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Abstract 
The increase in life expectancy and population with age higher than 50 years is 
producing a major number of detected cases of prostate cancer (PCa). For this reason, 
the resources are focused in the early diagnosis and effective treatment. In spite of 
multiple studies with histologic discriminant biomarkers, it is hard to clearly 
differentiate the low aggressiveness PCa cases from those that will progress and 
produce mortality or rather a decrease in the life expectancy. 

With the objective of improving the diagnosis, location and gradation of the malignant 
tumors, Magnetic Resonance Imaging (MRI) has come up as the most appropriate 
image acquisition technique for cancer studies, which provides a non-invasive, 
sensitive and specific diagnosis, based on morphological and functional (blood 
perfusion and water diffusion) sequences. The different characteristics and parameters 
extracted from these sequences, known as imaging biomarkers, can evaluate the 
different processes associated to tumor development, like pharmacokinetic modeling 
for angiogenesis assessment (perfusion) or mono- and bi-exponential signal decay 
modeling for cellularization (diffusion). 

Normally, these imaging biomarkers are analyzed in a “univariate” way, without taking 
advantage of the internal correlation structures among them. One way to improve this 
analysis is by applying Multivariate Image Analysis (MIA) statistical techniques, 
obtaining simplified (latent) structures that help to understand the relation between 
parameters (variables) and the inner physiological processes, moreover reducing the 
uncertainty in the estimation of the biomarkers. 

In this thesis, new imaging biomarkers are developed for perfusion and diffusion by 
applying MIA tools like Multivariate Curve Resolution Alternating Least Squares 
(MCR-ALS), obtaining parameters with direct clinical interpretation. Partial Least 
Squares (PLS) based methods are then used for studying the classification capability of 
these biomarkers. First, perfusion imaging biomarkers have been tested for tumor 
detection (control vs lesion). Then, diffusion + perfusion have been combined to study 
tumor aggressiveness by applying PLS-multiblock methods (SMB-PLS). 

The results showed that MCR-based perfusion biomarkers performed better than state-
of-the-art pharmacokinetic parameters for lesion differentiation. Regarding the 
assessment of tumor aggressiveness, the combination of diffusion-based imaging 
biomarkers (using both the parametric models and MCR) and normalized T2-weighted 
measurements provided the best discriminating outcome, while perfusion was not 
needed as it did not supply additional information. 

In conclusion, MIA can be applied to morphologic and functional MRI to improve the 
diagnosis and aggressiveness assessment of prostate tumors by obtaining new 
quantitative parameters and combining them with state-of-the-art imaging biomarkers. 
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Resumen 
El aumento de la esperanza de vida en la población con edad por encima de 50 años 
está generando un mayor número de casos detectados de cáncer de próstata (CaP). Por 
este motivo, los recursos se destinan al diagnóstico en etapas tempranas y al 
tratamiento efectivo. A pesar de la multitud de estudios basados en biomarcadores y 
discriminación histológica, es difícil diferenciar con efectividad los casos de CaP con 
baja agresividad de aquellos que progresarán y acabarán produciendo mortalidad o una 
disminución en la esperanza de vida del paciente. Con el objetivo de mejorar el 
diagnostico, localización y gradación de los tumores malignos, las técnicas de imagen 
por Resonancia Magnética (MRI) son las más adecuadas para el estudio del cáncer, 
proporcionando métodos de diagnóstico no-invasivos, sensibles y específicos, basados 
en secuencias morfológicas (T2w) y funcionales (perfusión de la sangre y difusión del 
agua). Las diferentes características y parámetros extraídos de estas secuencias, 
conocidos como biomarcadores de imagen, pueden evaluar las diferencias asociadas al 
desarrollo de los procesos tumorales, como los modelos farmacocinéticos para estudiar 
angiogénesis (perfusión) y los modelos mono- y bi-exponenciales para estudiar la caída 
de la señal en difusión con el objetivo de estudiar la celularización. Normalmente, estos 
biomarcadores de imagen se analizan de forma “univariante”, sin aprovechar la 
información de las estructuras de correlación interna que existen entre ellos. Una 
manera de mejorar este análisis es mediante la aplicación de las técnicas estadísticas 
que ofrece el Análisis Multivariante de Imágenes (MIA), obteniendo estructuras 
(latentes) simplificadas que ayudan a entender la relación entre los parámetros 
(variables) y sus propios procesos fisiológicos, además de reducir la incertidumbre en 
la estimación de los biomarcadores. En esta tesis, se han desarrollado nuevos 
biomarcadores de imagen para perfusión y difusión con la aplicación de alguna de las 
herramientas de MIA como la Resolución Multivariante de Curvas con Mínimos 
Cuadrados Alternos (MCR-ALS), obteniendo parámetros que tienen interpretación 
clínica directa. A continuación, los métodos basados en mínimos cuadrados parciales 
(PLS) se aplicaron para estudiar la capacidad de clasificación de estos biomarcadores. 
En primer lugar, los biomarcadores de perfusión se utilizaron para la detección de 
tumores (control vs lesión). Posteriormente, la combinación de perfusión + difusión + 
T2 se empleó para estudiar agresividad tumoral con la aplicación de métodos PLS 
multibloque, en concreto (secuencial) SMB-PLS. Los resultados mostrados indican que 
los biomarcadores de perfusión obtenidos mediante MCR son mejores que los 
parámetros farmacocinéticos en la diferenciación de la lesión. Con lo que respecta al 
estudio de la agresividad tumoral, la combinación de los biomarcadores de difusión 
(empleando ambos métodos: modelos paramétricos y MCR) y los valores de T2w 
normalizados proporcionaron los mejores resultados. 

En conclusión, MIA se puede aplicar a las secuencias morfológicas y funcionales de 
resonancia magnética para mejorar el diagnóstico y el estudio de la agresividad de los 
tumores en próstata. Obteniendo nuevos parámetros cuantitativos y combinándolos con 
los biomarcadores más ampliamente utilizados en el ambiente clínico. 
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Resum 
El increment de la esperança de vida en la població per damunt dels 50 anys està 
generant un major nombre de casos detectats de càncer de pròstata (CaP). Per aquest 
motiu, els recursos es destinen al diagnòstic en etapes primerenques i al tractament 
efectiu. Tot i la multitud de estudis basats en biomarcadors y discriminació histològica, 
es difícil diferenciar amb efectivitat els casos de CaP que tenen baixa agressivitat dels 
que progressaran y acabaran produint mortalitat o una disminució en la esperança de 
vida del pacient. Amb el objectiu de millorar el diagnòstic, localització y gradació dels 
tumors malignes, les tècniques de imatge per Ressonància Magnètica (MRI) son els 
mètodes més adequats per al estudi del càncer, proporcionant metodologies de 
diagnòstic no-invasius, sensibles y específiques basades en seqüències morfològiques 
(T2w) y funcionals (perfusió de la sang y difusió del aigua). Les diferents 
característiques i paràmetres extrets de aquestes seqüències, coneguts com 
biomarcadors d’imatge, poden avaluar las diferències associades al desenvolupament 
dels processos tumorals. Primer, amb els models farmacocinétics per a estudiar 
angiogènesis (perfusió) y segon, amb els models mono- i bi-exponencials per a estudiar 
la caiguda de la senyal en difusió amb el objectiu de estudiar la cel·lularització. 
Normalment, aquests biomarcadors d’imatge s’analitzen de forma “univariant”, sense 
aprofitar la informació de las estructures de correlació interna que existeixen entre ells. 
Una forma de millorar aquest anàlisis es mitjançant la aplicació de las tècniques 
estadístiques aportades pel Anàlisis Multivariant de Imatges (MIA), obtenint 
estructures (latents) simplificades què ajuden a entendre la relació entre els paràmetres 
(variables) i els seus processos fisiològics, a més de reduir la incertesa en la estimació 
dels biomarcadors. En aquesta tesis, s’han desenvolupat nous biomarcadors d’imatge 
per a perfusió i difusió amb la aplicació de alguna de las ferramentes de MIA com la 
Resolució Multivariant de Corbes i Mínims Quadrats Alterns (MCR-ALS), obtenint 
paràmetres què tenen interpretació clínica directa. A continuació, els mètodes basats en 
mínims quadrats parcials (PLS) s’han aplicat per a estudiar la capacitat de classificació 
d’aquests biomarcadors. En primer lloc, els biomarcadors de perfusió s’han utilitzat per 
a la detecció de tumors (control contra lesió). Posteriorment, la combinació de perfusió 
+ difusió + T2 s’ha utilitzat per a estudiar agressivitat tumoral amb la aplicació de 
mètodes PLS multi-bloc, en concret (seqüencial) SMB-PLS. Els resultats mostren què 
els biomarcadors de perfusió obtinguts mitjançant MCR són millors què els paràmetres 
farmacocinètics en la diferenciació de la lesió. En lo què es refereix al estudi de la 
agressivitat tumoral, la combinació dels biomarcadors de difusió (utilitzant els dos 
mètodes: models paramètrics i MCR) i els valors de T2w normalitzats proporcionaren 
els millors resultats. 

En conclusió, MIA es pot aplicar a les seqüències morfològiques i funcionals de 
ressonància magnètica per a millorar el diagnòstic i el estudi de l’agressivitat dels 
tumors en pròstata. Obtenint nous paràmetres quantitatius y combinant-los amb els 
biomarcadors més utilitzats en el ambient clínic. 
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Chapter 1  
Hypothesis and 

 Objectives 
 

1.1. Hypothesis 
The combined analysis of magnetic resonance (MR) imaging biomarkers obtained 
from clinical models and statistical latent variable based methods can improve the 
detection and gradation of prostate tumors located in the peripheral zone. 

 

1.2. Objectives 
 

1.2.1. First objectives 
§ To evaluate the applicability of multivariate curve resolution (MCR) to 

dynamic contrast-enhanced MR imaging (DCE-MRI) of the prostate and 
to compare the extracted dynamic components with the quantitative 
parameters (i.e. biomarkers) estimated from state-of-the-art 
pharmacokinetic models (1st and 2nd generation).  
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§ To explore the capability of MCR methods to model the different 
behaviors associated to the water diffusion process in diffusion weighted 
MRI (DW-MRI), helping specialists to detect and characterize prostate 
tumors. 

§ To check the adequacy of the different theoretical models commonly 
applied in clinical practice, by sequentially incorporating constraints in the 
MCR algorithm using prior knowledge about the perfusion and diffusion 
processes. 

§ To provide new imaging biomarkers that may complement those 
commonly used for clinical diagnosis (DCE-MRI and DW-MRI). 

 

1.2.2. Second objectives 
§ To study the potential of imaging biomarkers for tumor detection. 

§ To make a model comparison between different imaging perfusion 
biomarkers, selecting the most relevant ones in terms of tumor detection 
(minimizing false negatives and false positives rates), thus improving the 
tissue classification.  

§ To combine the different functional studied sequences and take advantage 
of all the sources of information together for improving the 
characterization of tumors in prostate and differentiate grades of 
aggressiveness (Gleason scores). 
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Chapter 2  
Introduction 

 

2.1. Prostate cancer (PCa) 
 

2.1.1. General aspects and risk factors 
Prostate Cancer (PCa) is nowadays the most common malignant neoplasm for men 
over 50 years. In Europe, the number of diagnosed cases is continuously increasing 
with a 7% rate per year since the 90’s. PCa is also the second one in terms of mortality 
(only behind lung cancer) [1]. 

While it is true that PCa mortality rates are falling dramatically, the number of detected 
cases is increasing, due to the higher life expectancy and population aging, so the 
efforts are focusing on its early diagnosis and effective treatment. [2]. Thus, most of 
the cases are diagnosed in the early stages of the disease, when the tumor is still in the 
gland, and the possibilities of salvation are significantly increasing. However, the focus 
in early diagnosis also causes the detection of benign or less aggressive tumors with 
more silent behavior, making the differentiation way more complicated. 

Regarding the risk factors, evidence associates PCa to a series of factors, involving, 
among others, age (risk augmented in patients older than 50 years old), race/ethnicity 
(more risk in African Americans) and the family history (genetic factors) [3]. 
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2.1.2. Anatomy and histology 
Gil Vernet introduced the anatomic concept we have today in 1953 with his work 
“Biology and pathology in prostate” where the topographic anatomy of the prostate 
was described [4]. 

Years later, in 1968, John McNeal, an expert on prostate structure from the University 
of Stanford, published his first description about the topographic zonal anatomy. In his 
different works, McNeal described the anatomy from another point of view, 
establishing the most clinic-pathologic meaningful zonal distribution of the prostate, 
which is considered the most accurate nowadays (fig. 1). 

 

 
Source: Verma et al. [5]. 

Figure 1. Schematic shown in sagittal view of prostate illustrates normal zonal description of 
prostatic anatomy. 

 

According to McNeal’s works [6,7], the prostate is not considered a homogenous gland 
because three different glandular regions compose it: peripheral zone (PZ), central zone 
(CZ) and transition zone (TZ). There exists another non-glandular region that should be 
taken into consideration, composed by fibromuscular tissue (stroma), known as 
anterior zone (AZ). Besides, the urethra is considered as the reference point for the 
description of the prostatic region by dividing the organ into the posterior region, 
mainly glandular, and the anterior region, mainly fibromuscular. Thus, the prostate can 
be described anatomically as: 
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§ Peripheral zone (PZ) (70% of the prostatic volume). Corresponds to the 
sub-capsular portion of the posterior aspect of the prostate gland. 

§ Central zone (CZ) (20-25% of the prostate volume). Corresponds to the 
base of the prostate surrounding the distal urethra. It contains the 
ejaculatory ducts. 

§ Transition zone (TZ) (5-10% of the prostate volume). Wraps up the 
urethra. 

§ Anterior zone (AZ). It is composed by fibromuscular tissue without 
glandular structures. It covers the anterior and anterolateral surfaces of the 
glandular prostate. 

In the case of developing benign prostate hyperplasia (BPH), these percentages may 
vary, being the TZ the region that achieves the larger prostatic volume [8]. 

 

Histology: Zonal distribution of the prostatic pathologies. 

Mainly, two different tissues compose the prostate: the glandular tissue (epithelial 
component), and the fibromuscular tissue (stromal component), which is located inside 
the glandular tissue. 

According to the prostate zones defined by McNeal, the parenchyma presents some 
histological singularities. The regions of the prostate differ in their glandular 
architecture as much as in their epithelial components. The most compact and abundant 
stroma is located on the TZ, less on the PZ, and even more reduced but compacted in 
the CZ. The AZ is composed by muscles and fibroconnective tissue, which is 
continued with the fibers of the detrusor muscle in the anterior face of the bladder [9]. 
This histology is truly relevant in prostate cancer studies because the illnesses are 
different depending on the region where they were developed [7]. For example, PCa is 
more frequently originated in the PZ and the prostate benign hyperplasia is more 
susceptible to appear in the TZ. The PCa studies are normally focused on analyzing the 
PZ, since approximately 70-75% of the malignant neoplasias are found in this zone and 
only 20-30% originated in the TZ [10]. The malignant neoplasias originated in the CZ 
are infrequent (5-10%) and are normally secondary, generated due to the invasion by 
the neighborhood of another neoplasia [11]. These are the principal reasons why this 
work is focused on studying the PCa and its aggressiveness in the PZ. 

 

Histology: Gleason gradation system 

From a histological point of view, the adenocarcinoma is the most frequently type of 
cancer, as it is represented by the 95% of all the prostate tumors. It is originated in the 
glandular component of the prostate and it has a well-known pattern that presents its 
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own characteristics and a particular gradation. Other less frequent types of carcinoma 
are the squamous cell or transitional, the sarcomas and the neuroendocrine tumors [12]. 

The use of the anatomopathological gradation system described by Donald Gleason in 
1966 has been normalized in the last years, mainly because of its recommendation after 
one conference supported by the WHO [13]. This system assigns a score based on 
morphological criteria of the tissue architecture that reflects the glandular 
differentiation grade. The gradation is established from 1 (well-differentiated tumor) to 
5 (undifferentiated). As a consequence of the internal heterogeneity on the architecture 
of these tumors, the Gleason score is obtained as a sum of the values assigned to the 
two more representative adenocarcinoma cellular patterns in the tissue, the primary 
pattern and the secondary pattern according to prevalence. Therefore, the final result is 
included in the interval (2-10) i.e. Gleason1 + Gleason2. 

In 2005, the International Society of Urological Pathology (ISUP) carried out the first 
revision of the classification. In this meeting, the principal recommendations were not 
to use the score of 1 and 2 in the biopsy. This way, all the biopsies should be scored at 
least with 3+3, that is the new definition of the “3-pattern”. Another recommendation 
was the inclusion in the biopsy report of any higher-grade finding, even if it represents 
only the 5% of the total tumoral volume [14]. As a consequence, the cases nowadays 
classified as Gleason 6 are the less aggressive ones, fitting better the definition of 
clinically insignificant carcinomas [15]. 

The value of the gradation according to the Gleason system is essential for the 
classification of the patients into different risk groups [16], presenting a clear 
prognostic meaning. Based on this, the Gleason grade has a big relevance on the 
survival of the PCa patients. This way, the death risk after 15 years (specific cancer 
mortality) is very high in patients with Gleason between 7 and 10 (76-93%), moderate 
in Gleason 6 patients (44%) and low in Gleason lower than 6 (8-14%) [17]. Also, 
according to the tumoral volume, there exists an important relation with the prognostic 
of the lesion, considering that the tumors with higher volume than 5 cm3 present worse 
stage, higher Gleason grade, higher number of positive surgical margins and higher 
biochemical relapse [18]. 

 

Histology: multifocality 

In most of the cases, the prostate carcinoma is a multifocal disease when it is analyzed 
by radical prostatectomy (RP). The appearance is estimated in the bibliography 
between 57-91% of the cases [19, 20]. As a consequence of this multifocality, the 
concept of dominant tumoral lesion (index lesion) has been implemented, defined as 
the most prevalent lesion according to the tumoral total volume of the prostate and the 
Gleason grade, which is related to the biological aggressiveness. Once the index lesion 
is defined, the other ones are considered secondary lesions, and may not represent any 
life-threatening risk for the patient [21]. 
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2.1.3. Diagnosis 
Classic strategies when dealing with prostate cancer 

Today, early diagnosis of PCa is still done after the joint assessment of digital rectal 
examination (DRE) and the prostate-specific antigen (PSA). During many years, the 
detection of the prostate carcinoma and its therapeutic guiding was fundamentally 
based on these two parameters and afterwards, the biopsy [22]. However, it is 
established that these factors and/or techniques have important limitations. 

§ The digital rectal examination (DRE) is able to detect posterior and 
lateral tumors in the prostate, theoretically when its diameter is higher 
than 0,2 cm, but it has several difficulties with lesions located at deep or 
anterior regions. The DRE has low positive predictive value (PPV) [23]. 
Also, it presents bias due to repeatability and reproducibility variability as 
it has important inter and intraexaminer variation [24]. 

