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Abstract 13 

The use of laser scanning acquired from the air, or ground, holds great potential for the assessment 14 

of forest structural attributes, beyond conventional forest inventory. The use of full-waveform 15 

airborne laser scanning (ALSFW) data allows for the extraction of detailed information in different 16 

vertical strata compared to discrete ALS (ALSD). Terrestrial laser scanning (TLS) can register 17 

lower vertical strata, such as understory vegetation, without issues of canopy occlusion, however 18 

is limited in its acquisition over large areas. In this study we examine the ability of ALSFW to 19 
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characterize understory vegetation (i.e. maximum and mean height, cover, and volume), verified 20 

using TLS point clouds in a Mediterranean forest in Eastern Spain. We developed nine full-21 

waveform metrics to characterize understory vegetation attributes at two different scales (3.75 m 22 

square subplots and circular plots with a radius of 15 m); with, and without, application of a height 23 

filter to the data. Four understory vegetation attributes were estimated at plot level with high R2 24 

values (mean height: R2 = 0.957, maximum height: R2 = 0.771, cover: R2 = 0.871, and volume: R2 25 

= 0.951). The proportion of explained variance was slightly lower at 3.75 m side cells (mean 26 

height: R2 = 0.633, maximum height: R2 = 0.470, cover: R2 = 0.581, and volume R2 = 0.651). 27 

These results indicate that Mediterranean understory vegetation can be estimated and accurately 28 

mapped over large areas with ALSFW. The future use of these types of predictions includes the 29 

estimation of ladder fuels, which drive key fire behaviour in these ecosystems. 30 

 31 

1. Introduction 32 

Understory vegetation is an essential component of forest ecosystems (Suchar and Crookston, 33 

2010). The understory is critical for wildlife habitat, nesting and foraging (Hill and Broughton, 34 

2009; Martinuzzi et al., 2009, Wing et al., 2012), impacts overstory regeneration (Royo and 35 

Carson, 2006), provides protection against soil erosion (Suchar and Crookston, 2010), as well as 36 

mediates microclimatic conditions below the canopy. The height, cover, and condition of the 37 

understory are also key drivers of fire behavior through fuel ladders, which drive crown fires 38 

(Molina et al., 2011). These types of fires are the most dangerous in terms of economic impacts 39 

and tree death (Molina et al., 2009). 40 
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Despite its importance, understory vegetation has conventionally been difficult to describe 41 

spatially, particularly over large areas (Wing et al., 2012). Traditional techniques, such as the line 42 

interception method (Canfield, 1941), often used in field surveys (Vierling et al., 2013), are very 43 

costly and only provide information over small spatial extents (Riaño et al., 2007). Airborne or 44 

satellite-borne passive optical remote sensing approaches can acquire data over large areas, but 45 

have limitations for characterizing vertical forest structure (Kerr and Ostrovsky, 2003; McDermid 46 

et al., 2005; Wulder and Franklin, 2012).  47 

Active remote sensing techniques, such as Light Detection and Ranging (lidar), provide horizontal 48 

and vertical information of different canopy layers (Ruiz et al., 2018). Several studies have 49 

estimated characteristics of understory vegetation cover using discrete return airborne lidar, also 50 

known as discrete airborne laser scanning (ALSD, Table 1). Most of these studies utilise 51 

classification approaches, where understory vegetation is classified based on a set of characteristics 52 

derived from point cloud data (Hill and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et al., 53 

2010). Less common approaches involve regression, where understory characteristics are mapped 54 

in a continuous fashion (Wing et al., 2012). Martinuzzi et al. (2009) defined and classified two 55 

categories of understory cover (above and below 25%) using ALSD in a mixed temperate 56 

coniferous forest in Northern Idaho with an overall classification accuracy of 0.83 and a kappa 57 

value of 0.66. In a temperate deciduous woodland in Cambridgeshire (England), Hill and 58 

Broughton (2009) predicted the presence and absence of understory using two separate leaf-on and 59 

leaf-off ALS flights, with a pulse density of 0.5 m-2 and 1 m-2, respectively. The overall accuracy 60 

and kappa value of the classification were 0.77 and 0.53, respectively. Mosdorf et al. (2010) 61 

classified different vertical layer strata using height and intensity from ALSD in a pine-evergreen 62 

oak woodland in the French Mediterranean region, resulting in an overall accuracy of 0.48 for the 63 
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shrub layer. More recently, Wing et al. (2012) estimated understory cover in an interior ponderosa 64 

pine forest in Northeastern California using ALSD with a mean density of 6.9 points m-2. The 65 

authors introduced a new metric to characterize understory ALS points using a height and intensity 66 

filter, resulting in a proportion of explained variance of 0.74 and relative root mean square error 67 

(nRMSE) of 22%. Kobal et al. (2015) also used ALSD and extracted a range of canopy gap and 68 

understory information such as canopy “sinkholes” and plant species richness beneath dense forest 69 

cover. Other studies estimated shrub height and cover in Central Portugal and the Spanish 70 

Mediterranean using ALSD (Riaño et al., 2007; Estornell et al., 2011). However, these sites were 71 

dominated by shrubland, where there is little overstory, which reduces the impact of resulting of 72 

overstory occlusion.  73 

As opposed to discrete return systems, full-waveform airborne laser scanning (ALSFW) can register 74 

the returning pulse characteristics as they pass through the forest canopy, allowing for the 75 

extraction of additional information on forest structure (Hermosilla et al., 2014a). As the return 76 

pulse provides a full representation of the intercepted forest structure, it is likely an improved 77 

representation of understory vegetation (Anderson et al., 2016). This is because the vertical 78 

resolution is increased within each footprint and compared to a limited number of discrete points 79 

