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One thing I do know: I was blind, 

And now I see. 

Joan 9:25 

 

 

Remember the LORD in everything you do, 

And he will show you the right way. 

Proverbs 3:6 

 

 

Those who become wise are happy; 

Wisdom will give them life. 
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The predictive uncertainty quantification in monthly streamflows is crucial to make 

reliable hydrological predictions that help and support decision-making in water 

resources management. Hydrological post-processing methods are suitable tools 

to estimate the predictive uncertainty of deterministic streamflow predictions 

(hydrological model outputs). In general, this thesis focuses on improving 

hydrological post-processing methods for assessing the conditional predictive 

uncertainty of monthly streamflows. This thesis deal with two issues of the 

hydrological post-processing scheme i) the heteroscedasticity problem and ii) the 

intractable likelihood problem. Mainly, this thesis includes three specific aims. 

First and relate to the heteroscedasticity problem, we develop and evaluate a 

new post-processing approach, called GMM post-processor, which is based on 

the Bayesian joint probability modelling approach and the Gaussian mixture 

models. Besides, we compare the performance of the proposed post-processor 

with the well-known exiting post-processors for monthly streamflows across 12 

MOPEX catchments. From this aim (chapter 2), we find that the GMM post-

processor is the best suited for estimating the conditional predictive uncertainty of 

monthly streamflows, especially for dry catchments.  

Secondly, we introduce a method to quantify the conditional predictive 

uncertainty in hydrological post-processing contexts when it is cumbersome to 

calculate the likelihood (intractable likelihood). Sometimes, it can be challenging 

to estimate the likelihood itself in hydrological modelling, especially working with 

complex models or with ungauged catchments. Therefore, we propose the ABC 

post-processor that exchanges the requirement of calculating the likelihood 

function by the use of some sufficient summary statistics and synthetic datasets. 

With this aim in mind (chapter 3), we prove that the conditional predictive 

distribution is similarly produced by the exact predictive (MCMC post-processor) 

or the approximate predictive (ABC post-processor), qualitatively speaking. This 



finding is significant because dealing with scarce information is a common 

condition in hydrological studies.  

Finally, we apply the ABC post-processing method to estimate the uncertainty of 

streamflow statistics obtained from climate change projections, such as a 

particular case of intractable likelihood problem. From this specific objective 

(chapter 4), we find that the ABC post-processor approach: 1) offers more 

reliable projections than 14 climate models (without post-processing); 2) 

concerning the best climate models during the baseline period, produces more 

realistic uncertainty bands than the classical multi-model ensemble approach. 
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La cuantificación de la incertidumbre predictiva es de vital importancia para 

producir predicciones hidrológicas confiables que soporten y apoyen la toma de 

decisiones en el marco de la gestión de los recursos hídricos. Los post-

procesadores hidrológicos son herramientas adecuadas para estimar la 

incertidumbre predictiva de las predicciones hidrológicas (salidas del modelo 

hidrológico). El objetivo general de esta tesis es mejorar los métodos de post-

procesamiento hidrológico para estimar la incertidumbre predictiva de caudales 

mensuales. Esta tesis pretende resolver dos problemas del post-procesamiento 

hidrológico: i) la heterocedasticidad y ii) la función de verosimilitud intratable. Los 

objetivos específicos de esta tesis son tres. Primero y relacionado con la 

heterocedasticidad, se propone y evalúa un nuevo método de post-

procesamiento llamado GMM post-processor que consiste en la combinación del 

esquema de modelado de probabilidad Bayesiana conjunta y la mezcla de 

Gaussianas múltiples. Además, se comparó el desempeño del post-procesador 

propuesto con otros métodos tradicionales y bien aceptados en caudales 

mensuales a través de las doce cuencas hidrográficas del proyecto MOPEX. A 

partir de este objetivo (capitulo 2), encontramos que GMM post-processor es el 

mejor para estimar la incertidumbre predictiva de caudales mensuales, 

especialmente en cuencas de clima seco. 

Segundo, se propone un método para cuantificar la incertidumbre predictiva en 

el contexto de post-procesamiento hidrológico cuando sea difícil calcular la 

función de verosimilitud (función de verosimilitud intratable). Algunas veces en 

modelamiento hidrológico es difícil calcular la función de verosimilitud, por 

ejemplo, cuando se trabaja con modelos complejos o en escenarios de escasa 

información como en cuencas no aforadas. Por lo tanto, se propone el ABC post-

processor que intercambia la estimación de la función de verosimilitud por el uso 

de resúmenes estadísticos y datos simulados. De este objetivo específico 

(capitulo 3), se demuestra que la distribución predictiva estimada por un método 



exacto (MCMC post-processor) o por un método aproximado (ABC post-

processor) es similar. Este resultado es importante porque trabajar con escasa 

información es una característica común en los estudios hidrológicos.  

Finalmente, se aplica el ABC post-processor para estimar la incertidumbre de los 

estadísticos de los caudales obtenidos desde las proyecciones de cambio 

climático, como un caso particular de un problema de función de verosimilitud 

intratable. De este objetivo específico (capitulo 4), encontramos que el ABC post-

processor ofrece proyecciones de cambio climático más confiables que los 14 

modelos climáticos (sin post-procesamiento). De igual forma, ABC post-

processor produce bandas de incertidumbre más realista para los estadísticos de 

los caudales que el método clásico de múltiples conjuntos (ensamble). 

  



Improving hydrological post-processing for assessing predictive uncertainty of monthly streamflows 
Doctoral Thesis 

_______________________________________________________________________________ 

9 

Jonathan Romero Cuéllar 

 

 

 

Resum 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



Improving hydrological post-processing for assessing predictive uncertainty of monthly streamflows 
Doctoral Thesis 

_______________________________________________________________________________ 

11 

Jonathan Romero Cuéllar 

La quantificació de la incertesa predictiva és de vital importància per a produir 

prediccions hidrològiques confiables que suporten i recolzen la presa de 

decisions en el marc de la gestió dels recursos hídrics. Els post-processadors 

hidrològics són eines adequades per a estimar la incertesa predictiva de les 

prediccions hidrològiques (eixides del model hidrològic). L'objectiu general 

d'aquesta tesi és millorar els mètodes de post-processament hidrològic per a 

estimar la incertesa predictiva de cabals mensuals. Els objectius específics 

d'aquesta tesi són tres. Primer, es proposa i avalua un nou mètode de post-

processament anomenat GMM post-processor que consisteix en la combinació 

de l'esquema de modelatge de probabilitat Bayesiana conjunta i la barreja de 

Gaussianes múltiples. A més, es compara l'acompliment del post-processador 

proposat amb altres mètodes tradicionals i ben acceptats en cabals mensuals a 

través de les dotze conques hidrogràfiques del projecte MOPEX. A partir 

d'aquest objectiu (capítol 2), trobem que GMM post-processor és el millor per a 

estimar la incertesa predictiva de cabals mensuals, especialment en conques de 

clima sec. 

En segon lloc, es proposa un mètode per a quantificar la incertesa predictiva en 

el context de post-processament hidrològic quan siga difícil calcular la funció de 

versemblança (funció de versemblança intractable). Algunes vegades en 

modelació hidrològica és difícil calcular la funció de versemblança, per exemple, 

quan es treballa amb models complexos o amb escenaris d'escassa informació 

com a conques no aforades. Per tant, es proposa l'ABC post-processor que 

intercanvia l'estimació de la funció de versemblança per l'ús de resums 

estadístics i dades simulades. D'aquest objectiu específic (capítol 3), es 

demostra que la distribució predictiva estimada per un mètode exacte (MCMC 

post-processor) o per un mètode aproximat (ABC post-processor) és similar. 

Aquest resultat és important perquè treballar amb escassa informació és una 

característica comuna als estudis hidrològics.  

Finalment, s'aplica l'ABC post-processor per a estimar la incertesa dels 

estadístics dels cabals obtinguts des de les projeccions de canvi climàtic. 

D'aquest objectiu específic (capítol 4), trobem que l'ABC post-processor ofereix 

projeccions de canvi climàtic més confiables que els 14 models climàtics (sense 

post-processament). D'igual forma, ABC post-processor produeix bandes 

d'incertesa més realistes per als estadístics dels cabals que el mètode clàssic 

d'assemble. 
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1.1 Probabilistic uncertainty quantification 

Hydrological predictions provide crucial supporting information for effective 

decision making in the water sector, such as: planning for new investments 

(irrigation systems, water supply, and reservoirs), flood emergency response, 

water allocation, ecological issues, drought risk management, operation and 

monitoring of existing systems to adapt new conditions (climate change, land-use 

change, population growth, etc.) and introduce new efficient technology 

(wastewater reuse, biotechnology, desalting, solar energy) (Stakhiv and Stewart, 

2010). However, predictions are affected by different sources of uncertainty, such 

as: observed data uncertainty, parametric uncertainty, structural uncertainty, 

initial condition uncertainty, numerical solution uncertainty and non-deterministic 

behaviour of a system (Reichert, 2012; Renard et al., 2010). Specifically, there 

are three critical sources of errors. First, the rainfall observations are affected by 

sampling errors, which arise from an incomplete sampling of the spatially and 

temporally distributed random fields (Kuczera et al., 2006). Secondly, the 

streamflow observations are subject to rating curve errors, which is most often 

stage-discharge rating curve models that may be imprecise and/or biased 

(McMillan et al., 2017) and the observed data are also affected by measurement 

errors. Thirdly, given that the hydrological models are always a simplified 

representation of reality, they produce a discrepancy between simulated and 

observed variables. This discrepancy is called “Model Structural Error” and may 

consist of the inadequate selection of process formulation, model variables and 

spatial and temporal resolution of the model (Reichert and Mieleitner, 2009). 

For all these reasons, predictions are always uncertain because models can 

never correctly represent a natural system. Therefore, an estimate of the 

uncertainty of these predictions is required. Different motives demonstrate the 

importance of uncertainty quantification (UQ). Montanari (2011), Reichert et al. 

(2015), Vogel (2017) and Kavetski (2019) claimed that UQ is a hot topic and is a 



still research challenge -especially because the UQ methods have not been 

standardised (Montanari and Koutsoyiannis, 2012; van Oijen, 2017; Wagener 

and Gupta, 2005). Besides, Butts et al. (2004), Liu and Gupta (2007), Reichert et 

al. (2015) and Kavetski (2019) stated that UQ is vital for making better-informed 

decisions. Schoups et al. (2008) expressed that UQ is also useful for advancing 

towards reliable measurement systems, modelling comparison and selection. 

Moreover, Schoups and Vrugt (2010) stated that hydrological predictions without 

UQ are impractical tools to plan and operate water resources systems. UQ is also 

considered a desirable scientific practice (Refsgaard et al., 2007). Montanari 

(2011) mentioned that UQ plays a fundamental role in the learning process, while 

Schoups and Vrugt (2010) and Wang et al. (2016) supported that UQ is an 

essential tool for improving model performances. Finally, McMillan et al. (2017) 

argued that including UQ as a standard part of related water management 

applications can lead to cost savings and increase the robustness of decisions.  

Broadly speaking, uncertainty can be defined as an attribute of information 

(Zadeh, 2005); more specifically, it is an inherent property of the hydrological 

process (Montanari, 2011). The uncertainty quantification (UQ) seeks to 

characterise the entire set of possible outcomes, together with their associated 

probabilities of occurrence (Loucks and van Beek, 2017). Uncertainty can be 

classified in aleatory and epistemic. Aleatory uncertainty refers to the inherent 

variability as well as the randomness of underlying phenomena, while epistemic 

uncertainty concerns the incomplete knowledge of the modelled system. Both 

types of uncertainty are manageable using probabilistic methods, of which the 

probability theory is the base (Kavetski, 2019; Montanari, 2011).  

Many techniques for estimating these uncertainties have been proposed, 

including the data assimilation for initial condition errors (Moradkhani et al., 

2005a), many approaches for model structural errors (Butts et al., 2004; Clark et 

al., 2008; Hoeting et al., 1999; Vrugt and Robinson, 2007), several Bayesian 
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schemes for parametric, input and output uncertainty (Blazkova and Beven, 

2009; Honti et al., 2013; Kavetski et al., 2018, 2011; Renard et al., 2010; 

Schoups and Vrugt, 2010; Thyer et al., 2009; Vrugt and Sadegh, 2013), 

ensembles for chaotic behaviour (Stainforth et al., 2007; Tebaldi and Knutti, 

2007; van der Linden and Mitchell, 2009), some guidelines for numerical errors 

(Clark and Kavetski, 2010; Kavetski and Clark, 2010) and various statistical post-

processing approaches (W. Li et al., 2017).  

A hydrological post-processor is a statistical technique used to improve typical 

deterministic forecasts by relating hydrological model outputs to observations (Ye 

et al., 2014). Since the hydrological modelling process has many sources of 

uncertainties, post-processing is required to characterise these uncertainties and 

remove systemic bias in the predicting process (Hopson et al., 2019). Post-

processors dilute errors from model inputs and outputs, model parameters, model 

initial and boundary conditions and model structures (Buizza, 2018; Ye et al., 

2014). Hydrological post-processing methods mostly follow the Model Output 

Statistics (MOS) approach (Glahn et al., 1972), namely to fit the statistical models 

using historical predictions and corresponding observations, then apply the fitted 

model to estimate the conditional predictive uncertainty of future observations 

(Hamill, 2018). Hydrological post-processing methods have two goals: 1) to 

estimate the conditional predictive uncertainty of the output of hydrological 

models with point predictions. In this sense, the post-processing methods convert 

deterministic predictions to probabilistic predictions in a simple way. 2) To correct 

the systematic bias of hydrological models and to achieve sharp hydrological 

predictions. We extend the hydrological post-processing concept in section 3.2.1 

and 4.2.2. Here, the hydrological post-processing is applied in the context of the 

conditional predictive uncertainty, which characterises our best knowledge of 

future outcomes.  

 



1.2 Predictive uncertainty 

Predictive uncertainty describes the probability distribution of a future occurrence 

(predictand) given (conditional to) all the available information and knowledge 

that we obtain using hydrological model predictions (Biondi and Todini, 2018; 

Krzysztofowicz, 1999; Todini, 2008). Krzysztofowicz (1999) and Todini (2008) 

highlighted two central ideas. First, the goal of the forecasting is the uncertainty 

quantification of predictand rather than the uncertainty of predictions generated 

by hydrologic models. Secondly, the best way to improve forecasting is reducing 

predictive uncertainty. To explain these ideas and to follow Todini (2008), let us 

introduce the concept of a joint probability distribution of the predictand 𝑞𝑜 and 

the model prediction 𝑞𝑠. Figure 1 illustrates the joint sample frequency of 𝑞𝑜 and 

𝑞𝑠 that can be used to quantify the joint probability density. For any given 

hydrological model, the predictions 𝑞𝑠, will be a function of model parameters 𝜃 

and of the input model forcing 𝑥 (e.g. precipitation, potential evapotranspiration, 

etc.). Therefore, the joint probability density can be expressed as 𝑓 (𝑞𝑜, (𝑞𝑠|𝑥, 𝜃)). 

To predict 𝑞𝑜 , it should derive the conditional predictive distribution of 𝑞𝑜 given 

𝑞𝑠. It can be easily achieved cutting for a given 𝑞𝑠 the previously mentioned joint 

probability density (Figure 1) and renormalising it. This can be formalised as: 

 𝑓 (𝑞𝑜|(𝑞𝑠|𝑥, 𝜃)) =
𝑓 (𝑞𝑜, (𝑞𝑠|𝑥, 𝜃))

∫ 𝑓 (𝑞𝑜, (𝑞𝑠|𝑥, 𝜃)) 𝑑𝑞𝑜

   
(1) 

 

Note that the conditional predictive uncertainty of the equation (1) indicates the 

predictive uncertainty of a “given” model under a “given” model forcing, “given” 

initial and boundary conditions and a “given” set of parameter values. So, the 

aforementioned conditional predictive uncertainty is not related to the uncertainty 

induced by the hydrological parameter values, hydrologic model choice, initial 

boundary conditions errors and input/output measurement errors. For such 
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reason, in the sequel term “predictive uncertainty” refers to the “conditional 

predictive uncertainty”. As shown in Figure 1, the conditional 𝑓(𝑞𝑜|𝑞𝑠) is less 

dispersed than the marginal 𝑓(𝑞𝑜) given that the uncertainty will be reduced by 

the additional information produced by the hydrological model predictions. 

 

 

Figure 1. The predictive density defined as the probability density of the real 

quantity 𝑞𝑜 conditional upon model predictions, 𝑞𝑠 , where 𝑞𝑠 is considered as 
known (namely, certain and not affected by uncertainty) at the time of prediction 

(Redrawn from Hernández López (2017)). 

 

 



1.3 Performance metrics 

There are many metrics to evaluate the performance of post-processing 

methods. In this thesis, we followed the verification metrics recommended by 

Laio and Tamea (2007), Thyer et al. (2009) and Renard et al. (2010). For 

deterministic metrics, the Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta 

Efficiency (KGE) scores were applied to assess the accuracy of the proposed 

post-processing methods. 

1.3.1 Nash-Sutcliffe Efficiency (NSE) 

NSE score measures the squared differences between the predicted 𝑞𝑠 and 

observed streamflow 𝑞𝑜 normalized by the variance of the observed flows 

(Equation (2)). NSE ranges between 1 (prefect fit) and −∞, whereas 𝑁𝑆𝐸 < 0 

indicates that predictions are not superior than the observed mean as a forecast.  

𝑁𝑆𝐸 = 1 −
∑ (𝑞𝑠 − 𝑞𝑜)2𝑛

𝑖=1

∑ (𝑞𝑜 − 𝑞𝑜̅̅ ̅)2𝑛
𝑖=1

  
(2) 

 

1.3.2 Kling-Gupta Efficiency (KGE) 

KGE score was introduced as the modified version of the NSE by Gupta et al. 

(2009). KGE includes the correlation coefficient, mean bias and relative 

variability. 

𝐾𝐺𝐸 = 1 − √(𝜌 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 , (3) 

 

where 𝜌 =
𝐶𝑜𝑣(𝑞𝑜,𝑞𝑠)

𝜎𝑞𝑜𝜎𝑞𝑠

 is the Pearson correlation, 𝛽 =
𝜇𝑞𝑠

𝜇𝑞𝑜

 is the bias ratio and 

𝛾 =
𝜎𝑞𝑠 𝜇𝑞𝑠

⁄

𝜎𝑞𝑜 𝜇𝑞𝑜
⁄

 is the variability ratio. All components have their optimum at unity. 

