
Department of Computer Systems and Computation
Universitat Politècnica de València

Wind Turbine Blade Damage Identification using
Deep Learning Algorithms

MASTER THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital
Imaging

Author: Juan Pizarro Muñoz

Tutor: Roberto Paredes Palacios

Course 2018-2019





Resumen
El buen estado de las palas en los aerogeneradores es primordial para el correcto

funcionamiento y óptima generación de energía. Por ello el monitoreo y reparación de
las palas son tareas habituales en el ciclo de vida de un parque eólico.

Las tareas de adquisición de imágenes, revisión y clasificación de la gravedad de los
de daños son demandantes en tiempo y requieren personal cualificado, además de ser
muy riesgosas ya que algunas se realizan en altura. También es necesario detener los
aerogeneradores durante la inspección, lo que disminuye la capacidad de producción
energética.

En este TFM el objetivo es evaluar distintos algoritmos de redes de aprendizaje pro-
fundo, deep learning networks, para apoyar en la tarea de detección y clasificación de los
de daños a partir de fotografías de las palas de los aerogeneradores. Para ello se dispo-
ne de imágenes con daños, ej. grietas , agujeros, entre otros, que han sido capturadas en
distintos parques eólicos y en distintos modelos de palas.

Palabras clave: Redes de Aprendizaje Profundo, Redes Convolucionales, Detección, Iden-
tificación, Clasificación, Daños, Turbina Eólica, Drone, UAV

Abstract
The good condition of wind turbine blades is essential for correct operation and opti-

mum generation of energy. Therefore, monitoring and repairing the blades are common
tasks in the life cycle of a wind farm.

The tasks of image acquisition, inspection and damage classification are demanding
in time and require expert knowledge, in addition to being very risky since some are
performed at height. It is also necessary to stop the wind turbines during the inspection,
which decreases the energy production capacity.

This Master Thesis objective is to evaluate algorithms of deep learning networks, to
support the task of detection and classification of damages in photographs of the wind
turbine blades. To do this, a dataset of images with damages is available, e.g. cracks,
holes, among others, images of different blade models captured in different wind farms.

Key words: Deep Learning Networks, Convolutional Networks, Detection, Identifica-
tion, Classification, Damage, Wind Turbine Blade, Drone, UAV

iii





Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3
2.1 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 IoU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Traditional Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3.2 Back-propagation . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.5 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 8

2.3.5.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6.4 MixUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.7 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Applications of Convolutional Neural Network . . . . . . . . . . . . . . . 12

2.4.1 LeNet-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Overfeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.5 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.6 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Region CNN Networks . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1.1 R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1.2 Fast R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1.3 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



vi CONTENTS

2.5.2 Single-Stage Object Detector . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Single Shot MultiBox Detector (SSD) . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.3.1 Zoom-In Strategy . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3.2 Zoom-Out Strategy . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Computer Vision for Damage Detection on Wind Turbines . . . . . . . . . 19
3 Datasets 20

3.1 Dataset Creation and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Inspection Selection Protocol . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2.1 ds-01-val-01 dataset . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2.2 ds-02-val-01 dataset . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Prediction Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Preprocessed Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Methods 28
4.1 Models and Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 SSD Backbones for Object Detection . . . . . . . . . . . . . . . . . . 28
4.1.2 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Training and Validation Parameters . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Object Detection Parameters . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Image Classification Parameters . . . . . . . . . . . . . . . . . . . . 30

5 Results 32
5.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Results of Predicting Each Damage Type Separately . . . . . . . . . 32
5.1.2 Results of Predicting the coat fault Type and the Rest Types as other

Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Results of Predicting the coat fault Label . . . . . . . . . . . . . . . . 35
5.1.4 Results of Predicting Two Labels: coat fault or chipped coat . . . . . . 37
5.1.5 Results of Predicting All Types as damage Label . . . . . . . . . . . . 38
5.1.6 Results of Predicting All Types as damage Label on the Test Set . . . 40

5.2 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Fine Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusions and Future Work 44
Bibliography 45

Appendices
A SSD ResNet Backbones 51
B Damage Type Samples 52
C Results Graphs for Object Detection 56
D Results Graphs for Image Classification 57



List of Figures

2.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 IoU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 2D convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 LeNet-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12 Overfeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.13 Residual block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.14 R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.15 Fast R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.16 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.17 SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.18 SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Damage inspection process . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Prediction samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Prediction samples with different IoU . . . . . . . . . . . . . . . . . . . . . 40

B.1 Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2 Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.3 Chipped coat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4 Coat fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.5 Crack around lightning bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.6 Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.7 Damaged laminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.8 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.9 Lightning damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.10 Lightning hit receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.11 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.12 Paint erosion on smt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.13 Rub mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.14 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C.1 Results for v6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

D.1 Learning Rate for 5c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
D.2 Architecture for 5c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



D.3 mixup Data Augmentation for 5c . . . . . . . . . . . . . . . . . . . . . . . . 58
D.4 over-sampling Data Augmentation for 5c . . . . . . . . . . . . . . . . . . . 58
D.5 Dropout for 5c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
D.6 Fine Tune for 5c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

List of Tables

3.1 Inspection datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Damage type samples of the ds-01-val-01 dataset . . . . . . . . . . . . . . . 23
3.3 Percentage of bounding box damages grouped by height or width of the

ds-01-val-01 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Bounding box size statistics of the ds-01-val-01 dataset . . . . . . . . . . . 24
3.5 Damage type samples of the ds-02-val-01 dataset . . . . . . . . . . . . . . . 24
3.6 Percentage of bounding box damages grouped by height or width of the

ds-02-val-01 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Bounding box size statistics of the ds-02-val-01 dataset . . . . . . . . . . . 25
3.8 Target labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Index maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Preprocessed datasets using impy . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Preprocessed datasets for object detection tasks . . . . . . . . . . . . . . . . 27
3.12 Preprocessed datasets for image classification tasks . . . . . . . . . . . . . 27

4.1 SSD backbones based on VGG . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Compact list of SSD backbones based on ResNet . . . . . . . . . . . . . . . 29
4.3 Architectural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Data parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 General training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Validation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Image classification parameters . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 VGG16 models trained to predict labels v1 with different learning rates . . 33
5.2 VGG16 models trained to predict labels v1 and v2 . . . . . . . . . . . . . . 33
5.3 VGG16 models trained to predict labels v2 with different crop constraints 33
5.4 Backbone networks: vgg16, vgg13, vgg11 . . . . . . . . . . . . . . . . . . . 34
5.5 Summary of predicting each damage type separately . . . . . . . . . . . . 34
5.6 VGG16 models trained to predict labels v2 with different crop sizes . . . . 34
5.7 VGG16 models trained to predict labels v2 with and without batch norm . 35
5.8 Summary of predicting the coat fault type and the rest types as other label . 35
5.9 Backbone networks: vgg16_atrous, resnet18_v1 and resnet34_v1_02 . . . . 35
5.10 ResNet as backbone with 1 feature map . . . . . . . . . . . . . . . . . . . . 36
5.11 ResNet as backbone with 1 or 2 feature maps . . . . . . . . . . . . . . . . . 36
5.12 Summary of predicting the coat fault label . . . . . . . . . . . . . . . . . . . 37
5.13 Zoom-Out Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.14 Hard negative mining ratios: 3:1, 5:1 and 15:1 . . . . . . . . . . . . . . . . . 37
5.15 ResNet34 with random crop with constraints thresholds . . . . . . . . . . 38
5.16 Jaccard Overlap Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.17 Summary of predicting two labels: coat fault or chipped coat . . . . . . . . . 39

viii



LIST OF TABLES ix

5.18 Mixup Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.19 Results of predicting all types as damage label on the test set . . . . . . . . 41
5.20 Learning Rate for 5c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.21 Dropout for 5c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.22 over-sampling Data Augmentation for 5c . . . . . . . . . . . . . . . . . . . 42
5.23 mixup Data Augmentation for 5c . . . . . . . . . . . . . . . . . . . . . . . . 42
5.24 Summary of predicting using feature extraction . . . . . . . . . . . . . . . 42
5.25 Finetune hyperparameter grid . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.26 Top 20 finetuned models for Image Classification . . . . . . . . . . . . . . . 43

A.1 SSD-ResNet backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51





CHAPTER 1

Introduction

The evolution of machine learning in recent years allows us to address different types
of problems obtaining acceptable results, good enough to solve industry problems. It
helps us avoid some repeatable task allowing to increase the safety and reliability in the
workplace. Thus, Nowadays, it might be possible to find proposals for solutions based
on machine learning and deep learning for different computer vision tasks, such as image
classification and object detection.

Operation and Maintenance (O&M) in Wind Power Operations costs typically ac-
count for 20–25% of the total generation costs for both onshore and offshore wind [51, 2].
Therefore, the energy industry could benefit from the implementation of machine learn-
ing projects that help to reduce the cost of operations and maintenance.

Most investigated approaches to the problem of damage detection or condition mon-
itoring in wind turbines use SCADA as a primary data source, in conjunction with classi-
cal machine learning (not deep learning) approaches. Also, Wind turbine blades should
be periodically inspected looking for cracks, holes and other types of damage to ensure
proper and safe operation. Therefore, blade images are taken and commonly organised
and classified manually.

This master’s thesis explores the use of deep learning for computer vision to find
damages on the images of wind turbine blade inspections reviewed and annotated by
experts. This project was carried out in conjunction with ROBUR Wind1 in order to col-
laborate in the development of a solution proposal for a real wind industry problem and
also gave us access to annotated datasets of wind turbine inspections made with drones.

1.1 Motivation

Helping to reduce the time and cost of O&M in the wind industry could make a sig-
nificant impact on improving people’s lives through the use use of more clean energy.
As noted by Bhattacharya et al. [5], there is an increasing deployment of renewable en-
ergy. That helps in addressing climate change and in creating wider energy access to the
billions of people who are still in the poverty trap.

Also, the tasks of image acquisition, inspection and damage classification are de-
manding in time and require expert knowledge. Some of them are very risky because
they are performed at height. It is also necessary to stop the wind turbines during the
revision, which decreases the energy production capacity.

1https://www.robur-industry-service.com/industriesegmente/wind/

1

https://www.robur-industry-service.com/industriesegmente/wind/


2 Introduction

Therefore, the application of deep learning algorithms in this area is an exciting field
that could have a huge social impact and great professional development in the future.

1.2 Objectives

The objective of this master’s thesis is to evaluate algorithms of deep learning networks,
to support the task of detecting and classifying the damages in the photographs of the
wind turbine blades.

The proposed objectives are:

• Build a solution proposal for an actual industry problem with real data.

• Study the state of the art of deep networks for image classification and object de-
tection.

• Build an annotated dataset, selecting and cropping images from a set of blade in-
spection images.

• Build detection and classification systems based on deep learning networks to de-
tect and classify damages on wind turbine blade images.

• Choose the best trained models comparing the obtained results.

1.3 Thesis Structure

This thesis is structured as follows:

• Chapter 1 shows the introduction, motivation and thesis objectives.

• Chapter 2 presents the literature review which support our further development.

• Chapter 3 exposes the datasets and preprocessing techniques.

• Chapter 4 explains models, architectures and parameters available.

• Chapter 5 describes the obtained results with different model configurations.

• Chapter 6 draws conclusions and propose some future work.



CHAPTER 2

Literature Review

This chapter aims to review the relevant literature and research related to image classifi-
cation and object detection applied to damage detection on wind turbine blades. Image
classification or recognition is the task of classifying an image to a particular class out of
possible predefined classes. Object detection is the task of determining the location and
labels of the objects present in an image.

This chapter is structured as follows:

• Section 2.1 presents the most commonly used metrics in image classification and
object detection.

• Section 2.2 presents an overview related to Traditional Object Detection.

• Section 2.3 describes Neural Networks and its most relevant characteristics.

