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Section 5.4 describes an user evaluation of an adaptive translation system. This
was done in collaboration with Miguel Domingo and the company Pangeanic, with
funding from the Spanish Center for Technological and Industrial Development (Cen-
tro para el Desarrollo Tecnológico Industrial). This company has experience in provid-
ing high-quality translations and they have on staff professional translators. Miguel
Domingo and the team from Pangeanic developed a plugin for communicating the
adaptive systems under study with their production platform. My part consisted in
advising and supervising the experimental conditions, giving support for the develop-
ment of the adaptive systems, processing and analyzing the results obtained.

Most of Chapter 6 is the result of a collaboration with Marc Bolaños, supervised
by Prof. Petia Radeva, from Universitat de Barcelona/CVC. This collaboration was
supported by the R-MIPRCV network, under grant TIN2014-54728-REDC. They are
experts in computer vision, while we had experience in text generation. In the early
stages of this collaboration, the different roles were clear: they were in charge of
extracting features from the visual objects while we were focused on generating text
from these features. However, as the collaboration advanced, these frontiers became
more diffuse and both Marc Bolaños and I acquired experience in both fields. We
tightly cooperated in the design and implementation the captioning systems, as well
as in writing of research papers derived from this work.
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Abstract

The sequence-to-sequence problem consists of transforming an input sequence into
an output sequence. A variety of problems can be posed in these terms, including
machine translation, speech recognition or multimedia captioning. In the last years,
the application of deep neural networks has revolutionized these fields, achieving im-
pressive advances. Despite these improvements, the output of the automatic systems
is still far from perfect. For achieving high-quality predictions, fully-automatic sys-
tems require to be supervised by a human agent, who corrects the errors. This is a
common procedure in the translation industry. This thesis is mainly framed into the
machine translation problem, tackled using fully neural systems. Our main objective
is to develop more efficient neural machine translation systems, that allow for a more
productive usage and deployment of the technology. To this end, we base our contri-
butions on two main cornerstones: how to better use the system, and how to better
leverage the data generated as it is used.

In the first case, we apply the so-called interactive-predictive framework to neural
machine translation. This embeds the human agent and the system into a cooperative
correction process, that seeks to reduce the human effort spent for obtaining high-
quality translations. We develop different interactive protocols for the neural machine
translation technology, namely, a prefix-based and a segment-based protocol. They
are implemented by modifying the search space of the model. Moreover, we introduce
mechanisms for achieving a fine-grained interaction while maintaining the decoding
speed of the system. We carried out a wide range of experiments that show the
potential of our contributions. The previous state of the art is improved by a large
margin and the current systems are able to react better to the human interactions.

v



Next, we study how to improve a neural system using the data generated as a
byproduct of this correction process. To this end, we rely on two main learning
paradigms: online and active learning. Under the first one, the system is updated on
the fly, as soon as a sentence is corrected. Hence, the system is continuously learning
from the corrections, avoiding previous errors and specializing towards a given user
or domain. A large experimentation tested the adaptive systems under different con-
ditions and domains, demonstrating the capabilities of adaptive systems. Moreover,
we also carried out a human evaluation of the system, involving professional users.
They were very pleased with the adaptive system, and worked more efficiently us-
ing it. The second paradigm, active learning, is devised for the translation of huge
amounts of data, which makes the correction of all of them prohibitively expensive.
In this scenario, the system selects samples that should be supervised, and leaves the
rest automatically translated. Applying this framework, we obtained reductions of
approximately a quarter of the effort required for reaching a desired translation qual-
ity. The neural approach also obtained large improvements compared with previous
translation technologies.

Finally, we address another challenging problem: visual captioning. It consists
of generating a description in natural language from a visual object, namely an im-
age or a video. We follow the sequence-to-sequence framework, under a multimodal
perspective. We start by tackling the task of generating captions of videos from a
general domain. Next, we move on to a more specific case: describing events from
egocentric images, acquired along the day. Since these events are consecutive, we aim
to extract inter-eventual relationships, for generating more informed captions. To this
end, we propose a context-augmented system, able to consider the previous events
while analyzing the current one. The results show that the context-aware model im-
proved the generation quality with respect to a regular one. As final point, we apply
the interactive-predictive protocol to these multimodal captioning systems. As in the
machine translation case, this protocol diminished the effort required for correcting
the outputs of an automatic system.
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Resumen

El problema conocido como de secuencia a secuencia consiste en transformar una
secuencia de entrada en una secuencia de salida. Bajo esta perspectiva se puede
atacar una amplia cantidad de problemas, entre los cuales destacan la traducción
automática, el reconocimiento automático del habla o la descripción automática de
objetos multimedia. En los últimos años, la aplicación de redes neuronales profundas
ha revolucionado esta disciplina, y se han logrado avances notables. Sin embargo,
y a pesar de estas mejoras, los sistemas automáticos todavía producen predicciones
que distan mucho de ser perfectas. Para obtener predicciones de gran calidad, los
sistemas automáticos se utilizan con la supervisión de un ser humano, quien corrige los
errores. Esta forma de trabajar es muy común en la industria de la traducción. Esta
tesis se centra principalmente en el problema de la traducción del lenguaje natural,
el cual se ataca usando modelos enteramente neuronales. Nuestro objetivo principal
es desarrollar sistemas de traducción neuronal más eficientes. Para ello, nuestras
contribuciones se asientan sobre dos pilares fundamentales: cómo utilizar el sistema
de una forma más eficiente y cómo aprovechar datos generados durante la fase de
explotación del mismo.

En el primer caso, aplicamos el marco teórico conocido como predicción interac-
tiva a la traducción automática neuronal. Este proceso consiste en integrar usuario y
sistema en un proceso de corrección cooperativo, con el objetivo de reducir el esfuerzo
humano empleado en obtener traducciones de alta calidad. Desarrollamos distintos
protocolos de interacción para dicha tecnología, aplicando interacción basada en pre-
fijos y en segmentos. Estos protocolos se implementan básicamente modificando el
proceso de búsqueda del sistema. Además, ideamos mecanismos para obtener una in-
teracción con el sistema más precisa, pero manteniendo la velocidad de generación del
mismo. Llevamos a cabo una extensa experimentación, que muestra el potencial de
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estas técnicas: superamos el estado del arte anterior, obtenido mediante tecnologías
clásicas, por un gran margen y observamos que nuestros sistemas reaccionan mejor a
las interacciones humanas.

A continuación, estudiamos cómo mejorar un sistema neuronal mediante los datos
generados como subproducto de este proceso de corrección. Para ello, nos basamos
en dos paradigmas del aprendizaje automático: el aprendizaje muestra a muestra y
el aprendizaje activo. En el primer caso, el sistema se actualiza al vuelo, inmediata-
mente después de que el usuario corrige una frase. Por lo tanto, el sistema aprende
de una manera continua a partir de correcciones, evitando cometer errores previos y
especializándose en un usuario o dominio concretos. Evaluamos estos sistemas en una
gran cantidad de situaciones y dominios diferentes, que demuestran el potencial que
tienen los sistemas adaptativos. También llevamos a cabo una evaluación humana,
con traductores profesionales. Éstos quedaron muy satisfechos con el sistema adapta-
tivo. Además, fueron más eficientes cuando lo usaron, si lo comparamos con el uso de
un sistema estático. En lo referente al segundo paradigma, el aprendizaje activo, lo
aplicamos para el escenario en el que se deban traducir grandes cantidades de frases,
siendo inviable la supervisión de todas ellas. En este caso, el sistema selecciona aquel-
las muestras que vale la pena supervisar, traduciendo el resto automáticamente. Apli-
cando este protocolo, redujimos de aproximadamente un cuarto el esfuerzo humano
necesario para llegar a cierta calidad de traducción. Además, también superamos el
estado del arte anterior por un margen considerable.

Finalmente, atacamos el complejo problema de la descripción de objetos multi-
media. Este problema consiste en describir en lenguaje natural un objeto visual, una
imagen o un vídeo. Comenzamos con la tarea de descripción de vídeos pertenecientes
a un dominio general. A continuación, nos movemos a un caso más específico: la
descripción de eventos a partir de imágenes egocéntricas, capturadas a lo largo de un
día. Buscamos extraer relaciones entre eventos para generar descripciones más in-
formadas, desarrollando un sistema capaz de analizar un mayor contexto. El modelo
con contexto extendido genera descripciones de mayor calidad que un modelo normal.
Por último, aplicamos la predicción interactiva a estos sistemas de descripción multi-
modal, observando también una disminución del esfuerzo necesario para corregir las
salidas de un sistema automático.
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Resum

El problema conegut com a de seqüència a seqüència consisteix en transformar una
seqüència d’entrada en una seqüència d’eixida. Seguint aquesta perspectiva, es pot
atacar una àmplia quantitat de problemes, entre els quals destaquen la traducció au-
tomàtica, el reconeixement automàtic de la parla o la descripció automàtica d’objectes
multimèdia. En els últims anys, l’aplicació de xarxes neuronals profundes ha revolu-
cionat aquesta disciplina, i s’han aconseguit progressos notables. No obstant això, els
sistemes automàtics encara produeixen prediccions que disten molt de ser perfectes.
Per a obtindre prediccions de gran qualitat, els sistemes automàtics són utilitzats amb
la supervisió d’un ésser humà, qui corregeix els errors. Aquesta forma de treballar és
molt comú a la indústria de la traducció. Aquesta tesi se centra principalment en el
problema de la traducció de llenguatge natural, el qual s’ataca emprant models enter-
ament neuronals. El nostre objectiu principal és desenvolupar sistemes de traducció
neuronal més eficients. Per a aquesta tasca, les nostres contribucions s’assenten so-
bre dos pilars fonamentals: com utilitzar el sistema d’una manera més eficient i com
aprofitar dades generades durant la fase d’explotació d’aquest.

En el primer cas, apliquem el marc teòric conegut com a predicció interactiva a
la traducció automàtica neuronal. Aquest procés consisteix en integrar usuari i sis-
tema en un procés de correcció cooperatiu, amb l’objectiu de reduir l’esforç humà
emprat per obtindre traduccions d’alta qualitat. Desenvolupem diferents protocols
d’interacció per a aquesta tecnologia, aplicant interacció basada en prefixos i en seg-
ments. Aquests protocols s’implementen bàsicament modificant el procés de cerca del
sistema. A més a més, busquem mecanismes per a obtindre una interacció amb el
sistema més precisa, mantenint la velocitat de generació. Duem a terme una extensa
experimentació, que mostra el potencial d’aquestes tècniques: superem l’estat de l’art
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anterior, obtingut mitjançant tecnologies clàssiques, per un gran marge i observem
que els nostres sistemes reaccionen millor a les interacciones humanes.

A continuació, estudiem com millorar un sistema neuronal mitjançant les dades
generades com a subproducte d’aquest procés de correcció. Per a això, ens basem
en dos paradigmes de l’aprenentatge automàtic: l’aprenentatge mostra a mostra i
l’aprenentatge actiu. En el primer cas, el sistema s’actualitza immediatament després
que l’usuari corregeix una frase. Per tant, el sistema aprén d’una manera contínua
a partir de correccions, evitant cometre errors previs i especialitzant-se en un usuari
o domini concrets. Avaluem aquests sistemes en una gran quantitat de situacions i
per a dominis diferents, que demostren el potencial que tenen els sistemes adaptatius.
També duem a terme una avaluació humana, amb traductors professionals. Aquests
van quedar molt satisfets amb el sistema adaptatiu. A més, van ser més eficients
quan ho van usar, si ho comparem amb l’us d’un sistema estàtic. Pel que fa al segon
paradigma, l’aprenentatge actiu, l’apliquem per a l’escenari en el qual han de traduir-
se grans quantitats de frases, i la supervisió de totes elles és inviable. En aquest
cas, el sistema selecciona les mostres que paga la pena supervisar, traduint la resta
automàticament. Aplicant aquest protocol, reduírem en aproximadament un quart
l’esforç necessari per a arribar a certa qualitat de traducció. A més a més, també
superem l’estat de l’art anterior per un marge considerable.

Finalment, ataquem el complex problema de la descripció d’objectes multimèdia
seguint la mateixa perspectiva de seqüència a seqüència. Aquest problema consisteix
en descriure, en llenguatge natural, un objecte visual, és a dir, una imatge o un vídeo.
Comencem amb la tasca de descripció de vídeos d’un domini general, la qual ataquem
de forma similar al problema de la traducció. A continuació, ens movem a un cas més
específic: la descripció d’esdeveniments a partir d’imatges egocèntriques, capturades
al llarg d’un dia. Com que aquests esdeveniments són consecutius, busquem extraure
relacions entre ells per a generar descripcions més informades. Per a això, desenvolu-
pem un sistema capaç d’analitzar un major context per considerar els esdeveniments
previs mentre s’analitza l’actual. Els resultats mostren que el model amb context
estés genera descripcions de major qualitat que el model bàsic. Finalment, apliquem
la predicció interactiva a aquests sistemes de descripció multimodal. De la mateixa
forma que al cas de la traducció automàtica, aquest protocol disminueix l’esforç nec-
essari per a corregir les eixides d’un sistema automàtic.
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Preface

The pattern recognition discipline, based on machine learning methods, is nowadays
experiencing an unprecedented expansion. Several fields, such as language processing
or computer vision, have been revolutionized by the application of deep neural net-
works, fed with large amounts of data. The recent improvements achieved in these
areas have moved the systems from research prototypes towards end-products, used
by a broad audience. This thesis tackles a particular pattern recognition problem,
known as sequence-to-sequence learning, which consists of the transduction of an
input sequence into an output sequence. Currently, the most successful methods to
tackle this problem rely on the aforementioned neural architectures. A variety of tasks
can be addressed under this sequence-to-sequence perspective. We are particularly
interested in the machine translation (MT) task, consisting of the automatic transla-
tion of sentences from a source language into a target language. The introduction of
the so-called neural machine translation (NMT) broke through several performance
barriers.

Despite the advances achieved in this field, the MT problem is still not solved and
automatic systems still make errors. A common usage of MT systems in the industry
involves the supervision of the automatic translations by a human expert, who corrects
the errors made by the system. In this thesis, we focus on the implementation of a
specific supervision paradigm called interactive-predictive MT with neural sequence-
to-sequence models. Moreover, new data are continuously generated as a byproduct
of this error–correction process. We study how to leverage these data, to continuously
improve the system.

In addition, the neural sequence-to-sequence framework can be applied to other
tasks. In this thesis, we tackle a multimodal task, namely, the captioning of visual
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content. This involves the generation of descriptions in the natural language from a
visual object, an image or a video. After tackling the video captioning task in general,
we focus on a specific subtask within this field: captioning of sequences of egocentric
images captured along one day. We finally apply the interactive-predictive framework
to these multimodal tasks.

We divide the scientific goals of this thesis into three main groups:

1. Interactive-predictive neural machine translation. We develop the appli-
cation of the interactive-predictive framework to NMT. We describe alternative
protocols of interaction, aiming to provide flexibility to the process.

2. Adaptive neural machine translation. We study the creation of adap-
tive NMT systems, able to exploit the corrected sentences, in a post-editing or
interactive-predictive MT scenario. The systems are updated on-the-fly, as soon
as the sentences are corrected, via online learning (OL) techniques. We study
different methods and conduct evaluations on a simulated workbench and on
a real scenario, involving professional post-editors. In addition, we also study
the application of active learning techniques to the translation of large data
collections with NMT.

3. Captioning visual content. We tackle multimodal sequence-to-sequence
tasks, focusing on video captioning. After building a video captioning system,
we develop a solution to generate captions from sequences of egocentric images,
continuously acquired during a day. Hence, these sequences are interrelated.
We develop a model to specifically model these relationships. Finally, we show
that the interactive-predictive protocol, originally developed for NMT, can be
successfully applied in this scenario.

This dissertation is structured in seven chapters, related in the following way:

1. Introduction

2. Neural networks

3. Neural machine translation

4. Interactive-predictive NMT5. Adaptive NMT via OL 6. Captioning visual content

7. Conclusions

The content of each chapter is as follows:
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Chapter 1 frames the scope of this thesis, introducing the pattern recognition field
and, more specifically, the MT field. It reviews the different historical ap-
proaches devised to tackle this problem. Moreover, it sets the experimental
framework followed in this thesis and the main scientific objectives.

Chapter 2 describes the mathematical model that represents the core of the thesis:
neural networks. It addresses the parameter estimation process, describes dif-
ferent neural architectures and a number of techniques used along the thesis to
improve the generalization capability of the model.

Chapter 3 introduces the neural machine translation technology, describing the
most common architectures and decoding process. Moreover, it reviews dif-
ferent aspects relating the NMT field that nowadays receive the attention of the
research community. It also compares NMT in the different translation tasks
that will be tackled in the thesis.

Chapter 4 introduces the interactive-predictive pattern recognition field, that aims
to minimize the effort spent by the user while supervising an automatic system.
It proposes the application of this theoretical framework to the neural technol-
ogy, introducing alternative interaction protocols. After that, these interactive-
predictive neural systems are evaluated.

Chapter 5 describes the adaptation of NMT systems via online learning techniques.
After receiving a corrected sample, the system can be updated to include this
new knowledge. Here are described the methods to perform this adaptation and
introduces two novel alternatives. In addition, an active learning framework for
neural systems is proposed, useful for a situation that requires the translation of
large amounts of data. All these scenarios are thoroughly evaluated in a variety
of conditions, including a user evaluation involving professional post-editors.

Chapter 6 departs from the MT problem to tackle different multimodal sequence-
to-sequence tasks. More precisely, it is focused on the generation textual de-
scriptions of videos. These techniques are also applied to the captioning of daily
events, captured with an egocentric camera. Finally, the interactive-predictive
framework described in Chapter 4 is applied to these multimodal systems.

Chapter 7 draws the main conclusions of the thesis, describing the scientific con-
tributions and publications derived from it and traces several lines of future
research.

These chapters are complemented by two appendices. Appendix A describes
NMT-Keras, an open-source library developed to build neural models, that has been
used to carry out most of the experiments described in the thesis. In Appendix B we
provide the results of a survey carried out in the scope of Chapter 5.
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Notation

Symbol Description
A, . . . ,Z Sets.
A, . . . ,Z Matrices.
a, . . . , z Vectors.
[·; ·] Vectorial concatenation.
a1, . . . , aT Sequence of length T .
aT1
a1, . . . ,aT Sequence of vectors of length T .
aT
1

a(s) s-th element from a set.
Pr(·) Probability distribution with no model assumptions.
p(·) Probability distribution with model assumptions.
p(·;Θ) Probability distribution parameterized in terms of Θ.
Θ Parameters of a model.
|·| Cardinality of a set, sequence or tensor.
⊙ Element-wise product.
ℓ Loss function.
∇Θℓ Gradient of the function ℓ with respect to the parameters Θ.
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Chapter 1

Introduction

Language is one of the characteristic traits of humankind. The ability to commu-
nicate, from concise to abstract thoughts, has allowed the development of societies
and the advances of sciences. Consequently, language itself is a wide and complex
communication system, thoroughly studied since the dawn of history. The natural
language processing (NLP) field refers to the computerized study of natural language.
Its ultimate goal is to create systems for understanding and generating natural lan-
guages at the human level. One of the most challenging tasks within NLP is machine
translation (MT). It refers to the automatic translation of sentences from a natural
language to another. This problem attracts the attention of industry and research,
for breaking down the barriers generated by different languages.

In the last thirty years, the field of MT has been greatly influenced by artificial
intelligence techniques. More precisely, the employment of statistical models to solve
the MT problem brought impressive advances. This is known as statistical machine
translation (SMT). Moreover, in the last few years, a novel approach to SMT has
been developed: the so-called neural machine translation (NMT). It relies on highly
expressive models, called neural networks, to perform the translations. The NMT
technology achieves very fluent translations and it has been widely adopted by most
translation stakeholders (e.g. Crego et al., 2016; Wu et al., 2016).

Moreover, not only MT has benefited from this revolution: neural networks are
widely used in most NLP problems, such as speech recognition and synthesis (Chan
et al., 2016), handwritten text recognition (Graves et al., 2009), and language analysis
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Chapter 1. Introduction

(Devlin et al., 2018). Neural networks are also the predominant model in other
disciplines like computer vision (Krizhevsky et al., 2012), system control (Zissis et al.,
2015) or capital forecasting (French, 2017), among others.

Despite these impressive advances, MT is still far from being a solved problem.
The systems are extremely sensitive to noisy samples, domain or user mismatch and
lack of data. However, MT is commonly used in industry, generating translation
hypotheses, which are corrected by a human agent. This process, known as post-
editing, is more efficient than building the translations from scratch in a number of
scenarios (Arenas, 2008; Hu and Cadwell, 2016).

In this thesis, we aim to increase the productivity of this process. To this end,
we apply the so-called interactive-predictive machine translation (IMT) framework
(Foster et al., 1997) to the NMT technology. This consists of a tight integration of
system and user, fostering cooperation and with the goal of obtaining high-quality
translations while minimizing the human effort spent in the process. Moreover, as a
consequence of this method of work, new data are being continuously generated. We
devise strategies to profit from these data, following an online learning (OL) paradigm,
adapting the NMT systems on-the-fly, towards a given user or domain, using the suc-
cessive corrections. Finally, we tackle other scenarios, involving multimodal signals.
More precisely, the generation of language from sequences of images. We also study
the integration of the interactive-predictive framework to these multimodal systems.

This introductory chapter presents the pattern recognition field, the formal frame-
work that sustains this thesis. Next, the MT field is briefly reviewed from a historical
perspective, and the different paradigms devised to tackle this problem are briefly
reviewed. Next, we set up the experimental framework that is followed throughout
the dissertation. We conclude the chapter by tracing the scientific goals of this thesis.

1.1 Pattern recognition and probabilistic modeling

Pattern recognition is a discipline framed in the artificial intelligence field, devoted to
finding regularities in data in an automatic way (Bishop, 2006). Most approaches to
pattern recognition make use of machine learning techniques, building a mathematical
model of the reality for a given task. This model is intended to learn properties on
some observed data and generalize them, to perform predictions on new, unseen sam-
ples. To that end, the employment of statistical inference and probabilistic modeling
techniques become fundamental.

We seek a function f to make predictions about samples from an input domain
(X ). Our goal is to assign to an input sample x ∈ X a prediction ŷ ∈ Y, where
Y is an output domain. Hence, f : X → Y, is a predictor function: ŷ = f(x).
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1.1. Pattern recognition and probabilistic modeling

Under a probabilistic perspective, this function represents an a posteriori probability
distribution: Our desired output is the element from Y with the highest probability,
conditioned to x. This expression is known as the optimal Bayes decision rule (Bishop,
2006), as in Eq. (1.1):

ŷ = argmax
y∈Y

Pr(y | x) (1.1)

However, the true distribution from this expression (Pr(y | x)) is unknown. Hence,
we need to approximate it. Thus, we rely on a statistical model, parameterized by
Θ, as in Eq. (1.2):

ŷ = argmax
y∈Y

p(y | x;Θ) (1.2)

This expression summarizes the three main challenges of probabilistic modeling:

1. Model definition: How to define mathematical models able to approximate
well the true probability distribution Pr(y | x).

2. Parameter estimation: Once the model has been defined, we need to obtain
the parameters that better approximate the true distribution. Such parame-
ters are usually estimated from a set of data samples, in a process known as
(stochastic) training. The goal is to obtain an optimal set of parameters Θ̂ that
maximize a parameter-dependent objective criterion ℓΘ on a given data set (S),
as in Eq. (1.3):

Θ̂ = argmax
Θ

ℓΘ(S) (1.3)

3. Search problem: Once the parameters have been estimated, we need to obtain
the best prediction, searching for ŷ in the output domain space that maximizes
the probability; i.e., solving the argmax operation in Eq. (1.2). This process
is known as decoding and it can represent a hard problem if Y is a large space.
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1.1.1 Taxonomy of pattern recognition approaches

Statistical pattern recognition systems can be categorized according to several facets.
Although the frontiers of these classifications are somewhat diffuse, we differentiate
three main criteria: the domain of the predictions, the function approximated by the
models and the training paradigm used to estimate the parameters of the model.

According to the output domain

Depending on the output domain (Y), we face two main types of problems:

Unstructured prediction: The output is an atomic element, typically a single
value (f : X → R) or a vector of dimension d (f : X → Rd). Depending
on the form of this value, we can divide the systems into two subcategories:

• Regression: The output domain is arbitrary, usually a real value. Hence,
we generally understand as a regression problem the prediction of a certain
value.

• Classification: Specific case of regression in which the output domain is
finite and known. The classification problem consists of assigning to an
input object one or more classes, from a finite, and typically small, set of
classes.

Structured prediction: Refers to problems in which the output has a structure
(f : X → Y, where Y is a structured domain). As structure we understand
a dependency across the elements of the object. Typical structured objects
include sequences, trees or graphs. We can also differentiate between structured
classification or structured regression.

Within the scope of this thesis, an especially interesting subclass of structured
prediction problems is called sequence to sequence. The goal is to predict an out-
put sequence given an input sequence. Several NLP problems can be formulated as
sequence-to-sequence tasks, such as machine translation, captioning, parsing, sum-
marization or speech recognition.

According to the type of models

Depending on the function approximated, we find two families of models:

Discriminative models: they directly approximate the conditional probability from
Eq. (1.1), predicting the target variable (y) given the observation (x). Among

4



1.1. Pattern recognition and probabilistic modeling

the most common discriminative models are neural networks and conditional
random fields.

Generative models: they approximate a joint probability distribution (Pr(x, y)).
Eq. (1.1) can be rewritten in terms of the joint distribution as:

ŷ = argmax
y∈Y

Pr(x, y)

Pr(x)

Note that in this expression, since the denominator is independent of the max-
imization, it can be removed. This decomposition is known as noisy channel
modeling (Eq. (1.4), Shannon, 1948):

ŷ = argmax
y∈Y

Pr(x | y) Pr(y) (1.4)

According to the learning paradigm

The parameters of the model are usually estimated in a process known as learning or
training. The training is performed on a collection of data samples S. According to
the characteristics of these data, we find different learning paradigms (Bishop, 2006):

Supervised learning: At training time, we have available the input objects and
their corresponding labels. Hence, the training data is a set with S object-target
pairs: {(x(s), y(s))}Ss=1, where (x(s), y(s)) represents the s-th training sample.
This is by far the most extended paradigm, and most mature applications rely
on supervised learning techniques. However, to collect labeled samples is an
expensive task and this may condition the size of such annotated datasets.

Unsupervised learning: The training data only contains information from the in-
put objects: {x(s)}Ss=1. Although unsupervised learning presents several diffi-
culties, its main advantage is that unlabeled data is more abundant and cheaper
to obtain than annotated data. With the huge amount of information available
nowadays, this paradigm is taking off recently.

Other paradigms: Alternative approaches stand between supervised and unsuper-
vised learning. Among them, it is worth mentioning semi-supervised learning
(Chapelle et al., 2006), in which the training data contains labeled and unla-
beled samples; active learning (AL, Cohn et al., 1994), in which a human oracle
is asked to label relevant samples; or reinforcement learning (Sutton and Barto,
1998), in which the system receives a weak feedback (not the ground-truth label)
from its predictions.
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In this thesis, we rely on the supervised learning paradigm, although we also
explore the active learning scenario (see Section 5.5.1).

1.2 Machine translation

Automatically translating a language into another is a dream pursued by humankind
from long ago. According to Hutchins (2004), back in the 17th century, philosophers
such as Descartes and Leibniz, sought for universal or logical communication codes.
These ideas can be seen as the forerunners of constructed auxiliary languages (e.g.
Esperanto) and of digital translation programs. During the 18th and 19th centuries,
proliferated the so-called universal languages. The firsts machines developed to auto-
matically translate languages did not appear until the 20th century. In 1949, Weaver
(1949) set the basis for using computers to perform translations. He relied on ideas
from information theory (Shannon, 1948) developed during the World War II. During
the 1950s, there was an excessive optimism with respect to MT. The results, how-
ever, were unsatisfactory, the progress, slow and the funding devoted to MT greatly
decreased.

During the 1970s and 1980s, MT research was focused on the so-called rule-based
systems. In the late 1980s, as the computational capacity increased, a new family
of methods arose: the so-called corpus-based MT systems. They relied on statistical
methods (Brown et al., 1990, 1993), and their capabilities and potential were rapidly
acknowledged by the scientific community. From here, the development of statisti-
cal machine translation was greatly boosted during 20 years, reaching its peak with
phrase-based statistical machine translation (PB-SMT). At the end of the first decade
of the 21st century, PB-SMT systems were arguably considered the state-of-the-art
and the translation industry was steadily including them into their working pipelines
(Wendt, 2010; Federico et al., 2014).

But this would not last for long: framed in the third wave of neural networks, the
novel NMT approach was developed (Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014). From here, NMT has deeply penetrated in the re-
search community (Bojar et al., 2017a, 2018) and in the industry (Crego et al., 2016;
Wu et al., 2016). The advent of the NMT has also opened new research directions,
questions and challenges.
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1.3 Statistical machine translation

The statistical approach to MT is a corpus-based technique, that studies the statistical
patterns from large amounts of text. The general framework of SMT is based on the
statistical inference theory presented in Section 1.1.

SMT assumes that we can compute a translation probability Pr(yI1 | xJ
1 ) between

a sentence yI1 = y1, . . . , yI from a target language Y and a sentence xJ
1 = x1, . . . , xJ

in the source language X . The goal of the SMT system is, given the source sentence
xJ
1 , to determine and find the target sentence with the highest probability ŷÎ1 . This

can be computed according to Eq. (1.5):

ŷÎ1 = argmax
I,yI

1

Pr(yI1 | xJ
1 ) (1.5)

Since the true distribution is unknown, it is approximated using statistical models,
with parameters Θ, as in Eq. (1.6):

ŷÎ1 = argmax
I,yI

1

p(yI1 | xJ
1 ;Θ) (1.6)

This expression encapsulates the three main challenges of pattern recognition (Sec-
tion 1.1) under the SMT prism:

1. Model definition: Development of models capable to approximate well the
translation probability distribution Pr(yI1 | xJ

1 ).

2. Parameter estimation: Once the model has been defined, its parameters need
to be estimated, typically from data. These data collections are usually parallel
corpora: sentence-aligned documents of translated sentences.

3. Search problem: Once the parameters have been estimated, the translations
are obtained by searching for the target language string with the highest prob-
ability. This is also known as decoding. This is a difficult problem (Udupa
and Maji, 2006) that requires a fast solution, for practical considerations. Most
systems tackle the problem via suboptimal but fast search algorithms.
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1.3.1 Classical approaches to SMT

Eq. (1.6) is hard to compute, and the first SMT works (Brown et al., 1990) tackled
it under a generative perspective, following the noisy channel framework (Eq. (1.4)).
This required to estimate two separate models: the language model and the (inverse)
translation model.

Classical language models were based on the concept of n-grams. An n-gram is
a sequence of n consecutive tokens. Assuming Markovian properties, a given token
depends only on its n− 1 preceding tokens. The estimation of its probability is done
by counting occurrences on a training corpus. In the last years, the most successful
language models are based on neural networks (Bengio et al., 2003; Mikolov et al.,
2010).

The first statistical translation models were based on word alignments (Brown
et al., 1990, 1993). An alignment is a correspondence which indicates, for each word
of the source sentence, the word from the target sentence from which it arose. Brown
et al. (1993) developed the so-called IBM models, defining five models of increasing
complexity, intended to be trained sequentially.

A central issue suffered by the IBM models is that they are unable to capture
the context, as they operate at a word level. Several works aimed to augment the
context of word-based alignment models. The most adopted solution were the so-
called phrase-based SMT (Zens et al., 2002): an extension of the single word alignment
to consecutive sequences of words, known as phrases.

The log-linear model of PB-SMT Another important advance of PB-SMT mod-
els was to tackle the problem following a discriminative perspective (Section 1.1.1),
directly modeling Pr(yI1 | xJ

1 ) from Eq. (1.5). This was done with the so-called log-
linear model (Och and Ney, 2002; Koehn, 2010b): a weighted log-linear combination
of feature functions, estimated independently. Among the more common functions
included in the log-linear model we find a (target) language model, bidirectional
translation models and a reordering model, among others (Koehn, 2010b).

Once the feature functions have been estimated, it is necessary to estimate the
weights of the log-linear combination. This process aims to find the log-linear com-
bination weights that optimize an arbitrary criterion, typically a translation quality
metric (see Section 1.4.1).
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1.3.2 Neural machine translation

The first ideas of using neural net-
works to generate translations date from
long ago (Allen, 1987; Chrisman, 1991;
Castaño and Casacuberta, 1997; For-
cada and Ñeco, 1997). These systems
were hard to scale to real tasks and
these ideas were not further explored.

The first successful attempts to a
purely NMT system are relatively re-
cent. Almost simultaneously, several
independent works tackled the prob-
lem as a sequence-to-sequence trans-
duction task (Graves, 2013), using a
neural encoder–decoder model (Kalch-
brenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014). These
works proposed to perform the trans-
lation using solely a large neural net-
work. With the inclusion of the so-
called attention mechanism (Bahdanau
et al., 2015), the NMT performance
was greatly boosted, almost reaching
the state of the art.
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Figure 1.1: Technology of the top-
performing systems in the constrained trans-
lation tasks from WMT. The “SMT” tag
includes hierarchical and PB-SMT systems,
which may also use neural features. The “oth-
ers” category includes hybrid, rule-based and
combination of MT systems. Data collected
from www.statmt.org.

From here, NMT had a meteoric trajectory. The shared tasks from the Conference
on Machine Translation (WMT) are a good indicator of this evolution: NMT debuted
in the shared tasks in 2015 (Jean et al., 2015b). Since then, NMT has rapidly outper-
formed the rest of technologies. Fig. 1.1 shows the number of the winning systems in
the last WMT shared tasks, according to each technology. In addition to exhibiting
the superior performance of NMT, this figure also illustrates the increasing popularity
of NMT, in terms of number of participants in the WMT shared tasks.

NMT tackles the problem of SMT by using a single, large neural network, whose
all components are jointly trained. More precisely, the three challenges of pattern
recognition (Section 1.3) are addressed as follows:

1. Model definition: The model of NMT systems is a large neural network, that
directly approximates the probability distribution Pr(yI1 | xJ

1 ). Most NMT sys-
tems follow an encoder–decoder architecture: the source sentence is represented
in a numerical way by means of an encoder neural network. Another neural
network (decoder) takes this representation and transforms it into a sentence in

9
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the target language. Refer to Sections 3.1 and 3.2 for a detailed description of
these neural architectures.

2. Parameter estimation: All the parameters of the model are estimated typ-
ically by means of gradient descent, usually under a maximum likelihood ap-
proach. This represents a key difference between PB-SMT systems and NMT:
while PB-SMT consists of multiple decoupled components, trained indepen-
dently and combined by means of the log-linear model, the parameters of the
NMT model are jointly estimated. Section 2.2.2 describes the training methods
for neural networks.

3. Search problem: Most NMT systems use the beam search method to find the
best translations. This procedure is detailed in Section 3.3.

1.4 Experimental framework

We describe now the experimental framework followed in this thesis. We start by
describing the evaluation metrics employed to evaluate our proposals. Next, we
introduce the user protocol defined when working with interactive-predictive sys-
tems. Next, we describe the significance tests, used to determine whether the systems
present statistically significant differences.

1.4.1 Evaluation of machine translation systems

The assessment of MT is an extremely hard task. First, there is no consensus on
what a good translation means. The goodness of a translation depends on several
facets, which are not always measurable, and often depend on the final use-case of
the system.

Evaluating the translation quality

The most reliable assessment methods of MT require a human evaluation of the
translations. Unfortunately, this process is very costly and becomes unaffordable while
developing MT systems. Therefore, it is necessary to devise methods to automatically
evaluate MT systems. Although less reliable than human evaluations, these methods
are inexpensive and become fundamental for the advances of the field. Most automatic
metrics compare the output of the system to one or more reference translations,
automatically computing a score. This score is intended to correlate well with a
human judgment.
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Since the earliest times of MT (Pierce and Carroll, 1966), a body of metrics have
been proposed. Among them, the BLEU score (bilingual evaluation understudy, Pap-
ineni et al., 2002) is the most widely used. Nonetheless it is also accepted that BLEU
suffers from several limitations when correlating with human judgments (Turian et al.,
2003; Tatsumi, 2009) and it can be fooled with bad translations (Smith et al., 2016).
Other metrics that are widely employed in the literature are such as TER (translation
error rate, Snover et al., 2006) or METEOR (Lavie and Denkowski, 2009).

Despite these efforts, the automatic assessment still remains an open problem. In
most works, as well as in this thesis, the translation quality is primarily assessed by
means of TER and BLEU. In the case of multimedia captioning, it is common to
evaluate the systems also with METEOR and CIDEr (Vedantam et al., 2015). These
metrics are briefly described below.

TER: TER is defined as the minimum number of word edit operations that must be
made in order to transform the translation hypothesis into the reference translation.
The number of edit operations is normalized by the number of words in the reference
sentence. The edit operations considered are insertion, substitution, deletion and
swapping groups of words. The number of edit operations is obtained by dynamic
programming. For the sake of readability, we will show TER scores multiplied ×100.

BLEU: BLEU aims to model the correspondence between the output from a MT
system and the one produced by a human. The BLEU score is based on the n-
gram precision between the hypothesis and a reference. It also evaluates whether
a translation hypothesis has the adequate length. While long hypotheses are natu-
rally penalized by n-gram precision, a BLEU introduces a brevity penalty for shorter
translations. The final score is computed as a weighted geometric mean of the n-gram
precision, penalized by the brevity penalty. The maximum order of the n-grams is set
to 4. We will show BLEU scores as percentages. Note that BLEU is a precision-based
metric, hence, the higher the better. This is contrary to error-based metrics (such as
TER), in which lower scores are better.

METEOR: BLEU only considers n-gram precision, ignoring the recall component.
Moreover, it lacks an explicit word matching. METEOR aims to mitigate these
issues. It is an alignment-based metric, that computes all valid alignments between
the hypothesis and the reference(s). These alignments are computed using a stemmer,
and synonym and paraphrase databases. Therefore, this is a language-dependent
metric. Once the set of alignments is computed, the metric computes the unigram
precision and recall. In addition, it also computes an alignment penalty for unmatched
unigrams. The METEOR score is a harmonic mean of unigram precision and recall,
modified by the alignment penalty.
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CIDEr: This metric was designed to evaluate captioning systems, which typically
have multiple references. Given a caption and a set of references, CIDEr computes the
number of matching n-grams of the caption across all the references, but it penalizes
the frequent n-grams appearing in the set of references. By construction, CIDEr
ranges from 0 (lowest quality) to 10 (highest quality).

Evaluating the human effort

The ultimate goal of IMT is to reduce the human effort required to correcte MT out-
puts. Therefore, we need to assess, additionally to the translation quality, this human
effort spent during the interactive-predictive translation process. As explained before,
we followed Zaidan and Callison-Burch (2010) and used TER as a representation of
human-targeted TER, considering the reference sentences as human post-edited ver-
sions of the MT hypotheses. This gives us a broad approximation of the effort required
to post-edit a translation hypothesis.

To estimate the effort spent in the process of interactive-predictive translation, we
followed the classical evaluation framework of IMT, which estimates the human effort
as the number of actions performed by the human agent in order to obtain the desired
translations. Our protocol supports two different input devices: keyboard and mouse.
We estimate the human effort according to the actions performed with such devices.

In Chapter 4 we distinguished between word-level and character-level interaction.
To fairly assess each approach, we need to use metrics that capture the interactions
at the corresponding level. Therefore, we evaluate word-level systems with word-level
metrics:

Word Stroke Ratio (WSR, Tomás and Casacuberta, 2006): number of word cor-
rections that the user had to make in order to obtain the desired translation,
divided by the total number of words in the final sentence. It is assumed that
the cost of correcting a word is constant, regardless of its length.

Mouse Action Ratio (MAR, Barrachina et al., 2009): measures the effort made
by the user with the mouse during the interactive-predictive process. It is
defined as the number of mouse actions made by the user, divided by the total
number of characters in the final hypothesis. We count mouse “clicks” as mouse
actions. Correcting a wrong word requires to select the word and accounts for
one mouse action. If the user is correcting contiguous words, no mouse action
is performed. Validating a segment requires two mouse actions: clicking at the
beginning and at the end of the segment. A single mouse action is enough
for validating one-word segments. We add an additional action per sentence,
accounting for the final validation of a hypothesis.

12
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On the other hand, character-level systems are evaluated according to:

Keystroke and mouse-action ratio (KSMR, Barrachina et al., 2009): it is de-
fined as the number of keystrokes plus number of mouse actions required in the
IMT process, divided by the number of characters of the reference. If the user
is correcting contiguous characters, no mouse action is needed. An additional
mouse action that accounts for the acceptation of a hypothesis is added to each
sentence.

Simulation protocol

A direct evaluation of an IMT system requires to conduct experiments with human ex-
perts. Unfortunately, this is excessively costly. Hence, automatic evaluation method-
ologies have been developed in the literature (Tomás and Casacuberta, 2006; Bar-
rachina et al., 2009; González-Rubio et al., 2013), to simulate the behavior of a real
user. We followed such protocols to evaluate our proposals.

In the simulation, it is assumed that the reference sentences from our parallel
corpora are the outputs desired by the user. This is a pessimistic assumption, since
the user can find appropriate different translations for the same sentence. We consider
only one translation to be the correct one, as is normal in MT evaluation.

We defined two simulated scenarios, accounting for both interactive-predictive pro-
tocols: prefix-based and segment-based. In the first one, the simulated user searches
for the first wrong element from the translation hypothesis and positions the mouse
pointer on it. Once the pointer is positioned, the user introduces the correction.
These actions correspond to a mouse-action and a keystroke, respectively. The sys-
tem then, produces an alternative hypothesis, considering the validated prefix. This
process continues until the hypothesis produced by the system is the one desired by
the user, i.e., the reference sentence.

In the segment-based interactivity, the simulated user selects the correct segments
from the hypothesis. Each segment selection corresponds to mouse-action. We as-
sume, without loss of generality, that word corrections are made from the left to the
right, and they correspond to a keystroke. The system generates an alternative trans-
lation hypothesis when the correction is inserted. Such hypothesis accounts both for
the word correction and the validated segments from previous interactions.

In the case of adaptive systems, we applied OL techniques using the corrected
sentences, performing the adaptation after each sample. That is, before starting the
translation of the next sentence, the models are updated according to the previous
sample in both the post-editing and IMT scenarios.
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1.4.2 Hypothesis testing

In order to determine whether a given system is better than another, a common prac-
tice is to perform statistical hypothesis tests. In statistical hypothesis testing, a result
has statistical significance if it is unlikely to have occurred given a null hypothesis.
Therefore, we need to compute the probability level of the null hypothesis, namely
the p-value. If the p-value is lower than a predefined confidence level, we can reject
the null hypothesis. As null hypothesis, we state that “The outputs of two systems
do not differ with respect to a given metric of interest”.

In order to determine whether the differences between two systems are statistically
significant or not, we use paired approximate randomization tests (Noreen, 1989). The
underlying idea is that, under the null hypothesis, the systems are not different: any
measure of quality for a given output could have been produced by both systems. The
idea of paired approximate randomization is to shuffle, with the same probability, the
measures of both systems. This is randomization is repeated a number of times. The
significance levels are computed as the percentage of trials in which the statistic on
the shuffled data is greater than or equal to the test statistic computed on the test
data. In this thesis, we set the number of repetitions R = 10, 000 and the confidence
level for rejecting the null hypothesis was set to 0.95.

This test is similar to bootstrap resampling (Koehn, 2004), which is widely em-
ployed by the MT community. The main difference is that bootstrap resampling
allows replacement during the shuffling process. This causes bootstrap resampling
to be more prone to makings false positive errors than approximate randomization
(Riezler and Maxwell, 2005).

1.4.3 Machine translation tasks

We evaluate our proposals for MT in four in tasks, of different nature and magnitude.
For each task, we consider three language pairs, translating in both directions. We
preprocessed our corpora following Edunov et al. (2018): lowercasing and tokenizing
them with the scripts from Moses (Koehn et al., 2007). To train the neural systems,
we applied joint byte pair encoding (Sennrich et al., 2016, see Section 3.4.1), with
32, 000 merge operations.