§ The PSA is a whey protein. It is important to highlight that this is not a 
cancer specific protein but one from the prostatic tissue. Therefore, it 
could go up even in benign pathologies such as prostatitis and BPH. 

Traditionally, the cut point for defining the test as positive has been 4 
ng/ml (based on the classic works of Cooner and Catalona in 1990 and 
1991). This value is also established as a reference point from which the 
biopsy should be done, despite the lack of evidence of considering this 
point as the optimal one [25]. It is also very relevant to highlight that a 
serum PSA lower than 4 ng/ml does not imply the absence of the illness. 
To prove this, numerous publications have shown that up to 32% of 
patients with positive biopsy have lower than 4 ng/ml levels of PSA and 
79% of men with higher than 4,1 ng/ml levels of PSA have not PCa [26]. 
Thus, the principal problem of PSA is its lack of specificity. 

§ The prostate biopsy (PB) is applied to patients in whom the presence of a 
carcinoma is suspected. This is essential, not only from the point of view 
of the confirmation of the diagnosis, but also from the prognostic 
perspective to reveal, among others, the grade of tumor differentiation 
(Gleason) [16, 27]. 

Nowadays, the most applied biopsy method is the systematic transrectal biopsy guided 
by echography, obtaining at least 12 cylinders of prostate tissue following a fan 
sampling pattern [28]. However, it has been demonstrated that sometimes PB produces 
both infrastaging and overstaging of the Gleason grade in comparison with the value 
evidenced later on pieces obtained by radical prostatectomy (RP) [29, 30]. This 
discrepancy has been established around 30%, which is traduced in unintentionally 
wrong applied surgeries [31, 32]. 
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The main limitations of PB are: 

§ It is not well diagnosed in 20-30% of the clinically significant tumors [33], 
especially in those located on difficult access zones for biopsy as the apex 
or the anterior zone (AZ). It must be noted that AZ tumors represent the 
25-33% of the PCa in the studies on prostatectomy pieces [10]. 

§ High risk of false negatives (FN): 39-52%. Sometimes it is necessary to 
biopsy the patient again, which produces discomfort for the patient and an 
increase of the morbidity [33, 34]. 

§ Often, the PCa is diagnosed on patients with previous negative biopsy and 
perseverance in the increase of the PSA values [35]. 

§ An important number of non-clinically significant PCa are diagnosed, 
which leads to overtreatment [36]. 

There exist another better schemes for PB such as the transperineal biopsy [37]. But, 
despite the limitations and inconveniences, the systemic endorectal is still nowadays 
the most widely applied technique for prostate biopsy guided by echography with at 
least 12 cylinders [28]. The advantages of this technique are basically its lower 
procedure time, lower cost, the application of local anesthesia, the use of standard 
equipment and easy-learning operation. 

The development of new techniques like radical prostatectomy and radiation therapy 
are the current curative treatment options for localized PCa. But it also causes 
secondary effects like non-negligible urinary, sexual, and intestinal morbidity. As a 
result, the specialists face the dilemma of treating PCa’s that would have never caused 
death, with the added consequence of worsening the quality of life of these patients. 
Focal therapy is an alternative between active surveillance (stressful for patients) and 
radical therapy (with their described side effects). This way, by effectively acting on 
the tumor, the rest of the gland is preserved and the side effects are reduced. Its 
effectiveness requires accurate information on the location and spread of PCa within 
the gland (PCa intraglandular map) and the degree of aggressiveness (Gleason). 
Conventional prostate exams like DRE provide limited information on the PCa 
intraglandular map. 

 

New strategies when dealing with prostate cancer: imaging techniques 

In order to overcome the well-known limitations of the classic invasive techniques 
based on transrectal biopsy, imaging techniques come up as non-invasive alternatives 
for detecting and characterizing prostate tumors. Traditionally, imaging techniques 
have played a minor role in analyzing the PCa. Usually, the only relevant techniques 
have been the transrectal echography as an image guide of the prostatic biopsy, and the 
computerized tomography (CT) for general thoracic and abdominopelvic staging, but 
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with low precision for local staging. Also, the classical magnetic resonance (MR) 
sequences like T1- and T2-weighted have not been relevant either in the detection of 
PCa [38]. Therefore, results from conventional MRI T2 do not usually provide enough 
information for proper guiding of the radiation therapy [39]. 

Therefore, it is necessary to develop new procedures to accurately detect and locate the 
tumors [40]. And for this, it is mandatory to understand the nature and behavior of the 
tumoral processes. Fortunately, in the last decades, the role of MR in PCa has been 
empowered considerably, especially with the development of surface coils, high-
resolution imaging and functional/dynamic techniques. These improvements have 
allowed detecting and locating the tumor with higher diagnostic precision, as well as a 
better biological characterization [41]. In recent years, the multiparametric MRI study 
of the prostate has become the image standard to detect tumors, assess extension and 
evaluate recurrence, as the European Society of Uroradiology (ESUR) proposed the 
Prostate Imaging Data and Reporting Structure (PI-RADS) [42] (see chapter 2.5). This 
way, MR and more precisely the perfusion and diffusion techniques, which are the 
ones selected for the study of the PCa in the present thesis, allow the determination of 
certain parameters known as imaging biomarkers. An imaging biomarker can be 
defined as a feature extracted from medical images, which can be measured objectively 
(gives quantitative information) and behaves as an indicator of a normal biological 
process, a disease or a response to a therapeutic intervention [43]. This way, they can 
be used for determining biological properties related to the tumor growth. 

 

2.2. Magnetic resonance imaging (MRI) 
MRI is a non-invasive imaging technology that produces three-dimensional detailed 
anatomical images without the use of damaging radiation. It is used for disease 
detection, diagnosis, and treatment monitoring. It is based on sophisticated technology 
that excites and detects the change in the direction of the rotational axis of hydrogen 
protons found in the water that makes up living tissues. 

MRI employs powerful magnets, which produce a strong magnetic field that forces 
protons in the body to align with that field. When a radiofrequency current is then 
pulsed through the patient, the protons are stimulated (excitation), and spin out of 
equilibrium, straining against the pull of the magnetic field. When the radiofrequency 
field is turned off, the MRI sensors are able to detect the energy released as the protons 
realign with the magnetic field (relaxation). Both during excitation and relaxation, 
magnetic gradients are applied in order to locate where the relaxation signal comes 
from, so that this signal can be spatially codified using small variations in the magnetic 
field value. This signal location is essential to reconstruct images properly.  

The time it takes for the protons to relax, as well as the amount of energy released, 
changes depending on the environment and the chemical nature of the molecules. For 
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each biological tissue, this relaxation process is characterized by two times: T1 
(longitudinal relaxation time) and T2 (transversal relaxation time). The differences in 
T1 and T2 are the basis of MRI contrast, so that in the final images the radiologists are 
able to tell the difference between various types of tissues based on these magnetic 
properties [44]. 

To obtain an MRI image, a patient is placed inside the magnet and must remain still 
during the imaging process in order not to blur the image. A typical MRI study 
comprises different types of sequences and weightings. Each sequence has a different 
acquisition configuration, with variations in the intensity and duration of both the 
radiofrequency pulses and the field gradients, so that each time a set of differences in 
the tissue magnetic properties are weighted, releasing images with different contrasts 
(i.e. T1-weighted, T2-weighted, etc.).  

Sequences are often separated in morphologic (high spatial resolution, with excellent 
detail of anatomic properties) and functional (less spatial resolution and high temporal 
resolution, with good detail of dynamic physiological process). 

 

2.2.1. Classical morphologic sequences. T1- and T2-weighted sequences 
The most popular morphologic sequences, based on spin echo (SE) or fast spin echo 
(FSE) acquisitions, are the T1- and T2-weighted. 

In the prostate, the T1-weighted sequence is normally performed in an axial plane from 
the aortic bifurcation to the pubis symphysis. In this sequence, the prostate shows 
homogeneous middle signal intensity, which cannot discriminate the zonal anatomy 
(fig. 2). T1 is mainly used for studying pelvic adenopathies, looking for metastasis in 
the osseous pelvis and detecting possible hemorrhagic changes after biopsy that may 
hinder the interpretation of the rest of MR sequences [5]. 

The T2-weighted sequence is normally performed in the three spatial planes due to its 
higher tissue contrast resolution, containing the prostate and the seminal vesicles. It 
allows differentiating the zonal anatomy of the prostate: the PZ is normally shown 
homogenously hyperintense and separated from the TZ, which is shown heterogeneous 
and hypointense (fig. 2). However, the CZ and the TZ cannot be distinguished between 
them. Normally, T2 is only used for an initial exploration of the tumor region and for 
locoregional staging. 
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Source: De Visscher P. [45]. 

Figure 2. Axial plane of the prostatic gland. A) T1-weighted sequence, showing constant 
medium signal intensity, cannot discriminate the zonal anatomy. B) T2-weighted sequence 

allows discriminating the zonal anatomy in two regions, the PZ (homogeneously hyperintense) 
and the TZ (heterogeneously hypointense). 

 

Zonal anatomy in the T2 sequence 

MR is considered the best image technique for the study of the prostatic anatomy due 
to its higher spatial resolution and better contrast of the soft tissues [12]. It is crucial to 
know the zonal anatomy in order to interpret the MR studies correctly. The 
characteristics of the MR for each region is described hereafter: 

§ The PZ presents high signal intensity (due to its composition of ductal and 
acinars elements with liquid inside) [5]. This hyperintense signal is higher 
or equal to the signal of the periprostatic fat. 

§ The CZ presents clearly hypointense signal (due to its major composition 
of fibromuscular compact stroma). 

§ The TZ presents hypointense signal (due to its composition of abundant 
and compact fibromuscular stroma with disperse glandular elements) and 
cannot be differentiated from the CZ according to its visual appearance. 
With the presence of BPH it presents an heterogeneous nodular aspect due 
to the combination of the normal fibroses component of the prostate, 
which is hypointense in T2, with the adenomatoses nodes of the BPH, that 
are hyperintense [46]. The shape of the TZ may vary a lot at the adult age 
regarding to its size and signal heterogeneity, and sometimes can reach 
huge dimensions, squeezing the PZ. 



Application of multivariate image analysis to prostate cancer for improving the comprehension of the 
related physiological phenomena and the development and validation of new imaging biomarkers  

 

26 

§ The AZ or fibromuscular stroma presents clearly hypointensity as it is 
composed of fibromuscular tissue. It consists on a band that covers the 
anterolateral region of the prostate. 

The similar signal intensities between the CZ and the TZ make them indistinguishable 
in MR morphologic imaging. For this reason, they are considered the same region and 
it is called sometimes “central gland”. However, with the presence of BPH, different 
signal intensity distribution on the TZ can be observed and differentiated from the CZ 
signal intensity. Also, it should be highlighted that the term “central gland” referring 
the combination of the CZ and TZ is just an approximation but it is not a good 
representation of the zonal anatomy [47, 48]. 

 

Prostate cancer initial exploration with T2 weighted sequences  

In T2-weighted images, the prostate tumor is identified on the PZ as an area or 
hypointense node, indicating shorter T2 relaxation time for the tumor than the normal 
gland, in the hyperintense region of the PZ. However, these images have low 
diagnostic precision with respect to malignant tumors because the findings in MR can 
be confused with other non-neoplasic entities like prostatitis, glandular fibrosis, 
postbiopsy hemorrhage and the post-treatment changes (radiotherapy and 
hormonotherapy) [49]. Also, the T2 utility for PCa diagnosis is not exempt of errors 
due to its variation in sensibility and specificity with values around 69-90% according 
to the literature, and depends on the MR selected criteria and the radiologist experience 
[38]. Besides, on the TZ, the limitation of this sequence is higher due to the difficulties 
in the delimitation with precision and in a prospective way of the hypointense zones 
related to the cancer, in comparison to the normal or hypointense hyperplasic tissue. In 
this type of sequence, the PCa may be assumed as hypointense nodes in T2 with worse 
defined limits than the hyperplasic nodes, or maybe as hypointense areas of lenticular 
morphology [50]. 

 

2.2.2. Functional MRI sequences 
Tumors are complex biologic models with intrinsic physiologic characteristics, which 
cannot be studied objectively using the classical MR sequences [51]. The new 
development of the functional sequences has allowed studying the physiological and 
tumor characteristics in a non-invasive way, contributing with additional information 
for anatomy understanding. This new information is related to two of the main 
biological indicators of tumor processes, known as vascularization and cellularization. 
When a group of growing cells presents abnormally high demands of oxygen and 
nutrients, the tissue responds creating new vessels (angiogenesis) or developing 
existing ones (neovascularization). On the other hand, the process associated with the 
increase in cellular density that leads to cell agglomeration in the tissue is called 
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cellularization. The combination of both processes is what usually determines the 
presence of an early tumor as first steps in oncogenesis. 

In order to improve diagnosis, tracking and tracing of these malignant tumor processes, 
new MRI techniques have been developed to acquire complementary information to 
that obtained from conventional MRI, which are not able to discriminate the early 
tumor regions with precision. Dynamic contrast enhanced-magnetic resonance imaging 
(DCE-MRI) and diffusion weighted-magnetic resonance imaging (DW-MRI) are the 
MR functional imaging techniques studied in this thesis [52, 53]. 

 

2.3. Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) 

When studying perfusion, angiogenesis and neovascularization can seldom occur in 
healthy subjects, but they are strongly present in pathological conditions such as 
tumors. Thus, the formation of these new and tortuous vessels produces an increase in 
the blood perfusion. In MRI, these processes can be studied with DCE-MRI [54].  

 

2.3.1. The DCE-MRI acquisition 
In this technique, an exogenous Gadolinium- (Gd) based contrast media is 
administered intravenously. It diffuses from the capillary network into the 
extravascular extracellular space (EES), returns to the vascular system and is 
progressively filtered by the kidneys. The relatively small molecular size of these 
agents (500−1000 Da) allows them to pass through the vascular endothelium via 
passive diffusion into the EES of the tissue, establishing a dynamic relationship 
between the image signal intensity changes and the amount of contrast media that 
passes and diffuses into a certain tissue. 

This sequence requires high temporal resolution but maintaining the spatial resolution 
in order to detect small variations inside the tissue. This way, the acquisition is 
normally taken during approximately 5-6 minutes at different evenly- or unevenly-
distributed time points. In this thesis, the sequence is acquired during 5.5 minutes at 47 
different unevenly-spaced time points. 

The capability to analyze tumor angiogenesis in a quantitative and reproducible way 
from DCE-MR images has important applications to depict and gradate tumors and 
also to evaluate the therapeutic response early after treatment onset [55, 56]. 
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2.3.2. DCE-MRI data 
The DCE-MRI acquisition sequence is performed along the volume of the studied 
organ. Usually, images are acquired at spatial planes corresponding to different slices 
of the human body (the number of slices depends on the studied organ). The dynamic 
spectra (s) are then obtained pixel-by-pixel at the considered time points and can be 
represented in a signal vs time plot (fig. 3). 

 

 
Figure 3. DCE-MRI dynamic spectra plot (signal intensity vs time). The sequence is acquired at 

47 time points (expressed in minutes) during 5.5 minutes. 

 

From these dynamics, perfusion models are created, which provide relevant 
quantitative and reproducible information for characterizing tumors or other tissues 
with pathological changes associated with some microvascular components, by 
studying the intensity versus time curves (known as enhancement or uptake curve) 
associated to each pixel of the image. Out of the different approaches proposed to 
achieve this evaluation, mathematical pharmacokinetic models have become the most 
popular way due to their ability to provide clinically-oriented biomarkers in tumor 
analysis [57-59].  
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2.3.3. Pharmacokinetic modeling: theory 
Pharmacokinetic modeling of DCE-MR images is based on the application of a 
mathematical analysis to the enhancement curves on a pixel-by-pixel basis. In these 
models, compartmental systems have been used to describe tissue dynamics, 
considering the intravascular (vessels: VS) and the extracellular extravascular (EES) 
spaces as main compartments in terms of mass exchange. Four different models are 
considered, divided into two groups according to its complexity. On one hand, one 
model belonging to the so-called “classical” or “first-generation” models: the Tofts 
model (or its extended version, i.e. Tofts extended model), and on the other hand the 
models belonging to the so-called “second-generation” models, the 2-compartment 
exchange model (2CXM), the adiabatic approximation to tissue homogeneity (AATH) 
and the distributed parameter (DP) [57, 58].  

 

First generation models 

Tofts et al. [57] firstly introduced a one-compartment model as a generalization of the 
Kety model. The mass balance equation can be defined as follows. 

 
!"#(#)
!#

= '#()*+	"-./(#) − 123"#(#)  Equation 2.1 

 

Where Ktrans (min-1) is the volume transfer constant; kep (min-1) is the washout constant; 
CAIF (mg/ml) is the contrast concentration of the arterial input function (AIF), which 
describes the contrast agent input to the tissue of interest; and Ct (mg/ml) is the contrast 
concentration in the EES. 

The extended version of the Toft’s model consider two different compartments, adding 
the vascular space (vp) to the contrast exchange: 

 
!"#(#)
!#

= 43 · "3(#) + '#()*+	"-./(#) − 123"#(#)  Equation 2.2 

 

Where vp is the normalized volume of the vascular space (ml/ml) and Cp (mg/ml) is the 
contrast concentration in the plasma space. A scheme is shown in figure 4. 

This model assumes that the effect of the vascular tracer can be ignored. Ktrans 
represents the total contrast transference from the plasma space to the EES, whereas kep 
is associated with the washout of the contrast from the EES to the plasma. In this case, 
the tracer transport is modelled through the EES compartment with normalized volume 
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(ve=Ktrans/kep). This model is known as “first-generation” pharmacokinetic model and 
has been widely applied in oncology for perfusion analysis till the present days. 

 

 
Figure 4. First-generation model scheme, (Toft’s extended model, the Toft’s simple model does 
not consider the vascular (vp) space). It shows the mechanism of contrast exchange between the 
EES (ve) and the vascular space (vp). Ktrans is the parameter that represents the exchange from 
the VS to the EES (contrast captation) and kep represents the exchange from the EES to the VS 

(wash-out). 

 

Second generation models 

However, the development and evolution of MRI hardware has provided an 
improvement in image quality and pixel resolution that exposes the limitations of the 
classical models. This allows developing new approaches designed to overcome the 
limitations of ‘classical’ models to obtain additional and more accurate information 
about the tissue. The most important models are the 2CXM, AATH and the DP model 
[58]. These new approaches are known as “second-generation” models and a scheme is 
shown in figure 5. 

The main advantage of second-generation models is the possibility of measuring the 
plasma flow (Fp) separately from the capillary permeability-surface area product (PS) 
rather than a single parameter (Ktrans), whose physiological meaning represents a 
combination of Fp and PS. The separation of both phenomena allows a better 
understanding of perfusion behaviours in tumors. 
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Second-generation models are bicompartmental. In this way, the EES (ve) and plasma 
space (vp) can be used undivided or be further divided into infinitesimal 
subcompartments according to the model scheme (fig. 5). The notation is defined as 
follows: vp (ml/ml) is the normalized volume of the plasma space; ve (ml/ml) is the 
normalized volume of the EES; Cp (mg/ml) is the contrast concentration in the plasma 
space; Ce (mg/ml) is the contrast concentration in the EES; Fp (min-1) is the plasma 
flow; PS (min-1) is the permeability-surface area product; E (%) is the extraction 
fraction; and L (mm) is the distance between the first and last subspace. 