NSE and KGE were applied to the predictive distribution median. 
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For probabilistic metrics, the reliability, precision and PQQ plot were applied to 

evaluate the predictive uncertainty.  

1.3.3 PQQ plot 

The PQQ plot shows how well probabilistic forecasts represent the uncertainty in 

observations (Laio and Tamea, 2007; Thyer et al., 2009). In the PQQ plot 

context, if the predictive distribution and observed data are consistent, the 

corresponding p-value distribution should be uniformly distributed over the whole 

interval [0,1]. In other words, perfect reliable predictions are given when observed 

relative frequencies equal prediction probabilities, indicating in 1:1 diagonal line. 

Therefore, the reliability score can be derived considering the difference between 

the PQQ plot curve and the diagonal line.  

1.3.4 Reliability  

The reliability score quantifies the statistical consistency between the observed 

time series and the predictive distribution.  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
2

𝑛
 ∑ |𝐹𝑈 − 𝐹𝑞𝑠

(𝑞𝑜)|
𝑛

𝑖=1
 

(4) 

 

Where 𝐹𝑈 is the uniform cumulative distribution function (CDF) and 𝐹𝑞𝑠
(𝑞𝑜) is the 

predictive CDF. Precision metric refers to the concentration of the predictive 

distribution. In other terms, it refers to the spread of the predictive distribution 

(Renard et al., 2010).  

 

 



1.3.5 Precision 

Precision score is also named resolution or sharpness. The highest precision 

values are preferred because they indicate sharp predictive distribution. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑

Ε[𝑞𝑠]

𝜎[𝑞𝑠]

𝑛

𝑖=1
  

(5) 

 

Where Ε[] and 𝜎[] are the expectation and the standard deviation operators. Note 

that two post-processors can both yield reliable predictive distribution, but width 

different degrees of precision.  

1.3.6 d-factor 

The d-factor score indicates the average with of the prediction interval and is 

defined as follow: 

 𝑑 − 𝑓𝑎𝑐𝑡𝑜𝑟 =

1
𝑛

∑ (𝑄𝑢𝑝 − 𝑄𝑙𝑜𝑤)𝑛
𝑖=1

𝜎𝑞𝑜

 

(6) 

 

Where 𝑄𝑢𝑝 and 𝑄𝑙𝑜𝑤 are the upper and lower bounds of the 95% prediction 

interval and 𝜎𝑞𝑜
 is the standard deviation of the observed streamflow. The d-

factor near to 1 is preferred.  

1.3.7 Containing ratio (CR 95%) 

The containing ratio score (CR 95%) is the percentage of the observations 

bracketed by the 95% uncertainty band. Here, we applied the 95% prediction 

interval based on the 2.5 and 97.5 percentiles. Therefore, a perfect uncertainty 

quantification was achieved when the CR came close to 95%. 
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1.3.8 Average band width of 95% uncertainty band (B) and deviation 

amplitude (D) 

The average band width of 95% uncertainty band (B) (see Equation (7)) and the 

average deviation amplitude (D) (see Equation (8)) assess the degree of 

predictions deviating from observations. D illustrates the actual discrepancy 

between the trajectories consisting of the points inside of the prediction bounds 

and the observed hydrograph. The equation of B and D are expressed as: 

𝐵 =
1

𝑛
∑ (𝑄𝑢𝑝 − 𝑄𝑙𝑜𝑤)

𝑛

𝑖=1
  

(7) 

 

 𝐷 =
1

𝑛
∑

1

2
|(𝑄𝑢𝑝 + 𝑄𝑙𝑜𝑤) − 𝑞𝑜|

𝑛

𝑖=1
 

(8) 

 

 

1.4 Main aims and scope 

This thesis is part of the research line entitled “uncertainty estimation” of the 

Research Group of Hydrological and Environmental Modelling (GIMHA). In 

general, this thesis focuses on improving hydrological post-processing methods 

for assessing the conditional predictive uncertainty of monthly streamflows. 

Although many post-processing methods have been proposed, there has not 

been sufficient researches that explore and compare new statistical techniques to 

post-process and quantify predictive uncertainty (Hamill, 2018). For instance, little 

literature is available on estimating the conditional predictive uncertainty with 

intractable likelihood, i.e. when predictions are not in synchrony with observations 

(Maraun, 2016) or scenarios of data scarcity. Besides, there is a clear need for 

assessing and comparing post-processing methods to diagnose the most suitable 

approaches for specific applications (Li et al., 2017).  



The general objective of this thesis is to improve hydrological post-processing 

methods for assessing the conditional predictive uncertainty of monthly 

streamflows. This study advances the hydrological post-processing framework 

developed in Todini (2008) and further developed in Coccia and Todini (2011). 

This thesis deal to two issues of the hydrological post-processing scheme i) the 

heteroscedasticity problem, which means the prediction uncertainty increases 

with the magnitude of prediction variables (Coccia and Todini, 2011) and ii) the 

intractable likelihood problem, which means the likelihood function is unavailable 

in closed form or by numerical derivation (Robert, 2016). To overcome these 

issues, we proposed three specific objectives: 

 To develop and evaluate a new post-processing method to deal with the 

heteroscedasticity problem (Chapter 2). 

 To introduce a new post-processing method to deal with the intractable 

likelihood problem (Chapter 3). 

 To apply the ABC post-processor to quantify the uncertainty of streamflow 

statistics of climate change projections (Chapter 4). 

In a first step and relate to the heteroscedasticity problem, we developed and 

evaluated a new post-processing approach, called GMM post-processor, which is 

based on the Bayesian joint probability modelling approach and the Gaussian 

mixture models (Chapter 2). Besides, we compared the performance of the 

proposed post-processor with the well-known exiting post-processors for monthly 

streamflows across 12 MOPEX catchments (also in Chapter 2).  

Secondly and related to the intractable likelihood problem, we introduced a new 

method to quantify the conditional predictive uncertainty in hydrological post-

processing contexts when it is cumbersome to calculate the likelihood (intractable 

likelihood). Sometimes, it can be challenging to estimate the likelihood itself in 

hydrological modelling, especially working with complex models or with ungauged 

catchments. After a literature review, we have proposed the ABC post-processor 
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that exchanges the requirement of calculating the likelihood function by the use 

of some sufficient summary statistics and synthetic datasets. Chapter 3 presents 

the ABC post-processor and proves its skill in two scenarios. 

In a third step, we applied the ABC post-processing method to estimate the 

uncertainty of streamflow statistics obtained from climate change projections 

(Chapter 4), such as a particular case of intractable likelihood problem. Finally, 

Chapter 5 presents the main conclusions and provides future research lines.  

  



 

 

 

CHAPTER 2. Assessing post-processing 

approaches for monthly streamflow in 

12 MOPEX catchments 

2 CHAPTER 2. Assessing post-processing approaches for 

monthly streamflow in 12 MOPEX catchments 
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2.1 Introduction 

Water resources managers demand guidance and support to make robust 

decisions about different water challenges, for instance, warming climate 

(Weaver et al., 2013), water scarcity (Mekonnen and Hoekstra, 2016; Veldkamp 

et al., 2017), water pollution (Allan, 2003; Vogel et al., 2015), increasing global 

population (Wagener et al., 2010), changing land use (Foley, 2005), water 

security (Vörösmarty et al., 2010; Wheater and Gober, 2015) and so forth. 

Researchers and engineers provide this guidance through hydrological forecasts. 

However, making valuable hydrologic forecasts is an awkward proceeding 

because of the watersheds are complex systems (Dooge, 1986), which suffer 

from spatial heterogeneity, scale, dynamic behaviour, and co-evolution of climate, 

soil, vegetation and human. In other words, the lack of comprehensive 

understanding of the hydrological process (epistemic uncertainty) and the 

incapacity to portray the catchment properties’ heterogeneity (aleatory 

uncertainty) produce hydrological predictions with significant uncertainties 

(Sivapalan, 2018). These predictions involve many sources of uncertainty 

(Roundy et al., 2018; Vrugt and Massoud, 2018). In a broad sense, the three 

main sources of hydrological model uncertainty arise from data uncertainty, 

parameter uncertainty, and model structure uncertainty. In this context, predictive 

uncertainty quantification in hydrological modelling is essential to water and 

environmental resources risk management (McInerney et al., 2018). Thus to 

support decision makers, hydrological predictions need to be accompanied by an 

uncertainty analysis (Ehlers et al., 2019). Besides, Schoups and Vrugt (2010) 

stated that hydrological predictions without uncertainty analysis are impractical 

tools to plan and operate water resources systems. Uncertainty quantification is 

also considered a desirable scientific practice (Refsgaard et al., 2007). Water 

managers and stakeholders acknowledge that work in an environment of 

changing and uncertainty, so they are increasingly interesting to include the 

uncertainty associated with hydrological predictions in the impact of their possible 

decisions (Cosgrove and Loucks, 2015). The uncertainty quantification does not 

simplify decision-making process, but avoid it is ignore the reality (Kavetski, 

2019).  

In the last four decades, various uncertainty analysis methods have been 

developed to quantifying, reducing, and communicating the uncertainty of 

hydrological predictions. These methods included the generalised likelihood 

uncertainty estimation (GLUE), which is a simple method to estimate parametric 
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and predictive uncertainty (Beven and Binley, 1992). GLUE has been criticised 

for not being formally Bayesian, i.e. the informal method makes no explicit 

reference to the error model (Mantovan and Todini, 2006). The Bayesian total 

error analysis (BATEA), which explores input uncertainties due to errors in the 

forcing data and multiple sources of uncertainty (Kavetski et al., 2006a, 2006b). 

Various methods quantify the uncertainty of the model structure (Bulygina and 

Gupta, 2009; Butts et al., 2004; Hoeting et al., 1999; Vrugt and Robinson, 2007). 

Data assimilation methods address the uncertainty of initial conditions 

(Moradkhani et al., 2019, 2005b). Schoups and Vrugt (2010) proposed the formal 

generalized likelihood function, which relaxes several statistical assumptions. 

Currently, the information theory approach which defines a benchmark for the 

best model performance (Gong et al., 2013), the approximate Bayesian 

computation (Fenicia et al., 2018; Kavetski et al., 2018), which uses a free 

likelihood and hydrological signatures and many post-processing methods (W. Li 

et al., 2017). 

In this chapter, we focused on hydrological post-processing methods, which are 

well-known statistical methods that relate the observed variables (predictands) to 

the corresponding simulated variables (predictors) to quantify the predictive 

uncertainty in hydrological modelling (W. Li et al., 2017). They dilute errors from 

observed data, model parameters, model initial and boundary conditions, and 

model structure (Buizza, 2018; Ye et al., 2014). In recent years, diverse 

hydrological post-processing methods have been developed and reported in the 

scientific literature. Early, Krzysztofowicz and Kelly (2000) introduced the 

hydrologic uncertainty processor (HUP) to evaluate the predictive uncertainty in 

hydrological forecast given a set of observed and predicted time series. 

Montanari and Grossi (2008) proposed a meta-Gaussian based on multivariate 

regression to match streamflow errors to predictors variables. Because all models 

are imperfect and no single model is the best under all circumstances, Raftery et 

al. (2005) established the Bayesian model average (BMA), which is a multi-model 

method. Based on the Bayesian paradigm, Todini (2008) presented the model 

conditional processor (MCP), and Wang et al. (2009) developed the Bayesian 

joint probability (BJP) model for seasonal streamflow forecasting. In the same 

line, Zhao et al. (2011) introduced the general linear model post-processor 

(GLMPP). Weerts et al. (2011) proposed the quantile regression approach to 

avoid any assumptions in the regression. Currently, many methods were 

developed, e.g., a post-processing with error model (Evin et al., 2014; 

Woldemeskel et al., 2018), non-parametric post-processing methods (Brown and 



Seo, 2013), data-driven resampling techniques (Ehlers et al., 2019; Sikorska et 

al., 2015; Solomatine and Shrestha, 2009), copula post-processing methods 

(Klein et al., 2016; Madadgar and Moradkhani, 2014; Schefzik et al., 2013). This 

list of post-processing methods is not meant to be exhaustive but for a detailed 

review, see Li et al. (W. Li et al., 2017). The errors of hydrological modelling 

generally are autocorrelated, non-normal and heteroscedastic (McInerney et al., 

2017; Schoups and Vrugt, 2010; Smith et al., 2015). To address this issue, many 

of the post-processors apply transformation methods, e.g., the Normal Quantile 

Transformation (NQT) (Bogner et al., 2012), the Box-Cox transformation (Box 

and Cox, 1964), the log–sinh transformation (Wang et al., 2012) and so forth. 

There is a clear need for assessing and comparing post-processing methods to 

diagnose the most suitable approaches for specific applications (W. Li et al., 

2017). As stated during a 2016 workshop on Statistical post-processing, 

recommendation # 2: “Performance more comparisons of existing algorithms to 

determine which are the most skilful and reliable” (Hamill, 2018). Several studies 

have compared different post-processing methods for hydrological variables. For 

instance, Van Andel et al. (2013) reported on the intercomparison experiment for 

post‐processing techniques that has been initiated in 2011 by the International 

Community on Hydrologic Ensemble Predictions indicating preliminary that post-

processing methods revealed different behaviour. Schepen and Wang (2015) 

compared the performance of the Bayesian model averaging (BMA) and quantile 

model averaging (QMA) to merge statistical and dynamic forecasts for seasonal 

streamflows in 12 Australian catchments finding that both methods performed 

similarly. Klein et al. (2016) compared the predictive skill of the copula uncertainty 

processor (COP) based on pair-copula construction, Bayesian model averaging 

(BMA), quantile regression and model conditional processor (MCP) using the 

multivariate truncated normal distribution for daily streamflows recommending the 

COP. Recently, Woldemeskel et al. (2018) evaluated post-processing 

approaches using three transformations, namely logarithmic, log-sinh and Box-

Cox over 300 Australian catchments for monthly and seasonal streamflow 

forecasts, concluding that the Box-Cox transformation with 𝜆 = 2 was the best-

performing post-processing method, especially in dry catchments. Muhammad et 

al. (2018) tested four statistical post-processing techniques: linear regression 

(LR), quantile mapping (QM), QMA, and BMA for seasonal streamflows, 

establishing that no post-processor outperformed other methods. Finally, Sharma 

et al. (2018) compared the relative effects of statistical pre-processing and post-

processing on a regional hydrological ensemble prediction system.  
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In this research, we propose a new statistical post-processing method that 

combines the Bayesian joint probability (BJP) modelling approach and the 

Gaussian mixture models (GMM) to quantify the conditional predictive uncertainty 

in monthly streamflows. We also compare the performance of the proposed post-

processor, which is called GMM post-processor, to existing Bayesian post-

processors including the Model Conditional Processor (MCP), the MCP using the 

truncated Normal (MCPt) and the linear regression post-processor using Markov 

Chain Monte Carlo (MCMC) to inference parameters across 12 MOPEX 

catchments. However, the use of Gaussian mixture is not new in the hydrological 

post-processing community. Recently, Feng et al. (2019) and Klein et al. (2016) 

used Gaussian mixture for estimating the marginal distribution of hydrological 

post-processing approaches. On the other hand, the proposed GMM post-

processing method merges the BJP and GMM to model the joint probability 

distribution that describes the relationship between deterministic hydrological 

predictions (predictors) and corresponding observed streamflows (predictands). 

This approach has never been used before in this situation, and it is interesting to 

test the merits of GMM post-processing method. 

2.2 Methodology 

2.2.1 Review of hydrological post-processing methods 

A hydrological post-processor is a statistical technique used to improve typically 

deterministic forecasts by relating hydrological model outputs to observations (Ye 

et al., 2014). Since the hydrological modelling process has many sources of 

uncertainty, post-processing is required to characterise these uncertainties and 

remove systemic bias in the predicting process (Hopson et al., 2019). Here, the 

hydrological post-processing was applied in the context of the predictive 

uncertainty, which characterises our best knowledge of future outcomes. Mainly, 

the predictive uncertainty describes the probability of predictand (streamflow, 

water level, soil moisture, etc.) conditional over all the information that we obtain 

using hydrological models (Krzysztofowicz and Kelly, 2000) (see Section 1.2). In 

this chapter, we compared the performance of the proposed GMM post-

processing method to well-known Bayesian post-processors as the traditional 

model conditional processor (MCP), MCP using the truncated Normal (MCPt) for 

dealing with the heteroscedasticity and the linear regression post-processor using 

MCMC to inference parameters. 



