext

LuxI
dI−→∅

LuxR
dR−→∅

(LuxR · AHL)2
dRA2−→∅

AHL
dA−→∅

AHLext
dAe−→∅

(3)

where we denoted f(ni3, t) ,
CIpI
dmI

(
kdlux+αIn

i
3

kdlux+n
i
3

)
as the Hill-like function associated to LuxI

expression, g(ni6, t) corresponds to the dimerization reflected in equation (2), and ttLuxR =

CRpR
dmR

represent the transcription-translation activity of luxI and luxR respectively, Vc = Vcell

Vext

is the ratio between the cell volume and the culture medium volume, and ∅ denotes species

degradation.

For the computational analysis we used the Euler-Maruyama discretization (4) of the

stochastic model resulting from the set of pseudo-reactions (3) :

n(t+ δt) = n(t) + S · a(n)δt+ S · N ·
√
a(n)
√
δt, (4)

where n(t) = [n(t)i, . . .n(t)N, n5]
T are the number of molecules of each species in the pop-

ulation. The stoichiometry matrix S, whose elements are the stoichiometry submatrices for
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each cell Scell and the external stoichiometry Sext, has structure:

S =

 Scell ⊗ IN 0N×1

Sext ⊗ 11×N −1

 , (5)

where ⊗ is the Kronecker product, IN the identity matrix of dimension N ×N , 0N×1 and

11×N are vectors of zeroes and ones respectively, and the coefficients in the stoichiometry

matrices Scell and Sext, obtained from the set of pseudo-reactions (3), are:

Scell =



1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0

0 0 0 1 −1 0 0 0 0 1 −1 −1 1


Sext =

[
0 0 0 0 0 0 0 0 0 0 0 1 −1

]
.

The term a(n) in (4) is the associated vector of reaction propensities for the whole population

of cells, with:

a(n) =

[
a(n)1 a(n)2

... a(n)N dAen5

]T
a(n)i =

[
f(ni3, t) dIn

i
1

CRpR
dmR

k−1n
i
6

k−1

kd1
ni2n

i
4 dRn

i
2

k−2

kd2
(ni6)

2

k−2n
i
3 dRA2n

i
3 kAn

i
1 dAn

i
4 Dni4 DVcn5

]T
Finally, N(JN+1)×(JN+1), where J = 13 is the number of reactions for the ith cell, is a

diagonal matrix of continuous normal random variables with zero mean and unit variance.

Notice we used lumped propensity functions derived from the reduced model, like the

f(n3) Hill-like function associated to LuxI repression. This approach has already been used

in (44 ). We validated it for our model by simulating the pseudo-reaction associated to

f(ni3) using CLE, and comparing the result with that obtained by simulating the set of
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corresponding original reactions using Gillespie’s direct method SSA (SI Section S.5).

Extrinsic noise was modeled by randomizing the values of the model parameters (30 , 31 ),

an approach that can easily be integrated within the CLE framework. We assumed a normal

distribution to generate the model parameters of the ith cell in the population.

The stochastic simulations we performed for 400 min using δt = 25 · 10−4 sec.

Computational analysis

We used the stochastic model (4) of the proposed circuit, hereafter denoted as circuit QS/Fb,

to explore the impact of some key circuit parameters on noise. As control circuit to compare

with, we considered a second circuit which removes both QS and the feedback loop, denoted

as NoQS/NoFb. For the computational analysis, this accounts to setting the synthesis of

AHL to zero (kA = 0 min−1) in model (4). This condition is achieved in the lab experimental

implementation by taking out the gene coding for LuxI (Methods, Strains and plasmids).

To asses the effect of cell-to-cell communication, we also considered a hypothetical circuit

with feedback but without quorum sensing (NoQS/Fb, D = 0 min−1). Notice the circuit

NoQS/Fb cannot actually be implemented for it assumes there is no diffusion of the au-

toinducer molecule across the cell membrane. Yet, it is useful as a computational thought

experiment to account for the contribution of the cell-to-cell communication. Gene expres-

sion noise was evaluated using the squared coefficient of variation, i.e. the noise strength

measure (η2 = (σ/µ)2). This measure properly captures the contributions of both intrinsic

and extrinsic noise (45 ), and allows comparisons for different expression rates.

We followed the following general procedure (depicted in SI Fig. S2). First, for different

combinations of the model parameters, we performed temporal simulations of the number

of molecules of each species in the circuit for every cell in the population of our system.

Extrinsic noise was modeled by randomizing the values of the model parameters using a

normal distribution with a variance of 15%. The models were implemented using OpenFPM

(http://openfpm.mpi-cbg.de), a C++ version of the Parallel Particle Mesh (PPM) library
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allowing efficient computational particle-mesh simulations (46 ). The code is available in (SI

Section S.11). In all simulations we used a population of N = 240 cells in a culture volume

of 10−3µl, corresponding to an optical cell density OD600 = 0.3 (SI Section S.4). Cell density

variations did not appreciably change the results, confirming the results in (12 ). The value

of N used provided a good representative of a cell population, as confirmed by comparing

with cell populations up to N = 12000 without significant variations in the population

distributions obtained for the number of molecules expressed (SI Section S.6).

Then, we obtained the first two statistical moments µ and σ2 for each species in the

cell population at every time tk. We used the laws of total expectation and total variance.

From these moments, we calculated long-term distributions to infer the noise strength of

each species. To this end, we checked with our models that one realization of the population

of N cells is enough to obtain unbiased values of the long-term moments of the population,

provided there is enough time to perform the time average (SI Section S.4).

Finally, we generated noise strength maps for different sets of varying model parameters.