 

 
Figure 5. Second-generation models scheme, (left to right: two-compartment exchange model, 
2CXM; adiabatic approximation of tissue-homogeneity, AATH; distributed-parameter, DP) 

sorted in terms of complexity attending to the number of compartmental divisions. 

 

In the same way as the Tofts model, mass balances can be applied to the different 
compartments for tissue modelling, depending on the corresponding complexity. 
2CXM is the simplest of the second-generation models, where both spaces are 
undivided. 
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42
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(#) = 78 · "3(#) − 78 · "2(#)  EES balance Equation 2.4 

 

The next one is the AATH model, where the plasma space is divided in infinitesimal 
subcompartments and it is assumed that the permeability contrast transference is 
produced at the end of the vessels (the last plasmatic compartment). 
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42
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Finally, in the DP model both compartments are divided into infinitesimal spaces and 
the contrast transference due to permeability (PS) is assumed constant along the 
system. 
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These systems of partial differential equations can be solved analytically expressing the 
contrast concentration C(t) as a convolution product of the CAIF and the R(t) function, 
which is the solution of the mass balances [58]. These contrast concentrations C(t) can 
be directly obtained from the signal intensity I(t) using a direct conversion based on 
relaxivity and field strength, being I(t) the intensity of each pixel at each time point. 

 

"(#) = ("-./ ∗ ?)(#)  Equation 2.9 

 

In this expression (eq. 8), R(t) only depends on the first (Ktrans, kep, ve) or second (Fp, 
PS, ve, vp) generation perfusion parameters (biomarkers) at each time instant (t). 

For example, the solution of the convolution product for Toft’s model [57], which is 
one of the simplest pharmacokinetic models, is presented in equation 9:  

 

"(;, @, #) = '#()*+ 	∫ "-./(B)2C123(#CB)!B
#
D   Equation 2.10 

 

In order to obtain these biomarkers, the models need as input the reference of an 
appropriate arterial input function (CAIF(t)) obtained from the tumor-feeding artery [60-
63]. This function is a time-varying curve with a specific dynamics pattern, comprising 
a baseline, an abrupt positive peak, and a fast decay or washout. These curves are 
usually extracted by manually placing ROIs in the artery (i.e., one of the iliac arteries 
for the prostate) and the tissue of interest. But this approach introduces a user-
dependent bias into the analysis since the accuracy in the computation of the 
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biomarkers depends on the proper determination of the CAIF(t): the higher the 
uncertainty in the determination of the CAIF(t), the higher the uncertainty in the 
estimation of the pharmacokinetic parameters. 

One alternative to the manually determined artery ROI location is the application of a 
latent variable based model like Principal Component Analysis (PCA) [64], selecting 
the pixels related to the arterial dynamic pattern [65]. This fast and objective AIF 
determination approach is also patient-focused, hence resulting in major benefits 
related to radiologist time, reproducibility, and personalized medicine. 

 

2.3.4. Imaging biomarkers calculation (Pharmacokinetic modeling) 
Once the CAIF has been calculated for each patient individually, the perfusion sequence 
is analyzed pixel-by-pixel applying the different pharmacokinetic approximations.  

The biomarkers are calculated using non-linear optimization algorithms. For this 
purpose, the values of these biomarkers are evaluated in order to minimize, for each 
model at each pixel, the difference between the contrast measured concentration and 
the convolution product function: (CAIF*R) (t). Note that non-linear optimization can 
only provide local optima. So, in order to obtain reliable results, the optimization 
method defines different starting points and selects the best result minimizing the 
Residual Sum of Squares (RSS) evaluated as the sum of the squared differences at each 
time point. Using this technique, the probability of obtaining the global optimum is 
higher as the number of starting points increases, testing a relatively high number of 
“starting points” in the variable space.  

Following the optimization method, 3 biomarkers are obtained in the case of the Toft’s 
model (Ktrans, kep, ve) and 4 when considering second-generation models (Fp, PS, ve, 
vp). It must be strengthened, however, that these pharmacokinetic models assume some 
a priori knowledge about the dynamics followed by the tissues. Nevertheless, it is 
possible that, when the tissue starts producing new vessels and tissue structures in a 
chaotic way, the dynamics do not behave as expected. Therefore, it seems necessary to 
establish some parameter in order to evaluate the goodness of fit of the dynamic 
behaviors, to evaluate the reliability of the obtained biomarkers. However, in clinical 
practice, the values of the biomarkers are normally obtained without any information of 
this fit and applied directly for tumor diagnosis and/or prognosis. In order to tackle this 
issue, this thesis introduces the use, not only of these biomarkers, but also of the 
Residual Sum of Squares (RSS) as a complementary biomarker (parameter), which 
provides information about how well the pixel is fitted by the assumed model, 
measuring the disagreement between each voxel behavior and its prediction from the 
assumed model. By computing and storing the RSS, this method not only helps in 
determining the value of the biomarker but also its reliability.  
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2.4. Diffusion-weighted magnetic resonance imaging (DW-MRI) 
Diffusion [66] is a physical process that occurs due to the thermal agitation of the water 
molecules inside the human body. These translational displacements depend, among 
other factors, on the tissue structure according to the cellular organization. In normal 
conditions, the prostatic gland presents an extremely ramified ductal structure. But in 
the presence of PCa, numerous groups of agglomerated cells are formed, leading to an 
increase on cellularity with rests of necrosis and fibrosis, all reducing the mobility of 
water molecules. When the tissue is highly cellularized, the water molecules have more 
restrictions to movement due to a decreased interstitial space and a higher number of 
cell membrane interfaces. However, when the tissue is highly vascularized, molecules 
are in a non-restricted high-velocity environment within the vessels, and the spatial 
movements are possible in all directions, as the prostate can be assumed as an isotropic 
tissue (the diffusion is the same regardless of the direction). This assumption can be 
considered correct because, in spite of being a microductal structure, there are not 
preferential diffusion directions inside the prostate gland (the extremely complex ductal 
structure can be considered as a homogeneous tissue). 

The diffusion process can be evaluated with DW-MRI. This non-invasive technique 
provides high-resolution images that are sensitive to water molecules movement inside 
the tissues. 

 

2.4.1. The DW-MRI acquisition 
The diffusion sequence is an adaptation of a spin echo sequence T2 weighted. It has to 
be acquired with a long enough echo time in order to perform two gradient pulses 
during the acquisition. As a consequence, the intensity of the resultant signal in a pixel 
that contains free movement protons is equal to the signal of a T2 weighted image. 
This signal, associated to the diffusion value on that pixel, is then reduced 
progressively according to a factor (b-value [40]). 

The most widely used sequence is the ultrafast SE based on the echo planar imaging 
(EPI) of the k space with parallel image acquisition. It consists on the application of an 
initial radiofrequency (RF) pulse of 90º and then, a counter pulse of 180º [67]. The 
applied gradients are bipolar, as the pixel signal loss during their application is only 
due to the movement of the hydrogen nucleus of the water. Besides, the presence of a 
magnetic gradient in a pixel creates, by its own, a signal fall due to the presence of 
different magnetic fields on both edges of the pixel, causing a greater gap and, in 
consequence, an inherent fall of the signal. In order to obtain a signal that depends only 
on the molecules movement avoiding the gradient gap caused on the static nucleus, 
bipolar gradients should be used [68]. 

For the diffusion-weighted acquisition, after applying the 90º RF pulse of the SE 
sequence, two new pulses of a fixed value G will be added. This consists on one pulse 
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previous to the 180º RF pulse and another one, symmetric to the first one, after the 
180º RF pulse (fig. 6). According to this, in the diffusion image, immediately after a 
pulse, the molecules of a volume are in the same phase. Thus, when a gradient is 
applied to that volume, the molecules are dephased differently depending on where 
they are. Afterwards, if another opposite gradient of the same magnitude is applied, 
only those protons that have not moved at all (restricted diffusion) will come back to 
the same phase. By contrast, the molecules with higher mobility will not recover their 
phase completely after the second pulse application [69, 70]. 

The complete sequence of pulses in figure 6 is well known as the Stejskal-Tanner 
sequence. Here, two gradient pulses are performed symmetrically around of the 180º 
pulse of the base sequence, separated by a time interval D. The duration of the gradient 
pulses is adjustable by a parameter called d [69]. 

 

 
Figure 6. Pulse sequence Stejskal-Tanner diagram for the calculation of molecular diffusion 

with MR. 

 

The differences between tissues can be appreciated by applying this sequence: 

On one hand, in the restricted mobility tissues, i.e. those considered highly cellular, the 
water molecules barely move. In this kind of tissue, the second pulse cancels the 
application of the first gradient. As a result, there is not significant signal loss and the 
T2 signal is basically maintained. In other words, the low mobility of the molecules is 
shown as a high signal in the diffusion-weighted images.  

On the other hand, in the non-restricted mobility tissues (low cellularization), the 
molecules travel relatively long distances during the application of both gradients. As a 
consequence of these longer distances, the molecules cannot recover the phase after the 
application of the second gradient. As a result, a signal loss reducing the tissue signal 
intensity of the T2-weighted is observed. In other words, the higher mobility regions 
are shown in the diffusion-weighted images as a loss of signal. 
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Depending on the configuration of the MR equipment and based on the duration and 
the amplitude of the applied magnetic field gradient, image acquisition is associated to 
the b-value [40]. The selection of a proper b-value highly influences the resulting 
images, as it is the responsible of the diffusion weighting. The b-value can be 
expressed as follows: 

 

E = FG · HG · IG · J∆ − I
L
M  Equation 2.11 

 

Where G is the gradient amplitude, N is the gyromagnetic proton constant, O is the 
duration of the gradient pulse and ∆ is the application interval between the gradient 
pulses. 

The signal of the image decreases with the increase in the b-value acquired. This 
attenuation (loss of signal) depends on the characteristics of the tissue, being stronger if 
the tissue is vascularized and much more moderate if it is highly cellular. The range of 
different signal attenuations between these two types of tissue at the same b-value is 
the basics to study the different behaviors in the diffusion process. 

 

2.4.2. DW-MRI data 
The DW-MRI acquisition sequence is performed, as in perfusion, along the volume of 
the studied organ. In this case, for each slice, images are taken with different b-values. 
This way, a signal spectrum s is extracted from each pixel of the image (figure 7), 
associated to the different b-values. The number of b-values varies among clinical 
studies, reaching up to 10 values for the clinical setting [71]. In this thesis, the 
sequence has been acquired at 6 different b-values (0, 50, 200, 400, 1000, 2000) 
sec2/mm. 
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Figure 7. DW-MRI spectra plot (signal intensity vs b-value). The sequence is acquired at 6 

different b-values (ranging from 0 to 2000 s/mm2). 

 

2.4.3. Exponential modeling: theory 
In order to model the signal decay of the diffusion process, spectra can be fitted with 
different expressions. 

For those based on the decay of the signal as a function of the b-value (like the prostate 
tissue), the most widely used is the monoexponential model (described by Stejskal and 
Tanner [72]), whose associated parameter, the apparent diffusion coefficient (ADC) 
integrates the global effect of the slow displacements (intracellular and interstitial) as 
well as fast movements due to extravascular diffusion:  

 
+
+D
= 2CE	(-P")  Equation 2.12 

 

Where s0 is the initial value of the signal when the b-value equals zero. The ADC 
values express the average distance that the water molecules cover within a pixel at a 
certain time. It is related with the cell density, the permeability of the membranes and 
the tortuosity of the intercellular interstitial space. It is called “apparent” because it 
reflects several different mechanisms, as it is a combination of the two phenomena 
expressed before: 
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1. The movement associated to the water molecules (Brownian movement), 
known as slow diffusion (cellular tissue). 

2. The intravascular movement in the microcapillaries vessels, known as fast 
diffusion or pseudo-perfusion (vascularized tissue). 

Fast diffusion may produce an overestimation of the real diffusion values if not 
properly considered. The principal problem is that the monoexponential model does 
not take into account the different mechanisms of the diffusion process. Currently, one 
way of dealing with this problem is by using a two-exponential model, known as intra-
voxel incoherent motion (IVIM) [73]. This is a more complex model that considers two 
behaviors, slow and fast diffusion, weighted by a parameter called vascular fraction (f), 
which relates to the proportion of vascular tissue in a pixel. This model is able to 
separate these two effects from the signal decay in the pixel with increasing values of b 
[67]. This way, it is possible to quantify and segregate the slow diffusion (real 
diffusion), due to extravascular spread (cellularization); from fast diffusion (pseudo-
perfusion), due to vascularization. This helps in a more accurate detection of tumors, 
since they are related to low-real diffusion values and higher pseudo-perfusion values. 
The expression of the IVIM model is shown below: 

 
+
+D
= (Q − R)2CE	P + R	2CE(PSP∗)  Equation 2.13 

 

The spectra are normalized with s0 as in the monoexponential approach. Three different 
parameters must be estimated: the diffusion coefficient (D), the pseudo-perfusion 
coefficient (D*) and the vascular fraction (f). This way, the normalized signal s/s0 is 
modeled as a weighted average of the slow diffusion (water movement inside the 
cellular tissue, characterized by D) and the fast diffusion (water movement inside the 
vascular tissue, characterized by D + D*). The slow diffusion behavior is weighted by 
the non-vascular fraction (1-f) related to it, and the fast diffusion term by the 
corresponding f vascular fraction, since the major contribution of this phase (in the 
order of 10 times higher) is from D* if compared to D; however this last parameter is 
not so low to be obviated. Despite the fact that the IVIM model is theoretically more 
appropriate according to physiological criteria, the monoexponential model is, 
nowadays, the most widely used in medical practice due to its simplicity.  

 

2.4.4. Imaging biomarkers calculation (exponential modeling) 
As stated in the perfusion section (see chapter 2.3.4), diffusion biomarkers are also 
obtained by using non-linear optimization methods minimizing the residual sum of 
squares (RSS). In this case, only one biomarker is considered for the monoexponential 
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model (ADC) and three (f, D and D*) for the IVIM model. However, the IVIM model 
can also be calculated directly, avoiding optimization methods, by applying a two-step 
constrained analysis “segmented” approach, which is an alternative route for reducing 
measurement error [74]. In this thesis, the segmented approach was applied to speed-up 
the calculations without losing accuracy. The comparison between methods was 
performed previously to the analysis (results not shown). At the end of the process, the 
RSS is included in this thesis as an additional biomarker for the same reasons 
explained in the perfusion section. 

 

2.5. Multiparametric MRI: PI-RADS and imaging biomarkers 
limitations 

Once the perfusion and diffusion techniques are explained, we can define the combined 
analysis of morphological MR sequences with one or more of the functional sequences 
(perfusion, diffusion) as multiparametric MR imaging (mp-MRI). Current clinical 
practice follows a set of rules to detect and characterize prostate tumors, known as 
Prostate Imaging Reporting and Data System (PI-RADS). In the original PI-RADS, a 
suspicion score for the presence of clinically significant cancer was assigned on 5-point 
scale to characterize prostate lesions, ranging from 1 (most probably benign) to 5 (most 
probably malignant) on each mp-MRI sequence (T2w, DW-MRI, DCE-MRI) based on 
subjective criteria. In addition to detailed recommendations on integrating mp-MRI 
scores according to prostate zonal anatomy (Table 1), the updated PI-RADSv2 [42], 
published in 2015, also suggested a simplified approach for the DCE-MRI 
interpretation scheme (dichotomous positive or negative instead of the 1–5 scale 
suggested in PI-RADSv1), and included a pathologic definition of clinically significant 
prostate cancer, which should be used for comparison to mp-MRI. 
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Table 1. Integration of MRI scores from T2-weighted images (T2W). Diffusion-weighted images 
(DWI), and dynamic contrast-enhanced (DCE) images from the prostatic peripheral zone (PZ) 

and transition zone (TZ) recommended by PI-RADS v2 [42]. “Any” indicates 1-5. 

Peripheral Zone (PZ) Transition Zone (PZ) 
DWI T2W DCE PIRADS T2W DWI DCE PIRADS 

1 Any* Any 1 1 Any Any 1 

2 Any Any 2 2 Any Any 2 

3 Any - 3 3 ≤ 4 Any 3 

  + 4  5 Any 4 

4 Any Any 4 4 Any Any 4 

5 Any Any 5 5 Any Any 5 

Source: Vargas et al [75]. 

 

Despite several efforts to include quantitative measurements (imaging biomarkers), 
most radiologists continue to rely on qualitative criteria, either because of lack of 
evidence, difficult access to state-of-the-art software tools or professional inertia. As a 
result, PI-RADS staging has important drawbacks related to inter- and intra-subject 
interpretation, based on expert opinion and it also requires evidence-based support and 
refinement. Besides, although imaging biomarkers have not yet been incorporated in 
PI-RADS, it is expected that future versions will include them, considering the 
growing accumulated evidence. 

As mentioned before, the imaging biomarkers can be interpreted as spatially-
distributed characteristics and parameters extracted by functional MRI sequences [52, 
54]. However, analysis of imaging biomarkers poses different problems: 

§ Imaging biomarkers are obtained in a univariate way by fitting MR signals 
to some mathematical models, not taking advantage of the internal 
correlation structures between pixels.  

§ The simultaneous evaluation of several biomarkers is difficult, even more 
when considering the different combinations that may be related to a 
tumor. This can be complicated and require “a priori” knowledge.  

§ The types of biomarkers to analyze depend on the structure of the studied 
organ (prostate, breast, brain, etc.).  

§ Some of the obtained parameters (e.g., the transfer coefficient of Ktrans) 
have a complex physiological interpretation [76], since it mixes 
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permeability and vascular flow. Therefore, it seems interesting to obtain 
biomarkers having an easier clinical interpretation.  

§ Also, these biomarkers may suffer from bias in their estimation due to 
measurement errors introduced by the different artifacts and/or 
reproducibility errors associated with the values of some model input 
function (e.g., the AIF). 

Likewise, there are different models of different grades of complexity both for 
perfusion and diffusion. Such models are justified in certain cases (e.g., exponential-
based in diffusion). However, it should be highlighted that the IVIM model is not a 
classic biexponential model because the two exponential decays are not independent as 
they are complementary weighted by the vascular fraction, f. Furthermore, the 
normalization of the spectra (dividing by s0) causes a distortion, modifying the shape of 
the original curve (fig. 8 (A)) and decreasing the signal-to-noise ratio (as can be seen in 
figure 8 (B)). Thus, this standardization reduces the variability range masking the 
different behaviors present in the signal decays. In other cases (e.g., second generation 
pharmacokinetic models [57]) the complexity has not yet been justified. Therefore, it 
becomes necessary to have models able to extract such a priori knowledge from data 
directly extracted from the sequences. 

 

 
Figure 8. Signal attenuation spectra in a DW-MRI case. (A) Before normalization. (B) After 

normalization. 