• Section 2.4 presents Applications of Convolutional Neural Network, mostly related
to Image classification.

• Section 2.5 describes relevant object detection papers.

• Section 2.6 explains the Single Shot MultiBox Detector model.

• Section 2.7 presents a historical literature review of Computer Vision for Wind Tur-
bine Condition Monitoring.

2.1 Performance Measure

This section presents the performance measures used to evaluate the trained models for
image classification and object detection.

2.1.1. Precision and Recall

Precision is the answer to How many selected items are relevant?. It is the ratio between
the number of true positives and the total of selected items, as shown in Equation 2.1.
The Recall is the answer to How many relevant items are selected?. Which corresponds
to the ratio between the number of true positives and the total of items, as shown in
Equation 2.2. A graphical representation of precision and recall is shown in Figure 2.1.

P =
TP

TP + FP
(2.1)

3



4 Literature Review

R =
TP

TP + FN
(2.2)

Figure 2.1: Precision and Recall.
Image Source https://commons.wikimedia.org/wiki/File:Precisionrecall.svg.

2.1.2. IoU

When the object localisation is predicted, a commonly used metric is the jaccard index
or intersection-over-union (IoU). It corresponds to the ratio between the overlap of the
predicted location and a ground truth location, and the area of the union of both locations
as shown in Figure 2.2.

Figure 2.2: IoU. Image Source https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/.

2.1.3. Mean Average Precision

The mean average precision (mAP) is defined as the average of the maximum precisions
at different recall values. In the case of object detection systems, this measure is calculated
for specific IoU thresholds.

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/


2.2 Traditional Object Detection 5

2.2 Traditional Object Detection

Traditional object detection methods are built on handcrafted features and shallow train-
able architectures [57]. Most of them can be divided into three main steps: candidate re-
gion proposal, feature extraction and classification. For feature extraction, hand-designed
shallow features such as Scale Invariant Feature Transform (SIFT) [29] and HOG (His-
togram of Oriented Gradients) [9] were commonly used. In 2001, Viola et al. [52] pro-
posed the use of haar-like features and a cascading classifier named AdaBoost [14] to
classify faces. Then in 2004, Lowe [29] presented the SIFT (Scale Invariant Feature Trans-
form) algorithm, a method for extracting distinctive invariant features from images using
difference-of-Gaussian. The classification could be done with SVMs [7], Random Forests
[6] or AdaBoost [14].

On the other hand, Deng and Yu [10] noted that features like SIFT and HOG only
capture low-level edge information. It is more challenging to design features that effec-
tively capture mid-level information such as edge intersections or high-level representa-
tion such as object parts.

2.3 Neural Networks

According to Goodfellow et al. [18] there have been three waves of development of deep
learning. The first wave started with cybernetics in the 1940s–1960s, with the develop-
ment of theories of biological learning [30, 21] and implementations of the first models
such as the perceptron [38] allowing the training of a single neuron. The second wave
started with the connectionist approach of the 1980–1995 period, with back-propagation
[40] to train a neural network with one or two hidden layers. The current and third wave,
deep learning, started around 2006 [22, 4, 34].

First, in Subsection 2.3.1 The Perceptron is presented. Later, in Subsection 2.3.2 the
Feedforward Neural Networks are described. After that, in Subsection 2.3.3 the Parame-
ter Learning is explained. Then, in Subsection 2.3.4 some common Activation Functions
are shown. Finally, in Subsection 2.3.5 the Convolutional Neural Networks are presented.

2.3.1. The Perceptron

In the context of neural networks, a perceptron is an artificial neuron, illustrated in Fig-
ure 2.3, that can be seen as a weighted linear combination of the inputs followed by an
activation function. It takes D real numbers as inputs (x1, x2, . . . , xD−1, xD), each input is
weighted and summed together, and a bias term w0 is added, as shown in Equation 2.3.

In Equation 2.4, the activation function f is applied to z(x) in order to obtain the
output s(x). It is important to note that this function could be non-linear, e.g. a step
function with 0 as threshold is shown in Equation 2.5.

z(x) =
D

∑
i=1

ωixi + w0 = wTx + w0 (2.3)

s(x) = f (z(x)) (2.4)

f (z) =
{

1(+1) if z > 0
2(−1) if z < 0

}
(2.5)



6 Literature Review

Figure 2.3: Single layer perceptron.

The weights wd and the bias w0 are parameters that should be determined or learned.
If the problem is linearly separable, a perceptron and the Perceptron algorithm [38] could
be used.

2.3.2. Feedforward Neural Network

Deep feedforward networks, also often called feedforward neural networks, or multi-
layer perceptrons (MLPs), have the goal to approximate some function f ∗ [18]. It defines
a mapping y = f (x; θ), whose parameters θ should be learnt to obtain the best function
approximation to the unknown function f ∗.

As shown in Figure 2.4, the model could be seen as a composition of multiple Per-
ceptrons. It is associated with a directed acyclic graph describing how the functions are
composed together. For example, we might have three functions f 1, f 2, and f 3 connected
in a chain, to form the output f (x) = f 3( f 2( f 1(x))). In this case, f 1 is called the first layer
of the network, f 2 is called the second layer, and so on.

Figure 2.4: Multi-layer perceptron. Source [31].

In addition, a feedforward operation or propagation is called to the evaluation of the
function f being from the input layer x, through the intermediate layers, and finally to
the output.

2.3.3. Parameter Learning

As noted previously, the parameters θ should be determined. These parameters could
be estimated as the parameters whose produce the smallest error on a set of annotated



2.3 Neural Networks 7

samples. Therefore, a cost function J(θ), also called objective function, must be defined
to measure how well the model is predicting the values compared with the ground truth
labels using the function parameters θ.

Given a cost function J(θ) defined by the parameters θ, the problem to learn θ can be
formulated as:

θ̂ = arg min
θ

J(θ) (2.6)

2.3.3.1. Gradient Descent

Gradient descent, shown in Equation 2.7, compute a local minimum of J(θ) with respect
to parameters θ. It is a way to minimize an objective function J(θ) parameterized by a
model’s parameters θ ∈ Rd by updating the parameters in the opposite direction of the
gradient of the objective function ∇θ J(θ) w.r.t. to the parameters [39].

θ = θ − η · ∇θ J(θ) (2.7)

2.3.3.2. Back-propagation

The back-propagation, presented by Rumelhart et al. [40], is an algorithm that computes
the chain rule of calculus, with a specific order of operations that is highly efficient.

During training, forward propagation can continue onward until it produces a scalar
cost J(θ). Then a back-propagation algorithm allows the information from the cost to then
flow backwards through the network to compute the gradient at each node or neuron.

According to Goodfellow et al. [18], the term back-propagation is often misunder-
stood as meaning the whole learning algorithm for multi-layer neural networks. Back-
propagation refers only to the method for computing the gradient, while another algo-
rithm, such as stochastic gradient descent, should be used to perform learning using this
gradient, that means to update the θ parameters or network weights.

2.3.3.3. Cost Function

The chosen cost function is closely related to the prediction task. Indeed, it needs to
measure how good, or bad the model is predicting comparing with the ground truth
label.

Usually, the inputs for a loss function defined on a single data point are the ground
truth label y and the predicted value ŷ. In general, a mean quadratic error function could
be used for regression problems, and a cross-entropy function could be used for classifi-
cation problems.

2.3.4. Activation Functions

To be able to solve more complex or nontrivial problems, nonlinearities should be are
added to the neural network. This could be done using nonlinear activation functions.

The most common activation functions are (some of them are shown in Figure 2.5):

Linear
fL
(
zj
)
= zj (2.8)



8 Literature Review

Step

fE
(
zj
)
=

{
1 if zj > 0
0 if zj < 0

}
(2.9)

ReLU (rectified linear unit)

fR
(
zj
)
= max

(
0, zj

)
(2.10)

PReLU (parametric rectified linear unit)

fPR
(
zj
)
=

{
zj if zj > 0
azj if zj ≤ 0

}
(2.11)

Sigmoid

fS
(
zj
)
=

1
1 + exp

(
−zj

) (2.12)

Hyperbolic tangent

fT
(
zj
)
=

exp
(
zj
)
− exp

(
−zj

)
exp

(
zj
)
+ exp

(
−zj

) (2.13)

Softmax

fSM
(
zj
)
=

exp
(
zj
)

∑j′ exp
(
zj′
) (2.14)

Figure 2.5: Activation functions. The step, the ReLU, the Sigmoid and the Hyperbolic tangent
activa-tion functions.

2.3.5. Convolutional Neural Networks

Convolutional neural networks, also called CNN or ConvNets, are simply neural net-
works that use convolution in place of general matrix multiplication in at least one of
their layers [18].



2.3 Neural Networks 9

Traditional neural network layers compute for each neuron in a layer a weighted
linear combination of the inputs coming from the previous layer. Also, it can be seen as a
matrix multiplication by a matrix of parameters with a separate parameter describing the
interaction between each input unit and each output unit, as illustrated in Equation 2.3.
That means every output unit could interact with every input unit.

Convolutional networks, however, typically have sparse interactions, as they interact
with a subsection of the previous layer neurons. They can retain some spatial informa-
tion, which is essential in computer vision tasks.

2.3.5.1. Convolutional Layer

The convolution can be seen as an element-wise multiplication between a matrix of pa-
rameters and a subsection of an input matrix or previous layer’s outputs. In Figure 2.6,
it can be seen how each output value or neuron interacts with only a subsection of the
input values or previous layer neurons, that means every output value is a kind of local
representation of the subsection with which it is interacting.

Figure 2.6: An example of 2D convolution. Source [18, Figure 9.1].

2.3.5.2. Pooling Layer

To reduce the computational cost, a pooling operator could be used, which also deal
with multi-scale and capture higher-level features. The Figure 2.7 shows that the output
values could be the average (left) or the max value (right) of the neurons with which they
interact.

For example, the value 15 of the green box in the left square corresponds to the aver-
age of the values 21,8,12,19. The value 21 of the green box in the right square corresponds
to the maximum of the values 21,8,12,19.



10 Literature Review

Figure 2.7: Pooling Layer kernel size of 2, and stride of 2. Image source https://ip.cadence.
com/uploads/901/cnn_wp-pdf

2.3.6. Regularization

A trained model can make very few errors on the sample data on which it is trained
but performs poorly on new data. This situation, typically referred to as overfitting, is
exacerbated by complex models as the neural networks, and small samples [12].

This section shows the most common techniques to avoid overfitting in neural net-
works.

2.3.6.1. Data Augmentation

Bengio et al. [3] proposed to generate additional training data by applying local affine-
transformations to enhance the robustness to variations in position, size, orientation, and
other distortions.

Following these ideas, nowadays, it is very common to use transformations such as
flipping, rotation, scaling, adding salt and pepper noise, varying lighting condition and
perspective transform. It is so common that most of them are already implemented by
the deep learning framework to be used out of the box.

2.3.6.2. Gaussian Noise

Zur et al. [58] investigated the effect of a noise injection method on the overfitting prob-
lem of artificial neural networks (ANNs) in two-class classification tasks. They found that
training artificial neural networks with noise injection can reduce overfitting, it could be
greater than using early stopping and similar as using weight decay.

This technique is commonly used together with Batch Norm because the weight range
would be known that makes it easier to find how much noise should be added.

2.3.6.3. Dropout

Dropout presented by Srivastava et al. [45] is a simple way to prevent neural networks
from overfitting. Its key idea is to randomly drop units (along with their connections)
from the neural network during training, as shown in Figure 2.8.

Essentially random variables control the activation of the neurons, and at test time,
outgoing weights are multiplied by the probability that the neuron has been retained.

https://ip.cadence.com/uploads/901/cnn_wp-pdf
https://ip.cadence.com/uploads/901/cnn_wp-pdf


2.3 Neural Networks 11

Figure 2.8: Dropout. Image Source [45].