The translations tasks, whose main features are described in Table 1.1, are the
following:

XRCE: user manuals from Xerox printers (SchlumbergerSema S.A. et al., 2001).
This corpus has been extensively used in the IMT literature (Barrachina et al.,
2009; Ortiz-Martínez, 2016). It is a small corpus and, due to its domain, it
contains short sentences with rigid and repetitive structures.
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1.4. Experimental framework

Table 1.1: Main figures of the XRCE, TED, UFAL and Europarl corpora. |S|, |T | and |V |
account for number of sentences, number of tokens and vocabulary size, respectively. k and
M stand for thousands and millions. Numbers computed after applying BPE.

Training Development Test

|S| |T | |V | |S| |T | |V | |S| |T | |V |

XRCE

De
50k

541k 20k
964

11k 1k
995

12k 2k
En 590k 10k 11k 1k 12k 2k

Fr
52k

678k 12k
994

12k 2k
984

12k 2k
En 617k 12k 11k 2k 11k 2k

Es
56k

753k 13k
1, 025

16k 2k
1, 125

10k 2k
En 667k 11k 14k 2k 9k 2k

TED

De
133k

2.7M 25k
883

21k 5k
1, 565

33k 6k
En 2.7M 19k 21k 4k 32k 4k

Fr
107k

2.3M 23k
934

22k 4k
1, 664

35k 5k
En 2.1M 19k 20k 3k 33k 4k

Zh
107k

2.0M 24k
934

34k 4k
1, 664

33k 4k
En 2.1M 18k 23k 3k 32k 4k

UFAL

De
3.0M

130M 31k
500

13k 4k
1, 000

28k 4k
En 127M 25k 12k 4k 25k 4k

Fr
2.8M

134M 29k
500

14k 3k
1, 000

29k 5k
En 118M 24k 11k 4k 24k 4k

Es
780k

13M 29k
500

13k 3k
1, 000

26k 5k
En 12M 22k 11k 3k 24k 4k

Europarl

De
1.9M

54M 27k
3, 003

91k 10k
3, 000

78k 12k
En 55M 18k 84k 8k 75k 8k

Fr
2.0M

63M 26k
3, 003

92k 10k
3, 000

84k 10k
En 57M 21k 83k 9k 73k 8k

Es
1.8M

50M 25k
3, 003

91k 10k
3, 000

82k 10k
En 48M 29k 83k 8k 74k 8k

TED: transcriptions of TED talks (Mauro et al., 2012). It has also been used in
several IMT and online learning works. We used the standard dev2010 and
tst2010 partitions for development and test, respectively. In this task, we
tackle the translation of Chinese. We split the Chinese into sequences of words
with the tool developed by Tseng et al. (2005).
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UFAL: data crawled from several medical collections, collected during the European
project Health in my Language (Bojar et al., 2017b). The development and test
data come from the KConnect project (Libovickỳ et al., 2016).

Europarl: proceedings from the European Parliament (Koehn, 2005). We used the
release 7. For the sake of comparison with previous works on IMT, we used
the newstest2012 and the newstest2013 as development and test partitions
respectively. Note that these partitions relate to news, and are slightly out of
the domain of Europarl training corpus.

1.5 Scientific goals

This thesis is framed within the recently emerged NMT technology. We aim to push
forward this field, by building flexible, interactive, adaptive translation systems, mak-
ing a better profit from the data and also tackling other tasks, following the NMT
spirit. The scientific goals of the thesis are described in the following sections.

1.5.1 Interactive-predictive neural machine translation

The interactive-predictive approach to MT aims to obtain high-quality translations
while diminishing the human effort spent in the process. Although NMT conveys
tremendous advances in the field, the systems still make errors. The application of
the interactive-predictive protocol to NMT would enable a more efficient use of this
technology in the post-editing field.

In Chapter 4 we develop the interactive-predictive protocol for the NMT frame-
work. We present novel interactive-predictive NMT (INMT) systems, able to interact
with the user via prefixes or validating segments from translations. We also describe
several refinements of the systems, aiming to enhance the user experience and pro-
ductivity.

1.5.2 Adaptive neural machine translation

As the natural consequence of the post-editing or IMT processes, new data are contin-
uously generated. These data represent valuable resources: they are domain-specific
samples which, under certain conditions, may be expensive to collect. In addition,
they are tailored to the user style of translation or to its preferences. Moreover, and
since they are generated as a byproduct of the correction protocol, they have no ad-
ditional production costs. Hence, the exploitation of these data is very interesting for
the translation industry. We are interested in a particular case from this scenario,
in which the system is updated as soon as a sentence is corrected. Therefore, the
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corrections provided by the user are taken into account by an adaptive NMT system
immediately, hopefully improving the translation quality provided and diminishing
the post-editing effort on a continuous manner.

Moreover, industry has also the demand of translating huge amounts of sentences
on a regular basis. In this case, the manual revision of all translation hypotheses is
excessively expensive. Under these conditions, the active learning paradigm becomes
very suitable. Under an AL framework, the system selects those samples that are con-
sidered worth being reviewed by the human agent. Once corrected, the system will be
updated with these samples. Therefore, an important aspect of the AL paradigm con-
sists of the development of selection functions, that sample the most useful sentences
to be corrected by the user.

Chapter 5 explores these scenarios. We firstly study how to update the NMT
systems under these conditions. In addition to classical methods to incrementally
update NMT systems, we propose two novel alternatives, that aim to improve some
of the potential issues suffered by classical update rules. Moreover, we develop an AL
framework for NMT. We propose alternative criteria for selecting whether a sentence
should be reviewed by a human agent or not.

1.5.3 Captioning visual content

MT is just one of the many problems that can be tackled following the sequence-to-
sequence paradigm. Among the other problems, image or video captioning results
particularly interesting. These problems consist of generating a description of the
content of a given image or video. It can be seen as an image to text translation. The
development of such systems has interesting applications. One of them consists of
captioning daily events, captured with an egocentric device. The construction of such
life-logging systems is useful for treating and mitigating mild cognitive impairment
(Sellen et al., 2007). In addition, these captioning systems, like MT, are not perfect.
This opens the application of the interactive-predictive protocol, aiming to correct
the outputs in a more efficient way.

Chapter 6 is devoted to the development of these multimodal systems. We start
by tackling a general-domain video captioning problem. Next, we specifically tackle
the egocentric captioning problem from a collection of daily events. We hypothesize
that there exists a relationship between these events that can be exploited by a system
capable to deal with extended contexts. We propose multimodal captioning systems to
tackle these problems. Finally, we study the application of the interactive-predictive
framework developed in Chapter 4 to these multimodal systems.
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1.5.4 Dissemination of the work

An important aspect of the scientific progress is its dissemination. All the software
developed in this thesis is freely available as open-source repositories, with MIT li-
cense. Section 7.2.4 and Appendix A describe the software released as a byproduct
of this thesis.

1.6 Summary

In this chapter we presented the statistical approach to the pattern recognition field,
describing the main problems to solve and categorizing the different approaches to
them. We briefly described the phrase-based technology and introduced the NMT
framework. Hence, after this introduction, we are able to frame our task of interest:
NMT is an instance of the sequence-to-sequence problem, a subcategory of the struc-
tured prediction field. We will tackle it using neural networks, a discriminative model
that approximates the conditional translation probability. This model is typically
trained on a supervised manner, from bilingual data collections.

We also introduced the general experimental framework used to assess our pro-
posals. We explained the evaluation metrics, the hypothesis testing followed and the
translation tasks that will be studied along the thesis. The chapter concluded by
defining the scientific goals intended to be addressed in this thesis.
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Neural networks

As stated in the previous chapter, we will tackle the sequence-to-sequence problem us-
ing neural networks. These are mathematical models that obtain a mapping between
an input and an output representation space. Neural networks consist of multiple
simple processors, also called artificial neurons or units, with weighted connections
between them. These models are loosely inspired in the neurons that constitute the
biological brain, following the mathematical foundations of how information is repre-
sented in biological systems.

From a historical perspective, the expectations on neural networks can be seen
as a roller coaster of hype and moderate disappointments. Their popularity had
three different waves or epochs of great hope (Goodfellow et al., 2016). The first
one started with the development of the theories of biological learning and the aim
of mathematically modeling them (McCulloch and Pitts, 1943). The first algorithms
that automatically learned the parameters of neural networks were developed in this
first wave (Rosenblatt, 1958; Widrow, 1960).

The second wave of neural networks dates from the 1980s, and it was called “con-
nectionism”. Major milestones were accomplished during this epoch, such as the
popular back-propagation algorithm (Rumelhart et al., 1986), the identification of
training difficulties of neural networks (Hochreiter, 1991; Bengio et al., 1994) and the
introduction of key architectures, such as convolutional neural networks (ConvNets;
LeCun et al., 1989a) or recurrent neural networks (RNN; Elman, 1990; Jordan, 1990;
Hochreiter and Schmidhuber, 1997). Moreover, by this time neural networks at-
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tracted the attention of statisticians, that provided a probabilistic interpretation of
neural networks (Bishop, 1995; Ney, 1995). However, to train complex networks was
a hard task then, mostly due to hardware and data limitations. Therefore, research
on connectionist models decreased.

The third and current wave of neural networks started in mid 2000s, when re-
searchers were able to properly train complex neural networks, leveraging huge amounts
of data and exploiting the increase of the computational capabilities, using special-
ized hardware, such as graphics processing units (GPU). During this third wave,
the term deep learning was coined (LeCun et al., 2015) to describe neural networks
composed of multiple hidden layers. Nowadays, deep learning models constitute the
top-performing approach for computer vision (Krizhevsky et al., 2012; Szegedy et al.,
2017) and NLP, including MT (Bojar et al., 2018) or speech recognition (Zeghidour
et al., 2018). Moreover, deep learning methods are being effectively introduced in
other scientific areas such as chemistry (Kang and Cho, 2018) or medicine and biol-
ogy (Ching et al., 2018).

In this chapter, we review the main aspects regarding neural networks that will be
used to build our systems in the following chapters. We describe the neural network
architectures that will be used to build our sequence-to-sequence models in Chap-
ters 3 and 6. In addition, we describe the parameter estimation problem and some
techniques that improve the generalization capabilities of these models.

2.1 From linear classifiers to multi-layer perceptrons

Recall from Section 1.1 that we are interested in obtaining a discriminant function
f : X → Y that maps an object from an arbitrary representation space X into
its corresponding class, from a finite space of classes Y. Each object x from X is
represented by a feature vector of size m (x ∈ Rm).

A linear predictor function a : X → R produces a linear combination of an input
feature vector and a set of parameters Θ. This set of parameters, also known as
weights, contains a vector θ ∈ Rm and an independent term, θ0 ∈ R, as in Eq. (2.1):

a(x;Θ) = θx+ θ0 (2.1)

However, when using linear functions we are limited to inducing linear relation-
ships. To obtain more expressive models, we can apply a non-linear function g : R → R
to the linear model. This function is called activation function and its arguments are
known as activations. Therefore, a non-linear predictor function is defined as in
Eq. (2.2):
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2.1. From linear classifiers to multi-layer perceptrons

g(a(x;Θ)) = g(θx+ θ0) (2.2)

We can express our desired discriminant function f in terms of |Y| non-linear
predictor functions, as in Eq. (2.3):

f(x;Θ) = argmax
1≤c≤|Y|

g(θcx+ θc0) (2.3)

where each predictor function has (θc, θc0) as parameters, for 1 ≤ c ≤ |Y|. Θ is a set
encapsulating the parameters of all predictors that conform the discriminant function.

Discriminant functions are the atomic elements upon which neural networks are
built. Under a connectionist perspective, each predictor function is called neuron or
unit.

2.1.1 Multilayer perceptron

A multi-layer perceptron (MLP) applies several discriminant functions, organizing
them as a chain: the units from an MLP can be seen as layers, in which the output
of a given layer is the input to the next one.

An MLP has three types of layers: input,
output and hidden layers. Input and output
layers are used to introduce data to the system
and to produce the output. The hidden layers
consist of several discriminant functions, which
apply Eq. (2.2). Therefore, an MLP with a sin-
gle hidden layer of h units applies Eq. (2.2) to
its inputs (x ∈ Rm). We can stack the param-
eters of each predictor function into a hidden
weight matrix Wh ∈ Rh×m and a bias vector
bh ∈ Rh, and the output of this layer can be
seen as a vector h ∈ Rh. This vector is called
the hidden state and it is computed according
to Eq. (2.4):

h = gh(Whx+ bh) (2.4)

h

x1

x2

x3

x4

x5

x6

h3

h2

h1

1
1

x

Wh Wo

bh
bo

y1

y2
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y4

y5
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gh

gh

gh

go

go

go

go

go

Figure 2.1: MLP with a single hidden
layer. x, y and h denote the input and
output vectors and the hidden state, re-
spectively. The parameters of the model
(Θ) are Wh, bh, Wo and bo.

where gh is the hidden layer activation function, applied element-wise. This hidden
state is the input to the next layer, which produces an r-dimensional output y ∈ Rr

by applying another set of predictor functions, as in Eq. (2.5):

21



Chapter 2. Neural networks

y = go(Woh+ bo) (2.5)

where, analogously to the previous layer, Wo ∈ Rr×h and bo ∈ Rr are the param-
eters to estimate and go is the output layer activation function. Fig. 2.1 shows the
architecture of this single-layered MLP.

2.1.2 Activation functions

A key aspect of neural networks is the activation functions. Some activation functions
make neural networks be universal approximators (Cybenko, 1989). That means, they
are able to approximate any function arbitrarily well. Moreover, note that, as neural
networks are primarily optimized via gradient-based methods (Section 2.2.2), these
activation functions must be differentiable.

Coping with these properties, some activation functions have been extensively
used in the neural networks literature and can be considered as “classical” activation
functions. These functions, together with their derivatives, are shown in Table 2.1.

Table 2.1: Activation functions. * denotes non-derivable functions.

Name Activation function Derivative

Rectified linear
unit (ReLU) ReLU(x) = max (0, x) ReLU′(x) =


1 if x > 0
0 if x < 0
∗ if x = 0

Logistic
sigmoid σ(x) = 1

1+exp (−x) σ′(x) = σ(x)(1− σ(x))

Hyperbolic
tangent tanh(x) = exp (x)−exp (−x)

exp (x)+exp (−x) tanh′(x) = 1− (tanh(x))2

Softmax φ(x) = exp xi∑|x|
k=1

exp xk

, for 1 ≤ i ≤ |x| φ′(x) = φ(x)(1− φ(x))

Most of these functions are applied element-wise to each activation. The softmax
function, however, is defined in a vectorial domain (R|x| → R|x|). This is a normal-
ization function, which ensures that all elements of its output space are between 0
and 1 and the sum of these elements is 1. These are the requirements of discrete
probability distributions. Therefore the softmax function is usually applied as the
output function of probabilistic models.
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2.2 Parameter estimation: gradient descent

The training of neural networks involves an optimization problem: we want to find
the parameters of the network Θ that minimize an objective function ℓ.

2.2.1 Objective functions

The choice of the objective function to optimize depends on the problem to tackle. In
this thesis, we are interested in probabilistic modeling. We therefore employ neural
networks to approximate probability distributions. This is usually done by applying
the softmax function (Table 2.1) as the last activation function of the model. When
dealing with such probabilistic networks, we generally are interested in measuring the
differences between two probability distributions: the one produced by the model and
the one given by the training data. The cross-entropy (H) between two probability
distributions, Pr1 and Pr2, quantifies this difference, following Eq. (2.6):

H(Pr1,Pr2) = −
∑
k

Pr1(k) log Pr2(k) (2.6)

Cross-entropy minimization is the most common optimization criterion for neural
networks under a probabilistic framework. To achieve this, the output space Y is
encoded following a one-hot scheme: let K be the dimension of Y. Each target label
is represented by a binary vector y ∈ {0, 1}K . A sample belonging to the class k
has all its elements set to 0 except for that representing the class, which is set to 1
at the k-th position. This codification defines the desired probability distribution for
each target sample. Hence, maximizing this criterion is equivalent to optimizing the
probability.

Next, let ŷ ∈ RK = f(x;Θ) be the output produced by a model f with parameters
Θ whose last activation function is a softmax. Thus, ŷ can be interpreted as the
probability distribution provided by the model. Now, we can compare this probability
distribution to the desired distribution, defined by the target sample (y).

By setting the label distribution y as Pr1 and the model distribution ŷ as Pr2, we
yield Eq. (2.7), the cross-entropy loss function:

ℓ(y, ŷ) = −
K∑

k=1

yk log ŷk (2.7)

where yk and ŷk denote the k-th elements of the vectors y and ŷ, respectively.
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2.2.2 Stochastic gradient descent

Stochastic gradient descent (SGD, Robbins and Monro, 1951) is the most common
method used to estimate the parameters Θ of the network. SGD is a particular
case of the gradient descent optimization method, in which the training samples are
chosen from a dataset made up of S observations: S = {(x(s),y(s))}s=S

s=1 , where each
x(s) is an input sample and y(s) is the corresponding output sample. SGD tackles
the problem of obtaining the parameters Θ̂ that minimize the loss function ℓ on the
training corpus, as in Eq. (2.8):

Θ̂ = argmin
Θ

1

S

S∑
s=1

ℓ(y(s), ŷ(s)) (2.8)

where, as in the previous section, ŷ(s) = f(x(s);Θ) is the output computed by the
network with parameters Θ for the input sample x(s).

SGD minimizes ℓ by iteratively taking steps toward the negative gradient of the
loss function with respect to the parameters of the current point. Therefore, let Θn

be the set of parameters estimated at the n-th training step. The initial parameters
Θ0 are initialized arbitrarily. SGD computes an update of the weights (∆Θn) which
is applied to Θn, as in Eq. (2.9):

nm

den
Θn+1 = Θn +∆Θn (2.9)

This update is defined as the minus gradient of the loss function with respect to
the model parameters at current step (gn), and it is usually modified by a factor ρ,
called the learning rate, which controls the magnitude of the updates (Eq. (2.10)):

∆Θn = −ρgn (2.10)

A gradient is the vector field of the partial derivatives of the elements of a vec-
tor. We explicitly write the gradient of the function ℓ(y(s), ŷ(s)) with respect to the
parameters Θn as ∇Θnℓ(y

(s), f(x(s);Θn)). This gradient is defined as:

gn = ∇Θn
ℓ(y(s), f(x(s);Θn)) =

(
∂ℓ(y(s), f(x(s);Θn))

∂θ1
, . . . ,

∂ℓ(y(s), f(x(s);Θn))

∂θW

)
where θ1, . . . , θW are the W elements composing Θn.

SGD computes the gradients for each individual observation from the training set.
This can be extended to the so-called mini-batch SGD, which consists of applying the
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gradient descent method to mini-batches of samples. A mini-batch is a small subset
of samples. We can obtain an unbiased estimate of the gradient by taking the average
gradient of a mini-batch of samples drawn independent and identically distributed
from the training dataset (Goodfellow et al., 2016). This allows the method to provide
a more accurate estimate of the gradient of the training set than pure SGD. Moreover,
the computations for all samples in the mini-batch can be parallelized and exploited
by specialized multi-core hardware, such as GPUs (see Section 2.2.6).

2.2.3 Alternative update rules for SGD

The SGD method presented above presents some practical shortcomings that make
its application difficult:

1. It can be a very slow process, even using mini-batch SGD and specialized hard-
ware.

2. The choice of the learning rate is critical.

3. SGD finds local minima and it is important to initialize the network parameters
to appropriate values.

These issues have been thoroughly studied in the literature, since they represent
important bottlenecks of the application of SGD. The first two problems are commonly
addressed by extending the plain SGD algorithm, usually via alternative update rules.
The latter problem involves the development of adequate initialization strategies of
the weights (see Section 2.2.4).

Among the plain SGD extensions, we find the inclusion of a momentum term
(Polyak, 1964; Nesterov, 1983; Rumelhart et al., 1986) and adaptive algorithms that
aim to compute a parameter-dependent learning rate. Adagrad (Duchi et al., 2011),
Adadelta (Zeiler, 2012) or Adam (Kingma and Ba, 2014) are very popular update
rules, that accelerate the training convergence. Table 2.2 provides a compact recap
of these alternative updates.

2.2.4 Parameter initialization

The initialization of neural networks has an important impact on the training process:
different initial points can make a model converge, affect its convergence speed and
reach better generalization capabilities. Nowadays, the initialization strategies are
mostly heuristic.

The most popular initialization strategy for the hidden layers draws values from a
uniform probability distribution (Glorot and Bengio, 2010). We will use this strategy
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Table 2.2: Alternative update rules proposed in the literature. The update (∆Θn) is the
modification applied to the weights on each training step. The auxiliary column denotes
additional computations and accumulators used by the different methods. ϵ denotes a small
value, to ensure numerical stability.

Optimizer Update (∆Θn) Auxiliary

SGD (Robbins and
Monro, 1951) −ρgn −

SGD with momentum
(Rumelhart et al., 1986)

µvn−1 − ρgn vn−1 = ∆Θn−1

Adadelta (Zeiler, 2012) −ρ

√
dn−1+ϵ
√
vn+ϵ

⊙ gn

vn = βvn−1 + (1− β)g2
n

dn = βdn−1 + (1− β)∆Θ2
n

Adam (Kingma and Ba, 2014) −ρ
mn

1−βn
1√

vn
1−βn

2
+ϵ

mn = β1mn−1 + (1− β1)gn

vn = β2vn−1 + (1− β2)g
2
n

to initialize our weights in Chapters 3 and 6. The recurrent weights of RNNs (Sec-
tion 2.3.1) are initialized to random orthogonal matrices, which makes the learning
speed invariant to the depth of the model (Saxe et al., 2013).

2.2.5 The back-propagation algorithm

The most common method for obtaining the gradients used by SGD is the back-
propagation algorithm (Rumelhart et al., 1986). The main idea is to compute the
gradients of the loss function in the output layer of a model. Next, by repeatedly
applying the chain rule of calculus, the error made by the model is propagated to
the lower layers, through the gradient of the loss function with respect to these lower
layers. The algorithm has two main stages:

Forward-pass: A training sample x is introduced to the network and passed through
all its layers, obtaining a predicted output ŷ. This prediction is compared to
the desired output y, by means of the loss function ℓ(y, ŷ).

Backward-pass: Starting from the output layer, the gradients of the loss with re-
spect to the parameters of each layer are computed. Applying the chain rule,
the gradients are propagated to lower level layers, until reaching the first one.
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2.2.6 Defining neural networks with computational graphs

In practice, the implementation of neural networks can be done using a computational
graph. Most of the frameworks used to deploy modern neural models rely on the
construction of these computational graphs. The graphs define a set of nodes, which
indicate variables. The variables represent data (e.g. vectors, matrices, tensors). The
framework also defines operations, as functions between variables. Therefore, if a
given variable is the output of an operation performed on another variable, an edge
is created, connecting both variables. Once a graph has been declared, the variables
are replaced by the numeric values of the task at hand.

Computational graphs allow us to efficiently apply automatic differentiation tech-
niques (see e.g. Baydin et al., 2018) to obtain the gradients of the network. This eases
and speeds up the development and deployment of complex models. Most frameworks
allow the automatic differentiation of neural networks. These frameworks can be clas-
sified into two major programming paradigms: declarative and imperative. Under the
first paradigm, the user declares what must be done; while in the second one, the user
specifies how the computations will be executed.

In declarative frameworks, the user first defines a symbolic computation graph.
This graph is interpreted by the framework during execution. The graph can be effi-
ciently differentiated via symbolic differentiation (Baydin et al., 2018). This strategy
allows us to apply optimization techniques to the computation graph, which speed
the computations. Among the most popular frameworks, Theano (Bergstra et al.,
2010; Theano Development Team, 2016) pioneered the exploitation of this approach.
Theano is a Python library which allows us to declare computational graphs, which
are compiled to generate GPU-optimized code. Tensorflow (Abadi et al., 2016) was
designed following the spirit of Theano, with the objective of deploying of large-scale
systems.

The imperative paradigm is gaining increasing attraction. Since under this paradigm
the user provides to the framework the exact computations to perform, this allows for
more intuitive programs. Among the most popular tools, we find (py)Torch (Collobert
et al., 2011; Paszke et al., 2017).

2.3 Neural network architectures

In addition to the already described MLP, a large number of neural network architec-
tures have been designed. A given architecture becomes more adequate than another
depending on the task to tackle. In this section, we review the main architectures,
in which the systems built in this thesis are based. We describe recurrent and convo-
lutional neural networks, with proven capabilities for sequence modeling and image
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analysis. Moreover, we also describe the mechanism used to map a discrete space into
a continuous one: the word embeddings.

2.3.1 Recurrent neural networks

Recurrent neural networks feature connections forming a directed cycle. This creates
a recurrent hidden state of size h (h ∈ Rh) that allows the network to effectively
model discrete-temporal sequences. RNNs process a sequence of T m-dimensional
input vectors xT

1 = x1, . . . ,xT , with each x ∈ Rm, to obtain an output sequence
of r-dimensional vectors yT

1 = y1, . . . ,yT , with each y ∈ Rr. To do this, different
RNN architectures have been proposed in the literature (Elman, 1990; Jordan, 1990;
Hochreiter and Schmidhuber, 1997; Cho et al., 2014). The simplest RNN architecture
is defined by Eq. (2.11):

ht = g(Uxt +Wht−1 + b)

yt = ht

(2.11)

where U ∈ Rh×m and W ∈ Rh×h are the input-to-hidden and hidden-to-hidden
weight matrices to estimate, while b ∈ Rh is the bias term. As in the regular MLP
(Eq. (2.4)), g is an activation function applied element-wise. Note that in this archi-
tecture, the output produced by the RNN is the hidden state itself. Hence, h ≡ r.
Unless specified, in the rest of this document, we will employ RNN architectures that
compute its outputs as their hidden states.

Training RNNs

To train RNNs, it is usually employed an extension of the back-propagation algo-
rithm, called back-propagation-through-time (Rumelhart et al., 1986; Werbos, 1990;
Williams and Peng, 1990). The idea is to unfold the network over time: an un-
folded RNN can be seen as a feedforward network with as many layers as unfolding
steps taken. The back-propagation-through-time algorithm applies standard back-
propagation (Section 2.2.5) to this unfolded version of the RNN.

Depending on the unfolding strategy, the algorithm has several variants (Williams
and Peng, 1990). The most popular one—and that used in this thesis—performs the
forward pass through all the elements in the sequence, accumulating inputs, states
and target vectors during this interval. Next, a single backward pass is performed
with the accumulated values. Since only a single forward and backward pass are
accumulated, the complexity of this method is linear with respect to the length of the
sequence.
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In addition to back-propagation-through-time, alternative algorithms for training
RNNs have been proposed. Autoregressive RNNs can be trained using the “teacher
forcing scheme” (Williams and Zipser, 1989), in which the ground truth samples are
fed back into the model. Originally, the technique was described for RNNs hav-
ing output-to-hidden recurrence and it was an alternative to the back-propagation-
through-time method. However, in models with output-to-hidden recurrence and
hidden-to-hidden recurrence, teacher forcing can be combined with back-propagation-
through-time.

Weaknesses of simple RNN

Despite being powerful sequence modelers, RNNs have two main drawbacks:

1. The input sequence is only scanned in one direction, usually from left to right
(or from the past to the future, if we consider temporal sequences). Hence,
information flowing from the right to the left is not considered. In order to
capture both left and right contexts, Schuster and Paliwal (1997) proposed the
bidirectional RNNs (Section 2.3.1).

2. The simple RNN architecture suffers from the vanishing gradient problem (Ben-
gio et al., 1994) (or its exploding version), which makes the network training
difficult when modeling long-term relationships (see Section 2.3.1).

Bidirectional recurrent neural networks

A bidirectional recurrent neural network (BRNN) consists of two independent recur-
rent layers: the so-called forward layer, which processes the input sequence in the
regular direction (from 1 to T ); and the backward layer, which processes the sequence
reversed in time (from T to 1), as in Eq. (2.12):

hf
t = ff(xt,h

f
t−1)

hb
t = fb(xt,h

b
t+1)

(2.12)

where hf
t and hb

t denote the forward and backward hidden states, respectively; ff
and fb refer to the unidirectional RNN function (e.g. Eq. (2.11) or Section 2.3.1), for
forward and backward layers, respectively.

These recurrent layers are combined according to a combination operator ⊕, to
obtain an output yt, with information from both directions, following Eq. (2.13):

yt = hf
t ⊕ hb

t (2.13)
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The most common combination strategy is to concatenate forward and backward
states, although others can also be used (e.g. summation or averaging). Since the
recurrent layers have no interaction between them, bidirectional RNNs can be trained
using similar algorithms as those used for unidirectional RNNs. Fig. 2.2 shows a
BRNN, unfolded in time.

xt−1 xt xt+1

⊕

yt−1 yt+1yt

fb fb fb

⊕ ⊕

ff ffff

Figure 2.2: Bidirectional recurrent neural network, unfolded in time. It consists of two
independent recurrent layers, one of them analyzing the input sequence forward in time (f f)
and the other one (fb), analyzing it backward. Each RNN has independent states, which
are merged through with the combination operator (⊕). The output of the network is the
result of this combination of inner layers.

Vanishing and exploding gradients

One of the biggest difficulties of the training of very deep neural networks are the
vanishing and exploding gradient problems (Hochreiter, 1991; Bengio et al., 1994).
They refer to the accumulation of gradients of these deep networks during an update.
Note that, since the back-propagation-through-time unfolds the RNN for the com-
plete sequence, RNNs are greatly affected by these problems. The vanishing gradient
problem refers to the situation in which the norm of the gradients is close to 0: in
this case, as the gradients are propagated (multiplied) to previous time-steps, they
diminish exponentially fast to norm 0. Hence, the model is unable to learn the long-
term dependencies from the sequence. Analogously, if the norm of the propagated
gradients is large, they grow exponentially, causing numerical instability and learning
issues. This is known as the exploding gradient problem.

The typical sigmoid activation functions (σ, tanh) are prone to suffer from this
problem: their derivatives are bell-shaped and their values are close zero. Other
activation functions like ReLU present fewer vanishing gradient issues and are com-
monly used in deep (non-recurrent) neural architectures (e.g. Krizhevsky et al., 2012;
Szegedy et al., 2015).

In the case of RNNs, alternative recurrent functions have been developed. They
can be seen as complex activation functions, taking the form of gated cells. These
gates decide the amount of information that flows through the cell. By construction,
these activation functions have a derivative of 1, and the vanishing and exploding
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gradient problems are (partially) alleviated. These units are necessary to successfully
model distant dependencies.

In this thesis, we employ the popular long short-term memory (LSTM, Hochreiter
and Schmidhuber, 1997) units, for all our recurrent models, which is described below.
In addition to LSTMs, it is worth also mentioning the gated recurrent unit (GRU,
Cho et al., 2014), which can be seen as a simplified version of LSTM units, and it is
a very common alternative to LSTMs.

To addres the exploding gradients problem, in addition to the aforementioned
functions, other solutions involve clipping the norm of the gradients to a maximum
predefined value during training and applying weight regularization (Section 2.4, Pas-
canu et al., 2013).

LSTM: Long short-term memory units

LSTM units arguably are the most pop-
ular recurrent gated architecture. Since
their inception (Hochreiter and Schmidhu-
ber, 1997), subsequent works introduced
alternative variants (see e.g., Greff et al.,
2017). In this thesis, we use the LSTM
variant introduced by Gers et al. (2000),
which is described below. Fig. 2.3 shows
an illustration of this LSTM cell.

In addition to the hidden state, ht ∈
Rh, LSTM networks maintain an additional
state, called memory: ct ∈ Rh. The hid-
den state is computed as the memory state,
regulated by an output gate ot ∈ Rh, as in
Eq. (2.14):

ht = ot ⊙ ct (2.14)

where ⊙ denotes the element-wise multi-
plication.

INPUT
GATE

it
tanh

xt c̃t �

�
ft

ct−1

+
ct ht�

ot

ht−1

xt

xt

ht−1

ht−1

xtht−1

ct

Wi Ui+

σ bi

OUTPUT
GATE

Wo Uo+

σ bo

FORGET
GATE

σ

+

bf

Wf Uf

Figure 2.3: LSTM cell. The output de-
pends on the previous hidden and memory
states (ht−1, ct−1) and the current input xt.
Input, output and forget gates module the
information that flows through the unit.

The memory state is computed as the addition of the memory state of the previous
time-step, modulated by a forget gate ft ∈ Rh, plus an updated memory state for the
current time-step (c̃t ∈ Rh), modulated by an input gate it ∈ Rh, as in Eq. (2.15):

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.15)

31



Chapter 2. Neural networks

The updated memory state is computed as in Eq. (2.16):

c̃t = tanh(Ucxt +Wcht + bc) (2.16)

where Wc ∈ Rh×h, Uc ∈ Rh×m and bc ∈ Rh are the weight matrices for the previous
hidden state, input of the layer and the bias term, respectively.

The input, forget and output gates are computed according to Eq. (2.17):

ft = σ(Ufxt +Wfht + bf)

it = σ(Uixt +Wiht + bi)

ot = σ(Uoxt +Woht + bo)

(2.17)

where Wf ,Wi,Wo ∈ Rh×h, Uf ,Ui,Uo ∈ Rh×m and bf , bi, bo ∈ Rh are the parameters
to estimate.

2.3.2 Attention mechanisms

Attention mechanisms are essential components of modern neural architectures, es-
pecially relevant for sequence-to-sequence encoder–decoder models, as the ones used
for NMT (see next chapter). They were motivated by the fact that encoder–decoder
approaches based on RNNs (Cho et al., 2014; Sutskever et al., 2014) used the last
hidden state of the encoder as the input of the decoder, i.e. a fixed-size represen-
tation of the input sequence, which had to contain the whole information from the
input sequence. To encapsulate this information from a long sequence into a fixed-
size representation required large models, which were hard to train, and even so,
the performance dropped when dealing with long sequences. Attention mechanisms
constituted an effective method to deal with such long sequences: they computed a
dynamic representation of the input sequence at each decoding time-step, based on
the current state of decoding. This allowed the model to focus on the most useful
parts of the input sequence, depending on the current decoding state.

Generalizing this concept, an attention mechanism is a function that computes
a contextual representation of a complex input object, in our case, a sequence of T
elements. The final representation is conditioned by a state vector, called query, and it
is used to weight the input sequence. Both objects are related by means of an attention
function (a), that computes a compatibility score for each one of the elements from
the input sequence, with respect to the query. These scores are then used to compute
a weighted average of the T elements of the sequence. This final representation is
called the context vector (z). Under the scope of attention mechanisms, the object of
interest (the input sequence) is represented by T vector pairs, called keys and values.
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The keys are used as arguments of the function a, that obtains the attention scores.
These scores will weight the values, yielding the desired context vector.

More formally, let q ∈ Rq be a query vector of size q, and kT
1 and vT

1 be the T
key-value vectors representing the input sequence, of dimensions k and v, respectively.
An attention mechanism can be seen as a two-step procedure. First, we apply an
attention function a to each one of the elements from the set of keys, to score it with
respect to the query. This provides a vector of T scores, which is normalized via the
softmax function (φ), yielding a vector of attention weights. In the second step, the
attention weights are used to compute the context vector z, weighting the values, as
in Eq. (2.18):

z = φ(a(q,kT
1 ))v

T
1 (2.18)

Attention functions

Alternative attention mechanisms have been developed, basically by modifying the
attention function a. The original function, proposed by Bahdanau et al. (2015), was
a single-layered MLP of size da. This function is applied element-wise to the T vectors
from the key matrix kt ∈ Rk,∀kt ∈ kT

1 , as in Eq. (2.19):

a(q,kT
1 ) = v⊤ tanh(Wq +Ukt + b) (2.19)

where v ∈ Rda , W ∈ Rda×q, U ∈ Rda×k and b ∈ Rda are the weights to estimate.

Among the alternative attention functions proposed, it is worth highlighting the
“dot-product” attention function (Luong et al., 2015a). It is also applied element-wise
to K,∀kt ∈ kT

1 , as in Eq. (2.20):

a(q,kT
1 ) = qk⊤

t (2.20)

This alignment function is computationally cheaper than the one proposed by
Eq. (2.19), but it requires the same dimensions of queries and keys (q and k). An issue
suffered by this function is that, when using high-dimensional vectors, the magnitude
of this dot product is increased. This causes the gradient of the softmax function to
be extremely low (Vaswani et al., 2017). Therefore, this attention function performs
worse with high-dimensional vectors than the additive one (Britz et al., 2017). In order
to make this model more invariant to such dimensional issues, Vaswani et al. (2017)
proposed the “scaled dot product” attention function (Eq. (2.21)), again ∀kt ∈ kT

1 :
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a(q,kT
1 ) =

qk⊤
t√
q
,∀kt ∈ kT

1 (2.21)

where the division by √
q is applied element-wise.

Recurrent units with attention

A common usage of attention mechanisms is to embed them in the decoder of RNN-
based encoder–decoder models (as those described in Chapters 3 and 6). The attention
mechanism serves as a bridge between the encoder and the decoder RNNs. An RNN
with attention introduces the context vector computed by the attention mechanism
(zt) as an additional input, as in Eq. (2.22):

ht = g(Uxt +Wht−1 +Azt + b)

yt = ht

(2.22)

where U ∈ Rh×m, W ∈ Rh×h, A ∈ Rh×z, b ∈ Rh are the weights to estimate.

When introduced in RNNs, the context vector is typically computed by applying
the attention mechanism using as query the hidden state from the decoder at the
previous time-step (ht−1). The keys and values (kT

1 , vT
1 ) come from the encoder, as

in Eq. (2.23):

zt = φ(a(ht−1,k
T
1 ))v

T
1 (2.23)

Analogously to simple RNNs, the attention mechanism can also be introduced to
LSTM units following Eq. (2.24):

ht = ot ⊙ ct

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = tanh(Ucxt +Wcht +Aczt + bc)

ft = σ(Ufxt +Wfht +Afzt + bf)

it = σ(Uixt +Wiht +Aizt + bi)

ot = σ(Uoxt +Woht +Aozt + bo)

(2.24)

where Uc,Uf ,Ui,Uo ∈ Rh×m, Wc,Wf ,Wi,Wo ∈ Rh×h and Ac,Af ,Ai,Ao ∈ Rh×z,
bc, bf , bi, bo ∈ Rh are the weights to estimate. The context vector is obtained as in
the previous case (Eq. (2.23)).
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Conditional recurrent units

A well-performing alternative to inte-
grate RNNs with attention mechanisms
is the so-called conditional units (Sen-
nrich et al., 2017; Peris and Casacuberta,
2019a). They consist of several RNN tran-
sition blocks, with an attention mecha-
nism in between. Most recurrent decoders
used in the following chapters of the the-
sis (Chapters 3 to 6) will follow this ar-
chitecture. Fig. 2.4 shows an illustration
of a conditional cell.

ht−1

h′t

xt

zt
MODEL
ATT.

kT
1

f1 f2 ht

vT
1

Figure 2.4: Conditional RNN unit. It con-
sists of a stacked application of RNN units,
with an attention mechanism in between.

The first block of a conditional RNN applies the corresponding recurrent function
(f1, typically a gated unit) to its input (xt), computing an intermediate hidden state
h′
t, as in Eq. (2.25):

h′
t = f1(xt,ht−1) (2.25)

This intermediate representation are the queries of an attention mechanism, which
obtains the context vector zt similarly as in the previous section (Eq. (2.26)):

zt = φ(a(h′
t,k

T
1 ))v

T
1 (2.26)

This context vector is the input to the second RNN block, which also takes into
account the intermediate representation h′

t and applies the recurrent function f2, as
in Eq. (2.27):

ht = f2(zt,h
′
t) (2.27)

Multi-head attention

In addition to its usage in combination with RNNs, attention mechanisms can act
as sequence modelers by themselves. They can account for inter-sequence (between
two different sequences) and intra-sequence (between elements of the same sequence)
relationships (Parikh et al., 2016; Lin et al., 2017). This latter case is called self-
attention and it has been exploited by non-recurrent architectures for sequence-to-
sequence learning (Vaswani et al., 2017). Under this scope, to make the attention
mechanisms more expressive, Vaswani et al. (2017) introduced the so-called multi-
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head attention. This is an extension of the regular attention mechanism, that allows
to learn representations of different sub-spaces at different positions. Multi-head
attention is the main component of the Transformer model (Vaswani et al., 2017),
a common and well-performing sequence-to-sequence architecture, that will be used
in following chapters (Chapters 3 to 6). Refer to Section 3.2 for a description of this
architecture.
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Figure 2.5: Multi-head attention mechanism. This example shows stacks of T = 4, T ′ = 3
elements and H = 4 parallel heads. Elements belonging to each one of the heads share color.
In a first stage, the elements from the input sequences qT ′

1 , kT
1 and vT

1 are linearly projected
H times. Next, each one of the projections pass through the attention mechanism, yielding
H different heads. These heads are concatenated, obtaining a matrix of T rows and Hdm
columns. The result of the multi-head attention is computed as a linear projection of the
concatenated heads.

Considering that multi-head attention is devised for non-recurrent architectures,
there are no dependencies between the different query vectors. Therefore, the opera-
tions can be parallelized by stacking T ′ query vectors as a sequence of queries (qT ′

1 ,
with each qt′ ∈ Rq, for 1 ≤ t′ ≤ T ′).

The multi-head attention model, illustrated in Fig. 2.5, computes this attention
in parallel, over H different, learned projections of size dm of the queries, keys and
values. These projections, for 1 ≤ h ≤ H are computed following Eq. (2.28):

q̄
T ′ (h)
1 = W (h)

q qt′ , for 1 ≤ t′ ≤ T ′

k̄
T (h)
1 = W

(h)
k kt, for 1 ≤ t ≤ T

v̄
T (h)
1 = W (h)

v vt, for 1 ≤ t ≤ T

(2.28)
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where each W
(h)
Q ∈ Rdm×q, W

(h)
K ∈ Rdm×k and W

(h)
V ∈ Rdm×v are the trainable

matrices. After projecting queries, keys and values, the multi-head attention model
applies an attention mechanism in parallel all the elements of these sequences, ac-
cording to Eq. (2.29), which is analogous to Eq. (2.18):

Hh = φ(a′(q̄
T ′ (h)
1 , k̄

T (h)
1 )v̄

T (h)
1 (2.29)

where a′ : (T ′ × q, T × k) → T ′ × T denotes an attention function that is applied in
parallel, computing a sequence of scores for each one of the elements of the sequence
q̄
T ′ (h)
1 . Following Eq. (2.18), these scores are normalized applying the softmax func-

tion (φ) to each one of the vectors in the sequence, yielding a sequence of attention
weights αT ′

1 , where each αt′ ∈ RT , for 1 ≤ t′ ≤ T ′. These weights are used to weight
the sequence of projected values. These attended representations Hh ∈ RT ′×dm , for
1 ≤ h ≤ H, are called heads and the typical attention function used for multi-head
attention is the scaled dot product (Eq. (2.21), Vaswani et al., 2017).

The heads are concatenated into a matrix ([H1; . . . ;HH ] ∈ RT ′×Hdm) and pro-
jected into an output space of o dimensions by means of a trainable matrix Wo ∈
RHdm×o. Therefore, the multi-head attention function is defined as a function γ :
(RT ′×q,RT×k,RT×v) → RT ′×o, as in Eq. (2.30):

γ(qT ′

1 ,kT
1 ,v

T
1 ) = [H1; . . . ;HH ]Wo (2.30)

where each head is computed as aforementioned described. Note that performing most
of these operations can be done in parallel. Hence, the computation of multi-head
attention is very fast on specialized hardware, such as GPUs.

2.3.3 Convolutional neural networks

ConvNets are a class of neural networks consisting of a stacked application of con-
volutional and pooling operations. ConvNets have a crucial importance in computer
vision, excelling for object detection and classification. Since in Chapter 6 we tackle
image-related tasks, it is convenient the processing of the images with ConvNets. The
predecessors of modern ConvNets can be traced back to Fukushima (1980); LeCun
et al. (1989b); Waibel et al. (1989). These ideas were further developed for document-
level recognition, resulting in the LeNet architecture, which are the base of modern
ConvNets (LeCun et al., 1998). These networks consist of a cascaded application of
convolutional layers and pooling operations. A convolutional layer consists of a set of
weights, also called kernels or filters, which are applied to its input to obtain a feature
map.
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More formally, let x1, . . . ,xT , with each x ∈ Rm, be inputs vectors of a convolu-
tional layer. The convolutional layer obtains a new feature ct by applying the filter
W ∈ Rh m, to windows of h input elements, called strides, as in Eq. (2.31):

ct = g(Wxt+h−1
t + b) (2.31)

where g is an activation function and b is a bias term. These filters are applied
through the full input, producing a feature map c = c1, . . . , cT−h+1. Multiple filters
with different strides are typically applied in a convolutional layer, obtaining several
feature maps (c1, . . . , cn). Each feature map usually has its weights tied.