(Vierling et al., 2013). However, there are only few studies demonstrating the capability of ALSFW 80 

to characterize understory vegetation (Table 1). Hancock et al. (2017) characterized voxelized 81 

understory cover in an urban area (Luton, England) using ALSFW data. They proposed a new 82 

method to calibrate and validate results retrieved from ALSFW using TLS as reference and obtained 83 

an understory cover accuracy of 24% at 1.5 m horizontal and 0.5 m vertical resolution.  Harding 84 

et al. (2001) derived canopy height profiles (CHP) retrieved from a large-footprint ALSFW such as 85 

Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) and ground-based measures. 86 
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Focusing on the understory strata, SLICER underestimated cover by 33% compared to ground-87 

based measures. Comparing ALSFW to ALSD for more conventional forest inventory attribute 88 

estimation, Hermosilla et al. (2014a) found no statistical difference for many of the compared both 89 

technologies to estimate canopy fuel and structure attributes. Cao et al. (2014) used ALSFW to 90 

estimate biomass components, finding that ALSFW explained more variability for crown biomass 91 

than ALSD, and that the combination of both datasets produced the best results. Fieber et al. (2015) 92 

applied a procedure based on Harding et al. (2001) to obtain the CHP, using small-footprint 93 

ALSFW, and observed a strong relationship between ALS and field data with a mean R2 of 0.75. 94 

Lastly, Anderson et al. (2016) found that in an urban woodland landscape, canopy height estimated 95 

by ALSD was more biased, and intensity less accurate, than that provided by ALSFW.  96 

Compared to ALS, terrestrial laser scanning (TLS) can produce a higher number of laser returns 97 

due to the close range nature of the technology (Vierling et al., 2013). This allows analysis of 98 

understory structure in much more detail (Vierling et al., 2013). TLS systems can register denser 99 

point clouds in lower vegetation (e.g. terrain, canopy base and understory) (Chasmer et al., 2006; 100 

Hilker et al., 2010; Crespo-Peremarch and Ruiz, 2017) and produce forest inventory information 101 

commensurate with field observations, registering data for more than 97% of the trees in 102 

deciduous, coniferous and mixed forests (Maas et al., 2008). However, despite its high accuracy, 103 

there is a lack of automatic algorithms to extract height and species from individual trees with TLS 104 

data (Liang et al., 2016). The highly detailed representation of the three-dimensional structure of 105 

the forest stand makes TLS point clouds an ideal dataset to characterize understory vegetation 106 

(Vierling et al., 2013; Greaves et al., 2015). TLS is often considered a much more efficient method 107 

than conventional field work, and it has successfully been proved as an effective and accurate 108 

approach to calibrate ALS-based models (Hopkinson et al., 2013; Hancock et al., 2017). However, 109 
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because TLS is limited in its spatial coverage, it is restricted in its use as a forest management tool 110 

at broad spatial scales. 111 

 112 

In this paper we explore the capacity of ALSFW data to characterize understory vegetation in a 113 

Mediterranean forest ecosystem in Eastern Spain. In this region, understory structure depends on 114 

local climate and management practices. It is also a key variable in fire fuel assessment, which is 115 

a critical social and environmental issue for Eastern Spain. We first review existing ALSFW metrics 116 

in the literature for overstory vegetation assessment and use these underlying principals to propose 117 

a set of new full-waveform metrics designed for understory vegetation assessment. These new 118 

metrics were derived using a voxel based approach and applied to estimate understory height, 119 

cover, and volume across a series of plots in the region. The metrics were validated using TLS 120 

data acquired simultaneously with ALSFW point clouds. We conclude with an assessment of the 121 

ALS-based approaches and propose some recommendations for further development and testing 122 

of ALSFW metrics.  123 

 124 

2. Methods 125 

1. Study area 126 

The study area is located in the Natural Park of Sierra de Espadán, in the central Mediterranean 127 

region of Spain, about 50 km to the north of València (Fig. 1). The region is highly mountainous 128 

with steep hillsides, where elevation ranges from sea level to 1100 m within a few kilometers. 129 

Because of its topography and orientation, Sierra de Espadán Natural Park receives higher annual 130 

rainfall than its local surroundings, which combined with its unique geomorphology makes it a 131 
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regional hotspot for biodiversity. The total area of the Natural Park is 31,000 ha, with our foci sites 132 

covering 12% (3,741.5 ha). The dominant species are Aleppo pine (Pinus halepensis), maritime 133 

pine (Pinus pinaster), cork oak (Quercus suber), and holm oak (Quercus ilex). The 134 

presence/absence and density of understory is very heterogeneous in the study area. Generally, 135 

forest stands dominated by maritime pine and cork oak have little or no understory (see Fig. 2), 136 

while stands dominated by Aleppo pine have much taller and denser understory (Fig. 2b and 3). 137 

The most common understory species are kermes oak (Quercus coccifera), tree heath (Erica 138 

arborea), brezo (Erica multiflora), flax-leaved daphne (Daphne gnidium), mastic (Pistacia 139 

lentiscus), aulaga (Genista scorpius), wild asparagus (Asparagus acutifolius), rosemary 140 

(Rosmarinus officinalis), Mediterranean buckthorn (Rhamnus alaternus), black hawthorn 141 

(Rhamnus lycioides), false olive (Phillyrea angustifolia), wild madder (Rubia peregrina), 142 

phoenicean juniper (Juniperus phoenica), common smilax (Smilax aspera), and thyme (Thymus 143 

sp.).144 
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Table 1. Summary of existing studies about the characterization of understory using ALS with overstory presence. 145 

 146 

 147 

 148 

Study Study Area Ecosystem Definition of 
forest types Target attributes Data Density 

(points.m-2) 
No. of plots 

(plot size m2) Results 

Martinuzzi et 
al. (2009) 

Private industrial and 
experimental managed   forest 

in  
Moscow Mountain in Northern 

Idaho, USA (30,000 ha) 