2.2.1.1 Model Conditional Processor (MCP) 

Todini (2008) proposed the model conditional processor (MCP), which is a 

Bayesian joint probability model (BJP) approach developed for estimating the 

real-time flood predictive uncertainty. MCP can be applied for a univariate model 

approach, multivariate model approach, multiple lead-time, and multi-temporal 

approach (Coccia and Todini, 2011). MCP has been used in a meteorological 

reanalysis ensemble (Reggiani et al., 2016), a multi-temporal approach for real-

time forecasting (Barbetta et al., 2016), hydro-meteorological ensembles (Biondi 

and Todini, 2018), and for complement satellite rainfall information (Massari et 

al., 2019). Notably, MCP established a joint probability distribution to describe the 

relationship between deterministic hydrological predictions (predictors) and 

corresponding observed streamflows (predictands). The joint distribution was 

modelled as a bivariate normal distribution after transformation of the marginal 

distributions using a non-parametric distribution. The MCP implementation was 

based on three main steps. First, the data transformation was handled using the 

Normal Quantile Transformation (NQT) (Bogner et al., 2012), which is a non-

parametric technique to transform the predictions and observations into the 

Gaussian or normal space. Second, the conditional predictive distribution was 

computed using the Bayes formula in the context of the Bayesian inversion, in 

which the predictions and observations are available at the same time. If a 

predictand 𝑞𝑜 was transformed to 𝜂𝑜 and a predictor 𝑞𝑠 was transformed to 𝜂𝑠, 

the relationship between 𝜂𝑜 and 𝜂𝑠 was formulated by a bivariate normal 

distribution: 

[
𝜂𝑜

𝜂𝑠
] ~𝑁(𝝁, 𝚺),  (9) 

 

where 𝝁 =  [
𝜇𝜂𝑜

𝜇𝜂𝑠
] is the vector of means and 𝚺 = [

𝜎𝜂𝑜
2 𝜌𝜂𝑜𝜂𝑠

𝜎𝜂𝑜
𝜎𝜂𝑠

𝜌𝜂𝑜𝜂𝑠
𝜎𝜂𝑜

𝜎𝜂𝑠
𝜎𝜂𝑠

2 ] is the 

covariance matrix. Third, the predictive uncertainty in the normal space was 

finally reconverted to the real space through the inverse NQT. As in hydrological 

modelling process, we applied a split sample approach. During the calibration 

period, the joint and marginal distribution was identified for Bayes theorem 

application while during the validation period, the MCP model was conditioned on 

new predictor values. For a particular parameter set, 𝜃, and new transformed 

predictor value 𝜂𝑠_𝑛𝑒𝑤, 
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𝜂𝑜_𝑛𝑒𝑤|𝜂𝑠𝑛𝑒𝑤
, 𝜃 ~ 𝑁 [𝜇𝜂𝑜

+ 𝜌𝜂𝑜𝜂𝑠

𝜎𝜂𝑜

𝜎𝜂𝑠

(𝜂𝑠𝑛𝑒𝑤
− 𝜇𝜂𝑠

), 𝜎𝜂𝑜
2 (1 − 𝜌𝜂𝑜𝜂𝑠

2 )] 
(10) 

Interestingly, the MCP approach was simpler to implement and had a lower 

computational cost because it applied the analytical treatment of the bivariate 

normal distribution. In this chapter, MCP required as input monthly streamflow 

observations and the corresponding hydrological predictions from the GR4J 

model. In addition, MCP was used in a univariate framework, i.e., just one 

predictor (hydrological model’s output) to estimate the conditional predictive 

uncertainty of monthly streamflow observations. For more details on MCP, we 

refer the readers to Todini (2008).  

2.2.1.2 MCP using the truncated Normal distribution (MCPt) 

The traditional MCP approach assumes that the error variance is homoscedastic 

(constant variance). However, this assumption is hard to justify for many 

hydrological variables, for example, low and high streamflows can show higher 

variance than their mid-range. To address this assumption, Coccia and Todini 

(2011) extended the traditional MCP splitting the entire Normal domain into two 

or more subdomains where Truncated Normal Distribution (TND) can be applied. 

Therefore, the joint distribution in the Normal space was not unique so that it 

could split into two or more (TND). Coccia and Todini (2011) recommended two 

TNDs to describe the heteroscedasticity of variance adequately. Although initially 

the MCPt with truncated Normal was developed for the real-time flood, we 

applied the MCPt approach to estimate the conditional predictive uncertainty of 

monthly streamflows.  

2.2.1.3 GMM post-processor 

The GMM post-processing method is a Bayesian joint probability (BJP) modelling 

approach and shares the same structure and philosophy of the traditional MCP 

from section 2.2.1.1, but GMM post-processor proposes a diverse method to 

address the heteroscedasticity of variance, where the error variance is 

characterised using Gaussian mixture models. As GMM is a class of data-driven 

model, it provides great flexibility in fitting probability models with complex 

characteristics, but the price for this flexibility is an increase in the number of 

parameters. GMM provides a semiparametric approach to model the unknown 

probability model represented as a weighted sum of Gaussian components 

(McLachlan and Peel, 2000). In particular, GMM has much of the flexibility of 



non-parametric approaches, while retaining some of the advantages of 

parametric approaches, such as keeping the dimension of the parameter space 

down to a practical size (Melnykov and Maitra, 2010). Let 𝒀 = (𝒀1
𝑇 , ⋯ , 𝒀𝑛

𝑇)𝑇, 

denote a random sample of size n, where 𝒀𝒋 is a p-dimensional random vector 

with probability density function 𝑓(𝒚𝑗) on ℝ𝑝. Note that 𝒀 represents the entire 

sample, where a realisation of an observed random sample is denoted by 

𝒚 = (𝒚1
𝑇 , ⋯ , 𝒚𝑛

𝑇)𝑇. The density 𝑓(𝒚𝑗) of 𝒀𝒋 can be written in the form 

𝑓(𝒚𝑗) = ∑ 𝜋𝑖 𝑓𝑖(𝒚𝑗|𝝁𝑘 , 𝚺𝑘) = ∑ 𝜋𝑖 𝑁𝑖(𝒚𝑗|𝝁𝑘 , 𝚺𝑘) ,

𝑘

𝑖=1

𝑘

𝑖=1

 

(11) 

 

where 𝜋𝑖 are called the mixing proportions or weights, are non-negative 

quantities that sum to one, the 𝝁𝑘 and 𝚺𝑘 are the mean vector and covariance 

matrix of the k-th Gaussian component, respectively. The distribution of each 

individual Gaussian component is  

𝑓(𝒚𝑗|𝝁𝑘 , 𝚺𝑘) =
𝑒𝑥𝑝 [−

1
2

(𝒚 − 𝝁𝑘)𝑇 ∙ 𝚺𝑘
−1 ∙ (𝒚 − 𝝁𝑘)]

(2𝜋)𝑝 2⁄ √|𝚺𝑘|
 

(12) 

We applied the Expectation-Maximization (EM) algorithm (McLachlan and 

Krishnan, 2008), which assumes a priori number of Gaussian components, to 

identify the parameters of GMM, i.e. 𝜋𝑖, 𝝁𝑘, and 𝚺𝑘. Usually, for monthly 

streamflow variability, three Gaussian components are recommended. Note the 

GMM has heteroscedastic components (components with unequal variance). 

Given the great flexibility of GMM, we applied the Gaussian Mixture model for 

modelling of heterogeneity in monthly streamflows. In the GMM approach, each 

component of a Gaussian mixture density is associated with a group or cluster, 

i.e. low, medium and high streamflows. We also implemented a hard clustering, 

which is a technique that assigns each data point to exactly one cluster. For 

GMM post-processor, cluster assigns each point to one of the three mixture 

components in the Gaussian Mixture Model. The centre of each cluster is the 

matching mixture component mean. In forecasting mode, it is necessary to 

remember that GMM post-processor has no extrapolation ability as a data-driven 

model. For a particular parameter set, 𝜃, and new predictor follow the equation 

10. 
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2.2.1.4 Linear regression post-processor 

Linear regression is a common statistical approach to correct forecast biases and 

to provide predictive uncertainty in deterministic predictions (Siegert and 

Stephenson, 2019). Linear regression is one of the earliest statistical post-

processing procedure, and it is named Model Output Statistics (MOS) in 

climatology literature. In predictive uncertainty, we used the linear regression to 

establish a statistical correlation between the predictand (observations) and the 

predictors (model outputs). Especially, linear regression post-processor predicts 

future observations (also their predictive uncertainty) with future hydrological 

predictions. The linear regression post-processor is as follows:  

𝒚𝑜 = 𝛽0 + 𝛽1𝒚𝑠 + 𝜺 , (13) 

where vectors 𝒚𝑜 and 𝒚𝑠 are the observed streamflows (predictands) and 

streamflow predictions (predictors), respectively; 𝛽0 and 𝛽1 are unknown post-

processor parameters, and 𝜺 is an error term to account for random sampling 

noise. It is assumed that 𝜺~𝑁(0, 𝜎2) is identical independent distributed (i.i.d). 

The linear regression post-processor uses an aggregational approach to describe 

errors, and all the sources of uncertainty are grouped into a linear residual error 

equation (13). Three components on the right-hand side denote three distinct 

sources of estimation errors. The first term, 𝛽0, indicates constant deviation and 

can be called the displacement error. The second term, with an error parameter 

𝛽1, represents a scale error or dynamic-range error. The third term is a random 

error 𝜺, which symbolises aleatory uncertainty, and the first two terms 

characterise the systematic or epistemic error. We applied the Normal Quantile 

Transformation (NQT) (Van Der Waerden, 1953) to satisfy the (i.i.d) assumptions. 

To estimate the uncertainty, we used Bayesian modelling, so the posterior 

distribution of the statistical post-processor equation (13) is, (𝜽|𝒚𝑜, 𝒚𝑠), which is 

given by Bayes Theorem: 

𝑝(𝜽|𝒚𝑜, 𝒚𝑠 ) =
𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽)

∫ 𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽) 𝑑𝜽
 ,  

(14) 

where 𝑝(𝜽) is a prior parameter distribution and 𝑝(𝒚𝑜|𝜽, 𝒚𝑠) is a likelihood 

function. The linear regression post-processor assumes flat uniform priors for 

𝜽 = (𝛽0, 𝛽1, 𝜎2) and from the assumptions in the model (13), it follows that 

 𝒀𝑜|𝜽, 𝒚𝑠 ~ 𝑁(𝜇 =  𝛽
0

+ 𝛽
1

𝒚𝑠, 𝜎2).  



After defined the linear regression post-processor in the Bayesian framework, we 

can proceed to statistical inference to get parameter values and their uncertainty. 

In Bayesian statistics, model parameters are random variables, so we get the 

posterior distribution of parameters instead of one value. Usually, equation (14) 

does not have an analytical solution. For this reason, numerical methods based 

on Monte Carlo simulation are needed. For the numerical implementation of 

Bayesian inference, we are interested in generating a sample from the posterior 

distribution (see equation (14)), and properties of the distribution are 

approximated by properties of the sample (Kattwinkel and Reichert, 2017). Here, 

we applied an adaptive Metropolis-Hastings Markov chain Monte Carlo (MCMC) 

algorithm (Haario et al., 2001), which is a numerical method for sampling any 

probability distribution (Kavetski, 2019), to perform the Bayesian inference. This 

algorithm has been shown to perform adequately in hydrologic problems (Smith 

and Marshall, 2008). The MCMC algorithm was implemented in R (Core Team, 

2013) using the package “MHadaptive” (Chivers, 2012). Because we are more 

interested in the predictive uncertainty, let 𝑦𝑜̃ be a future observation for linear 

regression post-processor (see equation (13)), then the posterior predictive 

density of a future observation 𝑝(𝑦𝑜̃|𝒚𝑠 ), is given by:  

𝑝(𝑦𝑜̃|𝒚𝑠 ) = ∫ 𝑝(𝑦𝑜̃|𝜽)𝑝(𝜽|𝒚𝑜, 𝒚𝑠) 𝑑𝜽

∅

 

(15) 

Equation (15) represents both the uncertainty of the post-processor and the 

uncertainty due to variability in future observations (Yoon et al., 2010). In this 

study, the adaptive Metropolis-Hastings algorithm was implemented and ran until 

the convergence of the parameter posterior distribution (statistical model) was 

achieved. Convergence was determined by both the visual trace plot evaluation 

of the posterior chains and the Gelman and Rubin (1992) R statistic, which 

considers convergence in terms of the variance with a single chain and the 

variance between multiple parallel chains. Finally, we computed the conditional 

predictive distribution. 

2.2.2 MOPEX database 

Data used in this research was the observed and predicted daily streamflow from 

the Second Workshop on Model Parameter Estimation Experiment (MOPEX) 

database (Duan et al., 2006; Ye et al., 2014). In the MOPEX database, we 

selected twelve catchments spread over the South-eastern quadrant of the 
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United States for application and test (Figure 2). The aridity ratio ranged from 

0.43 to 2.22 (Table 1), and the run-off ratio ranged from 0.15 to 0.63; therefore, 

12 catchments represented different hydroclimatic conditions (Figure 3). 

Catchment information is shown in Table 1, and catchment locations are mapped 

in Figure 2. 

 

Figure 2. Location of the 12 MOPEX catchments. Take from Ye et al. (2014). 

 

 

 

 

 



 

Table 1. Hydrological information of the 12 MOPEX catchments. 

ID Station name Elev.  Area 

(km
2
)  

P PET Q Run-off 

ratio  

(Q/P) 

Aridity 

ratio 

 (PET/P) 

B1 Amite River Near Denham Springs, 

LA 

0 3315 1560 1068.49 612 0.39 0.67 

B2 French Broad River At Asheville, 

NC 

594 2448 1378 588.89 795 0.58 0.43 

B3 Tygart Valley River At Philippi, WV 390 2372 1164 661.36 736 0.63 0.57 

B4 Spring River Near Waco, MO 254 3015 1075 1119.79 300 0.28 1.04 

B5 S Branch Potomac River Nr 

Springfield, WV 

171 3810 1043 635.98 339 0.33 0.61 

B6 Monocacy R At Jug Bridge Nr 

Frederick, MD 

71 2116 1042 906.09 421 0.4 0.87 

B7 Rappahannock River Nr 

Fredericksburg, VA 

17 4134 1028 856.67 375 0.36 0.83 

B8 Bluestone River Nr Pipestem, WV 465 1020 1017 678.00 419 0.41 0.67 

B9 East Fork White River At 

Columbus, IN 

184 4421 1014 838.02 377 0.37 0.83 

B10 English River At Kalona, IA 193 1484 881 989.89 261 0.3 1.12 

B11 San Marcos River At Luling, TX 98 2170 819 1462.50 170 0.21 1.79 

B12 Guadalupe River Nr Spring Branch, 

TX 

289 3406 761 1691.11 116 0.15 2.22 

Elev: elevation (m), P: mean areal precipitation (mm/year), PET: potential evapotranspiration (mm/year), Q: 

observed streamflows (mm/year).  

Figure 3 shows the fluctuating control of available water and accessible energy 

on the partitioning of precipitation between evaporation and run-off for each of 12 

MOPEX catchments. Please note that the evaporation in the French Broad 
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catchment is constrained by the annual supply energy (B2 in Figure 3), while in 

the Guadalupe catchment is constrained by the annual supply water  (B12 in 

Figure 3).  

 

Figure 3. Budyko curve for the 12 MOPEX catchments. 

2.2.3 GR4J rainfall-runoff model 

There were seven different hydrological models in the MOPEX database, but we 

just selected the GR4J model predictions because of we were interested in the 

performance of the post-processing methods instead of hydrological models, and 

GR4J is a well-known model and widely used for the hydrological modelling. The 

GR4J rainfall-runoff model is an efficient and parsimonious daily lumped 

hydrological model described by Perrin et al. (2003).  

2.2.4 Verification metrics 

There are many sets of verification metrics that could be adopted for post-

processor assessment. Because we focused on the predictive uncertainty 

quantification, we applied deterministic and probabilistic measures, which 



examine the accuracy, reliability and robustness. We followed the verification 

metrics recommended by (Laio and Tamea, 2007; Renard et al., 2010; Thyer et 

al., 2009). As for deterministic measure, we used the Nash-Sutcliffe efficiency 

(NSE) applying to the predictive distribution median. As for probabilistic 

measures, we used the PQQ plot, precision, containing ratio (CR 95%) and d-

factor. A predictive uncertainty can be considered accurate if it contains all the 

observations within the uncertainty bands. However, if the uncertainty bands are 

so large that there is little precision in the predictive uncertainty, the predictive 

uncertainty is useless for any meaningful decision-making application (Franz and 

Hogue, 2011). Since these verification metrics have been described in the 

section 1.3, we just mentioned them. For additional information, we refer to Franz 

and Houge (2011), Laio and Tamea (2007) and Renard et al. (2010). 

2.2.5 Comparison framework 

To post-process monthly streamflow predictions and to quantify their conditional 

predictive uncertainty, we ran the daily streamflow predictions from the GR4J 

model, which was previously calibrated and validated by Ye et al. (2014) for the 

12 MOPEX catchments. In other words, we applied the outputs from the GR4J 

model as inputs for the hydrological post-processing methods. Then, we 

aggregated these daily predictions to monthly data because the application of 

post-processing methods was for water resources management. These monthly 

streamflow predictions were called “uncorrected” streamflow predictions 

(deterministic predictions). Also, we applied a split sample approach for 

calibrating and validating post-processor parameters using twenty years (1960-

1980) for the calibration period and seventeen years (1981-1998) for the 

validation period. All evaluated post-processing methods applied the NQT 

transformation with non-parametric distribution to estimate the marginal 

distribution of the random variables and to move to normal space. The four post-

processors were applied to the 12 MOPEX catchments separately to obtain the 

best post-processing methods. We chose 12 MOPEX catchments because they 

were the same catchments used in many hydrological studies, i.e., (Clark et al., 

2008; Franz and Hogue, 2011; Kavetski and Clark, 2010; Ye et al., 2014). 

Assessing across a variety of different hydrologic environments helps to arrive at 

conclusions that are more general and to evaluate the usefulness of the post-

processing methods (Gupta et al., 2014). 
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2.3 Results and discussion 

This section outlines the results of post-processing methods evaluated in this 

study. We focus the results in the validation period because it is more critical for 

meaningful applications. In the remainder of the study, the term “uncorrected” 

refers to streamflow predictions obtained using the GR4J model (deterministic 

prediction), and the term “post-processed” refers to predictions based on a 

streamflow post-processing method, which includes the traditional Model 

Conditional Processor (MCP) from Section 2.2.1.1, MCP using the truncated 

Normal (MCPt) from Section 2.2.1.2, GMM post-processor from Section 2.2.1.3 

and the linear regression post-processor using MCMC to inference parameters 

(MCMC) from Section 2.2.1.4. First, we evaluated the performance of 

uncorrected and post-processed streamflow predictions. Second, we presented a 

comparison of post-processor methods. As a general view of seasonal variation 

in climatic conditions over the diverse catchments, Figure 4 illustrates the long-

term mean monthly uncorrected and post-processed streamflow predictions. Note 

that the uncorrected and post-processed streamflow predictions mimic observed 

data quite well. This finding evidences the high quality of the GR4J model outputs 

(black line).  



 

Figure 4. Median hydrographs during the validation period (1980-1998) for the 12 

MOPEX catchments by observations, uncorrected predictions and four post-

processors. MCP: model conditional processor, MCPt: MCP using the truncated 

Normal, GMM: GMM post-processor, and MCMC: linear regression post-

processor using MCMC to inference parameters. 