After this convolutional layer, it is usual to apply a pooling layer, which condenses
the information from the feature maps into a more compact representation. Common
pooling operators consist of taking the maximum or the mean value of the feature
maps.

It is common to stack a number of convolution plus pooling layers, to compute
different representations of the input object. The stack of convolutions is followed by
a number of fully-connected layers (an MLP), which perform the task at hand, e.g.
object classification (Krizhevsky et al., 2012) or text classification (Kim, 2014).

Moreover, since the ConvNets implicitly learn representations of the inputs, this
can be leveraged for other tasks. ConvNets are very effective feature extractors. The
representations computed by the fully-connected layers or by the last convolutional
layer are rich, and can be effectively exploited by other models, for example to tackle
image and video captioning, as done in Chapter 6.

2.3.4 Word embeddings

One of the critical ideas that allowed the successful application of neural models to
NLP tasks was the development of word embeddings. A word embedding is a mapping
from a discrete vocabulary space into a dense, real-valued vector of low dimensionality:
they bridge the discrete space of words and the continuous representation handled by
neural networks.

The origins of this idea can be tracked to Hinton (1986) and Elman (1990, 1991).
In the field of MT, Casañ and Castaño (1999) proposed a neural translator with
hand-crafted distributed representation of words. The full exploitation of distributed
representations of words was achieved by one of the seminal works on neural language
models (Bengio et al., 2003), who proposed to project each word to the continuous
space and perform the probability estimation on this continuous space. Each word
from the vocabulary was represented by a different row in a matrix. This matrix
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was estimated together with the rest of parameters of the network, in an end-to-end
training pipeline: the embeddings are a byproduct of the training process.

From here, research on word embeddings attracted a large interest (e.g. Mikolov
et al., 2013a,b; Pennington et al., 2014), because they serve as basis for a wide variety
of NLP tasks. In the last year, the development more robust word representations is
one of the most popular research topics in the NLP community (Peters et al., 2018;
Devlin et al., 2018).

2.4 Improving generalization in neural networks

The goal of machine learning models is to approximate a function (Section 2.2.2).
The fitting of a model measures how well it approximates this target function. A
properly-trained model, which approximates well the target function on the training
data, should also be able to work well on unseen data. Regularization applied to
machine learning refers to any method intended to lower the generalization error of
a given model, but not necessarily its training error. Neural networks, and more
specifically deep networks, are very expressive models, able to approximate complex
functions. However, this capacity also makes them prone to memorize the training
data, incurring into overfitting issues. When working with neural networks, to apply
regularization techniques becomes mandatory, in order to reduce the overfitting of
the model. In this thesis, we made use of the following regularization techniques:

• Early stopping: it is a training strategy used to find the point of the training
process in which the model starts to overfit the training data. To this end, we
compute the error on a validation dataset. Early stopping assumes that if the
error made by the model in the development set does not improve after a given
number of consecutive evaluations it will no longer improve, because the model
is overfitting the training data. Therefore, we have reached our desired point.
We will make use of early stopping when training all of our systems Section 3.5.1
and Chapter 6.

• Weight decay: The generalization capability of a model relies on a balance
between its expressiveness and the amount of training data available: having
a large number of training samples allows the usage of more expressive models
(Vapnik and Chervonenkis, 1971; Bishop, 2006). In contrast, if there are few
training samples, the model will tend to overfit the training data, obtaining a
poor generalization error. The expressiveness of the network can be constrained
by limiting the growth of the weights, unless necessary. This can be done by
adding a regularization term to the training objective during the optimization
process. Weight decay introduces the magnitude of some parameters of the
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model into the objective function to minimize (Krogh and Hertz, 1992). Refer
to Section 3.5.1 for details on the application of weight decay in our systems.

• Noise injection: Following the spirit of weight decay, an alternative regu-
larizing method consists of injecting some noise (Bishop, 1995). This noise can
be applied to the network components (weights and activations), to the input
objects and to the outputs of the network. In this thesis, we will apply Gaussian
additive noise during training. This technique adds noise drawn from a zero-
centered Gaussian distribution to the network parameters during the training
phase.

• Label smoothing When training models, we also apply label smoothing
(Szegedy et al., 2016) to add some noise in the target labels. This makes the
model to be less confident on the training data. In our sequence-to-sequence
systems, the target samples are codified as binary vectors, with all elements
set to zero but the one indicating the label of the sample set to one. Label
smoothing subtracts a small value from the label and distributes it among the
rest of the vector elements.

• Dropout: Dropout (Srivastava et al., 2014) is a regularization strategy that
randomly masks some units during training, with a given probability p. Dropout
reduces overfitting, as the method prevents the collaboration between weights
to memorize training samples. Dropout is implemented as a masking layer,
sampled at every step from a Bernoulli distribution with probability p during
training time. At prediction time, all units are present, with their weights scaled
down by a factor of p. Again, refer to Section 3.5.1 and Chapter 6 for details
on the application of dropout in our systems.

• Batch normalization: in standard neural network architectures, the inputs
of a given layer are conditioned by the outputs of all preceding layers. As the
training is done via SGD with back-propagation, when the parameters of a
layer are modified, the inputs of the following layers are also affected. As a
network becomes deeper, the variations on the distributions that are input to
the layers become larger. This effect is known as internal “covariate shift” (Ioffe
and Szegedy, 2015) and makes the learning process of deep neural networks
difficult and unstable. The idea of batch normalization is to reduce the internal
covariate shift, by normalizing the outputs of a layer before being input to
the following one (Ioffe and Szegedy, 2015). Therefore, the input distributions
are more consistent, which makes the training process converge faster and be
more robust to initialization and learning rate choices. This normalization is
performed layer-wise, according to mini-batch statistics.

• Layer normalization: A generalization of batch normalization is layer nor-
malization (Ba et al., 2016). Instead of computing the normalization statistics
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across mini-batches, they are computed for the activations of a layer. Hence, the
normalization is performed feature-wise. Hence, layer normalization is indepen-
dent from the mini-batch size and it can be applied in online learning regimes,
as those described in Chapter 5.

2.5 Summary

In this chapter we introduced artificial neural networks and reviewed its main features.
We addressed the parameter estimation problem via gradient descent, using the back-
propagation algorithm to efficiently obtain the derivatives of the loss function with
respect to the parameters of the network. We also enumerated several update rules,
which aim to accelerate the training convergence.

We revisited the most relevant neural network architectures to sequence-to-sequence
modeling. We put a special emphasis on RNNs and attention mechanisms, as these
represent the core of the sequence-to-sequence models. We also introduced word em-
beddings and ConvNets. Finally, we also described several techniques that will help
us to improve the generalization capabilities of our models.

All these techniques and neural architectures will be used in the following chapters
to build sequence-to-sequence systems, that allow us to tackle the MT (Chapter 3)
and the multimodal captioning (Chapter 6) problems.
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Chapter 3

Neural machine translation

As we introduced in Chapter 1, the ideas of tackling MT with neural networks date
back to the second wave of neural networks (Allen, 1987; Chrisman, 1991; Castaño
and Casacuberta, 1997; Forcada and Ñeco, 1997). These pioneering works addressed
the translation problem under constrained conditions, due to the computational limi-
tations existing at that time. Although the results were promising, these early models
suffered serious problems to tackle more realistic tasks: they did not escalate well,
requiring large network sizes and prohibitive learning times.

These scaling issues were partially addressed by Bengio et al. (2003), as explained
in Section 2.3.4, who introduced word embeddings in a neural language model. From
here, and backed by the advent of a higher computational capability, neural models
were used in a wide variety of tasks, such as language modeling (Schwenk, 2007;
Mikolov et al., 2010), handwritten text recognition (Graves et al., 2009) or automatic
speech recognition (Graves et al., 2013).

In the MT field, these neural models were initially introduced into the PB-SMT
pipeline, as additional features of the log-linear model (Devlin et al., 2014; Sunder-
meyer et al., 2014). But the major paradigm shift came from the introduction of
NMT (Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014). In
NMT, translations are obtained solely by large neural networks, usually relying on an
encoder-decoder framework: the encoder reads a source sentence and obtains a rep-
resentation of it. Given this representation, the decoder generates the corresponding
translation. The neural models are trained in an end-to-end way. This is opposed
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to the PB-SMT approach, which is made up of multiple decoupled models, trained
independently.

In this chapter we describe the main components of NMT technology: training
objective, architectural choices, decoding process and word segmentation. To this
end, we heavily rely on the concepts explained in Chapter 2. Next, we describe the
systems that are the base of the following chapters (Chapters 4 and 5) and present
the performance of them in our MT tasks (see Section 1.4.3). For the sake of clarity,
in the following sections, expressions relating to the source sequence are denoted by
the index j, while those referring to the target sequence are indexed by i.

Parameter estimation

NMT follows the probabilistic framework to address the translation problem. Recall
from Section 1.3 that the goal of SMT is to obtain, given a sentence xJ

1 in the source
language, its most likely translation ŷÎ1 , in the target language. This was defined by
Eq. (1.5) as:

ŷÎ1 = argmax
I,yI

1

Pr(yI1 | xJ
1 )

Applying the chain rule of the probability, this expression can be factorized as
shown in Eq. (3.1)

ŷÎ1 = argmax
I,yI

1

I∏
i=1

Pr(yi | yi−1
1 , xJ

1 ) (3.1)

This conditional probability can be directly modeled by a neural model with pa-
rameters Θ. Taking logarithms for the sake of numerical stability, we reach Eq. (3.2):

ŷÎ1 ≈ argmax
I,yI

1

I∑
i=1

log p(yi | yi−1
1 , xJ

1 ;Θ) (3.2)

The parameters Θ are usually estimated on a parallel corpus S = {(x(s), y(s))}Ss=1,
consisting of S sentence pairs. The training objective is to find the set of parameters
Θ̂ that minimizes the minus log-likelihood on this training set, as in Eq. (3.3):
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3.1. RNN-based NMT

Θ̂ = argmin
Θ

S∑
s=1

I(s)∑
i=1

− log p(y
(s)
i | yi−1

1

(s)
, x(s);Θ) (3.3)

where I(s) is the length of the s-th target sentence and yi−1
1

(s) denotes the s-th target
sentence up to the position i − 1. To minimize this cost function is equivalent to
maximize the likelihood. As discussed in Section 2.2.1, this is achieved by neural
networks using the cross-entropy loss function (Eq. (2.7)). This is, by far, the most
common NMT training procedure, although alternative estimation methods have been
proposed, with the goal of directly optimizing translation metrics (Shen et al., 2016)
or regularizing this maximum likelihood objective (Edunov et al., 2018).

The optimization process is carried out by gradient descent (Section 2.2.2). Since
in Eq. (3.1) we have a recurrence on the outputs, it is usual to follow the teacher
forcing training scheme. This is done at training time by introducing the ground
truth samples as an additional input of the model, but shifted one time-step to the
right.

3.1 RNN-based NMT

MT is a paradigmatic example of a sequence-to-sequence problem. RNNs (Sec-
tion 2.3.1) are devised to model sequences, therefore, the first well-performing NMT
systems were based on RNN encoder–decoder models (Cho et al., 2014; Sutskever
et al., 2014). The addition of attention mechanisms into the NMT model (Bahdanau
et al., 2015) allowed the system to focus on different parts of the input sentence,
providing better performance when dealing with long sequences.

This attention-based RNN system has been the basis of many following works,
that aimed to improve the attention mechanism (Luong et al., 2015a), the recurrent
units (Tu et al., 2017) or increasing the depth of the model (Wu et al., 2016). Despite
all these proposals, the original attention-based RNN remained without dramatic
changes as the predominant model for NMT, until the advent of the Transformer
model (Vaswani et al., 2017, see Section 3.2). In the following sections, we will review
the main components of this attention RNN-based NMT model. The full picture of
RNN-based NMT is shown in Fig. 3.1.

45



Chapter 3. Neural machine translation

x1

x2

xJ

RNNf h1

h2

hJ

attention
mechansim

y1

Embedding

<null>z1

z2

zI

s1

s2

sI

Embedding

Embedding

Embedding

Embedding

Embedding

W2

W3

W1

WV

x1

x2

xJ

j=1

j=1

j=2

j=J

j=2

j=J

i=I

i=2

i=1

RNN

fo

fe

fd

RNNf

RNNf

RNNb

RNNb

RNNb

RNN

RNN

attention
mechansim

attention
mechansim

ϕ

y2WV

fo

ϕ

yIWV

fo

ϕ

g t1

tI

t2

g

g

W2

W3

W1

W2

W3

W1

Figure 3.1: RNN-based encoder–decoder with attention. x1, . . . , xJ is the sequence of
source words, projected into the continuous space by means of an embedding matrix. This
sequence of embeddings are processed by an encoder fe: a bidirectional RNN, yielding a
sequence of annotations (hJ

1 ). This sequence is the input of the decoder RNN fd, consisting
of a decoder RNN with an attention mechanism, followed by a deep output function (fo),
and a fully-connected output layer (WV). Finally, the softmax function (φ) is used to obtain
the probabilities of the target words.

Encoder The input of the system is a sequence of tokens xJ
1 = x1, . . . , xJ , each

of them belonging to a finite vocabulary X . Each element is codified with a unique
index, from 1 to |X |. Then, each word xj is projected into a continuous space, by
means of an embedding matrix, as in Eq. (3.4):

xj = Es(xj) (3.4)

where Es ∈ Re×|X| is the embedding matrix of the source language, e is the embedding
size and Es(xj) denotes the row of the embedding matrix corresponding to the element
xj .

The sequence of embeddings x1, . . . ,xJ is processed by an encoder RNN (fe), usu-
ally with LSTM (Section 2.3.1) or GRU cells. Since we have access to the complete
input sequence, this encoder RNN is typically bidirectional (Section 2.3.1) The com-
bination function of forward and backward layers is usually the concatenation of their
hidden states. Therefore, from the sequence of embeddings is obtained a sequence
of states, which model the dependencies across the sequence. These states are called
annotations, computed as in Eq. (3.5):
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3.1. RNN-based NMT

hJ
1 = fe(x

J
1 ) (3.5)

where hJ
1 is a sequence of J annotations, in which each element hj ∈ hJ

1 , 1 ≤ j ≤ J ,
can be seen as a representation of size k of the elements around the position j of the
source sequence. This encoder RNN can be made of several stacked layers (Wu et al.,
2016; Barone et al., 2017). If the encoder is a deep network, hJ

1 is made of the hidden
states from the top layer in the stack.

Decoder The decoder consists of an RNN with attention mechanism followed by
a deep output layer. It models the conditional translation probability following the
factorization from Eq. (3.1). This can be done by performing the recurrence over
the sequence of previously generated tokens, providing the RNN of autoregressive
capabilities. These tokens are introduced to the decoder RNN via their embedding,
following Eq. (3.4). As in the encoder, it is common to use (deep) LSTM or GRU ar-
chitectures; or their conditional alternative (Section 2.3.2). The attention mechanism
is applied as explained in Section 2.3.2.

This attention mechanism bridges the sequence of annotations computed by the
encoder together with the hidden state of the decoder RNN. At each decoding step
i, the attention mechanism computes a context vector zi as described in Eq. (2.18):

zi = φ(a(si−1,h
J
1 ))h

J
1

where φ(a(si−1,h
J
1 )) computes the attention weights of the annotations at the i-th

decoding step. The attention function a is usually the additive attention (Eq. (2.19))
or the dot-product attention (Eq. (2.20)).

Therefore, at the i-th decoding time-step, the decoder computes a hidden state si
considering the context vector (zi) computed by the attention mechanism, the word
embedding of the previously generated token (Et(yi−1)) and the previous hidden state
of the decoder si−1, following Eq. (3.6):

si = fd(Et(yi−1), si−1, zi) (3.6)

where fd is the recurrent function with attention (e.g. Eq. (2.24)), si ∈ Rq is the
hidden state of the decoder RNN, of dimension q, Et ∈ Rd×|Y| is the embedding matrix
of the target language, Y being the finite target vocabulary and d the dimension of
the target word embedding.

The first state of the decoder is usually initialized according to some information
from the encoder, according to a function fi, as in Eq. (3.7):
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s0 = fi(h
J
1 ) (3.7)

Popular initialization strategies define fi as an MLP, with an average representa-
tion of the annotations (Xu et al., 2015; Sennrich et al., 2017) or the last state of the
backward encoder RNN (Bahdanau et al., 2015) as input.

The output state of the decoder RNN (si) is combined together with the context
vector zi computed by the attention mechanism and the embedding of the previously
generated word Et(yi−1) in a deep output layer (Pascanu et al., 2014), which applies
the function fo to obtain an l-sized intermediate representation ti ∈ Rl, as in Eq. (3.8):

ti = fo(si, zi,Et(yi−1)) (3.8)

fo applies the non-linear function g (typically tanh) applied to a combination of
linear projections of its inputs, following Eq. (3.9):

fo(si, zi,E(yi−1)) = g(W1si +W2zi +W3Et(yi−1) + b) (3.9)

where W1 ∈ Rl×q, W2 ∈ Rl×k, W3 ∈ Rl×d and b ∈ Rl are trainable weights.

This intermediate representation is projected to the space of the target vocabulary,
by means of a vocabulary-sized fully-connected layer. Finally, to obtain a probability
distribution over the target vocabulary pi, we apply the softmax function, as in
Eq. (3.10):

pi = φ(WVti + bV) (3.10)

where WV ∈ R|Y|×l and bV ∈ R|Y| are the weights to learn.

The probability distribution pi corresponds to the one defined by Eq. (3.2): the
probability of the token y at the i-th time-step is given its the corresponding position
in pi (Eq. (3.11)):

p(yi = y | yi−1
1 , xJ

1 ;Θ) = ȳ⊤pi (3.11)

being ȳ ∈ [0, 1]|Y| the one-hot codification of the token y.
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3.2 Transformer: attention-based NMT

While RNNs seem the natural choice for sequence modeling, they cannot be paral-
lelized: to compute the current state, it is necessary to process the previous ones.
Aiming at overcoming this limitation, alternative architectures have been developed.
Among them, it can be highlighted the Transformer model (Vaswani et al., 2017), de-
scribed in the following. ConvNets have also been used for NMT, to encode sentences
(Kalchbrenner and Blunsom, 2013) and also as fully convolutional NMT systems,
with attention mechanisms (Gehring et al., 2017). Other works departed from the
encoder–decoder framework, tackling the MT task as a 2-dimensional problem, em-
ploying multidimensional LSTM networks Bahar et al. (2018) or ConvNets Elbayad
et al. (2018) to relate source and target sequences.

The Transformer model is based on the application of attention mechanisms, which
compute different representations of the source and target sequences. Since the recur-
rences are removed from the model, training can be parallelized to a greater extent
than RNN-based models. Moreover, it is capable of modeling large contexts more
easily than RNNs (Agrawal et al., 2018), and perform better in multilingual settings
(Lakew et al., 2018). The Transformer model is rapidly gaining popularity among the
MT community, arguably replacing the RNN-based system as the standard model
(see Bojar et al., 2018). On the other hand, Transformers also suffer from weak-
nesses: they are extremely sensitive to hyperparameters, which makes it hard to find
working configurations and they require even larger amounts of data to yield a good
performance, compared to RNN-based systems (see Section 3.5.3).

As RNN-based NMT systems, the Transformer follows the encoder–decoder ap-
proach: an encoder computes a representation of the source sequence and the decoder
generates the translated sentence from this representation. For the sake of simplicity,
all subcomponents of the Transformer produce outputs of dimension dm.

One of the key aspects of the Transformer design is the way in which these rep-
resentations are obtained. In addition to the inter-sequence attention mechanism (as
the one present in RNN-based systems), the Transformer computes an intra-sequence
attention, also called self-attention, on its input and output sequences. The model
can relate different positions of a given sequence to compute a representation of it.
Therefore, in the Transformer model, the attention is not only used as a connection
between encoder and decoder, but also as a way of building internal representations.
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Introducing positional information The Transformer has the same inputs and
outputs as an RNN-based NMT system: the sequence of elements of the source sen-
tence and the sequence of elements of the target sequence shifted one time-step to the
right, following the teacher forcing training scheme.

The elements from the discrete vocabulary spaces are projected into a continuous
space via embedding matrices. Applying Eq. (3.4) to the input sequence xJ

1 , we
obtain a sequence of J embeddings of dimension dm: x1, . . . ,xJ . However, since the
recurrence is dropped in the model, it is necessary to inject positional information
into the sequence representation. This can be done via positional encodings (Gehring
et al., 2017). The Transformer model uses fixed positional encodings: a sequence
of vectors e1, . . . , eJ that introduce positional information to the sequence. Each
positional encoding vector is a dm-dimensional vector, constructed using sinusoidal
signals, according to its position within the sequence. Therefore, each element from
ej (for 1 ≤ j ≤ J) is defined according to Eq. (3.12):

ej,k =

{
sin(j/100002k/dm) if k is even
cos(j/100002k/dm) if k is odd

, for 0 ≤ k ≤ dm (3.12)

These positional information is added to the regular embeddings, to obtain a
sequence of position-aware embeddings, as in Eq. (3.13):

x̄1, . . . , x̄J = (x1 + e1), . . . , (xJ + eJ) (3.13)

Encoder The encoder is a stack of N layers, all of them following the same struc-
ture: a multi-head attention mechanism (Section 2.3.2) followed by a feed-forward
network. All sublayers have residual connections. The result of each residual con-
nection is normalized via layer normalization (Section 2.4). To regularize the model,
dropout is applied to the output of each layer, prior to the normalization. For the sake
of simplicity in the notation, we omit the layer normalization and dropout operations
in this section. Moreover, in the rest of the section, we will denote the n-th layer of
a stack with the superscript [n].

Therefore, the input of the n-th layer of the encoder is a sequence of J inputs of
dm dimensions: h

J [n]
1 . Each encoder layer computes an output sequence h

J [n+1]
1 of

the same dimensions. Hence, for 0 ≤ n < N , the encoder is defined by Eq. (3.14):

h
J [n+1]
1 = f

[n]
F (h

J [n]
1 +γ[n](h

J [n]
1 ,h

J [n]
1 ,h

J [n]
1 ))+h

J [n]
1 +γ[n](h

J [n]
1 ,h

J [n]
1 ,h

J [n]
1 )

(3.14)
where γ[n] is the multi-head attention defined in Eq. (2.30) and fF is a 2-layered
feed-forward network, with a ReLU and a linear activation, as in Eq. (3.15):
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f
[n]
F (h

J [n]
1 ) = ReLU(h

[n]
j W

[n]
1 + b

[n]
1 )W

[n]
2 + b

[n]
2 ,∀h[n]

j ∈ h
J [n]
1 (3.15)

where W
[n]
1 ∈ Rdm×dF , b[n]1 ∈ RdF , W [n]

2 ∈ RdF×dm and b
[n]
2 ∈ Rdm are the parameters

to learn.

The inputs to the first layer of the encoder stack (hJ (0)
1 ) are the position-aware

embeddings computed by Eq. (3.13). These inputs are also regularized via dropout.
Note that the encoder applies the attention over the same sequence. Therefore, it is
a self-attention system, which computes representations at an intra-sequence level.

Decoder The decoder of the Transformer model is another stack of M layers. Each
layer can be separated in two different parts: The first one is devoted to encoding the
sequence of shifted outputs, by applying self-attention in a similar way as done by the
encoder. The second part bridges together the representations of both self-attention
modules, performing inter-sequence attention and generating the target sequence.

The positional information is injected to the sequence of shifted output embed-
dings, as described in Section 3.2. This produces a sequence āI

1 = ā1, . . . , āI of I
embeddings of the shifted outputs. Similarly as in the encoder, the Transformer de-
coder applies a self-attention mechanism (γ1) to this sequence. To prevent the decoder
to look into future elements of the sequence, this attention is masked. Following the
same notation than in the previous section, the self-attended representation (aI [m+1]

1 ,
with each ai ∈ Rdm) at the m-th decoding layer (for 0 ≤ m < M) is computed as in
Eq. (3.16):

a
I [m+1]
1 = a

I [m]
1 + γ

[m]
1 (a

I [m]
1 ,a

I [m]
1 ,a

I [m]
1 ) (3.16)

The second part of the decoder, that bridges together the representations obtained
from the input and the shifted output sequences, must compute an inter-sequence
attention. This is done by applying a inter-sequential multi-head attention mechanism
(γ2) in which keys and values come from the source sequence (hJ [N ]

1 ) and queries come
from the target sequence (aI [m]

1 ). Similarly to the encoder, the multi-head attention
mechanism is followed by a feed-forward network, to compute an output sequence of I
elements (zI [m+1]

1 ) at each decoder layer, for 0 ≤ m < M . This output representation
is the input of the following layer in the decoder stack, as in Eq. (3.17):

z
I [m+1]
1 = f

[m]
F (a

I [m]
1 +γ

[m]
2 (a

I [m]
1 ,h

J [N ]
1 ,h

J [N ]
1 ))+a

I [m]
1 +γ

[m]
2 (a

I [m]
1 ,h

J [N ]
1 ,h

J [N ]
1 )

(3.17)
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Following the stack of layers of the decoder, we apply the same fully-connected
layer with a softmax activation than for RNN-based NMT (Eq. (3.10) and Eq. (3.11))
to the outputs of the decoder (zI [M ]

1 ), yielding Eq. (3.18):

pi = φ(WVz
[M ]
i + bV) (3.18)

where WV ∈ R|Y|×dm and bV ∈ R|Y| are the weights to learn. Fig. 3.2 shows an
illustration of the Transformer model.

x1

x2

xJ
×N

Norm

×M

Embedding

Embedding

Embedding

Multi-Head
Attention

Masked

Encoder

Decoder

Multi-Head
Attention Norm

Feed
Forward Norm

Embedding

Embedding

<null>

y1

Multi-Head
Attention Norm

Feed
Forward Norm y2WV ϕ

Figure 3.2: The Transformer model. As in the RNN-based NMT model, the input of
the system is a sequence of words x1, . . . , xJ , projected into the continuous space via an
embedding matrix. To have a notion of sequentiality, these embeddings are augmented with
positional information. The encoder is a stack of N layers. Each layer features a multi-head
attention mechanism followed by a feed-forward layer. The decoder is another stack of M
layers. Previous words are encoded similarly as input words, but using a masked multi-
head attention mechanism. Next, input and output representations are combined through
another multi-head attention mechanism and feed-forward layers. The representation of the
last decoder layer is projected to the target language vocabulary space. Finally, a softmax
function computes the probabilities in this space.

3.3 NMT decoding

Now, we pay attention to the search problem: given a source sentence xJ
1 and an

NMT model with parameters Θ, how to obtain the sentence in the target language
with the highest probability (ŷÎ1). Most search methods exploit the factorization of
the conditional probability shown by Eq. (3.2):

ŷÎ1 = argmax
I,yI

1

I∑
i=1

log p(yi | yi−1
1 , xJ

1 ;Θ)
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The search is generally an incremental process: starting from a null-hypothesis (a
hypothesis with no words), they iteratively construct partial hypotheses by adding
words to previous hypotheses. This null-hypothesis is initialized with the special
beginning-of-sentence token (<bos>). The process is repeated until completing hy-
potheses. A hypothesis is considered to be completed if its last word is an end-of-
sentence token (<eos>). Therefore, at the end of the process, we obtain a search
tree, in which each level represents a decoding time-step and each path from the root
(<bos>) to a leaf (marked with <eos>) represents a complete translation hypothesis
and has associated a score (typically, the cumulated log-probability). Hence, the goal
is to find the path with highest score from the root node to a leaf.

However, this search tree has a branching factor of the size of the target vocabulary.
To build and explore the complete tree becomes computationally unaffordable, in
terms of time and memory. Therefore, we need efficient procedures to approximate
the search. The most popular heuristics applied to tackle this problem is the so-called
beam search method (Lowerre, 1976). Beam search limits the branching factor of the
tree to a maximum predefined value, called size of the beam (b). At each level of
the tree, beam search expands each partial hypothesis with all possible words in the
target vocabulary. Next, the set of expanded hypotheses is pruned, keeping only the
b with the highest score. If a complete hypothesis is generated, it is removed from the
partial hypotheses set and it is stored into a set of completed hypotheses. The beam
size is then decreased by one. This process is repeated until the size of the beam
reaches zero. Finally, the method returns the most probable hypothesis from the set
of complete hypotheses.

While beam search constitutes a well-performing trade off between computational
complexity and its search exhaustiveness, it has several limitations: it suffers from
the length and label biases, which harm the performance of the method (Bottou,
1991; Koehn and Knowles, 2017). Moreover, when used for MT, the beam search
is unaware of the coverage of the translations, which may prevent the translation of
several parts of the source sentence. Overcoming these limitations while keeping the
method efficient is an active research field (Tu et al., 2016; Wu et al., 2016).

3.4 Dealing with the vocabulary restriction

A limiting aspect of NMT is the size of the vocabularies: MT is an open-vocabulary
task, while the NMT models require finite vocabularies. As mentioned in the previous
section, each element from the source and target vocabularies are mapped into a
unique index and projected to the continuous space via embedding matrices, which
are proportional to the vocabulary size. Moreover, the output layer requires us to
compute a normalization through the full target language vocabulary. This makes
it impractical to use models with very large vocabularies. Moreover, new words can
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appear while using the system and the model should be able to tackle these unknown
words.

The first works on NMT (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014) relied on the usage of short-lists: the vocabulary was fixed before-
hand, typically to the K most common words of the training set. The rest of words,
were mapped to an special token, denoting the unknown word. While this eased the
training of the model, it could introduce performance issues, especially if a source
sentence contained many out-of-vocabulary words.

This problem was partially alleviated by taking advantage of the attention mech-
anism, substituting an unknown word by the source word with the highest attention
(Jean et al., 2015a; Luong et al., 2015b). Although some authors (Jean et al., 2015a)
devised a mechanism to effectively train on large vocabularies, this was a problematic
condition suffered by NMT.

3.4.1 Subword NMT

A more interesting alternative was introduced by Sennrich et al. (2016): instead of
translating sequences of words, Sennrich et al. (2016) proposed to translate sequences
of subwords. The idea is to use a compression algorithm to encode words as sequences
of smaller units. The BPE algorithm (Gage, 1994) is very adequate to this purpose.

BPE is an iterative data compression algorithm, in which the most common pair
of bytes are merged and substituted by a single, unused byte. Applied to the word
segmentation problem, BPE starts from a corpus split in single characters, with a
special end-of-word symbol. Iteratively, it merges the two most common consecutive
symbols, into a new, unused symbol. This is done until reaching a stopping criterion,
typically a predefined number of merges. At the end of this process, the vocabulary
of the compressed corpus is equal to the number of merge operations, plus the size of
the initial vocabulary (characters). Since the end-of-word symbol is kept during the
process, it is trivial to revert the encoding with a replace operation. Therefore, this
compression technique obtains different granularities of the representation of words:
rare words will be represented as sequences of subwords, while most common words
will tend to be represented closer as a word level.

BPE has become a standard in the NMT field: most systems make use of BPE
or similar approaches (e.g. Ataman and Federico, 2018; Wu et al., 2016). Although
this segmentation is effective in many cases, tackling morphologically rich languages
requires less arbitrary segmentation strategies (Passban et al., 2018).

It is usual to apply BPE jointly to source and target corpora (if they share al-
phabet). Our NMT systems follow this setup (see Section 3.5.1). This prevents
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segmentation inconsistencies across the languages and ensures the same segmentation
of the same words (e.g. proper nouns).

3.5 Machine translation results

Once we reviewed the main features of NMT, we describe the NMT systems used
in Chapters 4 and 5 and evaluate them in tasks described in Section 1.4.3. This
evaluation will be the starting point in Chapters 4 and 5. We also compare them with
a well-known PB-SMT system (Moses, Koehn et al., 2007). This evaluation allows us
to determine the performance of our NMT systems on a standard MT scenario and
compare them to PB-SMT systems. We automatically evaluate the translation quality
of the different systems, according to TER and BLEU, as described in Section 1.4.1.

3.5.1 NMT systems

All NMT systems were built using our in-house developed toolkit, NMT-Keras (Peris
and Casacuberta, 2018a). Refer to Appendix A for a more detailed description of
the software. This toolkit can construct neural systems using Theano or Tensorflow.
We used the first library as backend of the toolkit, as we found it to be faster than
Tensorflow, especially for recurrent models.

We tested two architectures for the NMT system: RNN-based (Section 3.1) and
Transformer (Section 3.2). All systems were trained via mini-batch SGD (Section 2.2.2),
using the Adam update rule (Kingma and Ba, 2014), with a learning rate of 0.0002
(Wu et al., 2016). To avoid the exploding gradient problem (Section 2.3.1), we clipped
the L2 norm of the gradients to 10. The training batch size was 50. The decoding
method was beam search (Section 3.3), using a beam size of 6.

We applied uniform label smoothing (Section 2.4), with ϵ = 0.1; and Gaussian
noise (Section 2.4) to the weights during training (with a magnitude of 0.01). We
used early stopping (Section 2.4), based on BLEU, computed each 3, 750 training
steps and with a patience of 10. During training, we restricted the length of the input
and output sequences to 60 elements.
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RNN-based NMT

The RNN-based NMT system featured a single-layered bidirectional LSTM encoder,
using concatenation as fusion operator. The decoder function was another single-
layered RNN with conditional LSTM units, with an additive attention mechanism
(Eq. (2.19)). The initial hidden and memory states of the decoder were initialized
according to two independent MLPs with tanh activation functions from the average
of the annotations computed by the encoder, as done by Xu et al. (2015). Following
Britz et al. (2017), the dimension of all layers, including word embeddings, were set to
512. We applied layer normalization, weight decay (λ = 10−4) and dropout (p = 0.1)
to all non-recurrent connections.

Transformer

The Transformer model (Section 3.2) followed the configuration defined by Vaswani
et al. (2017) as base model: The size of the word embeddings and dm were set to 512.
Each multi-head attention layer had H = 8 heads. Each parallel projection was of size
dm/H (i.e. 64). The hidden and output dimensions of the feed-forward layers were
2, 048 and 512, respectively. In contrast to Vaswani et al. (2017), we used different
embedding matrices for each language. The dropout probability was set for all layers
to p = 0.1. The embeddings were scaled by a factor of

√
dm. For tasks with sufficient

training data (500, 000 training samples or more), the encoder and decoder stacked 6
layers, while in tasks without these amounts of data, the stacks were of 4 layers.

3.5.2 PB-SMT system

Regarding the configuration of the PB-SMT system, we used the latest stable ver-
sion of Moses (4.0) with its standard setup: the phrase table was obtained using
symmetrised word alignments, computed by mGIZA++ (Och and Ney, 2002). The
feature functions included in the log-linear were the phrase translation table, word
penalty, unknown word penalty, phrase penalty, lexical reordering model, distortion
model and the language model. This language model was a 5-gram, smoothed with
the technique proposed by Kneser and Ney (1995). The tuning of the weights from
the log-linear model was made through minimum error rate training (Och, 2003) on
the development sets.
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3.5.3 Machine translation results

We evaluate the different MT systems and technologies on all the tasks and language
combinations introduced in Section 1.4.3.

XRCE

The XRCE corpus represents a challenging task for NMT systems, due to its reduced
dimensions. Table 3.1 shows the translation performance, in terms of TER and BLEU,
of PB-SMT, RNN-based and Transformer-based NMT.

Table 3.1: Translation quality for the XRCE task in terms of TER [↓] and BLEU [↑] for
RNN-based, Transformer (Trans.) and PB-SMT systems. Paired approximate randomiza-
tion test was applied to all systems. Systems significantly better are indicated with †, when
comparing PB-SMT and RNN; with ‡ when comparing PB-SMT and Transformer; and with
⋆ when comparing RNN and Transformer.

TER [↓] BLEU [↑]

RNN Trans. PB-SMT RNN Trans. PB-SMT

XRCE

En→De 63.0⋆ 64.3 64.4 25.4†⋆ 23.2 22.4

De→En 51.1 54.9 50.1‡ 36.2⋆ 31.3 36.8‡

En→Fr 51.9⋆ 57.2 50.2†‡ 38.0⋆ 32.2 37.9‡

Fr→En 50.9⋆ 55.7 46.5†‡ 36.6⋆ 30.2 37.4‡

En→Es 27.5 28.3 24.7†‡ 63.5⋆ 60.5 64.0‡

Es→En 28.6⋆ 32.1 29.0‡ 59.0†⋆ 53.9 55.8‡

In terms of TER, NMT systems were outperformed by PB-SMT for most language
pairs. Without the exception of the En→De translation, PB-SMT achieved better
results than the Transformer model by large margins. These differences were smaller
when comparing PB-SMT against RNN-based NMT, although they still favored PB-
SMT. Consequently, RNN-based NMT performed better than the Transformer model
in all cases. These differences were statistically significant except for two language
pairs. In terms of BLEU, the differences were lower. On the one hand, PB-SMT
and RNN-based NMT performed similarly for most cases. There were two language
combinations (En→De and Es→En) for which NMT significantly outperformed PB-
SMT. In the rest of combinations, the differences were small and non-significant. On
the other hand, the Transformer model obtained bad results, for almost every pair: its
performance was clearly below PB-SMT and RNN-based NMT, yielding degradations
up to 6 points.

We find two reasons for the poor performance of the Transformer model: it is very
sensitive to hyperparameters and to data scarcity (Popel and Bojar, 2018). We are
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now dealing with a low-resource task and it is hard to find the optimal hyperparameter
configuration. Moreover, this task relates a very structured domain, as are printer
manuals, that contains a number of well-defined structures (page headers and footers,
sections, etc). This type of structures are well handled by n-grams and phrase-tables
and hence, PB-SMT systems perform very well in this situation.

TED

For the TED task, RNN-based models clearly obtained the best results, achieving
large improvements with respect to the PB-SMT system and the Transformer model
for every language pair (Table 3.2). Compared with PB-SMT systems, we observed
regular improvements, from 2 to more than 6 points of TER and BLEU. The differ-
ences with respect to the Transformer model were slightly smaller, but also consistent.
The Transformer model was placed in between the PB-SMT and the RNN-based NMT
systems: For most tasks, it significantly outperformed PB-SMT, but was surpassed
by RNN-based NMT. This is related to what we observed in the previous task: the
TED corpus is still small, and the Transformer suffered from this data scarcity. In
addition, note that the sentences from a TED talk are less structured than in the
XRCE domain. Hence, PB-SMT systems did not perform so well in this domain, and
they were overcome by both neural systems.

Table 3.2: Translation quality for the TED task in terms of TER [↓] and BLEU [↑] for RNN-
based, Transformer (Trans.) and PB-SMT systems. Paired approximate randomization test
was applied to all systems. Systems significantly better are indicated with †, when comparing
PB-SMT and RNN; with ‡ when comparing PB-SMT and Transformer; and with ⋆ when
comparing RNN and Transformer.

TER [↓] BLEU [↑]

RNN Trans. PB-SMT RNN Trans. PB-SMT

TED

En→De 54.8† 57.1‡ 59.3 25.6†⋆ 23.1‡ 19.4

De→En 49.1†⋆ 52.5‡ 53.5 30.2†⋆ 27.1‡ 25.3

En→Fr 49.6†⋆ 52.5‡ 52.5 33.5†⋆ 30.6‡ 27.6

Fr→En 46.6†⋆ 49.5‡ 50.2 32.4†⋆ 30.1‡ 29.9

En→Zh 76.7† 77.6‡ 83.2 9.3†⋆ 8.2 8.7‡

Zh→En 75.7†⋆ 76.7‡ 77.5 13.7†⋆ 11.5 11.0

The largest differences in terms of BLEU and TER were found when translating
to complex languages, namely, German and Chinese. NMT succeeded at capturing
the complex relationships existing in the sequences from these languages. Moreover,
when translating from German, the differences were also high, denoting that NMT
was also able to better capture the relationships among the source sentences.
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UFAL

We move now to a task with more data. In this case, neural systems clearly outper-
formed PB-SMT for the UFAL task (Table 3.3). For every language combination the
neural systems worked better than PB-SMT, and we found especially large improve-
ments on the En→De and En→Es directions.

Table 3.3: Translation quality for the UFAL task in terms of TER [↓] and BLEU [↑] for
RNN-based, Transformer (Trans.) and PB-SMT systems. Paired approximate randomiza-
tion test was applied to all systems. Systems significantly better are indicated with †, when
comparing PB-SMT and RNN; with ‡ when comparing PB-SMT and Transformer; and with
⋆ when comparing RNN and Transformer.

TER [↓] BLEU [↑]

RNN Trans. PB-SMT RNN Trans. PB-SMT

UFAL

En→De 55.6† 55.4‡ 62.9 23.7† 24.5‡ 18.2

De→En 50.8 44.1‡⋆ 51.0 29.8 34.8‡⋆ 29.7

En→Fr 46.1† 45.9‡ 47.9 37.2† 37.8‡⋆ 35.0

Fr→En 42.8 42.3 42.9 37.6† 38.0‡⋆ 36.2

En→Es 40.5† 40.8‡ 45.7 40.7†⋆ 39.1‡ 33.1

Es→En 35.4†⋆ 36.4‡ 40.4 44.4†⋆ 43.1‡ 38.7

Comparing neural models, we observed again that the Transformer model worked
better for German. RNNs worked better for the case in which we had less data (Span-
ish and English combinations): while for German and French there were available
around 3 million of parallel segments, for Spanish, there were only 780, 000. These
differences may affect the performance of the neural systems: the Transformer model
required more data to work properly. RNNs were able to obtain a good performance
with the limited amount of data from the Spanish part of the corpus.

Europarl

Similarly as for the UFAL corpus, neural models generally outperformed PB-SMT in
terms of BLEU (Table 3.4). The largest differences were found for language combi-
nations involving German (up to 3.6 points). The differences in combinations that
involve French and Spanish were smaller. Regarding the comparison between RNNs
and Transformer, the latter model worked slightly better. For all combinations but
Es→En, the Transformer obtained significant improvements with respect to the RNN-
based system.
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Table 3.4: Translation quality for the Europarl task in terms of TER [↓] and BLEU [↑] for
RNN-based, Transformer (Trans.) and PB-SMT systems. Paired approximate randomiza-
tion test was applied to all systems. Systems significantly better are indicated with †, when
comparing PB-SMT and RNN; with ‡ when comparing PB-SMT and Transformer; and with
⋆ when comparing RNN and Transformer.

TER [↓] BLEU [↑]

RNN Trans. PB-SMT RNN Trans. PB-SMT

Europarl

En→De 67.0 63.8‡⋆ 68.2† 18.4† 19.1‡⋆ 14.9

De→En 62.9 60.7⋆ 60.9† 21.2† 22.3‡⋆ 20.4

En→Fr 60.5 57.4‡⋆ 58.4† 24.6 26.6‡⋆ 24.4

Fr→En 62.2 62.7 61.0†‡ 22.8† 23.5‡ 20.9

En→Es 58.6 55.4‡⋆ 56.8† 25.0† 26.1‡⋆ 24.6

Es→En 58.4 58.1⋆ 55.4†‡ 25.6⋆ 25.1 25.6

In terms of TER, the gap between PB-SMT and NMT was reduced. In several
cases, PB-SMT systems were able to significantly outperform NMT. These differences
were especially large when translating into English.

3.5.4 Discussion

From the set of experiments carried out in the previous section, we observed several
behaviors that are consistent with the rest of the literature on NMT. NMT systems
generally outperform PB-SMT on most tasks. PB-SMT worked better for tasks with
scarce resources and highly structured (e.g. XRCE). But, as the amount of training
data was increased, NMT clearly outperformed PB-SMT systems. The Transformer
model was more sensitive to this lack of data. For tasks with scarce data (XRCE,
TED) it usually performed significantly worse than RNN-based systems.

NMT systems are able to model better complex relationships than PB-SMT. The
largest differences between NMT and PB-SMT systems were found when working
with distant language pairs (English↔Chinese) and with morphologically complex
languages (German). With the exception of the XRCE task, neural systems always
outperformed PB-SMT when using German as source or target language. Provided
that there are enough data, the Transformer NMT system modeled better German
than the RNN-based system. We observed significant improvements for language
combinations involving German for the UFAL and Europarl tasks.