 

In addition to these last points, the “a priori” knowledge about the correlation between 
biomarkers (combinations of values between them) when determining the existence of 
a tumor may not be enough, since there may be other combinations that also lead to the 
detection of a tumor; thus resulting in false negatives, i.e. non-detected tumors. This 
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possibility increases with the number of biomarkers.  

All these limitations cause difficulties when doing the calculations and interpretation of 
the results provided by these parametric models, what has limited their applicability 
and widespread use in clinical practice, as it is difficult to obtain a validation and 
standardization of the parameters that ensure reproducibility among different studies. 

One possible way to improve the interpretation of these functional sequences is by 
applying multivariate statistical projection models to the DCE-MRI and DW-MRI data. 
In image analysis, the application of these statistical models is known as Multivariate 
Image Analysis (MIA) [77,78], based on latent variables models such as Principal 
Component Analysis (PCA) [79], Multivariate Curve Resolution (MCR) [80-82], or 
Partial Least Squares (PLS) [83-84]. 

2.6. Multivariate image analysis and its application to oncology 
The main characteristic of MIA is the capability to study the whole set of pixels at the 
same time by extracting the sources of variation caused by the latent structures present 
in the images. Applying MIA to oncology [85] allows extracting the sources of 
variation from a relevant number of time-sequenced images from different individuals, 
providing new statistical models that help explaining the perfusion differences between 
healthy and cancer-affected tissues. MIA can also be applied with segmentation and 
classification purposes, as in Gurjal et al. [86], as well as for segregating between 
healthy and diseased livers [87], showing the potentials of the technique. 

Also, by using MIA, the multivariate model might describe the dynamics even better 
than the mathematical (clinical) imposed model, better pointing out to the pixels of 
interest for improving the model. This might be due, at least partially, to the fact that 
the wealth of physiological and pharmacokinetic assumptions likely oversimplifies an 
exceptionally complex system [85], varying from patient to patient. 

The main and most widespread MIA tool is PCA [79]. However, two problems arise 
when PCA is applied on DW-MRI data: 

§ No prior information can be included in the model.  

§ The orthogonality of the principal components is a limitation to model the 
different diffusion behaviors that are not necessarily orthogonal. 

In order to overcome these drawbacks, it is possible to use more flexible models, as is 
the case of Multivariate Curve Resolution (MCR) [80-82]. This model does not impose 
these types of restrictions, but others related to some a priori knowledge, when 
available; hence being able to provide more clinically (or physiologically) interpretable 
results. Applications of MCR models on biomedical images can be found in [88-91]. 
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In the next chapter, the materials (patient database) and methods (MIA most relevant 
tools and an image registration technique) used for studying the prostate cancer with 
MR imaging will be described. 
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Chapter 3  
Materials and 

 methods 
 

3.1. Materials 
In this thesis, the patient database consisted of 55 histologically-confirmed cases of 
peripheral prostate tumors and 11 healthy cases that do not present any type of tumor. 
DCE-MRI, DW-MRI sequences are acquired in all cases, ensuring full prostate 
coverage (12 to 16 slices) by using an in-plane resolution of 192×192 voxels, each one 
measuring 1.5625×1.5625×4mm3. DCE-MRI and DW-MRI sequences are acquired 
during 47 time points (acquisition time 5 min) or 6 different b-values (0, 50, 200, 400, 
1000, 2000) sec2/mm respectively. Besides, morphologic T2w images are also acquired 
covering full prostate volume (25 slices) by using an in-plane resolution of 512x512 
voxels, each one measuring 0.4883×0.4883×3mm3. The data is arranged in a 4D (or 3D 
when considering T2w images) structure for each patient individually, and refolded 
into a bidimensional structure.  

In perfusion, images are taken with different time points and a 4D data structure is 
organized as follows: the spatial two-dimensional image (x·y), the z dimension 
associated to slice number in the axial direction of the body (starting from the top), and 
the temporal dimension (t). 

For each slice (keeping z constant), the 4D structure can be separated in z 3D 
structures. One specific case for z1 is showed in figure (9, A). 

Being t the total number of time points and z the total number of slices. Considering the 
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3D matrix, each pixel of the image can be expressed as a dynamic spectrum with an 
intensity value associated to each time point. This way, the 3D matrix is refolded into a 
2D matrix where the pixels are located in rows and the different time points in 
columns, rearranging the whole slice image and obtaining the structure showed in 
figure (9, B). 

Finally, each row of the 2D can be plotted versus time in a bi-dimensional graph 
obtaining the dynamic spectra. Figure (9, C) represents the group of spectra related to 
one slice of the organ (each dynamic spectrum corresponds to one row of the 2D 
matrix). This way, a signal dynamic spectrum s is extracted from each pixel of the 
image, associated to the different time points. 

In diffusion, the unfolding procedure is performed the same way as in perfusion (fig. 
10). The only difference is to change the functional dimension, using b-values instead 
of time. 

Furthermore, since it is necessary to analyze the whole organ volume, each slice (z) 
(following the transverse plane of the body) needs to be stacked one below the other, 
forming the data structure shown in figure 11. 

 

 
Figure 9. (A), 3D data structure for a specific slice of one case of DCE-MRI; x and y are the 

spatial resolution of the image, t is the number of time points for perfusion. (B), Unfolded 2D 
matrix considering slice 1 (z1). (C), Dynamic spectra evolution along time, showing signal 

intensity for a specific slice of the prostate. 
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Figure 10. (A), 3D data structure for a specific slice of one case of DW-MRI; x and y are the 

spatial resolution of the image, b-value corresponds to the images obtained at each value of b. 
(B), Unfolded 2D matrix considering slice 1 (z1). (C), Spectra evolution along the value of b, 

showing signal intensity for a specific slice of the prostate. 

 
Figure 11. Data structure for MCR analysis. Images are x·y pixels size, J is the number or b-

value or time points (diffusion or perfusion respectively), z is the number of slices. The 2D 
unfolded matrix dimensions are ((x·y·z))·J 
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DCE-MRI and DW-MRI data structures are used in chapter 4 for developing the 
MCR-based imaging biomarkers. 

Also, reference tumor and control regions of interest (ROIs) have been manually 
segmented for the peripheral zone of the prostate. Considering biopsy location and 
image findings, the prostate cancer is evaluated by using the PI-RADSv2 [42] reporting 
scheme, defining two different types of ROIs: 

§ DL: Dominant Lesion, related to carcinogen tissue at the peripheral 
prostate zone (PI-RADS≥4). 

§ HP: Healthy Peripheral, related to healthy tissue at the peripheral prostate 
zone (PI-RADS=1). 

These ROIs are manually defined by radiologists, considering the PI-RADS score and 
the biopsy result, and are used as the gold reference for tissue classification in chapter 
5. Besides, it is assumed that the behaviour of the healthy regions on the peripheral 
zone of the gland has no significant differences between cancer and healthy patients 
[92]. Therefore, it can be safely used as a healthy tissue reference. 

For studying aggressiveness, only affected regions (DL ROI’s) are considered. For this 
purpose, selecting a regularized indicator of the level of malignancy is required: the 
Gleason score (Chapter 2.1.2). In this case, the Gleason is used to separate the lesions 
into two categories: 

1. Low aggressiveness (LA): Gleason ≤ 6. 

2. High aggressiveness (HA): Gleason ≥ 7. 

Since no healthy ROI’s is used in this work, for the analysis, a ROI classified as LA is 
considered a positive and a ROI classified as HA is considered a negative. 

All patients gave consent for using their medical images, which were anonymized 
before post-processing. The local Ethics Committee approved the study protocol. 

 

3.2. Statistical models 
In this section the most relevant multivariate statistical methods applied in this thesis 
are presented (i.e., PCA [79] MCR-ALS [80-82], PLS regression [83, 84] and SMB-
PLS [93-95]). 

 

3.2.1. PCA 
Principal Component Analysis (PCA) [79] is a multivariate statistical projection 
method that allows compressing the information of a data matrix X into a reduced 
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number of uncorrelated (orthogonal) components known as “latent variables” (LV). 
This is performed by means of a linear decomposition of the X matrix: 

 

T = U · 7U + =  Equation 3.1 

 

Where X is the data matrix organized by individuals in rows and variables in columns, 
T is the score’s matrix and PT is the loading’s matrix and E gathers the residuals. 

 

3.2.2. MCR-ALS 
Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is an algorithm 
that fits the requirements for image analysis when physico-chemical, physiological or 
other type of “real phenomena” interpretation is the prior relevance [81, 96-98]. This 
method decomposes the original raw image following the Beer-Lambert bilinear 
model: 

 

8 = " · PU + =  Equation 3.2 

 

Where S is the signal unfolded image, DT is the matrix of pure dynamic behaviors and 
C gathers the relative contribution of each modeled behavior. This notation is not the 
commonly used in MCR, where D usually relates to the data matrix and S to the “pure 
spectra”. 

To perform the decomposition, the original 3D image needs to be unfolded into a data 
table with the spectral channels of all pixels one below the other. The spatial structure 
of the image is recovered after the resolution process by folding back the concentration 
profiles into the higher dimensional spatial ordering (these plots are known as 
“distribution maps”). Regarding the algorithm, MCR-ALS is an iterative method that 
performs the decomposition into the bilinear model S = CDT by means of an 
alternating least squares optimization of the matrices C and DT according to the 
following steps: 

 

1. Determination of the number of compounds in the raw image, S. 

2. Generation of initial estimates (e.g., DT-type matrix). 

3. Given S and DT, calculation of C under constraints. 
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4. Given S and C, calculation of DT under constraints. 

5. Reproduction of S from the product of C and DT. 

6. Go to step 3 until convergence is achieved. 

 

The number of image constituents can be known beforehand or be determined by an 
exploratory PCA [79] on the whole data set. The alternating optimization should 
always start using the original measurement, S, and an initial guess of either the C or 
the DT matrices. Typically, in images, the initial estimate is a matrix DT, formed by 
pixel spectra picked up from the image according to previous knowledge (from pixels 
in areas of interest) or as a result of applying chemometric tools for purest pixel 
selection, such as SIMPLe-to-use Interactive Self-modeling Mixture Analysis 
(SIMPLISMA) [99]. The initial estimates of the image constituents (i.e. the pure 
spectra of an hyperspectral image) may be easy to determine if one has some “a priori” 
knowledge about the studied process or, when this is not the case, a good alternative is 
to find selective pixels (where only one constituent appears) that represents better these 
“pure spectra” than directly selecting spectral channels. 

One important characteristic about MCR-ALS is the elimination of the orthogonality 
constraint for the latent variables, causing the ALS method to provide infinite solutions 
for the problem (ambiguity in the solution). One way to get the most suitable solution 
for the problem is by imposing in the algorithm the knowledge about the spectral data. 
The way to incorporate this “a priori” knowledge in MCR-ALS is by using constraints. 
These constraints can be defined as chemical or mathematical properties that the 
concentration profiles or spectra should fulfill [81, 97]. During the iterative process, the 
calculated concentration profiles and spectra are modified so that they obey the 
preselected conditions. The application of constraints is optional and should be 
performed according to the natural characteristics of the data set. Flexibility is also a 
relevant issue and, therefore, concentration profiles and spectra can obey different 
constraints and, within the C or DT matrices, constraints can be applied profile-wise or 
even element-wise. Constraints play a double role in resolution methods: on one hand, 
they ensure the chemical, biological or any other type of meaning of the recovered 
distribution maps and spectra. On the other hand, they greatly decrease the ambiguity 
in the resolved profiles. 

The concept of ambiguity in the solution is associated to the fact that many C·DT 
products can reproduce the original data set with the same optimal fit. In mathematical 
notation, we can rewrite the bilinear model as: 

 

V = W · X · XCQ · YX = WZ · YZX  Equation 3.3 
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Where WZ = W · X and YZX= XCQ · YX, thus obtaining infinite T matrices (solutions). 
The way to cut down the uncertainty in the resolution results is by limiting the possible 
solutions to those that fulfill the preset constraints. This way, the more efficient the 
constraints are, the better defined the solution results [100]. 

There are many studies where these tools can be applied. In the following chapter the 
application of MCR on DCE-MRI and DW-MRI for the development of new images 
(imaging biomarkers) able to detect and locate tumors at early stage, in the case of 
prostate cancer (PCa), is presented. The main objective is to create images with clinical 
interpretation that will help doctors in diagnosis and prognosis tasks. 

 

3.2.3. PLS and PLS-DA 
Partial Least Squares (PLS) [83] is a statistical latent variable method that tries to find 
the relations between two matrices (X and Y) by modelling the covariance structure 
between both spaces, finding the multidimensional space that maximizes the 
covariance between X and Y. The PLS approach models the data through the use of the 
following expressions: 

 

X = [ · \∗ = [ · \ · (]X · \)CQ  Equation 3.4 

[ = X · ]X + ^  Equation 3.5 

_ = ` · aX + b  Equation 3.6 

 

Where T is the score matrix for X, U is the score matrix for Y, P the loading matrix for 
X, Q the loading matrix for Y, W and W* weighting matrices, and E and F the residual 
matrices for X and Y, respectively. Usually, NIPALS (nonlinear iterative partial least 
squares) algorithm is used for fitting PLS models. A brief explanation of NIPALS can 
be found in [83]. 

The PLS model can be expressed in a regression form, as: 

 

_ = [ · c]dV  Equation 3.7 

c]dV = \ · (]X · \)CQ · aX  Equation 3.8 
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The PLS-DA [84] is an alternative method when we are dealing with categorical 
variables in Y. In this case, the method is applied as a discriminant between different 
classes of individuals. Besides, PLS-DA is a versatile algorithm that can be used for 
predictive and descriptive modeling as well as for discriminative variable selection. 

For model optimization, PRESS (predicted residual sum of squares) or its equivalent Q2 is 
calculated in order to quantify the goodness of the predictions. 

PRESSA is the squared sum of the prediction errors “r” of the not-considered 
observations “O” (external set), when “A” components are used to build the model. 

 

]e^VV- = ∑ (gGh
giQ   Equation 3.9 

 

Whereas cumulative Q2 for “A” components is calculated as follow: 

 

ajklG (m) = Q − ]e^VV-
U88

  Equation 3.10 

 

3.2.4. SMB-PLS 
The Sequential Multi-Block - Partial Least Squares algorithm (SMB-PLS) proposed by 
Lauzon-Gauthier and Duchesne [95] is an alternative multi-block method to Sequential 
Orthogonalised - Partial Least Squares (SO-PLS) [101] and Multi-Block - Partial Least 
Squares (MB-PLS) [102, 103]. A table of the advantages and limitations of both 
methods is presented in table 2. 

SMB-PLS uses the MB-PLS hierarchical structure where the variables are organized in 
different groups or “blocks” associated to different sources of information known as 
“regressor blocks” (Xb). But, in this case, SMB-PLS imposes a sequential pathway in 
order to sequentially extract information from each of them. 
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Table 2. Advantages and limitations of MB-PLS and SO-PLS. 

MB-PLS SO-PLS 
Limitations Advantages Limitations Advantages 
Information 

mixing (super-
score deflation) 

Hierarchical 
structure 

Between block 
correlated 

information 
excluded 

Different number 
of latent variables 

for each block 

Misleading 
interpretation at 

block level 
Single model 

As many models as 
number of blocks 

Not sensitive to the 
scaling of the 

blocks 

Same number of 
components for 

each block Computed from 
PLS 

Need to select 
block ordering 

Clearer 
interpretation 

owing to 
sequential 

orthogonalization 

Sensitive to the 
relative scaling of 

blocks  

Selection of the 
number of latent 
variables can be 

complicated 

 

 

The first step of the algorithm is to compute the block weights (wT
1) by the regression 

of an initial Y score u onto X1, followed by the calculation of the scores (t1) from the 
first block. Then, in order to differentiate the correlated information from the 
orthogonal information, the subsequent blocks (Xb) (b>1) are split using the following 
equation: 

 

For b=1,2…B-1 and k=1,2…B-b 

TES1jn(( = #E · o#EU · #Ep
CQ · #EU · TES1  Equation 3.11 

 

These blocks contain the correlated information to X1. After this, the block score for 
the subsequent block are computed by regressing u onto Tqrstt to obtain the block 
weights uq

v,rstt. Next, the block score [t1…tb] are combined in the super level score T. 
The last step is the computation of a PLS cycle between u and T to compute the super 
level weights (uv) and the super scores #v. This computation cycle is repeated until 
convergence on #v. Deflation of all Xb using the super scores is then performed. The 



Application of multivariate image analysis to prostate cancer for improving the comprehension of the 
related physiological phenomena and the development and validation of new imaging biomarkers  

 

54 

procedure is repeated for computing the next component using the residuals of all data 
blocks. It continues to extract components from the first X-deflated block in the 
sequence until it has modeled all relevant information from Y. Any criteria available 
for selecting the number of components in latent variable methods can be used. 

Once all the information from X1 has been explained, the same methodology is applied 
to the subsequent blocks. Since only the correlated information with the previous block 
was removed by the deflation step, the components for the subsequent block will only 
model new information not explained by the previous components. For the last block in 
the sequence, a regular PLS model is fit to the XB and Y residuals. The pseudo-code of 
the SMB-PLS algorithm [95] can be found in Annex 1. 

SMB-PLS combines the strength of SO-PLS and MB-PLS methods avoiding their 
limitations (fig. 13). 

The advantages of this method are: 

1. Different number of components can be used for each block.  

2. It enables the visualization of between blocks correlated information. 

3. Different number of components can be computed for each block since only 
the correlated information is removed after the deflation for the subsequent 
block. This leaves orthogonal (i.e. new) information in the Xb blocks to further 
explain variations in Y by additional components. 

4. For each latent variable, block scores and loadings are computed for each 
block to enable interpretation of relationships between variables, outlier 
detection and visualization of clustering patterns. The super scores also give 
important information on the correlation structure between the blocks.  

This algorithm has other interesting properties. First, both the block scores and super 
scores are orthogonal. In MB-PLS, the block scores are correlated. However, in SMB-
PLS the information captured by the block scores is the same as the super scores for 
each latent variable and only the numerical values are not exactly the same. It is only 
necessary to use either the super scores or block scores for interpretation. Also, for the 
weights, the block weights are important for the interpretation and relations between 
variables inside each block. But the super weights are equally important since they 
provide information about how the information extracted from each block distributes in 
each component of the model [93-95]. 
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3.3. Registration method 
In medical image (among other areas), registration methods are those that modify the 
spatial resolution and correct the position of one sequence with the aim of aligning it to 
another sequence (reference sequence), i.e. making every pixel from one sequence to 
exactly correspond to the same pixel of the reference sequence. During the explanation 
of the method, the selected “reference” sequence will always be referred to perfusion 
and the “secondary” sequences will be diffusion and T2. This means that the 
registration method developed in this thesis will align (modify) the diffusion and T2 
sequences in order to be spatially coherent with the perfusion one. 

