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Currentmethods to identifyWiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First,
BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of
all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems
in a single step is proposed.This approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA
split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA
estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model.
The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification
benchmark.

1. Introduction

Nonlinearities are present to a greater or lesser extent in all
real processes. When nonlinearities are weak, linear models
can be successfully used to forecast the evolution of variables
or to design control schemes. Currently, a lot of methods to
build linear models can be found in the literature [1–5]. How-
ever, when nonlinearities are hard, linear models just can be
used in a specific operation range. If process operating range
is large, cause-effect relationship should be represented by
a nonlinear model. An alternative to nonlinear system mod-
elling is to describe the process phenomena using rigor-
ous first-principles formulation [6–8]; nevertheless, in most
cases, it can be a very challenging task. Another alternative is
the use of soft computing methods for process identifica-
tion. In this framework, nonlinear system identification has
attracted considerable interest of researchers over the past few
years. Nowadays, nonlinear identification is an open research
topic where some benchmark problems have been proposed
[9–12] and real measurement data are available for testing
and validate different nonlinear identification methods (e.g.,
DaISy database [13]).

One of the most challenging problems regarding non-
linear system identification is the selection of a good model
structure. Currently there are several structures based on
neural networks [14], block-orientedmodels [15, 16], Volterra
series [17], NARMAX models [18], and fuzzy models [19],
among others. A review of black box methods to nonlinear
identification can be found in Suykens and Vandewalle [20].

In this paper, block-oriented models are considered,
which are a class of nonlinear representations consisting of
linear time-invariant (LTI) systems coupled with nonlinear
static functions (NL) [21]. Within this class of models, the
most popular ones are Wiener (LTI-NL), Hammerstein (NL-
LTI), Wiener-Hammerstein (LTI-NL-LTI), and Hammer-
stein-Wiener (NL-LTI-NL) models [15]. Nowadays, several
methods to identify these models can be found in the litera-
ture. An interesting classification of contributions that have
been developed until the last decade can be found in Lopes
dos Santos et al. [22].

Block-oriented models are attractive for their simplicity
and great capabilities to model nonlinear dynamic systems
[23–28]. Specifically, Wiener-Hammerstein models have
proved to be able describe several systems like a paralyzed
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skeletal muscle [29, 30], a limb reflex control system [31], a
DC-DC converter [32], a heat exchanger system and a super-
heater-desuperheater in a boiler system [33], and a thermal
process [34], among others [35]. Not only does the study
of block-oriented models address parameters estimation, but
also these structures are used to implement modern control
strategies [36–40].

In the context of block-oriented models, knowledge of
process dynamics can be a good starting point for identifi-
cation [52]. In this regard, the Best Linear Approximation
or BLA of a nonlinear system [52–55] can be used. For the
specific case of Wiener-Hammerstein models, the BLA does
not provide information about the dynamics of each LTI
block. Therefore, all BLA-based Wiener-Hammerstein iden-
tificationmethods have concentrated their efforts on the BLA
division to generate initial estimates and avoid suboptimal
local minima in an optimization procedure. In Sjöberg et al.
[45], both LTI subsystems are initializedwith all possible BLA
partitions and least squares optimization is applied to fit the
nonlinearity. Although identification results are very good,
the number of possible partitions (combinations) grows with
the number of poles and zeros of the BLA and therefore the
computational cost required for thismethod can be very high.

To avoid multiple BLA divisions, in Lauwers [44] and
Sjöberg et al. [45] an “advanced” method is proposed where
both LTI subsystems are overparameterized with all poles
and zeros of the BLA. This method is formulated as a linear-
in-the-parameters total-least-squares problem for which the
back LTI subsystem is inverted and basis functions are used
to represent both linear subsystems. Tominimize the effect of
overparameterization, an order reduction technique is ap-
plied. However, since the formulation is based on neglecting
the effect of disturbances, the solution is in general not
consistent if there is noise on the output. In addition, the BLA
is required to be invertible.

Another approach to initialize Wiener-Hammerstein
models is presented by Westwick and Schoukens [42], where
the poles and/or zeros of the BLA are classified by using a
nonlinear transformation of the input and the output resid-
uals (quadratic/cubic BLA). On the same context of QBLA/
CBLA and in line with “brute-force” method, Westwick and
Schoukens [46] propose a scanning technique for a rapid
evaluation of all possible BLA partitions between both LTI
blocks of the Wiener-Hammerstein system. With this evalu-
ation, the vast majority of possible partitions are discarded.
Both proposals based on QBLA/CBLA show excellent results
and overcome some disadvantages of “brute-force” and
“advanced” methods; however, the QBLA/CBLA estimation
can be difficult (high variance) since it is estimated from the
BLA residuals.

In a more recent work, Schoukens et al. [41] propose a
more robust method based on QBLA/CBLA. Unlike the two
previous proposals, the BLA is split into a nonparametric
framework. This avoids mainly the parameterization of the
QBLA that can be tedious given that the number of poles and
zeros tends to be high. Once the front and the back dynamics
of the Wiener-Hammerstein model have been identified, a
parameterization of both LTI blocks is required in an addi-
tional step. This step can be complicated because a linear
phase shift can be present in the nonparametric estimate.

f(·)
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Figure 1: Wiener-Hammerstein model.

To avoid QBLA/CBLA estimation, in Vanbeylen [43]
a fractional model parameterization based in multiplicities
(powers) of poles and zeros is presented. The problem is for-
mulated in the frequency domain and fractional exponents
indicate which poles and zeros belong to each subsystem after
an optimization problem is solved. Once the poles and zeros
of the BLA have been classified, both LTI blocks must be
parameterized in an additional step.

All methods mentioned here, each with its advantages
and disadvantages, identify Wiener-Hammerstein models
from the BLA. However, all require high user interaction to
parameterize the LTI blocks and/or a final optimization to
refit all parameters of the Wiener-Hammerstein model. In
this work, we show that it is possible to obtain a goodWiener-
Hammerstein model from the BLA by solving a single opti-
mization problem, where user interaction is only required at
the beginning, just configuring simple parameters of an
evolutionary algorithm.

Hereinafter, thispaper is organized as follows. In Section 2,
Wiener-Hammerstein systems formulation is revisited to-
gether with some relevant information about the BLA. The
proposed evolutionary algorithm, WH-EA, is presented and
described in detail in Section 3, while its application and
results on a numerical example and on the benchmark data
SYSID’09 are presented in Section 4. Finally, in Section 5,
some conclusions are reported.

2. Background

2.1. Wiener-Hammerstein Model. A Wiener-Hammerstein
model consists of two LTI subsystems 𝐺𝑤(𝑧) and 𝐺ℎ(𝑧)
surrounding a static nonlinear function 𝑓(V(𝑡)) (Figure 1).
Both LTI subsystems can be represented in the discrete-time
domain as rational transfer functions in factorized form:

V (𝑡) = 𝐺𝑤 (𝑧) 𝑢 (𝑡)
= 𝐾𝑤∏𝑛𝑏𝑖=1 (𝑧 − 𝑧𝑤𝑖) / (1 − 𝑧𝑤𝑖)∏𝑛𝑎𝑖=1 (𝑧 − 𝑝𝑤𝑖) / (1 − 𝑝𝑤𝑖)𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐺ℎ (𝑧) 𝑤 (𝑡)
= 𝐾ℎ∏𝑛𝑑𝑖=1 (𝑧 − 𝑧ℎ𝑖) / (1 − 𝑧ℎ𝑖)∏𝑛𝑐𝑖=1 (𝑧 − 𝑝ℎ𝑖) / (1 − 𝑝ℎ𝑖)𝑤 (𝑡) ,

(1)

where 𝑧 is the discrete-time operator, 𝐾𝑤, 𝑝𝑤1 ⋅ ⋅ ⋅ 𝑝𝑤𝑛𝑎 and𝑧𝑤1 ⋅ ⋅ ⋅ 𝑧𝑤𝑛𝑏 represent the static gain, poles, and zeros of
the front LTI block, respectively, and 𝐾ℎ, 𝑝ℎ1 ⋅ ⋅ ⋅ 𝑝ℎ𝑛𝑐 and𝑧ℎ1 ⋅ ⋅ ⋅ 𝑧ℎ𝑛𝑑 represent the static gain, poles, and zeros of the
back LTI block, respectively.
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The nonlinearity can be represented as a linear combina-
tion of a finite set (𝑀) of basis functions:

𝑤 (𝑡) = 𝑓 (V (𝑡)) = 𝑀∑
𝑚=1

𝛽𝑚𝑓𝑚 (V (𝑡)) , (2)

where V(𝑡) and𝑤(𝑡) are the input and output of the static non-
linearity,𝛽𝑚 areweighting parameters to be estimated, and𝑓𝑚
are basis functions.