2.3.6.4. MixUp

Zhang et al. [56] proposed to train neural networks on convex combinations of pairs of
examples and their labels to alleviate undesirable behaviors such as memorization and
sensitivity to adversarial examples.

It is a simple and data-agnostic data augmentation routine, which constructs virtual
training examples as follows:

x̃ = λxi + (1− λ)xj, where xi, xj are raw input vectors

ỹ = λyi + (1− λ)yj, where yi, yj are one-hot label encodings

Typical values of λ are in the range of [0.2− 0.4]

2.3.7. Transfer Learning

Neural networks rely on the availability of a large amount of labeled data to train a
model. However, labeled data are often scarce and expensive to obtain [8]. When there is
no such a large amount of labeled data, it is possible to use transfer learning to improve
the performance on a target learning task using the network weights of a trained model
for similar learning tasks on a large labeled dataset [35].

According to Pan and Yang [32], transfer learning aims to extract the knowledge from
one or more source tasks and applies that knowledge to a target task, as shown in Fig-
ure 2.9. They also proposed the following formal definition:

Given a source domainDS and learning task TS, a target domainDT and learning task
TT, transfer learning aims to help improve the learning of the target predictive function
fT(. . . ) in DT using the knowledge in DS and TS, where DS 6= DT, or TS 6= TT.

In the context of neural networks, we could identified two general approaches to
transfer learning: feature extraction and finetuning.

Feature extraction It is done by using the vector produced by a forward pass of a
trained neural network, and then training a classifier or a regressor using that feature
vector dataset.



12 Literature Review

Figure 2.9: Transfer Learning. Image Source [49].

Finetuning It is done by initializing a neural network with the weights of a pretrained
network optimised for a large labeled dataset like ImageNet, and then updating the net-
work’s weights using a different, commonly smaller dataset [27].

2.4 Applications of Convolutional Neural Network

The concept of convolutional neural network (CNN) was originally introduced by Fukushima
[15] in 1980, but just in 1998 LeNet [26] was the first successful deep CNN.

This section presents the most relevant architecture designs to carry out mostly Image
Classification tasks: LeNet-5 in Subsection 2.4.1, AlexNet in Subsection 2.4.2 Overfeat in
Subsection 2.4.3, VGG in Subsection 2.4.4, GoogLeNet in Subsection 2.4.5 and ResNet in
Subsection 2.4.6.

2.4.1. LeNet-5

In 1998, Lecun et al. [26] proposed a network for Handwritten Digit Recognition trained
on the MNIST dataset. This network could be considered as the first successful deep
CNN.

The architecture, shown in Figure 2.10, has two convolutional layers, each followed
by an average pooling layer, followed by two consecutive fully connected layers. The
activation functions are sigmoid and tanh.

2.4.2. AlexNet

AlexNet, illustrated in Figure 2.11, proposed by Krizhevsky et al. [25] won the ImageNet
ILSVRC challenge 2012. The architecture contains eight layers with weights; the first five
are convolutional, and the remaining three are fully connected. The output of the last
fully-connected layer is fed to a 1000-way softmax which produces a distribution over
the 1000 class labels.



2.4 Applications of Convolutional Neural Network 13

Figure 2.10: Architecture of LeNet-5, a convolutional neural network used for digits recognition.
Each plane is a feature map, i.e., a set of units whose weights are constrained to be identical [26].

The architecture is similar to LeNet, but use ReLU as activations and Dropout for
regularization. It also increases the input size to 224x224 pixels.

Figure 2.11: Architecture of AlexNet [25].

2.4.3. Overfeat

In 2013, Overfeat presented by Sermanet et al. [42] proposed the idea to efficiently use of
CNN for detection using a sliding windows approach.

During training, a CNN produces only a single spatial output (Figure 2.12 top). But
when applied at test time over a larger image, it produces a spatial output map, e.g. 2x2
(Figure 2.12 bottom). Since all layers are applied convolutionally, the extra computation
required for the larger image is limited to the yellow regions.

2.4.4. VGG

In 2014, VGG team [44] won the localisation challenge of ILSVRC 2014 [41]. It is also the
1st runner-up in the task of object detection in the ILSVRC 2014.1

As noted by Khan et al. [24], VGG replaced the 11x11 and 5x5 filters with a stack
of 3x3 filters layer and experimentally demonstrated that concurrent placement of 3x3
filters can induce the effect of the large size filter, reducing the computational cost.

2.4.5. GoogLeNet

GoogLeNet presented by Szegedy et al. [48] won the ILSVLC 2014 competition and is
also known as Inception-V1. Its main contribution was the inception block, which per-

1http://image-net.org/challenges/LSVRC/2014/results

http://image-net.org/challenges/LSVRC/2014/results


14 Literature Review

Figure 2.12: The efficiency of ConvNets for detection [42, Figure 5].

forms multiple convolutions with different kernel sizes in parallel and concatenates their
outputs, reducing the number of parameters in the network.

2.4.6. ResNet

Presented by He et al. [20] in 2015, ResNet with a depth of over 150 layers won the image
classification, detection, and localization in ILSVRC 2015. 2

The new key idea is to fit residual mappings instead of mappings, as illustrated in
Figure 2.13. ResNet introduced shortcut connections within layers to enable cross-layer
connectivity. However, those shortcuts or gates are data-independent and parameter-free
in comparison to Highway Networks [46] presented in 2015 too.

Figure 2.13: Residual learning: a building block [20].

2.5 Object Detection

Object detection is the task of identifying all objects from a specific closed-set of pre-
defined classes by putting a bounding box around each object present in an image [1].

2http://image-net.org/challenges/LSVRC/2015/results

http://image-net.org/challenges/LSVRC/2015/results


2.5 Object Detection 15

Overfeat, presented in Subsection 2.4.3, was the first publication related to efficient
object detection with CNN. However, the most impressive advancements to use a convo-
lutional neural network to tackle the task of object detection were based on the classical
three-step machine learning approach: selective search, feature extraction and classifica-
tion. This family of algorithms called region convolutional neural networks is presented
in Subsection 2.5.1. Then, In Subsection 2.5.2 recent architectures designs based on the
idea of single-stage object detector are presented.

2.5.1. Region CNN Networks

2.5.1.1. R-CNN

In 2013, R-CNN was presented by Girshick et al. [17]. As shown in Figure 2.14, they
applied the three-step strategy: selective search (e.g. Uijlings et al. [50]), feature extraction
(e.g. SIFT [29]) and classification (e.g. SVM [7]); but a CNN was used to extract the
features representation from each region proposal instead of a commonly used hand-
creafted feature extraction algorithms.

They resize the selected image proposal region (yellow boxes in Figure 2.14) to fit
in a CNN. Each region is represented with a fixed-size vector extracted from the Fully-
Connected (FC) layer from Alexnet.

Figure 2.14: R-CNN. Image source [17].

2.5.1.2. Fast R-CNN

In 2015, Girshick [16] presented Fast R-CNN improving the speed and accuracy of the
R-CNN. As R-CNN is slow because it performs a CNN forward pass for each object pro-
posal without sharing computation, Fast R-CNN perform only one forward pass. There-
fore the regions re-use this same forward. As shown in Figure 2.15 the bounding boxes
(red) are projected to the feature map coordinates. They also used a more accurate back-
bone network, VGG16 and data augmentation to achieve scale-invariant object detection.

2.5.1.3. Faster R-CNN

In 2015, Ren et al. [37] introduced a Region Proposal Network (RPN) that shares full-
image convolutional features with the detection network. Thus enabling nearly cost-free
region proposals, reducing the infer time drastically.

An RPN, shown in Figure 2.16, is a fully convolutional network that simultaneously
predicts object bounds and objectness scores at each position, which is trained end-to-end
to generate high-quality region proposals. After that, Fast R-CNN for detection is used.



16 Literature Review

Figure 2.15: Fast R-CNN. Image source [16].

In addition, RPN and Fast R-CNN are merged into a single network by sharing their
convolutional features.

Figure 2.16: Faster R-CNN. Image source [37].

2.5.2. Single-Stage Object Detector

Another approach to using CNN for object detection is the so called single shot or single
stage detectors, since both object localisation and classification are done within a single
feed-forward through the network.

In 2015, Redmon et al. [36] presented YOLO, were they frame object detection as a
regression problem to spatially separated bounding boxes and associated class probabil-
ities. Since the whole detection pipeline is a single network, it can be optimized end-to-
end directly on detection performance.

Also In 2015, Liu et al. [28] presented a single deep neural network, called Single Shot
MultiBox Detector (SSD), which discretizes the output space of bounding boxes into a
set of default boxes over different aspect ratios and scales per feature map location. This
neural network is described in Section 2.6.

2.6 Single Shot MultiBox Detector (SSD)

This section presents the most relevant concepts of the SSD model presented by Liu et al. [28].

SSD framework is shown in Figure 2.17. It takes an image and the ground truth
boxes (blue and red boxes in (a)) for each object during training as input. Then, in a
convolutional fashion, a small set (e.g. 4) of default boxes of different aspect ratios at each



2.6 Single Shot MultiBox Detector (SSD) 17

location in several feature maps from multiple layers for prediction at different scale are
evaluated (e.g. 8x8 and 4x4 in (b) and (c)).

Finally, for each default box, both the shape offsets and the confidences for all object
categories ((c1, c2, . . . , cp)) are predicted.

Figure 2.17: bbox of SSD [28].

2.6.1. Architecture

The Architecture is based on a truncated basic CNN, trained on image recognition. The
use of a VGG16 is proposed, but other CNN could also be used.

As seen in Figure 2.18, the SSD model uses some feature layers directly from the
base network: conv4_3 and conv7/FC7; and also adds several feature layers to the end
of a base network that decreases in size progressively: conv8_2, conv9_2, conv10_2 and
conv11_2. Each feature layer predicts the offsets to default boxes and their associated
class confidences. Using feature maps from different layers allows predicting at different
scales. This base network is called the backbone network.

Figure 2.18: Architecture of SSD [28].

In fact, SSD with an 300x300 input size significantly outperforms its 448x448 YOLO
[36] counterpart in accuracy on VOC2007 test while also improving the speed.

2.6.2. Training

The SSD training objective or cost function is derived from the MultiBox objective [13]
but is extended to handle multiple object categories. Let xp

ij = {1, 0} be an indicator for
matching the i-th default box to the j-th ground truth box of category p. The matching



18 Literature Review

variable xp
ij is 1 when the jaccard overlap or IoU between the ground truth and the default

bounding box is higher than a threshold ( e.g. 0.5). The overall objective loss function,
shown in Equation 2.15, is a weighted sum of the localization loss (loc) and the confidence
loss (conf), weighted by a parameter α.

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(2.15)

Then, the confidence loss function is illustrated in Equation 2.16. It is a softmax loss
over multiple classes confidences (c).

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log

(
ĉ0

i
)

(2.16)

where ĉp
i =

exp(cp
i )

∑p exp(cp
i )

Next, the localisation loss function is shown in Equation 2.17. It is a Smooth L1 loss
[17] between the predicted box (l) and the ground truth box (g).

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1

(
lm
i − ĝm

j

)
(2.17)

Finally, the ground truth information needs to be assigned to specific outputs in the
fixed set of detector outputs. Each ground truth box is matched to the default box with the
best jaccard overlap higher than a threshold (e.g. 0.5). This define which is the positive
and negative training samples. Because there could be a significant imbalance between
the positive and negative training examples, the use of a subset of the negative samples
with the highest confidence loss is proposed. It is so called hard negative mining ratio.

2.6.3. Data Augmentation

Data augmentation is crucial, according to Redmon et al. [36] there is a gain of 8% mAP
when data augmentation is used. The following subsections will describe the strategies
that could be called Zoom-In and Zoom-Out.