We explored the effect of variations in parameters associated to expression of LuxI and LuxR,

as they are as key parameters in our circuit. For LuxI, we considered the dissociation constant

kdlux between the transcription factor (LuxR · AHL)2 and the repressible Plux promoter, the

translation rate pI, and the basal expression αI of the Plux promoter. We sampled in the

ranges kdlux = [10−2000] molecules, α = [0.01−0.1], and pI = [0.2−10] min−1 selected from

the literature (47–49 ) and experimentally achievable in the lab. As for LuxR, we considered

two values for the the translation rate pR: a strong RBS (pR = 10 min−1), and a medium-

weak one (pR = 2 min−1). In addition, we analyzed the effect of different degradation rates

dR in the range [0.02 − 0.2] min−1. For the case of the low mean scenario in Fig. 2 we

included also simulations in the following range pI = [0.004− 0.02] min−1.

Notice from model (1) that although we only considered variations in the translation rates

pI and pR, these are tantamount to considering variations in the lumped values CIpI
dmI

, CRpR
dmR

corresponding to the products of protein burst size, transcription rate and gene copy number.
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We assumed variations in translation rates just because they are relatively simple to modify

in a graded way by tuning the RBS (47 ), though also transcription rates could be easily

tuned (50 ).

Strains and plasmids

To validate the in silico computational results, we implemented the QS/Fb and NoQS/NoFb

circuits in vivo. We used components from the iGEM Registry of Standard Biological Parts.

All parts were cloned using the Biobrick’s foundation 3 Antibiotic Assembly method. All

coding sequences have the double-terminator BBa_B0015, and were confirmed by sequenc-

ing. The circuit QS/Fb couples both QS-based cell-to-cell communication and the negative

feedback subsystems. It was split in two subunits integrated in different plasmids.

On the one hand, plasmid pCB2tc contains the gene luxR (part BBa_C0062) coding for

the protein LuxR constitutively expressed under the control of a medium strength promoter

(part BBa_J23106), and a strong RBS (part BBa_B0034).

This insert was cloned into the pACYC184 plasmid cloning vector (p15A origin, 10-12

copies/cell, chloramphenicol/tetracycline (51 )).

On the other hand, plasmid pYB06ta contains gene luxI (part BBa_C0161) under control

of the PluxR repressible promoter (part BBa_R0062) and a strong RBS (part BBa_B0034).

The strong RBS BBa_B0034 and the green fluorescent protein (GFP, part BBa_E0040)

were inserted using GIBSON assembly (NEB Catalog Number E2611S) upstream of luxI,

right after the PluxR promoter. This way, GFP, used as protein of interest (PoI in Fig. 1A)

is co-expressed with LuxI.

They were inserted into the pBR322 plasmid cloning vector (pMB1 origin, 15-20 copies/cell,

ampicillin/tetracycline (51 )). Finally, both plasmids pCB2tc and pYB06ta were co-transformed

in competent cells (DH-5α, Invitrogen). Notice being both plasmids low copy ones, they do

not introduce a big metabolic burden on the cell. On the other hand, their variability is

quite narrow so gene copy number will not be the only relevant extrinsic noise source in the
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experimental setup.

As control network, we implemented the circuit NoQS/NoFb which removes both QS

and the feedback loop. To this end, the plasmid pCB2tc above was co-transformed with

the plasmid pAV02ta (pMB1 origin, ampicillin/tetracycline) containing only GFP down-

stream of the PluxR repressible promoter (part BBa_R0062) and the the strong RBS (part

BBa_B0034). Both were cloned in the pBR322 plasmid cloning vector.

All plasmids are shown in (SI Figs. S7, S8, S9) and are available at the ACS Synthetic

Biology Registry as parts ACS_000551, ACS_000552, and ACS_000553.

Experimental protocol

For the experimental validation of the circuit (protocol details are in SI Section S.9), two

sets of E. coli cells (cloning strain DH-5α) carrying the QS/Fb and NoQS/NoFb circuits

respectively, were inoculated from -80oC stocks into 3 mL of LB with appropriate antibiotics,

followed by an overnight incubation at 37 oC and 250 rpm in 14 ml culture tubes. When the

cultures reached an optical density (OD) of 4 (600 nm, Eppendorf BioPhotometer D30), the

overnight cultures were diluted 500-fold (OD600 of 0.02) into M9 medium with appropriate

antibiotics. These were used to inoculate new cultures, which were incubated for 7 hours

(37oC , 250 rpm,14 ml culture tubes) until they reached an OD600 between 0.2–0.3. At

this point, cell growth and protein expression were interrupted by transferring the culture

into an ice-water bath for 10 min. Next, 50 µL of each tube were transferred into 1 ml of

phosphate-buffered saline with 500 µg/mL of the transcription inhibitor rifampicin (PBS +

Rif) in one 5 mL cytometer tube, and incubated during 1 hour in a water bath at 37oC, so

that transcription kept blocked and GFP had time to mature and fold properly. Samples

were measured at different time points using the BD FACSCalibur flow cytometer (original

default configuration parameters), and flow cytometry data analyzed with custom scripts

(SI Section S.10).
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Graphical TOC Entry

Controlling protein expression level is of interest in many applications.
Yet, the stochastic nature of gene expression plays an important role and
cannot be disregarded. We propose a gene synthetic circuit designed to
control the mean gene expression in a population of cells and its variance.
The circuit combines an intracellular negative feedback loop and quorum
sensing based cell-to-cell communication system. Our in silico analysis
using stochastic simulations reveals significant noise attenuation in gene
expression through the interplay between quorum sensing and negative
feedback, and explain their different roles for different noise sources. Pre-
liminary in vivo results agree well with the computational results.
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