From (1) and (2), the output of the Wiener-Hammerstein
model is analytically related to the input through the follow-
ing expression:𝑦 (𝑡, 𝜃) = 𝐺ℎ (𝑧, 𝜃h) 𝑓 (𝜃NL, 𝐺𝑤 (𝑧, 𝜃w) 𝑢 (𝑡)) , (3)

where

𝜃w = [𝐾𝑤, 𝑧𝑤1 , 𝑧𝑤2 ⋅ ⋅ ⋅ 𝑧𝑤𝑛𝑏 , 𝑝𝑤1 , 𝑝𝑤2 ⋅ ⋅ ⋅ 𝑝𝑤𝑛𝑎] ,
𝜃NL = [𝛽1, 𝛽2, . . . , 𝛽𝑚] ,
𝜃h = [𝐾ℎ, 𝑧ℎ1 , 𝑧ℎ2 ⋅ ⋅ ⋅ 𝑧ℎ𝑛𝑑 , 𝑝ℎ1 , 𝑝ℎ2 ⋅ ⋅ ⋅ 𝑝ℎ𝑛𝑐] ,
𝜃 = [𝜃w, 𝜃NL, 𝜃h] .

(4)

The challenge is to find the best 𝜃 so that the predicted
output 𝑦(𝑡, 𝜃) is as close as possible to the measured output𝑦(𝑡). Without prior knowledge of the system, this identifi-
cation problem is not easy to solve, because there are some
inconveniences that must be overcome:

(i) Parameters 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, and 𝑛𝑑 are not known (i.e., the
structure of the LTI blocks is unknown).

(ii) The order and basis functions for nonlinearity are not
known.

(iii) Without adequate initial values of 𝜃, it is quite possible
that the optimization process, trying to find the best
𝜃, gets stuck in a local minimum.

(iv) Internal variables V(𝑡) and 𝑤(𝑡) are not measurable.

As a complement to the formulation presented, the
following assumptions are made about the system.

Assumption 1. The nonlinear system to be identified can be
described by (3).

Assumption 2. The Wiener-Hammerstein system will be
identified from an input/output data set {𝑢(𝑡), 𝑦(𝑡)}𝑁𝑡=1. The
input signal 𝑢(𝑡) is Gaussian or equivalent (see Section 2.2
for more details), while the measured output 𝑦(𝑡) may be
corrupted by stationary additive noise 𝑛(𝑡). It is further
assumed that the noise is independent of the input excitation
signal: 𝑦 (𝑡) = 𝑦0 (𝑡) + 𝑛 (𝑡) . (5)

Assumption 3. There is no cancellation of poles and zeros and
all poles of both LTI subsystemsmust bewithin the unit circle.

Assumption 4. Nonlinearity is static and its current output𝑤(𝑡) only depends on the current input V(𝑡) (i.e., the nonlin-
earity has no memory).

2.2. The Best Linear Approximation (BLA) of a Wiener-Ham-
merstein System. The BLA of a nonlinear system for a given
class of excitation signals is a linear model that minimizes the
expected mean square error between the true output of the
nonlinear system and the output of the linear model [56]:

𝐺BLA (𝑧) = argmin
𝐺(𝑧)

𝐸 [󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝐺 (𝑧) 𝑢 (𝑡)󵄨󵄨󵄨󵄨2] , (6)

where 𝑢(𝑡) is the input that excites the nonlinear system, 𝑦(𝑡)
is the measured output, and 𝐸 is the expectation operator. An
alternative way to obtain the BLA of a nonlinear system is in
a nonparametric framework:

𝐺BLA (𝑗𝜔𝑘) = 𝑆𝑦𝑢 (𝑗𝜔𝑘)𝑆𝑢𝑢 (𝑗𝜔𝑘) , (7)

where 𝑆𝑦𝑢(𝑗𝜔𝑘) is the cross-power spectrum between the
output 𝑦(𝑡) and the input 𝑢(𝑡) and 𝑆𝑢𝑢(𝑗𝜔𝑘) is the auto power
spectral density of 𝑢(𝑡) [54, 57].

The BLA depends on the excitation power spectrum
(bandwidth and amplitude level) and excitation probability
density function.Therefore, obtaining the BLA is restricted to
the type of input signal that excites the process. Most estima-
tionmethods to obtaining the BLAuseGaussian noise signals
or equivalent [58].

When a nonlinear system is excitedwith aGaussian signal
or equivalent, according to Bussgang’s theorem [59], the non-
linearity can be replaced by a constant (𝐾NL). Therefore, in
the specific case of a Wiener-Hammerstein system, the BLA
can be defined by the following expression:

𝐺BLA (𝑧) = 𝐾NL𝐺𝑤ℎ (𝑧) , (8)

where 𝐺𝑤ℎ(𝑧) represents the dynamics of the nonlinear
system:

𝐺𝑤ℎ (𝑧) = ∏𝑛𝑏+𝑛𝑑𝑖=1 (𝑧 − 𝑧𝑖) / (1 − 𝑧𝑖)∏𝑛𝑎+𝑛𝑐𝑖=1 (𝑧 − 𝑝𝑖) / (1 − 𝑝𝑖)𝑢 (𝑡) . (9)

It is evident that 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑛𝑎+𝑛𝑐 and 𝑧1 ⋅ ⋅ ⋅ 𝑧𝑛𝑏+𝑛𝑑 are the poles
and zeros thatmust be assigned to𝐺𝑤(𝑧) and𝐺ℎ(𝑧). Although
the BLA does not provide information to distinguish the
dynamics between both LTI subsystems, knowledge of the
overall dynamics of a Wiener-Hammerstein system is a good
starting point to identify such systems.

3. The Evolutionary Algorithm (WH-EA)

In this paper, the identification of a Wiener-Hammerstein
system is addressed as an optimization problem, which is
formulated considering the following issues:

(i) The BLA is estimated in the first instance.
(ii) The poles and zeros of the BLA must be classified to

find the dynamics of the front and back of theWiener-
Hammerstein model.

(iii) The pole-zero locations of the BLA can change mod-
erately to improve modelling errors.
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(iv) Without loss of generality, it is possible to model a
Wiener-Hammerstein system considering that both
linear blocks have unit gain (gains from 𝐺𝑤(𝑧) and𝐺ℎ(𝑧) are not part of the optimization problem).

(v) The nonlinear static function is modelled as a piece-
wise function represented by a set of points in the V,𝑤 plane.

To explain in detail how WH-EA works, this section
has been divided into three parts. First part explains how
Wiener-Hammerstein model is coded for individuals in the
population; in addition, the optimization problem statement
is presented. Second part explains in detail the customized
genetic operators developed. Finally, the third part explains
the general procedure of WH-EA.

3.1. Optimization Problem Statement. Changing pole/zero
locations of the BLA to improve modelling error implies new
estimates around the known values. These locations for both
linear subsystems are coded in a single vector as follows:

P = [𝑧𝑐1, . . . , 𝑧𝑐𝑛𝑐, 𝑧𝑟1, . . . , 𝑧𝑟𝑛𝑟, 𝑧𝑖1, . . . , 𝑧𝑖𝑛𝑐, 𝑝𝑐1, . . . , 𝑝𝑐𝑚𝑐,𝑝𝑟1, . . . , 𝑝𝑟𝑚𝑟, 𝑝𝑖1, . . . , 𝑝𝑖𝑚𝑐] , (10)

where 𝑧𝑟1, . . . , 𝑧𝑟𝑛𝑟 and 𝑝𝑟1, . . . , 𝑝𝑟𝑚𝑟 contain the locations of
the real zeros and poles, respectively, and 𝑧𝑐1, . . . , 𝑧𝑐𝑛𝑐 and𝑧𝑖1, . . . , 𝑧𝑖𝑛𝑐 contain the real and imaginary parts of com-
plex conjugate zeros, respectively, while 𝑝𝑐1, . . . , 𝑝𝑐𝑚𝑐 and𝑝𝑖1, . . . , 𝑝𝑖𝑚𝑐 contain the real and imaginary parts of complex
conjugate poles, respectively. The values of 𝑛𝑐, 𝑛𝑟, 𝑚𝑐, and𝑚𝑟 depend on the number of zeros and poles (real and/or
complex conjugates) of the BLA.