The proposed method consists on determining the position where each pixel of the 
“secondary” sequences from the original sequence (the one taken during the 
acquisition) needs to be moved, considering their position in the “reference” sequence. 
For this purpose, this registration method applies a linear transformation taking into 
consideration some points selected by the specialists. In this method, they manually 
select two reference points for each spatial direction (x, y and z) corresponding to the 
limits of the organ. These points are needed for both sequences (reference and 
secondary) and should be taken individually for each patient. The specialists define 
these coordinates as X1, X2, Y1, Y2, Z1 and Z2. A schematic illustrative view of these 
points is shown in figure 12. 

 

 
Figure 12. 3D schematic view of the prostate, left: frontal (coronal) plane, right: transverse 

plane. The points represent the limits of the organ in each spatial direction (x, y and z). 
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The main idea behind the method is based on calculating a function that associates the 
position of a pixel from one sequence to the other one. For doing this, a linear 
transformation using the reference points of the prostate is applied. First, it is necessary 
to calculate the slope of the lineal transformation for each spatial direction. The 
equation is shown down below: 

 

?2w3 =
o(2R3GC(2R3Qp
o+2j3GC+2j3Qp

, 3: y, @	n(	y  Equation 3.12 

 

Where “Relp” is the slope of the lineal transformation for each spatial direction p, “ref” 
is the keyword for the reference sequence (perfusion) and “sec” is the keyword for the 
secondary sequence (diffusion/T2). 

Once the slope is calculated for each direction, the following equation determines the 
location for each position “i” (in secondary) or “j” (in reference) of each pixel in the 
corresponding spatial direction: 

 

wnj)#gn*3(g) = zogC+2j3Qp
?2w3

{ + g*3Q	, 3: y, @	n(	y  Equation 3.13 

wnj)#gn*3(|) = ?2w3 · o| − g*3Qp + nk#3Q Equation 3.14 

 

This way, a function able to determine the location in “ref” from the location in “sec” 
(eq. 3.13) (or otherwise, eq. 3.14) for each spatial direction (x, y and z) is obtained. 
This is a direct relation between one pixel in the “ref” sequence with their 
corresponding location in the “sec” sequence, where only the slope Relp and the 
coordinates of one reference pixel (p1 in eq. 3.12) are needed. 

Taking as a reference the data structure shown in figure (9, A), the method follows two 
consecutive steps in order to do the transformation of the secondary data structure: 

1. First determine if the resolution is the same between the reference and the 
secondary sequence. If it corresponds perfectly, it is possible to directly apply 
the linear transformation explained in step 2. Otherwise, the dimensions of the 
images should be modified. 

Normally in MR imaging, the spatial resolution is the same for x and y and do not 
change independently. On the one hand, if the resolution of the reference sequence is 
higher than the secondary sequence, the reference sequence should be rescaled in a 
higher resolution considering that the information of one pixel will be taken to fill the 
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empty new pixels of the re-scaled image. This can be considered as an artificial 
expansion (extrapolation) of the original data structure (fig. 13). 

 

 
Figure 13. Example of an expansion performed on a T2w image. The original image is 

(500x500) pixel resolution (left) and the reconstructed image is (5000x5000) pixel resolution 
(right). There are no great differences between them because the method is only extrapolating 

the information available. 

 

On the other hand, if the resolution of the reference sequence is lower than the 
secondary sequence, the process is the same but in this case is a compression of the 
original image. In this case, it is assumed that the information from various pixels is 
used only for one pixel in the reconstructed image, with the associated loss of 
information. (fig. 14). 
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Figure 14. Example of a compression performed on a T2w image. The original image is 

(500x500) pixel resolution (left) and the reconstructed image is (50x50) pixel resolution (right). 
There are huge differences between them because the method is compressing the data from a 

high-resolution image into a low-resolution image, with the associated loss of information. 

 

The same idea of expansion/compression can be applied for the z spatial direction. The 
size of z is determined by the number of slices taken during the acquisition, and if the 
number of slices of the reference sequence is higher or lower than the secondary one, 
the method will apply an expansion or a compression, respectively. 

2. Once the resolutions of both sequences are equal, the linear transformation is 
also applied for determining the final position of the pixels. However, one 
problem clearly appears when trying to determine the exact destination in the 
“ref” sequence. The result, normally, will be an intermediate position inside a 
3D parallelepiped structure. In other words, the real contribution to each pixel 
is composed not only by one pixel but also by their eight neighbour vertices of 
the corresponding structure (fig. 15). 
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Figure 15. Destination point of one specific pixel and the contribution by distance of its eight 

neighbours forming a parallelepiped structure. 

 

This way, the signal intensity of “P” will be calculated as an average of the eight 
neighbour signal intensities weighted by the inverse of its Euclidean distance to “P” as 
it is shown in equation 3.15. 

 

Pg+#)*j2g = }~(7; − �g;)G + (7@−�g@)G + (7y − �gy)GÄ , i=1..8  Equation 3.15 

 

The contribution of each vertex should be a number between [0-1] and the sum of all 
the contributions should be 1. For doing this, the total sum of the inversed distances is 
calculated as follow: 

 

PH9hÅ = ∑ Q
Pg+#)*j2g

Ç
giQ   Equation 3.16 
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And finally, the weighted contribution is calculated in equation 3.17. 

 

+*2u = ∑ Pg+#)*j2gÉQ

PH9hÅ
Ç
giQ · +g Equation 3.17 

 

Where snew is the output intensity value for the secondary sequence after applying 
registration (diffusion (2), the one reconstructed by the method) and si is the input 
intensity value taken from the corresponding pixel of the secondary original sequence 
(diffusion (1), the one taken by the acquisition system). 

After applying this method for all the pixels of the data structure, an aligned 
reconstruction of the secondary sequence is obtained. 

This method is applied case-by-case to the diffusion and the normalized T2-weighted 
sequences (patients with delimited ROI’s). One example of the application of the 
method is shown in figure 16. 
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Figure 16. (A) Reference sequence image (perfusion), with the reference ROI highlighted in red. 

(B) T2w muscle normalized original image. The red lines indicate where the ROIs gravity 
center is placed in perfusion. (C) T2w after applying the registration method aligning it to 
perfusion. The Lesion ROI is shown in red. (The method performed a compression and an 

alignment). The lines check how well the method has aligned both sequences. 

(B) T2w(A) Perfusion (ref.)

(C) T2w transformation
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Chapter 4  
Developing new 

 imaging biomarkers 
with MCR  

 
Traditionally, multivariate curve resolution (MCR) models have been applied in 
chemistry problems [80, 96, 104-105]. From early 2000s, the applications of these 
models on images have increased, mainly in chemistry and pharmaceutical 
environments [106-107] favored by the similitude between the image data structure 
(after proper unfolding) and the data arrays commonly analyzed, where each row 
contains the profile along the columns variables (e.g., wavelengths) of each observation 
(pixels vs samples). 

The wide applicability of MCR on chemical images comes from the fact that the 
spectrum at each pixel location can be modeled as the weighted sum of its pure 
chemical compounds present in the whole data structure, where this weight is the 
relative concentration of each chemical compound at that pixel location. This concept 
can be easily extrapolated to other environments, as is the case of medical MR images, 
where the registered signal, which depends on the type of sequence (or study), is also a 
weighted sum of the relative relevance of each “pure” physiological behavior 
(phenomenon) at that pixel location. 

 

4.1. Data structure preparation of MR images 
For applying MIA to MR imaging it is necessary to unfold each image (x·y·J) (where 
x·y is the image size and J is the number of time points in DCE-MR, and the number of 
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b-value’s in DW-MR), thus forming a 2D structure ((x·y)·J) matrix that can be 
analyzed by MCR (see chapter 3.1, figures 9 and 10). Then, each slice is stacked one 
below the other, forming the data structure shown in figure 11 (chapter 3.1). This type 
of unfolding, keeping the J variables in columns and stacking each slice one below the 
other, is applied because the underlying physiological phenomena are assumed to be 
the same throughout the whole prostate volume. 

The following sections will show how these issues have been addressed, and how 
MCR can help in developing new easy-to-interpret biomarkers, both in perfusion and 
diffusion. In the case of perfusion, this work will show how these new biomarkers are 
related to those obtained from the pharmacokinetic models. We will also provide a 
methodology for reducing the uncertainty in the estimation of the pharmacokinetic 
models (filtering). Finally, for the diffusion sequence, a method for validating the 
different clinical exponential models will be shown. 

 

4.2. Applying MCR to DCE-MRI 
By applying the unfolding procedure shown in figure 11, an S matrix (x·y·z) rows, t 
columns) is obtained for the DCE-MR images related to each patient. Where z is the 
number of slices taken for covering the prostatic region of this patient, x·y (normally, x 
and y present the same size: 192 pixels) is the number of pixels for each image (do not 
vary during the MR study of each patient) and t is the number of time points taken 
during the DCE-MRI process (after introducing the contrast). After applying the 
unfolding process, MCR-ALS [81, 96-98] can be applied.  

The idea behind MCR, traditionally applied in analytical chemistry, can be easily 
transferred to the concept of dynamic perfusion phenomena, stating that the pixel 
enhancement curve C(x,y,t) is a linear combination of the different “pure” dynamic 
behaviors existing in it. The lack of orthogonality restriction in the pure dynamic 
behaviors improves the model in terms of physiological interpretability.  

In this thesis, DT is a matrix containing in its rows each one of the dynamic behaviors 
modeled, C gathers in its rows the relative importance of each modeled dynamic 
behavior for each pixel of the image, and E is a residual matrix. As commented in 
section 3.2, this notation is not the commonly used in MCR, where D usually relates to 
the data matrix and S to the “pure spectra”.  

The iterative ALS process can provide infinite solutions for the same data matrix. This 
problem can be solved by imposing other type of constraints commonly related to prior 
knowledge about the problem faced, so it is possible to obtain easier-to-interpret 
solutions, which also tend to be unique when the constraints introduced under the 
hypothesized assumptions are sensible [108].  
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4.2.1. MCR-perfusion sequential step procedure 
MCR relies in the correct determination of the number of “real” dynamic behaviors in a 
data set. In this case, the expected behaviors are shown in figure 17, and defined here 
as: 

(1) Type A: drastic enhancement and fast washout (AIF) (blood flowing within 
the arteries), corresponding to the dynamics pattern in the artery closest to the 
organ of interest (fig. (17, A)). 

(2) Type NT: slow progressive enhancement with slow or without washout, 
corresponding to a non-cancerous tissue (fig. (17, B)). 

(3) Type VT: delayed drastic enhancement and widened washout in comparison 
with the perfusion in the arteries (AIF), corresponding to a highly vascular 
tissue, such as a tumor (fig. (17, C)). 

 
Figure 17. Dynamic patterns after the injection of a contrast media in dynamic contrast-

enhanced magnetic resonance images. (A) Abrupt initial peak and fast washout: AIF. (B) Slow 
progressive enhancement with slow or without washout. (C) Delayed fast initial enhancement 

and slow washout. Curves (B) and (C) are often analyzed using the same pharmacokinetic 
model, which may lead to biased results in the estimated parameters. 

 

When some “a priori” information is available, it can be used as an initial estimation. 
This a priori knowledge can be checked by using some tool able to show up the 
relevant sources of information in the time-sequenced images. One possible way to do 
this is by applying PCA on the data set, and taking a look at the number of latent 
variables (PCs) with the highest variances. Once the number of likely dynamic 
behaviors present in the image is determined, the purest dynamics in the raw data can 
be sought using e.g., SIMPLISMA [99]. The loadings (PT) extracted from PCA (not the 
best option in this case, because not all the purest dynamic behaviors could be a priori 
known to be located at some pixels nor negative dynamics behaviors could appear), 
genetic algorithms methods [109-111], or orthogonal projection approach [112] can 
provide an initial guess of DT in order to start the ALS algorithm. 
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The previous steps only help on the initial estimation of the dynamic behaviors (DT). 
However, these dynamic behaviors do not need to be present in all pixels. In order to 
find out the likely number of dynamic behaviors present in a pixel, the fixed size image 
window-evolving factor analysis [113-114] can be applied, as in [88]. Nevertheless, the 
experience in this problem has led to impose the following constraints: non-negativity 
on the pixel intensity values, because the intensity in a pixel has to be nonnegative, and 
non-negativity on the dynamic profiles. Regarding the use of additional constraints, it 
is preferably not to impose any a specific shape of the dynamics in DT that might bias 
the results, and leave the model free to fit the best dynamic form in each case. This is 
different in DW-MRI, where we expect specifically decreasing exponential shape 
curves. This way, the ambiguity in the solution is reduced by introducing “a priori” 
knowledge in the form of constraints, which will lead to more accurate and realistic 
solutions for DT. 

The MCR model built this way provides the matrices DT and C previously commented, 
gathering the dynamic behaviors found, as well as the corresponding relative 
importance of each dynamic behavior at each pixel location, respectively. By unfolding 
the C matrix back into the original x·y spatial dimension, new images (known as 
distribution maps) are obtained, which allow to locate those pixels more related to each 
of the corresponding dynamic behaviors provided by the model. 

The whole sequential procedure is summarized in the following steps:  

a) Determination of the approximate number of dynamic behaviors by, e.g., PCA 
or SIMPLISMA, according to the number of relevant singular values and the 
available “a priori” knowledge about the process. 

b) Determination of the pixels with purest dynamic behaviors. 

c) Application of MCR-ALS with the additional constraints of non-negativity 
both on the pixel intensities and the dynamic behaviors.  

Applying these first three steps on the whole prostatic region is necessary in order to 
obtain a unique model per patient. This way, the pure dynamic behaviors (DT) are valid 
along all the prostatic volume and the different slices can be directly compared. 

d) For improving the precision in the prostate area, local MCR models were built 
for each of the analyzed prostates. Masks of the prostate provided by the 
specialists were used here for segmentation purposes. The dynamic behaviors 
obtained in the previous MCR model, with the exception of the AIF (which is 
present in the arteries, but not in the prostate) can be implemented as an initial 
guess. The same constraints were imposed. 

In order to obtain an accurate initial estimation of the dynamic behaviors and for 
simplicity reasons, these steps can be first applied on a representative slice including 
the prostate, afterwards extending the results to the whole prostate volume (taking all 
the slices together). 
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4.2.2. A detailed example of MCR-perfusion application 
To illustrate the application of the MCR-based methodology on the DCE-MR images, 
one case is discussed in detail on a patient with a carcinoma in the transitional gland of 
the prostate. 

As commented before, the first step in any MCR analysis on DCE-MR images deals 
with obtaining the number of significant dynamic behaviors in the image. Figure 18 
presents the variances of the 2nd to 10th PCs from the fitted PCA model (1st component 
is not shown since it distorts the scale and the differences between 2nd component and 
the subsequent ones cannot be distinguished). It can be seen that from PC 5 in advance, 
all the PCs have similar amount of explained variance, and even PC 4 is doubtful. This 
means that not only the three a priori assumed physiological dynamic behaviors may be 
present in the MR images but also some more unknown behaviors. Therefore both 
possibilities, using three (results not shown) and four behaviors, should be checked. 

 

 
Figure 18. Variance related to each PC, from the second PC to the 10th. 1st component is not 

shown since it distorts the scale of the bar plot (it is always considered statistically significance). 

 

Assuming four potential dynamic behaviors, the purest ones to be introduced in the 
model are found. Figure 19 shows the results corresponding to the case under study for 
the four dynamic behaviors indicated by PCA in figure 18. As can be seen, not only the 
types AIF, NT, and VT can be guessed but also an additional effect associated to the 
contrast media arrival (type CMA) (fig. (19, B)). 
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Figure 19. (A) Image area selected for finding the initial estimates of the physiological dynamic 

behaviors. (B) The corresponding initial guesses: Non-physiological Contrast Media Arrival 
(type CMA, dotted-dashed green) effect, type AIF (solid black), type NT (dotted blue), and type 

VT (dashed red) initial guess dynamic behaviors. 

 

The next step consists in applying the non-negativity constraints on the pixels 
intensities and on the dynamic behaviors in the MCR model, matrices C and DT, 
respectively. Figure 20 shows the obtained dynamic behaviors, very similar to those 
provided by the purity-based methods. The main difference would be in the estimation 
of the AIF, which is quite important for the pharmacokinetic modeling, as already 
stated. It is also possible to see that VT behavior is delayed with respect the AIF (about 
3–4 seconds) and presents much larger amplitude. 
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Figure 20. Dynamic behaviors provided by the MCR model: type AIF (black solid line), type 
NT (blue  dotted line), type VT (red dashed line), and non-physiological CMA effect (green 

dashed-dotted line). 

 

In order to visualize where these dynamic behaviors are more predominant, it is 
necessary to refold back each of the columns of the C matrix into their original spatial 
dimension, x·y, obtaining the dynamic behaviors distribution maps (fig. 21). By 
looking at both figures, we can appreciate that VT behavior (fig. (21, D)) is slightly 
appearing in some internal area of the prostate, and it is an indicator of a highly 
vascularized region. In addition, (fig. (21, B)) provides the pixels that show the arterial 
perfusion process sought, corresponding to the iliac arteries. Furthermore, there is a 
progressive enhancement in the rest of the prostate, as well as in the rest of the tissue, 
which is in accordance to the healthy-like contrast uptake process (type NT) (fig. (21, 
C)). Finally, it can be assessed that there is a clear additional non-physiological type 
called CMA effect (fig. (21, A)) of no physiological interest, but also captured by the 
model. This non-desired effect is probably inherent to MR studies, which use an 
exogenous contrast media. The arrival of the contrast media in the tissue of interest 
changes its magnetic properties and thus, the signal intensity. In other words, the 
images are slightly affected too, though the MR equipment usually equalizes them to 
minimize the effects. Also, this fourth dynamic is predominant at certain low-vascular 
peripheral regions (see fig. (21, A)), which correspond to some specific elements of the 
MR receiving coil. Nevertheless, it would be convenient to subtract this CMA from the 
data structure before the analysis, in order to better determine the AIF, as well as to 
improve the pharmacokinetic-based imaging biomarkers calculation (see chapter 
2.3.4). From figure 21, it is possible to appreciate that the CMA effect seems to affect, 
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to some extent, the VT and NT types in the peripheral areas. 

 

 
Figure 21. Distribution maps of the dynamic behaviors shown in figure 20. Non-physiological 

Contrast Media Arrival (Type CMA) effect. (B) Type A (notice the high contribution at the iliac 
arteries). (C) Type NT. (D) Type VT. 

 

Up to this step, it must be stated that PCA is also able to extract out the AIF function in 
a very short time [65], but not the segregation between the behaviors in the prostate, 
nor the existence of the CMA type behavior. Furthermore, the fact of imposing 
orthogonality often forces the AIF dynamic to disaggregate on more than one PC 
(although this is not a limitation for the procedure related to the segmentation of the 
iliac arteries [65]).  