2.6.3.1. Zoom-In Strategy

A zoom-in operation to make the model more robust to various input object sizes and
shapes is proposed. Many larger training examples are randomly generated by one of
the following options:

• Use the entire original input image.

• Sample a patch so that the minimum jaccard overlap (IoU) with the objects is 0.1,
0.3, 0.5, 0.7, or 0.9.

• Randomly sample a patch.

2.6.3.2. Zoom-Out Strategy

Because the classification task for small objects is relatively hard for SSD, the use of zoom-
out data augmentation to create more small training examples with the idea of improving



2.7 Computer Vision for Damage Detection on Wind Turbines 19

the accuracy is proposed. This operation is so called expansion. First, the images are
randomly placed on a canvas of 16x of the original image size filled with mean values.
Then, a random crop is extracted.

2.7 Computer Vision for Damage Detection on Wind Turbines

Most models applied to wind turbine condition monitoring use SCADA or simulated
data, with almost two-thirds of methods using classification and the rest relying on re-
gression, only a few approaches utilised images [47].

However, in recent years, some research has been conducted to detect damage to the
wind turbine blade using images as a data source. In 2017, Wang and Zhang [53] used
Unmanned Aerial Vehicles (UAVs) taken images to detect surface cracks in blades using
the Viola-Jones framework [52]. The same authors in 2019 proposed a two-stage approach
for detecting surface cracks on the wind turbine blades via analyzing blade UAVs taken
images. The first stage consists of a locating cracks method based on extracting Haar-like
features, and the second stage consists of obtaining crack contours based on boundaries
of crack segments [54].

It is important to keep in mind that recently, in 2019, it is possible to find some re-
search using deep learning. Shihavuddin et al. [43] developed a deep learning-based au-
tomated damage suggestion system by analysis of drone inspection images. They used
faster R-CNN with an advanced augmentation step called the “Multi-scale pyramid and
patching scheme” that enables the network to achieve better learning. In the 52nd CIRP
Conference on Manufacturing Systems placed on June 20193, Denhof et al. [11] propose to
automate the visual surface inspection of Wind Turbine Rotor Blades with convolutional
neural networks (CNN) using models such as DenseNet, VGG and ResNet.

3https://www.cirp-cms2019.org/

https://www.cirp-cms2019.org/


CHAPTER 3

Datasets

This chapter presents the datasets and preprocessing techniques.

First, in Section 3.1 the dataset creation and protocols are presented. Later, in Sec-
tion 3.2 the prediction tasks are described. Then, in Section 3.3 the preprocessing tech-
niques are explained. Finally, in Section 3.4 the preprocessed datasets are shown.

3.1 Dataset Creation and Protocols

Datasets of an ongoing wind turbine inspection were used. More than 1000 wind towers
would be reviewed, and their damage classified.

First, a small dataset with image samples was reviewed to understand the type of
images and annotations they planned to produce in the coming months. It was also
important to know about the data format and image quality.

Later, the first real dataset called ds-00, which contained drone images from 12 in-
spections, was accessed. One inspection corresponds to the revision of one tower, which
contains one mission folder for each of its wind turbine blades. In general, a tower has
three blades, so there must be three missions for each tower. After that, a dataset called
ds-01 was accessed, which consisted of information on 154 valid inspections according
to our selection protocol. The selection protocol is presented in Subsection 3.1.1. Next,
another dataset was accessed, called ds-02, which contains information about 261 valid
inspections.

In this thesis, most of our experiments were performed using the dataset ds-00 and a
subset of the dataset ds-01. It is estimated that it corresponds to 1/8 of all available data.

However, the evaluation of multiple deep learning models configurations on the
dataset ds-02 is beyond the scope of this thesis, due to the size of the data set, the lim-
ited hardware capacity available to do our experiments and the time available for this
master’s thesis.

The images were captured in a resolution of 5472x3648 pixels. Every damage has
been annotated with a bounding box, severity and type. Five levels of severity and 15
damage types were used. The damage types are: bubbles, cast, chipped coat, coat fault,
crack around lightning bolt, crack around spl bolt, cracks, damaged laminate, erosion,
lightning damage, lightning hit- receptor, noise, paint erosion on smt, rub mark, and
scratch.

Image samples of bubbles and cast are shown in Figure 3.1 and Figure 3.2 respectively.
In addition, in Appendix B on page 52 more image samples are presented.

20



3.1 Dataset Creation and Protocols 21

Figure 3.1: Bubbles

Figure 3.2: Cast

3.1.1. Inspection Selection Protocol

The inspections were carried out by two teams, one of them has more experience than
the other. The first revision was carried out by the less experienced team whose main
outcome was to try to locate all possible damages. Then, the most experienced team
reviewed the proposed locations to verify if there were actual damages. They also were in
charge of classifying the severity and type. A graphical representation of this inspection
process is shown in Figure 3.3.

Figure 3.3: Damage inspection process

Because it was obtained access to all revisions, but not all of them were reviewed by
the most experienced team at that time, a selection protocol was defined. A valid inspec-
tion is defined as those that were reviewed by the most experienced team. In addition,



22 Datasets

some of them were reviewed by more than one team member of the more experienced
team. For that reason, the data of the last revision was selected.

3.1.2. Datasets

In Table 3.1 the number of inspections, missions, images and damages of all datasets
are shown. Also, it shows if a dataset contains only valid inspections according to the
defined selection protocol of Subsection 3.1.1.

It can also be seen that the number of valid revisions of the dataset ds-01 is almost half
of the dataset ds-02, 154 and 261 respectively, but the total number does not increase too
much, from 602 to 689. In addition, it can be seen that in ds-01, there are 21906 damages,
but in ds-01-val-01 there are only 4385 verified.

Table 3.1: Inspection datasets

Dataset Inspections Missions Images Damages Valid only
ds-00 12
ds-01 602 1797 16928 21906 n
ds-01-val-01 154 461 3352 4385 y
ds-02 689 2056 19197 24823 n
ds-02-val-01 261 780 6168 7986 y

Each data set has been divided into 85% for train and 15% for dev (validation), ensur-
ing that all images and annotations of a mission are in train or dev exclusively.

3.1.2.1. ds-01-val-01 dataset

The ds-01-val-01 dataset is imbalanced as can be seen in Table 3.2. There are some damage
types with only one sample, and there is one class with almost 50% of all samples. Also,
there are damages of type n/a that were annotated during the 1st review but were not
reviewed by the most experienced team. The damage inspection process is described in
Subsection 3.1.1.

In addition, in Table 3.3, it can be appreciated that more than 50% of the boxes are
less than 50 pixels wide, which is very small compared to the full resolution size of the
images. It can be seen the same behaviour with the box heights. Then, in Table 3.4 can be
seen that the mean width is 63.36 pixels, and the mean height is 95.5 pixels. It also shows
that 75% of the boxes are less than 62 pixels wide or less than 70 pixels high.

3.1.2.2. ds-02-val-01 dataset

When the ds-02-val-01 dataset was analysed, similar patterns to those of the ds-01-val-01
dataset presented in Subsection 3.1.2.1 were found.

The damage type is imbalanced as shown in Table 3.5. The damage type coat fault has
more than 50% of all annotated damages. Then, in Table 3.6 can be seen that more than
60% of the bounding boxes are very small, they are less than 50 pixels wide. Finally, the
Table 3.7 shows that the average width and height are less than 65 pixels.



3.2 Prediction Tasks 23

Table 3.2: Damage type samples of the ds-01-val-01 dataset

Damage Type Samples

coat fault 2411
chipped coat 789
n/a 301
erosion 248
noise 174
bubbles 157
lightning hit- receptor 87
rub mark 52
paint erosion on smt 33
scratch 23
*** undefined *** 23
cracks 23
damaged laminate 22
crack around lightning bolt 18
lightning damage 15
cast 10
crack around spl bolt 1
tip break damage 1

Table 3.3: Percentage of bounding box damages grouped by height or width of the ds-01-val-01
dataset

Pixel Range Height (%) Width (%)

(0, 10] 0.00 0.00
(10, 20] 0.16 0.15
(20, 30] 0.26 0.28
(30, 50] 0.24 0.25
(50, 100] 0.16 0.20
(100, 200] 0.09 0.08
(200, 300] 0.03 0.02
(300, 10000] 0.07 0.03

3.2 Prediction Tasks

It is possible to define different use cases using one single dataset. For that reason, differ-
ent prediction tasks are defined based on the related use case and available data.

A prediction task is defined by its target labels. In some cases, the labels (damage
type) in the dataset may differ from the target labels of the prediction task. For example, a
target label called damage could represent multiple damage types. As shown in Table 3.8,
the labels could be the same as the source labels found in the dataset or artificial labels
like damage or other. When an artificial label is used, an index map to do a mapping from
the source labels to the target labels should be applied. In Table 3.9, the index maps are
shown.



24 Datasets

Table 3.4: Bounding box size statistics of the ds-01-val-01 dataset

Statistic Width Height Area

count 4388.00 4388.00 4388.00
mean 63.37 95.50 21767.42
std 127.17 218.54 206072.28
min 10.00 11.00 143.00
25% 24.00 23.00 576.00
50% 34.00 35.00 1292.00
75% 62.00 70.00 4219.50
max 3993.00 3602.00 10094304.00

Table 3.5: Damage type samples of the ds-02-val-01 dataset

Damage Type Samples

coat fault 4879
chipped coat 1155
erosion 352
n/a 305
bubbles 261
crack around lightning bolt 235
noise 197
paint erosion on smt 186
lightning hit- receptor 156
*** undefined *** 60
rub mark 56
lightning damage 43
cracks 29
scratch 26
damaged laminate 24
cast 17
crack around spl bolt 6
missing seal between smt & shell 3
tip break damage 1

3.3 Preprocessing

The drone inspection images were captured in a high resolution of 5472x3648 pixels. For
that reason, it was opted to extract crops of the images to decrease hardware require-
ments. They were also scaled to a lower resolution looking to reduce the training mem-
ory requirements. These strategies are based on the ideas of Shihavuddin et al. [43] and
Xia et al. [55].

For object detection tasks, a sliding window strategy was used to crop only sections
of the image that contain annotated damages. Fixed windows size and fixed stride were
used. Then, when the IoU between the cropped damage and the original damage is
below a threshold, the damage is marked as difficult.

In the case of image classification tasks, the damages were cropped using the ground
truth bounding boxes. Then, each cropped damage is re-scaled to a fixed width and
height.



3.3 Preprocessing 25

Table 3.6: Percentage of bounding box damages grouped by height or width of the ds-02-val-01
dataset

Pixel Range Height (%) Width (%)

(0, 10] 0.00 0.00
(10, 20] 0.14 0.12
(20, 30] 0.26 0.27
(30, 50] 0.26 0.27
(50, 100] 0.18 0.20
(100, 200] 0.09 0.09
(200, 300] 0.02 0.02
(300, 10000] 0.05 0.02

Table 3.7: Bounding box size statistics of the ds-02-val-01 dataset

Statistic Width Height Area

count 7991.00 7991.00 7991.00
mean 62.75 80.66 15411.55
std 105.89 175.79 154783.07
min 10.00 11.00 143.00
25% 25.00 24.00 638.00
50% 36.00 36.00 1400.00
75% 63.00 64.00 3958.00
max 3993.00 3602.00 10094304.00

To differentiate each preprocessed dataset, a nomenclature was defined to name the
transformed dataset according to the transformation or preprocessing strategy that was
applied.

The possible suffixes for object detection tasks are:

• sWxH when a scale of width W and height H was applied.

• cS when square crops of size S were extracted.

• vN to specify the dataset version N, in case of changes in the software or the extrac-
tion strategy.

The possible suffixes for image classification tasks are:

• rsN when damages are extracted and re-scaled to a fixed size of NxN pixels.