Poles and zeros contained in (10) must be classified to
obtain the dynamics of the front and back blocks of aWiener-
Hammerstein model. This classification is performed using a
binary vector:

C = [𝑥𝑧1, . . . , 𝑥𝑧𝑛𝑐+𝑛𝑟, 𝑥𝑝1, . . . , 𝑥𝑝𝑚𝑐+𝑚𝑟] . (11)

The first part of the vector, C (𝑥𝑧1, . . . , 𝑥𝑧𝑛𝑐+𝑛𝑟), is asso-
ciated with 𝑧𝑐1, . . . , 𝑧𝑐𝑛𝑐, 𝑧𝑟1, . . . , 𝑧𝑟𝑛𝑟 and indicates the zeros
classification, while its second part, C (𝑥𝑝1, . . . , 𝑥𝑝𝑚𝑐+𝑚𝑟),
is associated with 𝑝𝑐1, . . . , 𝑝𝑐𝑚𝑐, 𝑝𝑟1, . . . , 𝑝𝑟𝑚𝑟 indicating the
poles classification. Note that imaginary parts are not consid-
ered for classification since they are already associated with
their corresponding real parts. It is assumed that if 𝑥𝑧𝑖th = 1,
the corresponding 𝑖th element of P with 𝑖 = 1, . . . , 𝑛𝑐 + 𝑛𝑟
(i.e., a real zero or a pair of complex conjugated zeros) will
belong to the subsystem 𝐺𝑤(𝑧); otherwise, it will belong to
the subsystem 𝐺ℎ(𝑧). In the same way, this correspondence
can be applied to classify the poles using 𝑥𝑝1, . . . , 𝑥𝑝𝑚𝑐+𝑚𝑟.

For example, if a nonlinear system is approximated by a
BLA with four poles, 𝑝1,2 = −0.32 ± 0.77𝑗, 𝑝3 = −0.11, and𝑝4 = 0.17, and three zeros, 𝑧1,2 = 1.41 ± 0.56𝑗, 𝑧3 = 1.1, then𝑛𝑐 = 1, 𝑛𝑟 = 1,𝑚𝑐 = 1, and𝑚𝑟 = 2, P would be structured as[1.41, 1.1, 0.56, −0.32, −0.11, 0.17, 0.77], and vector C should
contain five elements whose values switch between zero and
one as the algorithm evolves. By way of illustration if C =[1, 0, 0, 1, 1], then𝐺𝑤(𝑧)would have two zeros and two poles:

𝑧1,2 = 1.41 ± 0.56𝑗, 𝑝3 = −0.11, 𝑝4 = 0.17, while 𝐺ℎ(𝑧) would
have a zero and two poles: 𝑧3 = 1.1, 𝑝1,2 = −0.32 ± 0.77𝑗.

With respect to nonlinear static function, let us consider
that it is represented by a set of 𝑛 points:

B = [V1, . . . , V𝑛, 𝑤1, . . . , 𝑤𝑛] , (12)

where the pairs (V1, 𝑤1), . . . , (V𝑛, 𝑤𝑛) correspond to their
coordinates in a two-dimensional V-𝑤 plane. The location of
these points and the interpolation method used will deter-
mine the quality of the captured static nonlinearity.

Theproposed evolutionary algorithm is based on stochas-
tic population of candidate solutions (individuals). Each
individual contains genetic information related to

(i) the pole/zero locations in the Z-plane of the linear
subsystems (P),

(ii) the point coordinates representing the nonlinear
static function (B),

(iii) and the pole/zero classification for blocks 𝐺𝑤(𝑧) and𝐺ℎ(𝑧) (C),
such that any Wiener-Hammerstein model ((1) and (2)) can
be easily described from this coded information. Recall that
gains from linear blocks are assumed to be 1 and that
parameters 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, and 𝑛𝑑 will be implicitly optimized and
they will depend on the structure of vector C.

To find the best set of parameters, an optimization
problem is stated based on a prediction-error method and
the typical mean-squared error criterion (although any other
criteria can be used in the proposedmethod, such as themean
absolute or maximum error criteria):

𝜀 (𝑡, 𝜃) = 𝑦 (𝑡) − 𝑦 (𝑡, 𝜃) , (13)

𝐽 (𝜃) = 1𝑁 𝑁∑𝑡=1𝜀2 (𝑡, 𝜃) , (14)

where 𝜃 = [P,B,C] and the solution of the optimization
problem is stated as

𝜃̂ = argmin
𝜃

𝐽 (𝜃) , (15)

where 𝜃̂ contains the genetic information from the best
individual at the end of generations.

3.2. Genetic Operators. Customized mutation and crossover
operators will be developed taking in mind the problem at
hand: to identify all parameters of the Wiener-Hammerstein
model in a single optimization trial. Figure 2 shows the struc-
ture of an individual as well as the genetic operators devel-
oped on each piece of genetic information. Note that 𝑖 and 𝑔
have been introduced into the formulation. Subscript 𝑖 repre-
sents an individual in the population, while the superscript 𝑔
indicates the current population.

The specific mutation and crossover operators designed
are randomly selected to maintain a balance between explo-
ration and exploitation of the search space. Mutation opera-
tions are used to maintain genetic diversity, while crossover
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Mutation M.1

Crossover C.1

Mutation M.2

Mutation M.3

Crossover C.2

Mutation M.4

Pole-zero locations

Static nonlinearity

Pole-zero classification

Real values Imag. values

· · ·

· · ·

B
g
i = {

C
g
i = {

P
g
i = {

Zeros

Real values Imag. values

Poles

Zeros Gw or Gℎ Poles Gw or Gℎ

}

}

}

Abscissa Ordinate

zr1, . . ., zrnrzc1, . . ., zcnc zi1, . . . , zinc

pc1, . . ., pcmc pr1, . . ., prmr pi1, . . ., pimc

1, . . ., n, w1, . . ., wn

xz1, . . ., xznc+nr, xp1, . . ., xpmc+mr

Figure 2: Structure of individual and genetic operations performed
on each piece of genetic information.

operations allow genetic information from the best indi-
viduals to be combined and disseminated throughout the
generations. Further details on how the algorithm works will
be given in Section 3.3.

3.2.1. Location in the Z-Plane of Poles and Zeros. Theoretically
in a Wiener-Hammerstein model, the pole-zero locations of𝐺𝑤(𝑧) and 𝐺ℎ(𝑧) subsystems correspond to the pole-zero
locations of the BLA; however, it is well known that once
the BLA has been divided, a refit can be used to improve
the modelling error. In this regard, the proposed algorithm
considers that while the BLA is divided and nonlinearity is
captured, the pole-zero locations can change subtly.

Both operations used on this portion of genetic informa-
tion produce offspring vector P̃g, which directly inherits from
its parent Pg

i all the genetic information except in a gene.
This gene will be selected using a random integer number𝑟𝑧𝑝 ∈ [1, . . . , 𝑛𝑟 + 2𝑛𝑐 +𝑚𝑟 + 2𝑚𝑐] and modified according to
the corresponding genetic operatormutationM.1 or crossover
C.1.

Mutation M.1. The selected gene is mutated to explore in an
individualized way new pole-zero locations of the BLA. A
new location 𝑃̃𝑔𝑗 is determined by a randomnumber𝑁𝑧𝑝 with
Gaussian distribution:

𝑃̃𝑔𝑗 = {{{
𝑃𝑔𝑖,𝑗 + 𝑁𝑧𝑝 (0, 𝜎2 (𝑔)) if (𝑗 = 𝑟𝑧𝑝)𝑃𝑔𝑖,𝑗 otherwise, (16)

where 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛𝑟 + 2𝑛𝑐 +𝑚𝑟 + 2𝑚𝑐. 𝑃𝑔𝑖,𝑗 and 𝑃̃𝑔𝑗 represent the
jth elements of vectors Pg

i and P̃g, respectively.
The new locations for poles and zeros are explored within

a search space defined by Pmin and Pmax; therefore, 𝑃min
𝑗 ≤𝑃̃𝑔𝑗 ≤ 𝑃max

𝑗 , where 𝑃min
𝑗 and 𝑃max

𝑗 are the jth elements of
vectors Pmin and Pmax, respectively (see Section 3.3 for more
details on search space for poles and zeros).

2
ＣＨＣ

2
end


2
(g

)

1 MaxGen
g

Figure 3: Variation of standard deviation over generations to con-
trol the aggressiveness of mutations.

Aggressiveness of mutations can be controlled through
the standard deviation:

𝜎2 (𝑔) = Δ 𝑠100 ( 𝜎2ini√1 + 𝑔 ∗ 𝜎2ratio),
𝜎2ratio = (𝜎2ini/𝜎2end)2 − 1

MaxGen − 1 ,
(17)

where MaxGen is the predefined number of algorithm gen-
erations; 𝜎2ratio is the rate at which the standard deviation
will decrease from 𝜎2ini to 𝜎2end as the generations pass (see
Figure 3); the parameter Δ 𝑠 bounds the limits of the interval
in which the selected gene can be moved. For this mutation,Δ 𝑠 = 𝑃max

𝑟𝑧𝑝
− 𝑃min
𝑟𝑧𝑝

. Variation of 𝜎2(𝑔) will allow mutations to
be more subtle in the last generations to achieve a fine-tuning
of the corresponding parameters.