The dynamic behaviors previously detected may still be estimated more precisely when 
focusing into the prostate area local model. In order to deal with this issue, MCR local 
models for the prostate area are fitted. This approach dismisses the AIF pure arterial 
behavior (related to the iliac arteries in this case), since it is not present in the prostate 
region. (Fig. (22, A)) shows the final optimized dynamic behaviors and distribution 
maps for the prostate area MCR local model. Furthermore, MCR feasible bands [108] 
can be also applied in order to check for possible ambiguities and study the feasibility 
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of the final dynamic behaviors obtained. As shown in figure (22, B), the bands are 
overlapping with the proposed solution. In other cases [88, 90], the bands are very 
close to the found dynamics, which gives confidence (joint to the clinical validation) in 
the methodology proposed. 

 

 
Figure 22. (A) Dynamic behaviors provided by the prostate area MCR local model: type NT 
(blue dotted line), type VT (red dashed line), and type CMA (green dotted-dashed line). Note 
that type A has not been included as there are no arteries in the prostate area. (B) Feasible 

bands. 

 

As can be seen by comparing figures 20 and 22, all dynamic behaviors remain 
essentially the same. Only the non-physiological CMA effect has slightly changed, 
losing a peak at minute 1. On the other hand, figure 23 shows the benefits of focusing 
on the prostate region: now, the VT dynamic distribution map (fig. (23, C)) clearly 
shows up the pixels with higher intensities, i.e., more related to this type of behavior. 
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Figure 23. Distribution maps of the dynamic behaviors from prostate MCR local model shown 

in figure 22. (A): type CMA. (B): type NT. (C): type VT. Note that type AIF has not been 
included as there are no arteries in the prostate area. 

 

After applying the appropriate sequential method to one slice of reference, the next step 
is to extend the MCR modeling methodology to the whole data structure, as indicated 
in figure 11, by stacking all the slices one below the other and using these found 
dynamic behaviors as initial guess on the masked selected pixels (corresponding to the 
prostatic area). Afterwards, applying MCR with the commented non-negativity 
constraints on both intensities and dynamics behaviors, figure 24 shows the final global 
optimal solution (A) as well as the corresponding feasible bands (B). There is only a 
very small variability at the end of the VT dynamics behavior. Moreover, these 
dynamic behaviors are very similar to those used as initial guess, shown in figure (22, 
A), indicating that these behaviors do not change significantly throughout the prostate 
volume. 

The different distribution maps are shown for all 12 slices: figure 25, corresponding to 
the CMA artificial dynamic behavior; figure 26, corresponding to the NT dynamic 
behavior; and figure 27, corresponding to the VT dynamic behavior. The model gathers 
94.6% of the variability in the data. This is extendable to all cases analyzed. Figure 28 
provides the residuals sum of squares (RSS) images that show the pixels with some 
abnormal deviations with respect to the modeled dynamic behaviors. 
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Figure 24. (A) Dynamic behaviors provided by the MCR global model of the prostate: type NT 
(blue dotted line), type VT (red dashed line), and type CMA (green dotted-dashed line). Note 

that type A has not been included as there are no large arteries in the prostate area. (B) Feasible 
bands. 

 
Figure 25. CMA distribution maps for the 12 slices analyzed, from left to right and from top to 
bottom. Note that slices 1, 2, and 12 do not have prostate area masked. Masks are the union of 
the peripheral and inner prostate zones (some slices present prostate pixels unselected due to 

manual masking selection). 
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Figure 26. NT distribution maps for the 12 slices analyzed, from left to right and from top to 
bottom. Note that slices 1, 2 and 12 do not have prostate area masked. Masks are the union of 
the peripheral and inner prostate zones (some slices present prostate pixels unselected due to 

manual masking selection). 

 
Figure 27. VT distribution maps for the 12 slices analyzed, from left to right and from top to 
bottom. Note that slices 1, 2 and 12 do not have prostate area masked. Masks are the union of 
the peripheral and inner prostate zones (some slices present prostate pixels unselected due to 

manual masking selection). 
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Figure 28. RSS distribution maps for the 12 slices analyzed, from left to right and from top to 
bottom. Note that slices 1, 2 and 12 do not have prostate area masked. Masks are the union of 
the peripheral and inner prostate zones (some slices present prostate pixels unselected due to 

manual masking selection). 

 

Using this analysis scheme it is possible to obtain new and easy-to-interpret MCR-
based imaging biomarkers, which provide a direct clinical interpretation of the 
underlying events of interest. Moreover, it is possible to detect (whenever existing) 
non-desired artificial effects, hence being able to extract them out from the pure 
physiological dynamic behaviors and improving the estimation, not only of the VT and 
NT dynamics but also of the AIF. Finally, it must be stated that using some kind of 
population dynamics behavior as initial guess, obtained from other methods such as 
PCA, provides essentially the same results. 

 

4.3. Applying MCR to DW-MRI 
The DW-MRI acquisition sequence is performed parallel to the transverse plane 
obtaining images associated to the different slices of the prostate and covering the 
whole volume of the organ. For each slice, images are taken with different b-values (6 
b-values in our dataset), obtaining a 3D structure with (12-15) slices, (x·y) rows and 6 
columns as in figure 10. All the slices from the same patient were studied with the 
same model by stacking the unfolded 2D matrices of each slice one below the other 
obtaining an S data matrix. This way the fitted behaviors were forced to keep the same 
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internal correlation structure along the whole prostate volume for a particular patient, 
as for the DW-MRI sequences.  
After refolding the images, a signal decay s is extracted from each pixel of the prostate, 
associated to the different b-values. In all cases, local models are built by removing the 
pixels that do not pertain to the prostate zone with manual masks provided by the 
specialists. In this case, local models were directly used because there was no need to 
study the outside of the prostate, as the arterial behavior is not relevant. This way, the 
interpretation of the results is improved and the computational time reduced. 

In order to develop the new biomarkers in DW-MRI, it is first required to choose 
which n-exponential model should be selected. As for DCE-MRI, using MCR as the 
multivariate statistical projection model in MIA can help in deciding the number of 
exponential decays (i.e., behaviors) to use, providing new nonparametric models that 
can explain the principal diffusion behaviors extracted, helping specialists to detect and 
characterize early tumors in the prostate, and providing new imaging biomarkers that 
may complement those commonly used for clinical diagnosis. 

 

4.3.1. MCR-diffusion proposed model 
As commented before, in the diffusion process, the studied phenomena are those 
related to slow diffusion, associated to cellularization, and fast diffusion, associated to 
vascularization. Assuming that the signal spectrum in a pixel j can be expressed as a 
weighted sum of different decreasing exponential functions modeling the different 
phenomena of the diffusion process, we propose the following model: 

 

+| = ∑ jg| · oÑg · 2CÖg·Ep.
giQ ,					Ñg, Ög, jg| ≥ D  Equation 4.1 

 

Where I stands for the number of exponential functions used. In this thesis, models 
using 1, 2, and 3 exponential functions are studied. The triexponential approach is 
proposed in order to model a possible additional behavior with physiological meaning 
that might remain in the residuals of the biexponential approach. 

The main differences regarding the theoretical models outlined previously are the no-
normalization of the spectra (using s instead of s/s0) and the independence between the 
ai coefficients, which are not forced to sum up 1 (contrarily to what happens in the 
IVIM model with the f and (1-f) parameters). 

As for DCE-MRI, the MCR-ALS has been used (see equation 3.2). In diffusion 
studies, matrix S contains the signal spectrum s for each pixel in rows, DT is a matrix 
containing in its rows each of the diffusion behaviors modeled, C gathers in its rows 
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the relative contribution of each modeled behavior for each pixel of the image, and E is 
a residual matrix. 

Regarding the constraints to be used, in the case of the diffusion process, the following 
ones can be applied successively in order to validate the theoretical models most 
commonly applied in clinical practice. 

a) Non-negativity constraints are applied both in D and C matrices, because the 
modeled behaviors and their relative contribution in a pixel have to be non-
negative.  

b) Unimodality constraints where only one maximum or minimum is admitted 
are imposed only in D, due to the fact that the modeled behaviors are 
monotonically decreasing.  

c) Shape constraints are applied on the D matrices inside ALS, in order to obtain 
a specific mathematical expression (i.e., exponential decay) for the modeled 
behaviors.  

Including these constraints, the model can select the solutions with more physiological 
meaning, discarding the rest lacking any clinical interpretation. 

 

4.3.2. MCR-diffusion sequential procedure 
The sequential procedure to obtain the different MCR models follows: 

1. Fit MCR models with only non-negativity constraints in C and D with one, 
two, and three components. Select the model with the most appropriate 
number of components according to the similarity of the corresponding fitted 
behaviors with the exponential decay (i.e., expected physiological behavior) 
(Model 0). 

2. Fit a new MCR model including non-negativity constraints in C and D, 
and unimodality constraints (only one maximum or minimum is allowed 
for each behavior) in D using the number of components decided in step 1 
(Model 1). 

3. Check the adequacy of Model 1 by fitting the behaviors obtained (rows of 
DT matrix in step 2) with an exponential function and projecting the 
predicted exponential behavior onto the original data matrix S to obtain 
the new C matrix (Model 2). 

4. Finally, fit a new MCR model including non-negativity constraints in C 
and D and shape (i.e., exponential decay) constraints in D using the 
number of components decided in step 1 (Model 3). 
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The MCR models built this way provide the matrices DT and C, gathering at each pixel 
location the behaviors (types of exponential decays) and their relative contribution, 
respectively. By relocating the pixels in each column of C matrix into their original 
spatial dimension (x·y pixels), the distribution maps are obtained, locating those pixels 
more related to each of the corresponding behaviors provided by the model.  

It must be stressed that these distribution maps from C matrix, not the prostate 
diffusion behaviors modeled in DT matrix, are the ones performing as imaging 
biomarkers. This is a conceptual difference with the clinical theoretical models method, 
where the biomarkers (e.g., D, D*, and f in the case of the IVIM model) are extracted 
from the behavior modeled at each pixel location.  

This tool can help the doctors to locate areas of the prostate that may be potentially 
affected by a cancerous process. Furthermore, the distribution maps of the RSS were 
used as a validation method, as they show the pixels that are not well fitted by the 
model. In the following, we illustrate the application of the MCR-based methodology 
on the DW-MR images, on a patient with a tumor on the peripheral gland. 

 

Model 0 

Initially, the only constraint considered is non-negativity in C and D matrices. Figures 
29 and 30 show the results with one and two components, respectively. In the one-
component model, the fitted behavior follows an exponential decay pattern. As can be 
seen in the distribution map shown in figure (29, A), the pixels related to this behavior 
are distributed in the whole image, being the RSS low (fig. (29, B)). However, with 
two components (fig. 30), the residuals are even lower (fig. (30, C)), i.e., the model 
explains 99% of the variability, and the behaviors are more physiologically meaningful 
because of the shape of the obtained curves (fig. (30, D)): a quick fall related to fast 
diffusion (d2) and a slow fall associated to slow diffusion (d1). Nevertheless, there are 
still two “artifacts” (slight increases of signal intensity) present in both behaviors, at 
lower b-values in the pure diffusion (slow diffusion, d1) component and at higher b-
values in the perfusion component (fast diffusion, d2). Regarding the distribution maps, 
they show that the component related to diffusion (fig. (30, A)) is more representative 
in the whole zone of the prostate than that of the perfusion component (fig. (30, B)), 
which is more localized. 
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Figure 29. MCR Model 0 with one component (95% of explained variability). (A) Score 

distribution map related to the modeled behavior d1. (B) RSS distribution map. (C) Modeled 
behavior d1 (solid blue line). 

 

 
Figure 30. MCR Model 0 with two components (99% of explained variability). (A) Score 

distribution map related to first modeled behavior d1 (slow diffusion, solid blue line). (B) Score 
distribution map related to second modeled behavior d2 (fast diffusion, dashed green line). (C) 

RSS distribution map. (D) Modeled behaviors. 
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By comparing both models (with one and two components), it can be seen that the 
behavior fitted in the one-component model (fig. (29, C)) is a combination of the 
behaviors modeled in the two-component model (fig. (30, D)). This can also be 
observed in the score distribution maps (figures (29, A) and (30, A-B)). Therefore, the 
one-component MCR model is not able to explain all the physiological behaviors 
present in the diffusion studies due to its simplicity. 

Figure 31 shows the modeled behaviors from the MCR model with three components. 
The behaviors associated to components 2 and 3 make no sense in diffusion studies 
because the signal spectra cannot increase as the b-value goes up (it is assumed that 
signal always attenuates when the b-value increases). Therefore, the two-components 
model is selected as the most appropriate to study the diffusion process. 

 

 
Figure 31. Modeled behaviors from the MCR Model 0 with three components. The 3rd 
additional component (d3) represented by the red dotted line has no clinical meaning. 
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Model 1 

The next steps consist on sequentially adding new constraints in order to refine the bi-
exponential model. The first of these is unimodality (in D matrix) in order to provide 
behaviors more similar to the exponential decay shape. The inclusion of this type of 
constraint allows removing the artifact present in the perfusion component at high b-
values (a slight increase of d2 from 1500 to 2000 in the b-value) that appears in Model 
0 (fig. (30, D)). Nevertheless, there is still one artifact (a slightly increase in the signal 
intensity from b=0 s/mm2 to b=50 s/mm2) for the first behavior (slow diffusion 
component), which still accomplishes the unimodality constraint (one maximum at 
b=50 s/mm2). Clinical validation indicates that this artifact cannot happen from a 
physiological point of view. Furthermore, adding a new component did not isolate this 
behavior (results not shown). 

 

Model 2 

With the aim of removing the second artifact and checking the adequacy of the 
biexponential model in diffusion MR studies, a fitting of the behaviors is proposed 
using: (1) the results provided by Model 1 (the pure behaviors saved in the D matrix) 
and (2) the information of the clinical theoretical models that proposes two decreasing 
exponential behaviors. Therefore, using fitting algorithms, both behaviors are tuned to 
exponential expressions a exp(-b b). Furthermore, the goodness of fit is high (95%) 
obtaining two different pure exponential decays related to diffusion (d1) and perfusion 
(d2), respectively. 

The exponential decay shape is obtained in the following way: for each one of the 
behaviors obtained from the previous model, initial parameters ai and bi (i=1,2) are 
fitted using the exponential decays shown in equation 4.1. Afterwards, using these 
exponential functions and the b-values, the “pure” behaviors are calculated, and 
arranged in the D matrix. Once the exponential shape of the behaviors is obtained, the 
next step was to project the original data matrix on the pseudoinverse of the new fitted 
D to get matrix C, and from it the corresponding distribution maps. 

Note that all these calculations are not performed within the ALS algorithm. It is just a 
fit of the D1 matrix obtained from previous Model 1 on two exponential decays, thus 
obtaining the new D2, afterwards computing C2. This also means that this new C2 
matrix might provide negative values, since non-negativity constraints are not applied 
in the last projection step. 

 

Model 3 

Finally, once the biexponential model is validated, the shape constraints for the D 
matrix were included in the iterative process of the MCR-ALS algorithm, assuming 



Application of multivariate image analysis to prostate cancer for improving the comprehension of the 
related physiological phenomena and the development and validation of new imaging biomarkers  

 

82 

classical exponential expressions ai exp(bi b) for both behaviors, and non-negativity for 
S and D matrices. Details can be found in [89]. For every case, the exponential 
parameters, ai and bi (i=1,2), obtained from Model 2 have been used as an initial 
approximation.  

As can be seen in figure (32, D), the fitted behaviors are two different strictly 
decreasing exponentials, one related to slow diffusion (slow attenuation, d1) and other 
related to fast diffusion (fast attenuation, d2). Furthermore, the goodness of fit is at least 
99% in all the cases under study, which derives in low-RSS distribution maps (fig. (32, 
C)). 

 

 
Figure 32. MCR Model 3 (99% of explained variability). (A) Score distribution map related to 

d1 (slow diffusion, solid blue line). (B) Score distribution map related to d2 (fast diffusion, 
dashed green line). (C) RSS distribution map. (D) Modeled behaviors. 

 

4.3.3. MCR-diffusion models discussion 
From all these results, it can be assumed that the monoexponential model seems too 
simple when trying to obtain all the behaviors present in the images. The triexponential 
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approach is not useful either, as it provides behaviors that are not physiologically 
interpretable. On the other hand, the biexponential model has shown up as an optimal 
approach for modeling the diffusion process. This model has been sequentially 
improved by comparing the new results provided by each further constrained model 
with the previous one. These conclusions are significantly related to the existing 
knowledge about the behavior of diffusion in tissues, where the biexponential approach 
through the IVIM theory is preferred in medical imaging research to explain the 
behavior of water molecules in tissues like tumors, where not only a cellular 
component but also a microvascular behavior is appreciated. 

 

 
Figure 33. Comparison between the behaviors provided by models 1 (solid red line), 2 (dashed 

blue line), and 3 (dotted black line). 

 

Figure 33 summarizes both modeled behaviors (d1 and d2) obtained from Models 1, 2, 
and 3, and figure 34 shows the distribution maps for these models. In all three models, 
the fast diffusion component presents an exponential decay, even in Model 1 where no 
shape is imposed. Regarding the slow diffusion component, it also presents an 
exponential decay after removing the artifact present at low b-values (Models 2 and 3). 
This can be seen in figure 35, where the higher residuals of Model 3 related to low b-
values match this artifact in Model 1. Therefore, the pixels mainly related to this 
phenomenon are those having higher (negative) residuals in Model 3, as shown in 
figure 34, third column, third row. On the other hand, the distribution maps observed in 
figure 34 allow comparing all three models. As can be seen, there are slight but 
appreciable differences between them, as we move from Model 1 to 3. 
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Figure 34. Comparison between the distribution maps provided by the three different models. 
(Top) d1 related to slow diffusion, as the main behavior of normal prostate tissue. (Middle) d2 

related to fast diffusion, related to highly vascularized regions, as tumors in the peripheral 
gland, like in this patient with a tumor in the peripheral gland. (Bottom) RSS distribution maps. 

(Left to right) Models 1, 2, and 3. 

 
Figure 35. Plot of the residuals obtained from Model 3 vs the b-values. 
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This way, the proposed procedure provides adequate imaging biomarkers based on the 
biexponential model, which complement the IVIM biexponential model, using the 
distribution maps as a quantification of each behavior gathered in S matrix at each 
pixel location. Still, both the MCR-based modeling and the theoretical biexponential 
modeling show two basic differences: first, the normalization of the spectra and 
second, the fact that the two factors weighting the exponentials do not have to be 
necessarily complementary. Furthermore, the fitting of the IVIM model is fitted pixel-
by-pixel, unable to take profit of the global information that can be obtained using 
MCR models. 