For example, ds-01-val-01-c300-v01 is based on the ds-01-val-01 dataset and square
crops of size 300 pixels were extracted, it was also identified as the first version of the
preprocessed dataset.

These preprocessing strategies were implemented as python scripts:

• reducing_big_images.py: Used to extract patches of specific offset or size. It was
implemented using impy1.

1https://github.com/lozuwa/impy

https://github.com/lozuwa/impy


26 Datasets

Table 3.8: Target labels

Name Target labels
labels All the labels
labels_v1 lightning hit-receptor, chipped coat, coat fault, erosion, bubbles
labels_v2 coat fault, other
labels_v3 coat fault
labels_v4 coat fault, chipped coat
labels_v5 chipped coat
labels_v6 damage
labels_v7 All the labels, but not including N/A nor undefined type
5c Predict five label (image classification)

Table 3.9: Index maps

Name Index map
index_map_15c2d all type are mapped to 0
index_map_2c2d coat fault and chipped coat are mapped to 0
index_map_3c2d coat fault, chipped coat and erosion coat are mapped to 0
index_map_v2 coat fault is mapped to 0, other types are mapped to 1

• reducing_big_images_aug.py: Used to apply scale transformations. It was imple-
mented using impy.

• voc_crop.py: Used to extract patches using a window of a fixed size and step size
or stride. It was implemented using MXNet2 and GluonCV3 [19].

• voc2cls_crop.py: Used to extract crop of damages used in image classification tasks.
It is base on voc_crop.py.

3.4 Preprocessed Datasets

The datasets used in the first series of experiments were preprocessed using the python
scripts based on impy which are shown in Table 3.10. However, most of our experiments
use the datasets listed in Table 3.11, which were preprocessed using the Python scripts
based on MXNet and GluonCV. In the other hand, for image classification tasks, the pre-
processed datasets shown in Table 3.12 were created.

2https://mxnet.apache.org
3https://gluon-cv.mxnet.io

https://mxnet.apache.org
https://gluon-cv.mxnet.io


3.4 Preprocessed Datasets 27

Table 3.10: Preprocessed datasets using impy

Name Description
ds-00-reduced1000 patches with size of 1000
ds-00-reduced400 patches with size of 400
ds-00-reduced600 patches with size of 600
ds-01-s5472x3648-c1000 scaled to 5472x3648

patches with size of 1000
ds-01-s5472x3648-c1000-s300x300 scaled to 5472x3648

patches with size of 1000
scaled to 300x300

ds-01-s5472x3648-c1000-s512x512 scaled to 5472x3648
patches with size of 1000
scaled to 512x512

ds-01-val-01-c1000-v01 patches with size of 1000

Table 3.11: Preprocessed datasets for object detection tasks

Name Description
ds-01-val-01-c1000-v02 Crop of 1000, stride 500, IoU=1.
ds-01-val-01-c1000-v03 Crop of 1000, stride 900, difficult<.7
ds-01-val-01-c1000-v04 Crop of 1000, stride 500, IoU>0, difficult<.7
ds-01-val-01-c300-v01 Crop of 300, stride 150, IoU>0, difficult<.7
ds-01-val-01-c512-v01 Crop of 512, stride 256, IoU>0, difficult<.7

Table 3.12: Preprocessed datasets for image classification tasks

Name Description
ds-01-val-01-rs224v01 re-scaled to 224



CHAPTER 4

Methods

This chapter presents the models and parameters available.

First, in Section 4.1 the Models and Architectures are presented. Then, the Section 4.2
shows the training and validation parameters.

4.1 Models and Architectures

For object detection tasks, MXNet1 and GluonCV2 [19] were used to implements the mod-
els and architectures. It was opted to use those libraries because they already have model
implementations to base on to modify and build the specific models and features evalu-
ated in this project. In addition, they obtained good performance in evaluations carried
out to compare different SSD implementations and different frameworks.

For image classification tasks the implementations and experiments have been carried
out using PyTorch3 [33] and the FastAI library4 [23].

4.1.1. SSD Backbones for Object Detection

The SSD architecture presented in Section 2.6 is based on extending a CNN, called back-
bone network. In our experiments, VGG and ResNet were used. The Table 4.1 shows the
backbones based on VGG and the Table 4.2 shows a sample list of the backbones based on
ResNet. In addition, it shows the feature maps from which the features are extracted and
how many additional layers are added. A complete list of the used SSD-ResNet backbone
networks can be found in Table A.1 on page 51.

Table 4.1: SSD backbones based on VGG

Backbone network name Description

vgg16_atrous vgg16 atrous without batch norm
vgg16_atrous_02 vgg16 atrous with batch norm

1https://mxnet.apache.org
2https://gluon-cv.mxnet.io
3https://pytorch.org/
4https://github.com/fastai/fastai

28

https://mxnet.apache.org
https://gluon-cv.mxnet.io
https://pytorch.org/
https://github.com/fastai/fastai


4.2 Training and Validation Parameters 29

Table 4.2: Compact list of SSD backbones based on ResNet

Backbone network name Description

resnet18_v1 Last activation of stage 3 y 4 + 4 extra
resnet18_v1_02 Last activation of stage3 + 5 extra
resnet18_v1_02_gn Last activation of stage3 + 5 extra + gaussian noise
resnet18_v1_03_02_01_numfilters01 Last activation of stage3 + 2 extra of 256
resnet18_v1_03_02_01_numfilters02 Last activation of stage3 + 2 extra of 128
resnet18_v1_03_02_ratios01 Last activation of stage3 + 1 extra + [1, 2, 0.5, 3, 1.0/3]
resnet50_v1 Last activation of stage 3 y 4 + 4 extra

4.1.2. Image Classification

The available datasets were relative small. The ds-01-val-01 dataset consists of less than
5000 images with damages. For that reason the use of Transfer Learning (Subsection 2.3.7)
was proposed.

Pre-trained models could be utilised, replacing their last layers to match the shape of
our prediction tasks. Then the training could be done in two steps. First, only the newly
added layers are optimised for some epochs. Then, all layer could be trained. It may also
be useful to add intermediate layers between the pre-trained network activations and the
last fully-connected layer that has as many units a number of classes or labels.

For example, for a ResNet trained in ImageNet, we should remove the last fully con-
nected layer of 1000 neurons or units, replacing it with a new layer, e.g. a layer with five
neurons for the prediction task 5c because that task consists of predicting five labels.

4.2 Training and Validation Parameters

In Subsection 4.2.1, the parameter settings available for object detection tasks are pre-
sented. Then, the parameter settings for image classification tasks are described in Sub-
section 4.2.2.

It is important to note that the training and validation parameters presented in this
section could produce more combinations than those evaluated in the scope of this thesis.

4.2.1. Object Detection Parameters

The parameters could be divided into architectural, data, training and validation param-
eters. The Table 4.3 shows the architectural parameters, like the network architecture and
the backbone network. Then, the Table 4.4 shows the data parameters, like the train and
validation dataset. Depending on the prediction task, the target labels and index map
must be chosen. The general training parameters like the initial learning rate and batch
size are shown in Table 4.5. Also, It is possible to use pre-trained model weights for the
backbone network offered by the MXNet and GluonCV projects.

In addition, model specific training parameters are shown in Table 4.6. Some of them
configure how the data augmentation is performed or how the loss function is calculated.
The Table 4.7 shows the validation parameters. These parameters could also be changed
during the testing time to measure the performance of a trained model with different
metric parameters.



30 Methods

Table 4.3: Architectural parameters

Parameter name Description
network architecture SSD Section 2.6
backbone network Subsection 4.1.1
data-shape Pixel size of the input images

Table 4.4: Data parameters

Parameter name Description
train dataset Dataset used for training Section 3.4
validation dataset Dataset used for validation Section 3.4
label Target labels Section 3.2
index-map Section 3.2
train-skip-difficult If the difficult damages of the training dataset should be skipped
val-skip-difficult If the difficult damages of the validation dataset should be skipped
mixup If mixup data augmentation should be used

4.2.2. Image Classification Parameters

The image classification training could be done in two steps. First, the newly added
layers are set as trainable, and the remaining layers are frozen. This training step can be
done for a maximum number of epochs learn_fit_1. Then, a finetune step where all layers
are set as trainable can be done for a maximum number of epochs learn_fit_2. A fixed
learning rate could be used for each step, or when the learning rate value is less than zero
the learning rate finder function5 is used. The parameters are shown in Table 4.8.

5https://docs.fast.ai/basic_train.html#lr_find

https://docs.fast.ai/basic_train.html#lr_find


4.2 Training and Validation Parameters 31

Table 4.5: General training parameters

Parameter name Description
pretrained-base If pre-trained weights for the backbone network should be used
lr Learning rate
batch-size Batch size
epochs Epochs

Table 4.6: Training parameters

Parameter name Description
train-transform-random-crop-with-constraints Random crop constraints
max-ratio Max ratio
loss-negative-mining-ratio Ratio of negative vs. positive samples
loss-min-hard-negatives Minimum number of negatives samples
loss-lambd Relative weight between classification and box

regression loss
train-transform-iou-thresh IOU overlap threshold for maximum matching
val-transform-iou-thresh IOU overlap threshold for maximum matching

Table 4.7: Validation parameters

Parameter name Description
val-metric-iou-thresh IOU overlap threshold for TP for mAP Metric

Table 4.8: Image classification parameters

Parameter name Description
path_ds Path where the train and val datasets are located
classes_sel Classes or damage types to predict
bs Batch size
img_size Image size
ps Drop out rate added to the newly added layers
base_arch_name Name of architecture
oversample Oversample strategy
mixup Mixup data augmentation
lr_fr Learning rate for fine tuning
lr_un Learning rate for training
learn_fit_1 Epochs for fine tuning
learn_fit_2 Epochs for training
np_random_seed
lin_ftrs Intermediate hidden sizes. An array specifying the number of units

per layer added between the pre-trained network activations and the
last fully-connected layer or labels (Default 512)



CHAPTER 5

Results

Because the images were taken in high resolution, it is proposed first to try to locate the
damages in the images, then try to classify each damage as its type.

The Section 5.1 describes the results of several experiments performed to evaluate
different object detection model configurations to locate damages on wind turbine blade
images. Then, in Section 5.2 the results of the experiments with image classification mod-
els to classify each damage as its damage type are shown.

5.1 Object Detection

This section describes the results of several experiments performed to evaluate different
SSD model configurations to locate the damages.

Our first obtained results using a preprocessing strategy applied by the python scripts
based on impy are presented in Subsection 5.1.1. Later, the results of predicting two la-
bels: coat fault or other are shown in Subsection 5.1.2. Then, the results of predicting one
label: coat fault are shown in Subsection 5.1.3. Next, in Subsection 5.1.4 the results of pre-
dicting two labels: coat fault or chipped coat are presented. After that, the Subsection 5.1.5
presents the results of predicting the label damage.

5.1.1. Results of Predicting Each Damage Type Separately

In this section, our first experimental results are presented.

Learning Rate

One of the first steps to start training a neural network is trying to find a good learn-
ing rate. Therefore, vgg16_atrous models were trained with the learning rate range
[1.0, 0.00001]. The Table 5.1 shows good learning rate values, values greater than 0.0005
are not shown because cause the loss to explode or the mAP to jump between lower
values.

Should Damage Types be Grouped?

When the exploratory analysis of the dataset was performed, it was found that some
damage type looks very similar. It seems that the variation between some classes is small.
Therefore, models to predict the five damage types with more samples were trained.
Also, models to predict the damage type with more samples and the rest types as other

32



5.1 Object Detection 33

Table 5.1: VGG16 models trained to predict labels v1 with different learning rates

lr validation_map

0.0001 0.324
0.0005 0.308
5e-05 0.297
1e-05 0.233
1e-06 0.133

label were trained. This was done to find out if grouping some damages significantly
improves the mAP.