 

2.3.1 Comparison of uncorrected and post-processed streamflow 

predictions 

Because uncorrected streamflow predictions were deterministic predictions, we 

should compare to the predictive distribution median of post-processed 

predictions. We applied the Nash-Sutcliffe efficiency (NSE) because it is a 

familiar verification metric for the hydrological modelling community. Next, we 

computed the percent changes in the NSE to compare the performances. The 

percent changes in the NSE obtained for each post-processor were compared 

with uncorrected predictions in the validation period (1980-1998) to evaluate the 

effectiveness of each post-processor. The percent change was calculated as: 
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𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒(%) =
𝑁𝑆𝐸𝑝𝑜𝑠𝑡 − 𝑁𝑆𝐸𝑢𝑛𝑐  

𝑁𝑆𝐸𝑢𝑛𝑐
× 100 , 

where 𝑁𝑆𝐸𝑢𝑛𝑐 and 𝑁𝑆𝐸𝑝𝑜𝑠𝑡 are the NSE of uncorrected and post-processed 

streamflow predictions, respectively. Figure 5 displays the percent changes in 

NSE computed for four post-processors during the validation period at the basins 

studied. In general, we see small improvements as a result of the post-

processing. This relative reduced performance of post-processing can be 

attributed to the satisfactory predictions of the GR4J model. This finding is 

consistent with previous results obtained by Romero-Cuellar et al. (2019), who 

found that NSE increases by 25.84% post-processed poor predictions and 1.8% 

post-processed good predictions. Besides Ye et al. (2014), Bogner et al. (2016) 

and Woldemeskel et al. (2018) confirmed that post-processing methods could 

improve forecast significantly when uncorrected predictions are exceptionally 

poor. Therefore, the quality of uncorrected predictions affected the performance 

of post-processing because they are the inputs of post-processing methods. 

Figure 5 also illustrates the most considerable negative percent changes (NSE), 

especially in dry catchments (B4, B10, B11 and B12). This result is in line with Ye 

et al. (2014), who did not recommend post-processing methods for dry basins. 

Sometimes, post-processing methods did not improve the quality of predictions, 

but they provided the predictive uncertainty, which is useful and valuable 

information for support decision-making. Also, using only deterministic verification 

metrics removed a significant amount of predictive uncertainty information from 

the evaluation process and can lead to incorrect conclusions (Franz and Hogue, 

2011), so we applied probabilistic metrics in the following sections. Interestingly, 

GMM post-processor produces performance improvements for all catchments, 

where the percent changes in the NSE ranged from 0.21 (B1) to 14.87 (B3). This 

finding falls in line with the results of Woldemeskel et al. (2018), who found that 

the post-processing scheme using Box-Cox transformation with 𝜆 = 0.2 provided 

improvements for monthly and seasonal streamflow forecasts across 300 

Australian catchments.  



 

Figure 5. Percent changes in NSE computed for four post-processors during the 

validation period (1980 - 1998) for 12 MOPEX catchments. MCP: model 

conditional processor, MCPt: MCP using the truncated Normal, GMM: GMM post-

processor, and MCMC: linear regression post-processor using MCMC to 

inference parameters. 

2.3.2 Comparison of the predictive performance of post-processing 

methods  

Figure 6 illustrates the comparison of deterministic and probabilistic metrics 

computed for four post-processors during the validation period (1980-1998) for 12 

MOPEX catchments. Note that in Figure 6, the horizontal axis indicates different 

catchments, while the vertical axis indicates different post-processors. The next 

sections explains the performance of hydrological post-processors in terms of 

accuracy, reliability and precision. 

2.3.2.1 Accuracy  

In this chapter, we chose the Nash-Sutcliffe efficiency (NSE) to assess the 

accuracy skill of the post-processing methods (predictive distribution median). 

NSE values range from negative infinity to one (perfect skill). In terms of NSE, the 
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performance of post-processors are considered good (NSE > 0.75) according to 

the range proposed by Martinez and Gupta (2010). An exciting result from Figure 

6 (top left) is that the lowest skills are for dry catchments (B4, B10, B11 and B12), 

except in B5, which is a wet catchment. This relatively poor performance in dry 

catchments can be attributed to GR4J model predictions, which is not adequate 

for dry catchments (model structure). Clark et al. (2008) remarked that the choice 

of the model structure is crucial for realistic hydrological predictions. The 

performance of MCP, MCPt and MCMC are generally quite similar, but GMM 

post-processor shows the best performance in all catchments (Figure 7). This 

finding suggests that the Gaussian mixture models approach resolving the 

heteroscedasticity of monthly streamflows, especially, in dry catchments.  

Conversely, Ye et al. (2014) found that the post-processing cannot improve 

hydrological forecast and reduce uncertainty in dry catchments because they 

have many zeros values in the data. Note that in contrast to the findings from Ye 

et al. (2014), our result suggests that the Gaussian mixture models can overcome 

the problem of the dry catchments. One possible explanation is that GMM 

provides excellent flexibility for estimating the joint probability distribution, and 

each component of a Gaussian mixture density is associated with a group or 

cluster, i.e. low, medium and high streamflows. 



 

Figure 6. Comparison of deterministic and probabilistic metrics computed for four 

post-processors during the validation period (1980 - 1998) for 12 MOPEX 

catchments. MCP: model conditional processor, MCPt: MCP using the truncated 

Normal, GMM: GMM post-processor, and MCMC: linear regression post-

processor using MCMC to inference parameters. Catchments are ordered from 

wet to dry regimens. 

 

2.3.2.2 Precision  

Precision metric refers to the concentration of the predictive distribution. In other 

words, it refers to the spread of the predictive distribution (Renard et al., 2010). 

Precision is also named resolution or sharpness. The highest precision values 

are preferred because this means sharp predictive distribution. In terms of 

precision, again, the most salient feature of Figure 6 (top right) is that post-

processing performance is generally reduced in dry catchments (B4, B10, B11 

and B12) than in wet catchments. Besides, in almost all catchments, GMM is 

usually sharper than other post-processors (Figure 7, top right). 
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Figure 7. Comparison of deterministic and probabilistic metrics computed for four 

post-processors during the validation period (1980 - 1998) for 12 MOPEX 

catchments. 

 

2.3.2.3 Containing ratio (CR 95%) and d-factor 

The containing ratio (CR 95%) is the percentage of the observations bracketed 

by the 95% uncertainty band. Here, we applied the 95% prediction interval based 

on the 2.5 and 97.5 percentiles. Therefore, a perfect uncertainty quantification 

was achieved when the CR came close to 95%. In the same line, the d-factor 

indicates the average width of the prediction interval. The d-factor values close to 

1 are preferred (Sun et al., 2017). The d-factor is another measurement of 

sharpness. Both the CR (95%) and d-factor reveal that the GMM is superior to all 

other post-processor (Figure 6 and Figure 7). This result is in coherency with 

previous verifications metrics, but we do not identify the reduced performance for 

dry basins. We analyse this finding in the next section because the reliability and 

PQQ-plots reveal whether the predictive distribution is over- or underestimating 

the observations. 



2.3.2.4 Reliability 

Reliability quantifies the statistical consistency between the observed time series 

and the predictive distribution. To assess the reliability of post-processors, we 

used the PQQ-plot, which was recommended by (Laio and Tamea, 2007; Renard 

et al., 2010; Thyer et al., 2009). In the PQQ plot context, if the predictive 

distribution and observed data are consistent, the corresponding p-value 

distribution should be uniformly distributed over the whole interval [0,1]. In other 

words, perfect reliable predictions are given when observed relative frequencies 

equal prediction probabilities, indicating in 1:1 diagonal line. Figure 8 presents 

the PQQ plots for four post-processors across all MOPEX basins. It is clear from 

this figure that the GMM curves closely follow the bisector lines for all 

catchments. This finding suggests that the predictive uncertainty of post-

processed streamflows are reliable (blue line). In terms of reliability, the predictive 

uncertainty of MCP, MCPt and MCMC are very similar across all basins (Figure 

8, red, green and magenta lines). Indeed, post-processed predictions produces 

correct uncertainty estimation, except in B5 and B11, whose uncertainty is 

underestimated and overestimated, respectively. These findings suggest that 

although post-processed predictions are ineffective in correcting biases, 

especially in dry basins (Figure 5), they produce a correct estimation of the 

predictive uncertainty (Figure 8).  
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Figure 8. Conditional predictive PQQ-plot during the validation period (1980-

1998) for the 12 MOPEX catchments by four post-processors. 

 

We also examine the relationship between the performance of the post-

processing methods and the hydro-meteorological processes in the catchments, 

but this relationship is not so obvious. For example, in terms of NSE, Figure 6 

(top left) shows low performances for dry (B4, B10, B11, B12) and wet 

catchments (B5, B3). Besides, Figure 8 suggests that post-processors methods 

are more reliable for wet basins (B1, B2, B3), but we also find unreliable results 

for B5 and B7, which are also wet catchments. Therefore, we do not see a clear 

relationship between the performance of the post-processing methods and the 

aridity index. 

To illustrate these results, a monthly streamflow prediction time series at 

Guadalupe catchment (B12) is displayed in Figure 9. This catchment was 

selected as it the driest catchment of the MOPEX database. As seen in Figure 9, 

post-processed streamflow predictions produce a realistic and reliable uncertainty 

band, which contains all the observations and maximise precision without 



sacrificing reliability (Gneiting et al., 2007). Again, GMM post-processing 

produces the narrowest predictive uncertainty band.  

 

Figure 9. Conditional predictive uncertainty of monthly streamflow time series (m3 

s-1) at the Guadalupe catchment (B12) during the validation period (1980-1998) 

by four post-processing methods. Red dots indicate observations, and black lines 

indicate predictive. 

Overall, Figure 10 indicates that the GMM post-processing is superior to all other 

methods for the majority of the verification metrics. This relative superiority can 

be attributed to Gaussian mixture models (GMM) provide great flexibility for 

estimating the joint probability distribution, and each component of a Gaussian 

mixture density is associated with a group or cluster, i.e. low, medium and high 

streamflows. Nevertheless, the use of Gaussian mixture models is not new in 

hydrological post-processing. For example, Feng et al. (2019) recently used the 



Improving hydrological post-processing for assessing predictive uncertainty of monthly streamflows 
Doctoral Thesis 

_______________________________________________________________________________ 

51 

Jonathan Romero Cuéllar 

Gaussian mixture for estimating the marginal distribution of the hydrological 

uncertainty processor (HUP), and Klein et al. (2016) that applied Gaussian 

mixture for estimating the marginal distribution of the Pair-Copula uncertainty 

processor (COP). Note that Gaussian mixture was used for estimating the 

marginal distribution, but we used it for modelling the joint probability distribution 

that describes the relationship between deterministic hydrological predictions 

(predictors) and corresponding observed streamflows (predictands). Moreover, 

Figure 10 shows considerable overlap in the boxplots corresponding to MCP, 

MCPt and MCMC post-processing methods. This results suggest little difference 

in the performance of the post-processing methods.  

 

Figure 10. Performance indices of four post-processors during the validation 

period (1980-1998) averaged over all catchments. 

 

2.4 Conclusions 

In this research, we propose a new statistical post-processing method that 

combines the Bayesian joint probability (BJP) modelling approach and the 



Gaussian mixture models (GMM) to quantify the conditional predictive uncertainty 

in monthly streamflows. We also compare the performance of the propose post-

processor, which is called GMM post-processor, to existing Bayesian post-

processors including the Model Conditional Processor (MCP), the MCP using the 

truncated Normal (MCPt) and the linear regression post-processor using Markov 

Chain Monte Carlo (MCMC) to inference parameters. To ensure the broad 

pertinence and generality of our conclusions, the assessment is applied to 12 

MOPEX catchments. Three important conclusions are reached as follows: 

1. The evaluation of uncorrected streamflow predictions via NSE shows the 

accuracy of the GR4J model deterministic predictions (NSE > 0.78). In 

general, we see small improvements as a result of the post-processing 

judging only by NSE. However, post-processors provide predictive 

distribution, which is essential for supporting robust decisions on 

environmental and water resources management.  

2. From the post-processing methods considered in this study, the GMM 

post-processor is found to be the best suited for monthly streamflow 

predictions. The GMM post-processor delivers the sharpest predictive 

uncertainty without sacrificing reliability. However, the GMM approach has 

the disadvantage of any data-driven model, requiring a large number of 

fitting parameters.  

3. MCP, MCPt and MCMC post-processing methods substantially perform 

similarly for monthly streamflow predictions in terms of all verification 

metrics evaluated (Figure 10).  

Further work is needed to extend the GMM post-processor to handle multiple 

inputs, which is a multivariate model approach, multiple lead-time and multi-

temporal approach, such as Coccia and Todini (2011). Future comparison 

studies are also necessary to evaluate the GMM post-processor with different 

hydroclimatic variables (i.e., soil moisture, water level, precipitation, temperature, 

etc.) and different temporal scale (i.e., hourly, daily, weekly, etc.). More work is 

necessary to advance in post-processing extreme data, zero flows and missing 

data. Besides we need post-processing methods for handling non-stationary 

conditions. 

Rigorous predictive uncertainty quantification is increasingly viewed as essential 

in hydrological predictions (Kavetski and Clark, 2010). Therefore, a significant 

practical application of this research is the development of a robust monthly 

streamflow predictions post-processing approach that quantifying the predictive 
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uncertainty of deterministic model outputs. Finally, the improvements in post-

processed streamflow predictions achieve using the GMM post-processor will 

support water managers to make robust decisions in environmental and water 

resources management applications. 
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3.1 Introduction 

Making unbiased, accurate and reliable streamflow predictions has regularly 

been one of the main goals for hydrologists. These hydrological predictions are 

valuable for risk assessment, water resources management, and ecological 

issues. Characterizing, quantifying, reducing and communicating the uncertainty 

of predictions is essential for decision-making and water management under 

anthropogenic conditions (Butts et al., 2004; Liu and Gupta, 2007). Uncertainty is 

everywhere and is impossible to avoid it (Lindley and Smith, 1972). Indeed, 

uncertainty is a fact of hydrology (Wilby and Harris, 2006). Generally speaking, 

uncertainty analysis is a crucial part of hydrological modelling process (Schoups 

and Vrugt, 2010). It is particularly useful for modelling comparison and selection 

(Schoups et al., 2008), improving model predictions, supporting decision-making 

(Reichert et al., 2015) and advancing towards reliable measurement systems. 

Most significantly, uncertainty analysis plays a considerable role in applications 

and the dialogue with decision-makers (Montanari and Koutsoyiannis, 2012). 

Some sources of uncertainty include input errors (e.g. rainfall sampling, low 

gauge density, interpolation method), epistemic errors (e.g. model parameters, 

model structure), and output errors (e.g. associated with rating curve errors). The 

propagation of confidence bounds from different uncertainty sources to model 

output is crucial for hydrologic modelling (Liang et al., 2012). Applying statistical 

post-processing methods is a useful approach to quantify the joint effect of these 

uncertainties. Hydrologic post-processors are statistical models that relate 

observed variables of interest (streamflow, water level) to predictors derived from 

deterministic hydrologic model outputs (Ye et al., 2014). The hydrologic post-

processing aim is to reduce biases and quantify the uncertainty of deterministic 

predictions (W. Li et al., 2017).  

In the context of conditional predictive uncertainty, which means fixed 

hydrological predictions, several techniques have been developed to quantify 

total uncertainty. Early works included methods as Model Output Statistics (MOS) 

(Glahn et al., 1972) and Hydrological Uncertainty Processor (HUP) 

(Krzysztofowicz and Kelly, 2000). More recent literature used the Bayes's 

theorem-based methods, such as Bayesian Model Average (BMA) (Raftery et al., 

2005; Vrugt and Robinson, 2007), Model Conditional Processor (MCP) (Coccia 

and Todini, 2011; Todini, 2008) and Bayesian Joint Probability (BJP) (Wang et 

al., 2009). Moreover, there exists a variety of regression-based models, including 

a meta-Gaussian approach (Montanari and Brath, 2004; Montanari and Grossi, 



2008), quantile regression (Weerts et al., 2011) and General Linear Model Post-

Processor (GLMPP) (Zhao et al., 2011). Also, many other methods have been 

proposed, including non-parametric post-processor (Brown et al., 2010), machine 

learning (Solomatine and Shrestha, 2009), data-driven resampling techniques 

(Sikorska et al., 2015), Bayesian neural networks (Zhang and Zhao, 2012) and 

post-processing with error model (Evin et al., 2014). Several copula models have 

been proposed like a BMA-copulas (Madadgar and Moradkhani, 2014), pair-

copulas in a multi-model ensemble (Klein et al., 2016) and ensemble copula 

coupling (Schefzik et al., 2013).  

Although there are many approaches to improve hydrologic predictions by 

reducing uncertainties, they have not been standardized (B. Li et al., 2017; 

Montanari and Koutsoyiannis, 2012; van Oijen, 2017; Wagener and Gupta, 

2005), and less attention has been paid in presence of intractable likelihood. The 

Approximate Bayesian Computation (ABC) (Fenicia et al., 2018; Kavetski et al., 

2018; Nott et al., 2012; Vrugt and Sadegh, 2013) method deals with inferential 

problems with intractable likelihood. By intractable likelihood, we mean that the 

likelihood function is unavailable in closed form or by numerical derivation 

(Robert, 2016). In this context and for the sake of simplicity, we use a monthly 

error model that is useful for water resources management applications. To our 

best knowledge, up to now, this is the first study that has proposed a hydrological 

post-processor based on approximate Bayesian computation (ABC). This study 

introduces a method to quantify the conditional predictive uncertainty in 

hydrological post-processing contexts when it is cumbersome to calculate the 

likelihood (intractable likelihood). 

Sometimes, it can be difficult to calculate the likelihood itself in hydrological 

modelling, specially working with complex models or with ungauged catchments. 

Therefore, we propose the ABC post-processor that exchanges the requirement 

of calculating the likelihood function by the use of some sufficient summary 

statistics and synthetic datasets. The aim is to show that the conditional 

predictive distribution is qualitatively similar produced by the exact predictive 

(MCMC post-processor) or the approximate predictive (ABC post-processor). We 

test the ABC post-processor in two scenarios: i) The Aipe catchment (poor 

predictions) and ii) the Oria catchment (good predictions). Deterministic and 

probabilistic verification frameworks are used to compare the performance of the 

ABC post-processor with the Markov Chain Monte Carlo (MCMC) approach 

(Gelman et al., 2013), that works when the likelihood is tractable. The rest of the 

chapter is structured as follows. The theory and methods are described in the 
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Section 3.2, applications in the Section 3.3, followed by discussion and 

conclusions in Section 3.4. 