We also found the Transformer to be more sensitive to hyperparameters than RNN-
based NMT. While we found the standard Transformer hyperparamters (Vaswani
et al., 2017) worked well in tasks with enough training data, this is not the case of
scarce-resource scenarios. The choice of hyperparameters for the Transformer model
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is critical, and small variations cause the model to not converge, thus requiring a wide
search of hyperparameters. Hence, using this model out of the well-known scenarios
may be adventurous and computationally expensive, having a negative impact in the
environment (Strubell et al., 2019). We need to consider all these aspects when deploy-
ing a NMT system. Finally, and as expected, the Transformer model was significantly
faster to train than RNN-based systems, as it does not requires recurrences.

3.6 Summary

In this chapter, we thoroughly described the NMT technology: the main neural archi-
tectures, the decoding process and the usage of subwords. These systems are the basis
upon which we build the interactive-predictive and adaptive NMT in the following
chapters (Chapters 4 and 5), hence it is important to thoroughly study them.

We evaluated our NMT systems in a variety of translation tasks and languages.
We compared the two main architectures described in Sections 3.1 and 3.2, namely
an RNN-based and a Transformer system. We found that the Transformer model
was harder to optimize, due to its sensitivity to hyperparameters: finding a good set
of hyperparameters for all tasks is hard. On the other hand, RNN-based systems
performed well in all cases, requiring less hyperparameter tuning.

We also compared our neural systems to classical PB-SMT. The results showed
that NMT generally worked better than classical PB-SMT systems. The differences
were especially large when we have available enough training data. NMT also per-
formed better when dealing with morphologically complex languages (such as Chinese
or German). It is also worth remarking the case of a highly structured task with scarce
training resources (XRCE), in which PB-SMT still performed better than NMT. Fi-
nally, we found that the Transformer model suffered in this scenario. This model
requires either larger training datasets or hyperparameter tuning to fully exploit its
potential.
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Interactive-predictive neural
machine translation

Nowadays, NMT is predominant approach to MT, as discussed in the introduction of
this thesis (see Section 1.3.2). In the previous chapter, we described this technology
and showed that in most scenarios NMT outperformed PB-SMT systems. Despite
these advances, the MT problem is still far to be solved (Koehn and Knowles, 2017).
Automatic systems produce wrong translations, that may be intolerable for some
users or domains. For example, translations of medical records must be accurate
and error-free. The translation problem has several subtleties, that make it hard for
machines to tackle it: ambiguity, discourse adequacy, anaphora resolution, domain-
specific meanings, stylistic forms, etc. Automatic MT systems usually fail to solve
these translation aspects (Toral et al., 2018; Toral and Way, 2018).

In scenarios that require high-quality translations, the outputs of the MT systems
are usually revised by a human agent, who corrects the errors made by the MT sys-
tem. This process is known as post-editing. As the MT systems are continuously
improving their capabilities, translation post-editing has acquired a major relevance
in the translation market, allowing to achieve a higher productivity, compared to
translating from scratch (Arenas, 2008, 2009; Green et al., 2013a). Effective transla-
tion post-editing methods are required by the translation industry and, indeed, they
are already provided by many agencies (Hu and Cadwell, 2016).
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However, post-editing is a decoupled strategy in which the computer proposes a
translation and the human agent fixes it, working independently. Higher efficiency
rates can be achieved if human and system collaborate on a joint strategy. Looking
for this human–computer collaboration, Foster et al. (1997) introduced the so-called
interactive-predictive machine translation. This approach is an iterative prediction–
correction process: each time the user corrects a word, the system reacts offering a
new translation hypothesis, expected to be better than the previous one.

This alternative process to correct the output of a system has been under develop-
ment since its inception, for more than twenty years. Nowadays, interactive-predictive
MT has been consolidated and it is integrated into several computed assisted trans-
lation tools, such as Lilt1.

This chapter presents an interactive-predictive NMT system. We start by review-
ing the related research done in the field. Next, we formally present the interactive-
predictive MT framework, considering two main interaction protocols. Then, we
instantiate the NMT technology in this general framework, describing the modifica-
tions that should be done to an NMT system to fit it into the interactive-predictive
framework and proposing several extensions to enhance the system.

4.1 Interactive-predictive machine translation

The collaboration between human and system has been under study from long ago.
In early works (Kay, 1980; Slocum, 1985; Whitelock et al., 1986), the users typically
solved several types of ambiguities (lexical, syntactical or semantic). The users mainly
interacted with the source text, providing its correct meaning. The aim of these
interactive systems was making the disambiguation procedure more comfortable and
efficient.

An important breakthrough was performed by Foster et al. (1997), who criticized
previous approaches, arguing that the focus of human–machine interaction should be
the target text. They introduced the concept of human-targeted MT, which differen-
tiated from previous approaches by introducing the interaction during the generation
of the target text. This allowed a deeper embedding of the interaction process and
this approach was exploited by the (at that time emerging) corpus-based MT systems.

Following this rationale, the human-targeted interactive-predictive MT advanced,
supported by the TransType (Langlais et al., 2002), TransType2 (Macklovitch, 2006)
and CasMaCAT (Alabau et al., 2013) projects. Barrachina et al. (2009) formalized the
interactive-predictive translation framework under a statistical point of view, yielding

1https://lilt.com
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the interactive-predictive approach to MT. Under the scope of these projects, major
milestones were achieved, pushing the MT systems to new frontiers.

Regarding interactive-predictive MT, the generation of the suffixes for PB-SMT
systems received much attention from the research community. This process was
usually carried out by searching on the search graphs used by the PB-SMT systems
(Bender et al., 2005; Barrachina et al., 2009). Alternative search strategies for better
exploiting these search graphs were explored by Ortiz-Martínez (2011); Vakil and
Khadivi (2012); Cai et al. (2013); Koehn et al. (2014); Azadi and Khadivi (2015).
Other works studied suggesting to the user more than one translation hypothesis
(Koehn, 2010a; Torregrosa et al., 2014). Additional novelties came from profiting
from the usage of the mouse, for validating a prefix and suggesting a new suffix each
time the user clicked into a position to type a word correction (Sanchis-Trilles et al.,
2008). The addition of confidence measures aided the user to validate correct prefixes
(González-Rubio et al., 2010a,b).

Integrating IMT into different technologies

The IMT framework was introduced during the peak of PB-SMT systems. Therefore,
most work regarding this topic was based on this technology. However, IMT systems
have been deployed for other MT technologies. González-Rubio et al. (2013) pre-
sented a IMT system based on a hierarchical translation model. Green et al. (2014)
investigated the interactive use of translation memories. Pérez-Ortiz et al. (2014) and
Torregrosa et al. (2017) built technology-agnostic IMT systems, which treated the
underlying MT system as a black-box.

Finally, given the recent success of NMT, this technology has also been adapted
to fit into the interactive-predictive framework. To the best of our knowledge, the
first works on INMT were simultaneously proposed by Knowles and Koehn (2016);
Wuebker et al. (2016) and Peris et al. (2017c). Hokamp and Liu (2017) proposed
a constrained search algorithm useful for INMT which was very similar to the one
proposed by Peris et al. (2017c) and described in Section 4.3.2. Hasler et al. (2018);
Post and Vilar (2018) developed efficient algorithms for adding constraints to the
search. These methods can be used to build interactive-predictive NMT systems.
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Beyond prefix-based constraints

Most works on IMT follow the prefix-based interactive-predictive protocol, in which
the user is forced to follow a strict left-to-right interaction. Some researchers spent
a significant effort to overcome this tight constraint. González-Rubio et al. (2016)
allowed the selection of correct segments from translation hypotheses, which must
remain fixed along the IMT process. This procedure was extended by Domingo et al.
(2016) and Domingo et al. (2018). We also integrated this protocol for NMT (Sec-
tion 4.3.2, Peris et al., 2017c).

Related to this, we find the so-called active interaction framework. In this paradigm,
the system asks the user to only correct certain parts of the hypothesis, typically those
with the least confidence to be properly translated (González-Rubio et al., 2010a,b;
Lam et al., 2018).

Other authors (Marie and Max, 2015) proposed a system based on touch interac-
tions, which allowed the user to select the correct parts of a hypothesis. Extending
this work, Cheng et al. (2016) developed a pick-revise procedure for IMT, consisting
of the selection by the user of the most critical part of a hypothesis and its correction.
This pick-revise framework has also been applied to NMT systems (Hokamp and Liu,
2017; Post and Vilar, 2018).

It is worth pointing out a major difference between approaches taken by these
later works and the one taken in this thesis and by other authors (Barrachina et al.,
2009; González-Rubio et al., 2016; Ortiz-Martínez, 2016; Peris et al., 2017c). When
using an IMT system, we demand perfect translations for a given sentence (as in a
full post-editing setup). Therefore, our goal is to diminish the human effort spent
in the process to reach high-quality translations. On the other hand, the pick-revise
framework (followed by Cheng et al. (2016); Hokamp and Liu (2017); Post and Vilar
(2018)) accepts some translation errors, sacrificing the final quality at the expense of
less human effort (as in light post-editing). Thus, their goal is to improve translation
quality with few interactions.

Multimodal interaction

The most common input of the feedback signal is the keyboard and mouse. However,
the human–computer interaction can be done through different modalities. This is
known as multimodal interaction. Among the modalities investigated for IMT, we
can highlight the interaction through handwritten strokes (Alabau et al., 2014) or
speech (Alabau et al., 2011).

Moreover, the interactive-predictive approach can be generalized to applications
beyond IMT. The framework is applicable to the transcription of handwritten text
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documents (Toselli et al., 2007; Martín-Albo et al., 2013), ancient manuscripts (Granell
et al., 2016), music (Inesta and Pérez-Sancho, 2013), layout detection (Quirós et al.,
2017), parsing (Toselli et al., 2011), speech transcription (Rodríguez et al., 2007), im-
age retrieval (Segarra et al., 2011) or multimodal captioning (Peris and Casacuberta,
2019b).

4.2 Probabilistic framework

The IMT framework relies on the statistical formalization of the MT problem (Sec-
tion 1.3). Recall from this chapter that the goal is to find the best translation
ŷÎ1 = ŷ1, . . . , ŷÎ of length Î, given a source sentence xJ

1 = x1, . . . , xJ of length J ,
as described in Eq. (1.5).

Under the interactive-predictive paradigm, the static post-editing stage shifts to an
iterative human–computer collaboration process. The user interacts with the system
by means of a feedback signal f . The system suggests then an alternative translation
hypothesis ỹĨ1 = ỹ1, . . . , ỹĨ , which takes into account the feedback. This new trans-
lation is obtained by integrating the feedback signal into the previous expression,
yielding Eq. (4.1):

ỹĨ1 = argmax
I,yI

1

Pr(yI1 | xJ
1 , f) (4.1)

Depending on the meaning conveyed by f , alternative interactive-predictive pro-
tocols can be defined. In the following, we describe two protocols: prefix-based and
segment-based.

4.2.1 Prefix-based interactive-predictive machine translation

Prefix-based IMT was the first interaction protocol and it arguably is the most natural
way of work. We describe this protocol for left-to-right writing languages, but this can
be trivially extended to languages with right-to-left writing directions (e.g. Arabic or
Hebrew).

The protocol starts by the MT system proposing an initial translation ŷÎ1 =
ŷ1, . . . , ŷÎ of the source sentence xJ

1 , following Eq. (1.5). Next, the user then searches,
from left to right, the first wrong word ŷi from the hypothesis and provides the correct
word. Hence, with this correction, the system receives a feedback signal with the form
f = ŷi, where ŷi is the corrected word at the position i in the target hypothesis. But
this feedback signal conveys a two-fold meaning: it states that the i-th target word
must be ŷi, but it also validates the hypothesis up to this position (ŷi−1

1 ). Taking this
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into account, we can rewrite f as f = ŷi1, where ŷi1 is the validated prefix together
with the corrected word.

At the next iteration, the system must generate the best suffix ỹĨi+1 to build a new
translation ỹ = ŷi1, ỹ

Ĩ
i+1. This process is repeated until the user accepts the complete

hypothesis of the system. Fig. 4.1 represents this protocol.

f

The pain may also break during the night . The pain may also wake you up during night .

Reference: The pain may also wake you up during the night .

Figure 4.1: Single iteration of prefix-based IMT. The user wants to translate the French
sentence “La douleur peut également vous réveiller pendant la nuit .” into English. The user
corrects the first wrong word from the hypothesis provided by the system, introducing the
word “wake” at position 5. Next, the system generates a new hypothesis, that contains the
validated prefix together with the corrected word. Note that, although the system generates
a partially correct suffix, in this new hypothesis a new error is also introduced (“during night”
instead of “during the night”). This behavior is intended to be solved with the segment-based
approach (Section 4.2.2).

Introducing this feedback into Eq. (4.1), we obtain Eq. (4.2):

ỹĨ1 = argmax
I,yI

1

Pr(yI1 | xJ
1 , f = ŷi1) (4.2)

We can rewrite the system hypothesis, splitting it into the validated prefix and
the suffix, obtaining Eq. (4.3):

ỹĨ1 = argmax
I,yI

1

Pr(ŷi1, y
I
i+1 | xJ

1 , f = ŷi1) (4.3)

Since the validated prefix must remain fixed, we can remove it from this expression.
We are thus interested in generating the most probable suffix ỹĨi+1 to a prefix validated
by the user (Eq. (4.4), Barrachina et al., 2009):

ỹĨi+1 = argmax
I,yI

i+1

Pr(ŷi1, y
I
i+1 | xJ

1 ) (4.4)
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Note that this equation is a prefix-constrained version of Eq. (1.5). Therefore, at
each iteration, the process consists of a regular search in the translations space, but
constrained by the validated prefix ŷi1.

4.2.2 Segment-based interactive-predictive machine translation

Although simple and intuitive, the prefix-based protocol suffered from two main issues:
first, it was quite restrictive. The human translator was forced to always follow
the left-to-right validation direction. This could be unnatural for the users or even
inadequate in many cases. And second, the IMT system could produce worse suffixes,
which also should be corrected by the user. Apart from increasing the human effort of
the process, this introduced an annoying behavior: if the system modifies parts of the
hypothesis that were correct although non-validated, the user can feel exasperated,
because such new errors that must be corrected in the upcoming iterations were
already solved. This is illustrated in Fig. 4.9: the initial hypothesis provided by the
system contained the correct suffix during the night. However, this suffix was not
validated, because the prefix-based protocol requires to correct a previous error. As
this error is corrected, the system generates the suffix during night, which is incorrect.
The user must then introduce a new correction, to a hypothesis that was correct in
the previous iteration. This results annoying and cumbersome to the user. Aiming
to overcome these handicaps, González-Rubio et al. (2016) introduced the so-called
segment-based interaction.

In the segment-based IMT protocol, the collaboration between human and a com-
puter is extended. Now, the user is allowed to validate segments of the hypothesis,
in addition to correcting wrong words. We define the segments as non-overlapping
subsequences of words that must appear in future hypotheses. Fig. 4.2 represents the
segment-based interaction for the previous example. In this case, in addition to the
word correction, the user also validated the segment during the night, which must
remain in successive hypotheses. This prevents the system from degrading correct
parts of the hypothesis.

As before, the process starts with the MT system proposing an initial translation
ŷÎ1 = ŷ1, . . . , ŷÎ . The user then validates K (0 ≤ K ≤ I) correct segments from ŷÎ1 and
introduces a word correction. With these actions, we build a feedback signal composed
of multiple elements: fK

1 = f1, . . . , fK , where each fk represents a validated segment
of wk words, i.e. fk = ŷi

′+wk

i′ . The word correction introduced by the user is included
as a one-word segment. Note that the prefix-based approach is a particular case of
the segment-based one, in which the sequence of validated segments only contains the
validated prefix (including the corrected word).

At the next iteration, the system must generate a sequence of non-validated seg-
ments g̃K1 = g̃1, . . . , g̃K that fills fK

1 to conform a new translation ỹ = f1, g̃1, . . . , fK , g̃K .
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Once again, this process is repeated until the user accepts the complete suggestion of
the system

f

The pain may also break during the night . The pain may also wake you up during the night .

Reference: The pain may also wake you up during the night .

Figure 4.2: Segment-based IMT iteration for the same example than in Fig. 4.1. In this
case, the user validates two segments and introduces a word correction. The system generates
a new hypothesis that contains the word correction and keeps the validated segments. The
user feedback is f = “The pain may also”, “wake”, “during the night .”. The reaction of the
system is to generate the sequence of non-validated segments g̃ = λ, “you up”, λ; being λ
the empty string. The hypothesis offered by the system is the combination of the validated
and non-validated segments.

Therefore, the goal now is to generate the translation subsequences that fill the
validated segments. In our statistical framework, these translation segments are ob-
tained as in Eq. (4.5):

g̃K1 = argmax
gK
1

Pr(gK1 | xJ
1 , f = fK

1 ) (4.5)

which can be rewritten as Eq. (4.6):

g̃K1 = argmax
gK
1

Pr(f1, g1, . . . , fK , gK | xJ
1 ) (4.6)

This expression is similar to the prefix-based IMT equation (Eq. (4.4)). The
search process in Eq. (4.4) is limited to the space of suffixes, constrained by ŷi1;
while in Eq. (4.6) the search space is all possible substrings of the translations of xJ

1 ,
constrained by the sequence of segments f1, . . . , fK .
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4.3 Interactive-predictive neural machine translation

The addition of interactive-predictive mechanisms to NMT systems affects the search
process: the search space must be constrained, in order to take into account the user
feedback and generate compatible hypotheses. In addition, a crucial requirement of
interactive-predictive systems is the response time: the system should react to the user
interactions in real time, in order to provide an adequate user experience. According
to Nielsen (1993), a delay of 0.1 seconds or less is unnoticeable and the user has the
feeling of instant reactiveness. A response time between 0.1 and 1 seconds will be
noticed by the user, but its flow of thought would stay uninterrupted. Finally, for
Nielsen (1993) the limit for the user to keep the attention on the system is about
10 seconds. Longer delays require feedback from the system. Therefore, in order to
make our systems usable, we must maintain the response times as fast as possible.

In this section, we describe the modifications of the search process that interactive-
predictive scenarios require. Following the statements from Section 4.2, we distinguish
between prefix-based and segment-based interactive-predictive protocols.

Recall that, as presented in Chapter 3, NMT systems generate, at each output
time-step i, a probability distribution over the target vocabulary Y. This is done via
a linear projection to the target vocabulary space and a softmax function (Eqs. (3.10)
and (3.18)). A vector pi contains the probability distribution produced by the model
at time-step i. Each element of pi corresponds to an element from the set Y. There-
fore, the probability expression of a word y ∈ Y at time-step i is equivalent to a forced
decoding strategy, as in Eq. (4.7):

p(yi = y | yi−1
1 , xJ

1 ;Θ) = ȳ⊤pi (4.7)

where ȳ ∈ [0, 1]|Y| the one-hot codification of the word y.

4.3.1 Prefix-based interactivity

In this protocol, the user corrects the left-most wrong word of the system hypothesis
Section 4.2.1. Given a translation hypothesis ŷÎ1 = ŷ1, . . . , ŷÎ , the feedback given
to the system has the form f = ŷi1, where ŷi1 is the validated prefix together with
the corrected word. The inclusion of this feedback into the NMT system is natural
because sentences are generated from left to right. Given a prefix ŷi1, only a single
path accounts for it. The branching of the search process starts once this path has
been covered. Introducing the user feedback f = ŷi1, Eq. (4.7) becomes Eq. (4.8):

p(yi′ | yi
′−1
1 , xJ

1 , f = ŷi1;Θ) =

{
δ(yi′ , ŷi′), if i′ ≤ i

ȳ⊤
i′ pi′ otherwise

(4.8)
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where δ(·, ·) is the Kronecker delta:

δ(yi′ , ŷi′) =

{
1, if yi′ ≡ ŷi′

0, otherwise

This can be seen as generating the most probable suffix given a validated pre-
fix, and fits into the statistical framework deployed by Barrachina et al. (2009) and
described in the previous section.

4.3.2 Segment-based interactivity

In the segment-based interactive-predictive protocol, the user can perform two actions:
introduce a word correction and validate segments to keep in future iterations.

The feedback signal has now the form fK
1 = f1, . . . , fK , where f1, . . . , fK is a

sequence of K non-overlapping segments validated by the user. The word correction
introduced by the user is inserted as a one-word segment in fK

1 .

The system must generate a new hypothesis compatible with the feedback signal.
To achieve this, the problem is reformulated as the generation of the optimal sequence
of non-validated segments g̃K1 = g̃1, . . . , g̃K , where each g̃k is a subsequence of words
in the target language. The goal is to obtain a sequence of non-validated segments
such that its combination with the sequence of validated segments provide a better
translation y′ according to Eq. (4.6).

Unlike the prefix-based approach, the positions of the validated segments fk in the
next hypothesis are unknown beforehand: the user only validates segments of words,
not positions in the hypothesis. Therefore, validated segments cannot be introduced
in a rigid way as in Eq. (4.8). The search process must be constrained in a softer way.

We propose to allow the model to decide whether the search process should be
constrained or unconstrained. fK

1 and g̃K1 are non-overlapping sequences. Hence,
the words produced by the system exclusively belong either to a validated or to a
non-validated segment. We can differentiate the word generation process according
to whether we are generating words belonging to a validated segment or to a non-
validated one.

In the first case, the word generation is constrained to the words of the segment:
Let fk be the n-th validated segment and let ik be the previous position in y where
fk should start. The word probability expression for the words belonging to this
validated segment is defined as in Eq. (4.9):

p(yik+i′ | yik+i′−1
1 , xJ

1 , f
K
1 ;Θ) = δ(yik+i′ , fki′), 1 ≤ i′ ≤ |fk| (4.9)
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where |fk| is the length of the validated segment fk and fki′ refers to the i′-th word
of such segment.

In the second case, words belong to a non-validated segment (gk). Each alternative
hypothesis y will (partially) have the form y = . . . , fk, gk, fk+1, . . . , and our goal is
to generate the most adequate segment. This is harder for the NMT system, because
the length of this non-validated segment is unknown and needs to be estimated.

To that end, we “look ahead” and peek into the next decoding time-steps. Let
lk be the (unknown) length of this non-validated segment gk, located between two
validated segments, fk and fk+1. To estimate the optimal value of lk, we expand the
search several time-steps, until a maximum number L. After each partial hypothesis,
we include the next validated segment, to compute its likelihood. Hence, we obtain
an expanded search tree, in which the paths from the root to the leaves represent
alternative non-validated segments (gk), with different values of lk (0 ≤ lk ≤ L). We
take the value of lk that provides the most probable hypothesis, normalized by the
length of the non-validated segment. Fig. 4.3 shows this branching procedure.

lk = 0

lk = 1

lk = 2

lk = 3

fk+1

fk

yi′

Figure 4.3: Non-validated segment length estimation for segment-based interaction. For
this example, we set the maximum length of a non-validated segment to M = 3 and we
assume a beam size of 3. The pink item represents the last element from the previous
validated segment (fk), blue items represent the first element from the next validated segment
(fk+1). White items denote the words generated for each non-validated segment. Each path
from the root of the tree to one of the leaves (blue items) represents a non-validated segment
gk. We are interested in the non-validated segment with the highest probability (g̃k). Once
we obtained the most promising non-validated segments, we can reuse the computations
made in this exploration to retrieve the one with the highest probability.

More formally, the value of lk is estimated following Eq. (4.10):

l̂k = argmax
0≤lk≤L

1

lk + 1

ik+lk+1∑
i′=ik+1

log p(yi′ | yi
′−1
1 , xJ

1 ;Θ) (4.10)

where, as before, ik is the previous position in y where gk should start, i.e. the last
position of fk. Note that this expression allows the model to generate non-validated
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segments of length zero, resulting in the consecutive positioning of the validated
segments fk and fk+1.

Once the length of the non-validated segment has been estimated, words belonging
to that segment are generated following the regular procedure. We can reuse the
computations made in Eq. (4.10) to evaluate this expression without additional cost,
applying Eq. (4.11):

p(yik+i′ | yik+i′−1
1 , xJ

1 , f
K
1 ;Θ) = y⊤

ik+i′ pik+i′ , 1 ≤ i′ ≤ l̂k (4.11)

This is a flexible strategy, that provides the system freedom to select the number of
words to insert between validated segments. Hence, the system can generate the most
convenient number of words between validated segments, according to its probabilistic
model. In order to avoid the repetition of words, if the system started to generate
words in a non-validated segment g̃k that belongs to the next validated segment fk+1,
we include fk+1 into g̃k, collapsing both segments.

When all validated segments have been already generated, the hypothesis is com-
pleted following the non-interactive process.

This search method is very similar to the grid beam search strategy developed by
Hokamp and Liu (2017). The main difference is that Hokamp and Liu (2017) allow
for an arbitrary reordering of the validated segments, while we require them to be
supplied in order.

4.3.3 Character-level interaction

So far, we described interactive-predictive protocols and systems with word-level in-
teractions. Nevertheless, it is interesting to allow the user to interact with the system
at a character level. This makes it possible for a higher granularity and a more natural
interaction with the system. Most of the existing IMT tools accept character-level
interactions (e.g. CasMaCAT).

In the field of NMT, to perform translations at character level is a promising re-
search direction. Character-based NMT directly allows us to perform the interactions
at a character level. Unfortunately, the prohibitive decoding times of character-level
NMT (Lee et al., 2017) prevent its direct usage in an interactive-predictive setup,
which requires an almost instantaneous reactivity.

To overcome this limitation, we propose a simple, yet effective way of interacting
with a word-level NMT system at character level (Peris and Casacuberta, 2019a). This
strategy is also applicable to subword-level systems (Section 3.4.1). In a nutshell, the
feedback signal will be introduced by the user at a character-level, while the system
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internally will still be working at a word-level. For the sake of simplicity, we describe
this method for prefix-based interaction (Section 4.3.1), but it is also extensible to
other protocols such as the segment-based or pick-revise frameworks.

As in the general IMT framework, the system must produce a hypothesis com-
patible with the user feedback. Following the prefix-based protocol, the user corrects
hypotheses from left to right. But in this case, these corrections refer to a specific
character from a given word. As in the word-level case, this feedback signal has a
two meanings: the correct character is introduced to the system while inherently val-
idating the hypothesis prefix, up to this character. The main difference is that in
character-level interactions can be introduced in the middle of a word.

More formally, let us assume that the user introduces a correction in the u-th
position of the i′-th word of the hypothesis. Therefore, the validated prefix are all
words up to position i′ − 1 together with the validated part of the i′-th word:

f = (ŷi
′−1
0 , ŷi′u1 )

where ŷi
′−1
0 is the sequence of validated words, up to word in position i′−1, ŷi′u1 is the

correct part of the word ŷi′ together with the corrected character position u. Fig. 4.4
shows an example of this feedback signal.

f

It’s going from interest to action . It’s going from tion to action .

Reference: It’s going from intention to action .

inten

Figure 4.4: Character-level interaction. In this case, the word “interest” is incorrect. The
user introduces the character “n” in its corresponding position as feedback signal. This
conveys a twofold meaning: first, it indicates to the system a correct prefix of three words
(“It’s going from”, green in the image) that should be kept in future hypotheses. And second,
it indicates that the fourth word must start with inten- (colored in blue). Considering this
information, the system reacts and produces an alternative hypothesis, compatible with this
feedback: “It’s going from intention to action .”. In this example, the feedback signal with
the form f = (ŷi′−1

0 , ŷi′u1 ) is instantiated as f = (It’s going from, inten).

To process this feedback, we need to generate a word constrained by the prefix ŷi′u1 .
This can be problematic because words are atomic elements for the NMT system. We
tackle this issue creating a mask mu of the target vocabulary according to the user
prefix ŷi′u1 . Therefore, mu ∈ [0, 1]|Y| is a vocabulary-sized binary vector, in which
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each position is set to 1 if the corresponding word in the vocabulary is compatible
with the user prefix and to 0 otherwise.

If there are no compatible words with the validated prefix, we apply forced decod-
ing to this prefix and continue the process with the unconstrained vocabulary. Hence,
the output probability expression (Eq. (4.8)) is rewritten as Eq. (4.12):

p(yi | yi−1
0 , xJ

1 , f = (ŷi
′−1
1 , ŷi′u1 );Θ) =


δ(yi, ŷi′), if i < i′

ȳ⊤
i mu ⊙ pi, if i ≡ i′

ȳ⊤
i pi otherwise

(4.12)

This strategy is illustrated in Fig. 4.5.
Following it, we get the benefits of character-
level interaction while maintaining the de-
coding speed of (sub)word-level NMT. More-
over, since we keep the probabilities of each
compatible word, is straightforward to im-
plement additional features to the system,
such as word completion. It is also remark-
able that this vocabulary masking strat-
egy can help the system to disambiguate
words. Taking as example Fig. 4.5, if we fil-
ter the vocabulary, the system must choose
between integer and intention. This re-
duces the possible ambiguity with other vo-
cabulary words, such as entire, full or
whole.

We tested this strategy in Section 4.4.2,
with positive results: such a simple mod-
ification of the search process greatly re-
duces the effort required by the interactive-
predictive systems, without significant com-
putation overheads.

int

intention

integer

entire

full

whole

desire

purpose

1

1

0

0

0

0

0
mu

Figure 4.5: Constraining the vocabu-
lary for character-level interaction. For
this example, we assume a vocabulary of 7
words. The user introduces a valid prefix
consisting one or more characters (int).
To predict the next word, the system com-
putes a compatibility mask m, which fil-
ters those words that are incompatible
with the given prefix (in gray). In this
case, the compatible words (in green) are
integer and intention.
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4.3.4 Dealing with unknown words

During the process of IMT, the user will likely introduce out-of-vocabulary words,
that must be adequately managed by the system. The usage of word segmentation
techniques such as BPE (Section 3.4.1) greatly reduce the number of unknown words.
The INMT systems developed in this thesis feature a subword encoding/decoding
layer: the user never revises hypotheses nor introduces feedback at a subword level.
The feedback is always introduced to word-level hypothesis. Internally, feedback
signals are converted to the subword level. Analogously, the NMT system generates
the hypotheses at a subword level, but they are also converted into words. Fig. 4.6
exemplifies this.

BPEsubmarine sub@@ mar@@ ine INMT

Figure 4.6: INMT at subword level. The usage of subwords is transparent to the user.
A BPE layer transforms the word-level feedback introduced by the user into subwords.
Analogously, the output of the system is also converted from sub-words into words.

Despite the effectiveness of subwords, the unknown word problem is not solved
and the user still can introduce out-of-vocabulary words. We address this situation
similarly to the general NMT case: all out-of-vocabulary words are mapped to a
special token (<unk>), which represents the unknown word. If the feedback provided
by the user contains out-of-vocabulary words, we feed the NMT system with <unk>
symbols. After obtaining a new hypothesis, we recover the original words introduced
by the user by replacing the <unk> symbols produced by the system.

A future avenue of work is to explore better alternatives to deal with unknown
words. An initial approach would consider the usage of a character-level NMT system
as back-off system of the main one (working at word-level). The character-level system
would only be used to generate unknown words. This hybrid approach has already
been proposed for regular MT (Luong and Manning, 2016) and its extension to IMT
would be a promising starting point.

4.4 Interactive-predictive neural machine translation results

We now show and discuss the results of our interactive-predictive NMT systems. We
evaluate the NMT systems evaluated in the previous chapter (see Section 3.5) under
the interactive-predictive framework, for all the tasks and language combinations
described in Section 1.4.3. Recall that, as described in Section 1.4, we simulate the
behavior of our users.
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The results are organized according to the interaction level of the system: word
(Section 4.4.1) or character (Section 4.4.2). Finally, we analyze additional aspects of
them and raise several points of discussion in Section 4.4.3.

4.4.1 Word-level interactive-predictive neural machine translation

We start by evaluating INMT systems at the word level. These systems react after
the insertion of an entire word. We start by evaluating the classical prefix-based
protocol (Section 4.3.1). Next, we assess the segment-based interactive-predictive
protocol (Section 4.3.2). We are assessing interactions at the word level, therefore,
the evaluation will be done using word-level metrics, namely, WSR and MAR (see
Section 1.4.1).

Moreover, we compare the NMT technology to PB-SMT, for the prefix-based
protocol. To that end, we followed the procedure described by Barrachina et al.
(2009) to explore a word graph and generating the best suffix for a given prefix. For
each sentence to translate, we generated a word graph with the PB system. The word
graph was treated as a weighted finite-state automaton. We parsed the prefix over
the word graph to find the best path that accounts for the prefix, going from the
initial state to any other intermediate state. Finally, we obtained the corresponding
translation for the best path from this intermediate state to the final state. The
implementation of prefix-based IMT is consistent with Barrachina et al. (2009), but
generating the word graphs with the current PB-SMT state-of-the-art Moses toolkit,
described in Section 3.5.2.

Prefix-based interaction

Table 4.1 shows the results of the prefix-based interaction, for RNN-based and Trans-
former NMT systems, compared to PB-SMT systems. It is worth mentioning that,
due to the different metrics and pre/post-processing techniques employed in the liter-
ature (e.g. corpus categorization), it is hard to directly compare the obtained results
with other authors. Therefore, we computed the PB-SMT results by using our data
with the software kindly provided by the authors of Barrachina et al. (2009). Hence,
these results can be considered an updated version of Barrachina et al. (2009), using
Moses v4.0, with our data and processing.

Regarding the results, both neural approaches, RNN-based and Transformer, per-
formed similarly. In most cases, the differences in the results were negligible and were
tightly related to differences on the translation quality of the systems (Section 3.5),
rather than in the characteristics of each model.
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Table 4.1: Results of prefix-based interaction for all tasks, measured in WSR and MAR. We
compare RNN-based and Transformer (Trans.) NMT systems, and PB-SMT. Significance
tests are computed between neural systems (RNN and Transformer). ⋆ indicates significant
improvements of a neural model with respect to the other.

WSR [↓] MAR [↓]

RNN Trans. PB-SMT RNN Trans. PB-SMT

XRCE

En→De 55.1⋆ 56.5 61.3 10.8⋆ 11.2 13.8
De→En 38.4⋆ 42.2 60.9 9.4⋆ 10.0 13.4
En→Fr 45.7⋆ 49.4 50.7 11.1⋆ 12.0 13.8
Fr→En 47.4⋆ 51.8 49.8 10.6⋆ 11.5 15.4
En→Es 28.4⋆ 32.1 27.4 7.3⋆ 8.0 6.4
Es→En 30.7⋆ 37.4 26.2 7.2⋆ 8.3 7.0

TED

En→De 45.7 45.8 64.4 9.5 9.6 16.0
De→En 41.2⋆ 42.6 61.1 10.3 10.6 17.7
En→Fr 40.1⋆ 42.2 58.1 9.6⋆ 10.0 15.7
Fr→En 41.1⋆ 42.5 57.9 10.4⋆ 10.7 17.2
En→Zh 68.1 66.7⋆ 93.1 28.9 29.6 65.9
Zh→En 59.4 60.1 82.1 14.2 14.3 23.5

UFAL

En→De 53.1 51.3⋆ 70.3 8.0 7.8⋆ 12.4
De→En 39.5⋆ 40.6 61.2 7.5 7.6 13.4
En→Fr 34.7 33.7⋆ 51.7 6.6 6.4⋆ 11.0
Fr→En 37.6 37.4 49.0 7.2 7.1 10.9
En→Es 35.3 35.4 50.9 6.6 6.6 11.1
Es→En 32.1⋆ 35.6 48.7 6.2⋆ 6.7 10.8

Europarl

En→De 57.3 55.4⋆ 75.4 10.4 10.1 16.1
De→En 53.7 51.7⋆ 70.1 11.4 11.0 18.2
En→Fr 48.4 47.2⋆ 72.0 10.2 9.9 17.0
Fr→En 53.2 51.2⋆ 74.4 11.4 11.0 19.0
En→Es 51.1 44.8⋆ 67.0 10.4 9.5⋆ 17.1
Es→En 50.6 50.8 60.4 10.9 10.9 15.8

Comparing the neural technology with PB-SMT systems, we observed a clear re-
sult: NMT consistently outperformed PB-SMT. In all tasks but XRCE, these differ-
ences were notoriously large, ranging effort reductions up to a 30%, in terms of WSR
and MAR. In the case of the XRCE task, the performance gap between PB-SMT and
NMT was lower and, for several language combinations, PB-SMT systems performed
better than NMT. This behavior could be anticipated by observing the translation
quality results for this task (Table 3.1): PB-SMT systems performed generally bet-
ter than NMT for this small task. This is also reflected in the interactive-predictive
protocol.
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These large WSR and MAR differences are due to two the different nature of
both approaches: neural models have, by construction, a naturally smooth behavior,
in contrast to PB-SMT systems. NMT reacts better to the introduction of word
corrections and presents a more solid recovery from unexpected feedback. These
observations were also noticed by Knowles and Koehn (2016).

Regarding the introduction of word corrections, the modifications on the NMT
search process required by interactive-predictive protocols are relatively small: when a
correction is introduced into the system, only the prefix is constrained. After applying
forced decoding, the system is free to complete the rest of the sentences, without
additional constraints. On the other hand, PB-SMT relies on a search over a pruned
word graph. This pruning can affect to potentially valid translations, that will not be
reached. Therefore, modifications on the hypotheses are handled by INMT systems
in a less constrained way.

Moreover, the insertion of an unexpected correction (e.g. an unknown word or
a rare phrasal construction) can produce a complete failure of the PB-SMT system.
If the user feedback leads to a specific state in the word graph that has no path to
any final state, the system fails. An error correction method is used to overcome this
issue (Barrachina et al., 2009; Ortiz-Martínez, 2011), but it may lead to successive
wrong hypotheses. NMT systems handle the out-of-vocabulary problem by applying
splitting unknown words, using BPE. Therefore, they are better prepared for this
inconvenience.

Segment-based interaction

We evaluate now the segment-based protocol, which is described in Section 4.3.2.
Table 4.2 shows the segment-based interaction results, for both neural systems. Using
this protocol, the typing effort is always diminished, at the expense of more mouse
interactions: The WSR is reduced by a factor ranging from 7% up to 15%. On the
other hand, MAR values are increased in all tasks.

This is an expected behavior: since the user validates segments using the mouse,
its activity is higher. However, this avoids introducing errors in successive iterations
on correct parts of the hypothesis. Therefore, this mouse activity increase may pay off
from the user comfortability point of view. Nevertheless, due to the flexibility of the
segment-based approach, users are free to choose how to use the system: a user may
prefer to use more intensively the mouse, while another one may prefer to introduce
more word corrections. Both user behaviors are supported by the protocol.

Despite the fact that the segment-based approach obtained better WSR than the
prefix-based protocol for each task, the differences between them are rather small.
This is probably due to the way in which the neural system generates the translations:
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Table 4.2: Results of segment-based INMT for all tasks, in terms of WSR [↓] and MAR [↓].
We compare RNN-based and Transformer (Trans.) NMT systems. Significantly better
results of a model with respect to the other are denoted by ⋆.

WSR [↓] MAR [↓]

RNN Trans. RNN Trans.

XRCE

En→De 50.9⋆ 54.7 14.9⋆ 16.0
De→En 35.1⋆ 39.9 13.3⋆ 14.1
En→Fr 43.2⋆ 48.1 14.6⋆ 15.4
Fr→En 45.1⋆ 50.3 11.7⋆ 12.6
En→Es 22.7⋆ 30.2 7.5⋆ 12.7
Es→En 29.1⋆ 35.5 12.5⋆ 13.2

TED

En→De 42.4 42.3 12.2 12.2
De→En 39.2⋆ 40.3 11.9 12.2
En→Fr 37.5⋆ 38.0 12.7⋆ 12.9
Fr→En 40.0 40.2 12.5 12.6
En→Zh 58.4 56.6⋆ 64.2 62.5⋆

Zh→En 51.2 49.2⋆ 21.2 20.4⋆

UFAL

En→De 51.2 50.4⋆ 15.2 15.1
De→En 35.9⋆ 37.1 13.5 13.7
En→Fr 27.9 26.8⋆ 10.0 9.8⋆

Fr→En 30.5 30.4 10.8 10.8
En→Es 31.0 31.2 10.9 10.9
Es→En 29.5⋆ 33.1 10.3 10.5

Europarl

En→De 61.2 52.9⋆ 19.9 15.9⋆

De→En 57.8 55.5⋆ 17.9 16.3⋆

En→Fr 46.3 45.3⋆ 14.3 14.1⋆

Fr→En 48.5⋆ 49.2 14.9⋆ 15.1
En→Es 48.8 40.2⋆ 14.9 12.5⋆

Es→En 48.6 48.9 14.1 14.1

since it follows a left-to-right direction, the prefix-based approach fits nicely into it.
The inclusion of the segment-based feedback is more artificial. Although it helps the
system, in light of the results, the benefits obtained are limited.

However, the segment-based framework allows the implementation of more com-
plex user models. For instance, the user could remove words between validated seg-
ments, or drop all non-validated segments from a hypothesis, achieving the desired
translation in fewer interactions. We think that higher gains could be obtained by
sophisticating the user model.
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4.4.2 Character-level interactive-predictive neural machine
translation

Next, we evaluate the introduction of character-level corrections in the prefix-based
IMT protocol. Since we introduce feedback at this level, we assess the system using
KSMR, which measures character-level effort.

Table 4.3: Effort required by interactive-predictive NMT systems, RNN and Transformer
(Trans.), compared to the literature (PB-SMT, Ortiz-Martínez, 2011, 2016), in terms of
KSMR (%). ⋆ indicates significant improvements of RNN or Transformer for a given task
and language pair. − indicates a missing result for this task and language combination.

KSMR [↓]

RNN Trans. PB-SMT

XRCE

En→De 27.5⋆ 30.4 39.1
De→En 24.1⋆ 27.3 39.5
En→Fr 23.8⋆ 27.7 34.4
Fr→En 27.6⋆ 31.2 37.0
En→Es 13.9⋆ 14.5 16.7
Es→En 17.6 17.8 18.1

TED

En→De 26.7⋆ 27.6 −
De→En 25.9⋆ 27.3 −
En→Fr 24.0⋆ 25.8 −
Fr→En 26.9⋆ 28.0 −
En→Zh 60.2⋆ 63.5 −
Zh→En 39.9⋆ 41.2 −

UFAL

En→De 23.8 21.1⋆ −
De→En 27.9 19.0⋆ −
En→Fr 19.0 15.9⋆ −
Fr→En 19.2 17.7⋆ −
En→Es 17.1 16.1⋆ −
Es→En 16.1⋆ 17.7 −

Europarl

En→De 30.6 29.5⋆ 48.0
De→En 33.2 25.4⋆ −
En→Fr 30.1 29.4⋆ 43.2
Fr→En 33.1 31.5⋆ −
En→Es 30.4 28.4⋆ 45.9
Es→En 29.1 29.5 −

Table 4.3 shows the performance in KSMR of the INMT systems. We also compare
these results with the best results found in the literature for each task and language
combination (Ortiz-Martínez, 2011, 2016), which were PB-SMT systems.
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Regarding the comparison of both neural architectures, we observed again a strong
correlation on the amount of data used to train the system and their performance:
Transformer models clearly outperformed RNN-based systems in those scenarios in
which the training datasets were large (UFAL, Europarl). In the cases with few data
(TED, XRCE), RNN-based systems worked better than Transformers. The differences
were significant in most cases.

Comparing the neural systems to PB-SMT, the first technology performed sub-
stantially better. In several cases, the effort was greatly reduced, from a 20% to a 36%
of relative improvement. Similarly to the observations in the word-based interaction,
the performances of NMT and PB-SMT are close for the translation from/into Span-
ish in the XRCE task. We also observed that, again, the more training data is used
to train an NMT system, the larger differences it achieves with respect to PB-SMT,
as shown by the results on the Europarl corpus. It is also worth pointing out that, in
terms of translation quality, our NMT systems outperformed the PB-SMT systems
from Ortiz-Martínez (2016) by around 5 BLEU points for this task. These differ-
ences are also reflected in terms of the effort required. Finally, we observed that the
differences between neural and PB-SMT systems were sharpened when translating
from/into German. NMT systems were able to better model the complex structures
of German. Moreover, neural models are able to properly leverage the vocabulary-
masking strategy (see Section 4.4.2) and BPE, to better handle the user feedback,
than PB-SMT systems. This explains the large differences in terms of effort regarding
the German language.