Ponderosa pine (Pinus 
ponderosa), Douglas fir 
(Pseudotsuga menziesii), 
grand fir (Abies grandis), 
western red cedar (Thuja 

plicata) and 
western larch (Larix 

occidentalis) 

Mixed temperate 
coniferous 

Presence/absence of 
understory 

shrubs and snags 
(where cover > 25%) 

ALSD - 83 (405) 

Overall accuracy = 
0.83 

kappa = 0.66 
(Classification) 

Hill and 
Broughton 

(2009) 

Monks Wood National Nature 
Reserve in Cambridgeshire, 

England (157 ha) 

Ash (Fraxinus excelsior), 
English oak (Quercus robur), 
field maple (Acer campestre), 
silver birch (Betula pendula), 
aspen (Populus tremula) and 

small-leaved elm (Ulmus 
carpinifolia) 

Temperate 
deciduous 
woodland 

Presence/absence of 
understory 

combining data 
from leaf-on and 

leaf-off 

ALSD 

Leaf-off: 1 
pulse.m-2 

Leaf-on: 0.5 
pulse.m-2 

132 (400) 

Overall accuracy = 
0.77 

kappa = 0.53 
(Classification) 

Morsdorf et al. 
(2010) 

Experimental Mediterranean 
region of Lamanon, France 

(16.5 ha) 

Aleppo pine (Pinus 
halepensis) and holm oak 

(Quercus ilex) 

Mediterranean 
pine-evergreen oak 

woodland 

Presence/absence of 
different 

vertical strata 
ALSD 3.7 63 (25) 

Overall accuracy = 
0.48 

(Classification of 
shrub layer) 

Wing et al. 
(2012) 

Managed Blacks Mountain 
Experimental Forest in 

northeastern California, USA 
(4,358 ha) 

Ponderosa pine (Pinus 
ponderosa Dougl. ex P. and 

C. Laws), 
fir (Abies concolor (Gord. 

And Glend.) Lindl), 
incense-cedar (Calocedrus 

decurrens (Torr.) Florin) and 
Jeffrey pine (Pinus jeffreyi) 

Interior ponderosa 
pine 

Understory 
vegetation cover ALSD 6.9 154 (40.5) 

R2 = 0.74 
bias = 0 

RMSE = 0.064 - 
0.0735 

nRMSE = 22% 
(Regression) 

Hancock et al. 
(2017) Luton, England (100 ha) Woodland, scrubland, and 

parkland Urban area Understory 
vegetation cover ALSFW 0.5-4 pulses.m-2 8 (subplot=1.5m) 

nRMSE = 24% 

(Verification at 
voxel-level) 
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  149 

  150 

 151 

Fig. 1. Study area location in (a) South-Western Europe, (b) Natural Park of Sierra de 152 
Espadán (in green), and (c) plot locations (in yellow) within study area. 153 

 154 
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  155 

 156 

Fig. 2. Field photographs from (a) a maritime pine dominant plot with absence of understory, 157 
and (b) an Aleppo pine dominant plot with high presence of understory. 158 

 159 

 160 
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  161 

 162 

Fig. 3. Box and whiskers representing TLS understory metrics (mean height: Hmean, maximum 163 
height: Hmax, cover: C, and volume: V) categorized by dominant species (Pinus halepensis, 164 
Mixed Pinus pinaster and Quercus suber, and Pinus pinaster) and slope (low, medium, and 165 

high) of the plot. 166 
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 167 

2. TLS data 168 

TLS data acquisition was undertaken between September 29th 2015 and October 23rd 2015 using 169 

a FARO FOCUS 3D 120 phase-based laser scanner (Table 2). Data were acquired in 21, 15 m 170 

radius circular plots (area of 706.86 m2). Plot centers were registered with a GPS Leica RTK 1200+ 171 

series receiver with an average accuracy of 0.40 m ± 0.27 m in XY dimension and 0.73 m ± 0.51 172 

m in Z dimension. At each plot nine scans were acquired to minimize occlusion, with one scan in 173 

the plot center, four at the edge of the plot at each cardinal direction (N, E, S, W), and four at a 174 

distance of 7.5 m from plot center with the directions corresponding to NE, SE, SW, and NW. The 175 

total point count of the 9 co-registered point clouds was approximately 100 million, with each 176 

return consisting of XYZ coordinates, intensity, plot id, and scan id. 177 

During TLS data acquisition the maximum height of the understory was also assessed at each site 178 

by trained forestry staff. This involved measuring the lower crown of the dominant and co-179 

dominant trees, as well as the maximum height of the shrub and understory layer. This information 180 

was later used to provide the height threshold between understory and overstory in order to remove 181 

overstory point clouds from TLS data described in section 2.4.  182 

 183 

Table 2. TLS data specifications. 184 

 185 

Specification Value 

Sensor FARO FOCUS 3D 120 

Accuracy ±2 mm at 25 m 

Range 0.6 – 120 m 
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Pulse frequency 97 Hz 

Scan angle 
Horizontal: 300º 

Vertical: 360º 

Wavelength 905 nm 

Beam divergence 0.19 mrad 

 186 

3. ALSFW data  187 

ALSFW data were acquired on September 16th 2015 over 7,465.53 ha using a LiteMapper 6800 188 

with a pulse density of 14 pulses m-2. Data were acquired at a flight altitude between 600 and 820 189 

m above sea level, at 300 kHz pulse frequency, and with a scan angle of ±37°. The study area was 190 

flown over with contiguous flight stripe side-lap between 55% and 77%. After processing, 191 

waveforms were provided in a variable number of bins (80-160-240 bins) depending on what 192 

height the pulse intercepted the vegetation, with a temporal sample spacing of 1 ns (0.15 m) and a 193 

footprint size of 0.24 m. In addition to the ALSFW, the data were also provided in a discrete format 194 