Once the way to calculate the different biomarkers from clinical approaches (chapters 
2.3 and 2.4) and latent variable statistical models (chapters 4.2 and 4.3) has been 
defined, the next step is to prove their ability to detect and classify prostate tumors. In 
the next chapters, PLS-based methods [83-84] are proposed in order to separate and 
classify ROIs selected by the specialists and associated to healthy tissue in the 
peripheral zone (HP) or dominant lesions (DL) with different grades of aggressiveness 
(Gleason, [13]). First, the capability of perfusion-based imaging biomarkers to detect 
and differentiate the cancerous tissue from the healthy tissue [115] will be analyzed. 
The procedure and results are explained in chapter 5. And finally, in chapter 6, a 
method where all the biomarkers from all the explained techniques are combined and 
introduced in one single PLS-based model (SMB-PLS [93-95]) will be applied in order 
to detect and differentiate tumor aggressiveness. To do that, a pixel-by-pixel spatial 
registration method (chapter 3.3) is proposed with the objective of ensuring the spatial 
coherence between the techniques. 
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Chapter 5  
Perfusion biomarkers 

comparison for cancer 
detection 

 
In this chapter, the capability of imaging biomarkers obtained from multivariate 
statistic methods (MCR-perfusion) in combination with biomarkers from first and 
second generation pharmacokinetic models for improving prostate tissue classification 
has been studied using partial least squares-discriminant analysis (PLS-DA) [83-84] 
and variable selection. 

The considered MCR-perfusion imaging biomarkers [88, 90] are the ones obtained in 
chapter 4.2 for the perfusion process (NT, VT and the RSS from the MCR model; i.e. 
the values per pixel obtained in the C matrix). Excluding the artificial CMA dynamic 
because of its lack of physiological significance, and the A type dynamic because this 
analysis is performed only in the local area of the prostate (MCR perfusion local 
modeling). 

Regarding the pharmacokinetic models, following the biomarker calculation method 
explained in chapter 2.3.4, three biomarkers are obtained in the case of the Tofts model 
(Ktrans, kep, ve), since no greater differences were found between Tofts and Tofts 
extended model. Thus, the simpler version is applied in this chapter. When considering 
second generation models, four biomarkers were calculated (Fp, PS, ve, vp). Moreover, 
for the reasons previously commented in section 2.3.4, RSS has been used as a 
complementary imaging biomarker, in order to provide information about how well the 
pixel is fitted by the assumed model. 
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5.1. Biomarker structure organization 
Once the biomarkers are obtained, we arrange them together into a valid structure in 
order to apply PLS-DA methods. 

Firstly, the input matrices (X, Y) for the PLS-DA model have been built using the 
biomarker images obtained from the different approximations, i.e. pharmacokinetic or 
MCR models. The X matrix is constructed by stacking all the selected pixels in rows 
with the value of the different considered biomarkers in columns. The selected pixels 
are the ones defined by the radiologists as DL (lesion) or HP (healthy) ROI's for each 
patient. These ROI's are logical images (binary masks) associated to one specific slice 
of the prostate. Thus, the X matrix is constructed by stacking all the pixels assigned at 
the corresponding local image for all the patients. For the same pixels, a 2-column Y 
matrix is defined with two dummy variables (0–1). The first column defined the “DL” 
variable (value 1 if the pixel belonged to the “DL” region and value 0 otherwise). The 
second column defined the “HP” variable and is built complementary to the first one. 
From this model, the class showing higher value is assigned to the corresponding pixel. 

 

5.2. Goodness of prediction parameters: f-score, precision and recall 
In the Y matrix, the assigned category of the pixels has been compared with the 
original classification. Therefore, if the pixel belongs to HP, it can be evaluated as a 
TN (True Negative) or FP (False Positive) depending on the prediction, and as a TP 
(True Positive) or FN (False Negative) if it is DL. Then, two different parameters, 
precision and recall, are calculated from the percentage of TP, FN and FP: 

 

3(2jg+gn* = U7
U7S/7

				(2j)ww = U7
U7S/á

  Equation 5.1 

 

Both indexes are combined in a new performance index, f-score, chosen to evaluate the 
classification model performance. The f-score [116] is defined as the weighted 
harmonic mean of these two parameters: 

 

à − âäãåç = G·3(2jg+gn*·(2j)ww
3(2jg+gn*S(2j)ww

  Equation 5.2 

 

This parameter determines the goodness of prediction for a classification model. It 
ranges between 0 and 1, and takes the maximum when the precision and recall are one 
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(the number of FP and FN are zero). The closer the f-score is to one, the better the 
model is in terms of prediction. 

 

5.3. Variable selection and classification method 
The variable selection method proposed in this thesis (fig. 36) is a wrapped double 
cross-validation (2CV) with variable selection, showing high similarities with other 
2CV methods [117, 118]. This methodology is applied in order to determine which 
parameters supply relevant information for classification. This way, the variable 
selection method allows removing all non-informative variables improving the 
classification performance (misclassifications rate based on the f- score). 

The method consists in dividing the pixels from the cases of the data set (30 patients 
for this analysis) in three randomized groups of cases (i.e. 10 patients), defined as 
training, validation and test. All the pixels from each case have their own class 
identification (DL or HP) and are located in their corresponding group. Therefore, the 
pixels from a specific case are always included in the same group in order to avoid any 
type of overfitting. Moreover, the number of pixels in each category has been balanced 
as much as possible in order to avoid any bias of the model. 

The method performs as follows: starting from a number of latent variables (NLV) 
equal to one, the training set is used for PLS-DA model building, using all the variables 
(biomarkers) of the considered pharmacokinetic or MCR model. Then, projecting the 
validation set onto the model fitted with the training set, an initial f-score (0) is 
calculated evaluating the performance in the model classification. 

The f-score (0) is stored and then, the values of the BPLS coefficients for each variable 
are compared with their “null” distribution obtained after breaking the correlation 
structure between X and Y of the training set. This breakage process consists of 
randomizing the order of the Y matrix rows keeping the same X and building a PLS-
DA model to obtain the “null” model coefficients. This is internally repeated 500 times 
in order to obtain the null distribution [117, 118] of these coefficients. This way, the 
variable (biomarker) is removed from the X matrix if the coefficient of a certain 
variable is not statistically significant. It is considered statistically significant if the real 
coefficient is out of the central 95% range for the random null distribution values (i.e. 
α=0.05). 

Once all the non-statistically significant variables are removed, a new PLS-DA model 
is built with the remaining significant variables from the training set X matrix, 
obtaining a new value of f-score (1) after projecting again the same validation set (only 
using the remaining significant variables) onto the new PLS-DA model. If the new f-
score (1) is higher than f-score (0), the model is improved and the new value of f- score 
(1) is updated. In this case, the iterative process continues with a new variable selection 
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comparing the new BPLS coefficients after breaking again the correlation structure 
between X and Y. However, if f-score (1) is lower than f-score (0), the best model is 
the one considered in the previous step. This iterative process is repeated until the f-
score (n) is lower than the one obtained in the previous step, f-score (n-1); keeping this 
“best” model with its associated f-score (n-1) and its own variable selection. From the 
best model, a final external set (test) is projected onto this model obtaining the “final f- 
score”. This value is stored for further comparisons. 

Afterwards, the NLV is increased in one, repeating the same process explained for one 
NLV. This way, at the end we obtain N-1 (where N is the initial number of variables 
considered in the X matrix) improved models (with its own variable selection) and with 
their associated value of NLV and final f-score. After this, the final f-score of these N-
1 models are compared and the highest final f-score determines the best model with the 
best variable selection. Note that if different models provide the same value of final f-
score, the most parsimonious model is preferred for simplicity. 

Once this process is completed, the initial groups (training, validation and set) are 
permuted (P) in the three possible different combinations (i.e. training to validation, 
validation to test and test to training) ensuring that every case belonged, at least, one 
time to each group. So far, it must be strengthen that this means all pixels belonging to 
one case are only considered as training, validation or test; hence performing a real 
clinical situation, where a new patient has to be diagnosed according to some previous 
clinical knowledge or model, after some analyses. 

Then the iterative process is repeated again with the new groups, obtaining, at the end, 
three different improved models. Finally, the initial group randomization is repeated 
500 times obtaining (500×3=1500) different data organizations. This scheme is shown 
in figure 36. 

At the end of the process, the value of the final f-score, the variable selection 
(biomarkers that remain in the model), the percentage of TN, TP, FN, FP and the 
related NLV for this “best” model obtained for each distribution of the groups (1500) 
are stored. 

Once the process is finished, the variable relative inclusion rate (percentage of times a 
variable is included from a pharmacokinetic, MCR or combined model) is evaluated as 
an additional indicator. 

In order to show summarized and consistent results, the analysis is simplified selecting 
the highest 5% final f-score models. Also, as an additional constraint for this “5% 
selection”, the percentage of FN is limited to 20%, considering it as excessively high 
FN percentage for tumor detection. 



 

 

Figure 36. Variable selection process scheme, repeated 500 times to obtain the results for each proposed model. P represents the number of the three different group 
permutations proposed and NLV is the number of latent variables for PLS-DA.  
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5.4. Results and discussion 

The pharmacokinetic and MCR models have been evaluated, individually and in 
combination, in order to improve the results with different types of biomarkers. This 
way, the number of columns of the X matrix may vary depending on the number of 
biomarkers of the selected models. Table 3 shows the results: 
 
Table 3. Results summary for each considered model or models combinations using the 5% best 

models according to the final f-score. The best biomarkers were selected in terms of inclusion 
rate. 

Model 
Max  

f-score 
Mean 

 f-score 
Mean 
%FP 

Mean 
%FN 

Best biomarkers 
(Inclusion rate) 

TOFTS 0.7871 0.7302 20.7 14.6 
RSS, ve (80%) 
Others (<60%) 

AATH 0.8125 0.7530 16.8 13.2 
RSS (95%) 

Others (80%) 

2CXM 0.8187 0.7556 15.4 13.6 
Fp RSS (90%) 

Others (50-60%) 

DP 0.8318 0.7455 16.1 14.7 
RSS (100%) 

Others (<60%) 

MCR 0.8145 0.7857 7.5 13.5 
Type VT (95%) 
Type NT (100%) 

MCR + 2CXM 0.8162 0.7789 9.2 13.9 
MCR (>90%) 

2CXM (50-70%) 

MCR + AATH 0.8388 0.7804 9.6 12.6 
MCR (>90%) 

AATH (60-70%) 

MCR + DP 0.8659 0.7725 10.1 13.8 
MCR (>90%) 
DP (60-70%) 

RSS DP (90%) 
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Three one-way ANOVAs have been proposed to study the statistical effect of the 
model on f-score, %FP and %FN by means of the Least Significant Difference (LSD) 
Intervals (figs. 37–39), respectively.  

As can be seen in the figures, statistical significant differences are observed between 
the proposed models for the mean f-score and %FP (figs. 37 and 38). However, no 
statistically significant differences appear between FN rates, as can be seen in figure 
39. Therefore, the ANOVA analyses show that the differences between the f-score are 
due to the differences in the %FP. Regarding the f-score and %FP, Toft's model (mean 
f-score of 0.73 and mean %FP of 20.7) performs significantly worse than two of the 
second-generation models (AATH and 2CXM), because their LSD intervals do not 
overlap, obtaining a mean f-score of 0.755 and a mean %FP of 15.4. Furthermore, 
second-generation 2CXM or AATH models are preferred over DP models due to the 
excessive computational time required to obtain the DP biomarkers, much higher than 
the other two second-generation models (6 times longer per pixel). Nevertheless, MCR 
alone or in combination with the best pharmacokinetic models obtained the best results 
for prediction, significantly better than any other types of model. This way, the mean f-
score raised up to 0.7857 with 0.8145 as its maximum value, heavily reducing the rate 
of false positives (from 15.4% to 7.4%), which corresponds with 0.74 of sensitivity and 
0.85 of specificity. These results are better than other studies including only first 
generation pharmacokinetic models [92, 119-122]. Additionally, no statistically 
significant differences were observed between the MCR and combined models. This 
suggests that using just MCR can be considered the best option for improving the f-
score, since it is the most parsimonious model (i.e. adding the second-generation 
biomarkers do not improve statistically the classification results). 

 
Figure 37. LSD ANOVA intervals for the f-score mean of the different individual and combined 

models (α=0.05) separated by the black dotted line.  
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Figure 38. LSD ANOVA intervals for the %FP mean of the different individual and combined 

models (α=0.05) separated by the black dotted line.  

 

 
Figure 39. LSD ANOVA intervals for the %FN mean of the different individual and combined 

models (α=0.05) separated by the black dotted line. 

 

Regarding the variable inclusion rate in the combined models, the MCR-ALS and the 
pharmacokinetic RSS variables have been included in more than 90% of the times, a 
much higher percentage in comparison with the 70% inclusion rate of the 
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pharmacokinetic biomarkers. This result suggests that pixels that do not fit the models 
properly (high RSS) should be considered as potential locations for abnormal vascular 
behaviors. They could be related to the presence of a tumor, and could be used as a 
surrogate indicator in order to locate lesions (i.e. a new biomarker). This finding needs 
further validation. Additionally, the RSS parameter can be used as an indicator of how 
reliable the provided pharmacokinetic biomarkers are, so that pixels that are not well 
fitted by the model should be considered as “outliers” that cannot be estimated (the 
values of the biomarkers won’t be reliable) by this specific pharmacokinetic model. 

With regard to the goodness of prediction parameters, the classification index (f-score) 
parameter was selected because it is a balanced combination of the parameters that 
need to be minimized for improving the classification goodness (rates of FN and FP), 
but other indexes can be used instead (e.g. AUROC, area under the receiver operating 
characteristic curve, a common quality index in medicine). Both parameters are used in 
the field [123-125] and provide equivalent information. However, f-score is preferred 
in this work due to its simplicity and independence from the number of TN. The 
comparison of both figures-of-merit is not performed in this chapter, but the f-score vs 
sensitivity and specificity, which are directly related to the AUROC, will be compared 
in chapter 6. Also, the method proposed in this work is a combination of 2CV with 
variable selection, and could be tested by comparing the results with other variable 
selection methods (e.g. Variable Importance in Projection (VIP), Least Absolute 
Shrinkage and Selection Operator (LASSO) or selectivity ratio) [126-128]. Therefore, 
the method proposed in this chapter can be complemented making a comparison 
between different techniques and indexes for selecting the one that provides the best 
results. 

Out of the pharmacokinetic models proposed, AATH has showed up as the best one, 
whereas the DP model is discarded due to the high computational time, and 2CXM is 
less consistent in comparison with AATH. These second-generation models have 
performed better for tumor detection than classical Tofts models, as demonstrated by 
the higher values of f-score. Also, RSS has risen as a potential biomarker in terms of 
inclusion rate. Nevertheless, the use of imaging biomarkers from MCR-ALS methods 
has provided better results than the DCE-MRI pharmacokinetic approximations for 
pixel-wise classification. The MCR dynamic behaviors (NT and VT) and the RSS were 
most of the times statistically significant, being the best biomarkers for lesion detection 
and tissue. 

With regard to the limitations of the method, only perfusion biomarkers have been 
tested for discriminating tumors. The results can be complemented or improved by 
applying the same methodology with diffusion biomarkers or with both techniques in 
combination, as performed in chapter 6 for aggressiveness. 

Besides, the application of this method is based in a pixel-level approximation, in 
contrast with the “truth” obtained from the biopsy, which is a qualitative value 
assigned to the whole ROI. Therefore, with this “gold standard”, the pixel-level cannot 
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be discriminated with high precision and the values of f-score will be always below the 
value they can reach. This perspective has been changed in chapter 6, where the 
objective is to discriminate ROIs instead of pixels, easing the classification. 
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Chapter 6  
Study of aggressiveness 
by combining different 

MRI sequences 
 

As seen in the last chapter, perfusion MCR imaging biomarkers can discriminate 
between healthy and cancerous tissue in the prostate. But when trying to distinguish 
between different levels of aggressiveness (based on the Gleason scale [13, 16]), only 
one MR technique (source of information) is not enough for obtaining good results. 
Therefore, the necessity of providing acceptable rates of sensibility/specificity forces to 
combine different techniques (perfusion, diffusion and T2w) in order to take advantage 
of the different sources of information available. However, one problem arises when 
combining MR imaging biomarkers obtained from different sequences, taken at 
different time or positioning, known as the “alignment problem”. When using different 
types of sequences, it is not possible to ensure that the location of each pixel of e.g. the 
diffusion sequence corresponds exactly to the same pixel in the perfusion sequence (it 
might happen due to movements, change of resolution, different position of the patient, 
etc.). In order to solve this alignment problem, it is mandatory to apply image 
registration methods as the one proposed in chapter 3.3. 

 

6.1. Data structure organization 

In this chapter the goal is to discriminate aggressiveness. Following the ROI 
characterization method explained in chapter 3.1, DL ROIs are divided in two groups: 
LA (Low aggressiveness) and HA (High aggressiveness). 
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Regarding the imaging biomarkers (see chapters 2.3, 2.4 and 4), the calculation is 
performed using the output of the registration method (diffusion and normalized T2w) 
and the reference sequence (perfusion). The considered models are: 

 

1. From clinical diffusion: Monoexponential, IVIM (the segmented version). 

2. From statistical latent variable methods: MCR-Diffusion. 

3. From pharmacokinetic perfusion: Extended Tofts (contrarily to chapter 5, 
extended contribute with more information in this case), AATH, 2CXM. 

4. From statistical latent variable methods: MCR-Perfusion. 

5. From T2w sequence: T2 muscle-normalized signal (only the signal, not an 
actual model). 

 

The data block structure obtained from the previous models is summarized in table 4. 
Contrarily to chapter 5, this work is focused on discriminating ROI’s instead of pixels. 
However the biomarkers cannot be applied directly because they have an individual 
value per pixel. In order to characterize the ROIs, this thesis calculates some statistical 
parameters for each biomarker using the pixel values of the whole ROI and obtaining 
an individual value, globally associated to the lesion. The calculated statistical 
parameters are: mean, median, standard deviation, P25, P75, skewness and kurtosis 
(where P25 and P75 are the percentile 25% and 75% respectively). 

Once the biomarkers and the statistical parameters are calculated, data is arranged as in 
chapter 5, building a valid structure for applying multivariate statistical discriminant 
models like, in this case, SMB-PLS [93-95] in a discriminant version. Multiblock 
methods were applied in this chapter because of its ability to separate the information 
block-by-block instead of selecting individual variables, no matter which type of 
sequence (DCE or DW) or technique (clinical models or MCR) they came from. The 
aim of this chapter is to determine if all the blocks are necessary or some of them can 
be removed, for some positive reasons: 

• Reducing the time computation. 
• Removing the most patient invasive and expensive techniques (like perfusion) 

from the MR image protocol. 

This multiblock model is preferred to other multiblock approximations [101-103] 
because of its ability to extract orthogonal information for each block in a consecutive 
way (block-after-block), grouping the correlated information or discarding the 
unnecessary latent variables. This way, it is possible to detect those truly relevant 
blocks in the tumor aggressiveness differentiation and, after that, remove the ones that 
do not supply additional discriminating power with respect to the previous blocks. 
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Table 4. Data block structure. The number of variables is obtained after multiplying the ROI 
statistics (mean, median, variance, P25, P75, skewness, kurtosis), by the number of biomarkers 

provided by each perfusion or diffusion model. 