Crossover C.1. The selected gene is formed using genetic
information from the parent, 𝑃𝑔𝑖,𝑗, combined with the corre-
sponding genetic information from the best individual,𝑃𝑔best,𝑗,
in the current population:

𝑃̃𝑔𝑗 = {{{{{
𝑃𝑔𝑖,𝑗 + 𝑃𝑔best,𝑗2 if (𝑗 = 𝑟𝑧𝑝)𝑃𝑔𝑖,𝑗 otherwise, (18)

where 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛𝑟 + 2𝑛𝑐 + 𝑚𝑟 + 2𝑚𝑐.
3.2.2. Nonlinear Static Function. As the algorithm evolves,
points for nonlinear static function must be located ade-
quately in the V-𝑤 plane.Here any type of interpolation can be
used to capture the static nonlinearity. To achieve a good fit,
mutations M.2 and M.3 plus a crossover operation are used.
Both mutations used on this portion of genetic information
produce offspring vector B̃g, which directly inherits from its
parent Bg

i all the genetic information except in two genes.
This pair of genes represents the coordinates of the point that
will be modified. Unlike mutation operations, the crossover
operation generates offspring with a single modified gene
which corresponds to the ordinate of a point. Given the
correspondence between the abscissa and the ordinate of
a point, for the three operations a single integer random
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Figure 4: Bounds for mutation M.2. Grey area indicates 𝐵𝑔𝑟𝑏𝑝 and𝐵𝑔𝑛+𝑟𝑏𝑝 feasible space.
number 𝑟𝑏𝑝 ∈ [1, 𝑛] will allow us to select the gene(s) to be
modified.

Mutation M.2. This genetic operation allows us to explore
in the V-𝑤 plane new positions for the points. The mutation
in both genes is handled by random numbers (𝑁V, 𝑁𝑤) with
Gaussian distribution:

𝐵𝑔𝑗 =
{{{{{{{{{
𝐵𝑔𝑖,𝑗 + 𝑁V (0, 𝜎2 (𝑔)) if (𝑗 = 𝑟𝑏𝑝)𝐵𝑔𝑖,𝑗 + 𝑁𝑤 (0, 𝜎2 (𝑔)) if (𝑗 = 𝑛 + 𝑟𝑏𝑝)𝐵𝑔𝑖,𝑗 otherwise

(19)

with 𝑗 = 1 ⋅ ⋅ ⋅ 2𝑛. 𝐵𝑔𝑖,𝑗 and 𝐵𝑔𝑗 represent the 𝑗th elements of
vectors Bg

i and B̃g, respectively. To avoid overlapping points,
bounds for mutations on the abscissa axis are set depending
on the selected point to mutate (𝐵𝑔𝑟𝑏𝑝) and the location of its
neighbors according to

(i) 𝐵𝑔𝑖,𝑟𝑏𝑝 + 𝛼 < 𝐵𝑔𝑟𝑏𝑝 < 𝐵𝑔𝑖,𝑟𝑏𝑝+1 − 𝛼; if 𝑟𝑏𝑝 = 1,
(ii) 𝐵𝑔𝑖,𝑟𝑏𝑝−1 + 𝛼 < 𝐵𝑔𝑟𝑏𝑝 < 𝐵𝑔𝑖,𝑟𝑏𝑝+1 − 𝛼; if 𝑟𝑏𝑝 = 2 ⋅ ⋅ ⋅ 𝑛 − 1,
(iii) 𝐵𝑔𝑖,𝑟𝑏𝑝−1 + 𝛼 < 𝐵𝑔𝑟𝑏𝑝 < 𝐵𝑔𝑖,𝑟𝑏𝑝 − 𝛼; if 𝑟𝑏𝑝 = 𝑛,

where 𝛼 is a user-defined parameter that indicates how close
the points can be located. To achieve a good fit of the
nonlinearity 𝛼 must be small, relative to the search space
on the abscissa axis defined by Vmin and Vmax. Note that the
horizontal boundaries for the endpoints are delimited by
their position and their left or right neighbor, respectively.
Bounds for mutations on ordinate axis are fixed and equal for
all points. This allows each point to move freely throughout
the search space on the ordinate axis defined by 𝑤min and𝑤max. The vertical and horizontal bounds for a selected point
are illustrated in Figure 4. When mutation M.2 is required,
the selected point can be changed to a newpositionwithin the
grey rectangle. Details on how to determine Vmin, Vmax 𝑤min,
and 𝑤max will be given in Section 3.3.

To achieve a fine-tuning of all nonlinearity points, muta-
tions’ aggressiveness can be controlled through standard

deviation (17) as inmutationM.1. Note thatΔ 𝑠 = 𝑤max−𝑤min
is constant for all mutations over ordinate axis, while for
abscissa axis mutations, Δ 𝑠 can be calculated as

Δ 𝑠 = {{{{{{{{{
𝐵𝑔𝑖,𝑟𝑏𝑝+1 − 𝛼 − Vmin; if (𝑟𝑏𝑝 = 1)𝐵𝑔𝑖,𝑟𝑏𝑝+1 − 𝐵𝑔𝑖,𝑟𝑏𝑝−1 − 2𝛼 if (𝑟𝑏𝑝 = 2 ⋅ ⋅ ⋅ 𝑛 − 1)
Vmax − 𝐵𝑔𝑖,𝑟𝑏𝑝−1 − 𝛼 if (𝑟𝑏𝑝 = 𝑛) . (20)

MutationM.2 has great potential to explore the searching
space. This genetic operation will locate points where there
are slope changes. During first generations, it is useful to
shape nonlinearity, while in last ones, it allows a refinement.
However, when a point is located where there is a slope
change, it could be kept in this location until the end of gener-
ations, especially when there are abrupt changes in the slope.
Because jumps between points are not allowed withmutation
M.2, when a point is kept in a placewhere there is a significant
change of slope, one or more points would remain trapped
to the left or right of it. This would lead to having redun-
dant points in a segment that would not require so many
orworse, to having a segment (curvature) that would not con-
tain enough points. To avoid this drawback, the exploration
in the search space is complemented with mutation M.3.

Mutation M.3. This genetic operation is designed to con-
centrate as many points as possible on the curvatures that
nonlinearity can have.Therefore, it will be required that each
point can be displaced on the abscissa axis by jumping one or
more positions of the other points. Let us define a segment as
the horizontal space between two consecutive points (so for𝑛 points there will be 𝑛 − 1 segments); then a random integer
number 𝑟𝑠 ∈ [1, 𝑛 − 1] will indicate to which segment the
selected point will move. The first half of the offspring vector
is found using the following expression:

𝐵𝑔𝑗 = {{{{{
𝐵𝑔𝑖,𝑟𝑠 + 𝐵𝑔𝑖,𝑟𝑠+12 if (𝑗 = 𝑟𝑏𝑝)𝐵𝑔𝑖,𝑗 otherwise

(21)

with 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛. Note that if 𝑟𝑏𝑝 = 𝑟𝑠 or 𝑟𝑏𝑝 = 𝑟𝑠 − 1, the
corresponding point will not make a jump but it will be
located at the midpoint between its current position and
the position of the point on the right or left, respectively.
As in the mutation M.2 to prevent points from getting too
close together, the 𝛼 parameter is also used in this mutation;
therefore, a jump is conditioned to the space available in the
selected segment to accommodate a new point. Minimum
space should be 2𝛼. If this condition is not met, 𝑟𝑠 must be
regenerated to randomly search for another segment.

To provide a smooth transition between adjacent seg-
ments, gene mutation corresponding to the position on the
ordinates axis is performed using a quadratic interpolation.
To do that, three neighboring points are required.The second
half of the offspring vector is found using the following ex-
pression:
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𝐵𝑔𝑗 =
{{{{{{{{{{{{{{{
[(𝐵𝑔𝑗−𝑛)2 , 𝐵𝑔𝑗−𝑛, 1] ∗ [[[[[

𝑘2𝑘1𝑘0
]]]]]

if (𝑗 = 𝑛 + 𝑟𝑏𝑝)
𝐵𝑔𝑖,𝑗 otherwise

(22)

with 𝑗 = 𝑛 + 1 ⋅ ⋅ ⋅ 2𝑛. 𝐵𝑔𝑗−𝑛 is the V-coordinate of the selected
point to mute which can be found with (21); 𝑘0, 𝑘1, and 𝑘2
are the coefficients of the quadratic polynomial Ψ defined by
three adjacent points selected once the new V-coordinate of
the point that is mutating is known.The three adjacent points
can be selected directly when a point has mutated to the first
or last segment,

Ψ = {{{
𝑓((𝐵𝑔𝑖,1, 𝐵𝑔𝑖,𝑛+1) ; (𝐵𝑔𝑖,2, 𝐵𝑔𝑖,𝑛+2) ; (𝐵𝑔𝑖,3, 𝐵𝑔𝑖,𝑛+3)) : if (𝑟𝑠 = 1)𝑓 ((𝐵𝑔𝑖,𝑛, 𝐵𝑔𝑖,2𝑛) ; (𝐵𝑔𝑖,𝑛−1, 𝐵𝑔𝑖,2𝑛−1) ; (𝐵𝑔𝑖,𝑛−2, 𝐵𝑔𝑖,2𝑛−2)) : if (𝑟𝑠 = 𝑛 − 1) , (23)

while if the point has mutated to a nonextreme segment, the
three adjacent points can be selected using the two points that

define that segment plus one on its right or left. For more
effective exploration, a random number 𝑟3𝑝 ∈ (0, 1] is used
for selection:

Ψ = {{{
𝑓((𝐵𝑔𝑖,𝑟𝑠−1, 𝐵𝑔𝑖,𝑛+𝑟𝑠−1) ; (𝐵𝑔𝑖,𝑟𝑠 , 𝐵𝑔𝑖,𝑛+𝑟𝑠) ; (𝐵𝑔𝑖,𝑟𝑠+1, 𝐵𝑔𝑖,𝑛+𝑟𝑠+1)) : if (𝑟3𝑝 ≤ 0.5)𝑓 ((𝐵𝑔𝑖,𝑟𝑠 , 𝐵𝑔𝑖,𝑛+𝑟𝑠) ; (𝐵𝑔𝑖,𝑟𝑠+1, 𝐵𝑔𝑖,𝑛+𝑟𝑠+1) ; (𝐵𝑔𝑖,𝑟𝑠+2, 𝐵𝑔𝑖,𝑛+𝑟𝑠+2)) : otherwise

. (24)

Figure 5 illustrates how a jump occurs withmutationM.3.
Notice that the new ordinate is calculated according to the
polynomial formed by the two points of the segment plus
a point to the right: that is, 𝑟3𝑝 > 0.5. After a jump has
occurred, an ascending reordering of the points with respect
to the abscissa values is necessary.

Crossover C.2.This genetic operationworks just like crossover
C.1 and is applied only to vary the position of a point on the
ordinate axis:

𝐵𝑔𝑗 = {{{{{
𝐵𝑔𝑖,𝑗 + 𝐵𝑔best,𝑗2 if (𝑗 = 𝑛 + 𝑟𝑏𝑝)𝐵𝑔𝑖,𝑗 otherwise

(25)

with 𝑗 = 𝑛 + 1 ⋅ ⋅ ⋅ 2𝑛. 𝐵𝑔best,𝑗 is the 𝑗th element of vector Bg
best,

which corresponds to the individual in the current popula-
tion 𝑔 with the best fitness value.

3.2.3. Pole-Zero Classification. Due to the stochastic nature of
evolutionary algorithms, the binary values of (11) will change
as the algorithm evolves, generating different structures of𝐺𝑤(𝑧) and 𝐺ℎ(𝑧). The evolution of this piece of genetic
information is handled by a simple mutation operator.

Mutation M.4. Unlike the previous ones, this operator gen-
erates a new vector C̃g that depends entirely on the effects of
mutation, meaning that for this piece of genetic information
there is no information exchange between generations. This
allows free testing of different structures for 𝐺𝑤(𝑧) and 𝐺ℎ(𝑧)
to avoid premature convergence. When this operation is
required, a randomprocess will generate themutation vector:

𝐶𝑔𝑗 = {{{
1 if𝑁𝑐 ≤ 0.50 otherwise

(26)

with 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛𝑐 + 𝑛𝑟 + 𝑚𝑐 + 𝑚𝑟. 𝐶𝑔𝑗 is the 𝑗th element of
vector C̃g.𝑁𝑐 is a randomnumberwith standard uniformdis-
tribution on the open interval (0, 1). Note that the structure
of C̃g is built under two considerations: the LTI subsystems
cannot be improper and the sum of zeros and the sum of the
poles between both subsystems must be equal to the number
of zeros and poles of the BLA, respectively.

3.3. WH-EA Description. WH-EA is an elitist evolutionary
algorithm that evolves a population of 𝑁𝑃 individuals. Each
individual contains three portions of genetic information
related to the parameters of a Wiener-Hammerstein model(𝜃gi = [Pg

i ,Bg
i ,Cg

i ]). Like any other evolutionary algorithm,
WH-EA is inspired by biological evolution over generations.
Starting from an initial population, new generations are
created using information of the current generation 𝑔 and
performing crossover and/or mutation operations and selec-
tion based on the fitness of the new individuals. Algorithm 1
shows a pseudocode of main steps performed in WH-EA,
whereas details of all the parameters that the algorithm uses
are shown in WH-EA Parameters.

Initialize the Population. The initial population [P0 B0 C0]
contains 𝑁𝑃 individuals generated within a search space
delimited by lower and upper bounds. For each piece of
genetic information, the lower and upper bounds can be
determined from the information provided by the BLA
(location of poles and zeros and static gain).

Real and imaginary values of poles and zeros from the
BLA without modifications are introduced as part of the first



8 Complexity

wＧax

wＧin

w
(t
)

v(t)

Ｇin Ｇax

Selected point

(Bg
i,r

, B
g
i,n+r
)

(Bg
i,r

, B
g
i,n+r
)
(B̃g

r
, B

g
n+r
)

New position

Quadratic
polynomial

Selected
segment

(Bg
i,r+1

, B
g
i,n+r+1
)

(Bg
i,r+2

, B
g
i,n+r+2
)

Figure 5: Mutation M.3 with 𝑟𝑏𝑝 = 2, 𝑟𝑠 = 4, and 𝑟3𝑝 > 0.5. Jump
to the selected segment (dashed line). Quadratic polynomial (solid
line).

(1) Initialise the population;
(2) Evaluate fitness of all population;
(3) for 𝑔 = 1 toMaxGen do
(4) Find 𝜃gbest
(5) Random selection of a individual (𝑟1);
(6) Compute 𝛾(𝑔);
(7) if 𝑟𝑝𝑧𝑛𝑙 ≤ 𝛾(𝑔) then
(8) Compute B̃g using Algorithm 2;
(9) else
(10) Compute P̃g using Algorithm 3;
(11) end if
(12) if 𝑟𝑐 ≤ 𝜉 then
(13) Compute C̃g using Mutation M.4;
(14) end if
(15) Update population;
(16) end for
(17) Print 𝜃MaxGen

best

Algorithm 1: Pseudocode of WH-EA.

individual P0
1 of the initial population. For the rest, mutation

M.1 (16) is used but fixing the parent vector as P0
1, that is, the

BLA.
Therefore, mutation M.1 must be executed 𝑁𝑃 − 1 times

under the above conditions to generate mutated versions
of the BLA. Initialization and mutation M.1 are performed
considering a search space delimited by lower bound Pmin

and upper bound Pmax which are set around the values of the
BLA: 𝑃min

𝑗 = 𝑃01,𝑗 − Υmin
𝑗 ,

𝑃max
𝑗 = 𝑃01,𝑗 + Υmax

𝑗 , (27)

where Υmin
𝑗 and Υmax

𝑗 represent the 𝑗th elements of the user-
defined vectors Υmin and Υmax, respectively, indicating how
much the BLA’s pole/zero position can change as the algo-
rithm evolves.

On the other hand, the initial population corresponding
to two-dimensional points must be generated within a search
space defined horizontally by the minimum (Vmin) and

maximum (Vmax) amplitude of V(𝑡) (the output of 𝐺𝑤(𝑧))
and vertically by the minimum (𝑤min) and maximum (𝑤max)
amplitude of 𝑤(𝑡) (the input to 𝐺ℎ(𝑧)). Although V(𝑡) and𝑤(𝑡) are not known, Vmin and Vmax depend on the input𝑢(𝑡) and 𝐺𝑤(𝑧). Since 𝐺𝑤(𝑧) is a linear system, the following
expressions can be used:

Vmin = Ω ∗ 𝑢min,
Vmax = Ω ∗ 𝑢max, (28)

where 𝑢min and 𝑢max are the minimum and maximum values
of the signal 𝑢(𝑡), respectively, andΩ is a scaling factor which
depends on the pole/zero locations and the static gain of𝐺𝑤(𝑧). Without loss of generality, it is possible to model a
Wiener-Hammerstein system considering that both linear
blocks have unit gain.

Regarding 𝑤min and 𝑤max, if the input 𝑢(𝑡) with mean𝑢mean enters𝐺𝑤(𝑧) regardless of its structure, the mean of the
output signal Vmean will be equal to 𝑢mean. This is not the case
when the signal V(𝑡) enters the nonlinear block since the gain𝐾NL might provide an offset to𝑤(𝑡). However, since𝐺ℎ(𝑧) is a
linear block, the mean of the output 𝑦mean will be equal to the
mean of the incoming signal 𝑤mean. With this information,
the straight line of Figure 6 can be drawn, and𝑤min and𝑤max
can be found using the following equations:

𝑤min = 𝑦mean + 𝐾NL (Ω𝑢min − 𝑢mean) ,𝑤max = 𝑦mean + 𝐾NL (Ω𝑢max − 𝑢mean) . (29)

As can be seen from (28) to (29), the search space for non-
linearity depends on the input signal, output signal, static gain
of the BLA, and Ω which is a user-defined parameter. Since
both linear subsystems will be estimated with unit gain, nei-
ther of these will amplify their input signals, therefore Vmin >𝑢min and Vmax < 𝑢max. For these two conditions to be met, Ω
must be less than one. In the same way, it must be observed
that 𝑤min < 𝑦min and 𝑤max > 𝑦max. If Ω is less than one, the
first pair of conditionswill always bemet; however, there is no
guarantee that the second pair of conditionswill bemet. Since
it is possible to perform this check prior to the execution of
the algorithm, if the second pair of conditions are not met,Ω must be increased, but considering that it must be less
than one. It should also be taken into account that ifΩ is too
large, the search space will be larger than necessary, so the
algorithm will cost more to estimate static nonlinearity.