(ALSD), which was later used to create the Digital Terrain Model (DTM). The vertical accuracy 195 

of the ALSD, verified using a set of ground control points located in open and flat areas, was 4.3 196 

cm (RMSE). 197 

 198 

4. Data pre-processing 199 

Point heights of the ALS and TLS datasets were normalized using DTMs derived from each of the 200 

point clouds. In the case of ALS, classified ground points were provided by the vendor. TLS 201 

ground points were classified using a variation of the Axelsson (2000) algorithm implemented in 202 
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LAStools (2017; version 171017). DTMs with a resolution of 0.3 m were generated and each 203 

dataset was then normalized.  204 

TLS-based metrics characterising the understory require two additional pre-processing steps. First, 205 

points registered on tree trunks were removed using a combination of intensity filtering and manual 206 

point cloud editing. By examining the TLS point cloud intensity values we found that returns with 207 

intensity value higher than 170 can be flagged as tree trunks. Using a point cloud editor, TLS 208 

returns adjacent to the trunks were also removed to ensure points located on tree trunks were no 209 

longer included in the analysis. In the second pre-processing step returns located above the field-210 

measured maximum understory height were removed (see Fig. 4). 211 

A process described by Hermosilla et al. (2014b) was used to remove waveform noise present in 212 

the ALSFW data. First, a noise threshold was defined as the mean plus four times the standard 213 

deviation of the waveform (Lefsky et al., 2005). This provided a lower threshold by which all 214 

lower waveform information was removed. Next, a Gaussian filter was applied to smooth and 215 

remove any remaining noise present in the waveform, where the kernel size was defined by the 216 

full width at half-maximum (Duong, 2010; Cao et al., 2014; Hermosilla et al., 2014b). This filter 217 

calculates the new amplitude value as the weighted average of the adjacent amplitude values, 218 

where the weights depend on the bell shaped Gaussian distribution. The new amplitude values 219 

slightly differ from the original ones (Hancock et al., 2015), however, the shape and proportion of 220 

the waveform is kept, and therefore ALSFW data values are not highly influenced. 221 

 222 

5. Voxelization 223 
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Voxelization offers a number of key benefits when dealing with huge amount of data, such as TLS 224 

and ALSFW data. It allows the reduction of data volume by clustering lidar return pulses into voxels 225 

(e.g. rectangular prisms), and in the case of vegetation it allows the characterization of the amount 226 

of space vegetation occupies. The voxel size is defined by the user and depends on the density of 227 

the data and the desired level of abstraction. In our case the horizontal size of the voxels was based 228 

on the ALS footprint size and pulse density, while the vertical dimension was based on the 229 

temporal sample spacing (i.e. 0.15 m). Each voxel was also assigned a maximum amplitude value 230 

of the points located inside. 231 

We voxelized both the TLS and ALS datasets using a 0.75 x 0.75 x 0.15 m voxel size (henceforth 232 

referred to as 0.75 m) in order to have the lowest number of empty voxels without a loss of 233 

accuracy (Crespo-Peremarch et al., 2016). We then characterized the understory at two spatial 234 

scales; 3.75 x 3.75 x 0.15 m (i.e. 5 x 5 columns of voxels; henceforth referred to as 3.75 m), which 235 

is denoted as “cell-level” of understory vegetation, as well as at the broader plot-level scale (15 m 236 

radius).  237 

In case of the ALSFW data, the voxelization had additional purpose and was used to derive pseudo-238 

vertical waveforms (Hermosilla et al., 2014b). Pseudo-vertical waveforms are created using the 239 

voxel amplitude values in each column of voxels. These artificial waveforms are used to correct 240 

the spatial displacement produced by off-nadir scan angles. In the case of the TLS data, voxelized 241 

point clouds were used to calculate understory attributes described below. 242 

 243 
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 244 

 245 

Fig. 4. Flowchart of ALSFW and TLS data processing 246 

 247 

1. TLS-based understory attributes 248 

Four key variables describing the understory vegetation were extracted from the TLS voxels: mean 249 

understory height (Hmean), maximum understory height (Hmax), understory canopy cover (C) and 250 

total volume, which is defined as three-dimensional space occupied by understory (V) (Fig. 4). 251 

These four understory attributes were used as the observed variables and modelled with ALSFW 252 

derived predictors. 253 
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To calculate the Hmax, we computed the 99% height of each 0.75 m voxel and then extracted the 254 

maximum within each 3.75 m side cells (cell-level). Hmean was defined as the average of the 99% 255 

heights of each 0.75 m across the 3.75 m cells. A proportion of filled voxel columns within each 256 

3.75 m cell was used to describe C. A minimum threshold of 10 points was used to determine filled 257 

voxels in each column, and a minimum of one filled voxel was required to define a column as 258 

filled. A sum of all filled voxels in each column was used as an estimate of V. Fig. 3 shows these 259 

TLS variables categorized by the dominant species and the slope of the plot. 260 

In addition to the cell level (3.75 m), all attributes were also calculated at plot-level (15 m) (see 261 

Fig. 4). 262 

 263 

2. ALSFW metrics 264 

A suite of ALSFW metrics were used to predict TLS-derived understory attributes. We examined 265 

20 metrics previously described in the literature (Duong, 2010; Duncanson et al., 2010; Zhang et 266 

al., 2011) (Table 3) and computed nine more, potentially more suitable for characterizing the 267 

understory structure. The 20 previously applied ALSFW metrics are based on (1) return energy, (2) 268 

elevation, or (3) extracted from Gaussian iterative decomposition (i.e. optimized using the 269 

Levenburg-Marquardt method) (Hofton et al., 2000). The nine new metrics we introduce focus on 270 

the lower part of the waveform and include: HFEV (Height at First Empty Voxel) and HFEVT 271 

(Height at First Empty Voxel from Threshold), EFEV (Energy to First Empty Voxel), nEFEV 272 

(normalized Energy to First Empty Voxel), FVU (Filled Voxel at Understory), NFVU (Number of 273 