Evaluating the vocabulary-masking strategy

We introduced a simple yet effective way to perform character-level interactions on
an NMT system that works at word (or subword) level (Section 4.3.3). A system
with character-level interactions will potentially require fewer keystrokes than another
based on word-level interactions, provided that it is able to correctly profit from the
user feedback. On the other hand, the number of mouse actions may be increased in
character-level systems, since the user can move the mouse along one word to correct
it, spending more than one mouse action. In word-based interaction, words are treated
as atomic units; therefore, the number of mouse actions required is potentially lower.

In order to assess the proposed character-based INMT systems, we measured the
KSMR required by the same INMT system when performing interactions at either
word or character level. Results are shown in Fig. 4.7. From KSMR, we differentiated
keystrokes and mouse actions.

According to Fig. 4.7, to perform character-level interactions greatly diminished
the number of keystrokes required. Reductions were around 50% in the case of French
and even larger in the case of German (between 60% and 75%). This suggests that
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Figure 4.7: KSMR of INMT systems of all tasks. We compare word-level interaction
(dotted) to character-level interaction. From each bar, the upper (lighter) part represents
the mouse action fraction of KSMR, and the lower part accounts for the keystrokes.

the system was able to correctly predict even the long and compounded words from
German. As expected, character-based interaction slightly increased the amount of
mouse actions required. Nevertheless, the increase in mouse actions was small.

Comparing both levels of interactions, conclusions are indisputable: character-
level interaction is more effective than word-level, in terms of human effort required.
Moreover, character-level interaction allows the user to have a more precise and nat-
ural control of the IMT process.

4.4.3 Additional aspects regarding INMT

We analyze now several facets regarding the interactive-predictive framework. We
study the response times of IMT systems and analyze examples of interactive-predictive
sessions.

Response times

As discussed in Section 4.3, the response time of an interactive-predictive system is
an important aspect of it. The average response times for all systems are shown in
Table 4.4. In the neural systems, the response rates are adequate for an interactive-
predictive scenario, when using a GPU2. According to Nielsen (1993), the user would
perceive a small delay on the system response, but keeping the feeling of instant

2Experiments executed on a single GeForce GTX 1080 GPU.

84



4.4. Interactive-predictive neural machine translation results

reactivity. If computations were made on the CPU, the response time were increased
by approximately 10 times. To deploy the interactive-predictive systems on a CPU,
we should apply strategies yo scale up the system and enhancing the CPU response
time (e.g. Devlin, 2017; Klein et al., 2017).

In the case of the PB-SMT systems, we measure two different scenarios, depending
on whether the word graph is pre-computed or not. In the first case, response times
are acceptable, allowing fluent interactivity. In the second case, response times are
inadequate for the interactivity. Nevertheless, note that a comparison of the NMT
system with the first scenario is unfair, because in the NMT system we do not assume
any pre-computation. It should be investigated if advancing these computations may
help to enhance the responsiveness of the NMT system.

Table 4.4: Average system response time (in seconds) per interaction, for each task. NMT-
CPU refers to the execution of the RNN-based neural system in a CPU, while the column
NMT-GPU show the times for the GPU execution. In the case of PB-SMT systems, we
report the time of the sole exploration of the word graph (PB-SMT Search), together with
the time required for both building and exploring the word graph (PB-SMT All). PB-SMT
systems run on CPU. Best results for each task are bold-faced.

NMT-GPU NMT-CPU PB-SMT All PB-SMT Search

XRCE 0.13 1.30 1.13 0.24
TED 0.21 3.12 0.68 0.25
UFAL 0.25 2.03 1.23 0.42
Europarl 0.12 1.41 1.08 0.32

Qualitative analysis: IMT session examples

Now, we qualitatively study the behavior of interactive-predictive systems, by ana-
lyzing an example from the UFAL dataset. We show the different IMT sessions, of
neural and PB-SMT systems, from the translation of a French sentence into English.
The source sentence is “Ils és à fournir un échantillon d’ urine propre.” and the
desired translation is “They will be asked to provide a clean catch urine sample.”.

Fig. 4.8 shows the session of the PB-SMT system. First, the system generates an
initial hypothesis. Following the protocol, at iteration IT-1, the user then corrects
the first wrong word, introducing the word “asked” at position 4. Then, the system
reacts and suggests a new suffix. Note that in this new hypothesis, the words “asked”
and “requested” are consecutive in the new hypothesis: the PB-SMT system is unable
of properly understand the correction provided by the user, because the feedback
‘asked” and the word “requested” refer to the same. The next iteration starts then,
with the user validating the next wrong word and the system generating a compatible
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Source: Ils és seront invités à fournir un échantillon d’urine propre.
Target translation: They will be asked to provide a clean catch urine sample.

IT-0 MT They will be invited to provide a panel of urine clean.

IT-1
User They will be asked invited to provide a panel of urine clean.
MT They will be asked requested to provide clean urine sample.

IT-2
User They will be asked to requested to provide clean urine sample.
MT They will be asked to provide a panel of urine clean.

IT-3
User They will be asked to provide a clean panel of urine clean.
MT They will be asked to provide a clean urine sample.

IT-4
User They will be asked to provide a clean catch urine sample.
MT They will be asked to provide a clean catch (urine sample.

IT-5
User They will be asked to provide a clean catch urine (urine sample.
MT They will be asked to provide a clean catch urine.

IT-6
User They will be asked to provide a clean catch urine sample.
MT They will be asked to provide a clean catch urine sample.

END User They will be asked to provide a clean catch urine sample.

Figure 4.8: PB-SMT prefix-based IMT session to translate a sentence from French into
English: given the input sentence, the user desires to obtain the target sentence. User
corrections are in bold, while validated prefixes are in italic.

hypothesis. This is repeated until the desired translation is obtained. This IMT
process required 6 word corrections.

Fig. 4.9 shows the same sentence, but using the RNN-based NMT system. The
first hypothesis is similar to that provided by the PB-SMT system, and the first word
correction introduced by the user is the same as in the previous case. But now, the
NMT system was able to adapt the next hypothesis to the user feedback: The system
processed the correction “asked” as a synonym for “invited”. Therefore, it is able to
provide a coherent alternative. With this, the number required of iterations is reduced
from 6 to 4, which accounts for a reduction of the 33% of the effort, compared to the
PB-SMT system.

However, note that at IT-1 of Fig. 4.9, the NMT system already produced the
correct segment “urine sample.”. Nevertheless, this segment was lost at IT-2. The
segment-based protocol aims to prevent this behavior and it is shown in Fig. 4.10.
Now, at the first iteration, the user validates three segments and introduces a word cor-
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Source: Ils és seront invités à fournir un échantillon d’urine propre.
Target translation: They will be asked to provide a clean catch urine sample.

IT-0 MT They will be invited to provide a clean urine sample.

IT-1
User They will be asked invited to provide a clean urine sample.
MT They will be asked to provide a clean urine sample.

IT-2
User They will be asked to provide a clean catch urine sample.
MT They will be asked to provide a clean catch.

IT-3
User They will be asked to provide a clean catch urine.
MT They will be asked to provide a clean catch urine.

IT-4
User They will be asked to provide a clean catch urine sample.
MT They will be asked to provide a clean catch urine sample.

END User They will be asked to provide a clean catch urine sample.

Figure 4.9: Real RNN-based prefix-based IMT session, considering the same sentence,
protocol, and format as in Fig. 4.8, but using the NMT system.

rection (“asked”), which is included as a one-word validated segment. This feedback
allowed the model to keep through the successive hypotheses the validated segment
“urine sample.”. At the second iteration, since there are no new segments, the user
only introduces a word correction. The system reacts then by providing the desired
hypothesis. Using the segment-based approach, only two interactions are necessary,
which accounts for a reduction of 66% and 50% of the number of interactions from
prefix-based PB-SMT and NMT systems, respectively. However, these interactions
are more costly in terms of mouse actions, because the user needs to select the vali-
dated segments.
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Source: Ils és seront invités à fournir un échantillon d’ urine propre.
Target translation: They will be asked to provide a clean catch urine sample.

IT-0 MT They will be invited to provide a clean urine sample.

IT-1
User They will be asked invited to provide a clean urine sample.
MT They will be asked to provide a clean urine sample.

IT-2
User They will be asked to provide a clean catch urine sample.
MT They will be asked to provide a clean catch urine sample.

END User They will be invited to provide a clean urine sample.

Figure 4.10: Real neural segment-based IMT session. Same sentence, system, and format
as in Fig. 4.9, but following the segment-based protocol. Boxed text represents validated
segments. Now, in addition to correcting words, the user validates with the mouse correct
segments in the hypotheses.

Finally, Fig. 4.11 shows the same example, for prefix-based interaction, but intro-
ducing the feedback at character level. As before, the user wants to introduce the word
“asked”. To that end, in this case, only the first character is introduced. Only with
this character, the system is able to properly generate the rest of the word. However,
the generation of the word “catch” is more problematic. The system failed to propose
the correct alternative, and the user had to type four out of the five characters of that
word. Finally, at IT-6, the system also generated correctly the word “urine” from
its initial character. In this example, the user only typed 6 characters. Compared
to the system with word-level feedback (Fig. 4.9), which required the typing of 23,
this evidences the enhancements brought by character-based feedback (quantitatively
evaluated in Section 4.4.2).

Interestingly, even when failing in generating the words desired by the user, all
hypotheses produced by the NMT system were fluent and coherent. The system is
able to remove words when they are inappropriate, as in the hypothesis from IT-4.
This is in contrast to PB-SMT system, which produces more artificial and unnatural
hypotheses.
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Source: Ils és seront invités à fournir un échantillon d’ urine propre.
Target translation: They will be asked to provide a clean catch urine sample.

IT-0 MT They will be invited to provide a clean urine sample.

IT-1
User They will be ainvited to provide a clean urine sample.
MT They will be asked to provide a clean urine sample.

IT-2
User They will be asked to provide a clean curine sample.
MT They will be asked to provide a clean cholesterol sample.

IT-3
User They will be asked to provide a clean ca sample.
MT They will be asked to provide a clean capillary sample.

IT-4
User They will be asked to provide a clean catpillary sample.
MT They will be asked to provide a clean cateter.

IT-5
User They will be asked to provide a clean catceter.
MT They will be asked to provide a clean catch sample.

IT-6
User They will be asked to provide a clean catch usample.
MT They will be asked to provide a clean catch urine sample.

END User They will be asked to provide a clean catch urine sample.

Figure 4.11: Prefix-based IMT session, for an RNN-based NMT with character-level inter-
action, considering the same sentence, protocol, and format as in Fig. 4.8. In this case, the
user corrects a character of the hypothesis and obtains an alternative.

4.5 Summary

In this chapter, we introduced an interactive-predictive machine translation approach,
aiming to obtain high quality translations reducing the human effort spent in the
process. After reviewing the most relevant works involving the topic, we presented
the statistical framework on which IMT relies. Next, we developed neural interactive-
predictive systems, which are compliant within such framework. This was achieved
by constraining the search process of NMT decoders.

We described two main modifications of the system, which led to prefix-based and
segment-based interactive-predictive systems. While the first protocol is natural for
NMT systems, the second one is more challenging. We tackled the generation of non-
validated segments via partial expansions of the search tree. This allows the model
to search for the most suitable non-validated segments in a flexible and efficient way.
We also addressed the possibility of performing character-level interactions on top
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of a (sub)word-level system. This provides a more fine-grained interactivity, while
keeping the decoding latency at an adequate speed.

Moreover, this framework can be applied beyond MT. It is generalizable to other
tasks involving structured predictions. We explore these scenarios in Section 6.3,
where we apply the interactive-predictive framework to two multimodal sequence-to-
sequence tasks, namely, image and video captioning. Additionally, we built a web-
based demonstration for all these interactive-predictive systems3, that implements the
prefix-based INMT protocol with character-level feedback. This demo is built upon
the NMT-Keras package (see Appendix A) and it is also open-sourced.

We performed a wide evaluation of the interactive-predictive protocols described
in this chapter. Compared to classical PB-SMT, our interactive-predictive NMT
systems performed usually much better, in terms of the amount of actions required
to obtain the desired translations. We conjecture that these enhancements are due to
the flexibility of the neural models and their capability to adapt to the user feedback.
The segment-based INMT protocol led to diminishing the typing effort required by
the user, at the expense of an increase of the mouse actions. However, this is a
more flexible protocol, that aims to offer more freedom to the user: the prefix-based
protocol is a special case of this segment-based strategy. Hence, the user can still
use the prefix-based protocol, if desired. Finally, we found that the introduction of
feedback at character level although simple is effective: it approximately halved the
KSMR required during the IMT process.

As final takeaway, we conclude the chapter by stating that neural IMT systems
performed better than PB-SMT ones, and that performing character-level interac-
tions is preferable to word-level interactions. However, all these assertions must be
confirmed by future user studies.

3Accessible at: http://casmacat.prhlt.upv.es/interactive-seq2seq
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Chapter 5

Adaptive neural machine
translation via online learning

As discussed in the previous chapter, MT systems are not perfect and make mis-
takes. These errors are usually corrected in a post-editing phase or following the
interactive-predictive MT protocol, as described in that chapter. Although efficient,
this methodology can be improved in several ways: MT systems make the same mis-
takes over and over. Thus, users must perform repetitive corrections, which can lead
to exasperation. Moreover, if a system is trained on a given domain, its performance
will degrade when translating sentences from a different domain. Although this phe-
nomenon is common to all corpus-based technologies, NMT systems are more sensitive
to domain mismatch (Koehn and Knowles, 2017).

A vast amount of work is being devoted to solving these issues, which are central
problems of the current research and the industrial exploitation of MT. This chapter
is focused on profiting from the corrections made by the user in the post-editing or
IMT processes, to improve the NMT systems. Both protocols generate new data—the
corrected samples—which can be leveraged to train the system. These new data have
valuable properties, that help to overcome the aforementioned problems: on the one
hand, they represent in-domain data, which can help to adapt the system towards the
domain of interest. On the other hand, these data contain corrections of the errors
made by the system. Therefore, the system can learn from its mistakes, avoiding to
make these errors again.
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Moreover, we are interested in adapting the system in a continuous manner, mod-
ifying the system as soon as the corrected samples are available. This matches with
the online learning paradigm, in which the training data is available sequentially and
the models are updated after processing each sample (incremental learning). The
typical post-editing or IMT workflow complies with these stages:

1. A source sentence comes to the system.

2. The MT system produces a translation hypothesis.

3. A human agent revises this hypothesis and corrects the errors made by the
system or interactively translates the source sentence. This generates a corrected
translation.

4. The corrected sample is used to adapt the system, updating the model param-
eters.

Following this procedure, we can build adaptive MT systems, able to take into
account corrections made by the humans. Fig. 5.1 illustrates the adaptive IMT frame-
work, compared to an static one.

xJ
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Interactive MT

Θ

ŷÎ
1

yI
1

(a) Static IMT system.

xJ
1

f

Interactive MT

Θn
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(b) Adaptive IMT system.

Figure 5.1: Static and adaptive IMT systems. Figure adapted from Ortiz-Martínez et al.
(2010). In both cases, the system produces a hypothesis ŷÎ

1 for the source sentence xJ
1 . This

hypothesis is transformed, following the IMT procedure, yielding the correct translation yI
1 .

After this process, in the static system (left), the MT model (Θ) remains unchanged; while
in the adaptive system (right), the MT model is incrementally retrained with these new data,
obtaining a dynamic model Θn.

Continuous learning from MT post-edits or IMT includes techniques that can be
leveraged to adapt a MT system to different domains, styles or users. They are orthog-
onal to other adaptation techniques, such as fine-tuning with in-domain data. This
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chapter explores the application of OL techniques to NMT systems. First, we review
the relevant literature regarding this topic. Next, we describe algorithms to perform
continuous adaptation of NMT systems, proposing two novel algorithms and meth-
ods, aiming to obtain more effective systems. We also explore the application of the
active learning paradigm to NMT systems. Finally, we conduct a set of experiments
to assess our proposals.

5.1 Applications of online learning in machine translation

The application of online learning techniques to MT has been thoroughly explored in
the literature. Most works aimed to adapt the MT system to a given domain or tailor
it according to a given document. Classical applications include the application of OL
techniques to adjust the weights of the log-linear model of PB-SMT: The margin-infuse
relaxed algorithm (MIRA; Crammer and Singer, 2001) processes all samples one by
one which is especially useful when dealing with a large number features. Therefore,
it has been applied to tune PB-SMT with sparse features (Watanabe et al., 2007;
Hasler et al., 2011; Chiang, 2012; Green et al., 2013b). The incremental estimation of
the different models that conform PB-SMT systems via OL techniques has also been
studied (Ortiz-Martínez et al., 2010; Ortiz-Martínez, 2016).

Learning from post-edits

However, the most paradigmatic application of OL in the MT field is to profit from
the post-edited sentences, as described above. Many advances in this direction were
achieved during the CasMaCat (Alabau et al., 2013) and MateCat (Federico et al.,
2014) projects. Martínez-Gómez et al. (2012) studied several OL algorithms to adjust
the weights of a PB-SMT system during the post-editing phase. Bertoldi et al. (2013)
proposed an adaptive PB-SMT system, based on cache components. Mathur et al.
(2013) introduced additional features, which allowed to take into account the cor-
rections made by the user. Closely related to this, Denkowski et al. (2014a) and
Denkowski et al. (2014b) implemented dynamic translation and language models
which, together with the tuning of weights from the log-linear model, provided a
reduction of the human effort required to post-edit the outputs of a system. Sanchis-
Trilles and Casacuberta (2015) studied the adaptation of the model weights by means
of Bayesian learning. Lagarda et al. (2015) adapted a general PB-SMT system to a
specific domain, during the post-editing stage.

This online learning scenario matches very well with the interactive-predictive
framework. Consequently, their combination has also been studied. Nepveu et al.
(2004) proposed adaptive language and translation models, devised for an IMT con-
text. The IMT system introduced by Ortiz-Martínez et al. (2010) allowed the in-
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cremental update of the underlying PB-SMT system and was further extended by
Ortiz-Martínez (2016).

Online learning in NMT

Few works studied the application of OL techniques to NMT in the post-editing
scenario. Turchi et al. (2017) and Peris et al. (2017a) studied almost simultaneously
and independently a similar scenario: an NMT system was refined with post-edited
samples in order to perform domain adaptation. Moreover, Peris et al. (2017a) studied
alternative training methods to perform this adaptation. Kothur et al. (2018) included
a dictionary of translations, to deal with the novel words included in the new domain.
Wuebker et al. (2018) proposed to apply sparse updates, to adapt the NMT system
to different users.

Finally, other works aimed to tailor NMT systems towards a given user or domain,
but not necessarily using online learning. Vilar (2018) leveraged a speaker adaptation
method from speech systems (Swietojanski et al., 2016) to perform domain adaptation
in MT. Khayrallah et al. (2018) proposed a regularized loss function, to adapt the
system with few samples. Michel and Neubig (2018) adapted NMT to different speak-
ers, by only modifying the output vocabulary layer of the model. NMT adaptation
via reinforcement learning has also been recently studied with encouraging results
(Kreutzer et al., 2017; Lam et al., 2018).

User studies on adaptive machine translation

Translation post-editing has been a widely adopted practice in the industry for a long
time (e.g., Vasconcellos and León, 1985). As the MT technology advanced and was
improved, the post-editing process gained more relevance and many user studies have
demonstrated its capabilities (Green et al., 2013a; Bentivogli et al., 2016; Castilho
et al., 2017).

User studies on online adaptation from post-edits have been conducted, mainly for
phrase-based statistical machine translation systems (Green et al., 2013b; Denkowski
et al., 2014a; Alabau et al., 2016; Bentivogli et al., 2016). Regarding the NMT tech-
nology, several user studies have been recently conducted, analyzing different MT
technologies (PB-SMT, NMT and rule-based MT Koponen et al., 2019; Jia et al.,
2019) or protocols (IMT versus regular post-editing, Daems and Macken, 2019). Ka-
rimova et al. (2018) showed savings in human effort, due to the effect of online learning.
We also carried a user study which, in contrast to the aforementioned works, involved
professional translators. In our case, the adaptive system also brought performance
improvements and the users were pleased with this system (see Section 5.4).
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5.2 Online learning for NMT post-editing

Typical training methods for NMT systems involve the minimization of a loss function,
by means of stochastic gradient descent (Section 2.2.2). This procedure can be directly
applied in an online learning setting (Murata, 1998). Hence, online learning in NMT
systems can be performed using the same methods than in regular mini-batch training,
but applied sample by sample.

Therefore, given the n-th training sample, consisting of a sequence of J input
vectors xJ

1 = x1, . . . ,xJ , and a sequence of I reference vectors yI
1 = y1, . . . ,yI , an

NMT system f , with parameters Θn, produces a prediction from the input sequence
ŷI
1 = f(xJ

1 ;Θ). This prediction is compared to the reference, by means of the loss
function ℓ, typically the mean cross-entropy of the sequence (Eq. (2.6)), as in Eq. (5.1):

ℓ(yI
1 , ŷ

I
1) = −1

I

I∑
i=1

K∑
k=1

yi,k log ŷi,k (5.1)

where yi,k and ŷi,k denote the k-th elements of the i-th vectors from yI
1 and ŷI

1 , respec-
tively. Provided that the last activation of the NMT system is the softmax function
and that the reference vectors follow a one-hot codification, this loss is equivalent
to − log p(yI

1 | xJ
1 ;Θn) and its minimization matches with a maximum likelihood

estimator (see Section 2.2.1).

To minimize this loss function, SGD computes an update of the parameters (∆Θn),
to be added to the current parameters (Eq. (2.9)):

Θn+1 = Θn +∆Θn

This update follows the opposite direction of the gradient of the loss function with
respect to the model parameters as in Eq. (2.10):

∆Θn = −ρ gn

where ρ is a learning rate that controls the step size. Recall that a gradient is the
vector field of partial derivatives of the elements of a vector:

gn = ∇Θnℓ(y
I
1 , ŷ

I
1) =

(
∂ℓ(yI

1 , ŷ
I
1)

∂θ1
, . . . ,

∂ℓ(yI
1 , ŷ)

∂θW

)
where θ1, . . . , θW are the elements of Θn.
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As described in Section 2.2.3, a significant effort has been spent in the literature
trying to minimize the critical importance of the learning rate choice. Adaptive SGD
algorithms try to overcome this dependence by dynamically computing the learning
rate.

However, we empirically found (Section 5.3.2) that these adaptive SGD algorithms
do not completely alleviate the need of tuning the learning rate in our scenario of
online learning for NMT. A correct choice of the learning rate becomes extremely
important, even for adaptive SGD optimizers, to build solid adaptive NMT systems.

5.2.1 Hypergradient descent to stabilize the learning

An alternative to make the choice of the learning rate more robust, is to consider
this selection as an optimization problem itself. Therefore, we can apply a gradient
descent process to the learning rate, adapting it in a less heuristic way. This was
devised long ago by Almeida et al. (1998), but remained practically unknown until its
recent reintroduction by Baydin et al. (2017), who called it hypergradient descent.

Hypergradient descent methods differ from regular update rules (Table 2.2) in that
they apply an additional gradient descent procedure on the learning rate. Therefore,
SGD with hypergradient descent (SGD-HD) derives Eq. (2.10) with respect to the
learning rate, in addition to the derivation with respect the model parameters. Hence,
SGD-HD rewrites Eq. (2.10) as Eq. (5.2):

∆Θn = −ρn gn (5.2)

where ρn is the learning rate computed for the current update n. ρn is obtained after
an additional gradient descent process, following Eq. (5.3):

ρn = ρn−1 − α∆ρn (5.3)

where, analogously to Eq. (2.10), α is a (hypergradient) learning rate. As in the
regular SGD process, ∆ρn is defined as the partial derivative of the loss function with
respect to the learning rate ρ (Eq. (5.4), Baydin et al., 2017):

∆ρn =
∂ℓ(yI

1 , ŷ
I
1)

∂ρ
(5.4)

Putting together Eqs. (2.9) and (2.10), Θn = Θn−1 − ρgn. Therefore, applying
the chain rule, Eq. (5.4) can be rewritten as in Eq. (5.5):
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∂ℓ(y, ŷ)

∂ρ
= gn

∂
(
Θn−1 − ρgn−1

)
∂ρ

= gn(−gn−1) (5.5)

A nice property of this derivation is that only requires to store the gradients of
the past update, which is already computed in the regular SGD method. Therefore,
the computational overhead of hypergradient descent is small with respect to original
SGD.

It is worth mentioning that hypergradient descent can be applied not only to
SGD, but also to the other update rules, such as those described in Table 2.2. Their
hypergradient versions can be obtained following analogous reasoning and derivations
than for the case of SGD.

5.2.2 Considering the hypotheses

The typical gradient descent method only takes into account the ground-truth sample
to compute the updates done to the system. We hypothesize that it is interesting to
also consider the hypothesis produced by the system to compute a more adequate
update.

Therefore, we say that a model Θn is well-trained if it assigns more probability to
the reference sentence (yI

1) than to any other translation hypothesis (hI
1), satisfying

Eq. (5.6):

p(yI
1 | xJ

1 ;Θn) ≥ p(hI
1 | xJ

1 ;Θn) (5.6)

Otherwise, the model is ill-trained and hence, it can be improved. Note that, since
NMT systems are based on a suboptimal search method (typically beam search), a
well-trained model can produce an incorrect hypothesis, but satisfy the restriction
from Eq. (5.6). In this case, the system would incur in a search error, not a training
one. However, these type of errors are very infrequent (in our experimentation, this
occurred in less than 1% of the cases) and their resolution relies beyond the scope of
this thesis. Note that, hypothesis and reference sequences can differ in length. We
equalize them adding padding symbols, ensuring that both have the same length.

We propose two alternative methods to achieve this optimization. First, we pro-
pose an algorithm inspired by passive-aggressive (PA) techniques (Crammer and
Singer, 2001; Crammer et al., 2006), which have been successfully applied to the
optimization of PB-SMT systems (Hasler et al., 2011; Chiang, 2012; Martínez-Gómez
et al., 2012). Second, we aim to fix some of the issues of this PA algorithm, proposing
an alternative approach, inspired by the Minimax theorem (von Neumann, 1928).

97



Chapter 5. Adaptive neural machine translation via online learning

Passive-aggressive via subgradient techniques

Passive-aggressive methods (Crammer and Singer, 2001; Crammer et al., 2006) are a
family of online learning algorithms, devised following the intuition of performing the
minimum modifications of a wrong model (passiveness), in order to account for the
true label of the current sample (aggressiveness).

Applied to NMT, we assume that our wrong model is an NMT system that does
not satisfy Eq. (5.6). Our objective is to obtain a new set of parameters Θn+1 such
that Θn+1 is close to Θn (passiveness) but also satisfying our condition of correctness
(aggressiveness). To that end, we express the correctness condition with the loss
function defined in Eq. (5.7):

ℓPA(x
J
1 ,y

I
1 ,h

I
1,Θ) = log p(hI

1 | xJ
1 ;Θn)− log p(yI

1 | xJ
1 ;Θn) (5.7)

Assuming, as before, that the NMT system has a softmax output function and
that hI

1 and yI
1 follow a one-hot codification, this loss function can be built from the

cross-entropy loss (ℓ, Eq. (5.1)):

ℓPA(x
J
1 ,y

I
1 ,h

I
1,Θ) = ℓ(yI

1 , f(x
J
1 ;Θ))− ℓ(hI

1, f(x
J
1 ;Θ)) (5.8)

Our objective can be formulated as a minimization problem with constraints
(Eq. (5.9) Crammer et al., 2006):

Θn+1 = argmin
Θ

1

2
∥Θ−Θn∥2 + C ξ

s.t. ℓPA(x
J
1 ,y

I
1 ,h

I
1,Θ) ≤ ξ and ξ ≥ 0

(5.9)

where ξ ≥ 0 is a slack variable, included to provide more flexibility to the method and
C is a parameter that controls the aggressiveness of the algorithm (Crammer et al.,
2006).

From Eq. (5.9), ξ ≥ max(0, ℓPA(x
J
1 ,y

I
1 ,h

I
1,Θ)). Considering these restrictions,

Eq. (5.10) defines FΘ as a new function to optimize:

FΘ(xJ
1 ,y

I
1 ,h

I
1,Θn) =

1

2
∥Θ−Θn∥2 + Cmax(0, ℓPA(x

J
1 ,y

I
1 ,h

I
1,Θ)) (5.10)

And our end goal is to find the set of parameters that minimize this function, as
in Eq. (5.11):
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Θn+1 = argmin
Θ

FΘ(xJ
1 ,y

I
1 ,h

I
1,Θn) (5.11)

This function is discontinuous, hence having non-differentiable regions. To solve
this optimization, we rely on a subgradient method (Shor et al., 2003). This is an
iterative algorithm, that aims to solve minimization problems with non-differentiable
objective functions (as Eq. (5.11)). Hence, subgradient methods become useful in our
scenario. A subgradient of a function f at a point x, denoted as ∂xf , is any vector
a that satisfies f(y) ≥ f(x) + a⊤(y − x) for all y (Boyd et al., 2003). When f is
differentiable, the only possible subgradient is the gradient itself. The subgradient
optimization method resembles the general SGD method, but working with subgra-
dients, as shown in Eq. (5.12):

Θ(k+1) = Θ(k) + ρ(k)a(k) (5.12)

where k denotes the iteration number, a(k) is any subgradient of the function to
optimize with respect to Θ(k) at this iteration and ρ(k) is a learning rate. We initialize
this process to the current parameters of the model, setting Θn as Θ(0).

Going back to our optimization problem, we tackle it via the subgradient method.
For the sake of simplicity, we set the maximum number of iterations to 1. The
subgradient hence applies the weight update defined in Eq. (5.13):

Θn+1 = Θn − ρ∂Θ(k)FΘ(k)(xJ
1 ,y

I
1 ,h

I
1,Θn) = (5.13)

= Θn − ρ
(
Θ(k) −Θn + ∂Θ(k)CℓPA(x

J
1 ,y

I
1 ,h

I
1,Θ

(k))
)

(5.14)

Considering that we perform a single iteration and that Θ(0) = Θn, this expression
can be simplified as in Eq. (5.15):

Θn+1 = Θn − ρ C ∂Θn
ℓPA(x

J
1 ,y

I
1 ,h

I
1,Θn) (5.15)

being ∂Θn
ℓPA(x

J
1 ,y

I
1 ,h

I
1,Θn) the subgradient of ℓ with respect to Θn, as in Eq. (5.16):

∂Θn
ℓPA(x

J
1 ,y

I
1 ,h

I
1,Θn) =


gn if ℓPA(xJ

1 ,y
I
1 ,h

I
1,Θn) < 0

0 if ℓPA(xJ
1 ,y

I
1 ,h

I
1,Θn) > 0

[0, gn] if ℓPA(xJ
1 ,y

I
1 ,h

I
1,Θn) = 0

(5.16)

where, as previously, gn denotes the gradient of the loss function (ℓPA) with respect
to the current parameters of the model (Θn). The latter case is solved arbitrarily
by choosing gn as the subgradient. We call this passive-aggressive via subgradient
methods update rule as PAS.
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A minimax algorithm for online NMT adaptation

A major issue suffered by this passive-aggressive rule is that it does not necessarily
ensure that the model is improving log p(yI

1 | xJ
1 ;Θn): a way to minimize Eq. (5.11)

is by degrading both the reference and hypothesis probabilities.

The optimization process should modify the parameters of the model in a way
that the probability of yI

1 is higher than the probability of hI
1, while also increasing

log p(yI
1 | xJ

1 ;Θn). To that end, we propose an extension of the classical SGD method,
for, on the one hand, moving the model parameters towards the direction of the
gradient of the reference; and, on the other hand and only if necessary, moving the
parameters in the opposite direction of the gradient of the incorrect hypothesis.

The method is detailed in Algorithm 5.1. Again, we assume that we have access
to the hypothesis of the system (hI

1) for a given source sentence and its reference
translation (yI

1). If hypothesis and reference differ (Line 4), we check whether the
system is ill-trained (Line 5). If so, an iterative optimization process starts.

At each iteration, the model is updated following the regular SGD method (Lines 6
and 7): we compute an update (∆Θk) of the parameters as the gradient of the
loss function of the reference sentence with respect to the current model parameters
(∇ℓΘk

(yI
1 , f(x

J
1 ;Θk))). Since we want to minimize this loss, we modify the parame-

ters towards the negative direction of this gradient. Hence, this represents the regular
SGD procedure for NMT.

Next, we check whether with this update we achieved a well-trained system. If
not, we modify the system against the direction of the gradient provided by the
hypothesis loss with respect to the (updated) parameters (Line 10). In this case, the
model parameters are modified towards the (positive) gradient direction, yielding a
gradient ascent behavior.

This loop will last until the system satisfies our desired condition (Eq. (5.6)) or it
reaches a maximum number of iterations (M). After this main loop, we return the
updated parameters, to be used with the following samples.

Note that the choice of plain SGD as update rule is arbitrary. The algorithm
is generalizable to other update rules (Table 2.2), or a combination of them (e.g.
different optimizers for hypothesis and reference). This implies the substitution of
Lines 7 and 11 in Algorithm 5.1 by the desired update rules.
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Algorithm 5.1: Minimax gradient descent for NMT.
Input : ℓ, ℓ′ (objective functions),

Θn (current NMT model),
ρ, ρ′ (learning rates),
xJ

1 (source sentence),
hI

1 (system hypothesis),
yI
1 (reference sentence),

M (maximum updates allowed per sample)
Output : Θn+1 (updated NMT model)

1 begin
2 k = 0
3 Θk = Θn

4 if yI
1 ̸= hI

1 then
5 while p(yI

1 | xJ
1 ;Θk) ≤ p(hI

1 | xJ
1 ;Θk) do

6 ∆Θk = ∇Θkℓ(y
I
1 , f(x

J
1 ;Θk))

7 Θk+1 = Θk − ρ∆Θk

8 if p(yI
1 | xJ

1 ;Θk+1) ≤ p(hI
1 | xJ

1 ;Θk+1) then
9 k = k + 1

10 ∆′Θk = ∇Θkℓ
′(hI

1, f(x
J
1 ;Θk))

11 Θk+1 = Θk + ρ′∆′Θk

12 k = k + 1
13 if k ≥ M then
14 break

15 Θn+1 = Θk

16 return Θn+1

5.3 Results on NMT adaptation via online learning

We now evaluate the online learning techniques applied to the systems already ana-
lyzed in the previous chapters. As described in Section 5.2, the systems are updated
on the fly, during the error correction process. This correction process can be done
in a static post-editing way and under an IMT framework. We will evaluate both
approaches. In light of the results obtained in Section 4.4.2, we will perform the
experiments with a prefix-based INMT system, with the feedback introduced at char-
acter level, as described in Section 4.3.3.

Due to the high cost of involving human users into the experimentation process,
this study will be conducted using simulated users. Following common practices (e.g.,
Ortiz-Martínez, 2016), we used the reference sentences of our datasets as the transla-
tions post-edited by the users. Moreover, Section 5.4 presents the same experimental
scenario, but with real, professional users.
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In this section, the systems were deployed and evaluated according to the following
steps: we start from our the systems we trained in previous chapters and, as before,
our task is to translate the test set (Table 1.1). The difference is that now, after
translating each sentence, we corrected it (via regular post-editing or INMT) and
used the corrected sample to update the models, following the OL procedure. Hence,
the systems were updated using the samples from the test documents. The evaluation
was performed regularly: comparing system hypotheses with the references. The main
difference is that adaptive systems will generate the hypotheses after being updated
with previous references.

In order to develop an effective adaptation protocol via online learning, we need
to answer several questions:

1. What is the potential effectiveness that the adaptation process can bring?

2. What is the best optimizer to use, including the most suitable update rule and
the number of updates per sample to perform?

3. What are the different use-cases of an adaptive system and how does it behave
in each use-case?

In the following sections, we will evaluate these aspects, for all tasks presented
in Section 1.4.3. However, to manage the amount of language combinations, we will
focus on the En→De and En→Fr language combinations.

5.3.1 On estimating the potential effectiveness of the adaptation

Since we face an adaptation scenario, the effectiveness of this process heavily depends
on some characteristics of the data involved in the process. The adaptation process
will be more effective if we deal with repetitive documents, because the knowledge
from this document can be exploited more frequently than in non-repetitive doc-
uments. Moreover, we have to pay attention to the amount of novel information
introduced by the data used for adaptation: the more novel knowledge this data in-
cludes, the more effective will be the adaptation. These two facets can be estimated
beforehand, by measuring some features of the data:

Restricted repetition rate (RRR, Ortiz-Martínez, 2016): It is a measure of the
repetitiveness of a document, built upon the repetition rate metric (Bertoldi
and Federico, 2009). RRR is computed as the rate of non-singleton n-grams
(with n from 1 to 4) that appear in the test document and were not present in
the data used to train the original system.
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Unseen n-gram fraction (UNF, Ortiz-Martínez, 2016): ratio of unseen n-grams
from the test document in the original training set. As in RRR, there are
considered n-grams from order 1 to 4.

According to what has been discussed before, the adaptation process will likely be
more effective for documents tasks with high values of RRR and UNF (Ortiz-Martínez,
2016). Table 5.1 shows the values of these metrics for our tasks. In all cases, we found
some repetitiveness and unseen n-grams. Hence, the system will likely benefit from
an adequate adaptation process.

Table 5.1: Restricted repetition rate (RRR) and unseen n-gram fraction (UNF) of the
XRCE, TED, UFAL and Europarl test partitions.

RRR [%] UNF [%]

XRCE

De 14.5 23.4
En 15.5 11.5

Fr 17.0 14.8
En 16.7 15.4

TED

De 2.9 22.2
En 4.2 13.9

Fr 3.4 14.4
En 4.4 14.2

UFAL

De 1.3 24.8
En 3.1 13.7

Fr 3.9 10.9
En 3.4 14.6

Europarl

De 3.1 24.5
En 3.1 18.6

Fr 4.7 15.9
En 4.2 18.4

Particularly relevant is the high RRR of the XRCE task. This task refers to printer
manuals, and therefore contains very repetitive structures (e.g. page headers, similar
usage instructions for different devices, etc). The UNF values were also high for
this task, denoting that test documents contain novel information, profitable during
the adaptation process. It is also worth mentioning that the UNF values for the
German language were always higher than for other languages. This is unsurprising,
because of the agglutinative characteristics of the German language, which makes the
appearance of unseen structures more likely.
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5.3.2 Choosing an optimizer

We now explore the behavior of the different optimizers in the OL scenario. First,
we will study the differences in translation quality that the different SGD update
rules provide, obtaining insights of their more suitable hyperparameters for each task.
Next, we will apply several update rules to each training sample, intending to make
the adaptation process more effective.

Determining the update rule

To evaluate the behavior of the different update rules, we performed a grid search
over the validation set of each task, studying the effects of each one. We compared
plain SGD, SGD with momentum, Adadelta, Adam and their hypergradient ver-
sions. We left the learning rate as the only hyperparameter to tune, fixing the rest
to their defaults. We explored learning rates in the values: b · 10e, b ∈ {1, 5}, e ∈
{1,−1,−2,−3,−4,−5,−6}. In the case of hypergradient descent algorithms, we also
tuned the hypergradient learning rate, exploring the values 10e, e ∈ {−3,−4,−5}.
For most configurations, the best hypergradient learning rate was 10−4.

Fig. 5.2 condenses the exploration for one language pair (En→De) for all tasks
and for the RNN-based model. The results were alike for the rest of tasks and are not
shown for the sake of readability. We observed several behaviors across all the tasks.

As expected, the choice of the learning rate was important: an excessively large
learning rate broke the system, while small learning rates left the model parameters
unchanged. The application of a momentum term to SGD had little effect.

Algorithms that aim to reduce the importance of the learning rate (Adadelta and
hypergradient descent ones) yielded the best results for all tasks. More interestingly
is that, in most cases, they worked well using learning rates of 0.005 in the case of
SGD-HD and 1.0 in the case of Adadelta. This stability is important for situations
without a development corpus. This is because, by construction, these algorithms
make the choice of the learning rate less critical than other optimizers, performing
well without requiring an excessive tuning.

Finally, we found that Adam was excessively aggressive to be useful for OL in
NMT. It required very small learning rates, otherwise, the model was completely
distorted. And even with such small learning rates, it always performed worse than
Adadelta or SGD-HD.

104



5.3. Results on NMT adaptation via online learning

1 0.5
0.05

0.01
0.005

0.001

0.00005

0.00001

SGD

SGD-momentum

SGD-HD

Adadelta

Adam

Adam-HD

0.0 0.0 46.7 44.9 44.6 44.6 44.6 44.6

0.0 0.0 46.6 44.9 45.5 44.6 44.6 44.6

0.0 0.0 22.2 46.8 47.0 44.6 44.6 44.6

45.8 45.1 44.7 44.6 44.6 44.6 44.6 44.6

0.0 0.0 0.0 0.0 1.6 11.4 45.2 44.5

0.0 0.0 0.0 27.6 42.7 45.4 45.8 44.7
0

10

20

30

40

%
BLEU

(a) XRCE En→Fr. BLEU without adapta-
tion: 44.6.
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(b) TED En→Fr. BLEU without adapta-
tion: 28.1.
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(c) UFAL En→Fr. BLEU without adapta-
tion: 39.9.

1 0.5
0.05

0.01
0.005

0.001

0.00005

0.00001

SGD

SGD-momentum

SGD-HD

Adadelta

Adam

Adam-HD

0.0 0.3 9.3 11.4 26.6 25.8 25.2 24.0

0.0 0.0 0.0 1.0 8.5 24.8 25.9 25.7

0.0 5.9 10.2 25.4 26.7 25.9 25.5 25.2

23.4 24.6 24.2 23.9 23.8 23.7 23.7 23.7

0.0 0.0 0.0 5.1 12.4 21.8 23.6 24.2

0.0 0.0 0.0 5.4 8.1 21.7 24.1 25.5
0

5

10

15

20

25

%
BLEU

(d) Europarl En→Fr. BLEU without adap-
tation: 23.7.

Figure 5.2: Translation quality (BLEU), on the development set, depending on the opti-
mizer chosen (rows) and the learning rate (columns).

On performing multiple updates per sample

We now study the behavior of the different optimizers when applying more than one
update per sample. To that end, we followed a similar procedure than in the previous
section, evaluating all the alternatives. We profited from the exploration we already
carried out to choose the best hyperparameters for each optimizer and language pair.
However, since we are performing more updates per sample, we also explored the
application of smaller learning rates, to perform less aggressive updates. These smaller
learning rates were chosen around the top-performing ones from Fig. 5.2.

In Fig. 5.3, we show the evolution of the translation quality according to the
number of updates performed per sample. For comparison, we show the same tasks
and language pairs than as Fig. 5.3.

All tasks but XRCE follow similar trends: compared to static systems (0 up-
dates per sample), there are notable improvements when applying a single update
per sample. But in most cases, the application of more updates has small effect on
the final translation quality: those optimizers that performed worse in the single up-
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Figure 5.3: Translation quality (BLEU), on the development set, depending on the number
of updates per sample.

date regime, are eventually able to reach the performance of the better optimizers,
when applying multiple updates. For instance, in the TED task, both SGD and SGD-
Momentum reach similar performances than SGD-HD when applying 5 or 7 updates
per sample. Similar behaviors hold for the UFAL and Europarl tasks.

On the other hand, the XRCE task has a completely different behavior: for this
document, the more updates applied the better. This is probably due to the repetitive
nature of this test set (see Section 5.3.1). Since this is a very repetitive document, the
application of multiple updates per sentence makes the model overfit to this domain,
which is beneficial.

Interestingly, performing multiple updates per sample with Adam and Adam-HD
is harmful: in all cases, the translation quality was greatly degraded. This could be
forecasted from the exploration carried out in the previous section, in which those
optimizers were shown to be fragile in an online learning regime, requiring carefully
tuned hyperparameters. The application of such optimizers with slightly different
settings (multiple updates per sample) makes these hyperparameters be no longer
adequate and, therefore, disrupting the translation system.
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Table 5.2: Best online optimizer for each task.

Algorithm ρ Updates

XRCE En→De Adadelta 0.5 5
En→Fr Adadelta 0.5 5

TED En→De SGD-HD 0.001 1
En→Fr SGD 0.005 5

UFAL En→De Adadelta 1.0 1
En→Fr Adadelta 1.0 1

Europarl En→De Adadelta 0.5 1
En→Fr SGD-HD 0.005 1

Finally, Table 5.2 shows the best configuration found for each task and language
pair. Adadelta and SGD-HD outperformed other algorithms. Moreover, the differ-
ences between them were small. Therefore, we can conclude that these are the most
suitable optimizers for OL in NMT.