To initialize this portion of genetic information, the 𝑛
points are uniformly distributed between Ω𝑢min and Ω𝑢max
and located on the straight line shown in Figure 6. These
points are introduced as part of the first individual in the
population B0

1. The corresponding genetic information for
the rest of individuals is generated using mutation M.2 (19),
but considering that the parent vector is always B0

1.
Finally, genetic information corresponding to pole-zero

classification is initialized directly using mutation M.4 (26)𝑁𝑃 times.

Evaluate Fitness. Performance of each individual in the popu-
lation is defined by a fitness criterion which can be calculated
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Figure 6: Information to define the search space for the nonlinear function.

using (14), where 𝜃 is obtained from the encoded information
in [Pg

i ,Bg
i ,Cg

i ].
The Offspring. Once population has been initialized, for each
generation a random integer number 𝑟1 ∈ [1,𝑁𝑃] will be
used to select the parent from which an offspring P̃g will be
generated. As can be seen in Algorithm 1, not all genetic ope-
rators are applied at the same time to generate offspring; this
can help to expand diversity and avoid premature conver-
gence.

One or two pieces of the offspring genetic information
will be randomly selected for modification according to their
respective genetic operators. A random number 𝑟𝑝𝑧𝑛𝑙 ∈(0, 1] chooses betweenmodifying the portion related to static
nonlinearity using Algorithm 2 or the portion of genetic
information related to pole/zero locations using Algorithm 3.
The probability for this selection is handled by the control
parameter 𝛾(𝑔) defined as

𝛾 (𝑔) = 𝛾ini√1 + 𝑔 ∗ 𝛾rat ,
𝛾rat = (𝛾ini/𝛾end)2 − 1

MaxGen − 1 , (30)

where 𝛾rat is the rate at which the probability 𝛾(𝑔) will
decrease from initial probability 𝛾ini to final probability 𝛾end
as generations pass; therefore, 0 < 𝛾end < 𝛾ini ≤ 1. If 𝛾ini =1, the probability of modifying the genetic information of
nonlinearity in the first generations will be high, while the
probability of modifying the location of poles and zeros will
be low.On the other hand, if and 𝛾end = 0.5, in the final gener-
ations, the algorithm will modify with equal probability both
portions of genetic information.The selection of these values
is justified by the fact that pole/zero locations are known and
they will only be fine-tuned within a suitable search space
to amend possible errors in the BLA estimation, whereas
nonlinearity is completely unknown, so the algorithm should
focusmore on this portion of genetic information during first
generations.

Variation of genetic information corresponding to the
classification of poles and zeros for both LTI subsystems is
handled by a comparison between a random number 𝑟𝑐 ∈(0, 1] and the probability 𝜉 ∈ (0, 1]. The value of probability𝜉 is defined by the user and will be constant throughout

(1) if 𝑟𝑛𝑚𝑐 ≤ 𝛿𝑛𝑙 then
(2) Compute 𝜂(𝑔)
(3) if 𝑟𝑚𝑚 ≤ 𝜂min + 𝜂(𝑔) then
(4) Mutation M.2;
(5) else
(6) Mutation M.3;
(7) end if
(8) else
(9) Crossover C.2;
(10) end if

Algorithm 2: Modify two-dimensional points for nonlinear func-
tion.

(1) if 𝑟𝑙𝑚𝑐 ≤ 𝛿𝑧𝑝 then
(2) Mutation M.1;
(3) else
(4) Crossover C.1;
(5) end if

Algorithm 3: Modify polo/zero locations.

the evolution of the algorithm. Figure 7 shows the behaviour
of the control parameters (probabilities) used to select the
portions of genetic information that will be modified in each
generation.

Algorithm 2 is used to modify the genetic information
related to nonlinear static function. The control parameter𝛿𝑛𝑙 ∈ (0, 1] indicates the probability with which the mutation
(either M.2 or M.3) or crossover C.2 will be used. Probability
of selecting M.2 or M.3 is variable with respect to the
generations. During first generations, mutation M.3 is not
necessary, since the nonlinearity can be captured thanks to
the two-dimensional points movements due to mutationM.2
and crossover C.2 operations. Since it is very likely that
nonlinearity includes one or more curvatures, as the algo-
rithm evolves mutation M.3 will be required to concentrate
as many points as possible on these curvatures. The variable
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Figure 7: Control parameters ofWH-EA for selection of the genetic
information to be modified in generation 𝑔.
probability for selection between both mutations is defined
by

𝜂 (𝑔) = (1 − 𝜂min) − (1 − 𝜂min) 𝑔
MaxGen

, (31)

where 𝜂min ∈ (0, 0.5] is a user-defined parameter indicating
the minimum probability with which the mutation M.2 can
be selected. Note that according to (31) and Algorithm 2, the
maximum probability is 1 and occurs in the first generation.
As the algorithm evolves, this probability will decrease
linearly until it reaches 𝜂min in the last generation. When
Algorithm 2 is required a random number 𝑟𝑛𝑚𝑐 ∈ (0, 1] will
allow us to select either a mutation or crossover C.2. If a
mutation is selected, a new random number 𝑟𝑚𝑚 ∈ (0, 1] will
allow us to select between mutation M.2 or mutation M.3.

On the other hand, Algorithm 3 is used to modify the
genetic information related to pole/zero locations using
mutation M.1 or crossover C.1. The control parameter 𝛿𝑧𝑝 ∈(0, 1] indicates the probability with which each genetic
operation will be used. Since crossover C.1 causes offspring to
inherit genetic information from the best individual, a small
value of 𝛿𝑧𝑝 may lead to premature convergence, whereas a
value closer to 1 will cause the algorithm to converge very
slowly. When Algorithm 3 is required, a random number𝑟𝑙𝑚𝑐 ∈ (0, 1] will determine the genetic operation to be used.

Update. It is based on a competition between the generated
offspring and the individuals of the population. The contes-
tant with the best fitness will be the one who wins the com-
petition. From a randomly selected individual, the offspring
starts to compete until defeating an individual; when this
happens the descendant will take his place in the population
and the algorithm continues with the next generation. If the
offspring comes to compete with all individuals and could not
win, this will be discarded and the algorithm will pass to the
next generation.

4. Application of WH-EA and Results

WH-EA was tested on a numerical example and on the
benchmark for nonlinear system identification in (SYSID’09)
[9], where a Wiener-Hammerstein system is selected as test
object. The benchmark is not intended as a competition, but
as a tool to compare the possibilities of different methods to
deal with this specific nonlinear structure.

For both cases, the BLAwas estimated with theMATLAB
System Identification Toolbox [60] using a Box-Jenkins (BJ)
structure. Besides, trends and means were only removed
for the BLA identification. The following parameters of the
algorithm were set in common for both estimates: 𝜉 = 0.25;𝛿𝑧𝑝 = 0.75; 𝛿𝑛𝑙 = 0.75; 𝜂min = 0.35; in addition, initial and
final standard deviations for mutations were set to 20 and 1,
respectively.

4.1. Numerical Example. A Wiener-Hammerstein system
with the following structure was designed (where tansig is the
hyperbolic tangent sigmoid transfer function):

𝐺󸀠𝑤 (𝑧) = 0.1190(𝑧 − 0.9048) ,
𝑤󸀠 (𝑡) = 0.45 tansig (2.80V󸀠 (𝑡)) ,
𝐺󸀠ℎ (𝑧) = −0.01426

⋅ (𝑧 − 1.0510) (𝑧 + 1)(𝑧 − 0.9746 + 0.03656𝑗) (𝑧 − 0.9746 − 0.03656𝑗) .
(32)

A Gaussian excitation signal of 6 dB was filtered with
a cut-off frequency of 6Hz and used as input signal. The
system was simulated and 120000 input/output samples were
recorded and separated in two parts: the estimation data set𝑡𝑛 ∈ [1001, 70000] for identification purposes and the test
data set 𝑡𝑛 ∈ [71001, 120000] for validation purposes (in both
data sets first 1000 samples were ignored to avoid transient
effects). Furthermore, additive white Gaussian noise with a
Signal-to-Noise Ratio (SNR) of 45.32 dB was added to the
output.