As shown in Table 3.8 on page 23, labels v1 corresponds to the target labels of the
five damage types with more samples and labels v2 corresponds to the damage type
with more samples and a second label other. An index map to map the damages that are
different than coat fault to the label other should be used.

The Table 5.2 shows that the model trained with labels v2 got the highest mAP.

Table 5.2: VGG16 models trained to predict labels v1 and v2

labels validation_map

v2 0.374
v1 0.324

Crop Constraints Data Augmentation

There are a bunch of very small damages on the dataset, so it was decided to evaluate
the use of smaller damage image sections in the data augmentation phase. The original
crop constraints from Liu et al. [28] were compared with two alternatives to try to obtain
bigger damage image resolution.

The Table 5.3 shows that the original constraints obtained the highest mAP.

Table 5.3: VGG16 models trained to predict labels v2 with different crop constraints

crop_constraints validation_map

def 0.354
new 0.345
new 0.255

Backbone Networks: VGG16, VGG13, VGG11

The Table 5.4 shows that better mAP is obtained when a more powerful model is used as
the backbone network. The VGG16 got the highest mAP.

Summary

Table 5.5 presents a summary of the obtained results.



34 Results

Table 5.4: Backbone networks: vgg16, vgg13, vgg11

network validation_map

vgg16_atrous 0.344
vgg13_atrous 0.303
vgg11_atrous 0.287

Table 5.5: Summary of predicting each damage type separately

validation_map

vgg16_atrous, labels=v1, lr=0.0005 0.308
+ lr=0.0001 0.324
+ labels=v2 0.374

5.1.2. Results of Predicting the coat fault Type and the Rest Types as other
Label

In this section, the obtained results of trained models to predict a damage as coat fault or
other are presented. It corresponds to the labels v2 of Table 3.8 on page 26. It is important
to note that coat fault is the damage type with more samples in the dataset.

Crop Size Pre-processing

Because the input images are re-scaled to the model input size and there are very small
damages, models with a crop of 300, 500 and 1000 pixels were trained to evaluate how
the crop size affects the performance. A stride of the half of the crop size was used, as
shown in Table 3.11 on page 27.

In Table 5.6, it can be seen that when the crop size is reduced, a higher mAP is ob-
tained.

Table 5.6: VGG16 models trained to predict labels v2 with different crop sizes

train_dataset validation_map

ds-01-val-01-c300v01 0.376
ds-01-val-01-c512v01 0.335
ds-01-val-01-c1000v04 0.289

Batch Norm

SSD models were trained with the vgg16_atrous as the backbone, with and without using
batch norm. The models with batch norm were trained from scratch and the models
without batch norm used a pre-trained vgg16_atrous.

The model with batch norm obtained the lowest mAP as can be seen in Table 5.7.
This could be because the batch size was small compared to the one used for training
the VGG16 backbone model without batch norm. A batch size of 16 was used due to the
available hardware resources for training.



5.1 Object Detection 35

Table 5.7: VGG16 models trained to predict labels v2 with and without batch norm

network validation_map

vgg16_atrous 0.380
vgg16_atrous_02 0.282

Summary

Table 5.8 presents a summary of the results of trained models with vgg16_atrous, la-
bels=v2, lr=0.0001.

Table 5.8: Summary of predicting the coat fault type and the rest types as other label

validation_map

crop_size=1000 0.289
+ crop_size=512 0.335
+ crop_size=300 0.376
+ vgg16_atrous with batch norm 0.282

5.1.3. Results of Predicting the coat fault Label

In this section, the obtained results of trained models to predict the damage type coat
fault are presented. It is the type with more samples in the dataset. This prediction task
corresponds to the labels v3 of Table 3.8 on page 26. To evaluate the SSD300 model,
image crops of 300 pixels in size were extracted.

Backbone Networks

The original SSD publication used VGG as a backbone network for its generalisation
capabilities, but other convolutional networks could also be used. Later, an SSD with
ResNet101 backbone network was published on the paper’s git repo1. For that reason, it
was decided to evaluate the SSD with ResNet backbone.

The SSD-ResNet34 version implemented in GluonCV was modified, following the
paper’s git repo2 implementation. Some differences were found between the version of
the authors of SSD and the version of GluonCV.

The Table 5.9 shows the results of using different pre-trained models as backbone:
VGG16, ResNet18 or our modified ResNet34. It can be seen that when the VGG16 or our
modified ResNet34 is used, a similar mAP is obtained.

Table 5.9: Backbone networks: vgg16_atrous, resnet18_v1 and resnet34_v1_02

network validation_map

resnet34_v1_02 0.681
vgg16_atrous 0.679
resnet18_v1 0.444

1https://github.com/weiliu89/caffe/tree/ssd
2https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_pascal_resnet.py

https://github.com/weiliu89/caffe/tree/ssd
https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_pascal_resnet.py


36 Results

ResNet as Backbone with 1 Feature Map

Different feature map layers from the backbone network could be used, so models were
trained with only one feature map: the last activation of stage2 or the last activation of
stage3 of a ResNet34.

In Table 5.10, it can be seen that the model with the last activation of stage3 as feature
map obtained the best results, both models ending in _02 obtained higher mAP than the
ones ended on suffix _01.

Table 5.10: ResNet as backbone with 1 feature map

network validation_map

resnet34_v1_02_02 0.674
resnet34_v1_04_02 0.666
resnet34_v1_02_01 0.654
resnet34_v1_04_01 0.630

ResNet as Backbone with 1 or 2 Feature Maps

The SSD300 network could use layers of the backbone network directly as feature maps,
or the ones that are added on top of the backbone network.

Models were trained using the last activation of two layers directly from the backbone
and adding four extra feature map layers, this networks ending in _00. Also, models were
trained using the last activation of only one layer directly from the backbone and adding
five extra feature map layers, this networks ending in _02 or _03.

The Table 5.11 shows that using the last activation of stage3 and adding five extra
layers obtained higher mAP. Then using the last activation of stage2 and adding five
extra layers obtained the second higher mAP. Finally, using the last activation of stage3,
the last activation of stage4, and adding four extra layers obtained the lowest mAP.

It is important to note that the resnet34_v1_00 network is heavily based on the resnet18_v1
already implemented in GluonCV. The network ending in _02 or _03 corresponds to our
modified RestNet implementations.

Table 5.11: ResNet as backbone with 1 or 2 feature maps

network crop_constraints validation_map

resnet34_v1_02 new 0.681
resnet34_v1_02 def 0.679
resnet34_v1_03 def 0.660
resnet34_v1_03 new 0.643
resnet34_v1_00 new 0.532

Summary

Table 5.12 presents a summary of the results of trained models with labels=v2, lr=0.0001
and crop_size=300.



5.1 Object Detection 37

Table 5.12: Summary of predicting the coat fault label

validation_map

resnet18_v1 0.444
+ resnet34_v1_00 (GluonCV resnet34_v1) 0.532
+ resnet34_v1_03 (2 feature from backbone + 4 extra) 0.643
+ resnet34_v1_02 (1 feature from backbone + 5 extra) 0.681

5.1.4. Results of Predicting Two Labels: coat fault or chipped coat

In this section, the results of trained models to predict coat fault or chipped coat as damage
type are presented. Those are the two damage types with more samples in the dataset.
To evaluate the SSD300 model, image crops of 300 pixels in size were extracted. This
prediction task corresponds to the labels v4 of Table 3.8 on page 26.

Zoom-Out Data Augmentation

Liu et al. [28] proposed a strategy to improve the performance on small object detection.
They proposed to use a zoom out operation to create more small training examples, as
presented in Subsection 2.6.3 on page 18. Therefore, it was evaluated whether using a
zoom out of 4x or not using it will make significant changes in the performance.

The Table 5.13 shows that when the max ratio is increased, a lower mAP is obtained.
This could happen because there are too many small damages in our studied dataset.

Table 5.13: Zoom-Out Data Augmentation

crop_constraints max_ratio validation_map

new 1.0 0.465
def 4.0 0.434
new 4.0 0.425

Hard Negative Mining

Because a significant imbalance between the positive and negative training examples
occurs, Liu et al. [28] proposed to sort them using the highest confidence loss for each
default box and pick the top ones, specifically a ratio of 3:1 was good for the evaluated
dataset.

In our case, the ratios 3:1, 5:1 and 15:1 were evaluated. It can be seen in Table 5.14 that
when the loss negative mining ratio is increased, a higher mAP is obtained.

Table 5.14: Hard negative mining ratios: 3:1, 5:1 and 15:1

negative_mining_ratio network validation_map

15.0 resnet34_v1_02_gn 0.497
15.0 resnet34_v1_02 0.495
5.0 resnet34_v1_02 0.480
3.0 resnet34_v1_02 0.478



38 Results

Zoom-In Data Augmentation

Because the studied ds-01 dataset has a bunch of very small damages, it was evaluated to
extract patches with a smaller minimum jaccard overlap threshold than the used by Liu
et al. [28]. It corresponds to the zoom-in strategy presented in Subsection 2.6.3 on page
18.

The Table 5.15 shows when the original (def) crop with constraints thresholds was
used, a lower mAP is obtained.

Table 5.15: ResNet34 with random crop with constraints thresholds

crop_constraints network validation_map

new resnet34_v1_02 0.491
new resnet34_v1_02_gn 0.488
def resnet34_v1_02 0.480

Jaccard Overlap Threshold in Matching Strategy

During training, and also during validation, default boxes are matched to any ground
truth with jaccard overlap higher than a threshold. Liu et al. [28] used a threshold of 0.5.

In Table 5.16 can be observed a huge improvement in the mAP when the val_iou_thr
value is reduced to 0.3.

Table 5.16: Jaccard Overlap Threshold

tr_iou_thr val_iou_thr val_met_iou_thr network validation_map

0.3 0.3 0.3 resnet34_v1_02 0.571
0.5 0.5 0.5 resnet34_v1_02_gn 0.497
0.5 0.5 0.5 resnet34_v1_02 0.495
0.3 0.3 0.5 resnet34_v1_02 0.477
0.3 0.5 0.5 resnet34_v1_02 0.468

Each threshold column is described as follows:

• tr_iou_thr is the threshold used for the matching strategy during training.

• val_iou_thr is the threshold used for the matching strategy during validation.

• val_met_iou_thr is the IoU threshold for accepting a box as true positive (TP) when
calculating the mAP metric.

Summary

Table 5.17 presents a summary of the results of trained models with resnet34_v1_02, la-
bels=v2, lr=0.0001 and crop_size=300.

5.1.5. Results of Predicting All Types as damage Label

In this section, the results of trained models to predict all damage types as damage label
are presented. An index map to map all source damage type labels to the damage label



5.1 Object Detection 39

Table 5.17: Summary of predicting two labels: coat fault or chipped coat

validation_map

negative mining ratio=3, max_ratio=4 0.425
+ max_ratio=1 0.465
+ negative mining ratio=5 0.480
+ negative mining ratio=15 0.495
+ iou_thr=0.3 0.571

was used. To evaluate the SSD300 model, image crops of 300 pixels in size were extracted.
This prediction task corresponds to the labels v6 and the index map index_map_15c2 de-
scribed in Table 3.8 on page 26.

Similar performance can be obtained when using a ResNet34 as a backbone network
with or without using mixup data augmentation, as shown in Table 5.18. However, when
Gaussian noise is used, it seems that using mixup produce better results. It can also be
seen that using ResNet with Gaussian noise and mixup obtains comparable results as
using ResNet without Gaussian noise.

Table 5.18: Mixup Data Augmentation

mixup network validation_map

True resnet34_v1_02 0.646
False resnet34_v1_02 0.643
True resnet34_v1_02_gn 0.642
False resnet34_v1_02_gn 0.630

Figure 5.1 shows prediction samples, where the ground truth boxes are in light blue
and the predictions are in red. Figure 5.2 shows prediction samples with different IoUs
where it is possible to find out how the IoU and the prediction boxes are related.