Blocks Models 
Imaging  

biomarkers 
# variables 

(1) Model-based DWI Monoexponential, 
IVIM 

ADC, D, D*, f, 
RSS 42 (6x7) 

(2) MCR-Diffusion MCR-ALS (Diffusion) d1, d2, RSS 21 (3x7) 

(3) Model-based DCE Extended Tofts, AATH, 
2CXM 

Ktrans, kep, ve, vp, 
Fp, PS, RSS 105 (15x7) 

(4) MCR-Perfusion MCR-ALS (Perfusion) NT, VT, RSS 21 (3x7) 

(5) Normalized T2w - Muscle-
normalized T2w 7 

 

The input matrix X is arranged in 5 blocks of variables (B=5, [X1…X5]) according to 
table 4, where the rows are assigned to the ROIs.  Matrix Y is defined with two 
columns of dummy variables (1,-1) for the same ROIs. The first column defined the 
“LA” variable (value 1 if the ROI is a lesion with low aggressiveness and -1 if it shows 
high aggressiveness). The second column is the “HA” variable and is built 
complementary to the first one. 

The final database is composed of 36 lesion ROIs in a balanced way (18 LA and 18 
HA) from 36 different biopsied patients. 

 

6.2. SMB-PLS-DA iterative procedure method 

The method proposed takes the basic idea of the SMB-PLS [93-95] model of extracting 
only the relevant latent variables from each block. But in this case, the variable 
selection method has not been treated in this thesis because of two big issues: 

1. The number of variables is way larger than the method proposed in chapter 5 
and the computational time would be extremely long. 

2. The variable selection does not provide a direct clinical interpretation, since 
the variables are not the original biomarkers but a group of different 
parameters calculated from them (they do not have an individual meaning). It 
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would be an interesting option only in the case where the variables obtained 
from the same biomarkers are selected (for interpretation purposes). 
Nevertheless, this study is established as further work in chapter 7. 

Thus, we propose a model that considers the blocks as a unit of information and not the 
variables within each block individually. 

The method consists in selecting two different balanced sets in a proportion 2/3 (24 
ROIs) for training and 1/3 (12 ROIs) for validation for each iteration. First, it is 
necessary to establish the block configuration defined as the order the SMB-PLS model 
is taking the blocks for calculation (this sequential order will remain constant during 
the iterative loop represented in figure 40), and they are selected based on the 
knowledge about the sequences and the potential influence of the blocks in 
discrimination (i.e. clinically, diffusion is preferred over perfusion as the best 
technique for assessing tumor aggressiveness, and T2w is usually used as a 
complementary morphological image for improving clinical interpretation and 
diagnosis). 

Therefore, among all the possible different configurations that can be analyzed in order 
to maximize the prediction performance, only the ones shown in table 5 have been 
treated as initial seeds comparing perfusion vs diffusion and clinical vs MCR-based, 
plus T2w; afterwards, new configurations have been checked removing some of the 
blocks based on the obtained results (table 7). 

After that, the SMB-PLS model is calculated for the training set using simple cross-
validation (CV) and a fixed number of latent variables (this thesis has considered 15 as 
the maximum possible number of latent variables for each block because after many 
simulations, the optimal number of components never surpassed this value). Then, the 
approach calculates the projection of this model onto the validation set obtaining the 
goodness of prediction parameter Q2 for the Y matrix at each number of latent 
variables. The number of optimal latent variables is that maximizing the Q2 
(validation) of the projection of the model onto the validation set. Hereafter, the model 
is recalculated with the selected number of latent variables for that specific block using 
the validation set, and then, the same procedure is applied for the next block until all 
the blocks are included (or not) in the model with their respective number of optimal 
latent variables. It should be noted here that a double cross-validation procedure, with a 
training, validation and (external) test set, would have been preferred, but it was not 
possible to apply it because of the reduced sample size. 

Once the optimal model is calculated, the final prediction of the validation set is 
calculated (the highest positive value for each column is determined as the predicted 
class for each ROI). Comparing it with the original true validation set, we can obtain 
the number of TP, TN, FP and FN and, therefore, calculate the different values for the 
figures-of-merit (f-score, sensitivity and specificity). These additional parameters are 
defined as follow: 
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  Equation 6.1 

 

This iterative process is repeated 500 times. An scheme is shown in figure 40. 

 

 
Figure 40. SMB-PLS iterative process scheme for each blocks configuration, repeated 500 times 
to obtain the results for each proposed model. P represents the number of the iteration and “i” 
corresponds to the block in the i-th position (1 to 5) in the configuration. LV is referred to the 

number of latent variables. The block identifier is defined in table 4. 

 

At the end of the process, the value of the final f-score, selectivity, specificity, 
goodness of prediction Q2, the percentage of TN, TP, FN, FP and the selected LV for 
each block of the “optimal” model obtained for each distribution of the groups 
(iteration) are stored. 

Finally, the process is repeated again with the next configuration, obtaining, at the end, 
another improved model for each iteration (500). 
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6.3. Results and discussion 

As commented before, the iterative process is performed with different configurations 
in order to check and compare how relevant the block input order is. Then, the results 
of removing some blocks (or groups of information) are presented with the objective of 
studying how important the different MRI series (Diffusion, Perfusion and T2w) are. 
This study is important since if some blocks were not relevant at all, they could be 
removed. If that is the case, in future studies the computation time will be reduced and 
the model will become more parsimonious. Additionally, if good results can be 
obtained using only MCR-based models, the cost will be reduced because they do not 
require expensive high resolution equipment, which is not available at every hospital. 

The results summary for each proposed configuration is shown in table 5. 

 

Table 5. Results summary for each proposed configuration, according to the maximum 
goodness of prediction Q2. The f-score, sensitivity and specificity are calculated as the mean 

values. The code for the configurations is defined in table 4. 

Configuration f-score Sensitivity Specificity 
12345 0.7449 0.7771 0.7492 
21435 0.7508 0.7834 0.7557 
24135 0.7450 0.7804 0.7473 
34125 0.6759 0.6997 0.6948 
43215 0.7390 0.7707 0.7443 

 

Besides, the prediction power (represented by the validation Q2) and the number of 
optimal LV selected for each block in terms of averages are shown in table 6. 
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Table 6. Results summary for each proposed configuration. The Q2 and the number of optimal 
LV are calculated as the mean values. The code for the configurations is defined in table 4. 

Conf. 
Average 

Q2 

Average 
LV block 

(1) 

Average 
LV block 

(2) 

Average 
LV block 

(3) 

Average 
LV block 

(4) 

Average 
LV block 

(5) 

12345 31.96% 3.78 4.16 3.02 2.93 1.48 
21435 33.70% 3.69 5.00 2.24 4.27 1.56 
24135 33.15% 3.84 2.11 4.87 3.28 1.66 
34125 18.52% 3.49 3.05 3.01 4.05 1.63 
43215 30.79% 2.99 3.89 2.21 5.05 1.48 

Average results 
- 29.62% 3.56 3.64 3.07 3.92 1.562 

 

Table 6 gives a global view of the results. Respecting the number of LV, they decrease 
as the number of blocks increases because there is less orthogonal information left. It 
should be highlighted that both MCR (2 and 4) blocks are constantly represented with 
high number of LV, independently of the position they are sequenced. 

Studying the parameters, Q2 percentage is higher when diffusion blocks (1,2) or MCR-
blocks (2,4) are introduced first as happens with the f-score, sensitivity and specificity 
values. The greatest differences are observed only if the perfusion blocks are 
introduced first instead of the diffusion ones, where the values of Q2 are low (as the f-
score is in table 5).  The statistical significance of the differences is studied by applying 
ANOVA with 2 factors: the block input configuration and the validation set selection 
for each iteration (500 runs), used as a blocking factor for decreasing the variability 
and facilitating the appreciation of statistical significance differences. ANOVA LSD 
intervals of f-score, sensitivity and specificity are obtained for studying the statistical 
significance of the differences among the different configurations, figures 41, 42 and 
43. 
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Figure 41. LSD ANOVA intervals for the average f-score of the different block configurations 

(α=0.05). All the results are considered for performing the ANOVA. The code for the 
configurations is defined in table 5. 

 
Figure 42. LSD ANOVA intervals for the average sensitivity of the different block 

configurations (α=0.05). All the results are considered for performing the ANOVA. The code 
for the configurations is defined in table 5. 
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Figure 43. LSD ANOVA intervals for the average specificity of the different block 

configurations (α=0.05). All the results are considered for performing the ANOVA. The code 
for the configurations is defined in table 5. 

 

As can be observed in figures 41, 42 and 43, there are not relevant statistical significant 
differences between the different configurations. However, when trying to prioritize 
pharmacokinetic perfusion models over the other blocks (the configuration 34125), the 
values obtained are significantly worse than the other configurations for all the 
parameters (f-score, sensitivity and specificity), loosing prediction performance. This 
result can be interpreted as the pharmacokinetic models are not a good reference 
(starting point) in the algorithm for discriminating tumor aggressiveness. 

Once the importance of the order has been analyzed, the next step is to remove some of 
the blocks from the iterative process and perform it again First, both diffusion blocks 
(1 and 2) were removed. Then, the perfusion ones (3 and 4) and finally, the T2w block 
(5) was additionally removed for both scenarios. The aim is twofold: first, to replicate 
the same results with a more parsimonious model; and second, to study the relevance 
of each MRI technique in terms of performance to assess tumor aggressiveness. The 
result summary is shown in table 7. The LV selection summaries by block are shown in 
table 8. 
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Table 7. Results summary for the models where one or various sources of information are 
removed, according to the maximum goodness of prediction Q2. The f-score, sensitivity and 

specificity are calculated as the mean values. The code for the configurations is defined in table 
4. 

Configuration f-score Sensitivity Specificity 
125 (without perfusion) 0.7579 0.7901 0.7527 
345 (without diffusion) 0.5975 0.6194 0.5918 

12 (only diffusion) 0.7027 0.7446 0.6862 
34 (only perfusion) 0.5252 0.5397 0.5236 

15 (clinical dif. + T2w) 0.7172 0.7516 0.7124 
25 (MCR-dif. + T2w) 0.6983 0.7409 0.6961 

 

Regarding the prediction power, as can be seen in table 8, the Q2 is clearly lower when 
diffusion is out of the models. T2w block seems to be important because the model 
losses prediction power if it is not included in the models. Besides, including T2w does 
not imply any additional cost when taking the acquisition because it is performed 
normally in the clinical routine. 

 

Table 8. Results summary for the models where one or various sources of information are 
removed. The Q2 and the number of optimal LV are calculated as the mean values. The code for 

the configurations is defined in table 4. 

Configuration Average Q2 Average LV 
1st block 

Average LV 
2nd block 

Average LV 
3rd block 

125 (without perfusion) 31.36% 3.67 3.10 1.74 
345 (without diffusion) -5.09% 2.17 1.86 1.52 

12 (only diffusion) 18.36% 2.59 1.36 - 
34 (only perfusion) -27.92% 1.66 0.82 - 

15 (clinical dif. + T2w) 23.54% 3.02 2.21 - 
25 (MCR-dif. + T2w) 21.91% 3.72 1.66 - 

 

The ANOVA is performed as well for checking statistical significant differences (figs. 
44, 45 and 46). 
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Figure 44. LSD ANOVA intervals for the average f-score of the different block configurations 

after removing some of them (α=0.05). All the results are considered for performing the 
ANOVA. The code for the configurations is defined in table 4. 

 

 
Figure 45. LSD ANOVA intervals for the average sensitivity of the different block 

configurations after removing some of them (α=0.05). All the results are considered for 
performing the ANOVA. The code for the configurations is defined in table 4. 
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Figure 46. LSD ANOVA intervals for the average specificity of the different block 

configurations after removing some of them (α=0.05). All the results are considered for 
performing the ANOVA. The code for the configurations is defined in table 4. 

 

In this case, there are relevant statistical significant differences (p-value < 0.05) 
between the proposed sequences. First of all, diffusion blocks (1 and 2) cannot be taken 
out of the model because the f-score of sequences 345 and 34 are statistically 
significant worse than 125 and 12. Besides, the T2w block appears to be relevant and it 
improves the model when it is included (125 is statistically better than 12; and 345 is 
statistically better than 34). Similar results are observed when comparing sensitivity 
and specificity (figures 45 and 46).  

Finally, in summary graphs (figures 47, 48 and 49), the results obtained when 
considering all the blocks or only few of them are compared. 
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Figure 47. Summary plot of LSD ANOVA intervals for the average f-score (α=0.05). The code 

for the configurations is defined in table 4. 

 

 
Figure 48. Summary plot of LSD ANOVA intervals for the average sensitivity (α=0.05). The 

code for the configurations is defined in table 4. 
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Figure 49. Summary plot of LSD ANOVA intervals for the average specificity (α=0.05). The 

code for the configurations is defined in table 4. 

 

These results show up different and relevant ideas: 

• First, they indicate that perfusion blocks (3 and 4) can be removed from the 
study, since they alone provide the worst results, and there are no statistical 
significant differences between the best models considering all the blocks and 
the models where only diffusion sequences and T2 images are used. This 
conclusion is relevant because perfusion is an invasive method for the patient, 
which is more harmful than diffusion and, furthermore, pharmacokinetic 
models need better equipment and higher temporal resolution to be well-
estimated. Moreover, the computation time is way higher for perfusion 
pharmacokinetic models ( approximately 1 day per patient) than diffusion (1 
hour per patient) and even lower for MCR-based models (5 minutes per 
patient). 

• Second, when trying to use only one of the diffusion blocks (15 and 25) the f-
score is significantly worse than the combination of both (125). This result 
determines that blocks 1 and 2 are complementary and performs better 
together.  

With regards to the limitations of the method, the database is relatively small (36 
patients). For further validation, it should be increased with new characterized cases. 
Future studies including larger cohorts are necessary in order to assess the clinical 
significance and impact of the results obtained in this work. Besides, this analysis is 
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performed at the ROI level, which means that the level of detail and characterization is 
lower than the pixel level approximation, but the classification and the predictive 
power is increased (is easier to classify ROIs than pixels). 

With respect to the algorithm, the method is in need of “a priori” knowledge in order to 
propose good and reliable input sequences of the blocks, which are introduced 
manually and it will become a problem when trying to automatize and generalize the 
method. Also, the number of iterations and maximum number of latent variables 
should be previously fixed attending to this “a priori” knowledge, guarantying that this 
value will be enough for obtaining reliable results without investing an unnecessary 
large amount of time. 

From the results obtained, diffusion blocks (1 and 2) are the best sources of 
information for discriminating aggressiveness in prostate, and T2w block (5) cannot be 
ignored or discarded. Perfusion is not relevant as the same results without their blocks 
of information (3 and 4) are obtained. In this chapter, the inferior capability of 
perfusion quantitative analysis for grading tumor aggressiveness has been proved, as it 
provides less valuable information than diffusion and T2w. These results should be 
taken into account in future revisions of the MR image protocols in prostate. MCR 
models are always higher represented in their respective methods than the clinical 
models but the combination of the clinical and MCR diffusion methodologies and T2w 
provides the best results, which are extremely high for the best configuration (f-score 
of 0,76 and Q2 of 31,36%), these results are better than using only clinical approaches 
separately as in other studies [92]. 
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Chapter 7  
Conclusions 

 

This thesis has studied and proved the capability of MCR models to extract behaviors 
with clinical meaning from DCE-MR and DW-MR images by including a priori 
knowledge through imposing constraints and meaningful initial guesses.  

MCR models are able to directly locate and grade the intensity of these behaviors in 
the images, providing new imaging biomarkers, complementary to those obtained from 
the theoretical models, to improve clinical diagnosis.  

MCR also helps in segregating those artifacts that may introduce uncertainty in the 
estimation of any biomarker, and provides an evaluation tool for assessing the 
appropriateness of theoretical models, with a data driven model methodology that 
allows incorporating the knowledge we have about the processes in a sequential 
fashion. 

Perfusion based imaging biomarkers are capable enough in discriminating tumor from 
healthy tissues (DL vs HP), but they fail when going into a deeper level studying 
aggressiveness (LA vs HA). 

In chapter 5, MCR-perfusion based biomarkers have shown up as better than the 
pharmacokinetic models ones for pixel-wise classification of DL vs HP areas.  NT and 
VT parameters were almost always selected by the variable selection method. Out of 
the pharmacokinetic models, second generation performs better than first generation 
and AATH has shown as the best one. 
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In chapter 6, the combination of different techniques by applying registration methods 
and sequential multi-block PLS models (SMB-PLS) performed extraordinarily well, 
obtaining high f-score, sensitivity and specificity values for ROI-wise classification. 
When preparing the data, the order of sequencing the blocks in SMB-PLS is important 
as it affects the results of the study. Finally, for improving the models, it has been 
demonstrated that the perfusion blocks can be removed from the statistical models, as 
they did not improve the results obtained by diffusion and T2w based parameters 
alone. This result should be taken into account in future revisions of the MR image 
protocols in prostate. 
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Chapter 8  
Further work 

 

This thesis has left diverse open studies still to be approached. A list of the main and 
straightforward are listed below: 

 

§ Application of the variable selection method with SMB-PLS for studying 
tumor aggressiveness (as did in chapter 5 for lesion detection). 

§ Extrapolation of the MCR-biomarker calculation method to other organs 
(brain, breast, etc.). 

§ Study of diffusion from the anisotropic point of view with Diffusion 
Tensor Imaging (DTI) in breast cancer. 

§ To extent the current studies to a larger cohort in order to assess the 
clinical significance and impact of the results obtained in chapter 6. 
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ANNEX 1: PSEUDO-CODE OF THE SMB-ALGORITHM (CHAPTER 3.3) 

For b= 1,2 … B-1 

1. Set u to any column of Y as an initialization 

2. Begin the convergence loop 

2.1. 23 = 43) · 6/(6) · 6) 

2.2. 23 = 23/‖23‖ 

2.3. %3 = 43 · 23 

For k = 1,2 … B-b 

2.4. 43+;<=>> = %3 · (%3? · %3)@A · %3? · 43+; 

2.5. 23+;
<=>> = 43+;?<=>> · 6/(6) · 6) 

2.6. 23+;
<=>> = 23+;

<=>>/‖23+;
<=>>‖ 

2.7. %3+;<=>> = 43+;<=>> · 23+;
<=>> 

End 
2.8. ) = [%3	%3+A<=>> …	%D<=>>] 

2.9. 2? = )? · 6/(6) · 6) 

2.10. 2? = 2?/‖2?‖ 

2.11. %? = )? · 2?/(2?
? · 2?) 

2.12. F = G? · %?/(%?? · %?) 

2.13. 6 = G · F/(F) · F) 

Loop until convergence on %?or 6. Go to step 3 when converged. 

3. For k = b, b+1 … B 

3.1. /; = 4;? · %?/(%?? · %?) 

3.2. H; = 4; − %? · /;? 

End 
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4. , = G − %? · F? 

5. Store all vectors at the block and super levels as new columns in matrices. 

6. To compute the next LV, replace 4; by H; (k³b) and Y by F and go back to step 

1. 

7. When the relevant info in block 43is depleted, increment b and start at step 1. 

Using 43 and Y residuals. 

End 

8. For b = B, fit a regular PLS model to HD and F. 

 