The identification of the BLA was carried out and the
model obtained was expressed in factored form:

𝐺BLA = −1𝑒−3
⋅ (𝑧 − 1.0508) (𝑧 + 0.9631)(𝑧 − 0.9749 + 0.0366𝑗) (𝑧 − 0.9749 − 0.0366𝑗) (𝑧 − 0.9045) . (33)

The root mean square of the error (eRMS) obtained with
this linear model on test data was of 0.0414.

According to the BLA structure, vectorP0
1 was codedwith𝑛𝑐 = 0, 𝑛𝑟 = 2,𝑚𝑐 = 1, and𝑚𝑟 = 1 as follows:

P0
1 = [1.0508, −0.9631, 0.9749, 0.9045, 0.0366] . (34)

The search space for nonlinear function was defined withΩ = 0.28, while elements of Υmin and Υmax were set to 0.01
(except bounds for the zero 𝑧 = −0.9631 that were set to
0.1, since it influences slightly the dynamics and should have
freedom of movement during tuning).
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Table 1: Performance of the numerical example estimation using
different numbers of points 𝑛 to represent static nonlinearity.
𝑛 NRMSE (%) 𝑒RMS
8 99.179 1.183𝑒−3
10 99.396 1.109𝑒−3
12 99.564 1.044𝑒−3
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Figure 8: Convergence graph (a) and NRMSE of the captured non-
linearity (b) for Wiener-Hammerstein estimation with 𝑛 = 12.

WH-EA was executed 3 times with MaxGen = 5 ⋅ 106
and different number of points was chosen for the non-
linearity. For all trials, the algorithm was initialized with
60000 individuals and the minimum distance between two
points was set to 𝛼 = (Vmax − Vmin)/6𝑛. For each estimated
Wiener-Hammerstein model, the eRMS on the test data was
computed; in addition, the normalized root mean square
error (NRMSE) criterion was used to quantify the goodness
of fit between real and captured nonlinearity. The results are
reported in Table 1; for all cases piecewise linear interpolation
was used to connect the 𝑛 points.

The poles and zeros of the BLAwere correctly classified in
the three tests carried out. As can be seen in Table 1, the eRMS
of the Wiener-Hammerstein models decreased as the quality
of the captured nonlinearity increases. A reasonable model
was scored with 12 points considering that the RMS noise
was 9.98𝑒−4. A convergence graph for this model is shown
in Figure 8, during WH-EA execution, at 6𝑒4th generation
the poles and zeros of the BLA were correctly classified, and
from there the best individual of each generation conserved
the genetic information for this classification. Since the noise
RMS is known, at 𝑔 = 1𝑒6 the performance of the model
was good enough, so the algorithm could have been stopped.
Anyway, 5𝑒6 generations have been allowed in order to de-
monstrate the great precision that the algorithm can achieve.

In Figure 9, pole/zero locations of the BLA, the obtained
Wiener-Hammerstein model, and real system are compared.
Notice howWH-EA has moved initial locations trying to get
to the true values improving modelling error.

On the other hand, a graphical comparison between
real and captured nonlinearity is shown in Figure 10. Linear

subsystems of the estimatedWiener-Hammerstein model are
represented by (35), while the ordered pairs for the nonlinear
static function are shown in Table 2.

𝐺𝑤 (𝑧) = 0.0259𝑧 − 0.9048 ,𝐺ℎ (𝑧) = −0.01960
⋅ (𝑧 − 1.0512) (𝑧 + 0.9713)(𝑧 − 0.9746 + 0.0365𝑗) (𝑧 − 0.9746 − 0.0365𝑗) .

(35)

4.2. Nonlinear System Identification Benchmark. The system
to be modelled is an electronic nonlinear circuit with a
Wiener-Hammerstein structure (see Figure 11). This system
was built by Vandersteen [61] and presented as a benchmark
problem for system identification by Schoukens et al. [9].

The first linear dynamic system 𝐺1(𝑠) is designed as a
third-order Chebyshev filter (pass-band ripple of 0.5 dB and
cut-off frequency of 4.4 kHz). The second linear dynamic
system 𝐺2(𝑠) is a third-order inverse Chebyshev filter (stop-
band attenuation of 40 dB starting at 5 kHz). This system
has a transmission zero in the frequency band of interest.
This can complicate the identification significantly, because
the inversion of such a characteristic is difficult. The system
was excited with a filtered Gaussian signal (cut-off frequency
10 kHz). Data used for estimation corresponds to interval 𝑡𝑛 ∈[1, 100000], whereas test data corresponds to the remaining
part 𝑡𝑛 ∈ [101001, 188000]. In order to analyse the perform-
ance of estimationmethods, themean value of the simulation
error (𝜇), the standard deviation of the error (std), and the
root mean square value of the error (eRMS) must be calcu-
lated on test and estimation data [9].

Since first 5000 data samples just contain quantization
noise, a set of 95000 input/output data 𝑡𝑛 = 5001, . . . , 100000
was used to estimate the BLA.Multiple simulations were per-
formed considering different combinations of poles and zeros
for the input/output model and for the noise model. For each
BJ model, the eRMS on test data set 𝑡𝑛 = 101001, . . . , 188000
was computed. The BLA was obtained with 6 poles, 5 zeros,
and one sample delay for the input/output model and 3 zeros
and 3 poles for the noise model. The BLA is fully described
with 𝐾NL = 0.7840 and the pole-zero pattern shown in
Figure 12. The eRMS of this linear model was of 56.159mV
on test data and 43.143mV after removing trends and means.
According to the BLA structure, vector P0

1 was coded with𝑛𝑐 = 1, 𝑛𝑟 = 4,𝑚𝑐 = 2, and𝑚𝑟 = 2 as follows:
P0
1 = [0.7605, −0.2733, 0, −3.4122,− 30.2553, 0.6501, 0.7314, . . . ,0.8912, 0.8289, 0.7004, 0.4358, 0.1692] .

(36)

During BLA estimation stage, different noisemodels were
tested and it was observed that all poles, real zeros within
the unitary circle, and complex zeros where they are located
correspond to the dominant dynamics of the system, while
real zeros outside the unitary circle were more likely to vary
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Figure 9: (a) Poles of the real system (black +), the BLA (red ×), and the estimated 𝐺𝑤 (blue ×) and 𝐺ℎ (green ×) models. (b) Zeros of the
real system (black ⬦), the BLA (red o), and the estimated 𝐺ℎ model (green o).

Table 2: Coordinates of the estimated nonlinearity with 𝑛 = 12.
i 1 2 3 4 5 6 7 8 9 10 11 12
V𝑖 −0.9694 −0.5794 −0.3716 −0.2479 −0.1251 0.1038 0.1996 0.2893 0.3363 0.4739 0.7648 1.0808𝑤𝑖 −0.3303 −0.3250 −0.2894 −0.2354 −0.1415 0.1178 0.2031 0.2558 0.2754 0.3126 0.3309 0.3317
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Figure 10: Comparison between true (solid-blue) and estimated
nonlinearity defined as a piecewise linear function (dashed-red)
using pairs [V𝑖, 𝑤𝑖] (red circles).
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Figure 11: Wiener-Hammerstein benchmark.

their location.This information was used to define the search
space for refining the location of poles and zeros:

Υ
min = [0.025, 0.025, 0.025, 1, 10, 0.025, 0.025, . . . ,0.025, 0.025, 0.025, 0.025, 0.025] ,
Υ
max = [0.025, 0.025, 0.025, 1, 10, 0.025, 0.025, . . . ,0.025, 0.025, 0.025, 0.025, 0.025] .

(37)

Bounds (37) limit search space in the system dominant
dynamics within ±0.025, while for 𝑧 = −30.255 and 𝑧 =−3.412, limits are between ±10 and ±1, respectively.

Static nonlinearity is represented by piecewise linear
functions with 𝑛 = 8 points. Its search space was defined withΩ = 0.51 and the minimum distance between two points
was calculated with 𝛼 = (Vmax − Vmin)/10𝑛. The algorithm
was initialized with 5000 individuals and 3𝑒7 generations
were executed. The performance of the estimated Wiener-
Hammerstein model is shown in Table 3. In Figure 13, it
is depicted how the algorithm has distributed pole/zero
locations for both linear subsystems. Notice how some of
them were displaced to improve the modelling error. The
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Figure 12: Poles (×) and zeros (o) of the BLA for the benchmark
data (SYSID’09). Two real zeros fall outside the plot in −30.2553 and−3.4122.
outputs of the estimated Wiener-Hammerstein model, the
linearmodel error, and the nonlinearmodel error on test data
are shown in Figure 14, while the DFT spectra of this signals
are shown in Figure 15. Captured nonlinearity is plotted in
Figure 16.