Filled Voxels at Understory), BC (Bottom of Canopy), BCE (Bottom of Canopy Energy) and BCD 274 

(Bottom of Canopy Distance). 275 
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 276 

HFEV and HFEVT are related to the understory height and analyze the pseudo-vertical waveform 277 

in the vertical dimension from the ground upwards. HFEV is computed as the height from the 278 

ground to the first filled voxel (defined as an amplitude higher than five (Fig. 5a)). 279 

To account for low shrubs close to the ground and a more open understory, the HFEVT calculates 280 

the height of the first filled voxel above 1 m (Fig. 5b). EFEV and nEFEV are related to the 281 

properties of the understory. The first attribute is the sum of amplitudes from the ground to the 282 

understory height, which corresponds to HFEV. The nEFEV is a relative measure, and is equal to 283 

the EFEV divided by the sum of amplitude of the whole waveform. FVU and NFVU are related 284 

to understory cover. FVU examines if there are any filled voxels between two given heights (Fig. 285 

5c), and NFVU is the number of filled voxels divided by the number of voxels between these two 286 

heights (Fig. 5d). Based on the vegetation in our study site, the lower and upper thresholds were 287 

set to 0.15 m and 1 m, respectively. 288 
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Name Class Description Reference 

WD 

Elevation 

Waveform distance 
Duong, 2010 

ROUGH Roughness of outermost canopy 

Hn Height at nth percentile of energy Kimes et al., 2006 

RWE 

Energy 

Return waveform energy Duong, 2010 

MAX E Maximum energy 

Duncanson et al., 2010 

VARIANCE Variance of energy 

SKEWNESS Skewness of energy 

HEIGHT Qn Proportion of energy in nth elevation quarter 

ENERGY Qn Proportion of energy in nth energy quarter 

N GS 

Gaussian Iterative Decomposition 

Number of Gaussian curves in the waveform 

N GS STARTPEAK Number of Gaussian curves between the beginning of the waveform and the position of MAX E 

N GS ENDPEAK Number of Gaussian curves between the position of MAX E and the end of the waveform 

CE Canopy return energy extracted from canopy Gaussian curves 

Zhang et al., 2011 

GE Ground energy extracted from ground Gaussian curve 

GRR Ground return ration: GE divided by RWE 

CHn Elevation of nth quarter of energy, excluding ground Gaussian curve 

Rn CHn divided by WD 

AGS Average Gaussian curve slope 

SGS Standard deviation Gaussian curve slope 

MSGS Modified standard deviation Gaussian curve slope 

HFEV 
New 

Height at first empty voxel 
This study 

HFEVT Height at first empty voxel from threshold 
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Table 289 3. 

Description of ALSFW metrics used. 290 

 291 

 292 

 293 

EFEV Energy from beginning of the waveform to first empty voxel 

nEFEV Energy from beginning of the waveform to first empty voxel divided by RWE 

FVU Filled voxels at understory 

NFVU Filled voxels at understory divided by number of voxels 

BC Bottom of canopy: elevation of the first canopy Gaussian curve 

BCE Bottom of canopy energy: energy from the beginning of the waveform to BC 

BCD Bottom of canopy distance: distance from BC to the end of the waveform 
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 294 

 295 

 296 

Fig. 5. Graphical representation of voxel transects to describe metrics (a) HFEV, (b) HFEVT, 297 
(c) FVU, and (d) NFVU. Voxel height is equal to 0.15 m and metric values for each column of 298 

voxels is written in black. Height thresholds in (b), (c), and (d) are user inputs. 299 

 300 

Gaussian iterative decomposition metrics were designed by Zhang et al. (2011) for large-footprint 301 

lidar, and Hancock et al. (2015) showed that Gaussian iterative fitting was the most accurate 302 

method comparing energy values for large-footprint lidar. However, we decided to test the 303 

potential of these metrics as descriptors of the understory vegetation, since according to Hancock 304 

et al. (2015), energy differences for the Gaussian iterative method and small-footprint lidar were 305 

small as well (i.e. nRMSE = 1.37%). The new metrics (BC, BCE, and BCD) are based on Gaussian 306 

iterative decomposition described by Zhang et al. (2011) (Fig. 6). Once the derived boundary 307 

between the canopy and ground returns is calculated, BC metric is defined as the height from the 308 

ground to the first Gaussian curve above the boundary. BCE is the energy from the ground to BC, 309 
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and BCD is the distance from BC to the top of the canopy. We assumed that the first energy peak 310 

excluding the ground must be related to either the understory or the canopy base. 311 

 312 

 313 

Fig. 6. Graphical representation of metrics BC, BCE, and BCD 314 

 315 

To better understand if limiting the calculation of the pseudo-vertical waveform metrics to lower 316 

components of the canopy enhance estimations of understory vegetation, we applied a height filter 317 

to ALSFW metrics. This height filter consisted of cutting off the pseudo-vertical waveform at a 318 

given height threshold. The height threshold for the whole study was computed as 99% height of 319 

understory heights extracted from TLS data. We therefore computed the 20, and 9 new, ALSFW 320 

metrics on both the full pseudo-vertical waveform as well as a pseudo-vertical waveform limited 321 

to the height of the TLS understory height threshold. 322 

As all these metrics were computed for each column of voxels, mean and standard deviation was 323 

calculated at the corresponding cell- and plot-level as variables for regression models explained in 324 

section 2.6. 325 

 326 



23 

 

6. Regression models 327 

1. Linear regression 328 

We used linear regression to develop predictive models of the four understory attributes, using 329 

ALSFW metrics as independent variables. Attribute selection consisted of comparing the Akaike 330 

Information Criterion (AIC) (Akaike, 1973) of all possible model comparisons using a maximum 331 

of three ALS-derived variables in each model. Each plot was composed of 40 samples (i.e. cells). 332 