3.2 Theory and methods 

Biased, inaccurate, and unreliable predictions in hydrology are mainly 

consequence of several sources of uncertainties. A hydrologic post-processor is 

an approach to deal with uncertainties from deterministic hydrologic model 

outputs propagated from all upstream sources. Applying statistical post-

processing methods is useful to quantify these uncertainties. In this section, we 

describe the theory of hydrologic post-processing focussing both on algorithms 

dealing with intractable likelihood (ABC post-processor) and tractable likelihood 

(MCMC post-processor). These two post-processors are compared through 

verification metrics to assess their performance. 

3.2.1 Monthly streamflow post-processor 

Let 𝒚𝒔 = (𝑦1
𝑠, ⋯ , 𝑦𝑇

𝑠)𝑇 be the output of a deterministic hydrological model and 

𝒚𝒐 = (𝑦1
𝑜, ⋯ , 𝑦𝑇

𝑜)𝑇 the observations. The hydrologic post-processor works by 

relating model outputs (e.g., streamflow) to corresponding observations through a 

statistical model (Ye et al., 2014). It serves the purpose of removing model biases 

from all upstream uncertainty sources. In this chapter, we assume a linear model 

between 𝒚𝒐 and 𝒚𝒔 

 𝒚𝑜 = 𝛽0 + 𝛽1𝒚𝑠 + 𝜺 , (16) 

 

where vectors 𝒚𝑜 and 𝒚𝑠 are expressed in 𝑚3𝑠−1, 𝛽0 and 𝛽1 are statistical 

parameters, and 𝜺 is a random variable that represents the error term in the 

statistical model. The three components on the right-hand side symbolise three 

distinct sources of estimation errors. The first term, 𝛽0, represents constant 

deviation and can be called the displacement error. The second term, with an 

error parameter 𝛽1, denotes a scale error or dynamic-range error. The third term 

is a random error, which is assumed as independent and identically distributed, 

with zero mean value and a standard deviation of 𝜎. The first two terms describe 

a deterministic relationship between 𝒚𝑜 and 𝒚𝑠, and they characterise the 

systematic or epistemic error with 𝛽0 and 𝛽1. The error term expresses random 



fluctuations due to the effect of factors out of our control or measurement, and it 

is assumed that 𝜺𝒊~𝑁(0, 𝜎2) identical independent distributed (i.d.d.). This 

assumption is the most common, but it can be relaxed in favour of more general 

cases (e.g. Schoups and Vrugt (2010)). The linear model and the assumption of 

normality on the error term can be too restrictive for hydrological post-processors. 

Nevertheless, the linear error model is our first approximation although it is not 

always appropriate. We know that some circumstances require non-linear error 

models, but this linear error model worked for our water resources management 

application. In fact, Tian et al. (2016) proved that a linear model and three 

parameters are sufficient to fully capture the characteristic error of monthly 

predictions. The ABC is not strongly influenced by the model and the 

assumptions, since it is based on a distance measure between summary 

statistics of the observed and simulated data. This point will be clarified in the 

Section 3.2.3. To complete the error assumptions 𝜺~𝑁(0, 𝜎2), the observed and 

simulated streamflows are transformed to the Normal space previously applying 

the Normal Quantile Transformation procedure (NQT). Waerden (1953) 

described the theory behind the NQT, and Krzysztofowicz and Kelly (2000) 

demonstrated its application in hydrology. Figure 11 shows the steps we used to 

derive the conditional predictive uncertainty distribution. 
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Figure 11. Flow chart of the process we used to derive the conditional predictive 
uncertainty distribution. 

3.2.2 MCMC for monthly streamflow post-processor in Bayesian 

framework 

In Bayesian Statistics, parameters are treated as random variables and inference 
is based on the posterior parameter distribution. The posterior parameter 
distribution of model (16), can be written, from the Bayes theorem, as: 

 𝑝(𝜽|𝒚𝑜, 𝒚𝑠 ) =
𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽)

∫ 𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽) 𝑑𝜽
 ,  

(17) 

 



 

where 𝑝(𝜽) indicates the prior parameter distribution, 𝑝(𝒚𝑜|𝜽, 𝒚𝑠) denotes the 

likelihood of 𝒚𝑜 conditional on the parameters 𝜽 = (𝛽0, 𝛽1, 𝜎2) and the 

deterministic output 𝒚𝑠. We assume flat uniform priors for 𝜽 = (𝛽0, 𝛽1, 𝜎2) and 

from the assumptions on model (16) it follows that 𝒀𝑜|𝜽, 𝒚𝑠 ~ 𝑁(𝜇 =  𝛽0 + 𝛽1𝒚𝑠,

𝜎2). Given the model it is not possible, as most of the time, to compute in closed 

form the integral in the denominator of the equation (17). So, we approximate the 

posterior distribution (17) by using the MCMC algorithms (Gelman et al., 2013). 

Specifically, we use the adaptive Metropolis-Hastings (Haario et al., 2001) to 

perform the Bayesian inference. This algorithm has been shown to perform 

adequately in hydrologic problems (Marshall et al., 2004). For detail on the 

implementation of adaptive Metropolis-Hastings algorithm to hydrologic modelling 

studies, relate to the research stated by Marshall et al. (2004). 

In this thesis we are most interested in conditional prediction uncertainty. Let 𝑦𝑜̃ 

be a future observation for model (16), then the posterior predictive density 

(which incorporate our uncertainty) of a future observation 𝑝(𝑦𝑜̃|𝒚𝑠 ), is given by 

𝑝(𝑦𝑜̃|𝒚𝑠) = ∫ 𝑝(𝑦𝑜̃|𝜽)𝑝(𝜽|𝒚𝑜, 𝒚𝑠) 𝑑𝜽

∅

  

(18) 

 

In words, the posterior predictive density is an average of conditional predictions 

over the posterior distributions of parameters (Gelman et al., 2013), reflecting 

both the uncertainty of the model and the uncertainty due to variability in future 

observations (Yoon et al., 2010). 

3.2.3 ABC post-processor 

The idea behind the ABC approach was introduced in population and 

evolutionary genetics by Pritchard et al. (1999) and Tavaré et al. (1997). 

Furthermore, Nott et al. (2012) were the first to introduce the ABC method in 

hydrology community. ABC is adequate for inference problems where sampling 

from the assumed probability model is much easier than evaluating its probability 

density function (e.g., intractable likelihood) (Fenicia et al., 2018). Using the ABC 

does not evade the requirement of Bayesian inference to stipulate a probability 

model of the data, but rather exchanges the requirement of calculating the 
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likelihood function by the requirement of sampling model output realizations 

(Kavetski et al., 2018). ABC is a class of sampling methods that bypass exact 

likelihood calculations with a simulation of the model that produces synthetic 

datasets. The method then relies on some metric (distance) to compare 

simulated data to the data that were observed (Turner and Van Zandt, 2012). 

Then, the aim is to obtain an estimate of the posterior distribution of the 

parameter of the model. Recall that the posterior parameter 𝜽 is the distribution 

of that parameter conditioned on the observed data and the deterministic output. 

Without a likelihood, it is not possible to write down an expression for this 

posterior, or to estimate it using Monte Carlo methods. However, we can simulate 

data 𝒚𝑠𝑖𝑚 using some 𝜽 = 𝜽∗ and retain 𝜽∗ as a sample from the posterior if 

some pre-defined distance 𝑑{𝒚𝑠𝑖𝑚, 𝒚𝑜} between the observed and the simulated 

data is less than some small value 𝜖0. There are three main ABC algorithms: 1) 

accepted-rejected (Beaumont et al., 2002), 2) Markov Chain Monte Carlo ABC 

(Marjoram et al., 2003), and 3) Sequential Monte Carlo ABC (Sisson et al., 2007). 

Although some ABC algorithms are more efficient, whether the ABC algorithm is 

optimized (or not), is not relevant to the results; hence, we use the accepted-

rejected algorithm of Beaumont et al. (2002) for our application. We developed 

the ABC post-processor in R (Core Team, 2013) using the package abc (Csilléry 

et al., 2012). The pseudo code for the ABC is summarized in Algorithm 1. 

 

Algorithm 1 proceeds in the following way: first, we sample a candidate 

parameter value 𝜽∗ from the flat prior distribution. We then use this candidate to 

simulate a dataset 𝒚𝑠𝑖𝑚 from the normal model of interest that has the same 

number of observations as the observed data 𝒚𝑜. Thereafter, we compare the 

simulated data 𝒚𝑠𝑖𝑚 to the observed data 𝒚𝑜 by computing a distance between 

them given by a distance function 𝑑{𝜂(𝒚𝑠𝑖𝑚), 𝜂(𝒚𝑜) ≤ 𝜖0}. For computational 

ease, it is often convenient to define 𝑑 = {∙,∙} as a distance between summary 

statistics 𝑆(𝒚𝑠𝑖𝑚) and 𝑆(𝒚𝑜). Ideally, the summary statistics 𝑆(∙) should be 

sufficient for the parameter 𝜽. In this study, we consider five summary statistics 



including the sample mean, variance, skewness, kurtosis, and first sample 

autocorrelation (Fearnhead and Prangle, 2012) and run the algorithm 1 using the 

Euclidean distance between summary statistics and tolerance level 𝜖0 = 0.01. 

Algorithm 1 produces the empirical posterior parameter distribution which we 

indicate with 𝑝𝜖0
∗ (𝜽|𝜂(𝒚𝑠𝑖𝑚), 𝜂(𝒚𝑜)). Estimates of the parameter 𝜽 can be obtained 

by calculating the mean, mode or median of this empirical distribution. However, 

our interest in the chapter is not on these estimates but on the predictive 

posterior uncertainty. The predictive posterior uncertainty is formally defined as  

𝑔(𝑦𝑜̃|𝒚𝑠 ) = ∫ 𝑝(𝑦𝑜̃|𝜽, 𝒚𝑜, 𝒚𝑠)𝑝(𝜽|𝒚𝑜) 𝑑𝜽

∅

 , 

(19) 

 

and it is approximated by 

𝑔∗(𝑦𝑜̃|𝒚𝑠) =
𝟏

𝑴
∑ 𝑝(𝑦𝑜̃|𝜽𝑖

∗, 𝒚𝑜),

𝑴

𝒊=𝟏

  
(20) 

 

where 𝑴 is the number of retained 𝜽∗. It has been shown that even though the 

posterior parameter predictive distribution 𝑝𝜖0
∗ (𝜽|𝜂(𝒚𝑠𝑖𝑚), 𝜂(𝒚𝑜)) is not close to the 

true posterior distribution in (17) the posterior predictive distribution 𝑔∗(𝑦𝑜̃|𝒚𝑠) 

under some regularity conditions can still be valid to approximate the (19) (Marin 

et al., 2012). In particular, there are three main regularity conditions: first, the 

data generating process (DGP) is correctly specified (probability model); second, 

both 𝑝𝜖0
∗ (𝜽|𝜂(𝒚𝑠𝑖𝑚), 𝜂(𝒚𝑜)) and 𝑝(𝜽|𝒚𝑜, 𝒚𝑠 ) are Bayesian consistent for the true 

value of 𝜽 and large samples. Blackwell and Dubins (1962) and Diaconis and 

Freedman (1986) proved that, if all three regularity conditions are satisfied, then 

the 𝑔(𝑦𝑜̃|𝒚𝑠 ) and 𝑝(𝑦𝑜̃|𝒚𝑠 ) yield the same forecasting asymptotically. In other 

words, 𝑔(𝑦𝑜̃|𝒚𝑠 ) and 𝑝(𝑦𝑜̃|𝒚𝑠 ) merge asymptotically. Frazier et al. (2019) 

recently demonstrated theoretically and numerically the previous conclusion in 

economic models. Finally, the motivation for the use of ABC in hydrological 

models is evident: in cases where the likelihood is not accessible, the parametric 

posterior distribution itself is inaccessible and the integral in (18) cannot be 

computed via the MCMC methods.  
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3.2.4 Verification measures 

Deterministic and probabilistic verification frameworks are used to assess outputs 

from the proposed ABC post-processor and the MCMC approach. We examine 

the accuracies, reliability, and robustness of the proposed method. These 

verification metrics are analysed during both the calibration and validation 

periods. In general, uncertainty analysis methods could be portrayed by the 95% 

uncertainty band that has to be as narrow as possible but still containing the 

largest amount of observations. Since verification metrics have been presented in 

the section 1.3, only a brief description of each is presented here. 

As deterministic metrics, we include the Nash-Sutcliffe Efficiency (NSE), and the 

Kling-Gupta Efficiency (KGE) indices. NSE has been extensively applied to 

assess hydrological models. Likewise, KGE was presented as the modified 

version of NSE by Gupta et al. (2009). This metric involves the correlation, bias, 

and variability. Both NSE and KGE can range from −∞ to 1 with NSE or KGE = 1 

as a perfect fit between observation and simulation. As probabilistic metrics, we 

include the reliability and precision. Reliability refers to the statistical consistence 

of predictions with observed data, and precision refers to the concentration of the 

predictive distribution (small uncertainty). Zero is the worst reliability value while 

one is the best. To evaluate the reliability and precision of predictive distributions, 

Laio and Tamea (2007) suggested the use of PQQ plots (Thyer et al., 2009). In 

the PQQ plot context, if the predictive distribution and observed data are 

consistent, the corresponding p-value distribution should be uniformly distributed 

over the interval [0,1]. We apply the Kolmogorov-Smirnov test (K-S) to check this 

uniformity.  

Finally, to gain more insight into the probabilistic metrics and following Li et al. 

(2017), we also compute the containing ratio (CR), which is the percentage of the 

measurement bracketed by this band, the average bandwidth of 95% uncertainty 

band (B) and the average deviation amplitude (D). We use the 95% prediction 

interval based on the 2.5 and 97.5 percentiles. As a result, an adequate 

predictive uncertainty is achieved when the CR is close to 95%. The smallest 

values of B and D are preferred. These three indices quantify the degree of 

predictions deviating from observations. Our strategy to compute comparative 

performance metrics is compatible with others similar studies such as Shafi et al. 

(2014), Ye et al. (2014), Khajehei and Moradkhani (2017). 

 



3.3 Applications 

Both methods are applied to monthly streamflows in two scenarios: the Aipe 

catchment with poor predictions (Colombia) and the Oria catchment with good 

predictions (Spain). By poor and good predictions, we mean that the 𝑁𝑆𝐸 < 0.5 

and 𝑁𝑆𝐸 > 0.8 respectively. These scenarios allow a contrast in hydrology. The 

essential hydrologic features of both scenario catchments are summarised in 

Table 2. 

Table 2. Hydrologic features of the two case studies catchments. 

Catchment Area 

(km
2
) 

P (mm/year)
a
 PET 

(mm/year) 

Q (mm/year) Run-off 

ratio 

(Q/P) 

Aridity 

(PET/P) 

Aipe 688.9 1922.71 1981.54 706.89 0.377 1.031 

Oria 73 1498 733.4 765 0.511 0.489 

a 
P mean areal precipitation, PET potential evapotranspiration and Q streamflow 

The first scenario (poor predictions) is the Aipe river catchment in Huila State, in 

southern Colombia. Precipitation, potential evaporation and streamflow monthly 

time series are available from 1992 to 2012. The first fourteen years of data are 

used for model calibration, while the last six years served as a validation dataset 

to assess predictive capability. We used the abcd water balance model to 

simulate streamflows (Thomas, 1981). This model is a well-known conceptual 

spatially-lumped rainfall-runoff model which transforms precipitation and potential 

evapotranspiration data to streamflow at the catchment outlet. The hydrological 

model is selected for its conceptual simplicity and general usage. Figure 12 

represents the output from the hydrological model. The abcd water balance 

model implemented in Aipe catchment is described in detail by Romero-Cuéllar et 

al. (2018). 
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Figure 12. Monthly time series of deterministic streamflow predictions (solid line) 
and observations (red dots) from the Aipe river catchment. Scatter plot of 
simulated versus observed streamflows. Time series and histogram of the 
residuals. 

The simulated streamflow time series in Figure 12 shows that deterministic 

hydrological predictions overestimate the observed streamflows. Moreover, the 

residuals time series shows high values, and the histogram of errors indicates a 

negative bias. The second scenario (good predictions) is the Oria river catchment 

located in the Basque Country Region, in northern Spain. The hydrological data 

for this catchment were collected from 1987 to 2000. We used ten years (i.e., 

1990-2000) for calibration process and three years for validation (i.e., 1987-

1990). Daily runoff simulations from the TETIS model aggregated to monthly 

values are used to estimate the predictive uncertainty at the C2Z1 Agauntza 

gauge. The TETIS model is a conceptual spatially-distributed hydrological model 

where each grid cell represents a tank model with six tanks connected among 

them. TETIS is a grid-based model, which takes advantage of all the spatially 

distributed information available. More details about the TETIS model and Oria 

application are in Francés et al. (2007) and Vélez et al. (2009). Figure 13 

represents the performance of the hydrological model in the Oria river. 



 

Figure 13. Monthly time series of deterministic streamflow predictions (solid line) 
and observations (red dots) from the Oria river catchment. Scatter plot of 
simulated versus observed streamflows. Time series and histogram of the 
residuals. 

In contrast to the Aipe River, in the Oria River the hydrological model has better 

performance. The simulated streamflow time series in Figure 13 indicates that 

deterministic hydrological predictions correspond to the observed streamflows. 

Moreover, the error histogram is centred in zero. For each of the case studies, we 

calibrate a set of hydrological parameters. Calibrated parameters were achieved 

through optimisation which minimises the aggregated differences between 

simulated and observed streamflow values. Then, we use outputs from the 

hydrological model as inputs for the statistical model (hydrological post-

processing). Next, the adaptative Metropolis-Hastings algorithm is implemented 

and run until the convergence of the parameter posterior distribution (statistical 

model) is achieved. Convergence is determined by both the visual trace plot 

evaluation of the posterior chains and the (Gelman and Rubin, 1992) R statistic 

which considers convergence in terms of the variance with a single chain and the 

variance between multiple parallel chains. Finally, we compute the conditional 

predictive distribution. 
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The results for monthly streamflow forecast are now presented. They are 

presented independently for both scenarios catchment and calibration and 

validation period. In section 3.3.1 the performance of the Aipe catchment is 

evaluated, while in section 3.3.2 the performance of the Oria catchment is 

assessed. For each of the scenarios, the MCMC algorithm is first applied to 

estimate the predictive uncertainty in time series domain, and the ABC algorithm 

is then used to assess the predictive uncertainty in summary statistic domain and 

free-likelihood function. As mentioned before, this chapter shows that the 

predictive superiority of the exact predictive (MCMC post-processor), over the 

approximate (ABC post-processor) using some sufficient summary statistics and 

synthetic datasets, is minimal. To achieve this aim, we use MCMC post-

processor as a benchmark to make results more comparable with the proposed 

method.  