5.3.3 Alternative algorithms for online learning

We now evaluate the adaptation algorithms proposed in Section 5.2.2, that considered
the hypotheses for computing the update rule, namely, PAS and Minimax.

In Fig. 5.4, we show the evolution of the translation quality according to the num-
ber of updates performed per sample, for the PAS and Minimax methods, compared
to SGD. We show the same tasks and language pairs than in Fig. 5.2.

We observed a similar behavior in all tasks: systems featuring online learning
improved with respect to offline systems (0 updates per sample). However, both PAS
and Minimax methods were unable to outperform the plain SGD method, in terms of
translation quality. The Minimax method behaved consistently better than the PAS
method and it was more stable. Its performance was close to SGD, although it was
unable to beat it. The PAS method performed clearly worse than the other methods.

Hence, we failed in our attempts to introduce the hypotheses generated by the
system into the loss function. A major cause for that is the independence (up to
some point) of the network objective function (cross-entropy of the target sentence
given the source) with respect to the end objective of the system (translation quality,
evaluated in terms of BLEU or TER).

To overcome this issue, alternative training methods aim to directly optimize
the evaluation metric, rather than a neural loss function. Among them, minimum
risk training has proven to be very effective for PB-SMT (Och, 2003; Chiang, 2012)

107



Chapter 5. Adaptive neural machine translation via online learning

0 1 2 3 4 5 6 7
Updates per sample

44

46

48

50

B
LE

U

PAS SGD Minimax

(a) XRCE En→Fr.

0 1 2 3 4 5 6 7
Updates per sample

27.5

28.0

28.5

29.0

29.5

30.0

B
LE

U

PAS SGD Minimax

(b) TED En→Fr.

0 1 2 3 4 5 6 7
Updates per sample

39

40

41

42

43

B
LE

U

PAS SGD Minimax

(c) UFAL En→Fr.

0 1 2 3 4 5 6 7
Updates per sample

23

24

25

26

27

28

B
LE

U

PAS SGD Minimax

(d) Europarl En→Fr.

Figure 5.4: Translation quality (BLEU), on the development set, depending on the number
of updates per sample for the PAS and Minimax algorithms, compared to regular SGD.

and also for NMT (Shen et al., 2016). Tightly related to this, the application of the
reinforcement learning paradigm can also be used to overcome this independence. The
application of reinforcement learning to sequence-to-sequence problems is currently a
hot research topic (Ranzato et al., 2015; Xu et al., 2015; Shen et al., 2016). And more
specifically, its application to NMT has provided positive results (Wu et al., 2016;
Kreutzer et al., 2017; Gu et al., 2017; Edunov et al., 2018). In light of these results,
we should move towards these paradigms to build more effective adaptive systems in
the future.

5.3.4 Evaluating adaptive systems under different conditions

Once we evaluated the different optimizers, we move to the third research question
raised at the beginning of this section (Item 3). To this end, we analyzed the capa-
bilities and limitations of adaptive NMT systems under three different experimental
conditions, varying the amount and type of training data available. In each case, we
compared the performance of adaptive to static systems, in translation post-editing
and in IMT. The evaluation was always carried out on the test set of each task.
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Hence, OL techniques were also applied exclusively on this test data. The three cases
we studied are:

1. Exclusive use of in-domain data: To train the NMT systems we only use
task-specific data. This is the more standard setup and it has been followed in
Sections 3.5 and 4.4.

2. Lack of in-domain data: We assume that we only have available the test
document to translate and a system already trained on a general dataset.

3. Fine-tuning a general system: As in the previous case, we have a system
trained on a general domain. In addition, we use the training set from each task
to fine-tune this general system.

Scenario #1: Availability of in-domain data

In our first experimental scenario, we assume that we have enough in-domain data
to train a system. Therefore, we follow the traditional pipeline in MT and the one
followed in Sections 3.5 and 4.4: we trained translation systems using corpora from a
given domain and translated documents belonging to the same domain. In this case,
online learning techniques aim to refine each system to the test documents.

We took advantage of the exploration carried out in Section 5.3.2 to choose, for
each task and language pair, the most suitable algorithm and hyperparameters in the
online adaptation setup.

Translation post-editing with online learning

Tables 5.3 and 5.4 show the effect of including OL in the post-editing process, to
RNN-based and Transformer systems, respectively. In almost every case, the effort
required, measured in terms of TER, is improved, yielding significant reductions in
most cases. BLEU is consequently improved, following the TER trend.

The largest improvements were obtained in the XRCE task, with gains ranging
from 5.4 to 8.4 TER points. This was due to the high repetitiveness of the task
(measured in terms of RRR) and to the large amount of new information introduced
by the test document (UNF in Table 5.1). This makes the XRCE task especially
adequate for incremental adaptation. We also observed significant gains in the UFAL
and Europarl tasks.

The effects of adapting via OL were slightly smaller in the TED task. Although
the adaptive systems performed usually better than static ones, in most cases the dif-
ferences were small and non-significant in terms of TER. In terms of BLEU, these dif-

109



Chapter 5. Adaptive neural machine translation via online learning

Table 5.3: Translation results of static (RNN) and adaptive (OL-RNN) RNN-based NMT
systems, in terms of TER and BLEU, for all tasks. Significant improvements of adaptive
systems are denoted by ⋆.

TER [↓] BLEU [↑]

RNN OL-RNN RNN OL-RNN

XRCE En→De 63.0 55.2⋆ 25.4 34.6⋆

En→Fr 51.9 43.5⋆ 38.0 46.2⋆

TED En→De 54.8 54.4 25.6 26.6⋆

En→Fr 49.6 49.6 33.5 34.0⋆

UFAL En→De 55.6 55.6 23.7 24.7⋆

En→Fr 46.1 42.9⋆ 37.2 40.8⋆

Europarl En→De 67.0 63.3⋆ 18.4 19.4⋆

En→Fr 60.5 58.2⋆ 24.6 25.7⋆

ferences were more consistent and adaptive systems significantly outperformed static
ones in all cases but one.

Table 5.4: Translation results of static (Trans.) and adaptive (OL-Trans.) Transformer
NMT systems, in terms of TER and BLEU, for all tasks. Significant improvements of
adaptive systems are denoted by ⋆.

TER [↓] BLEU [↑]

Trans. OL-Trans. Trans. OL-Trans.

XRCE En→De 64.3 57.9⋆ 23.2 30.9⋆

En→Fr 57.2 51.8⋆ 32.2 38.4⋆

TED En→De 57.1 56.5 23.1 23.5⋆

En→Fr 52.5 52.5 30.6 31.0

UFAL En→De 55.4 53.2⋆ 24.0 25.9⋆

En→Fr 45.9 40.5⋆ 37.8 43.2⋆

Europarl En→De 63.8 63.2⋆ 19.1 19.4⋆

En→Fr 57.4 56.4⋆ 26.6 27.4⋆

Compared to the existing literature, Ortiz-Martínez (2016) applied OL techniques
to a PB-SMT system, for the XRCE and Europarl tasks and using the same data
splits. In the first case, they also obtained large improvements in terms of BLEU (11.5
and 8.4, for En→De and En→Fr, respectively). Nevertheless, their baseline systems
performed worse than ours. Including OL, they achieved a similar performance for
the XRCE task to our online NMT systems. In the Europarl case, they improved their
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static system by 1.0 and 1.4 BLEU points, for En→De and En→Fr. But again, their
static systems were much worse than ours (13.1 and 21.2, for En→De and En→Fr,
respectively).

Interactive-predictive machine translation with online learning

Next, we move towards the deployment of adaptive, interactive-predictive NMT sys-
tems. We used the same configuration as in MT post-editing. Table 5.5 shows the
effect of adding OL to the systems. The static version of these INMT systems were
already discussed in Section 4.4.2. Moreover, we show other results obtained in the
literature from Ortiz-Martínez (2016).

Table 5.5: INMT results, in terms of KSMR for all tasks for RNN-based and Transformer
(Trans.) models. Significance tests were computed for static and adaptive (OL-) systems.
Significant improvements of adaptive systems are denoted by ⋆. We also show the best results
found in the literature, PB-SMT systems from Ortiz-Martínez (2016).

KSMR [↓]

RNN OL-RNN Trans. OL-Trans. Literature

XRCE En→De 27.5 24.6⋆ 30.4 27.9⋆ 37.0
En→Fr 23.8 19.7⋆ 27.7 24.0⋆ 30.3

TED En→De 26.7 25.9 27.6 27.1 −
En→Fr 24.0 23.6 25.8 25.4 −

UFAL En→De 23.8 20.9⋆ 21.1 20.2⋆ −
En→Fr 19.0 15.5⋆ 15.9 14.7⋆ −

Europarl En→De 30.6 28.8⋆ 29.5 28.8⋆ 48.0
En→Fr 30.1 28.2⋆ 29.4 27.5⋆ 43.2

We found that adaptive INMT systems consistently outperformed static ones. As
for translation post-editing, these differences were significant in all tasks but TED.
Again, the XRCE task is the most benefited by OL, but we also obtained especially
good results in the Europarl corpora. Besides their RRR and UNF values, it should
also be noticed that the Europarl test documents had more samples than others.
Therefore, the INMT system benefited from a longer adaptation process.

Compared to the literature (Ortiz-Martínez, 2016), we obtained similar gains in
terms of KSMR for the XRCE task (around 5 KSMR points). In the case of Europarl,
we obtained higher KSMR decreases: 3.9/1.8 against 1.2/1.2, for the En→De and
En→Fr language pairs, respectively. Moreover, the large advantage in KSMR that
INMT systems had with respect PB-SMT models is maintained in the online version.
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Scenario #2: Lack of in-domain data

In this second scenario, we assume that we have no in-domain training data available.
This can be the case of a system trained with data from a general domain, but having
to translate documents from a different (and potentially unknown) domain. We take
advantage of OL to perform domain adaptation on-the-fly, from the general to the
test domain. We expect to obtain better system hypotheses online learning processes
goes on. The refinement of the system will hopefully entail a decrease of the human
effort required to post-edit the upcoming samples.

As general systems, we took those trained on the Europarl corpus. In order to
work with the same vocabulary, we applied the same BPE segmentation to all in-
domain sets. Table 5.6 shows the vocabulary coverage of the general NMT systems
and each one of the in-domain documents, together with the RRR and UNF metrics
for each task. All values were computed according to the BPE version of each test
document.

Table 5.6: Vocabulary coverage after applying BPE (C), restricted repetition rate (RRR)
and unseen n-gram fraction (UNF) with respect to the out-of-domain corpus (Europarl).

Training Development Test

C C C RRR [%] UNF [%]

XRCE

De 98.7 99.8 99.5 20.6 38.8
En 99.7 99.9 99.9 24.5 24.8

Fr 98.2 97.5 97.4 24.9 38.4
En 98.5 97.2 97.2 23.8 31.1

TED

De 98.1 99.8 99.9 3.2 19.2
En 99.2 99.9 99.9 6.2 14.5

Fr 97.9 98.7 99.0 4.6 11.1
En 98.3 98.7 98.8 6.1 13.4

UFAL

De 92.2 99.8 99.7 2.6 39.2
En 85.9 99.8 99.8 6.5 32.3

Fr 91.3 99.7 99.7 8.1 25.5
En 92.5 99.7 99.8 6.5 32.0

The vocabulary coverage was very high for all tasks (in all cases over 97%), showing
that BPE can effectively leverage vocabulary differences among domains. The UNF
values were increased with respect to the original training corpora for the XRCE and
UFAL tasks (Table 5.1). This is unsurprising: as we work with different but quite
specialized domains (technical and medical, respectively), we now have more n-grams
from our test documents which were unseen in the Europarl training data. On the
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other hand, it is also worth pointing out that in the case of the TED task, the UNF
values were similar to those shown in Table 5.1. This indicates that the TED task
contained structures (n-grams) that also appeared in the Europarl corpus. This is
plausible, as the TED corpus contains talks that use a general language, which was also
contained in the Europarl corpus, and has less domain-specific terms than the XRCE
and UFAL tasks. The RRR values also increased in all cases. This indicates that
domain-specific structures, not present in the out-of-domain dataset, were repeated
along the in-domain document. Hence, learning these unseen and repetitive structures
will have an important impact on the quality of the adapted system.

As we assumed no in-domain data and a potentially unknown domain, we lacked
development sets for this task. Hence, we used the same algorithm and learning
rate for all tasks. We took advantage of the exploration carried out in Section 5.3.2.
Following Table 5.2, we applied Adadelta with a learning rate of 0.5. Since now we are
adapting a general system, we want to make the adaptation process more aggressive.
Therefore, we applied three updates per sample.

Translation post-editing with online learning

First, we compare the effort required for post-editing the outputs of the neural system.
Table 5.7 shows the results of translation quality, in terms of TER and BLEU, for
static and adaptive RNN-based NMT systems. The results for the Transformer model
are shown in Table 5.8. As expected, the translation quality was lower than in the
previous scenario.

Table 5.7: Translation quality for all tasks in terms of TER and BLEU. We compare
static (RNN) and adaptive (OL-RNN) RNN-based NMT systems, exclusively trained on the
general domain (Europarl). Significant improvements of adaptive systems are denoted by ⋆.

TER [↓] BLEU [↑]

RNN OL-RNN RNN OL-RNN

XRCE En→De 86.4 71.3⋆ 6.3 16.7⋆

En→Fr 87.0 66.4⋆ 12.8 22.0⋆

TED En→De 64.0 56.8⋆ 20.4 24.6⋆

En→Fr 59.4 55.5⋆ 26.3 29.6⋆

UFAL En→De 71.3 61.8⋆ 14.8 19.8⋆

En→Fr 55.2 52.0⋆ 29.0 31.5⋆

The degradation of the systems was especially severe for the XRCE task, for both
the RNN and Transformer. This was mostly due to the features of this corpus. The
XRCE task relates to printer manuals and contains many short sentences, referring to
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Table 5.8: Translation quality for all tasks in terms of TER and BLEU. We compare static
(Trans.) and adaptive (OL-Trans.) Transformer systems exclusively trained on the general
domain (Europarl). Significant improvements of adaptive systems are denoted by ⋆.

TER [↓] BLEU [↑]

Trans. OL-Trans. Trans. OL-Trans.

XRCE En→De 86.0 78.0⋆ 6.4 10.5⋆

En→Fr 78.0 68.1⋆ 14.5 20.5⋆

TED En→De 61.3 55.8⋆ 21.2 25.2⋆

En→Fr 57.0 53.6⋆ 27.2 31.6⋆

UFAL En→De 67.5 62.4⋆ 15.9 18.7⋆

En→Fr 53.1 49.8⋆ 29.1 33.2⋆

technical details. Additionally, such manuals usually have some formatting templates.
Since the system had never faced such templates, it made many mistakes. Moreover,
note that the TER values were extremely high in this task. This phenomenon, also
observed by Chinea-Rios et al. (2017) in a similar case, is due to the translation of
short sentences with an NMT system trained on long sentences from a different domain
(Europarl). Therefore, the system usually generated excessively long hypotheses.
Therefore, in order to match the reference, the TER metric must perform many
delete operations. To address this problem via search heuristics, we restricted the
length of the output sequence to be three times the length of the input sequence.
However, even though this heuristic was effective, the performance of the system was
heavily affected.

On the other hand, the UFAL and TED corpora are closer to Europarl. Although
the domains are different (medical and a variety of talks), their style, constructions
and template of are similar to Europarl. Therefore, the differences in terms of trans-
lation quality were smaller. To illustrate this, Fig. 5.5 shows examples of common
sentences from all tasks.

As expected, the development of adaptive NMT systems greatly improved the
quality of the systems. The improvements brought by continuous learning to the
XRCE task were very large: TER was improved by 15.1 and 20.6 points in the case of
RNN-based systems and by 8.0 and 9.9 points in the case of the Transformer. BLEU
was also largely improved by 10.4 and 9.2 in the case of the RNN system and by
4.1 and 6.0 in the case of the Transformer. These large improvements were due to
the aforementioned structure features of this text. Since the text was extracted from
printer manuals, the restricted repetition rate was extremely high: more than 25% in
all cases (see Table 5.6).
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XRCE * press "select" to save the setting.
* press "output" to select "on".

TED Everybody talks about happiness these days.
I’m going to talk today about energy and climate.

UFAL
It’s a long , hollow tube at the end of your digestive tract where your body makes and
stores stool.
We are also studying how their work affects the quality of their lives.

Europarl

Resumption of the session
I declare resumed the session of the European Parliament adjourned on Friday 17 De-
cember 1999, and I would like once again to wish you a happy new year in the hope that
you enjoyed a pleasant festive period.

Figure 5.5: Examples of the XRCE, UFAL and TED tasks, in English. All sentences
belong to the corresponding test set. Sentences from the XRCE corpus are short and highly
structured, while the other tasks have a more natural style.

OL is more effective in texts with high RRR, since upcoming events have already
been seen. This effectiveness is boosted by our experimental conditions: we were
translating with a general NMT system. Therefore, the system were prone to make
the same errors over and over again. As we introduced continuous learning in the
system, it rapidly adapted to the XRCE features. Since the XRCE test set is quite
repetitive, the OL-NMT avoided to make the same error again, which had a great
impact in effort reduction and translation quality. Again, we refer the reader to
Fig. 5.5 for a qualitative insight of this phenomenon.

Moreover, during the adaptation process, the general system learned to produce
shorter sentences. In the case of the XRCE task, for En→Fr, the unadapted RNN
system generated sentences of an average length of 14.1 words. The average sentence
length of the adapted system was 11.8, much closer to the desired average length
(reference sentences had an average of 12.1 words). This phenomenon occurs in all the
configurations involving the XRCE task and explains such large TER improvements.

OL was also effective for the rest of tasks, obtaining consistent improvements for
both RNN and Transformer, ranging from 3.2 to 9.1 TER points and 2.8 and 5.0
BLEU points. It is worth noting that in several cases (the TED task and UFAL
En→De), a system exclusively trained on out-of-domain data and fine-tuned via OL
was able to outperform a PB-SMT system trained on in-domain data (Tables 3.2
and 3.3). The other OL systems also behaved well, achieving performance close to
the systems trained on in-domain data. These results demonstrate that online learning
is a powerful method when developing translation systems with scarce data resources.

This experiment is comparable to the a posteriori adaptation strategy developed
by Turchi et al. (2017). They also adapted a general model to a given domain by
means of incremental learning on post-edited samples, obtaining significant BLEU
improvements.
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Interactive-predictive machine translation with online learning

Next, we study the effectiveness of the general NMT system in the interactive-
predictive framework and the effect of OL-based adaptation in terms of effort re-
duction. Table 5.9 shows the INMT results of adaptive systems and static ones.

Table 5.9: Human effort required by INMT systems—RNN and Transformer (Trans.)—
with online learning (OL-) and without adaptation, in terms of KSMR. All the systems
exclusively trained on the general domain (Europarl). Significant improvements of adaptive
systems are denoted by ⋆.

KSMR [↓]

RNN OL-RNN Trans. OL-Trans.

XRCE En→De 49.2 36.7⋆ 51.8 42.9⋆

En→Fr 50.1 38.3⋆ 54.0 41.6⋆

TED En→De 28.9 26.0⋆ 27.9 26.0⋆

En→Fr 28.4 26.7⋆ 26.5 25.8⋆

UFAL En→De 31.0 26.9⋆ 30.8 28.1⋆

En→Fr 27.4 24.9⋆ 25.4 22.8⋆

The performance drop of the general INMT system followed the trend discussed
in the previous section: in tasks with domains close to the general corpus, the perfor-
mance of general INMT systems was close to an in-domain system (e.g. TED). But,
if the domain of the document is far from the general corpus (XRCE), the human
effort required rose dramatically.

The introduction of OL into the interactive-predictive systems had a similar effect
to that observed in terms of translation quality: we obtained significant KSMR re-
ductions for all tasks. The greatest improvements were again obtained in the XRCE
task, due to the aforementioned reasons (highest RRR and shorter sentences). In the
case of the TED task, online learning overcame the gap between training a specific
system or using the general one.

Scenario #3: Fine-tuning a general system

In our last experimental setup, we hybridized scenarios #1 and #2: we have available
in-domain and out-of-domain data. Thus, we started from a general NMT system,
trained on an out-of-domain corpus, and fine-tuned it with the in-domain training
data. Finally, we followed the refinement procedure via OL, as in previous scenarios.
We study if OL can bring enhancements to an already fine-tuned system, and if so,
to what extent.
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Again, we used the Europarl corpus as out-of-domain. We followed the same
segmentation strategy than in Section 5.3.4, applying it also to the training set.
Table 5.6 shows the vocabulary coverage of the training sets, generally high. Only in
the UFAL corpus was the coverage slightly lower (from 85.9% to 92.5%).

Once we had our system trained on Europarl, we continued the training on each
in-domain training set. For this retraining, we kept the hyperparameters used to
train the original NMT system: Adam with ρ = 0.0002. Following Wu et al. (2016),
we also tested simple SGD with learning rate annealing, but we obtained poorer
results. We early-stopped the training following the same criterion as in the general
case (Section 3.5.1), but evaluating each 1, 500 updates and setting the patience to
10 evaluations. For the adaptation via OL, we followed the configurations described
in Table 5.2.

Translation post-editing with online learning

As in the previous experiments, we start by evaluating the impact of online learn-
ing in terms of translation quality. Differences between static and adaptive systems
are shown in Tables 5.10 and 5.11, for the RNN-based and Transformer systems,
respectively.

Table 5.10: Translation quality for all tasks in terms of TER and BLEU. We compare
static (RNN) and adaptive (OL-RNN) RNN-based NMT systems. All NMT systems have
been pre-trained on Europarl data and fine-tuned with the training data from each task.
Significant improvements of adaptive systems are denoted by ⋆.

TER [↓] BLEU [↑]

RNN OL-RNN RNN OL-RNN

XRCE En→De 58.0 48.0⋆ 28.3 39.4⋆

En→Fr 48.5 41.8⋆ 40.8 47.8⋆

TED En→De 53.8 53.2 27.1 27.2
En→Fr 48.3 47.5 35.4 36.4

UFAL En→De 60.6 56.4⋆ 22.1 24.3⋆

En→Fr 48.2 41.4⋆ 36.2 42.0⋆

The fine-tuned systems performed better than those exclusively trained on the
in-domain data (scenario #1, Section 5.3.4) in those cases with scarce in-domain
data, namely the XRCE and TED tasks. In these cases, the TER and BLEU were
significantly improved when fine-tuning a general system. We found consistent im-
provements of more than 5 TER points. On the other hand, if we had available a large
amount of in-domain data, the fine-tuning effectiveness is diluted. This is the case of
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the UFAL task: as this is a large in-domain corpus, to pre-train with Europarl had
minor effects on the fine-tuned systems, in which the translation quality was slightly
degraded.

The addition of OL to the NMT systems improved the performance with respect
to static systems, in concordance to the previous scenarios. In the XRCE and UFAL
tasks, the improvements were large, either for the RNN-based and the Transformer
systems: From 2.8 to 10 TER points and from 1.5 to more than 11 BLEU points.
According to their RRR and UNF metrics (Table 5.6), this was expected, because
those are the corpora the highest RRR. The TED task also benefited from OL, but
to a lower extent, yielding non-significant improvements.

Table 5.11: Translation quality for all tasks in terms of TER and BLEU. We compare static
(Trans.) and adaptive (OL-Trans) Transformer-based NMT systems. All NMT systems have
been pre-trained on Europarl data and fine-tuned with the training data from each task.
Significant improvements of adaptive systems are denoted by ⋆.

TER [↓] BLEU [↑]

Trans. OL-Trans. Trans. OL-Trans.

XRCE En→De 58.4 49.8⋆ 27.9 36.4⋆

En→Fr 48.1 41.1⋆ 41.1 47.9⋆

TED En→De 52.5 51.2 29.0 30.1
En→Fr 47.0 45.8 37.1 38.1

UFAL En→De 59.0 56.2⋆ 22.7 24.6⋆

En→Fr 47.4 41.5⋆ 36.4 41.7⋆

Interactive-predictive machine translation with online learning

Table 5.12 shows the effort required in an IMT scenario. Compared to those systems
exclusively trained on the in-domain data (Table 5.5), we observed the same phe-
nomenon as in the previous section: the usage of out-of-domain data was especially
effective in tasks with scarce in-domain data. Fine-tuned systems performed clearly
better in all cases but UFAL (En→De).

The largest improvements were obtained in the XRCE and TED tasks, with less
training data. In these cases, the enhancements ranged from 2.0 to 7.5 KSMR points.
As in terms of translation quality, fine-tuning had a minor effect on the UFAL task,
as the in-domain corpus is large enough to build a good INMT system. While the
fine-tuned RNN-based system achieved similar results than in Section 5.3.4, in the
case of the Transformer model, the performance was slightly hurt. In addition to the
aforementioned regarding the amount of training data, we must take into account that
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Table 5.12: Human effort required by INMT systems—RNN and Transformer (Trans.)—
with online learning (OL-) and without adaptation, in terms of KSMR. All NMT systems
have been pre-trained on Europarl data and fine-tuned with the training data from each
task. Significant improvements of adaptive systems are denoted by ⋆.

KSMR [↓]

RNN OL-RNN Trans. OL-Trans.

XRCE En→De 23.8 19.8⋆ 22.9 20.0⋆

En→Fr 23.3 17.3⋆ 21.8 18.2⋆

TED En→De 23.9 23.7 23.1 22.3
En→Fr 22.0 21.3 20.5 19.8

UFAL En→De 24.2 22.8⋆ 24.8 23.4⋆

En→Fr 17.9 16.5⋆ 17.0 15.9⋆

the training of the Transformer model is more sensitive to hyperparameters (Popel
and Bojar, 2018). Therefore, we suspect that a better choice of hyperparameters
during the fine-tuning process could avoid this degradation.

5.3.5 Further analyses

We analyze other aspects of the proposed adaptive INMT systems, such as response
times of OL. In addition, in order to obtain additional insights of the adaptation via
OL in NMT, we study the evolution of the adaptation process. Finally, we show an
example of an INMT session, adapted with OL.

Temporal costs

As discussed in Section 4.3, interactive-predictive systems require adequate response
times. The interaction response times were already presented in Table 4.4. Thereby,
we need to evaluate now cost of updating the system. Table 5.13 shows the learning
times for each task1. These values refer to the first scenario (Section 5.3.4). In the
other scenarios we used as NMT system the one trained on Europarl. Therefore, this
is the reference for those cases.

The learning times kept constant, regardless the task. The Transformer model
performed slightly quicker updates, as it avoids of the recurrence. All learning times
were around 0.1 seconds, therefore, differences between adaptive and static systems
were almost unnoticeable in terms of usability.

1Experiments executed on a single GeForce GTX 1080 GPU.
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Table 5.13: Average learning time, in seconds, for all tasks and NMT systems, RNN and
Transformer.

RNN Transformer

XRCE En→De 0.09 0.06
En→Fr 0.08 0.05

TED En→De 0.12 0.09
En→Fr 0.12 0.08

UFAL En→De 0.15 0.11
En→Fr 0.15 0.10

Europarl En→De 0.14 0.09
En→Fr 0.14 0.09

On the impact of online learning

We deepen our investigation into the effects of continuous learning in NMT, com-
paring adaptive versus non-adaptive systems in translation post-editing and IMT.
Since we want to reduce the effort required by the user, we are interested in TER
and KSMR. We measured cumulative TER and KSMR, as the post-editing and IMT
processes advanced. We report results (Fig. 5.6) from the UFAL En→De task, for the
systems trained on in-domain and out-of domain data (Section 5.3.4 and Section 5.3.4,
respectively).

As shown in Fig. 5.6a and Fig. 5.6b, the adaptive systems were able to rapidly
take advantage of the post-edited samples. With approximately 100 samples, TER
and KSMR were considerably lowered; with 600 sentences, the differences were large.
From here, the systems had a performance ceiling. Nevertheless, if we attend to the
static system, we observe that from sentence 600, the task becomes more difficult,
and the TER and KSMR were increased. OL prevented some of this rise, stabilizing
the performance of the systems.

OL applied to systems exclusively trained on out-of-domain data (Fig. 5.6c and
Fig. 5.6d), improved the performance of the systems. Both TER and KSMR followed
a continuous drop. Although expected, this behavior confirms that the systems could
be enhanced to a greater extent by means of continuous learning if we had more data.
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(c) Cumulative TER for UFAL En→De.
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(d) Cumulative KSMR for UFAL En→De.
Systems trained on Europarl.

Figure 5.6: Cumulative TER and KSMR of static (solid lines) and adaptive (dashed lines)
NMT systems for the UFAL En→De task. Plots Fig. 5.6a and Fig. 5.6b refer to systems
trained on in-domain data, while results of Fig. 5.6c and Fig. 5.6d were obtained with a
system trained only on out-of-domain data.

Qualitative analysis

We show an example of a real INMT session, using static and online systems. The
system is the RNN-based NMT one, trained only with in-domain data (scenario #1).
The sentence is the same as the example from Section 4.4.3, but in this case, for the
En→Fr direction.

The source sentence was “They will be asked to provide a clean catch urine sample
.” and the desired translation was “Ils és à fournir un échantillon d’ urine propre.”.
The static NMT system proposed the translation “Ils és seront demandé de fournir
un échantillon d’ urine propre .”, which contains several mistakes. Fig. 5.7 shows the
corresponding INMT session to this example. In this case, 6 iterations were required,
in order to match the desired translation.
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Source: They will be asked to provide a clean catch urine sample .
Target translation: Ils és seront demandé de fournir un échantillon d’ urine propre .

IT-0 MT Ils és seront demandé de fournir un échantillon d’ urine propre .

IT-1
User Ils és seront idemandé de fournir un échantillon d’ urine propre .
MT Ils és seront initiés pour fournir un échantillon d’ urine propre .

IT-2
User Ils és seront invitiés pour fournir un échantillon d’ urine propre .
MT Ils és seront invité de fournir un échantillon d’ urine propre .

IT-3
User Ils és seront invités de fournir un échantillon d’ urine propre .
MT Ils és seront invités de fournir un échantillon d’ urine propre .

IT-4
User Ils és seront invités àde fournir un échantillon d’ urine propre .
MT Ils és seront invités à pour obtenir un échantillon d’ urine propre .

IT-5
User Ils és seront invités à fpour obtenir un échantillon d’ urine propre .
MT Ils és seront invités à fournissant un échantillon d’ urine propre .

IT-6
User Ils és seront invités à fournirssant un échantillon d’ urine propre .
MT Ils és seront invités à fournir un échantillon d’ urine propre .

END User Ils és seront invités à fournir un échantillon d’ urine propre .

Figure 5.7: Real INMT session from the UFAL task (scenario #1). IT- refers to the
number of iteration of the process, the MT row refers to the INMT hypothesis in the current
iteration and in the User row is shown the feedback introduced by the user: the correct
character (in bold). We color in green the prefix that the user has inherently validated while
introducing the correction. 13 user actions are required, involving 6 keystrokes and 7 mouse
actions (counting final hypothesis acceptation). This represents a KSMR of 19.7%.

Fig. 5.8 shows the same INMT session, but for an adaptive NMT system. Previ-
ously to this sample, the system was already adapted with 976 sentences. The initial
hypothesis was slightly different than the one proposed by the static system: “Ils és
seront invités pour obtenir un échantillon d’ urine d’ arrêt propre .”. The word “in-
vités” was correctly translated, but in this case, the system introduced the erroneous
clause “d’ arrêt”. However, the adaptive system reacted better to the user feedback:
in the second iteration, the system correctly predicted the word “fournir” with a
single keystroke, while the static system was unable to correctly predict this word.
Finally, the erroneous clause introduced in the initial hypothesis is removed as the
user introduced the feedback belonging to the word “propre” at the second iteration.
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Source: They will be asked to provide a clean catch urine sample .
Target translation: Ils és seront demandé de fournir un échantillon d’ urine propre .

IT-0 MT Ils és seront invités pour obtenir un échantillon d’ urine d’ arrêt propre .

IT-1
User Ils és seront invités ápour obtenir un échantillon d’ urine d’ arrêt propre .
MT Ils és seront invités à fournir un échantillon d’ urine d’ arrêt propre .

IT-2
User Ils és seront invités à fournir un échantillon d’ urine pd’ arrêt propre .
MT Ils és seront invités à fournir un échantillon d’ urine propre .

END User Ils és seront invités à fournir un échantillon d’ urine propre .

Figure 5.8: Same IMT session and notation as Fig. 5.7 but with an adaptive INMT system.
Only 2 keystrokes and are 3 mouse actions are now required (KSMR=7.6%).

5.4 A user evaluation of machine translation post-editing
with online learning

We now evaluate the adaptive NMT system in a real-life scenario. This evaluation
was done in collaboration with the translation company Pangeanic, with funding
from the Spanish Center for Technological and Industrial Development (Centro para
el Desarrollo Tecnológico Industrial). This company has experience in providing high-
quality translations and regularly relies on the use of translation post-editing. The
results shown in this section were obtained with the collaboration of Miguel Domingo
and the team from Pangeanic.

5.4.1 NMT systems

We used an RNN-based NMT system, as described in Section 3.1. In this case, the
system was built using the OpenNMT-py toolkit (Klein et al., 2017). The system
was trained following the configuration described in Section 3.5.1, but using regular
LSTM units, instead of their conditional version. Following a similar strategy as in
Section 5.3.2, we built the adaptive systems according to the results obtained on a
development set: for each post-edited sample, we applied two vanilla SGD updates,
with a fixed learning rate of 0.05.
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5.4.2 Translation environment

The experiment was conducted using SDL Trados Studio as the translation environ-
ment. This software is widely used in the translation industry, and all the participants
use it in their daily work. Fig. 5.9 shows a screenshot of the SDL Trados Studio in-
terface.

Our NMT system was deployed as a server, which delivered the translations to
SDL Trados Studio and performed the adaptation using the post-edits. This system
is compatible with all OpenNMT-py models and it is publicly available2. We also
developed a plugin that connected SDL Trados Studio with our systems.

The NMT system was deployed in a CPU server, equipped with an Intel(R)
Xeon(R) CPU E5-2686 v4 at 2.30GHz and 16GB of RAM. On average, generating a
translation took the system 0.23 seconds and each update took 0.45 seconds. These
low latencies allow a correct usage of the system, as the flow of thoughts of the user
remains uninterrupted (Nielsen, 1993).

The study involved three professional translators, with an average of four years
experience, who regularly make use of MT in their workflow. Translators did not know
whether the experiment they performed featured a static or an adaptive system.

5.4.3 Tasks and evaluation

We evaluated our systems on a real task from the production scenario of the transla-
tion company. The task was a small corpus belonging to a medico-technical domain
(description of medical equipments), and was conformed by two documents of 1.7
and 2.7 thousand words respectively. The translation direction was from English to
Spanish. Since we lacked an in-domain corpus, we trained a general system with the
data from the translation task from WMT’13 (Bojar et al., 2013), made of 15 million
parallel segments. Next, we applied the data selection technique described by Biçici
and Yuret (2015) to select related instances from our general corpus, UFAL and a
technological3 one. We selected 8 million additional segments, which were used to
fine-tune the general system.

The effects of adaptivity were assessed in terms of hBLEU and hTER. These met-
rics refer to the BLEU and TER scores, but using the human post-edits as references.
Since we computed per-sentence BLEU scores, we used exponential BLEU smoothing
(method 3 from Chen and Cherry, 2014).

2https://github.com/midobal/OpenNMT-py/tree/OnlineLearning
3https://metashare.metanet4u.eu/go2/qtleapcorpus
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Figure 5.9: SDL Trados Studio user interface. From top to bottom, the first row and the
leftmost column correspond to the user menus. On the next row, the middle column contains
information about the segment that is being translated: on the left, the source sentence and,
on the right, the MT translation. The right column displays, in case of being used, the
content of the terminological dictionary. Finally, the document that is being translated
appears on the bottom row: on the left, the original document and, on the right, the user
post-edits.

5.4.4 Adaptation with simulated users

Before conducting the experimentation with human post-editors, we evaluate the
system under simulated conditions, following the experimental framework described
in Section 5.3.
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Table 5.14 shows the results in terms of
translation quality of a static system, com-
pared with an adaptive one, updated using
the reference samples. These reference sen-
tences were obtained in a previous transla-
tion job, performed by different translators
of those involved in our study. The results
obtained on this setup support the useful-
ness of the adaptation via online learning:
in all cases, the adaptive system achieved
better TER and BLEU than the static one.
These differences were statistically signif-
icant in all cases but one. We observed
important gains in terms of TER (5.5 and
1.1 points), which suggests a lower human
effort required to post-edit these samples.

Table 5.14: Results of the simulated ex-
periments. TER and BLEU were computed
considering the reference sentences. ⋆ indi-
cates statistically significant differences be-
tween the static and the adaptive systems.

Test System TER [↓] BLEU [↑]

T1 Static 54.0 26.9
Adaptive 48.5⋆ 32.0⋆

T2 Static 56.1 23.4
Adaptive 55.0 26.3⋆

We also performed the adaptation on a larger document (1, 500 sentences), be-
longing to the same domain. The adaptation to this one was even more effective: we
observed gains of 10.4 TER points and 13.6 BLEU points.

5.4.5 Adaptation with human post-editors

Once we tested our system in a simulated
environment, we moved on to the experimen-
tation with human post-editors. Three profes-
sional translators were involved in the exper-
iment. For the adaptive test, all post-editors
started the task with the same system, which
was adapted to each user using their own post-
edits. Therefore, at the end of the online learn-
ing process, each post-editor obtained a tai-
lored system. For the static experiment, the
initial NMT system remained fixed along the
complete process.

Table 5.15: Distribution of users
(1, 2 and 3), test sets (T1 and T2)
and scenarios (static and adaptive)
for the post-editing experimentation.

User Static Adaptive

User 1 T1 T2
User 2 T2 T1
User 3 T1 T2

In order to avoid the influence of translating the same text multiple times, each
participant post-edited a different test set under each scenario (static and adaptive),
as shown in Table 5.15.

The main results of this experiment are shown in Table 5.16. These numbers are
averages over the results obtained by the different post-editors. The large reduction
of post-editing time per sentence for the set T1 is especially relevant (an average of
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Table 5.16: Results of the user experiments. Static systems stand for conventional post-
editing, without adaptation. Adaptive systems refer to post-editing in an environment with
online learning. Time corresponds to the average post-editing time per sentence, in seconds.
hTER and hBLEU refer to the TER and BLEU of the system hypothesis computed against
the post-edited sentences. ⋆ indicates statistically significant differences between the static
and the adaptive systems.

Split System Time (s) hTER [↓] hBLEU [↑]

T1 Static 37.9 39.5 47.3
Adaptive 30.4 34.2 55.1⋆

T2 Static 45.8 38.4 45.7
Adaptive 45.1 34.2⋆ 50.5⋆

7.5 seconds per sentence). In the test set T2, the post-editing time of the adaptive
system was also slightly lower than the static system one, but only by 0.7 seconds.
In terms of translation quality, adaptive systems performed much better than static
ones, as reflected by the significant improvements in terms of hTER (5.3 and 4.2
points) and hBLEU (7.8 and 4.8 points). These results show that adaptive systems
generated more correct translations, as they required less post-edits from the user.

In order to gain additional insights of the adaptation process, we studied the
evolution of hTER and hBLEU during the post-editing process. Fig. 5.10 compares
these metrics, computed for each sentence from both test sets for static and adaptive
systems. Moreover, to observe the evolution of such points, we computed linear fits
of the scores of each system via the least squares method.

In Fig. 5.10a, we observe that for the test split T1, the adaptive system con-
sistently produced slightly better hypotheses than the static one, but there was no
clear evidence on the effects of online learning. Both systems behaved similarly: the
hTER and hBLEU values were gradually increased, which suggests either that the
test document was increasingly easier to translate or that the user felt more comfort-
able with the style and translations provided by the system. Therefore, they applied
less post-edits to the final sentences.

In the case of T2 (Fig. 5.10b), we observe a degradation on hTER and hBLEU
of the static system, as the post-editing process advances. This degradation was
prevented by the adaptive system, in which hTER and hBLEU are even slightly im-
proved. The effects of the adaptation are noticeable from the 30th sentence onwards.

Finally, it is interesting to compare the simulated experiment against this one. We
observed that, in terms of automatic metrics, the system yielded much better results
when evaluating against post-edits, rather than against reference sentences (compare
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(a) hTER (left) and hBLEU (right) for the T1 test set.
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(b) hTER (left) and hBLEU (right) for the T2 test set.

Figure 5.10: hTER and hBLEU per sentence of static and adaptive systems for both
test sets (T1 and T2). Recall that hTER is an error metric, hence, the lower, the better.
Individual sentence scores are plotted for each system, static (red crosses) and adaptive (blue
dots). We also show a linear fit of the scores of each system, in dashed red and solid blue
lines, for static and adaptive systems, respectively.

the “Static” rows from Table 5.14 and Table 5.14, respectively). This suggests that
the translation hypotheses provided by the system were useful to the human users,
as they produced similar post-edited samples. It is also worth pointing out that
the adaptation process was, in most cases, slightly less effective in the simulated
experiment.

5.4.6 User perceptions and opinions

After finishing each experiment, the participants answered a questionnaire regarding
the post-editing task they had just performed. In this survey, we asked the users
about their satisfaction on the translations they produced, whether they preferred
to perform post-editing or translating from scratch and their opinions on the auto-
matic translations provided, in terms of grammar, style and overall quality. We also
requested them to give their feedback on the task, as an open-answer question. This
survey, together with the user answers is shown in Appendix B.
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The users were generally satisfied with the translations they generated. In all
cases, they preferred to perform this translation task via post-editing rather than
translating from scratch. Two of them preferred to perform this translation from
scratch in less than around 25% of the sentences. The other post-editor preferred to
translate from scratch around 50% of the sentences. In all cases, they are keen to
perform translation post-editing in the future. These perceptions on the MT utility
are slightly better than those reported by Daems and Macken (2019). We believe that
these differences are due to the background in translation post-editing that our users
had: they perform translation post-editing as their regular way of work; therefore,
their perceptions toward this methodology are generally favorable.

Regarding the translation quality offered by the NMT system, their general opinion
is that the system produced translations of average quality. The strongest attribute
of the translations was their grammatical accuracy. The style and overall quality was
perceived in some cases below the average, depending on the user and the experimental
condition.

Once they finished both experiments, we also asked the users to identify the adap-
tive systems. All users guessed correctly which one was the adaptive one. Therefore,
the influence of adaptability was noticeable by the user.

Regarding their general opinions, they all observed how corrections applied on
one segment were generally reflected in the following segments, especially corrections
related to product names, grammatical structures and lexical aspects. This mostly
reduced upcoming corrections to changes in the style. Overall, their perception was
that the static system produced less fluent translations, and that MT was very good
in most cases, but useless in others.

The post-editors reported a couple of minor issues regarding the NMT system: in
a few cases, they noticed that a domain-specific term was “forgotten” by the system,
being wrongly translated. In addition, the users noticed in some cases, the occurrence
of some made-up words (e.g., “absolvido”). This problem was probably caused by an
incorrect learning of an new word segmentation, provided by BPE. It can be seen as a
catastrophic forgetting issue (Thompson et al., 2019), in which the performance of a
model is degraded on a general domain during the adaptation process. This causes the
appearance of made-up words. Thompson et al. (2019) recently proposed alternative
methods to mitigate this forgetting issues. We should test if these methods address
our problem of made-up words, to deploy effective and adaptive translation systems.
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5.5 Active learning for the interactive-predictive translation
of large data streams

Once we studied interactive, adaptive NMT systems, we move on to a new scenario:
the translation of large datasets. The translation industry is a high-demanding field.
Large amounts of data must be translated on a regular basis. As stated in the
previous sections, MT greatly boosts the productivity of translation agencies (Arenas,
2008). However, MT systems require human supervision—translation post-editing
or interactive-predictive machine translation—to produce high-quality translations.
This represents a great effort, as it needs expert human supervisors.