In order to reduce spatial autocorrelation we randomly sampled 10 samples per plot, which resulted 333 

in 210 samples at the cell-level and 21 for the plot-level analysis. A total of 16 model sets were 334 

tested (4 understory TLS metrics x 2 resolutions (cell- and plot-level) x 2 sets of ALS-derived 335 

metrics (with and without the TLS height filter)). Models were compared using the adjusted 336 

coefficient of determination (R2), root mean square error (RMSE), normalized root mean square 337 

error (nRMSE; i.e. RMSE divided by the range of observed values) and coefficient of variation 338 

(CV; i.e. RMSE divided by the mean of the observed values). In the case of C, which is a bounded 339 

variable between 0 and 1, we replaced linear regression with Beta regression (Ferrari and Cribari-340 

Nieto, 2004) where a pseudo-coefficient of determination (pR2) was generated for these regression 341 

models.  342 

 343 

2. Linear mixed effect models 344 

To assess if the ability of ALS to predict the TLS metrics was site dependent, we also undertook a 345 

mixed effect modelling approach, which involved developing statistical models containing both 346 

fixed and random effects (Crawley, 2012). The two known variables from each plot, slope and 347 

dominant species, were used as categorical class variables since both can affect the understory (see 348 
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Fig. 3). We categorized the slope in three groups: low, medium, and high. The dominant species 349 

were split into three groups as well: H (Pinus halepensis), P (Pinus pinaster), and M (Pinus 350 

pinaster + Quercus suber). Beatty (1984) found that microrelief could affect nutrient content, 351 

making mounds poorer and pits richer in biodiversity. Barbier et al. (2008) found that understory 352 

vegetation was highly affected by overstory species, since a number of environmental factors (e.g. 353 

light and nutrients) highly influence species. We allowed both the model slope and intercept to 354 

vary (based on Gelman and Hill (2007)) while utilizing Nakagawa and Schielzeth’s (2013) steps 355 

with an update of Johnson’s (2014) to calculate two model estimators: marginal R2 (R2m) and 356 

conditional R2 (R2c) for model comparison,  as well as standard RMSE and nRMSE for linear 357 

mixed effect models. These 24 models (4 TLS understory metrics x 2 full-waveform metrics 358 

datasets (with and without height filter) x 3 combination of categorical variables (slope, dominant 359 

species, and both)) plus the 16 models explained above, resulted in 40 models in total for this 360 

study. 361 

 362 

7. Software used 363 

We used LAStools (2017; version 171017) to extract the ground points from TLS and to generate 364 

the DTMs. R packages, lidR (Roussel and Auty, 2017) to manage TLS data, and lme4 (Bates et 365 

al., 2014) to generate mixed-effect models, were used. In addition, we also used our own software 366 

to process and generate ALSFW data. 367 

 368 

3. Results 369 
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The detection pR2 of the understory cover (C) was 0.871. The R2 values of the predicted understory 370 

attributes were 0.957, 0.771, and 0.951, for Hmean, Hmax, and V, respectively. 371 

 372 

Fig. 7 shows an example of the four TLS and ALSFW derived metrics of the understory with a site 373 

photograph for three plots within the study area. These three characteristic plots demonstrate low, 374 

moderate, and high degrees of understory cover (i.e. plots id 28, 31, and 7, respectively). 375 

 376 
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 377 

Fig. 7. TLS and ALSFW derived four metrics (Hmean, Hmax, C and V) and field photographs 378 
extracted from three plots (id 7, 28, and 31) with 15 m radius within the study area. Plots id 28, 379 

31, and 7, represent low, moderate, and high degrees of understory cover, respectively. 380 
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 381 

Table 4 shows the ALSFW metrics selected for the 16 regression models (4 understory TLS metrics 382 

x 2 resolutions (cell- and plot-level) x 2 set of full-waveform metrics (with and without the TLS 383 

height filter)) with corresponding R2, RMSE, nRMSE and CV values. Results indicate that the best 384 

model for Hmean and Hmax was developed at the plot-level using a height filter, and had R2 values 385 

of 0.957 and 0.771, respectively. These models also had the lowest RMSE and nRMSE (0.08 m 386 

and 7% for Hmean; 0.51 m, and 11% for Hmax, respectively). The best model for C was also 387 

developed at the plot-level, with similar results with and without a height filter. Model 388 

performance was characterized by R2 = 0.871, RMSE = 0.09, nRMSE = 11%, CV = 12% when 389 

the height filter was used, and by R2 = 0.792, RMSE = 0.07, nRMSE = 9%, CV = 9% without the 390 

height filter. Lastly, the plot-level model for V, without a height filter, was the most accurate and 391 

had R2 = 0.951, RMSE = 56.49 m3, nRMSE = 7%, and CV = 9%. Among all models, Hmax modeled 392 

at cell-level had the lowest accuracy with a R2 of 0.447.  393 

 394 

The most frequently used metrics in the regression models included NFVU, FVU, nEFEV, EFEV, 395 

Hn, and MAX E, while WD, RWE, VARIANCE, ENERGY Qn, N GS, N GS ENDPEAK, CE, 396 

GRR, AGS, SGS, and MSGS were not included in any of the models. 397 
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Table 4. ALSFW metrics selected for the estimation of the different variables (Hmean, Hmax, C, and V) for cell- (3.75 m resolution) and 398 
plot-level (15 m radius) resolution, and for each height filter (NF: no filter, HF: height filter). The results from these regression models, 399 
as well as R2 values and pseudo-R2 (orange highlighted), are also included. 400 