Final estimated linear blocks 𝐺𝑤(𝑧) and 𝐺ℎ(𝑧) are shown
in (38) and (39) respectively, while coordinates for nonlin-
ear function are shown in Table 4. The estimated Wiener-
Hammerstein model contains 26 parameters of which 14 are
used to represent the static nonlinearity (without end points
since they can be located anywhere on their respective end
segments; nevertheless, these segments slopes are taken into
account). Figure 16 shows how mutation M.2 and mutation
M.3 located the two-dimensional points to capture the non-
linearity. As expected, due to the effect of mutationM.3, most
of them were concentrated on the curvature.

𝐺𝑤 (𝑧) = 6.5𝑒−4
⋅ (𝑧 + 0.0138) (𝑧 + 2.9034) (𝑧 + 26.76)(𝑧 − 0.7243) (𝑧 − 0.7324 + 0.4361𝑗) (𝑧 − 0.7324 − 0.4361𝑗) , (38)

𝐺ℎ (𝑧) = 0.0120
⋅ (𝑧 + 0.2635) (𝑧 − 0.7575 + 0.6513𝑗) (𝑧 − 0.7575 − 0.6513𝑗)(𝑧 − 0.8191) (𝑧 − 0.8899 + 0.1688𝑗) (𝑧 − 0.8899 − 0.1688𝑗) . (39)

4.3. Discussion. In contrast to other methods which generate
good initial estimates by splitting the poles and zeros of the
BLA, WH-EA allows us to identify Wiener-Hammerstein
models avoiding high user interaction which is an advantage
compared to methods using QBLA, where at least two
intermediate procedures are required before fine-tuning all
parameters of the Wiener-Hammerstein model.

The eRMSof 0.306mVachievedwithWH-EAon test data
is quite acceptable considering that the RMS of the quanti-
zation noise is 0.189mV. With respect to the initial model
(BLA), the error was reduced by a factor of 183.52 thanks

to the captured nonlinearity and the updated pole/zero
locations. Table 5 shows other proposals that have been tested
on the benchmark. It can be appreciated that the eRMS of this
paper is slightly higher than others; however, not all estimated
models have the same complexity. Some of them use complex
models with a greater number of parameters processing raw
data before identification, while in this work, WH-EA is fed
raw input/output data without preprocessing operations.

Comparing WH-EA with the proposals of Westwick and
Schoukens [42] and Vanbeylen [43] whose models have the
same complexity as the model estimated in this paper, the
results are quite similar; however, to obtain a goodfinalmodel
with these two proposals, it is required that the BLA be esti-
matedwith high precision. InVanbeylen [43] at the BLAdivi-
sion phase, a false position of a pole or zero could cause the
values of the fractional powers to be close to 1/2which would
cause the user to make a bad decision and the BLA is badly
divided.This problem is much more critical inWestwick and
Schoukens [42] since themethod is based on a graphical com-
parison between the poles and zeros of the BLA and the poles
and zeros of the QBLA.WithWH-EA, this problem does not
occur, since the evolutionary algorithm contemplates possi-
ble errors that can bemade in the estimation of the BLA.Dur-
ing the algorithm evolution, the binary code used for the
classification of the poles and zeros of the BLA can be changed
without user interaction as the false positions of the poles
and zeros are corrected. This is an important advantage of
WH-EA, since it is very likely that the BLA estimate is sub-
ject to errors due to noise and nonlinearity effects; this has
been experimentally demonstrated; for this reason, many
proposals carry out a final readjustment of the parameters of
the Wiener-Hammerstein model.

About the computational complexity, an iteration inWH-
EA involves the random selection of an individual from the
population, the offspring generation according to the genetic
operations indicated in Section 3, the calculation of the objec-
tive function of the offspring, and the population update.This
algorithm was implemented on MATLAB� software and was
run on a personal computer with core i7 processor of 2,6GHz
and 16Gb of RAM. The objective function was easily imple-
mented using the filter command to simulate both linear sub-
systems, while the nonlinearity was interpolated using the
interp1 command. For the benchmark system, the average
time consumed per 50 iterations was 1.16 s.

5. Conclusions

In this paper, a new method (WH-EA) to identify Wiener-
Hammerstein systems in a single step is proposed. The pro-
posal estimates all parameters of the Wiener-Hammerstein
model based on a customized evolutionary algorithm (WH-
EA). Unlike conventional procedures, WH-EA is able to look
for the best BLA split capturing at the same time the process
static nonlinearity with high precision, solving a single opti-
mization problem. The algorithm is fed with the estimated
BLA and its pole/zero locations are subtly modified within an
adequate search space to allow its fine-tuning, while piece-
wise linear function is used for the nonlinear block. The
performance of this approach has been evaluated through
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Table 3: Performance indicators of the estimated Wiener-Hammerstein model. All values are shown in mV.

BLA Wiener-Hammerstein
Estimation Test Estimation Test𝜇 −35.825 −35.951 5.6𝑒−4 1.1𝑒−5

std 42.108 43.143 0.322 0.306𝑒RMS 55.286 56.159 0.322 0.306
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Figure 13: (a) Poles (×) and zeros (o) of the linear subsystem 𝐺𝑤 (blue) and BLA (red). Zero in 𝑧 = −30.2553 belonging to BLA and its
adjusted final value in 𝑧 = −26.7609 fall outside the plot. (b) Poles (×) and zeros (o) of the linear subsystem 𝐺ℎ (green) and BLA (red).

1 2 3 4 5 6 7 8
Discrete time ×104

−1.5

−1

−0.5

0

0.5

1

O
ut

pu
t (

V
)

Figure 14: Model output (blue), simulation error of the BLA (grey),
and simulation error of the estimated Wiener-Hammerstein model
(black).

a numerical example with a complex static nonlinearity and
through the well-known benchmark data (SYSID’09). The

results show that it is possible, using WH-EA, to identify
a Wiener-Hammerstein system with a good precision in a
parametric framework avoiding high user interaction and
drawbacks involved in using the QBLA. Further research will
be related to WH-EA extension for nonlinear multivariable
systems by using a multiobjective optimization approach.

WH-EA Parameters

nc: Number of pairs of complex conjugate
zeros of the BLA

nr: Number of real zeros of the BLA
mc: Number of pairs of complex conjugate

poles of the BLA
mr: Number of real poles of the BLA
n: Number of points to

represent nonlinearity𝐾NL: Static gain of the BLA
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Table 4: Nonlinearity coordinates (𝑛 = 8, 14 parameters) estimated by WH-EA from benchmark data.

𝑖 1 2 3 4 5 6 7 8
V𝑖 −0.2168 0.1596 0.3819 0.4943 0.6047 0.7596 1.0811 1.3953𝑤𝑖 −0.1979 0.1440 0.3443 0.4276 0.4822 0.5248 0.5698 0.5901

Table 5: Performance measurements on benchmark data (SYSID’09). All the values are shown in mV. 𝜃 indicates the number of parameters
used for the model.

Method/technique 𝑒RMS (mV) 𝜃
Nonparametric BLA, QBLA [41] 0.278 44
Classification of poles and zeros using QBLA [42] 0.286 26
Fractional model parameterization [43] 0.295 26
Advanced method [44, 45] 0.30 64
WH-EA (this paper) 0.306 26
Brute force method [45] 0.31 30
Scanning technique [46] 0.370 -
Polynomial nonlinear state space [47] 0.42 797
Generalized Hammerstein-Wiener [48] 0.481 47
Incremental nonlinear optimization [49] 0.679 25
LS-SVMs [50] 4.070 -
Biosocial culture [51] 8.546 34
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Figure 15: DFT spectra of the modelled output signal (blue), linear
model error (grey), and nonlinear model error (black).
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Figure 16: Captured nonlinearity as a piecewise linear function
with 𝑛 = 8 by WH-EA from the benchmark data. Notice that the
nonlinear block characterization only needs 14 parameters since the
first and last straight segments can be defined just with their angles.

𝜎2ini, 𝜎2end: Initial and final standard deviations for
control of the aggressiveness of mutations
M.1 and M.2 (𝜎2ini > 𝜎2end)𝜎2ratio: Rate with which the standard deviation𝜎(𝑔)2 decreases from 𝜎2ini to 𝜎2endΔ 𝑠: Space over which a gene can move𝛼: Minimum distance between
two points on the abscissa axis for
mutations M.2 and M.3Ω: Scale factor to define the search space for
static nonlinearity

MaxGen: Generations number
NP: Population size𝛿𝑧𝑝: Control parameter for selection between

mutation M.1 or crossover C.1𝛿𝑛𝑙: Control parameter for
selection between mutation (either M.2 or
M.3) or crossover C.2𝜂(𝑔): Variable probability for selection between
mutation M.2 or mutation M.3𝜂min: Minimum probability for selection of
mutation M.2. The maximum probability
for this selection is 1𝛾(𝑔): Variable probability to choose between
modifying static nonlinearity or location
of poles and zeros𝛾rat: Rate at which 𝛾(𝑔) will decrease from
initial probability 𝛾ini = 1 to final
probability 𝛾end = 0.5𝜉: Probability to modify the genetic
information related to the classification of
poles and zeros.
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