The requirements of the translation industry have increased in the last years
(Dranch et al., 2018). We live in a global world, in which large amounts of data
must be periodically translated. This is the case of the European Parliament, whose
proceedings must be regularly translated; or the Project Syndicate4 platform, which
translates editorials from newspapers to several languages. In these scenarios, the
sentences to be translated can be seen as unbounded streams of data (Levenberg
et al., 2010).

When dealing with such massive volumes of data, it is prohibitively expensive to
manually revise all the translations. Therefore, it is mandatory to spare human effort,
at the expense of some translation quality. Hence, when facing this situation, we have
a twofold objective: on the one hand, we aim to obtain translations with the highest
possible quality. On the other hand, we are constrained by the amount of human
effort spent in the supervision and correction process of the translations proposed by
an MT system.

The active learning framework is well-suited to these objectives. Active learning is
a machine learning discipline, based on the idea that an algorithm can obtain better
results with few training samples if it is able to properly select the data from which
it learns (Cohn et al., 1994). A common protocol is the so-called stream-based AL
(Settles, 2009), in which the active learner (the model) selects the samples to be
labeled by an oracle (the human) from a continuous stream of samples.

This stream-based AL protocol fits the aforementioned requirements. The appli-
cation of AL techniques to MT involves asking a human oracle to supervise a fraction
of the incoming data (Bloodgood and Callison-Burch, 2010). Once the human has
revised these samples, they are used to improve the MT system, via incremental
(González-Rubio et al., 2012) or batch learning (Dara et al., 2014). Therefore, a key
element of AL is the so-called sampling strategy, which determines the sentences that
should be corrected by the human.

4www.project-syndicate.org
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In this section, we explore the application of AL techniques to the translation of
unbounded data streams with NMT systems. We apply AL techniques to select the
instances to be revised by a human oracle. The correction process is done by means
of an INMT, as shown in Chapter 4. The supervised samples will be used by the
NMT system to incrementally improve its models, as in Section 5.2.

5.5.1 Active learning in machine translation

The translation of large volumes of data is a very appropriate scenario for the AL
framework (Cohn et al., 1994; Olsson, 2009; Settles, 2009). The application of AL
to PB-SMT has been studied for pool-based (Haffari et al., 2009; Bloodgood and
Callison-Burch, 2010) and stream-based (González-Rubio et al., 2011) setups. Later
works (González-Rubio et al., 2012; González-Rubio and Casacuberta, 2014), com-
bined AL together with IMT, showing that AL can effectively reduce the human
effort required to reach a certain translation quality. However, to our knowledge,
a study on the use of AL for NMT in a scenario of translation of unbounded data
streams was still missing.

When dealing with potentially unbounded datasets, it becomes prohibitively ex-
pensive to manually supervise all the translations. The goal of IMT is to obtain
high quality translations, while minimizing the required human effort. This requires
to revise all translation hypotheses, correcting the wrong ones. This process can be
prohibitively expensive. Aiming to address this problem, in the AL framework, a
sampling strategy selects a subset of sentences worth being supervised by the user.
Once corrected, the MT system adapts its models with these samples.

The AL protocol applied to unbounded data streams is detailed in Algorithm 5.2
(González-Rubio et al., 2012): first, we retrieve from the data stream S a block B
of consecutive sentences, with the function getBlockFromStream(S). According to
the sampling(B, ε) function, we select from B a subset V of ε instances worth being
supervised by the user. Upcoming sections (Section 5.5.2) present deeper insights on
these sampling functions.

The sampled sentences are interactively translated as described in Section 4.3.
This process is implemented by the function INMT(Θn, x

J
1 , ŷ

I
1). Note that, instead

of applying the interactive-predictive protocol, the user could simply post-edit the
selected samples. Once the user translates via INMT a source sentence xJ

1 , a correct
translation yI1 is obtained. Then, we use the pair (xJ

1 , y
I
1) to update the parameters

Θn of the NMT model, as described in Section 5.2. This is done with the function
update(Θn, (x

J
1 , y

I
1)). Therefore, the NMT system is incrementally adapted with new

data.
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Those sentences considered unworthy to be supervised are automatically trans-
lated, with the function translate(Θn, x

J
1 ), following the process described in Sec-

tion 3.3. Once we finished the translation of the current block B, we start the process
again.

Algorithm 5.2: Active learning for unbounded data streams with
interactive-predictive neural machine translation.

input : Θ0 (Initial NMT model),
S (stream of source sentences),
ε (effort level desired)

auxiliar : B (block of source sentences)
V ⊆ B (sentences to be supervised by the user)

1 begin
2 n = 0
3 repeat
4 B = getBlockFromStream(S)
5 V = sampling(B, ε)
6 foreach xJ

1 ∈ B do
7 ŷI

1 = translate(Θn, x
J
1 )

8 if xJ
1 ∈ V then

9 yI
1 = INMT(Θn, x

J
1 , ŷ

I
1)

10 Θn+1 = update(Θn, (x
J
1 , y

I
1))

11 output(yI
1)

12 n = n+ 1

13 else
14 output(ŷI

1)

15 until S ̸= ∅;

5.5.2 Sentence sampling strategies

One of the key elements of AL is to have a meaningful strategy to obtain the most
useful samples to be supervised by the human agent. This requires an evaluation of
the informativeness of unlabeled samples. The sampling strategies used in this thesis
belong to two major frameworks: uncertainty sampling (Lewis and Catlett, 1994) and
query-by-committee (Seung et al., 1992).

As baseline, we use a random sampling strategy: sentences are randomly selected
from the data stream S. Although simple, this strategy usually works well in practice.
In the rest of this section, we describe the sampling strategies used and developed in
this thesis.
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Uncertainty sampling

The idea behind this family of methods is to select those instances for which the
model has the least confidence to be properly translated. Therefore, all techniques
compute, for each sample, an uncertainty score. The selected sentences will be those
with the highest scores. We describe three different strategies based on uncertainty:
quality estimation (González-Rubio et al., 2012), coverage (Peris and Casacuberta,
2018b) and attention distraction (Peris and Casacuberta, 2018b) sampling.

Quality estimation sampling

A common and effective way to measure the uncertainty of a MT system is to use
confidence estimation (Gandrabur and Foster, 2003; Blatz et al., 2004; Ueffing and
Ney, 2007). The idea is to estimate the quality of a translation according to confidence
scores of the words.

More specifically, given a source sentence xJ
1 and a translation hypothesis yI1 , a

word confidence score (Cw) as computed as (Eq. (5.17) Ueffing and Ney, 2005):

Cw(x
J
1 , yi) = max

0≤j≤J
p(yi | xj) (5.17)

where p(yi | xj) is the translation probability of yi and xj , given by an IBM Model
2 (Brown et al., 1993). x0 denotes the empty source word. The choice of the IBM
Model 2 is twofold: on the one hand, it is a very fast method, which only requires to
query in a dictionary. We are in an interactive-predictive framework, therefore speed
becomes a crucial requirement. On the other hand, its performance is close to more
complex methods (Blatz et al., 2004; Dyer et al., 2013).

Following González-Rubio et al. (2012), the uncertainty score for the quality esti-
mation sampling is defined as in Eq. (5.18):

Cqe(x
J
1 , y

I
1) = 1− |{yi ∈ yI1 |Cw(x

J
1 , yi) > τw}|

I
(5.18)

where τw is a word confidence threshold, adjusted according to a development corpus.
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Coverage sampling

One of the main issues suffered by NMT systems is the lack of coverage: the NMT
system may not translate all words from a source sentence (Tu et al., 2016).

We propose to use the translation coverage as a measure of the uncertainty suffered
by the NMT system when translating a sentence. Therefore, we modify the coverage
penalty (Wu et al., 2016), to obtain a coverage-based uncertainty score (Eq. (5.19)
Peris and Casacuberta, 2018b):

Ccov(x
J
1 , y

I
1) =

∑J
j=1 log

(
min(

∑I
i=1 αi,j , 1)

)
J

(5.19)

where αi,j is the weight provided by the attention mechanism to the i-th target word
and the j-th source word.

Attention distraction sampling

When generating a target word, an attentional NMT system should attend on mean-
ingful parts of the source sentence. If the system is translating an uncertain sample,
its attention mechanism will be distracted. That means, dispersed throughout the
source sequence. A sample with a great distraction will feature an attention proba-
bility distribution with heavy tails (e.g. a uniform distribution). Therefore, in the
attention distraction sampling strategy (Peris and Casacuberta, 2018b), the sentences
to select will be those with highest attention distraction.

To compute a distraction score, we compute the kurtosis of the weights given by
the attention model for each target word yi:

Kurt(yi) =
1
J

∑J
j=1(αi,j − 1

J )
4(

1
J

∑J
j=1(αi,j − 1

J )
2
)2

being, as above, αi,j the weight assigned by the attention model to the j-th source
word when decoding the i-th target word. Note that, by construction of the attention
model, 1

J is equivalent to the mean of the attention weights of the word yi.

Since we want to obtain samples with heavy tails, we average the minus kurtosis
values for all words in the target sentence, obtaining the attention distraction score
Cad (Eq. (5.20) Peris and Casacuberta, 2018b):

Cad(x
J
1 , y

I
1) =

∑I
i=1 −Kurt(yi)

I
(5.20)
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Query-by-committee

This framework maintains a committee of models, each one able to vote for the sen-
tences to be selected. The query-by-committee (QBC) method selects the samples
with the largest disagreement among the members of the committee. The level of dis-
agreement of a sample xJ

1 measured according to the vote-entropy function (Eq. (5.21)
Dagan and Engelson, 1995):

Cqbc(x
J
1 , y

I
1) = −#V (xJ

1 , y
I
1)

|C|
+ log

#V (xJ
1 , y

I
1)

|C|
(5.21)

where #V (xJ
1 , y

I
1) is the number of members of the committee that voted (xJ

1 , y
I
1) to

be supervised and |C| is the number of members of the committee. If #V (xJ
1 , y

I
1) is

zero, we set the value of Cqbc(x
J
1 , y

I
1) to −∞.

5.5.3 Evaluation of active learning to translate data streams

Our last adaptation scenario regards the active learning framework described in Sec-
tion 5.5.1. A system under an AL setup involves two main facets to evaluate: the
improvement on the quality of the system and the amount of human effort required to
achieve such quality. As in the previous sections, we measure the translation quality
in terms of BLEU and the human effort in KSMR (Section 1.4.1). The human follows
the simulated interaction protocol described in Section 1.4.1.

Algorithm 5.2 involves two main corpora: one that was used to train the original
NMT system and a large stream of source sentences. To ensure a fair comparison with
the latter works of AL applied to IMT (González-Rubio and Casacuberta, 2014), we
used the same datasets: our training data was the Europarl corpus (Koehn, 2005),
with the development set provided at the 2006 WMT (Koehn and Monz, 2006). As
test set, we used the News Commentary corpus (Callison-Burch et al., 2007). This
test set is suitable to our problem at hand because first, it contains data from different
domains (politics, economics and science), which represent challenging out-of-domain
samples, but account for a real-life situation in a translation agency; and second, it
is large enough to properly simulate long-term evolution of unbounded data streams.
All data are publicly available. We conducted the experimentation in the Spanish to
English language direction.

The NMT system under test was the RNN-based system described in Section 3.5.1.
We incrementally update the system (Line 10 in Algorithm 5.2), with vanilla SGD,
with a learning rate of 0.0005. We chose this configuration according to an exploration
on the validation set.
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The rest of experimental details were set according to previous works. The blocks
retrieved from the data stream contained 500 samples (according to González-Rubio
et al. (2012), the performance is similar regardless of the block size). For the quality
estimation method, the IBM Model 2 was obtained with fast_align (Dyer et al., 2013)
and τw was set to 0.4 (González-Rubio et al., 2010a).

We study and compare the AL framework for all our sampling strategies: quality
estimation sampling (QES), coverage sampling (CovS), attention distraction sampling
(ADS), random sampling (RS) and query-by-committee (QBC). The committee was
composed by the four uncertainty sampling strategies, namely QES, CovS, ADS and
RS. The inclusion of the latter into the committee can be seen as a way of introducing
some noise, aiming to prevent overfitting.

Active learning evaluation

First, we evaluated the effectiveness of the application of AL in the NMT system, in
terms of translation quality. Fig. 5.11 shows the BLEU score of the initial hypotheses
proposed by the NMT system (Line 7 in Algorithm 5.2), as a function of the percent-
age of sentences supervised by the user (ε in Algorithm 5.2), i.e. the percentage of
sentences used to adapt the system. The BLEU score of a static system without AL
was 34.6. Applying AL, we obtained improvements up to 4.1 BLEU points.

As expected, the addition of the new knowledge had a larger impact when applied
to a non-adapted system. Once the system becomes more specialized, a larger amount
of data was required to further improve.

The sampling strategies helped the system to learn faster. Taking RS as a baseline,
the learning curves of the other techniques were better, especially when using few (up
to a 30%) data for fine-tuning the system. The strategies that achieved a fastest
adaptation were those involving the attention mechanism (ADS, CovS and QBC).
This indicates that the system is learning from the most useful data. The QES
and RS required more supervised data to achieve comparable BLEU results. When
supervising high percentages of the data, we observed BLEU differences. This is due
to the ordering in which the selected sentences were presented to the learner. The
sampling strategies performed a sort of curriculum learning (Bengio et al., 2009).
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Figure 5.11: BLEU of the initial hypotheses proposed by the NMT system as a function
of the amount of data used to adapt it. The percentage of sentences supervised refers to the
value of ε with respect to the block size.

Introducing the human into the loop

From the point of view of the user, it is important to assess not only the quality of
the MT system, but also the effort spent to obtain such quality. Fig. 5.12 relates
both, showing the amount of effort required to reach a certain translation quality.
We compared the results of a system with AL to the same NMT system without AL
and with two other PB-SMT systems, with and without AL, from González-Rubio
and Casacuberta (2014).

Results in Fig. 5.12 show consistent positive results of the AL framework. In all
cases, AL reduced the human effort required to obtain a certain translation quality.
Compared to a static NMT system, approximately 25% of the human effort can be
spent using AL techniques.

Regarding the different sampling strategies, all of them behaviored similarly. They
provided consistent and stable improvements, regardless the level of effort desired (ε).
This indicates that, although the BLEU of the system may vary (Fig. 5.11), this had
small impact on the effort required for correcting the samples. All sampling strategies
outperformed the random baseline, which had a more unstable behavior.
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Figure 5.12: Translation quality (BLEU) as a function of the human effort (KSMR) re-
quired. Static-NMT relates to the same NMT system without AL. ∗ denotes systems from
González-Rubio and Casacuberta (2014): Static-PB-SMT is a PB-SMT system without AL
and AL-PB-SMT is the coverage augmentation PB-SMT system.

Compared to classical PB-SMT systems, NMT performed surprisingly well. Even
the NMT system without AL largely outperformed the best AL-PB-SMT system.
This is due to several reasons: on the one hand, the initial NMT system was much
better than the original PB-SMT system (34.6 vs. 14.9 BLEU points). Part of this
large difference were presumably due to the BPE used in NMT: the data stream
contained sentences from different domains, but they can be effectively encoded into
known sequences via BPE. The PB-SMT system was unable to handle well such
unseen sentences. On the other hand, INMT systems usually respond much better
to the human feedback than interactive-predictive PB-SMT systems (Knowles and
Koehn, 2016; Peris et al., 2017c). Therefore, the differences between PB-SMT and
NMT were enlarged even more.

Finally, it should be noted that all our sampling strategies can be computed speed-
ily. They involve analysis of the NMT attention weights, which are computed as a
byproduct of the decoding process; or queries to a dictionary (in the case of QES).
The update of NMT system is also fast, taking approximately 0.1 seconds. This makes
AL suitable for a real-time scenario.
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5.6 Summary

This chapter presented adaptive NMT via online learning. Under this framework, an
NMT system is incrementally adapted on the fly, with the new data generated on
a post-editing or IMT process. We studied the implementation of OL strategies for
NMT. Since we are working with neural networks, this incremental retraining can be
done by applying the same training algorithms than in regular (mini)batch training,
based on gradient descent. We also advocated that the usage of hypergradient descent
algorithms may become useful in this scenario, as they provide robustness to the
process. Moreover, we proposed two novel OL adaptation methods, inspired by the
classical passive-aggressive and minimax algorithms. The experimental results for
these methods were, however, negative. They were overcame by the regular methods.

We performed a thoughtful evaluation of these adaptive systems, studying its
application in three different scenarios. All of them referred to plausible situations
in the translation industry and relate to the amount of training data available: we
may have enough in-domain data to properly train an NMT system, to also have an
out-of-domain corpus to provide additional knowledge to the NMT or we can suffer
from lack of in-domain data.

We conducted a wide experimentation, relating two language pairs in five different
domains, for each one of the proposed scenarios. The results were conclusive: online
learning techniques were able to bring significant improvements to static systems in
almost every case. Adaptive NMT systems produced better translation hypotheses
and reduced the human effort required to correct their outputs. The magnitude of
such enhancements were task-dependent, according to the properties of the text to
translate.

The application of online learning to INMT systems reduced even more the hu-
man effort required to correct translation hypotheses. Moreover, the computational
overhead of OL was small, making suitable the use of adaptive NMT systems in an
interactive-predictive scenario. We also compared our system to the state-of-the-art
in IMT, based on PB-SMT models. Neural systems beat PB-SMT by a large margin
in terms of the human effort required.

In addition, we performed an evaluation of adaptive NMT in a real post-editing
scenario. The experiment involved three professional translators, who regularly make
use of MT post-editing. We observed reductions in post-editing times and significant
improvements in terms of (h)TER and (h)BLEU, thanks to online learning adaptation.
The users were very pleased with the system: they noticed that corrections applied
on a given segment generally were reflected on the successive ones, making the post-
editing process more effective and less tedious.
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Finally, we studied the application of these adaptive, interactive-predictive NMT
systems to the translation of large amounts of data. We assumed that these data are
available in form of a continuous stream of sentences. To deal with this, we studied
the application of an active learning scenario to an INMT or post-editing frameworks.
The core idea was to supervise the most useful samples from a potentially unbounded
data stream, while automatically translating the rest of sentences. We developed two
novel sampling strategies, in addition to other well-established methods that can be
directly applied in this framework.

We evaluated the capabilities and usefulness of this AL framework by simulating
real-life scenario, involving the aforementioned large data streams. AL was able to
enhance the performance of the NMT system in terms of BLEU. Moreover, we ob-
tained consistent reductions of approximately a 25% of the effort required to reach
a desired translation quality. Finally, it is worth noting that NMT outperformed
classical PB-SMT systems by a large margin.
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Captioning visual content

So far, we have discussed different aspects of MT. However, the neural sequence-to-
sequence framework described in Chapters 2 and 3 can be applied beyond MT. This is
the case of automatic captioning multimedia content. It represents an interesting but
difficult task that bridges together the fields of computer vision and NLP. The prob-
lem is defined as the automatic description in a natural language of visual instances,
typically images or videos. This could lead to multiple applications (e.g. video index-
ing and retrieval, movie description for multimedia applications or for blind people
or human-robot interaction).

Tightly related to this topic is the egocentric vision field (Doherty et al., 2013;
Betancourt et al., 2015; Bolaños et al., 2017). The goal of egocentric vision is to ana-
lyze the visual information provided by wearable cameras, which have the capability
to acquire images from a first person point-of-view. The analysis of these images pro-
vides information about the behavior of the user, useful for several complementary
topics like social interactions (Aghaei et al., 2018), scene understanding (Singh et al.,
2016), time-space-based localization (Yao et al., 2018), action (Fathi et al., 2011; Pos-
sas et al., 2018) or activity recognition (Iwashita et al., 2014; Cartas et al., 2017),
or nutritional habits analysis (Bolaños et al., 2018b), among others. Thus, enabling
us to understand the whole story and behavior of the users behind the pictures (i.e.
automatic storytelling) followed by inferring their actions and habits could lead to a
better quality of life for them. Considering the sheer amount of data that wearable
cameras provide, there is a need to create automatic algorithms to analyze and sum-
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marize them. In this chapter, we focus on the specific topic of creating automatic
diaries of the life of the user by means of textual descriptions.

Among the potential health-related applications of automatic diary construction,
we find particularly interesting the treatment of patients with dementia. As proven
by Spector et al. (2003); Sellen et al. (2007), the daily review of egocentric pictures
taken by the patients, can help them to partially recover their cognitive capabili-
ties. Therefore, the automatic generation of additional information, the comparison
with those provided by the users, or the automatic indexation and retrieval of these
data, would provide novel tools to improve future cognitive frameworks for memory
enhancement.

But prior to tackling the egocentric captioning problem, we focus first on the
regular video captioning task. We investigate methods and mechanisms to build
video captioning systems. Provided that a video is a sequence of images, we can
tackle this problem as a sequence-to-sequence task, like in NMT (Chapter 3). After
this, we will tackle our problem of egocentric captioning.

These problems present several properties that make them especially difficult.
Besides the significant amount of image information to analyze, videos may have a
variable number of images and can be described with sentences of different length.
Furthermore, the descriptions of videos are high-level summaries that not necessarily
need to be expressed in terms of the objects, actions and scenes observed in the images.
There are many open research questions in this field requiring a deep understanding
of video. These include how to efficiently extract important elements from the images
(e.g. objects, scenes, actions), to define the local (e.g. fine-grained motion) and
global spatial-temporal information, determine the salient content worth describing,
and generating the final video description. All these specific questions need the joint
attention of the computer vision and NLP communities in order to be solved.

This chapter covers the multimedia captioning topic. We start by proposing a
video captioning system, that bridges bidirectional LSTM networks (BLSTM) to-
gether with ConvNets, to obtain rich representations of the video frames. This is
described and evaluated in Section 6.1. Next, we move towards the egocentric daily
captioning problem. We propose a system with extended, multimodal context to re-
late the events occurred during a day. We evaluate our method on the first dataset
designed to caption egocentric events. The experimentation conducted reveals that
the system is able to improve the performance when analyzing larger contexts. This
is described and discussed in Section 6.2. Finally, we study the application of the
interactive-predictive framework described in Chapter 4 to these multimodal systems.
We conduct experiments on several datasets and different tasks, using the RNN-based
and Transformer architectures. We show that the interactive-predictive framework
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can be successfully applied to these multimodal scenarios. This is described in Sec-
tion 6.3.

Sections 6.1 and 6.2 are the result of collaborative work with Marc Bolaños
and Prof. Petia Radeva, from Universitat de Barcelona/Universitat Autònoma de
Barcelona. They are computer vision experts while we had experience in NMT.
Therefore, our backgrounds were ideal to tackle these challenges together. As com-
puter vision experts, the feature extraction from the images was mostly done by them.
Moreover, they collected and annotated the dataset presented in Section 6.2.5. We
focused on the textual part of the problem, proposing to apply the models from NMT
to this task and bridging both worlds in early prototypes. After that, we tightly
cooperated in the design and implementation of our captioning systems, as well as
in the experimentation, evaluation and discussion regarding all of them. Section 6.3
refers completely to my original work.

6.1 Video captioning

Video captioning can be seen as an instantiation of a sequence-to-sequence problem:
we must generate a sequence of words given a sequence of images (the video frames).
Hence, the encoder–decoder ideas—typically used in NMT (Chapter 3)—can be di-
rectly applied to this task. The main difference with NMT is that in the encoding
step, instead of processing natural text, we must deal with the visual information
from video frames.

Early captioning work tackled the problem using primitive image recognizers to
analyze the visual features and designing hand-crafted, rule-based text generators
(Farhadi et al., 2010). These proposals usually detected a set of relevant concepts
in an encoding step and generated an associated sentence according to these con-
cepts (Krishnamoorthy et al., 2013; Rohrbach et al., 2013). This line of research led
to complex ontology-based (Yao et al., 2010) or parsing-based (Kuznetsova et al.,
2014) systems. Although achieving important milestones, such systems generated the
captions in a rigid way, because of their underlying rule-based text generator.

The advent of the neural encoder–decoder framework allowed researchers to tackle
the problem as a sequence-to-sequence task. Inspired by the advances achieved in the
MT field, a number of researchers applied the same model to the image captioning
(Mao et al., 2014; Vinyals et al., 2015) and the video description tasks (Venugopalan
et al., 2014; Karpathy and Fei-Fei, 2015; Venugopalan et al., 2015). The main idea is
to use a ConvNet network to extract features from the images or video frames, and
feed a decoder network (typically recurrent) with such visual features.
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Moreover, Xu et al. (2015) introduced the attention mechanism into the image
captioning model, allowing the system to focus on certain parts of an image to generate
each word. The attention mechanism was also applied to tackle video captioning
problems (Yao et al., 2015), allowing the systems to attend to some specific video
frames.

The research on video captioning has intensified from these seminal works (see e.g.
Aafaq et al., 2018): hierarchical processing of the information (Pan et al., 2016; Song
et al., 2017), inclusion of external knowledge to diversify the captions (Venugopalan
et al., 2016, 2017), multi-modal attention mechanisms (Hori et al., 2017) or novel
architectures, such as the Transformer (Zhou et al., 2018).

6.1.1 Video captioning systems

Analogously to the MT problem, we pose the video captioning problem as a sequence-
to-sequence task: given an input video, represented as a sequence of J images, zJi =

z1, . . . , zJ , our goal is to generate a sequence of words ŷÎ1 = ŷ1, . . . , ŷÎ that describes
the events that occur in the video. Applying the same reasoning as in Section 1.3
leads to a similar expression as Eq. (1.5), but conditioned to the video frames, as in
Eq. (6.1):

ŷÎ1 = argmax
I,yI

1

Pr(yI1 | zJ1 ) (6.1)

This expression can be tackled following the ideas from NMT (Chapter 3). There-
fore, by applying Eqs. (3.1) and (3.2), we reach Eq. (6.2), the video captioning objec-
tive:

ŷÎ1 ≈ argmax
I,yI

1

I∑
i=1

log p(yi | yi−1
1 , zJ1 ;Θ) (6.2)

As in the MT case, the parameters of the model (Θ) are estimated on a training
dataset. In this case, each training sample is a video-caption pair (z, y). Again, the
training objective is to maximize the log-likelihood on the training dataset (Eq. (6.3)):

Θ̂ = argmin
Θ

S∑
s=1

I(s)∑
i=1

− log(p(y
(s)
i | yi−1

1

(s)
, z

J (s)
1 ;Θ)) (6.3)
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where z
J (s)
1 and y(s) denote the s-th training sample and I(s) refers to the length of

y(s).

Therefore, NMT and neural video captioning systems share two out of the three
pattern recognition challenges (Section 1.1): the parameter estimation is performed
via SGD on a training corpus, aiming to maximize the likelihood and the search
problem can be tackled by a beam search method. The main difference between
video captioning and NMT is found at the encoder, which is designed to process
either text or video.

6.1.2 Neural architectures for image encoding

To obtain visual representations, we rely on techniques from the computer vision
field. Nowadays, ConvNets (Section 2.3.3) are undoubtedly the most commonly em-
ployed model in computer vision. The appearance of huge image databases and the
possibility of large-scale training with GPUs has allowed ConvNets to be the most
prominent technique in the computer vision field (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; Szegedy et al., 2015, 2017). Since their successful reintroduction
in public challenges (Krizhevsky et al., 2012), ConvNets have been demonstrated to
be a powerful tool to tackle several computer vision problems, such as object detec-
tion (Russakovsky et al., 2015) or scene recognition (Zhou et al., 2014). ConvNets
obtain rich image representations that can be leveraged by other applications, such
as multimodal systems. Nowadays, ConvNets represent a powerful method to extract
features from images.

Hence, to analyze the video frames, we employ a powerful ConvNet model that has
been already trained on large datasets. Without loss of generality, we chose the so-
called GoogLeNet architecture (Szegedy et al., 2015), but any other feature extractor
could be used within our framework.

GoogLeNet

GoogLeNet was the winner of the 2014 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC, Szegedy et al., 2015). This network is built upon the so-called
Inception modules: a block of convolutional filters with strides of 1 × 1, 3 × 3 and
5 × 5 together with a maximum pooling operation applied to their inputs. In order
to reduce the number of parameters of these modules, these operations are preceded
by 1 × 1 convolutions. The final output is obtain by concatenating the result of the
convolutions. Fig. 6.1 illustrates an Inception module.

The global GoogLeNet architecture consists of 22 layers, starting with two initial
convolution plus max-pooling operations, followed by a stack of Inception modules.
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Max-pooling operations are applied after the second and seventh module. After this
stack of Inception modules, an average pooling produces a compact representation of
size d = 1024.

We use this final representation as the fea-
tures extracted by the network. The original
GoogLeNet architecture adds an additional layer
with 1, 000 units, because the network was de-
signed for a classification problem involving 1, 000
classes.

Although it varies depending on the prob-
lem and data, GoogLeNet has proven to be one
of the best models for feature extraction, offer-
ing a good trade-off in terms of performance,
number of parameters and computational re-
quirements.

Regarding the features learned by the net-
work, we propose to combine object and context-
related information. We used the GoogLeNet
architecture separately trained on two datasets:
one for object detection (ILSVRC dataset, Rus-
sakovsky et al., 2015), and another one for scene
recognition (Places 205 dataset, Zhou et al.,
2014). The combination of these two sources
of data can inform about the objects appear-
ing and their surroundings, being ideal for our
problem at hand.

Filter
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1× 1
convolution

3× 3
convolution

5× 5
convolution

Previous
layer
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pooling

1× 1
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1× 1
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1× 1
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Figure 6.1: Inception module, as
illustrated by Szegedy et al. (2015).
It applies several convolutional filters
and a maximum pooling to its inputs.
The output is built by concatenating
the results of the convolutions.

Therefore, considering a video as a sequence of J images z1, . . . , zJ , we apply the
GoogLeNet models pre-trained on the object and scene detection datasets to each of
the elements of this sequence. For each frame, we obtain two feature vectors, which
are concatenated, yielding a sequence of J feature vectors, zJ

1 , where each element
zj , with zj ∈ Rd for 1 ≤ j ≤ J , represents the compact representation of a video
frame.

6.1.3 ABiViRNet: A bidirectional video captioning system

Although effective, the previous ConvNet architecture removes the temporal depen-
dencies existing across the frames of a video. To address this issue, we apply a BRNN
network (Section 2.3.1) to process the features extracted by the ConvNet. This allows
the model to induce bidirectional relationships on the sequence of frames.
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6.1. Video captioning

Hence, the sequence of feature vectors zJ
1 = z1, . . . , zJ is processed by a BRNN

(fe), that computes a sequence of annotations, similarly to the NMT model (Sec-
tion 3.1), but from the video features, as in Eq. (6.4):

hJ
1 = fe(z1, . . . , zJ) (6.4)

where hJ
1 is a sequence of J annotations of k dimensions computed by the BRNN

network. As in the NMT model, each element hj ∈ Rk, for 1 ≤ j ≤ J , can be seen as
a representation of size k of the elements surrounding the j-th video frame.

Finally, we combine the zJ
1 and hJ

1 sequences, introducing into the decoder both
the original ConvNet features and the representation obtained after the BRNN. We
empirically found that the system is improved from this augmented features. To that
end, we concatenated the features, yielding a final sequence vJ

1 of J feature-augmented
vectors, where each vj = [zj ;hj ] ∈ Rd+k, for 1 ≤ j ≤ J .
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Figure 6.2: Architecture of the ABiViRNet model for video captioning. This model follows
the attentional encoder–decoder framework described in Section 3.1. The input video is given
as a sequence of frames and it is processed by a ConvNet which extracts visual features. A
bidirectional RNN scans the sequence of features to compute an alternative representation,
containing relationships across frames. These two representations are concatenated and fed
to the decoder RNN via an attention mechanism. Following the decoder RNN, we apply a
deep-output layer (fo), projecting the decoder state, the context vector and the embedding
of the previously generated word into a common space and applying a non-linear function
(g). Finally, we project this representation to the language vocabulary space. Applying the
softmax function (φ) we obtain a probability distribution over the words. The caption is
generated by searching the sequence of words that provides the highest probability.

The decoder is very similar to the RNN-based NMT one (Section 3.1): it consists
of an RNN network, which acts as a language model, conditioned by the information
provided by the encoder: in this case, the video frames. The decoder is equipped with
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Chapter 6. Captioning visual content

an attention mechanism as described in Section 3.1, that is applied on the sequence
computed by the encoder (vJ

1 ). Considering that each of our feature vectors describes
the scene at a different temporal moment, this dynamic attention mechanism acts
as a trainable saliency mechanism applied through time, which is able to weight and
emphasize the information from different frames.

The words are generated as in the NMT case: we project the representation com-
puted by the decoder to a vocabulary-sized space, followed by a softmax function
(Eq. (3.10)). To find the caption with the highest probability, we rely on the beam-
search method (Section 3.3). We called this model “attention bidirectional video
recurrent net” (ABiViRNet Peris et al., 2016). Fig. 6.2 shows an illustration of the
system.

6.1.4 Experimental setup

We tested our video captioning system on the Microsoft Research Video Description
(MSVD) dataset (Chen and Dolan, 2011), a collection of 1970 open domain video clips
collected from YouTube and annotated using a crowd sourcing platform. Each video
has a variable number of captions, written by different users. We used the splits made
by Venugopalan et al. (2014); Yao et al. (2015), separating the dataset in 1200 videos
for training, 100 for validation and the remaining 670 for testing. During training,
the video clips and each one of their captions were treated separately, accounting for
a total of more than 88, 000 video-caption training samples. Fig. 6.3 shows a sample
from the MSVD dataset.

In order to evaluate and compare the results of the different models we used the
standardized COCO-Caption evaluation package (Chen et al., 2015), which provides
several metrics for text description comparison. We used three main metrics, BLEU,
METEOR and CIDEr (see Section 1.4.1). Recall that, while we present BLEU and
METEOR results as a percentage, the CIDEr values range from 0 to 10.

Video captioning systems

We built our systems using the Theano framework (Theano Development Team, 2016).
Our source code is publicly available1. We used LSTM (Section 2.3.1) networks as
recurrent units for our system. In the case of applying a bidirectional encoder, this
was also a BLSTM network. We used the concatenation operator to join the forward
and backward states from the BLSTM network. Our attention mechanism had an
additive attention function (Eq. (2.19)), with a single-layered MLP.

For extracting the visual features, we tested four main configurations:
1https://github.com/lvapeab/ABiViRNet.
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A woman is fying food.

A woman is cooking meat.

A woman is deep frying a piece of meat.

A woman places a coated pork slab into

A Women Frying Katsudon in Oil.

The lady fried the breaded meat in hot oil.

In the process of preparing a yummy pork dish.

hot oil and deep fries it till golden brown.

A woman is placing breaded pork into a pot of hot oil.

Figure 6.3: Training sample from the MSVD dataset. We only show an excerpt of 4 video
frames along with 10 out of the 34 references that this video had. Note that captions can
contain typos (e.g. fying food), since the dataset was labeled via crowdsourcing.

1. Objects: the features were obtained from a GoogLeNet trained for object de-
tection. The features from the ConvNet fed directly an attentive LSTM decoder.
This can be considered the baseline system, proposed by Yao et al. (2015).

2. Objects + Scenes: we used features from two ConvNets, trained on object
detection and scene classification. Both features were concatenated.

3. Objects + BLSTM: represents the system described in Section 6.1.3: the
visual features contained information from objects and were processed by a
BLSTM before being introduced to the decoder.

4. Objects + Scenes + BLSTM: combination of both previous systems, visual
features containing object and scene information, processed by a BLSTM.

We trained our systems using a batch size of 64 samples, using the Adadelta
(Zeiler, 2012) optimizer with its default parameters. To deal with the overwhelming
amount of visual information that a video contains, we applied a frame subsampling,
following Yao et al. (2015). This strategy consists of picking only one image every 26
frames to reduce the computational overload. To obtain the captions, used a beam
size of 10. The weight matrices were initialized following Glorot and Bengio (2010).
We applied an early stopping strategy (Section 2.4) according to the BLEU of the
development set. We evaluated our system every 1000 updates and the patience was
set to 5.
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To choose the optimal hyperparameters, we followed a random search strategy
(Bergstra and Bengio, 2012). For each configuration we run 10 experiments. In each
of them, we randomly set the value of the critical model hyperparameters: the size of
the target word (tested on the range [300, 700]), the size of the decoder RNN (tested
on the range [1000, 3000]) and the size of the BRNN encoder (tested on the range
[100, 2100]). The attention mechanism size was the same of the decoder RNN. The
optimal hyperparameters obtained through this exploration are shown in Table 6.1.

Table 6.1: Optimal hyperparameters for the captioning encoder–decoder found via random
search for each configuration.

Configuration Encoder Decoder Embedding

Objects − 2231 476
Objects + Scenes − 2256 451
Objects + BLSTM 2× 717 484 301
Objects + Scenes + BLSTM 2× 823 3245 628

6.1.5 Results and discussion

In Table 6.2 we report the results of the best models on the test set. The first row
corresponds to the result obtained with our system with the object features from Yao
et al. (2015). The configurations reported below the horizontal line are our proposals,
where Scenes indicates we use scene-related features concatenated to Objects and
BLSTM denotes the use of the additional BLSTM encoder.

Table 6.2: Text generation results for each model on the MSVD dataset. The results below
the horizontal line are our proposals. † indicates the model from Yao et al. (2015) (only
Object features) evaluated on our system.

Model BLEU [↑] METEOR [↑] CIDEr [↑]

Objects† 51.5 32.5 0.66

Objects + Scenes 52.6 32.5 0.67
Objects + BLSTM 53.6 32.6 0.66
Objects + Scenes + BLSTM 52.8 31.3 0.67

Analyzing the results obtained, a clear improvement trend can be derived when
applying the BLSTM as a temporal inference mechanism. The BLSTM addition when
using Objects features allows to improve the result on all metrics, obtaining a benefit
of more than 2 BLEU points. Adding scene-related features also slightly improves the
result, although it is not as remarkable as the BLSTM improvement. The combination
of Objects+Scenes+BLSTM offers the best CIDEr performance. Nevertheless, this
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result is slightly below the Objects+BLSTM configuration for the rest of metrics. This
behavior is probably due to the significant increase in the number of parameters to
learn. It should be investigated whether the reduction of the number of parameters
by reducing the size of the ConvNet features, or the use of larger datasets could lead
to further improvements.

The bidirectional architecture introduced into the captioning system had the abil-
ity to infer temporal relationships from the data, in both directions. Hence, the
features provided by a bidirectional encoder will incorporate information, being even
more evident in the initial frames where otherwise the result would only take into ac-
count a short time-span. On the other hand, the use of a bidirectional model causes a
significant increase on the number of parameters on the encoder, which increases the
computational time and the amount of data needed to train the model. The use of
complementary object and scene-related image features has proven to obtain richer
video representations, leading to generally outperform the usage of only object-related
features, for the problem at hand.

These results suggest that deep structures help to transfer the knowledge from
the input sequence of frames to the output natural language caption. Hence, the
next step to take must delve into the application of deeper modeling structures, such
as 3D-ConvNets (Tran et al., 2015), that allow the recognition of actions and may
solve some of the ambiguities existing in the tested methods, which only cope with
object and scene recognition. An additional future step should study the inclusion
of spatial-temporal attention models for better coping with the nature of natural
videos. The usage of more powerful alternatives—deep RNNs or the Transformer
model—could also bring improvements on the performance of the system. However,
such deep structures involve a larger amount of parameters, whose estimation can be
problematic, especially with small datasets.

6.2 Egocentric captioning

We now tackle the egocentric captioning problem, a particular case of a video descrip-
tion task. This problem is particularly challenging due to two main characteristics
inherent to the egocentric images: on the one hand, most wearable cameras have a
small field of view. This may condition the images, and they are frequently distorted,
noisy and hence, they are complex to analyze. On the other hand, the life-logging
cameras used for egocentric vision have a low temporal resolution (2-3 frames per
minute). Therefore, the egocentric events are not videos, but collection of temporally
ordered images.

In this section, we will focus on the problem of automatically generating captions
from daily egocentric images. We hypothesize that, within a day, some of the events
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that compose it follow a temporally logical relation. That is, previous actions occur-
ring during a day influence the following ones. For instance, if a given event shows a
cooking scene, it is likely that in the next event the user proceeds to eat the food.

ENCODER  [current event]

CNN BLSTM ATT. 
MODEL

LSTM

Iys
1

wasys
2

havingys
3

lunchys
4

ATT. 
MODEL

DECODER

CNN BLSTM

ENCODER  [previous event]

Figure 6.4: High-level outline of the proposed temporally-linked multi-input attention
model (TMA). To describe an event, given as a sequence of frames, the model is able to
exploit information extracted from the previous event, via an independent encoder and using
two attention mechanisms.

Therefore, we need a model able to capture and exploit these relationships. To
that end, we modify the captioning system presented in Section 6.1.3, introducing
an extended context, to deal with the previous daily events. We call this approach
a “temporally-linked multi-input attention model” (TMA). Our proposal is able to
embed previous information coming from either image or language. In Fig. 6.4, we
show a high-level outline of the proposed method. We illustrate the previous example:
the frames from previous events are related to food preparation and this can be
employed to determine that the user is about to eat.

Egocentric vision

As previously stated, the field of egocentric vision involves a number of different
challenges and problems, like activity recognition, event classification (Castro et al.,
2015), or our task of interest: event captioning. Regarding any of these subproblems,
in order to provide a coherent description or labeling of the actions and events hap-
pening in egocentric images, the first step required is the segmentation of a complete
day of the user into so-called events. According to Dimiccoli et al. (2017), an event is
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“a semantically perceptual unit that can be inferred by visual image fea-
tures, without any prior knowledge of what the camera wearer is actually
doing.”

Event segmentation can be done in an automatic manner (Lu and Grauman,
2013; Poleg et al., 2016; Dimiccoli et al., 2017). After the application of the day
segmentation and having as output the set of events of the day, we can acquire
the self-contained units of information required for the application at hand, event
captioning systems, activity recognizers or event classifiers.

Considering the egocentric captioning problem, few works have been proposed in
the literature. Only two of them tackled it as a video description problem and from
an end-to-end perspective. Fan and Crandall (2016) and Fan et al. (2018) explored
the problem of creating image diaries in order to apply image retrieval. As a step
in the process, the authors proposed an image captioning method that processes one
image at a time by applying a ConvNet to extract image features and an RNN to
generate sentences. Later, they proposed to group the images and apply a sentence
fusion technique to provide the final captions for each event along the day. Goel and
Naik (2016) also focused on the task of image retrieval for both conventional and
egocentric videos. They applied a simple method of video description composed of
a ConvNet for feature extraction, a BLSTM for image sequence combination and a
LSTM in the decoder to apply the final sentence generation for 5-seconds-long clips of
video. The purpose of this method in the work was to provide semantic information
of the available data for the posterior retrieval.

Extending the context

For our task of describing events, we assume that such events have been previously
extracted, either manually or automatically. As discussed before, it is important to
take into account relevant information from previous events to generate the caption
of the current one. Thus, our model treats the image sequences from different events
as temporally-linked units. It jointly models and exploits intra-eventual information
(flowing through the frames of a single event) together with inter-eventual information
(linking temporal sequences of neighboring events).

Most work relating video captioning (e.g. Venugopalan et al. (2015); Yao et al.
(2015), Section 6.1.3) assume a sample-wise independence, i.e. that a sample is meant
to be unrelated to the next one. This may represent a limitation in tasks which aim
to model continuous events, split according to an arbitrary criterion. This is the
class of problems that we intend to address. In order to tackle it, we divide a day
into events and describe each one of these events. Due to this division, our samples
are conditioned between them. Therefore, the classical sample-wise independence
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assumption becomes excessively severe, as critical information may be potentially
lost. We propose a novel model that takes into account information from past events,
being suitable to this kind of tasks.

We aim to exploit this information by incorporating into our model, at a given
temporal point, the information extracted from the previous event. This information
can be either textual (previous caption), visual (previous sequence of images) or
both. Therefore, we develop a model that takes into account the information from
both sources: the current sequence of frames together with the information coming
from previous events.

Related to this, few works have been proposed to take into account mid-term
temporal information in conventional videos. Krishna et al. (2017) extracted C3D
features on variable-sized conventional videos and computed several temporal seg-
mentation proposals in short actions. Later, the model generated textual descriptions
for each action incorporating contextual information from the past and future actions
belonging to the same video. In comparison to our problem of egocentric life-logging
data, apart from the different perspective of the sequences, their videos are much
shorter. Moreover, instead of consisting of several long-term events, theirs contain
mid-term short actions belonging to the same event. Even though there are important
differences to both problems, the authors proved that incorporating past and future
information can help the prediction of current events or actions.