 401 

 402 

 403 
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Results of the mixed-effect models that incorporated different combinations of categorical 404 

variables (slope, dominant species, and both) are shown in Table 5. These results indicate that the 405 

highest accuracy was achieved for Hmean, with a nRMSE of 9%, for the model that used both 406 

categorical variables, as well as for the model that used only the dominant species. For all the 407 

understory variables, using just the dominant species or both variables as categorical variables 408 

reached the best results. 409 

When compared to the results of the linear regression models (Table 4), all understory variables 410 

were predicted with higher accuracy. The improvement in nRMSE was about 1% for Hmean, 2% 411 

for Hmax, 7% for C, and 2-3% for V. 412 

 413 

Table 5. Results of mixed-effect models for the estimation of the four understory variables (Hmean, 414 
Hmax, C, and V). 415 

 416 

Categorical Variable Variable Height Filter R2m R2c RMSE nRMSE (%) CV (%) 

Slope 

Hmean 
NO 0.271 0.847 0.31 m 10 41 

YES 0.625 0.627 0.33 m 10 43 

Hmax 
NO 0.344 0.550 0.67 m 15 42 

YES 0.433 0.519 0.70 m 15 43 

C 
NO 0.466 0.670 0.21 21 27 

YES 0.238 0.793 0.21 21 26 

V 
NO 0.311 0.849 3.85 m3 14 31 

YES 0.068 0.943 4.58 m3 17 37 

Dominant Species 

Hmean 
NO 0.394 0.666 0.30 m 9 40 

YES 0.526 0.606 0.31 m 10 41 

Hmax 
NO 0.294 0.421 0.67 m 15 41 

YES 0.397 0.575 0.67 m 15 41 

C 
NO 0.055 0.960 0.17 17 22 

YES 0.059 0.946 0.17 17 22 

V NO 0.191 0.876 3.61 m3 13 29 
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YES 0.110 0.898 4.49 m3 17 36 

Slope + Dominant Species 

Hmean 
NO 0.232 0.791 0.30 m 9 39 

YES 0.260 0.780 0.31 m 9 41 

Hmax 
NO 0.157 0.613 0.64 m 14 40 

YES 0.145 0.745 0.66 m 14 41 

C 
NO 0.032 0.972 0.15 15 20 

YES 0.036 0.961 0.16 16 20 

V 
NO 0.118 0.914 3.55 m3 13 29 

YES 0.035 0.967 4.26 m3 16 34 

 417 

Fig. 8 shows scatter plots of the TLS-based observed and ALS-based predicted variables at cell- 418 

and plot-level, as well as using the mixed-effect models. Predictions of Hmean, Hmax, and V to their 419 

respective observations were closer to 1:1 than C at the cell-level and when using mixed-effect 420 

models. Improvement between cell-level and mixed-effect models is especially visible for C. As 421 

demonstrated previously, results at the plot-level were more accurate than at the cell-level. 422 

 423 
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 424 

Fig. 8. Regression graphs for the estimation of the different variables (Hmean, Hmax, C and V) 425 
for each resolution (cell-level, mixed-effect (cell-level) and plot-level (15 m radius)) and for 426 

each height filter (NF: no filter, HF: height filter). Solid line represents the 1:1 line. 427 

 428 
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4. Discussion 429 

In this research we developed a new methodology to characterize vegetation understory from ALS 430 

data, verifying it with TLS data acquired at key plot locations. Key results from this study indicate 431 

that understory cover, height, and volume were accurately predicted from ALSFW at both the cell 432 

and plot scale when compared to the reference.  433 

 434 

Overall, the results showed a high performance of ALSFW for estimating Hmean, Hmax, C, and V, 435 

especially at plot-level. Hmean and V were modeled with highest accuracy, while poorer results 436 

were obtained for C and Hmax. These results suggest that Hmean had a higher performance than Hmax 437 

since mean values are smoother than maximum values, due to the latter being able to have extreme 438 

values. V results were close to Hmean, given that both variables are directly related. Most of the C 439 

training values were close to 1, hence not being a distributed sample, causing poorer estimates of 440 

C. A possible solution to improve C estimate results is to increase the number of plots with an 441 

intermediate understory cover. Results at the cell-level were poorer since estimates were more 442 

sensitive to small changes due to the finer scale. Although results were lower at cell-level, these 443 

values were acceptable having in mind its resolution.  444 

 445 

A number of key findings were apparent. We applied a height filter in order to determine whether 446 

cutting off the pseudo-vertical waveform fragment that corresponds to understory enhanced 447 

estimations of understory vegetation characterization. Nevertheless, applying this filter to the 448 

ALSFW prior to metric calculation did not result in an improvement in accuracy when predicting 449 

Hmean at cell-level, as well as C and V at both scales. In addition, in those cases where results from 450 
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height filter tests were higher, improvements compared to no height filter tests were small. This is 451 

likely due to the fact that contrary to ALSD, which has a limited number of digitized returns, ALSFW 452 

can fully discriminate height strata through decomposing the waveform. As a result height 453 

thresholds for data processing are not needed. 454 

 455 

Estimation results of understory cover, height, and volume improved when mixed-effect models 456 

were applied using just the dominant species as variable, or combined with the slope. These results 457 

suggest that terrain slope alone has little influence on the prediction of the understory variables, 458 

however when combined with dominant species it has a more significant effect. 459 

 460 

With respect to the accuracy of the predictions, our results correspond to those of others 461 

(Martinuzzi et al., 2009; Hill and Broughton, 2009; Morsdorf et al., 2010; Wing et al., 2012; 462 

Hancock et al., 2017). Most of the studies to date (Martinuzzi et al., 2009; Hill and Broughton, 463 