3.3.1 First Scenario: The Aipe Catchment 

Figure 12 represents a general view of hydrological model performance 

(deterministic predictions). Note that the hydrological model does not mimic 

observed data quite well, it does not reproduce maximum streamflow events. In 

other words, the model over-predicts peak streamflows. Moreover, Figure 12 

shows that the error variance is heteroscedastic, and the error histogram is not 

normal. In summary, the hydrological model (deterministic predictions) has a poor 

performance. Regarding deterministic metrics, the most considerable 

improvement is the result of post-processing approaches (Table 3). For example, 

when post-processing is used, the NSE increases in as many as 74.63% for the 

calibration and 25.84% for the validation period. The acceptable range for NSE is 

considered to be above 0.5 (Moriasi et al., 2007); therefore, results in Table 3 

point that the deterministic prediction does not have a satisfying skill as 

compared with the post-processing approaches, which frequently guides to valid 

performance metrics because they work directly to improve the errors in model 

outputs (Ye et al., 2014).Visible improvements are also inspected concerning 

KGE; for instance, KGE increases in as many as 30.3% for the calibration and 

16% for the validation period (improvements are not as pronounced as for NSE). 

 



Table 3. Deterministic and probabilistic performance metrics of the raw 
prediction, MCMC and ABC post-processor for the Aipe catchment. 

Performance 

metric 

Calibration Validation 

Deterministic 

predictions 

Post-processing Deterministic 

predictions 

Post-processing 

MCMC ABC MCMC ABC 

NSE 0.165 0.669 0.671 0.571 0.777 0.773 

KGE 0.527 0.769 0.764 0.637 0.757 0.744 

Reliability  0.996 0.996  0.993 0.993 

Precision  2.403 2.306  2.581 2.5 

K-S test (p-value)  0.465 0.75  0.132 0.223 

B (m
3
s

-1
)  14.95 15.64  25.78 26.86 

CR (%)  88.33 88.89  94.44 95.83 

D (m
3
s

-1
)  6.82 6.92  12.23 12.42 

 

Regarding probabilistic metrics, the predictive PQQ plot of the MCMC (upper-

right) and ABC (lower-right) post-processing is presented in Figure 14 during the 

calibration period. Figure 14 shows realistic narrow predictive bounds because 

only some peak flows are not bracketed, and all low streamflows are bracketed. It 

is important to notice that the upper and lower predictive uncertainty appearing in 

the Figure 14 are almost identical. Besides, it is clear from these figures that the 

curves closely follow the bisector. This means that the predictive distributions of 

post-processed streamflows are reliable. We also see that reliability indexes are 

close to one, further confirming that predictions are reliable (Table 3).  
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Figure 14. Conditional predictive uncertainty from MCMC (upper) and ABC 
(lower) post-processor on the Aipe catchment. PQQ-plot of the conditional 
predictive distribution (right). Dots indicate observations, line indicates median 
prediction and grey region indicates 90% uncertainty. 

Generally speaking, we do not find crucial differences between the MCMC and 

ABC post-processing approaches. Reliability and precision metrics are practically 

equal for both post-processing methods in calibration and validation periods 

(Table 3). Additionally, both techniques pass the K-S test. In the calibration 

period, the B and D metrics of ABC post-processor are slightly higher than the 

MCMC post-processor. Table 3 further reports the coverage rate (CR) for testing 

the sharpness of the conditional predictive uncertainty. Perfect predictive 

distribution would expect that the CR close to the assumed 90% prediction level. 

In the calibration period, the CR for the two post-processors are quite similar. In 

general, all verification metrics of both methods deteriorate in the validation 

period except for the CR that improves slightly. These results suggest that the 

ABC post-processor which uses just some sufficient summary statistics and a 

free-likelihood function may have similar performance to the MCMC post-

processor that uses a likelihood function. Therefore, the ABC post-processor has 

a satisfactory performance. The second scenario (section 3.3.2) investigates 

whether these findings would hold for good hydrological predictions. 



3.3.2 Second Scenario: The Oria Catchment 

In the second scenario, we analyse an oceanic climate and spatially-distributed 

hydrological model. In contrast to the first catchment, the hydrological model 

(deterministic predictions) has a good performance as seen in verification metrics 

in Table 4.  

Table 4. Deterministic and probabilistic performance metrics of the raw 
prediction, MCMC and ABC post-processor for the Oria catchment. 

Performance 

metric 

Calibration Validation 

Deterministic 

predictions 

Post-processing Deterministic 

predictions 

Post-processing 

MCMC ABC MCMC ABC 

NSE 0.875 0.91 0.911 0.939 0.955 0.956 

KGE 0.918 0.903 0.91 0.891 0.909 0.917 

Reliability  0.995 0.995  0.982 0.982 

Precision  2.95 2.87  2.28 2.19 

K-S test (p-value)  0.972 0.923  0.868 0.872 

B (m
3
s

-1
)  1.47 1.51  1.34 1.37 

CR (%)  86.07 86.07  77.78 80.56 

D (m
3
s

-1
)  0.85 0.86  0.66 0.67 

 

In general, post-processing approaches improve performance forecasts. 

Nevertheless, improvements are not as pronounced as for the first scenario. For 

instance, when post-processing is used, the NSE increases barely 3.9% for the 

calibration and 1.8% for the validation period. Furthermore, we do not find 

improvements regarding the KGE. Concerning probabilistic metrics, Figure 15 

shows time series and predictive PQQ plots for streamflows predictions using the 

MCMC (upper) and ABC (lower) post-processing during the calibration period. As 
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is evident in the Figure 15, the exact (MCMC) and the approximate (ABC) 

conditional predictive uncertainty are seen to be an extremely close match. In 

particular, prediction uncertainty bands supply an adequate description of 

observed values. The predictive PQQ plots in Figure 15 confirm that predictions 

under post-processing are providing adequate representation of observed 

streamflows, as PQQ plots follow the bisector. This means that the predictive 

distributions of post-processed streamflows are reliable. Besides, we can confirm 

this by the reliability index (Table 4). 

 

Figure 15. Conditional predictive uncertainty from MCMC (upper) and ABC 
(lower) post-processor on the Oria catchment. PQQ-plot of the conditional 
predictive distribution (right). Dots indicate observations, line indicates median 
prediction and grey region indicates 90% uncertainty. 

As is consistent with the first scenario, the approximate (ABC) conditional 

predictive uncertainty is almost equivalent to the exact predictive (MCMC) (Figure 

15). Reliability and K-S test metrics are practically equal for both post-processing 

approaches in calibration and validation periods. Only a tiny difference is 

identified in the precision metric (Table 4). This finding is not surprising as the 

ABC uses summary statistics. Regularly summary statistics are linked with loss of 

information. This loss of information may be undesired for predicting objectives. 



Nevertheless, this problem could be avoided by using a set of sufficient summary 

statistics. In particular, during the calibration and validation periods, the B and D 

metrics of ABC post-processor are slightly higher than the MCMC post-

processor, indicating wider predictive uncertainty bounds than the MCMC post-

processor. For this reason, ABC method has 2% more of the observed samples 

in the 90% predictive uncertainty than the MCMC post-processor during the 

validation period (Table 4). Finally, a performance comparison between the 

scenarios based predictive uncertainty shows that, the scenario 2 gave narrower 

prediction uncertainty bands than scenario 1. This is due to the quality of 

hydrological predictions influences the conditional predictive uncertainty. Contrary 

to scenario 1, the CR for both post-processors deteriorate in the validation period. 

To sum up, in both scenarios there is little visual distinction between the 

approximate (ABC post-processor) and the exact (MCMC post-processor) 

conditional predictive uncertainty.  

3.4 Discussion and Conclusions 

The main aim of this chapter is to show that the conditional predictive distribution 

is qualitatively similar produced by the exact predictive (MCMC post-processor) 

or the approximate predictive (ABC post-processor) using some sufficient 

summary statistics and synthetic datasets. To achieve this aim, we use MCMC 

post-processor as a benchmark to make results more comparable with the 

proposed method. We apply both methods (ABC and MCMC) to two scenarios: 

the Aipe catchment (Colombia) and the Oria catchment (Spain). The advantage 

of the proposed method (ABC post-processor) is highlighted in the inferential 

problems with intractable likelihood. Sometimes, it can be difficult to calculate the 

likelihood itself in hydrological modelling, specially working with complex models 

or with ungauged catchments.  

As well as Ye et al. (2014), Bogner et al. (2016) and Woldemeskel et al. (2018) 

we confirm that post-processing techniques can improve forecasts significantly 

when hydrological model predictions are especially poor (Table 3). Furthermore, 

we find through our numerical evidence that the MCMC and ABC post-

processors provide similar predictive performance. This result was confirmed by 

Fenicia et al. (2018) and Kavetski et al. (2018), that the shape of the predictive 

distribution is qualitatively similar produced by the exact predictive (MCMC) or 

approximate predictive (ABC). These findings can be attributed to the correct 

specification of the probability model (data generating process). When the 
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assumed probability model is correctly specified, just a little information is lost 

regarding predictive performance. In contrast, significant differences can appear 

when the probability model to represent observed streamflows is inadequate. In 

addition, Frazier et al. (2019) demonstrated theoretically that the ABC made 

forecasts which were asymptotically similar to those obtained from the exact 

Bayesian methods when the sample was large, the data generating process was 

correctly specified and, if the conditions for Bayesian consistency and asymptotic 

normality of both the exact (MCMC) and the approximate (ABC) posteriors were 

satisfied. Moreover, we recommend to check Drovandi and Pettitt (2011) for the 

use of ABC with synthetically case studies in the presence of intractable 

likelihood.  

In both scenarios, we have proved that the predictive superiority of the exact 

predictive (MCMC post-processor) over the approximate (ABC post-processor) is 

minimal for hydrological models. There are two significant differences between 

this study and the previous works (e.g. Fenicia et al. (2018) and Kavetski et al. 

(2018)). First, they used the ABC method to calibrate jointly hydrological models 

and to compute the predictive uncertainty. Instead of Bayesian calibration of 

hydrological models, we used the ABC method in hydrological post-processing 

context, so we calculated the conditional predictive uncertainty, while Kavetski et 

al. (2018) calculated the predictive uncertainty. Second, Fenicia et al. (2018) and 

Kavetski et al. (2018) did not use summary statistics, which is a tremendous 

difference with this study. In other words, we obtained a similar main conclusion 

but in a different context and method.  

Although we used a comparative analysis between MCMC and ABC hydrologic 

post-processors, it should be noted though that this study does not aim to show 

that ABC post-processor has a better performance than MCMC post-processor. 

Thus, we use MCMC post-processor as a benchmark to make results more 

comparable with the proposed post-processor. Moreover, we know that the 

MCMC method has proven its ability in hydrological predictions. In addition, it is 

true that any comparison can be affected by different factors, but it must be 

emphasised the focus of this comparison is between two post-processors without 

particular emphasis on the hydrological model performance. Actually, they are 

just predictions, which are the input for both post-processors in two scenarios 

(poor and good predictions).  

We also applied the NQT transformation to achieve assumptions of the error 

model, but any transformation produces information loss. Besides, we know that 



our analysis is conditioned to the linear regression model (hydrologic post-

processor). In standard linear regression, the average link between observed and 

simulated streamflows is summarised with a single slope parameter expressing 

this relationship. However, Diks and Vrugt (2010) pointed out that a simple 

regression method could result in improvements equivalent to more complex 

methods. Furthermore, our idea is to show that the ABC approach can be used to 

compute the conditional predictive uncertainty rather than to perform a complex 

post-processor, and therefore, we can tolerate some of the less realistic 

assumptions. Although the examples that we have used in this chapter are 

moderately simple, generally speaking, the ABC post-processor is highly flexible 

and can be used for more complex models. Future research should develop 

methods that relax any transformation, evaluate the impact of pre-processing and 

post-processing and explore the multi-regression model. We only scrutinize the 

ABC to compute the approximate conditional predictive uncertainty in 

hydrological post-processing context, but there are other approximations, for 

instance, Bayesian synthetic likelihood (Price et al., 2018), Bayesian empirical 

likelihood (Mengersen et al., 2013), variational Bayes (Tran et al., 2017) and 

bootstrap methods (Zhu et al., 2016). 

The ABC post-processor has potential in areas such as operational hydrology, 

flood protection, drinking water production, risk assessment, irrigation 

management, water resources management and ecological issues. Besides, the 

ABC post-processor offers the opportunity to improve decision support with 

intractable likelihood function, e.g. to predict in ungauged basins or evaluate 

climate change predictive uncertainty. In summary, we conclude that 

deterministic predictions (no post-processing) perform poorly concerning 

deterministic verification metrics, and the MCMC and ABC post-processors 

provide similar predictive performance. Therefore, the approximate Bayesian 

computation may then be used as an alternative method to estimate the 

conditional predictive uncertainty of hydrological predictions with intractable 

likelihood. 
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4.1 Introduction 

Climate change, and its impacts, mitigation and adaptation, are central water 

challenges for scientists and engineers in the 21st century (Weaver et al., 2013). 

The most confident climate change projections show increased frequency and 

intensity of extreme events, and the intensity, duration and frequency of rainfall 

events are expected to change with global warming (Wild and Liepert, 2010). 

These projections could have negative consequences for the development of 

humanity, such as biodiversity loss, droughts, floods, and so forth. Recently, 

Broderick et al. (2019) projected more frequent, severe and tenacious droughts, 

more regular, widespread and dangerous floods, and more detrimental water 

pollution episodes. Given these projections, making robust decisions and 

designing strategies for the management and adaptation to climate change are 

essential needs in a global world’s dynamics (Winsemius et al., 2014).  

In any case, proper robust decisions about water resources planning and 

management require knowledge of the uncertainty associated with climate 

projections (for example, see Ray and Brown (2015), Vogel (2017) and 

Kundzewicz et al. (2018)). At the same time, climate change projections provide 

valuable information for water management and water resources planning. 

Nevertheless, climate change impact studies have been a notable challenge 

because they have multiple sources of uncertainty (Clark et al., 2016; Krysanova 

and Hattermann, 2017; Wilby and Harris, 2006). Uncertainties in the climate 

change context may arise from scenarios of future socio-economic development 

(Latif, 2011) and carbon emissions (Schenk and Lensink, 2007), general 

circulation models (GCM) (Murphy et al., 2004), regional climate models (RCM) 

or downscaling models (Stoll et al., 2011), bias correction methods (Maraun, 

2016; Maraun et al., 2017) and natural climate variability (Deser et al., 2012; von 

Trentini et al., 2019). Understanding, characterising, reducing and communicating 

the uncertainty of climate change projections become crucial to support decision 



making and water planning under anthropogenic conditions (Butts et al., 2004; 

Liu and Gupta, 2007).  

Broadly speaking, uncertainty is a universal concept with different meanings. In 

particular, the predictive uncertainty concept is often confused with model 

uncertainty (Mantovan and Todini, 2006; Todini, 2008). In this thesis, we focus on 

the predictive uncertainty, which characterises our best knowledge of future 

outcomes. In other words, the predictive uncertainty is the probability of 

predictand (discharge, water level, precipitation, etc.) conditional over all 

knowledge that we obtain by mechanistic models (Krzysztofowicz and Kelly, 

2000). Therefore, the aim of predictions is to portrayal the uncertainty of 

predictands rather than the uncertainty of forecasting produced by hydrological 

models (Todini, 2008).  

From a broader perspective, the standard multi-model ensemble approach is the 

most common method to deal with uncertainty. In the multi-model ensemble 

approach, the ensemble members of all the participating models are pooled into 

a single sample with equal weights (Min et al., 2009). This approach is widely 

used for the climate community on the continental and global scales (Christensen 

et al., 2010), and its application to climate change was recommended by the 

Intergovernmental Panel on Climate Change – IPCC (Adler and Hirsch Hadorn, 

2014). Another version of the multi-model ensemble approach selects or rejects 

models by considering their performance in the historical baseline period. 

Although this method is a non-trivial assignment (Clark et al., 2016; Maraun et al., 

2010), this approach is preferred by the hydrological community (Krysanova et 

al., 2018). In summary, the prevailing perception is that climate impact 

assessments based on the multi-model ensemble approach provide robust 

results to quantify the uncertainty of climate change projections (Krysanova and 

Hattermann, 2017).  
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However, recent studies state that the multi-model ensemble method cannot 

adequately describe uncertainty (Fatichi et al., 2016; Gao et al., 2019; Nearing 

and Gupta, 2018). Some possible reasons for this could be that this approach 

needs sufficiently large numbers of models and ensembles to span the range of 

possible physical representations (Boberg and Christensen, 2012), and a model 

consensus does not indicate reliability (Maraun et al., 2017). In addition, the 

multi-model approach assumes that all models are independent and equally 

plausible, which is a strong assumption that is hard to justify for climate models 

(Knutti et al., 2019). Consequently, new methods have emerged to overcome the 

weaknesses of the multi-model ensemble approach. For example, Steinschneider 

et al. (2012) presented a statistical framework to quantify the uncertainties of 

hydrologic response with climate change using Bayesian modelling. Clark et al. 

(2016) suggested the quantitative hydrologic storylines of climate change 

impacts. Nearing and Gupta (2018) recommended the information theory for 

quantifying the epistemic uncertainty of climate change. Pechlivanidis et al. 

(2018) applied the minimum redundancy concept to identify a representative 

subset in a large model ensemble. Gao et al. (2019) proposed the resampling 

change factor of meteorological variables based on their probability information to 

provide reliable climate change projections. Von Trentini et al. (2019) advocated 

quantifying the contribution of natural/model-internal variability on the total 

uncertainty of a multi-model ensemble. Finally, Padrón et al. (2019) proposed 

constraining the multi-model ensemble by the Markov Chain Monte Carlo 

(MCMC) method. Note that neither of previous studies has used a post-

processing approach. 