(a) Confidence 0.5 (b) Confidence 0.3

Figure 5.1: Prediction samples

Because more experiments have been performed than those presented in this section,
graphs of all the results can be found in Appendix C on page 56.



40 Results

(a) Confidence 0.5 and IoU 0.318 (b) Confidence 0.5 and IoU 0.567

(c) Confidence 0.5 and IoU 0.765 (d) Confidence 0.5 and IoU 0.856

Figure 5.2: Prediction samples with different IoU

5.1.6. Results of Predicting All Types as damage Label on the Test Set

We evaluated the performance of the best obtained model of Subsection 5.1.5 on the test
set. This test set is composed of inspections we got access after the overall revision pro-
cess finished. It means that the new data set is supposed to contains only inspections
reviewed by both teams, as explained in Subsection 3.1.1.

Because all previously accessed data was split only in train and dev due the number of
images and annotations, we decided to split the new dataset into six parts, one for testing
and the rest five for training using 5-fold cross-validation, ensuring that the inspections
of ds-01-val-01 are contained in one fold. Table 5.19 shows the obtained results of the best
model on the test set of ds-11-c300-v01 dataset.

5.2 Image Classification

When the damage is located, it is possible to take a crop of them and use a dedicated
neural network to predict only the type of that damage. In some cases, it also makes
sense to group the damage types, for example, when there are only a few samples per



5.2 Image Classification 41

Table 5.19: Results of predicting all types as damage label on the test set

network train set test set IoU thresh mAP

resnet34_v1_02 ds-01-val-01-c300-v01 ds-11-c300-v01-test 0.5 0.542
resnet34_v1_02 ds-01-val-01-c300-v01 ds-11-c300-v01-test 0.4 0.672
resnet34_v1_02 ds-01-val-01-c300-v01 ds-11-c300-v01-test 0.3 0.751
resnet34_v1_02 ds-11-c300-v01-train-0 ds-11-c300-v01-test 0.5 0.615
resnet34_v1_02 ds-11-c300-v01-train-0 ds-11-c300-v01-test 0.4 0.739
resnet34_v1_02 ds-11-c300-v01-train-0 ds-11-c300-v01-test 0.3 0.805

damage type or when they look similar. To do this, each damage is cropped from the
dataset and then resized to the input size of the neural network. The five damage types
with more samples are used to train the models presented in this section. Therefore, in
this section, the results of trained models for image classification to predict the damage
type are presented.

First, in Subsection 5.2.1, experiments using pre-trained networks as feature extractor
are shown. Then, in Subsection 5.2.2, the results of finetuning multiple architectures are
shown.

5.2.1. Feature Extraction

The models were trained with a feature extraction strategy consisting of one step. The
newly added layers were set as trainable, and the remaining layers were frozen. This
training step was carried out for a maximum of 50 epochs. In this section, the results of
resnet34 are presented because it was the best trained model.

It is important first to find good learning rates for training. In Table 5.20, it can be
seen that learning rates between 0.1 and 0.001 should obtain higher accuracy. Table 5.21
shows that it is better to use dropout. In Table 5.22 can be observed that the highest
accuracy was obtained when over-sampling was not used. Finally, Table 5.23 shows that
the highest accuracy was obtained using mixup.

Table 5.20: Learning Rate for 5c

lr acc

0.1 0.726
0.001 0.701
0.01 0.696
0.0001 0.686

Table 5.21: Dropout for 5c

model ps acc std n

resnet34 0.300 0.752 0.000 1
resnet34 0.500 0.739 0.000 1
resnet34 0.000 0.732 0.000 1

Because more experiments have been performed than those presented in this section,
graphs of all the results can be found in Appendix D on page 57.



42 Results

Table 5.22: over-sampling Data Augmentation for 5c

model os acc n

resnet34 no 0.732 1
resnet34 in callbacks 0.724 1

Table 5.23: mixup Data Augmentation for 5c

model mixup acc n

resnet34 True 0.764 1
resnet34 False 0.739 1

Summary

Table 5.24 presents a summary of the results of trained models with resnet34, lr=0.01.

Table 5.24: Summary of predicting using feature extraction

validation_map

resnet34 0.696
+ fully connected layer of 512 0.732
+ dropout 0.500 0.739
+ dropout 0.300 0.752
+ os and no dropout 0.724
+ no os, mixup and dropout 0.5 0.764

5.2.2. Fine Tune

The models were also trained with a finetune strategy consisting of two steps. First, the
newly added layers were set as trainable, and the remaining layers were frozen. This
training step was carried out for a maximum of 5 epochs. Then, a finetune step was
performed where all layers were set as trainable for a maximum of 40 epochs. A grid
of hyperparameters is shown in Table 5.25 which was defined based on the findings of
Subsection 5.2.1.

In Table 5.26, it can be seen that the highest accuracy was obtained using a pre-trained
ResNet50, and image transformation (tfms) as data augmentation without using dropout
or mixup. It could also be seen that the majority of the best results were obtained with
resnet50, and only one model different than resnet, the VGG11, appear in the top 20.
Also, almost all model were not using over-sampling. The best results were obtained
with a learning rate for the finetune step of 1e-4 or 1e-5. Learning rate of 0.01 obtained
the best results when dropout was not in use.



5.2 Image Classification 43

Table 5.25: Finetune hyperparameter grid

Parameter Values

ps 0.5, 0.3, 0.0
mixup_enable True, False
oversample in callbacks, no
base_arch_name resnet10, resnet12, resnet18, resnet34, resnet50,

vgg11_bn, vgg16_bn, vgg19_bn
lr_fr 0.1, 0.01, 0.001
learn_fit_1 10, 5, 3
lr_un 0.001, 0.0001, 1e-05
learn_fit_2 40
np_random_seed 42
bn_final True
pretrained True
wd 0.01
tfms_enable True
lin_ftrs 512
loss_func FocalLoss

Table 5.26: Top 20 finetuned models for Image Classification

model lr lr2 ps mixup os tfms acc

resnet50 0.01 1e-05 0.0 False no True 0.773
resnet50 0.001 0.0001 0.0 True in callbacks True 0.769
resnet50 0.001 1e-05 0.3 False no True 0.769
resnet50 0.01 0.0001 0.0 False no True 0.766
resnet50 0.01 0.0001 0.0 False no True 0.766
resnet34 0.01 0.0 0.5 True no True 0.764
resnet50 0.01 1e-05 0.3 True no True 0.762
resnet50 0.001 0.0001 0.0 False no True 0.762
resnet18 0.001 1e-05 0.5 False no True 0.762
resnet50 0.001 0.0001 0.5 True no True 0.762
resnet18 0.001 1e-05 0.5 True no True 0.760
resnet50 0.01 1e-05 0.5 True no True 0.760
resnet34 0.01 0.0001 0.3 True no True 0.760
resnet18 0.001 1e-05 0.3 True no True 0.760
resnet34 0.01 0.0001 0.0 True no True 0.760
resnet50 0.001 0.0001 0.0 False no True 0.760
resnet34 0.001 0.0001 0.0 True no True 0.760
resnet34 0.01 1e-05 0.3 False no True 0.758
resnet18 0.01 1e-05 0.5 True no True 0.758
vgg11_bn 0.01 1e-05 0.3 False no True 0.758



CHAPTER 6

Conclusions and Future Work

In this thesis, algorithms of deep learning networks have been evaluated to support the
task of detecting and then classifying the damages in photographs taken by drones as
part of wind turbine blade inspections. To do that, we first did a literature review of deep
networks for image classification and object detection.

Some damages were too small compared to the full-size images. Therefore we ex-
tracted crop of the full-size images to build datasets for image classification and object
detection. With that datasets, we managed to train models to find damages of different
sizes and shapes on high-resolution images.

After evaluating multiple use cases with various model configurations, and compar-
ing their results, we were able to improve the performance obtained by our first exper-
iments gradually and to formulate a solution proposal for a real industry problem with
real data. We proposed to use first an object detection model to find where the damages
are located and to use an image classification model to classify each damage by its type.

Our main conclusions related to the studied use cases, and the available datasets are:

• It is better to group damages to find out where the damage is located and then
classify its type.

• It is better to take small crops of the full-size images when the damages are small.

• It is better to use higher hard negative mining ratio.

• It is better to generate smaller samples using the zoom-in data augmentation strat-
egy.

• It possible to increase the mAP using smaller IoU thresholds.

• It is useful to use the original model publication and its code repository as a ref-
erence, and thinking about the other available resources on the internet as compli-
mentary material, even if big companies sponsor them. Following that idea, we
were able to improve the results of an existing implementation following the origi-
nal model publications.

In this thesis, we trained models to evaluate the performance of different model con-
figurations for different use cases. With that in mind, a possible extension to our work is
to choose a specific use case and focus on that use case to do more exhaustive evaluations.
Also, we used a small part of all images and damage annotations available. Therefore,
a possible next step is to train models using a more significant portion of that data. A
more deep analysis could also be made to understand the performance of the models by
grouping damages by its identifiable characteristics such as shape and size.

44



Bibliography

[1] M. Acharya, K. Jariwala, and C. Kanan. Vqd: Visual query detection in natural
scenes. arXiv preprint arXiv:1904.02794, 2019.

[2] E. W. E. Association et al. Wind energy - the facts,
2009. URL https://www.wind-energy-the-facts.org/
operation-and-maintenance-costs-of-wind-generated-power.html.

[3] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A nn/hmm hybrid for on-line
handwriting recognition. Neural computation, 7(6):1289–1303, 1995.

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of
deep networks. In Advances in neural information processing systems, pages 153–160,
2007.

[5] M. Bhattacharya, S. R. Paramati, I. Ozturk, and S. Bhattacharya. The effect of re-
newable energy consumption on economic growth: Evidence from top 38 countries.
Applied Energy, 162:733 – 741, 2016. ISSN 0306-2619. doi: https://doi.org/10.1016/
j.apenergy.2015.10.104. URL http://www.sciencedirect.com/science/article/
pii/S0306261915013318.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN 1573-0565.
doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[7] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
Sep 1995. ISSN 1573-0565. doi: 10.1007/BF00994018. URL https://doi.org/10.
1007/BF00994018.

[8] W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning
across different feature spaces. In Advances in neural information processing systems,
pages 353–360, 2009.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005. doi: 10.1109/CVPR.2005.177.

[10] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and
Trends R© in Signal Processing, 7(3–4):197–387, 2014. ISSN 1932-8346. doi: 10.1561/
2000000039. URL http://dx.doi.org/10.1561/2000000039.

[11] D. Denhof, B. Staar, M. Lütjen, and M. Freitag. Automatic optical surface in-
spection of wind turbine rotor blades using convolutional neural networks. Pro-
cedia CIRP, 81:1166 – 1170, 2019. ISSN 2212-8271. doi: https://doi.org/10.1016/
j.procir.2019.03.286. URL http://www.sciencedirect.com/science/article/pii/
S2212827119305918. 52nd CIRP Conference on Manufacturing Systems (CMS),
Ljubljana, Slovenia, June 12-14, 2019.

45

https://www.wind-energy-the-facts.org/operation-and-maintenance-costs-of-wind-generated-power.html
https://www.wind-energy-the-facts.org/operation-and-maintenance-costs-of-wind-generated-power.html
http://www.sciencedirect.com/science/article/pii/S0306261915013318
http://www.sciencedirect.com/science/article/pii/S0306261915013318
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
http://dx.doi.org/10.1561/2000000039
http://www.sciencedirect.com/science/article/pii/S2212827119305918
http://www.sciencedirect.com/science/article/pii/S2212827119305918


46 BIBLIOGRAPHY

[12] E. R. Dougherty and U. Braga-Neto. Epistemology of computational biology: math-
ematical models and experimental prediction as the basis of their validity. Journal of
Biological Systems, 14(01):65–90, 2006.

