Table of contents

Abstract ... 7
Resumen ... 9
Resum ... 11
List of Figures ... 17
List of Tables ... 23

1 Introduction .. 25
 1.1 Background .. 25
 1.2 Funding ... 28
 1.3 Objectives of this dissertation 28
 1.4 List of Publications ... 29

2 State of the Art ... 33
 2.1 Wireless Body Area Networks 33
 2.1.1 EM properties of the human tissues 34
 2.1.2 Scenarios in WBANs .. 34
 2.1.3 Channel Characterization in WBANs 36
 2.2 Summary of proposed propagation channel models in the literature 42

3 System Description ... 47
 3.1 Measurements description 47
 3.1.1 Laboratory Measurements 52
 3.1.2 In vivo measurements ... 59
 3.2 Software simulations ... 61

4 Methodology ... 63
TABLE OF CONTENTS

4.1 Phantom-based measurements ... 63
4.1.1 Measurements performed with a large-square container 64
4.1.2 Measurements performed with an hexagonal container 67
4.1.3 Measurements performed with a small-squared container 68
4.1.4 Measurements performed with a tri-layer phantom container ... 70
4.1.5 Summary of the phantom experiments 73
4.2 \textit{In vivo} experiments ... 75
4.2.1 Summary of the \textit{in vivo} experiments 80
4.3 Software simulations .. 81
5 Results for the Gastrointestinal scenario at the UWB frequency band 87
5.1 In-body to On-body characterization via Path Loss models 87
5.1.1 Phantom container Case A and software simulations results 87
5.1.2 Phantom Container Case Homogeneous results 93
5.1.3 \textit{In vivo} 1 and 2 and software simulations results 96
5.1.4 Effect of the antenna in the channel, through \textit{in vivo} measurements ... 108
5.1.5 Antenna and phantom container comparison through phantom measurements ... 114
5.1.6 Path Loss summary .. 121
5.2 Delay domain analysis .. 124
5.2.1 Theoretical Analysis .. 124
5.2.2 Power Delay Profile analysis 125
5.2.3 Analysis of the multipath components in the measurements127
5.2.4 Time of arrival of the UWB signal 133
5.2.5 Summary of the signal delay 135
6 Results for the Gastrointestinal scenarios for low UWB frequency signals 137
6.1 S-parameters for low UWB signals 137
6.2 System Loss for low Ultra Wide-band (UWB) signals 138
6.3 Summary ... 141
7 Results for the cardiac scenarios at the UWB frequency band143
7.1 S-parameters for cardiac scenarios 143
7.2 Path loss for cardiac scenarios for the UWB frequency band .. 144
7.3 Summary ... 146
Conclusions and future work .. 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronyms</td>
<td>151</td>
</tr>
<tr>
<td>Variables</td>
<td>154</td>
</tr>
<tr>
<td>References</td>
<td>155</td>
</tr>
</tbody>
</table>