In this paper, we examine the energy losses of charged particles, moving at different initial velocities in an electron fluid. It is illustrated that the stopping power at high velocities lies below the asymptotics of Bethe-Larkin. At low particle velocities, ν, the dependence of energy losses on velocity in the random phase approximation behaves rectilinear. In the current article, we use the method of moments, which allows us to determine the stopping power of a non-ideal plasma without small-parameter expansion. The universality of this approach is that it allows one to use for calculations various effective potentials of interparticle interaction. Another important advantage of the approach is the opportunity to determine the dynamic characteristics of Coulomb systems by obtained static ones, that can be found from the solution of the Ornstein-Zernike equation in the hypernetted chain approximation, using the potentials specified in the work. The peculiarity of calculations in the method of moments application consists in the determination of so-called Nevanlinna parameter-function, included in the computed relations. In this contribution, we employ an empirical expression for Nevanlinna parameter-function.

Key words: one-component plasma, stopping power, method of moments, Coulomb system, Nevanlinna formula.
Stopping of charged particles in dense one-component plasmas

In the present work, the energy losses of charged particles in dense plasmas are considered. It is shown that the stopping power at high speeds lies below the Bethe-LLDAP asymptote, as was shown in other works. It is shown that at low speeds, the dependence of energy losses on ν behaves linearly, as was shown previously in dielectric functions in the approximation of chaotic phases. In this work, the method of moments is used, which allows to determine the stopping power of non-ideal plasmas, without using expansions in small parameters. The universality of this approach allows to use for calculations different potentials of inter-particle interaction. The peculiarity of calculations with the method of moments is the need to determine so-called parameter-function of Nevanlinna, entering into the calculation relations. In this article, we used the relation, proposed by us previously. An important advantage of this approach is the possibility of determining the dynamic characteristics of Coulomb systems based on the calculated static ones, which can be found from the solution of Ornstein-Zernike equation in hypergic approximation with potentials of the work.

Key words: one-component plasma, stopping power, method of moments, Coulomb system, Nevanlinna formula, loss function.

Introduction

One of the challenges of statistical plasma physics is the description of the transition from collisionless to collision dominated regimes in different Coulomb systems, of the crossover from classical to Fermi liquid behavior in dense plasmas [1, 2]. We refer to strongly coupled plasmas characterized by a wide range of variation of temperature and mass density spanning a few orders of magnitude. Under such conditions thermal, Coulomb coupling, and quantum effects compete between them and impede the construction of a bridge capable of including all of these effects in the description of static, kinetic, and dynamic properties of the above systems of high relevance for inertial fusion devices [3] and advanced laboratory studies, e.g., in ultracold plasmas [4], electrolytes and charged stabilized colloids [5], laser-cooled ions in cryogenic traps [6], and dusty plasmas [7]. In Nature strongly coupled plasmas appear in various settings as well, e.g. in white dwarfs and neutron stars [8].

The scientific and technological revolution that began in the last century has greatly increased the energy needs of mankind [11]. This led the scientists to turn to one of the most promising areas in the energy sector – energy production using the reaction of controlled thermonuclear fusion due to the fusion of light nuclei with the consequent release of enormous amounts of energy. One of the problems that arise in connection with this problem is the heating of the plasma to high temperatures. If, initially, there were used powerful lasers [12, 13] for this purpose, recently beside that beams of charged ions [14] have also been used.

The experiments, related to the interaction of the plasma and the ion beam moving in it, stimulated the development of theoretical methods for determining the energy losses of a charged particle in a plasma medium, i.e. the study of the so-called stopping power of the plasma due to the polarization losses.
Polarizational losses

In 1930, Bethe developed a formula for the energy loss by a fast particle, assuming that the atoms of the medium behave like quantum-mechanical oscillators [15]. Later, Larkin [16] had shown that in the case when fast ions penetrate the electron gas, a similar formula is applicable, but with the replacement of the average excitation frequency by the plasma frequency ω_p:

$$\frac{dE}{dx} \approx \left(\frac{Z_p e \omega_p}{\nu} \right)^2 \ln \frac{2m\nu^2}{\hbar \omega_p}, \quad (1)$$

where $Z_p e$ and ν are the charge and velocity of the particle, respectively.

The polarization mechanism is used to calculate the energy losses of a fast particle passing through the Coulomb system in disregard of the collision and ionization losses. In 1959, Lindhard received an expression, relating the energy loss due to polarization with the dielectric function of the medium [17]:

$$\frac{dE}{dx} = \frac{2(Z_p e)^2}{\pi \nu^2} \int_0^\infty dk \int_0^{\omega_p} \omega \text{Im} \varepsilon^{-1}(k, \omega) d\omega. \quad (2)$$

This ratio gives the relationship of polarizational energy losses of a moving charged particle in a plasma with the longitudinal permittivity of the medium $\varepsilon(k, \omega)$. From his view, we can conclude that the loss of energy of the test charge in the plasma does not depend on the mass of particles and depends only on its charge and velocity.

Formula (2) for the calculating of the polarizational losses of the test charge, moving in the plasma, is valid in the one-particle approximation, in which the deceleration of the ion beam is represented as the deceleration of single ions not interacting with each other. This approximation is valid for ion flux densities of many smaller medium densities, which is performed for most modern experiments.

In this paper, we investigate the stopping power of a one-component hydrogen Coulomb system for the dielectric function, found by the method of moments [18].