2009; Morsdorf et al., 2010) have estimated the presence or absence of understory by applying a 464 

classification based approach. Contrastingly, Wing et al. (2012) estimated understory cover using 465 

regression models and found a coefficient of determination (R2) of 0.74, with a similar nRMSE as 466 

reported in our study (nRMSE = 22%), but used a resolution of 40.5 m2 and applyed height and 467 

intensity filters. This study suggests that ALSFW can be used to estimate understory cover with a 468 

similar nRMSE, but with a higher resolution (i.e. 3.75 m or 14.06 m2) and without applying any 469 

filter. Alternatively, Hancock et al. (2017) obtained a similar accuracy (nRMSE = 24%) at finer 470 

scale (1.5 m horizontal and 0.5 m vertical resolution), but in an urban landscape. This suggests that 471 
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understory cover can be extracted more accurately in urban environments, where vegetation is 472 

likely more intensively managed by humans. 473 

 474 

Scaling from the cell-level to the full plot showed an increase in accuracy and decrease in error 475 

when compared to the reference TLS predictions. In the case of Hmean, the R2 coefficient increased 476 

from 0.633 to 0.949, and from 0.447 to 0.758 for Hmax. The R2 coefficient for C increased from 477 

0.581 to 0.871, and from 0.651 to 0.951 for V. From a modelling point of view, the most selected 478 

attributes were those developed in this research, especially at the finer scale. The newly created 479 

attributes were also used more frequently in the regression models at the plot scale, but they were 480 

selected by fewer models. Attributes from Gaussian iterative decomposition related to return 481 

energy were not selected, except for BCE. As Hancock et al. (2015) suggested, Gaussian iterative 482 

decomposition methods were poorer when extracting return energy from ALSFW when a small-483 

footprint is used because of the increased heterogeneity of the targets. Other methods such as the 484 

sum of waveform amplitude and spline may be used in further studies instead of the Gaussian 485 

iterative decomposition, since they are less time consuming and robust (Hancock et al., 2015). 486 

 487 

Hmean, Hmax, C, and V can be represented as four layers that can be used in three key ways for fire 488 

behavior assessment. First, fire models need understory height. These layers give an accurate 489 

height that, with the canopy base height measure, can be used to calculate the gap between 490 

understory and overstory. This gap is critically important for Mediterranean forests as it describes 491 

when a surface fire will likely become a crown fire (e.g. fuel ladder fires). Second, fire behavior 492 

depends on understory cover. Surface fire intensity is higher with larger amounts of understory, 493 
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which is determined by cover and biomass. The latter of which was not able to be predicted in this 494 

study, since ground-based data from understory species registered by TLS were not available, as 495 

well as the lack of allometric equations for these species to predict biomass. Third, forest clearing 496 

in the Mediterranean for fire prevention consists of removing understory vegetation and creating 497 

controlled fires. Knowing the understory vegetation volume easily allows determination of how 498 

much volume will be removed during a fire, which can also be converted to biomass for other 499 

purposes. 500 

 501 

5. Conclusions 502 

This study presented a method to characterize the understory vegetation through ALSFW data in a 503 

Mediterranean forest. Our results suggest that the use of ALSFW provides an alternative to 504 

traditional or local techniques for understory characterization. ALSFW is able to accurately estimate 505 

understory vegetation variables such as height, cover, and volume over large areas. These variables 506 

reached very high R2 values at plot scale (mean height: R2 = 0.957, maximum height: R2 = 0.771, 507 

cover: R2 = 0.871, and volume: R2 = 0.951), but were slightly lower at cell-level (i.e. 3.75 m side) 508 

(mean height: R2 = 0.633, maximum height: R2 = 0.470, cover: R2 = 0.581, and volume: R2 = 509 

0.651). The new proposed metrics proved to be decisive for a more accurate characterization of 510 

the understory vegetation. This is an advantage to traditional or TLS techniques, which can only 511 

be collected in small areas and tend to be very costly. The results presented in this study are 512 

particularly important for forest management, as well as fire prevention and prediction. Further 513 

studies must be conducted in different ecosystems in order to assess the potential use of ALSFW 514 
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for various tree and shrub densities and types, as well as predicting other variables such as biomass, 515 

which is essential to analyze forest fire intensity. 516 

 517 
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List of figure captions 732 

Name Caption 

Figure 1 
Study area location in (a) South-Western Europe, (b) Natural Park of Sierra de 

Espadán (in green), and (c) plot locations (in yellow) within study area. 
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Figure 2 
Field photographs from (a) a maritime pine dominant plot with absence of understory, 

and (b) an Aleppo pine dominant plot with high presence of understory. 

Figure 3 

Box and whiskers representing TLS understory metrics (mean height: Hmean, 

maximum height: Hmax, cover: C, and volume: V) categorized by dominant species 

(Pinus halepensis, Mixed Pinus pinaster and Quercus suber, and Pinus pinaster) and 

slope (low, medium, and high) of the plot. 

Figure 4 Flowchart of ALSFW and TLS data processing 

Figure 5 

Graphical representation of voxel transects to describe metrics (a) HFEV, (b) HFEVT, 

(c) FVU, and (d) NFVU. Voxel height is equal to 0.15 m and metric values for each 

column of voxels is written in black. Height thresholds in (b), (c), and (d) are user 

inputs. 

Figure 6 Graphical representation of metrics BC, BCE, and BCD 

Figure 7 

TLS and ALSFW derived four metrics (Hmean, Hmax, C and V) and field photographs 

extracted from three plots (id 7, 28, and 31) with 15 m radius within the study area. 

Plots id 28, 31, and 7, represent low, moderate, and high degrees of understory cover, 

respectively. 

Figure 8 

Regression graphs for the estimation of the different variables (Hmean, Hmax, C and V) 

for each resolution (cell-level, mixed-effect (cell-level) and plot-level (15 m radius)) 

and for each height filter (NF: no filter, HF: height filter). Solid line represents the 1:1 

line. 
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Table 4 

ALSFW metrics selected for the estimation of the different variables (Hmean, Hmax, C, 

and V) for cell- (3.75 m resolution) and plot-level (15 m radius) resolution, and for 

each height filter (NF: no filter, HF: height filter). The results from these regression 

models, as well as R2 values and pseudo-R2 (orange highlighted), are also included. 
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