Another way of quantifying the total uncertainty of climate change projections is 

to follow a hydrological post-processing approach, which is a statistical model 

that relates the observed variables of interest to the simulated ones (W. Li et al., 

2017). In a broader context, statistical post-processors are important tools for 



reducing systematic errors and obtaining an appropriate assessments of the 

predictive uncertainty (Buizza, 2018). Specifically, the statistical post-processor of 

the model outputs describes past prediction errors and uses this information to 

condition projections at a future time (Biondi and Todini, 2018). Currently, post-

processing methods are well established in the weather forecasting community 

for short-term forecasting (Schepen et al., 2018), but forecasts and projections 

are conceptually different. Climate forecasts estimate climate evolution in the 

future, while climate projections depend on radiative forces scenarios. Therefore, 

climate projections are only a plausible state of future climate (Maraun et al., 

2010). Moreover, climate change projections are not in synchrony with 

observations (Maraun, 2016). In other words, climate change projections are not 

expected to provide precise predictions of the temporal evolution of weather 

variables as seen in the observed time series.  

The traditional climate change impact studies assume that a range of GCM-RCM 

chains properly represents the uncertainty of climate change projections. 

However, climate change projections are not in synchrony with observations 

(Maraun, 2016), so climate change projections model streamflow statistics 

instead of time series (Zhao et al., 2017). Unfortunately, a little information is 

available on the uncertainty of streamflow statistics. To bridge this gap, this study 

introduces a coherent univariate method, called ABC post-processor, to assess 

the conditional predictive uncertainty of streamflow statistics obtained from 

climate change projections that merge statistical post-processing, approximate 

Bayesian computation and streamflow statistics. 

Romero-Cuellar et al. (2019) developed the ABC post-processor for inferential 

problems with intractable likelihood (see chapter 2), previously unavailable in a 

closed form or by numerical derivation (Robert, 2016). As the predictive 

uncertainty of climate change projections cannot be assessed by observations, 

but by summary statistics of observations, e.g. the mean monthly, these 
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projections are a particular case of intractable likelihood problems. Although 

many studies on hydrological post-processing can be found, limited information is 

available on hydrological post-processing using approximate Bayesian 

computation and streamflow statistics to quantify the predictive uncertainty of 

climate change. In this chapter, we aimed to post-process climate change 

projected monthly streamflows and to assess their conditional predictive 

uncertainty by the ABC post-processor approach with 12 long-term mean monthly 

streamflows as the summary statistics for the baseline period (1987–2000). As an 

illustrative case study, we analysed the climate change projections (AR5 - IPCC) 

of the monthly streamflows in the upper Oria catchment (Spain), with 

deterministic and probabilistic verification frameworks to assess the ABC post-

processor outputs. This framework can be used to provide essential water and 

environmental resources management information, to plan and operate water 

resource systems, and to support robust decisions about adaptation plans. The 

rest of the chapter is structured as follows: the methodology is described in 

Section 4.2, the case study in Section 4.3, the results in Section 4.4, and the 

discussion and conclusions in Section 4.5. 

4.2 Methodology 

4.2.1 General framework 

To post-process climate change projected streamflows and to assess their 

conditional predictive uncertainty, we propose the general framework 

summarized in Figure 16. First of all, meteorological variables are downscaled for 

the baseline period. Secondly, a hydrological model is calibrated and validated 

using observed hydrometeorological data to follow the hydrological modelling 

procedure. Even if the objective is monthly streamflows, using a daily time 

discretisation is highly recommended to reduce the time scale effect of monthly 

simulations (Francés et al., 2007). Finally, the ABC post-processor is used to 



conduct the hydrological post-processing approach. In the following subsections, 

more detailed information is provided. 

 

Figure 16. Framework of this study to post-process climate change projected 

streamflows and to assess their conditional predictive uncertainty. 

The proposed framework is useful for evaluating climate models (GCM/RCM) and 

to constrain ensemble estimates of future streamflow changes to reduce the 

conditional predictive uncertainty, which is achieved by the ABC post-processor 

that uses the monthly mean streamflows as summary statistics and a free-

likelihood approach. 
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4.2.2 The ABC post-processing procedure 

The main characteristic of the ABC post-processor used herein is to outline what 

follows. For additional details on the ABC post-processor method, refer to 

Romero-Cuellar et al. (2019). The ABC post-processor is a Bayesian linear 

regression model that relates climate change projected streamflows (predictors) 

and observed streamflows (predictands): 

𝒚𝑜 = 𝛽0 + 𝛽1𝒚𝑠 + 𝜺,  (21) 

where vectors 𝒚𝑜 and 𝒚𝑠 are the observed streamflows (predictands) and climate 

change projected streamflows (predictors), respectively; 𝛽0 and 𝛽1 are the model 

parameters and 𝜺 is an error term to account for random sampling noise. It is 

assumed that 𝜺~𝑁(0, 𝜎2) is identical independent distributed (i.i.d). As the ABC 

post-processor uses an aggregational approach to describe errors, all the 

sources of uncertainty are grouped into a linear residual error equation (21). The 

three components on the right-hand side denote three distinct sources of 

estimation errors. The first term, 𝛽0, indicates constant deviation and can be 

called the displacement error. The second term, with an error parameter 𝛽1, 

represents a scale error or dynamic-range error. The third term is a random error 

𝜺, which symbolises aleatory uncertainty, and the first two terms characterise the 

systematic or epistemic error. It is known that Equation (21) and i.i.d assumptions 

are questionable (e.g., Sorooshian and Dracup (1980)), but the ABC post-

processor applies the Normal Quantile Transformation (NQT) (Van Der Waerden, 

1953) to normalised residuals. In addition, NQT moves to normal space using 

non-parametric distribution to estimate the marginal distribution of the random 

variables. Equation (21) is also adequate for water resources applications (Tian 

et al., 2016) and the ABC method is not strongly influenced by the model and his 

assumptions. The posterior distribution of the model (21) is, (𝜽|𝒚𝑜, 𝒚𝑠) , which is 

given by Bayes Theorem: 



 𝑝(𝜽|𝒚𝑜, 𝒚𝑠 ) =
𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽)

∫ 𝑝(𝒚𝑜|𝜽, 𝒚𝑠)𝑝(𝜽) 𝑑𝜽
 , 

(22) 

 

where 𝑝(𝜽) is a prior parameter distribution and 𝑝(𝒚𝑜|𝜽, 𝒚𝑠) is a likelihood 

function. The ABC post-processor assumes flat uniform priors for 𝜽 = (𝛽0, 𝛽1, 𝜎2) 

and from the assumptions in model (1), it follows that  𝒀𝑜|𝜽, 𝒚𝑠 ~ 𝑁(𝜇 =  𝛽
0

+

𝛽
1

𝒚𝑠, 𝜎2). The ABC post-processor approximates the posterior distribution 

(Equation (22)) using the accepted-rejected algorithm (Beaumont et al., 2002), 

which avoids the prerequisite of deriving the likelihood in a closed form and 

instead needs sampling from the underlying probability model and some sufficient 

summary statistics (Toni et al., 2009). The parameters of ABC post-processor 

parameters were estimated using the streamflow statistics of the climate change 

projected streamflows and observations as training samples during the baseline 

period (1987–2000). Specifically, the ABC post-processor computes the 

conditional predictive uncertainty, so let 𝑦𝑜̃ be a future observation for the model 

(21), then the posterior predictive density of a future observation 𝑝(𝑦𝑜̃|𝒚𝑠 ), is 

given by:  

𝑝(𝑦𝑜̃|𝒚𝑠 ) = ∫ 𝑝(𝑦𝑜̃|𝜽)𝑝(𝜽|𝒚𝑜, 𝒚𝑠) 𝑑𝜽

∅

  

(23) 

 

In other words, the posterior predictive density is an average of the conditional 

predictions over the posterior distribution (Gelman et al., 2013), by reproducing 

both the model’s uncertainty and the uncertainty due to variability in future 

observed streamflows (Yoon et al., 2010). It is noteworthy that the ABC post-

processor is a univariate model framework, which is one predictor (climate 

change model’s output). Another assumption is that observations and climate 

change projections should be correlated.  
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In practice, for each climate models, the ABC post-processor was implemented 

with 100.000 simulations. The parameter values drawn from uniform prior 

distributions and the calculated associated streamflow statistics were used for 

each simulation. As streamflow statistics, we used the mean monthly streamflows 

for the baseline period (12 summary statistics). In this chapter, we implemented 

the accepted-rejected algorithm (Beaumont et al., 2002) using the Euclidian 

distance between summary statistics. A tolerance level was adaptively defined. It 

has been found that the tolerance level was 0.01 after a few tests. We developed 

the ABC post-processor in R (Core Team, 2013) using the package abc (Csilléry 

et al., 2012).  

4.2.3 Verification metrics 

Deterministic and probabilistic metrics were used to evaluate the outputs of the 

ABC post-processor and the 14 climate models during the baseline period. In 

particular, the accuracies, reliability, and robustness were examined. As 

verification metrics has been reported in the section 1.3, only a brief description 

of each is presented herein. The predictive performance of each climate model 

was assessed by comparing the 95% uncertainty band for a baseline period 

(1987–2000). The Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) efficiency indices 

were also used to measure the predictive accuracy and the percentage of 

observations, which fell within the 95% prediction intervals to evaluate the 

reliability of the uncertainty band. The containing ratio (CR) assesses the 

percentage of observations bracketed by the 95% uncertainty band. In this study, 

a perfect uncertainty quantification was achieved when the CR came close to 

95%. Precision rises along with the narrower uncertainty band and reliability, and 

increases the closer the 95% prediction level is reached. The visual test was run 

to check the predictive performance, as in previous studies (e.g., Najafi et al. 

(2011); Schoups and Vrugt, (2010); Ye et al. (2014)). To test the reliability and 

precision of the predictive performance, Laio and Tamea (2007) recommended 



using PQQ plots (Thyer et al., 2009). In the PQQ plot context, if the predictive 

distribution and observed data are consistent, the corresponding p-value 

distribution should be uniformly distributed over the whole interval [0,1]. In the 

present study, the Kolmogorov-Smirnov test (K-S) was used to check this 

uniformity. 

4.3 Case study  

4.3.1 The catchment 

The applicability and usefulness of the ABC post-processor were assessed over 

the upper Oria River catchment Figure 17. The River Oria is located in the 

Basque Country in North of Spain and drains into the Bay of Biscay. This 

illustrative catchment has an area of 73 km2 and an elevation range between 

180.46 and 1411.57 m.a.s.l. (see the topography in Figure 17). 
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Figure 17. Location and topography of the upper River Oria catchment in the Bay 

of Biscay (Spain). 

The climate of this area is oceanic, with the mean annual discharge, reference 

evapotranspiration and precipitation for the period 1987–2000 of 765, 733.4 and 

1498 mm, respectively. Monthly variability is shown in Figure 18. Aridity and the 

run-off index are 0.489 and 0.511, respectively. Land cover includes grass (32%), 

natural forest (20.5%) and forestry plantations (38.6%). Soils are mostly 

cambisols (38.5%) and luvisols (47.0%). For reviews of the study area, see 

(Francés et al., 2007). 



 

Figure 18. Mean monthly values (1987–2000) for the upper River Oria catchment 

of precipitation (P), reference evapotranspiration (ETo) and streamflow (Q). 

4.3.2 Observational data and hydrological model  

Daily precipitation, temperature and reference evapotranspiration data were 

retrieved from the State Meteorological Agency of Spanish Government - AEMET 

(http://www.aemet.es). Potential evapotranspiration was estimated by the 

Hargreaves method (Hargreaves and Samani, 1982) from maximum and 

minimum temperatures, but was calibrated in the nearest meteorological station. 

Finally, the daily observed streamflows were collected from the Provincial 

Guipuzcoa Government. The hydrological simulations for this study were 

grounded on a conceptually based and spatially distributed model called TETIS, 

which simulated the main hydrological process. In TETIS, each grid cell 

represents a tank model with six tanks connected to one another (Francés et al., 

2007). TETIS was developed by our Research Group (http://lluvia.dihma.upv.es) 

http://www.aemet.es/
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over the last 20 years, with worthy results in different climate and catchments 

size scenarios (Bussi et al., 2014; Francés et al., 2007; Rodriguez-Lloveras et al., 

2015; Ruiz-Pérez et al., 2016; Ruiz-Villanueva et al., 2015; Vélez et al., 2009). 

The model was calibrated against discharge using the automatic optimisation 

algorithm SCE-UA (Duan et al., 1994) in daily time steps for the 1990–2000 

period, and was validated for the 1987–1990 period. The objective function was 

the Nash Sutcliffe Efficiency (NSE) Index. For further details on model 

implementation in this case study, refer to Francés et al. (2007) and Vélez et al. 

(2009). For this chapter, the simulated daily streamflows from TETIS were 

aggregated to the monthly data at the C2Z1 Agauntza gauge (the catchment 

outlet in this case study).  

4.3.3 Climate change data  

The climate change projections were obtained from the Spanish National 

Meteorological Agency - AEMET (http://www.aemet.es), which provides the 

regionalised projections of 14 climate models (both GCM and RCM) using the 

statistical technique of analogues (Lorenz, 1969). These projections were 

obtained from the Fifth Assessment Report (AR5) of the Intergovernmental Panel 

on Climate Change - IPCC (Magrin et al., 2014) and the CORDEX Project 

(Colmet-Daage et al., 2018). The historical baseline period was 1987–2000. The 

daily precipitation, and the minimum and maximum temperatures for the baseline 

period were used. To remove the bias of the climate model simulations, the 

quantile mapping method (Gudmundsson et al., 2012) was employed. Next all 

the models simulated the long-term daily streamflow for the 1987–2000 period 

using 14 downscaled climate data. These daily data were also aggregated to the 

monthly time series. Finally, the ABC post-processor was applied to post-process 

the projected streamflows and to assess their conditional predictive uncertainty 

during the baseline period (1987–2000). Detailed information about the 14 

climate models is listed in Table 5.  

http://www.aemet.es/


Table 5. Information about the 14 selected climate models. 

Code Model Name Modelling group 

1 ACCESS1 

Commonwealth Scientific and Industrial Research 

Organization/ 

Bureau of Meteorology, Australia 

2 bcc_csm1 Beijing Climate Center, China 

3 BNU_ESM Beijing Normal University, China 

4 CMCC_CESM 
Ceatre Europeen de Recherche et Formation Avabcees 

 en Calcul Scientifique 
5 CMCC_CM 

6 CNRM_CM5 

7 GFDL_ESM2G Geophysical Fluid Dynamics Laboratory, USA 

8 GFDL_ESM2M Geophysical Fluid Dynamics Laboratory, USA 

9 inmcm4 Meteorological Research Institute 

10 IPSL_CM5A_MR Institute Pierre-Simon Laplace, France 

11 MIROC_ESM 
National Institute for Environmental Studies 

12 MIROC5 

13 MPI_ESM_MR Max Planck Institute for Meteorology 

14 MRI_CGCM3 Meteorological Research Institute 

 

4.4 Results  

4.4.1 Hydrological model evaluation 

Figure 19 shows the daily TETIS performance for the calibration period (1987 – 

2000) in the case study with a monthly aggregation of streamflows. An accurate 
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agreement in timing between the observed and simulated monthly streamflows is 

noticed. The TETIS parameters were calibrated and validated, to produce a 

Nash-Sutcliffe Efficiency (NSE) and a Kling-Gupta Efficiency (KGE) at monthly 

discretisation, equal 0.93 and 0.87 for the calibration period, and to 0.88 and 0.86 

for the validation period. These performances are considered “good” on the basis 

of the performance measures proposed by Martinez and Gupta (2010). The latter 

can be confirmed looking at the scatterplot of monthly streamflows (Figure 19, 

right), with the majority of points closely following the bisector. Compared to the 

calibration results, the NSE and KGE indices are slightly degraded during the 

validation period, which is as expected for adequate model calibration. 

 

Figure 19. Left panel: monthly time series for the baseline period of the 

hydrological predictions (solid line) and observations (red dots) for the case 

study. Right panel: scatter plot of simulated versus observed streamflows. 



According to the above results, the hydrological parameters are reasonably 

acceptable and can be further conducted with future hydrological simulations 

driven by projected meteorological data from climate models.  

4.4.2  The general streamflow predictive performance of the climate 

models  

The TETIS simulations for the baseline period (1987–2000), forced with 14 

climate model outputs, were compared with the observed streamflows in the case 

study outlet. Figure 20 shows the observed and simulated mean monthly 

streamflows based on 14 climate models. In Figure 20, the label called 

“Reference” indicates the hydrological simulations forced with the observed 

hydrometeorological data, while “Mean ensemble” indicates the mean of the 14 

climate models during the baseline period. In general, the 14 climate models 

fairly represented the mean seasonal streamflow patterns of the case study. 

However, the data in Figure 20 show that most of the climate models led to 

considerably overestimated streamflows in winter and spring, and to slightly 

underestimated streamflows in summer and autumn.  
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Figure 20. The mean monthly streamflows during the baseline period (1987–

2000) for the case study by 14 climate models compared with the observed and 

ensemble means. 

These results suggest that climate models present a seasonal bias. In contrast, 

CMCC_CESM clearly outperformed the other climate models and mimicked the 

mean seasonality cycles that, albeit not perfect, came closer to the observed 

streamflow (see also Figure 21). Most climate models led to a considerable 

overestimated streamflow during high flows and to an underestimated streamflow 

during low flows (Figure 21). This result implies that few climate models that 

projected streamflows are not directly applicable for long-term water 

management and adaptation planning. 



 

Figure 21. The mean monthly streamflow hydrograph during the baseline period 

(1987–2000) for the case study by 14 climate models compared with the 

observed and ensemble means. 

Figure 22 comparing the NSE performance of the 14 climate models to the post-

processed streamflow (the predictive uncertainty median). The results generally 

showed that the NSE performance index for the post-processed streamflow were 

mostly better than that for the 14 climate models streamflow (without post-

processing). This result indicates that the ABC post-processor implicitly reduces 

bias. The ABC post-processor usually increases the NSE index. However if the 

climate model initially displays high performance (without post-processing); then 

ABC post-processor performance is not significant. For example, the 

CMCC_CESM model, which the NSE barely increased by 0.4%. In contrast, NSE 

for MIROC_ESM increased by as much as 77.2%. The KGE index showed 

overall similar behaviour, but is not presented herein for the sake of brevity.  
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Figure 22. The NSE performance index of the 14 climate models and the post-

processed streamflow simulations for the baseline period (1987–2000). 