Plasma parameters

The potential of the interparticle interaction is

$$\varphi(r) = \frac{e^2}{r},$$

and to describe the state of the plasma, the parameters of coupling and density are respectively used

$$\Gamma = \frac{e^2}{ak_B T}, \quad r_s = \frac{a}{a_B}. \quad (3)$$

The Wigner-Seitz radius is entered here as

$$a = \sqrt[3]{3/4\pi n},$$

where e – electron charge, k_B – Boltzmann constant, T – temperature, a_B – Bohr radius, n – plasma concentration.

Method of moments

In order to study the properties of non-ideal plasma with the parameters of the coupling and degeneration of the order and more than unity, we should use the non-perturbative method of moments [18], which does not require any small parameters.

This method allows one to determine the dielectric properties of the Coulomb system, using the first few moments of the loss function,

$$L(k, \omega) = -\frac{1}{\omega} \text{Im} \frac{1}{\varepsilon(\omega, k)}, \quad (3)$$

which can be calculated through the potential of interparticle interaction and the static structural factors of the system. The latter can be computed from the solution of the Ornstein-Zernike equation in the hypernetted chain approximation (HNC) [19].

We can write the Nevanlinna formula that determines the dielectric properties of the medium in the form of [18]:

$$\frac{1}{\varepsilon(k, \omega)} = 1 + \frac{\omega^2}{\omega^2 - \omega_p^2(k)} \frac{Q(k)}{Q(k) + Q(\omega^2 + \omega_p^2(k))}. \quad (4)$$
Stopping of charged particles in dense one-component plasmas

Here \(\omega_j^2(k) = C_j(k)/C_p(k), \quad \omega_k^2(k) = C_k(k)/C_p(k), \) and \(Q(k) = \frac{i}{\sqrt{2}} \frac{\omega_j^2(k)}{\omega_k^2(k)} \) is the function of the Nevanlinna class, obtained in [20]. The parameters are defined as the power frequency moments of the loss function:

\[
C_j(k) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \omega^{-1} \text{Im} \mathcal{E}^{-1}(k, \omega) d\omega.
\]

Evaluation of moments allows us to write explicit expressions for them, based on the following considerations. The zero moment is obtained using the quantum potential [21] by the dielectric response method [22]:

\[
C_0(k) = \frac{\kappa^2 \chi^4}{q^4 \kappa^2 + q^2 \chi^4 + \kappa^2 \chi^2},
\]

where \(\kappa = \sqrt{6 \Gamma}, \quad \chi = (12 r_0)\sqrt{4/3}, \)

and \(\beta^{-1} = k_B T \) is the temperature of system in energy units.

The second frequency moment of the loss function, according to the \(f \)– sum rule [18], is equal to the square of the plasma frequency of the system:

\[
C_2 = \omega_p^2.
\]

Obtained results

Figures 1-3 present the results of calculations of polarizational losses of heavy charged particles in a one-component plasma in a wide range of velocities (a) and particularly at low velocities (b).

Dots are calculated data by formula (2), the solid line is the asymptotic form of the Bethe-Larkin (1)

\[
K(k) = \frac{\langle v_{th} \rangle^2}{\omega_p^2} + \left(\frac{\hbar}{2m} \right)^2 \frac{k^2}{\omega_p^2},
\]

\[
U(k) = \left(1/2\pi^2 n \right) \int_\rho \rho^2 \left[S(p) - 1 \right] f(p, k) dp,
\]

\(\langle v_{th} \rangle^2 \) is the square of average thermal velocity of electrons, \(m \) – their mass, \(\hbar \) – Plank’s constant, and

\[
f(p, k) = 5/12 - (p^2/4k^2) + \left(k^2 - p^2 \right) \frac{8 p k^3}{p^2 - k^2} \ln \frac{p + k}{p - k}.
\]

\[\text{Figure 1} \quad \text{– Stopping power at } \Gamma = 0.05 \text{ and } r_s = 2.5256\]

Dots are calculated data by formula (2), a solid line is a straight line \(\frac{C}{v/v_{th}} \), where \(C = 0.003 \)
Dots are calculated data by formula (2), the solid line is the asymptotic form of the Bethe-Larkin (1)

(a)

Figure 2 – Stopping power at $\Gamma = 0.11$ and $r_s = 2.5256$

Dots are calculated data by formula (2), a solid line is a straight line $C \frac{\nu}{\nu_n}$, where $C = 0.014$

(b)

Dots are calculated data by formula (2), the solid line is the asymptotic form of the Bethe-Larkin (1)

(a)

Figure 3 – Stopping power at $\Gamma = 1.1$ and $r_s = 2.5256$

Dots are calculated data by formula (2), a solid line is a straight line $C \frac{\nu}{\nu_n}$, where $C = 0.433$

(b)

From the above plots that describe the stopping power of one-component plasma in the wide interval of the coupling parameter, it is possible to conclude that the good agreement of calculation results with the asymptotics of the Bethe-Larkin, and for small velocities the curves are in good agreement with theoretical calculations, obtained with using of the ideas of [23].
Stooping of charged particles in dense one-component plasmas

Conclusion

The corresponding evaluated data in the part indicated by the letter (a), which represents the dependences of energy losses in one-component plasma on the velocity of projectiles, are always below the asymptotic Bethe-Larkin curve (1) just as it should be [24, 25]. At low velocities, the dependence of the stopping power (b) represents a straight line. The last statement in the random phase approximation was proved in [23].

Acknowledgements

This work was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan № AP05132333.

References

DOI: 10.1051/epjconf/20135401007.
References