[13] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using
deep neural networks. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2014.

[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119
– 139, 1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL
http://www.sciencedirect.com/science/article/pii/S002200009791504X.

[15] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36(4):193–202, Apr 1980. ISSN 1432-0770. doi: 10.1007/BF00344251. URL
https://doi.org/10.1007/BF00344251.

[16] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http://arxiv.org/
abs/1504.08083.

[17] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.
URL http://arxiv.org/abs/1311.2524.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[19] J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha,
A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, and S. Zheng. Gluoncv and glu-
onnlp: Deep learning in computer vision and natural language processing. CoRR,
abs/1907.04433, 2019. URL http://arxiv.org/abs/1907.04433.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[21] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527.
URL https://doi.org/10.1162/neco.2006.18.7.1527. PMID: 16764513.

[23] J. Howard et al. fastai. https://github.com/fastai/fastai, 2018.

[24] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent archi-
tectures of deep convolutional neural networks. CoRR, abs/1901.06032, 2019. URL
http://arxiv.org/abs/1901.06032.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN
0018-9219. doi: 10.1109/5.726791.

http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1007/BF00344251
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2524
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1907.04433
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.2006.18.7.1527
https://github.com/fastai/fastai
http://arxiv.org/abs/1901.06032
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


BIBLIOGRAPHY 47

[27] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen. Deep
learning for generic object detection: A survey. arXiv preprint arXiv:1809.02165, 2018.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg. SSD:
single shot multibox detector. CoRR, abs/1512.02325, 2015. URL http://arxiv.
org/abs/1512.02325.

[29] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, Nov 2004. ISSN 1573-1405. doi: 10.1023/
B:VISI.0000029664.99615.94. URL https://doi.org/10.1023/B:VISI.0000029664.
99615.94.

[30] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943. ISSN 1522-
9602. doi: 10.1007/BF02478259. URL https://doi.org/10.1007/BF02478259.

[31] M. A. Nielsen. Neural networks and deep learning, volume 25. Determination press
San Francisco, CA, USA:, 2015.

[32] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff
Workshop, 2017.

[34] C. Poultney, S. Chopra, Y. L. Cun, et al. Efficient learning of sparse representations
with an energy-based model. In Advances in neural information processing systems,
pages 1137–1144, 2007.

[35] R. Raina, A. Y. Ng, and D. Koller. Constructing informative priors using transfer
learning. In Proceedings of the 23rd international conference on Machine learning, pages
713–720. ACM, 2006.

[36] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. CoRR, abs/1506.02640, 2015. URL http://arxiv.org/
abs/1506.02640.

[37] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497, 2015. URL http:
//arxiv.org/abs/1506.01497.

[38] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.

[39] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

[40] D. Rumelhart, G. Hinton, and R. Williams. Learning representations byback-
propagating errors. Nature, pages 533–536, 1986.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recogni-
tion challenge. CoRR, abs/1409.0575, 2014. URL http://arxiv.org/abs/1409.0575.

[42] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: In-
tegrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.0575


48 BIBLIOGRAPHY

[43] A. Shihavuddin, X. Chen, V. Fedorov, A. Nymark Christensen, N. Andre Bro-
gaard Riis, K. Branner, A. Bjorholm Dahl, and R. Reinhold Paulsen. Wind turbine
surface damage detection by deep learning aided drone inspection analysis. Ener-
gies, 12(4):676, 2019.

[44] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[46] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

[47] A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes, J. Keane, and
G. Nenadic. Machine learning methods for wind turbine condition monitoring: A
review. Renewable Energy, 133:620 – 635, 2019. ISSN 0960-1481. doi: https://doi.
org/10.1016/j.renene.2018.10.047. URL http://www.sciencedirect.com/science/
article/pii/S096014811831231X.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842,
2014. URL http://arxiv.org/abs/1409.4842.

[49] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer
learning. CoRR, abs/1808.01974, 2018. URL http://arxiv.org/abs/1808.01974.

[50] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Selective search
for object recognition. International journal of computer vision, 104(2):154–171, 2013.

[51] S. Verbruggen. Onshore wind power operations and maintenance
to 2018, 2018. URL http://www.endsintelligence.com/report/
onshore-wind-power-operations-and-maintenance-to-2018/.

[52] P. Viola, M. Jones, et al. Rapid object detection using a boosted cascade of simple
features. CVPR (1), 1:511–518, 2001.

[53] L. Wang and Z. Zhang. Automatic detection of wind turbine blade surface cracks
based on uav-taken images. IEEE Transactions on Industrial Electronics, 64(9):7293–
7303, Sep. 2017. ISSN 0278-0046. doi: 10.1109/TIE.2017.2682037.

[54] L. Wang, Z. Zhang, and X. Luo. A two-stage data-driven approach for image-based
wind turbine blade crack inspections. IEEE/ASME Transactions on Mechatronics, 24
(3):1271–1281, June 2019. ISSN 1083-4435. doi: 10.1109/TMECH.2019.2908233.

[55] G. Xia, X. Bai, J. Ding, Z. Zhu, S. J. Belongie, J. Luo, M. Datcu, M. Pelillo, and
L. Zhang. DOTA: A large-scale dataset for object detection in aerial images. CoRR,
abs/1711.10398, 2017. URL http://arxiv.org/abs/1711.10398.

[56] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical
risk minimization. CoRR, abs/1710.09412, 2017. URL http://arxiv.org/abs/1710.
09412.

[57] Z. Zhao, P. Zheng, S. Xu, and X. Wu. Object detection with deep learning: A review.
CoRR, abs/1807.05511, 2018. URL http://arxiv.org/abs/1807.05511.

http://arxiv.org/abs/1505.00387
http://www.sciencedirect.com/science/article/pii/S096014811831231X
http://www.sciencedirect.com/science/article/pii/S096014811831231X
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1808.01974
http://www.endsintelligence.com/report/onshore-wind-power-operations-and-maintenance-to-2018/
http://www.endsintelligence.com/report/onshore-wind-power-operations-and-maintenance-to-2018/
http://arxiv.org/abs/1711.10398
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1807.05511


BIBLIOGRAPHY 49

[58] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker. Noise injection for training artifi-
cial neural networks: A comparison with weight decay and early stopping. Med-
ical Physics, 36(10):4810–4818, 2009. doi: 10.1118/1.3213517. URL https://aapm.
onlinelibrary.wiley.com/doi/abs/10.1118/1.3213517.

https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3213517
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3213517




APPENDIX A

SSD ResNet Backbones

The Table A.1 shows a complete list of the used SSD-ResNet backbones. A more compact
list is shown in Table 4.2 on page 29.

Table A.1: SSD-ResNet backbones

net info

resnet18_v1 Last activation of stage 3 y 4 + 4 extra
resnet18_v1_02 Last activation of stage3 + 5 extra
resnet18_v1_02_gn Last activation of stage3 + 5 extra + gaussian noise
resnet18_v1_03_02 Last activation of stage3 + 1 extra
resnet18_v1_03_02_01 Last activation of stage3 + 2 extra
resnet18_v1_03_02_01_01 Last activation of stage3 + 3 extra
resnet18_v1_03_02_01_01_01 Last activation of stage3 + 4 extra
resnet18_v1_03_02_01_numfilters01 Last activation of stage3 + 2 extra of 256
resnet18_v1_03_02_01_numfilters02 Last activation of stage3 + 2 extra of 128
resnet18_v1_03_02_numfilters01 Last activation of stage3 + 1 extra of 256
resnet18_v1_03_02_numfilters02 Last activation of stage3 + 1 extra of 128
resnet18_v1_03_02_ratios01 Last activation of stage3 + 1 extra + [1, 2, 0.5, 3, 1.0/3]
resnet18_v1_04_01 Last activation of stage2
resnet18_v1_04_02 Last activation of stage 3
resnet34_v1_00 Last activation of stage 3 y 4 + 4 extra
resnet34_v1_00_01 Last activation of stage 2 y 4
resnet34_v1_00_02 Last activation of stage 3 y 4
resnet34_v1_00_03 Last activation of stage 2 y 3
resnet34_v1_01 Last activation of stage 3 + 5 extra
resnet34_v1_02 Last activation of stage 3 + 5 extra
resnet34_v1_02_01 Same as resnet34_v1_04_01
resnet34_v1_02_02 Same as resnet34_v1_04_02
resnet34_v1_02_gn Last activation of stage3 + 5 extra + gaussian noise
resnet34_v1_03 Last activation of stage2 + 5 extra
resnet34_v1_03_02 Last activation of stage3 + 1 extra
resnet34_v1_04_01 Last activation of stage2
resnet34_v1_04_02 Last activation of stage3
resnet50_v1 Last activation of stage 3 y 4 + 4 extra

51



APPENDIX B

Damage Type Samples

Figure B.1: Bubbles

Figure B.2: Cast

52



53

Figure B.3: Chipped coat

Figure B.4: Coat fault

Figure B.5: Crack around lightning bolt

Figure B.6: Cracks



54 Damage Type Samples

Figure B.7: Damaged laminate

Figure B.8: Erosion

Figure B.9: Lightning damage

Figure B.10: Lightning hit receptor



55

Figure B.11: Noise

Figure B.12: Paint erosion on smt

Figure B.13: Rub mark

Figure B.14: Scratch



APPENDIX C

Results Graphs for Object
Detection

Figure C.1: Results for v6

56



APPENDIX D

Results Graphs for Image
Classification

Figure D.1: Learning Rate for 5c.

Figure D.2: Architecture for 5c.

57



58 Results Graphs for Image Classification

Figure D.3: mixup Data Augmentation for 5c

Figure D.4: over-sampling Data Augmentation for 5c

Figure D.5: Dropout for 5c



59

Figure D.6: Fine Tune for 5c


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Thesis Structure

	Literature Review
	Performance Measure
	Precision and Recall
	IoU
	Mean Average Precision

	Traditional Object Detection
	Neural Networks
	The Perceptron
	Feedforward Neural Network
	Parameter Learning
	Gradient Descent
	Back-propagation
	Cost Function

	Activation Functions
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer

	Regularization
	Data Augmentation
	Gaussian Noise
	Dropout
	MixUp

	Transfer Learning

	Applications of Convolutional Neural Network
	LeNet-5
	AlexNet
	Overfeat
	VGG
	GoogLeNet
	ResNet

	Object Detection
	Region CNN Networks
	R-CNN
	Fast R-CNN
	Faster R-CNN

	Single-Stage Object Detector

	Single Shot MultiBox Detector (SSD) 
	Architecture
	Training
	Data Augmentation
	Zoom-In Strategy
	Zoom-Out Strategy


	Computer Vision for Damage Detection on Wind Turbines

	Datasets
	Dataset Creation and Protocols
	Inspection Selection Protocol
	Datasets
	ds-01-val-01 dataset
	ds-02-val-01 dataset


	Prediction Tasks
	Preprocessing
	Preprocessed Datasets

	Methods
	Models and Architectures
	SSD Backbones for Object Detection
	Image Classification

	Training and Validation Parameters
	Object Detection Parameters
	Image Classification Parameters


	Results
	Object Detection
	Results of Predicting Each Damage Type Separately
	Results of Predicting the coat fault Type and the Rest Types as other Label
	Results of Predicting the coat fault Label
	Results of Predicting Two Labels: coat fault or chipped coat
	Results of Predicting All Types as damage Label
	Results of Predicting All Types as damage Label on the Test Set

	Image Classification
	Feature Extraction
	Fine Tune


	Conclusions and Future Work
	Bibliography
	SSD ResNet Backbones
	Damage Type Samples
	Results Graphs for Object Detection
	Results Graphs for Image Classification