After we showed the poor performance of the 14 climate models (Figure 20, 

Figure 21 and Figure 22), the ABC post-processor was applied to improve the 

predictive ability of climate models, and its predictive performance was assessed 

using the verification metrics explained in the Methodology (see Section 4.2.3). 

Table 6 shows the overall performance results of all the 14 climate models and 

the “Reference”, e.g., the hydrological simulations forced with the observed 

hydrometeorological data. To compute the deterministic metrics (NSE and KGE), 

predictive distribution median was used. The results indicated that the variation 

between the climate models was wide in terms of the NSE, KGE and CR (95%) 

metrics. Specifically, the NSE ranged from 0.35 (BNU_ESM) to 0.88 

(MRI_CGCM3) with 53% of variability, the KGE ranged from 0.69 (BNU_ESM) to 

0.89 (MRI_CGCM3) with 20% of variability, and the CR ranged from 50% 



(GFDL_ESM2G and GFDL_ESM2M) to 91.7% (CMCC_CESM) with 41.7% of 

variability.  

Table 6. The deterministic and probabilistic performance metrics of the simulated 
long-term mean streamflows based on the 14 climate models for the case study. 

Model NSE KGE CR (95%) Precision K-S test Reliability 

Reference 0.93 0.87 100.00 5.49 0.30 0.94 

ACCESS1 0.74 0.87 75.00 5.37 0.42 0.95 

bcc_csm1 0.57 0.78 58.30 5.40 0.43 0.96 

BNU_ESM 0.35 0.69 58.30 5.30 0.24 0.96 

CMCC_CESM 0.79 0.87 91.70 5.56 0.21 0.96 

CMCC_CM 0.71 0.85 75.00 5.43 0.09 0.96 

CNRM_CM5 0.53 0.79 58.30 5.37 0.17 0.96 

GFDL_ESM2G 0.38 0.70 50.00 5.39 0.02 0.96 

GFDL_ESM2M 0.52 0.76 50.00 5.41 0.04 0.96 

inmcm4 0.64 0.82 66.70 5.52 0.18 0.96 

IPSL_CM5A_MR 0.67 0.83 58.30 5.45 0.03 0.96 

MIROC_ESM 0.58 0.77 58.30 5.30 0.33 0.97 

MIROC5 0.57 0.79 75.00 5.32 0.10 0.10 

MPI_ESM_MR 0.70 0.85 66.70 5.37 0.17 0.96 

MRI_CGCM3 0.88 0.89 83.30 5.44 0.89 0.94 

 

In general, MRI_CGCM3 outperformed the other climate models in deterministic 

metrics terms (NSE and KGE) and CMCC_CESM did so in probabilistic metric 

terms (CR). If the predictive distribution and observed data are consistent, the 
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corresponding p-value distribution should be uniformly distributed over the 

interval [0, 1]. Table 6 indicates that only IPSL_CM5A_MR, GFDL_ESM2G and 

GFDL_ESM2M did not pass the K-S test to check the uniformity distribution (p-

value < 0.05). According to the precision and reliability metrics, no crucial 

differences were found among the 14 climate models (Table 6). The conditional 

predictive PQQ-plots of the ensemble of climate simulations are shown in Figure 

23. Four climate models (MRI_CGCM3, CMCC_CESM, ACCESS1 and 

bcc_csm1) gave a correct predictive uncertainty estimation, while the other 

climate models underestimated the predictive uncertainty using the ABC post-

processor. It is clear from the Figure 23 that only a few curves closely follow the 

bisector lines. This indicates that the conditional predictive uncertainty of the 

climate streamflow simulations is reliable. In Figure 23 the panel called 

“Reference” denotes the hydrological simulations forced with observed inputs.  



 

Figure 23. The Conditional predictive PQQ-plot for the baseline period (1987–

2000) in the case study for the hydrological model forced by the 14 climate 

models and the reference. 

To maintain simplicity and clarity, and to extend uncertainty analysis results, 

detailed results are presented for three selected climate models. Therefore, three 

class of climate model results are presented in the following subsections, which 

range from the categories “good” (CMCC_CESM) to “mediocre” (ACCESS1) and 

“poor” (GFDL_ESM2G) according to the predictive performances for the baseline 

period.  

4.4.2.1 Predictive performance of CMCC_CESM (good category) 

In this subsection, the conditional predictive uncertainty of CMCC_CESM was 

assessed for the baseline period. Figure 24 displays the observed and simulated 

long-term mean monthly streamflows (1987–2000) based on the CMCC_CESM 

climate model and the conditional predictive uncertainty for CMCC_CESM.  
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Figure 24. The observed and simulated long-term mean monthly streamflows 
(1987–2000) based on the CMCC_CESM climate model (without post-

processing, blue line). The conditional predictive uncertainty for CMCC_CESM 
(with post-processing, black line). 

The ABC post-processor produced narrow predictive uncertainty bounds with a 

containing ratio (CR) of 91.7% (Table 6). We should bear in mind that perfect 

predictive distribution would expect that the CR would come close to the 

assumed 95% prediction level. It is evident from the results that the ABC post-

processor rectifies the over-/under estimated streamflow of the the CMCC_CESM 

climate model (without post-processing). Moreover, the predictive uncertainty 

median supplies an adequate description of the observed streamflows (black 

line). This result indicates that the ABC post-processor implicitly reduces the bias. 

Although the CMCC_CESM performance is suitable (Figure 22), the use of the 

ABC post-processor to provide the conditional predictive uncertainty, which is 

essential for decision making. When the ABC post-processor was used, NSE and 



KGE barely increased by 0.4% and by 1.7%, respectively, which suggests that 

the high performance of CMCC_CESM limits the ABC post-processor 

performance in terms of its bias correction.  

4.4.2.2 Predictive performance of ACCESS1 (mediocre category) 

Figure 25 shows the long-term mean monthly streamflow time series and the 

conditional predictive uncertainty for ACCESS1 (yellow line). As in the 

CMCC_CESM model (Subsection 4.4.2.1), the ABC post-processor significantly 

improved the predictive performance compared to the original ACCESS1 (without 

post-processing) (Figure 22). NSE increased by 50% and KGE rose by 40%. 

Conversely in probabilistic metrics terms, the CR of ACCES1 was lower than 

CMCC_CESM (Table 6). These results suggest that the quality of climate models 

influences the ABC post-processor’s predictive performance. 

 

Figure 25. The observed and simulated long-term mean monthly streamflows 
(1987–2000) based on the ACCESS1 climate model (without post-processing, 
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yellow line). The conditional predictive uncertainty for ACCESS1 (with post-
processing, black line). 

 

4.4.2.3 Predictive performance of GFDL_ESM2G (poor category) 

Figure 26 displays the long-term mean monthly streamflow time series and the 

conditional predictive uncertainty for GFDL_ESM2G (orange line). As shown in 

Figure 26, the ABC post-processor also made vague predictions, with a poorly 

predictive performance and uncertainty quantification. The CR performed the 

worst with 50% (Table 2) because GFDL_ESM2G deviated considerably from the 

observed streamflows. Consequently, the previous results (Subsection 4.4.2.2) 

confirmed that the climate model’s quality influenced the uncertainty 

quantification and predictive performance of the ABC post-processor. In contrast, 

NSE increased by as much as 77.2% and KGE rose by 40.5% (Figure 22). 



 

Figure 26. The observed and simulated long-term mean monthly streamflows 
(1987–2000) based on the GFDL_ESM2G climate model (without post-

processing, orange line). The conditional predictive uncertainty for 
GFDL_ESM2G (with post-processing, black line).  

 

4.5 Discussion and Conclusions 

We found that the ABC post-processor approach offered more reliable 

projections than 14 climate models (without post-processing) (Figure 22). Such a 

result must have been due to the post-processing method working directly to 

improve the errors in the model outputs (Ye et al., 2014). This is not a surprising 

finding because the post-processing method has proven its capacity to improve 

predictions and to eliminate systematic errors, which are inherent to hydrological 

and environmental models (Bogner et al., 2016; Woldemeskel et al., 2018; Ye et 

al., 2014).  
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The traditional climate change impact studies assume that a range of GCM-RCM 

chains properly represents the uncertainty of climate change projections. 

However, climate change projections are not in synchrony with observations 

(Maraun, 2016), so climate change projections model streamflow statistics 

instead of time series. Unfortunately, a little information is available on the 

uncertainty of streamflow statistics. To bridge this gap, this study introduces a 

coherent univariate method, called ABC post-processor, to assess the conditional 

predictive uncertainty of streamflow statistics obtained from climate change 

projections that merge statistical post-processing, approximate Bayesian 

computation and streamflow statistics. 

Unlike the results for the predictive accuracy, the reliability of the uncertainty 

band depended on climate models’ quality. Essentially, the ABC post-processor 

assumes that climate models correlate with the streamflow statistics of the 

observations. However, this assumption is not valid for climate models that 

perform poorly during the baseline period (e.g. GFDL_ESM2G, BNU_ESM, 

MIROC_ESM). This is because the ABC post-processor and many other post-

processors are pure statistical models and cannot correct the fundamental 

problems of mechanistic climate models (Maraun, 2016). In fact the ABC post-

processor produced more realistic uncertainty bands than the 14 climate models 

(without post-processing) when the climate models performed well during the 

baseline period. 

In our study, the 14 climate models (GCM/RCM) showed a systematic seasonal 

bias, with overestimation noticed for high flows and underestimation for low flows. 

One possible explanation for this is that precipitation strongly depends on the 

representation of the still unresolved convective processes (Benedict et al., 

2019). In addition, spatio-temporal and multi-variable aspects are frequently 

misrepresented by climate models (Maraun, 2016). This finding falls in line with 

the results of Dang et al., (2017) and Gao et al., (2019). As expected, the 14 



climate models (without post-processing) were more biased than the post-

processed streamflows (Figure 22). This finding coincides with the outcomes of 

Ahn and Kim (2019), who stated that multi-model climate ensembles were a 

biased information approach. It was herein proved that the ABC post-processor 

was able to improve climate change projected streamflows by reducing bias 

(Figure 22) and by producing realistic uncertainty bands (Table 6).  

Based on our results, the 14 climate models showed large differences in the 

magnitudes of the projected streamflows (Table 6). This spread can be 

associated with the selection and the parameterisation of the climate models 

(GCM/RCM). Inevitably, removing this bias is necessary to derive robust impact 

studies. Additionally, the bias of the 14 climate models suggests that the 

unweighted ensemble approach, which is an equally probable climate model, 

would be questionable for monthly streamflows. This result was confirmed by 

Knutti et al. (2019), who stated that the main problem of the unweighted 

ensemble approach, which is also called the model democracy or “one model 

one vote”, lies in treating all the models as being independent and equally 

plausible. Biondi and Todini (2018) suggested that assumptions of equal 

probability were violated as a consequence of many sources of uncertainty 

(inputs, outputs, epistemic, initial conditions, and so forth).  

This study was limited to the post-processing method for a univariate framework, 

which is one predictor (climate change model’s output). Nevertheless, the ABC 

post-processor is very flexible and can be used for more complex models. 

Climate change impact assessments involves many important sources of 

uncertainty: hydrological model, emission scenario, GCM downscaling method, 

bias correction method and internal climate variability. However, the present 

study focused only on the conditional predictive uncertainty of the streamflows 

obtained from climate models (GCM/RCM), without including the uncertainty of 

emissions or RCP scenarios.  
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Future researches will extent the ABC post-processor to handle multiple climate 

models (multivariate framework) to post-process multi-model ensembles. While 

our research focused on the predictive uncertainty of projected streamflows, 

future works will investigate the effect of pre-processing inputs (i.e. precipitation 

and temperature) and post-processing streamflows to identify the main source of 

predictive uncertainty, such as Lucatero et al., (2018) obtained for seasonal 

forecasts. Forthcoming studies will also implement the ABC post-processor in 

other catchments with different hydrological conditions to be able to draw more 

generalised conclusions. Note that the ABC post-processing method could help 

to transfer predictive uncertainty from gauged to ungauged catchments as in 

(Smith et al., 2014), namely transfer modelling error characteristics (Bourgin et 

al., 2015). At the same time, the ABC post-processor could be adapted as a 

method to constrain ensembles: see for instance, Yadav et al. (Yadav et al., 

2007), Kapangaziwiri et al. (2012), Padrón et al. (2019), and (Zhang et al., 2008). 

Finally, the present research does not consider that the 14 climate models are 

useless for assessing predictive uncertainty of streamflow statistics. Rather they 

are valuable as a first approximation, but definitely do not suffice. As pointed out 

by Maraun (2010), a model consensus did not imply reliability as deficiencies are 

common to all climate models. Knutti et al. (2019) also discussed how multi-

model spread is merely a range of across models and cannot be understood as 

an uncertainty analysis. Similarly, Nearing and Gupta (2018) advocated that the 

multi-model approach is a kind of sensitivity analysis, that is not interpreted as an 

uncertainty analysis. Biondi and Todini (2018) argued that by using only the 

ensemble address method with the input values to estimate uncertainty, it does 

not correctly quantify the predictive uncertainty, and underestimated predictions 

can be expected. In summary, we recommended using the ABC post-processor 

to complement the traditional multi-model method to assess the conditional 

predictive uncertainty of climate change projections. In other words, the ABC 



post-processor can improve climate change projected streamflows by reducing 

bias and producing more realistic uncertainty bands but only for individual 

members of the ensemble. This framework can be used to provide essential 

water and environmental resources management information, to plan and 

operate water resources systems and to support robust decisions about 

adaptation plans. 
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5.1 Concluding remarks 

The principal focus of this thesis is on improved hydrological post-processing 

methods for assessing the conditional predictive uncertainty of monthly 

streamflows. In particular, we address two main issues i) the heteroscedasticity 

problem and ii) the intractable likelihood problem. 

In chapter 2, we deal with the heteroscedasticity of variance, which means the 

prediction uncertainty increases with the magnitude of prediction variables 

(Coccia and Todini, 2011). To overcome this issue, we develop the GMM post-

processor, which is based on the Bayesian joint probability modelling approach 

and the Gaussian mixture models. The proposed post-processor is found to be 

the best suited for estimating the conditional predictive uncertainty of monthly 

streamflows, especially for dry catchments. The proposed post-processor 

delivers the sharpest predictive uncertainty without sacrificing reliability across 12 

MOPEX catchments with different hydroclimatic and physical conditions. 

Although GMM post-processor is not a parsimonious approach, we recommend 

its use, especially in dry catchments. 

In chapter 3, we develop a second post-processor to address the intractable 

likelihood problem, which means the likelihood function is unavailable in closed 

form or by numerical derivation (Robert, 2016), called ABC post-processor, 

based on summary statistics and a free-likelihood approach to estimate the 

conditional predictive uncertainty of monthly streamflows. The proposed post-

processing method exchanges the requirement of computing the likelihood 

function by the use of some sufficient summary statistics and synthetic datasets. 

We proved that the conditional predictive distribution is qualitatively similar 

produced by the exact predictive (MCMC post-processor) or the approximate 

predictive (ABC post-processor). This finding is significant because dealing with 

scarce information is a common condition in hydrological studies. Therefore, we 



recommend applying the ABC post-processor when it is cumbersome to calculate 

the likelihood function.  

Finally, in chapter 4, we applied the ABC post-processor, to assess the 

conditional predictive uncertainty of streamflow statistics obtained from climate 

change projections that merge statistical post-processing, approximate Bayesian 

computation and streamflow statistics, such as a particular case of intractable 

likelihood problem. We analysed the climate change projections (AR5 - IPCC) of 

the monthly streamflows in the upper Oria catchment (Spain). We found that the 

ABC post-processor approach: 1) offered more reliable projections than 14 

climate models (without post-processing) 2) for the best climate models during 

the baseline period produced more realistic uncertainty bands than the classical 

multi-model ensemble approach. So, we recommend using the ABC post-

processor to complement the traditional multi-model method to assess the 

conditional predictive uncertainty of climate change projections.  

Overall, this thesis is established upon the foundation that hydrological 

predictions can be more valuable when expressed in probabilistic terms of 

probability distribution function (PDF) or terms of predictive uncertainty bands. 

So, the main contribution of this research is the simple integration of process-

based models (deterministic models) and statistical post-processing for 

probabilistic hydrological modelling. In this framework, statistical post-processing 

methods are applied to convert the point predictions provided by hydrological 

models to probabilistic forecasts. This contribution develops more reliable 

hydrological predictions and adequate representation of predictive uncertainty. 

Besides, it is essential to mention that all statistical post-processors implemented 

in this thesis are available in open source; therefore, their reproducibility is 

entirely guaranteed. The analyses and visualisations have been performed in R 

Programming Language. 
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5.2 Future research lines 

There are several opportunities for further improvements in the proposed 

hydrological post-processing methods used in this thesis. The two proposed post-

processing methods are a univariate approach, which handles only one 

hydrological model outputs (predictor). So, further work is needed to extend the 

proposed post-processors to handle multiple predictors, which is a multivariate 

model approach. Besides, future comparison studies are also necessary to 

evaluate the proposed post-processors with different hydroclimatic variables (i.e., 

soil moisture, water level, precipitation, temperature, etc.) and different temporal 

scale (i.e., hourly, daily, weekly, etc.). Also, the post-processing of extreme 

events, zero flows and missing data can be a future challenge. 

The post-processing methods used in this thesis apply the Normal quantile 

transformation (NQT) to move the variables to the Normal space. Nevertheless, 

Brown and Seo (2013) and Madadgar and Moradkhani (2014) argued that any 

transformation might affect the accuracy of the estimated predictive uncertainty. 

Thus, future research should develop methods that relax the need for 

transformation of variables. Moreover, we assumed stationary in the proposed 

post-processors, but this assumption sometimes is not adequate in hydrology (Li 

et al., 2017). Consequently, new post-processing approaches are needed to 

handle non-stationary conditions.  

Finally, future research is needed to implement ABC post-processor to estimate 

the predictive uncertainty of ungauged catchments. This line of work is based on 

the fact that transferring streamflow statistics is easier than transferring the 

complete streamflow time series. 
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