It is also worth relating the inclusion of wider contexts with the MT community.
Document-level MT is a topic that is receiving increased interest. Several works
proposed hierarchical structures to encode information from past events (Wang et al.,
2017), following a similar strategy as in our TMA model.

6.2.1 Egocentric captioning of daily events

Similarly to the video description problem, in the egocentric task, we have as input
a sequence of frames and we want to output a sentence that describes the input.
This problem has already been tackled in the literature on conventional videos with
multiple variations (see Sections 6.1 and 6.1.3). In Section 6.1.3, we proposed to
encode the frames by means of convolutional and BRNN networks. The representation
obtained was fed to an RNN-based decoder, equipped with an attention mechanism,
which generated the corresponding caption. We start from this architecture in order
to develop our egocentric captioning system.

The main difference that characterizes the modeling for egocentric captioning is
the presence of the temporally-linked events, which share a relationship. Thus, we
propose a system able to take advantage from both the current sequence of egocentric
images and the action happened in the previous event.
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Let s be an index of the events occurred within a day. Our system considers several
inputs: one belonging to the current event (the sequence of frames) and additional
inputs regarding previous events. Provided that we manage two different modalities,
the information relating the previous event (s−1) can be either the caption generated
by the system for the previous event, the sequence of video frames belonging to the
previous event, or both sequences. With this information, the system must generate
the caption for the current event, as a sequence of words.

We process each input sequence with an independent encoder. The encoded se-
quences feed a recurrent decoder, through independent attention mechanisms. Simi-
larly to NMT, the decoder defines a probability distribution over the task vocabulary.
The caption is generated word by word, as in NMT. Therefore, this model is a novel
extension of the classical encoder–decoder approach which introduces different en-
coders: one for the current sequence of images and another for the information from
previous events. These encoders are described in Section 6.2.2. In Section 6.2.3, we
detail the multi-input, attention-based RNN. Finally, in Section 6.2.4, we show the
full picture of the proposed model.

6.2.2 Encoders

Our problem at hand involves the encoding of sequences with two different modali-
ties: images and text. Previously, we already dealt with such modalities (Sections 3.1
and 6.1.2): video captioning systems process the image sequences with ConvNets, to
extract visual features, followed by bidirectional RNN networks, to model temporal
relationships among them. Text sequences are modeled as in NMT systems, by pro-
jecting the words to a continuous space with an embedding matrix and processing the
word embeddings by a bidirectional RNN.

In our model, we again use the GoogLeNet architecture (see Section 6.1.2), pre-
trained on the ILSVRC dataset as image feature extractor. Note that it is possible
to use any other alternative model to deal with the images representation in our
TMA model. The relationships existing across the different frames are modeled by a
BRNN network. Following the process described in Section 6.1.3, this encoding stage
generates a sequence of visual features vJ

1 = v1, . . . ,vJ from a sequence of images
zJ1 = z1, . . . , zJ .

Regarding the encoding of textual inputs, we rely on BRNN networks, as in Sec-
tion 3.1. Therefore, a sequence of K words x1, . . . , xK is encoded as a sequence of
annotations hK

1 = h1, . . .hK .
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6.2.3 Decoder: Multi-input attention RNN

Since we are in a multi-modal scenario dealing with sequences of text and images, we
propose to use an RNN network that accepts multiple inputs (from multiple sources)
and combines them after applying an independent attention mechanism for each input.
The combination, as well as the attention mechanisms, are thus learned together with
the rest of the model. We describe an LSTM version of the multi-input RNN, but
this is applicable to other architectures, such as GRUs or conditional units.

Recall from Section 2.3.2 that attention mechanisms can be used to bridge encoder
and decoder: they compute a representation of an encoded input object, dependent
on the decoding state and according to an attention function. When embedded into a
recurrent decoder, they relate the sequence of representations computed by an encoder
with the previous RNN hidden state si−1. Our multi-input decoder is a natural
extension of the classical LSTM decoders, able to process an arbitrary number of
different inputs. For simplicity, in this section we assume that only two different
modalities are introduced into the decoder: the sequence of image features (vJ

1 ), and
the sequence of text annotations, also in matrix form (hK

1 ). Such inputs are processed
by two independent attention models, which compute, for each decoding time-step i,
two dynamic context vectors, according to the previous decoder state si−1:

zi = φ(a(si−1,v
J
1 ))v

J
1 (6.5)

z′
i = φ(a′(si−1,h

K
1 ))hK

1 (6.6)

where a and a′ are the attention functions for the visual and textual data, respectively,
and zi and z′

i denote the visual and textual representation obtained by the attention
mechanisms and φ is the softmax activation function (Table 2.1).

Hence, at a given time-step, i, we have two inputs from the attention models
(zi and z′

i). As in regular NMT or multimedia captioning, the recurrence is applied
on the output sequence, shifted one time-step to the right, in order to provide the
decoder with autoregressive properties. As in regular LSTMs (see Section 2.3.1), our
multi-input network maintains a hidden state and a memory state:

si = oi ⊙ ci (6.7)
ci = fi ⊙ ci−1 + ii ⊙ c̃i (6.8)

where ⊙ denotes the element-wise product, ci−1 is the previous time-step memory
state and c̃i is the updated memory state. oi, fi and ii are the output, forget
and input gates, respectively, which modulate the states. c̃i is computed taking into
account the attended representations of the inputs (zi and z′

i), the last word generated
by the decoder (yi−1) and the previous hidden state (si−1), as in Eq. (6.9):
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c̃i = tanh(UcE(yi−1) +Wcsi−1 +Aczi +Bcz
′
i + bc) (6.9)

where E is the embedding matrix and E(yi−1) denotes the word embedding of the
previous output word. Wc, Uc, Ac and Bc are the weight matrices for the word
embedding of yi−1, the previous hidden state and both context vectors from the
alignment attention models, respectively, and bc is the bias term.

The multiple inputs are defined analogously for the three LSTM gates, as shown
in Eq. (6.10):

fi = σ(UfE(yi−1) +Wfsi−1 +Afzi +Bfz
′
i + bf) (6.10)

ii = σ(UiE(yi−1) +Wisi−1 +Aizi +Biz
′
i + bi) (6.11)

oi = σ(UoE(yi−1) +Wosi−1 +Aozi +Boz
′
i + bo) (6.12)

6.2.4 Temporary-linked Multi-input Attention model

ConvNet(z
(s)
1 )

ConvNet(z
(s)
2 )

ConvNet(z
(s)
J )

RNNf
j=1

RNNf
j=2

RNNf
j=J

RNNb
j=J

RNNb
j=2

RNNb
j=1

v1

v2

vJ

y
(s−1)
1

y
(s−1)
2

y
(s−1)
K

RNNf
k=1

RNNf
k=2

RNNf
k=K

RNNb
k=K

RNNb
k=2

RNNb
k=1

h1

h2

hK

Att.
mech.1

Att.
mech.2

RNNi=1

RNNi=2

RNNi=I

y
(s)
1

W3

<null>

W2

W4

g

y
(s)
2

y
(s)
Iϕ

ϕ

ϕ

z1

z2

zI

z′1

z′2

z′I

g

g

W1

Previous event (s− 1) encoder

Current event (s) encoder

Multi-input decoder

t1

t2

tI
WV

WV

WV

Embedding

Embedding

Embedding

Att.
mech.1

Att.
mech.2

Att.
mech.1

Att.
mech.2

Embedding

Embedding

Embedding

W3

W2

W4

W1

W3

W2

W4

W1

Figure 6.5: Architecture of the proposed TMA model. Unlike the traditional approaches,
our architecture consists of at least two encoder stages; one for the current sequence and
another one (or more) for the previous sequence; and a decoder stage that combines the
information of all the previous stages using a multi-input attention RNN.

Regarding our TMA model, illustrated in Fig. 6.5, we process the sequence of
images captured by the camera for the current event s, z

J (s)
1 = z

(s)
1 , . . . , z

(s)
J , to

obtain the sequence of visual frames of the current event: v
(s)
1 , . . . ,v

(s)
J .
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Simultaneously, we process the previous event (s−1). The information of the pre-
vious event can be either the sequence of images from the previous event (zJ

′ (s−1)
1 ),

the caption generated by the system for the previous event (yK (s−1)
1 ), or both se-

quences. In case of processing the previous sequence of images, the method is the
same as the one applied on the current event: a ConvNet combined with a BRNN net-
work. When the past event information is the caption y

(s−1)
1 , . . . y

(s−1)
K , we follow the

textual encoding procedure to compute the sequence of annotations h(s−1)
1 , . . .h

(s−1)
K .

Since we are modeling the same language, the embedding matrix is shared with the
decoder.

In the case we are using both modalities, the model has three different encoders:
two visual encoders for the frames from the current and past events, and a textual
encoder for the previous caption. Therefore, this model features three different atten-
tion mechanisms, one for each input, which are integrated into the decoder by means
of the multi-input LSTM described in Section 6.2.3. For the sake of brevity, in the
following we will stick to the model that takes previous frames as past event.

Analogously to the RNN-based NMT model, we apply a deep output structure
after the decoder RNN, as described in Eq. (3.9): at each time-step i, the output state
of the decoder (si) is combined with both context vectors computed by the different
attention mechanisms (zi and z′

i), and the embedding of the previously generated
word E(yi−1). We apply a non-linear activation function g (typically a tanh) to
obtain an intermediate representation ti, as in Eq. (6.13):

ti = g(W1si +W2zi +W3z
′
i +W4Ei(yi−1) + bi) (6.13)

W1, W2, W3, W4 are the skip-connections weight matrices (orange in Fig. 6.5).

Finally, we compute a probability distribution in Eq. (6.14) by projecting ti to the
target vocabulary space, by means of a fully-connected layer, followed by a softmax
activation (analogously to Eq. (3.10)):

pi = φ(WVti + bV) (6.14)

This distribution pi represents the probability of a word y appearing in position i

given the input video z
J (s)
1 , the previous event z

J′ (s−1)
1 —video or caption—and the

words generated so far in the current sequence y
i−1 (s)
1 , as in Eq. (6.15):

pi = p(y
(s)
i |zJ (s)

1 , z
J′ (s−1)
1 , y

i−1 (s)
1 ;Θ) (6.15)

which is an approximation to the true probability distribution, defined in Section 6.2.4:
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pi ≈ Pr(y
(s)
i |zJ (s)

1 , z
J′ (s−1)
1 , y

i−1 (s)
1 )

The model is parameterized by the set of parameters Θ. All parameters are jointly
estimated over a dataset S, which consists of S image sequences and caption pairs.
The training objective is to minimize the negative log-likelihood on this training set:

Θ̂ = argmin
Θ

S∑
s=1

Is∑
i=1

− log p(y
(s)
i |zJ (s)

1 , z
J′ (s−1)
1 , y

(s)
1 , . . . , y

(s)
i−1;Θ) (6.16)

where Is is the length of the s-th caption. If the previous event, z(s−1) is undefined,
we introduce an artificial empty event.

The most likely caption is obtained with beam search as described in Section 3.3.

6.2.5 The EDUB-SegDesc dataset

EDUB-SegDesc2 (Bolaños et al., 2018a) is a dataset that can be used either for ego-
centric events segmentation (Dimiccoli et al., 2017) or for egocentric sequences de-
scription. It was specifically acquired and labeled for the purpose of developing a
model able to describe and understand all the events appearing along the day of
a person. Thus, the main application of using egocentric sequences for textual de-
scription generation is providing a memory aid for patients suffering mild cognitive
impairment.

The dataset was acquired by the wearable camera Narrative3, taking a picture
every 30 seconds (2 frames per minute). It consists of 55 days acquired by 9 people.
Each day was manually segmented in events or sequences following the same criterion
as in Dimiccoli et al. (2017).

Fig. 6.6 shows a histogram with the duration (in minutes) of the resulting seg-
mented events. We can observe a wide variability in duration. Most of the events
(around 65%) have relatively short durations of 15 minutes or less, but there also
exist several long events (around 5%) with a duration longer than 100 minutes.

The dataset contains a total of 48,717 images, divided in 1,339 events (or image
sequences) and 3,991 captions, and has an average of 3 captions per event. It was
divided in training, validation and test splits making sure that all the sequences from
the same day should belong to the same data split. The division results in the figures
depicted in Table 6.3.

2http://www.ub.edu/cvub/edub-segdesc
3www.getnarrative.com
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Figure 6.6: Histogram depicting the duration of the segmented events in the EDUB-
SegDesc dataset. All segments with a duration equal or greater than 200 minutes appear
grouped in the last bin (+200).

Table 6.3: Figures of the EDUB-SegDesc dataset, according to each partition: training,
validation and test.

EDUB-SegDesc Training Validation Test Total

#days 39 7 9 55
#images 32,664 7,301 8,752 48,717
#events 889 204 246 1,339
#descriptions 2,652 598 741 3,991

In Fig. 6.7 we show the number of
co-occurrences in consecutive events from
some manually chosen keywords. This
highlights the natural relationships found
in consecutive events. Some notable ex-
amples of concepts appearing in consecu-
tive events include: “people” in past events
followed by “talked” in current events (so-
cial events); “laptop” followed by “work”
(work-related events); “street” followed
by “entered” (going from an outdoors to
an indoors environment); “station” fol-
lowed by “train” (transport-related events)
or “phone” followed by “street” (events
related to using the mobile phone on the
street).

Figure 6.7: Number of co-occurrences
in consecutive events of several keywords.
Word pairs are shown in the following
format: word1 ->word2, where word1 ap-
pears in the past event and word2 appears
in the current event.
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Fig. 6.8 shows several word-related statistics: occurrences of the most common
words and bigrams and histogram sentence lengths. Note that the number of appear-
ances of the word “I” is very high both in the single word and the bigram counts given
the egocentric nature of the dataset. Other commonly occurring words and bigrams
are those related to events where the user is “walking” and/or on the “street”. Cu-
riously, there is a certain bias in the number of words contained in the annotations,
where a considerable number of the sentences are composed of 5 words. Some exam-
ples of 5-word sentences are “I went to my office”, “I worked with my laptop”, or “I
walked on the street”.

Figure 6.8: Text-related statistics of the dataset. Occurrences of the most common words
(left), occurrences of the most common bigrams (center), and histogram of number of words
in all the sentences (right).

Finally, we show some examples of the events and sentences contained in the
dataset (Fig. 6.9). The low temporal resolution of the camera used (2 frames per
minute) becomes clear in dynamic events, where the user moves and this causes us to
have highly variable environments. This fact, together with the limited information
present in some of the images highlights the difficulty of the problem.

6.2.6 Experimental setup

We tested our model TMA on the EDUB-SegDesc dataset. To the best of our knowl-
edge, this was the only egocentric corpus that allowed us to exploit the correlation
between events. We evaluated the proposal using standard image and video caption-
ing metrics: we used the COCO-Caption evaluation package (Chen et al., 2015) and
computed BLEU, METEOR and CIDEr.
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Figure 6.9: Subset of a day from the dataset EDUB-SegDesc. We show some consecu-
tive events and their respective references. The difficulty of the problem is highlighted by
the dynamism and instability of the scene, when the user is moving. Particularly difficult
examples can be seen in the second event: the references explain that the user is heading to
his/her office, but this aspect is only manifested in the last image of the sequence.

Neural models

All neural models were built using the Keras (Chollet et al., 2015) library. We release
the source code of our implementation for future comparisons4. The full model was
jointly trained end-to-end on the EDUB-SegDesc dataset, except for the ConvNet,

4https://github.com/MarcBS/TMA.
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which was already pre-trained for object detection on ImageNet (Russakovsky et al.,
2015) and remained static during the training of the model.

In order to minimize the influence of randomness in our results, mostly due to
the weights random initialization, each experiment was run 5 times, and we reported
the average of the runs. We explored two different training strategies: training from
scratch, using exclusively the data from the EDUB-SegDesc dataset; or fine-tuning
pre-trained models. We studied the inclusion of pre-trained word embeddings (see
Section 2.3.4), obtained using the skip-gram model from Mikolov et al. (2013a) and
trained on part of Google News dataset. We also tested training the decoder as a
language model on the 1 Billion words dataset (Chelba et al., 2013), but results in both
cases were not better. Finally, we also tested reusing the pre-trained weights from
the video captioning model from Section 6.1.4 (trained on the MSVD dataset), which
improved the results under certain model configurations. As presented in the previous
section, the MSVD dataset contains short clips from YouTube annotated by different
users, accounting for more than 80, 000 training samples. In terms of vocabulary
coverage, approximately 98% of the words from EDUB-SegDesc were present in the
MSVD dataset.

The main hyper-parameters of the model were selected according to the analysis
reported in the video description task (Section 6.1.4). Moreover, since we conducted
experiments with pre-trained models, we must keep fixed some hyper-parameters.
Therefore, we stuck to the hyperparameter values shown in Table 6.1: word embed-
dings of size 301, BLSTM encoder of 717 units on each layer, and a LSTM decoder of
484 units. In the case of using pre-trained word embeddings, they had a dimension
of 300. The initial state of the decoder LSTM was initialized with the hyperbolic
tangent of the mean of the video features obtained by the encoder (Xu et al., 2015).
We took at most 26 frames evenly distributed from each complete sequence of the
dataset.

We trained the model by mini-batch SGD. We tested the Adam and Adadelta
update rules. The best performance was obtained using Adadelta with the default
parameters; or Adam with an initial learning rate of 0.001 and a decay of 0.995 at
the end of every epoch. We set the batch size to 64 and used early stopping on the
validation set based on BLEU, setting the patience to 20 and checking the performance
every 50 updates. The size of the beam during the search was 10. Thus, we report
the best results in each case. During training, the norm of the gradients was clipped
to 10 (Pascanu et al., 2013).

In order to prevent over-fitting, we applied layer normalization (Section 2.4). In
contrast to other works, we observed that the use of dropout (Section 2.4) combined
with layer normalization produced better performance (using p = 0.5). We also
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applied weight decay (10−4) and Gaussian noise (σ = 10−2) to the non-recurrent
weights.

6.2.7 Results and discussion

First, we show the performance of a regular video captioning system and study the
influence of several pre-training methods. Next, we compare other state of the art
video captioning systems to the TMA model. Finally, we describe several architectural
choices that degraded the performance.

What to fine-tune?

Table 6.4 shows the results of tackling the task as a regular video captioning problem,
without incorporating information from previous events. The system model is the
same as in Section 6.1.3: the ABiViRNet model. We tested three different configura-
tion: training the system from scratch, using only the data from the EDUB-SegDesc
dataset; starting with pre-trained word embeddings and fine-tuning a system trained
on the MSVD dataset.

Table 6.4: EDUB-SegDesc results on different pre-trained decoders. ABiViRNet refers to
the video captioning system from Section 6.1.3. BLEU and METEOR metrics are given
in percentage. We compare the basic model trained from scratch to the same model with
certain pre-trained components. #params denotes the number of parameters to estimate,
given in millions.

BLEU [↑] METEOR [↑] CIDEr [↑] #params

ABiViRNet 29.6 20.3 0.79 27.3M
ABiViRNet + word2vec 26.0 20.1 0.90 27.3M
ABiViRNet + MSVD 28.5 21.2 0.89 35.1M

As shown Table 6.4, the inclusion of pre-trained embeddings worsens the perfor-
mance of the system in terms of BLEU and METEOR. We hypothesize that this is due
to the different domains on which the word embeddings are trained. The word2vec
vectors were trained on a more general domain and their capabilities cannot be ex-
ploited to the full in our problem. If we start from the parameters learned from the
MSVD data and fine-tune the model with the egocentric dataset, the BLEU score
is also lowered, although to a lower extent than with word2vec. Nevertheless, the
performance of the MSVD model in terms of METEOR and CIDEr is increased.
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Extending the context

The effect of including information from previous events is shown in Table 6.5. For
comparison, we also include the only similar approach in the egocentric video cap-
tioning literature: DeepSeek (Goel and Naik, 2016). This model consists of a non-
attentional BLSTM encoder with two layers. The encoder feeds a similar decoder to
the one of Yao et al. (2015). We performed additional tests with other state-of-the-
art models for video captioning: Enc-Dec Global (Yao et al., 2015), hLSTMat (Song
et al., 2017) and the already tested ABiViRNet (Section 6.1.3). Note that none of
them considers long-term temporal information from different events.

Table 6.5: EDUB-SegDesc results for variations of the TMA model compared to the state of
the art, which do not consider information from previous events. We use either the previous
caption, the previous sequence of images (video) or both to make the current prediction.
BLEU and METEOR metrics are given in percentage. #params denotes the number of
parameters to estimate, given in millions. The best results for each metric are shown in
boldface. Results with the symbol * were obtained with the Adam optimizer instead of
Adadelta.

BLEU [↑] METEOR [↑] CIDEr [↑] #params

Enc-Dec Global (Yao et al., 2015) 28.1 20.8 0.88 44.4M
hLSTMat (Song et al., 2017) 25.6 20.8 0.88 —
ABiViRNet (Section 6.1.3) 29.6 20.3 0.79 27.3M
DeepSeek (Goel and Naik, 2016) 27.9 21.4 0.99 27.2M

TMA previous-caption 30.6 20.4 0.90 39.1M
TMA previous-caption + MSVD 28.3 21.3 0.94 46.9M

TMA previous-video* 31.0 21.4 1.01 43.3M
TMA previous-video + MSVD* 31.9 22.1 1.07 51.0M

TMA previous-video-caption 30.4 21.8 1.00 55.1M
TMA previous-video-caption + MSVD* 29.7 22.1 0.93 62.8M

As detailed in Section 6.2.3, we tested our TMA model introducing the previous
caption, the previous sequence of images or both previous caption and images. As
before, we distinguish between training from scratch with the EDUB-SegDesc dataset
or start from the weights learned with MSVD pre-trained model. Given the results
observed in Table 6.4, we dropped the use of word2vec word embeddings.

According to Table 6.5, if we compare the results obtained by the state of the
art methods (rows 1-4), which only consider the current sequence of images, to the
different configurations of our method (rows 5-10), we can see that our method out-
performs the rest. This behavior can be explained by the inclusion of information
from previous events in the TMA model. Since it considers a broader context, it is

165



Chapter 6. Captioning visual content

able to better understand the given event and generally increases the performance
of the system. Furthermore, considering the characteristics of egocentric life-logging
photo streams, the data provided by a single event often lacks enough information to
easily understand what is happening. Thus, providing context from previous events
usually improves the captioning results.

In contrast, some state of the art methods outperform certain configurations of
our model (see row 3, BLEU; and row 4, METEOR and CIDEr). We understand
that this phenomenon can occur, because although providing context from previous
events can often be useful, in some cases noise could be introduced for two reasons:
1) the error of the predictions of previous events can be propagated, and 2) some
consecutive events could lack any semantic relationship or have a very low number of
samples in the training set.

Considering the differences between different configurations of our TMA model,
the inclusion of the previous video event as input yields the best generalization results
during test evaluation. The previous caption also enhances the system, but to a
lower extent. We observed that the inclusion of past videos and captions produced
good results on the development set, but the performance of this configuration was
dropped on the test set. This phenomenon could imply that, although the model
has greater potential, it is also more complex considering the number of parameters,
which produces a quicker over-fitting on the training data and the consequent impact
produced by the model selection of the validation set (Reunanen, 2003).

The results obtained with the TMA model show that taking into account the
previous video event is more effective than considering the previous caption. This
effect is partially produced because, at test time, we use as input an output previously
generated by the model. Obviously, this output may be erroneous. Therefore, it may
lead to the introduction of noise to the system and to error propagation.

From Tables 6.4 and 6.5, it can be concluded that, when fine-tuning from the
MSVD model, the METEOR scores are always better than when starting from scratch,
but BLEU scores are lowered. This is probably due to vocabulary differences from
both tasks. The pre-trained model tends to produce captions with the structure
that it learned from the MSVD dataset, while the model trained from scratch on the
EDUB-SegDesc generates ad-hoc captions for the task at hand. Since BLEU is based
on n-gram counts, the latter model generally obtains higher scores than the first one,
because its captions are more literal. Since the METEOR metric stems and employs
synonyms, it is less rigid than BLEU. Therefore, pre-trained models are able to score
better than those trained from scratch.
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Failed experiments

In Table 6.6 we report an additional set of comparisons that show several configura-
tions that did not provide good results, compared to those shown in Table 6.5. First,
we compared several models either using dropout or not. It appears that combining
the use of dropout, layer normalization and Gaussian noise in the same model clearly
helps obtaining better results in all the cases. The removal of layer normalization or
Gaussian noise produced even worse results.

Table 6.6: EDUB-SegDesc results for several additional configurations tested that did not
provide good enough results. For each bad result we report its counter example configuration
with better results. BLEU and METEOR metrics are given in percentage. #params denotes
the number of parameters to estimate, given in millions. The best results for each metric
are shown in boldface. Results with the symbol * were obtained with the Adam optimizer
instead of Adadelta. NoDrop relates to systems without dropout and NonInfo to systems
trained excluding non-informative images.

BLEU [↑] METEOR [↑] CIDEr [↑] #params

ABiViRNet - NoDrop 24.8 18.6 0.80 27.3M
ABiViRNet 29.6 20.3 0.79 27.3M

ABiViRNet + MSVD - NoDrop 27.9 19.4 0.89 35.1M
ABiViRNet + MSVD 28.5 21.2 0.89 35.1M

TMA previous-caption - NoDrop 28.1 20.1 0.94 39.1M
TMA previous-caption 30.6 20.4 0.90 39.1M

TMA previous-video + MSVD - NonInfo* 30.3 21.5 0.99 51.0M
TMA previous-video + MSVD* 31.9 22.1 1.07 51.0M

In the second part of the table we compare either using all the images available
in the dataset or removing all non-informative images, following the strategy from
Lidon et al. (2017). An image is considered to be non-informative if it is dark,
blurry or pointing to the sky or ground without showing any object. We observed
that the removal of such images has a negative impact on the system, as it worsens
performance.

167



Chapter 6. Captioning visual content

6.2.8 Qualitative analysis

We now review some illustrative examples, in order to understand the weaknesses and
strengths of the TMA model, as well as the major difficulties that appear in the task
at hand.

Fig. 6.10 shows some examples of the predictions produced by the TMA model
on consecutive events in the test set. We can observe the influence that the previous
event had on the captioning of the second sample. In sample #2, the TMA previous-
video model is aware that the user was previously in a restaurant. This conditions
the model, which generates the caption “I went to the bathroom”, which is a likely
action when a person is in a restaurant. The ABiViRNet model is unable to capture
this information.

Figure 6.10: Comparison of the results obtained by the baseline method ABiViRNet and
two of the proposals TMA models, including the previous caption and the previous video +
MSVD. Samples relate consecutive events from the test split and the reference captions are
in italic.

The influence of previous actions can also be observed in events #5 and #6. At
event #5, the user is shopping and in the next event, he/she continues shopping. The
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TMA previous-video model can distinguish that the shopping action occurred in event
#6 due to incorporation of the visual information from the previous one. On the other
hand, the ABiViRNet model is not able to make this inference and deduces that the
user is in the street. Similarly, the TMA previous-caption model is more prone to
error propagation: when it fails to understand a certain event, it is more likely to be
also wrong in the following one. For example, in sample #4 the model generates “I
was in a supermarket”, which leads the model to also fail on the consecutive event
#5.

Fig. 6.11 depicts some examples of initial events of different days. We can see that
in the case of TMA models, the fact that information from previous events can not
be used in this particular cases does not influence the model and obtains better or
comparable results than non-TMA models.

Figure 6.11: Comparison of the results obtained by the baseline method ABiViRNet and
two TMA proposals: previous-caption and TMA previous-video + MSVD. Events corre-
sponding to the start of the day are shown.

Fig. 6.12 shows additional examples of successes and failures of the system. In the
success case #1, we can see that the model is able to understand that the user went
to the bathroom, although it is not specifically described in the references and it is
hard to distinguish just looking at the images (note the third image where the user is
drying his hands). In addition, this exemplifies one of the major challenges occurring
within the event captioning problem: during an event, many situations may occur.
The system may focus only on part of the event, resulting in captions that, although
correct, are not found in the references.

In the success case #2, we can see that both ABiViRNet and TMA previous-
video model correctly describe the first event. But as we move on to the next one,
the first model is unable to detect that the user is having lunch, while the TMA
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Figure 6.12: Two success cases (left) and two failure cases (right) of the TMA model
TMA previous-video + MSVD. All the examples belong to the test set. For each case,
the top sequence is the previous event and the bottom sequence is the event that we are
predicting. In success case #1, we can see that the TMA model correctly recognizes that the
user went to the bathroom even though it is not specified in the reference sentences and it is
not straightforward to see in the images (note the third image using a hand drier). The two
samples at the right exemplify cases in which the TMA model fails due to certain images
appearing in the sequences. For instance, in the failure case #1, the TMA model probably
considers that the user is in a supermarket due to the first image, where a vending machine
appears. In failure case #2, the TMA model may infer that the user is seeing a parade due
to the multiple people and colored lights appearing in the images.
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model is capable to infer that the event has changed. Therefore, it incorporates this
information and correctly guesses that the user is having lunch. Below these examples,
we show some failures. We observe certain conditions on the input images that may
explain these failures. In the failure case #1, the model probably infers that the
user is in a supermarket due to the vending machine in the first image. The second
failure case relates images with multiple persons and colored lights. Hence, the model
interprets the images as a parade.

6.3 Interactive-predictive captioning

We explore now the application of the interactive-predictive framework described in
Chapter 4 to multimodal systems. We will tackle the video captioning task described
in the previous sections, together with the image captioning task.

The interactive-predictive framework, as described in Section 4.3 is directly appli-
cable to these multimodal systems. The main difference is the way of encoding the
input object. Before being introduced into the encoder–decoder system, we need to
compute an adequate representation of it. Depending on the modality of the input
object, we thus apply a different feature extractor:

Images: as explained in Section 2.3.3 ConvNets are powerful feature extractors. We
process the image with a ConvNet and use as features the final representation
computed by the ConvNet that preserves positional information. A complete
image is thus seen as a sequence of image crops. Then, we can directly apply
the sequence-to-sequence framework, as done by Xu et al. (2015).

Videos: We follow the encoding process described in Section 6.1.2. Following Sec-
tion 6.1.4, we computed global features for each video image and subsampled
the frames introduced to the system.

We evaluated our interactive-predictive framework in these two different tasks, on
two datasets per task:

Image captioning: we tackled two common datasets: Flickr8k (Hodosh et al., 2013)
and Flickr30k (Plummer et al., 2015). The goal is to generate descriptions of
pictures crawled from Flickr users. The first dataset comprises 30, 000 training
samples while the second one contains 145, 000. Both datasets have test sets of
1, 000 images.

Video captioning: we tested our systems on the datasets used in the previous sec-
tions: MSVD (Section 6.1.4) and the EDUB-SegDesc (Section 6.2.5).
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As discussed in Section 1.4.1, when dealing with interactive-predictive systems,
we need to assess the quality of the initial predictions of the system and the amount
of human effort required to correct these predictions. As in Section 6.1.5, we measure
the first case in terms of BLEU and METEOR. The human effort required by static
systems will be approximated by TER (Zaidan and Callison-Burch, 2010) while that
required by interactive-predictive systems will be evaluated using KSMR.

Again, we rely on simulated users, as described in Section 1.4.1. The users will
follow the character-based protocol, introducing the corrections at character level (see
Sections 4.3.1 and 4.3.3. We set the ground-truth samples from the different datasets
to be the desired outputs by our simulated users.

Our neural sequence-to-sequence systems were developed with NMT-Keras (see
Appendix A, Peris and Casacuberta, 2018a). We tested the RNN and Transformer
architectures. The systems were similar to those described in Section 3.5.1. In the
case of image and video captioning, we reduced all model sizes to 256, since we are
dealing with smaller datasets. We applied an early-stopping strategy, observing the
BLEU score on the development set. At decoding time, we used a beam size of 6 in
all cases.

The image captioning systems were trained using Adam (Kingma and Ba, 2014),
with a learning rate of 0.0002. The image features were extracted using a NASNet
architecture (Zoph et al., 2018), trained on the ImageNet dataset (Deng et al., 2009).

In the case of video captioning, we obtained better performance using Adadelta
(Zeiler, 2012), for both datasets. Note that the RNN-based video captioning model
was slightly different to the one from Section 6.1.3. We did not experiment with
the TMA model from Section 6.2.4, but the application of the interactive-predictive
framework the temporarily-linked model is trivial.

6.3.1 Results and discussion

We now show and discuss the results obtained by our systems. First, we assess the
systems quantitatively, in terms of prediction quality and effort required during the
correction stage. Next, in order to gain some insights into the behavior of the system,
we analyze an image captioning example.
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Quantitative evaluation

We start by evaluating the systems in a traditional way, assessing their prediction
quality. Table 6.7 shows the BLEU and METEOR results of the different systems for
all tasks. These results are similar to those reported obtained in previous sections
(Sections 6.1.5 and 6.2.6) and the literature (Xu et al., 2015; Yao et al., 2015; Peris
et al., 2016; Bolaños et al., 2018a).

Table 6.7: Prediction quality for the different tasks, datasets and models. The RNN column
denotes RNN-based system and the “Trans.” column indicates a Transformer model.

Task Dataset BLEU [↑] METEOR [↑] TER [↓]

RNN Trans. RNN Trans. RNN Trans.

Image Captioning Flickr8k 22.1 19.6 20.8 19.8 70.6 72.3
Flickr30k 22.2 19.3 20.0 18.5 73.2 74.6

Video Captioning MSVD 49.6 45.7 33.4 30.7 50.7 54.1
EDUB-SegDesc 30.4 25.8 21.9 20.3 63.1 65.9

It is worth noting that RNN-based systems slightly outperformed Transformer.
This latter model is more data-eager than RNN systems. Many of the recent advances
yielded with this architecture leverage huge data collections (e.g. Radford et al.
(2019)). We also contrasted this fact in our experimentation, as happened with small
MT datasets (see Section 3.5.3). These captioning datasets are also relatively small.
Hence, the Transformer model only was fully exploited in the MT case.

Next, we evaluate the performance of the interactive-predictive systems. These
results are shown in Table 6.8. Due to the novelty of this scenario, we lack from
references in the literature, regarding the other tasks. The results indicate that a user
approximately needed to press 13 and 9 keys per sentence (on average) to correct the
outputs of the image and video captioning systems, respectively.

As in the case of INMT, a crucial aspect of the usability of interactive-predictive
systems is their response time. The average response time of our systems was below
0.15 seconds. According to Nielsen (1993), this provides the user of a feeling of almost
instant reactivity.
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Table 6.8: Effort required to correct the outputs of interactive-predictive systems, using
RNN and Transformer (Trans.) models, in terms of KSMR.

Task Dataset KSMR [↓]

RNN Trans.

Image Captioning Flickr8k 36.6 36.9
Flickr30k 36.0 40.0

Video Captioning MSVD 36.4 40.5
EDUB-SegDesc 40.0 38.0

Qualitative analysis

We now show and analyze an image captioning example. Other examples for the video
captioning systems are alike. The example is taken from our multimodal systems
showcase5 (see Appendix A.3 and shown in Fig. 6.13).

We can see that the caption generated by the system (at iteration 0) has an
error. The user wants to indicate that the people are sitting on a bench. Hence, the
feedback introduced is the character “b”. The system is able to properly complete
the word “bench”, with this single interaction. The same happens when the user
wants to introduce the clause “under a”. With only typing the character “u”, the
system generates this clause. Finally, it is interesting to observe the behavior of the
last interaction. The user introduced the character “n” to the word “a”. Hence, the
next word must start with a vowel. The system is able to properly account for this
concordance and generates the word “umbrella”. We observe that the systems also
handle correctly other concordances, such as singular/plural clauses.

6.4 Summary

In this chapter we addressed the problem of egocentric captioning of daily events. We
tackled this challenge as an automatic video description task which in turn can be
tackled as a sequence-to-sequence problem. Hence, we firstly investigated on regular
video captioning scenario, showing that the inclusion of bidirectional RNNs to encode
frames can bring improvements to a captioning system. Next, we addressed our prob-
lem at hand, considering a natural characteristic of this problem: since the egocentric
sequences were captured consecutively along a day, there exists a relationship between
a given situation and the previous one. We aimed to include such dependency in an
automatic captioning system. In order to do this, we developed a natural extension
of RNN networks, able to deal with multiple inputs, from different modalities.

5http://casmacat.prhlt.upv.es/interactive-seq2seq
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Iter 0 System A group of people sit on a ramp.

Iter 1 User A group of people sit on a b ramp.
System A group of people sit on a bench.

Iter 2 User A group of people sit on a bench u .
System A group of people sit on a bench under a building.

Iter 3 User A group of people sit on a bench under a nbuilding.
System A group of people sit on a bench under an umbrella.

Iter 4 User A group of people sit on a bench under an umbrella.

Figure 6.13: Interactive-predictive session example, to correct the caption generated for
the image. At each iteration, the user introduces a character correction (boxed). The system
modifies its hypothesis, taking into account this feedback: keeping the correct prefix (green)
and generating a compatible suffix. Post-editing this sample in a static way, would have
required the deletion of 4 characters and the addition of 23 characters.

We assessed our proposal on a dataset for egocentric captioning. Image sequences
were obtained using a wearable camera and were manually segmented and annotated.
Both source code of our system and dataset are publicly available. We carried out
an automatic evaluation of the system, with clear results: the inclusion of previous
information effectively enhances the performance of the system.

Moreover, if we had available the sequence of events of a full day, we could in-
troduce not only previous events to the system, but also the following ones. Since
the TMA model defined in this work supports an arbitrary number of inputs, the in-
clusion of the context coming from following events becomes natural. Therefore, the
captioning results could be refined, not only by the previous, but also by incorporating
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the following information. Furthermore, we could aim to look further than the im-
mediately previous event, incorporating longer-term memory. The long-term learning
challenge is taking off recently: Kaiser et al. (2017) proposed a memory-augmented
network, able to learn very long-term relationships. Moreover, Transformer-like ar-
chitectures (Section 3.2) usually manage better large contexts (Agrawal et al., 2018)
than RNNs. A Transformer model can be used directly on our framework, as en-
coder or decoder. We leave the experimentation with such alternative architectures
as future work.

Additionally, we applied the interactive-predictive framework to these multimodal,
neural sequence-to-sequence systems. We tackled the image and video captioning
tasks, using two state-of-the-art models and, in all cases, the interactive-predictive
systems were able to decrease the human effort required to correct the outputs of the
system. We obtained savings of approximately 50%. We also analyzed these systems
through an online demo website.
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Conclusions

We conclude this dissertation summarizing the achievements accomplished. We also
provide a list of the scientific publications derived from this thesis. Finally, we trace
several lines of future work, that we consider interesting steps to take.

7.1 Scientific contributions

We explored three main research lines in this thesis, regarding neural sequence-to-
sequence learning. We summarize the contributions achieved for each one of them.

7.1.1 Interactive-predictive pattern recognition

We pioneered the application of the interactive-predictive framework to NMT and to
other sequence-to-sequence tasks. This was achieved independently and in parallel to
other works (Knowles and Koehn, 2016; Wuebker et al., 2016). We also augmented the
classical left-to-right interactions, providing the user with a more flexible interactive-
predictive protocol, namely, segment-based interaction. We also devised an effective
strategy to introduce user feedback at character level, while maintaining the inference
at the word (or subword) level. Finally, we applied this interactive-predictive protocol
beyond MT, yielding interactive-predictive image and video captioning systems.
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We conducted a wide set of experimentats, showing that INMT systems behave
much better than classical PB-SMT models: they have a better recovery from unex-
pected feedback and provide more fluent hypotheses than PB-SMT systems. More-
over, we empirically demonstrated the capabilities of character-level interactions, re-
ducing the effort required by the user up to 50%.

In the multimodal framework, the interactive-predictive systems also performed
well: the user feedback was well integrated by the system, which provided fluent and
coherent hypotheses, usually accounting for lexical and grammatical concordances.

We deployed all these systems in an online demonstration, accessible through a
public website1.

7.1.2 Adaptive NMT

The second research direction was devoted to the creation of adaptive NMT systems.
To that end, we relied on the data generated during the exploitation of the system
in a computer-assisted translation environment. We studied two main paradigms:
online and active learning.

Online learning

In the online learning setup, the system is incrementally updated with corrected
samples, acquired via translation post-editing or IMT. In the case of NMT, this can
be done using regular training methods, based on gradient descent. We also proposed
two alternative update strategies, that consider how wrong was the system prediction
to perform the update.

We studied the behavior of the system in three different scenarios, accounting for
the use-cases that an in-production system may face: having available a large pool of
in-domain data, lacking in-domain data and having available both in-domain and out-
of-domain data. We also evaluated the regular post-editing and the INMT processes.
We explored different optimizers and number of updates per sample.

The results showed that the optimal parameters are task-dependent, but more
structured and repetitive tasks benefit from more aggressive updates. The online
adaptation of NMT brought significant improvements in terms of translation quality
and reducing the human effort in all three scenarios and for all NMT architectures
(RNN-based and Transformer). It is also worth mentioning that our alternative up-
date rules did not perform better than classical methods.

1http://casmacat.prhlt.upv.es/interactive-seq2seq
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We also tested the application of adaptive NMT systems with professional trans-
lators, who usually make use of translation post-editing. We observed decreases in
the time used during the post-editing process and an improvement in the translation
quality of adaptive systems. Moreover, the users were very pleased with the adaptive
system, preferring this to a static one.

Active learning

The active learning scenario regards the selection, from a large pool of instances,
of a subset of samples to correct. These selected samples will be used to adapt
the system. This is useful for the periodical translation of large amounts of data,
potentially available in the form of stream. We applied this paradigm to NMT,
developing ad-hoc strategies to obtain better selections to supervise.

The evaluation of these framework was positive. Under an active learning setup,
we were able to enhance the performance of the NMT system in terms of translation
quality. In the case of using an interactive-predictive system, we reduced the effort
required to reach a given translation quality by approximately 25%.

7.1.3 Multimodal captioning

We also studied the application of the sequence-to-sequence framework to multimodal
problems. More precisely, we focused on the task of video captioning. We tackled
this problem following the neural encoder–decoder architecture, using BRNNs for
modeling temporal relationships among the video frames.

Derived from this, we tackled the egocentric captioning: generating descriptions of
sequences of egocentric images. A major issue in this task is the temporal relationship
existing among the different daily events: an event is conditioned on the previous ones.
Aiming to exploit this, we proposed a model that accounted for the previous event.
This previous event was characterized either by its sequence of frames, its generated
caption or both. We observed that considering only the sequence of frames provided
the most reliable results.
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7.2 Dissemination of the work

Part of the work presented in this thesis was accepted in several international confer-
ences and journals. We provide a list of these publications.

7.2.1 Interactive-predictive and adaptive NMT

The development of interactive-predictive adaptive systems described in Chapters 4
and 5 was presented in two international journal articles:

• Á. Peris, M. Domingo, and F. Casacuberta. Interactive neural machine trans-
lation. Computer Speech & Language, 45:201–220, 2017. JCR Q2.

• Á. Peris and F. Casacuberta. Online learning for effort reduction in interactive
neural machine translation. Computer Speech & Language, 58:98–126, 2019.
JCR Q2.

The application of the active learning framework to NMT described in Chapter 5
was presented in an international conference:

• Á. Peris and F. Casacuberta. Active learning for interactive neural machine
translation of data streams. In Proceedings of the Conference on Computational
Natural Language Learning, pages 151–160, 2018. Core A.

The human evaluation of adaptive systems (Section 5.4) was also presented in

• Miguel Domingo, Mercedes García-Martínez, Álvaro Peris, Alexandre Helle,
Amando Estela, Laurent Bié, Francisco Casacuberta and Manuel Herranz. In-
cremental Adaptation of NMT for Professional Post-editors: A User Study.
In Proceedings of Machine Translation Summit XVII Volume 2: Translator,
Project and User Tracks, pages 219–227, 2019. Core B.

Moreover, we also developed the segment-based interactive-predictive protocol for
PB-SMT systems, although this was not reported in this dissertation. This derived
in two articles in an international journal and an international conference:

• M. Domingo, Á. Peris and F. Casacuberta. Interactive-predictive translation
based on multiple word-segments. In Proceedings of the 19th Annual Confer-
ence of the European Association for Machine Translation, pages 282–291, 2016.
Core B. Best paper award.

• M. Domingo, Á. Peris, and F. Casacuberta. Segment-based interactive-predictive
machine translation. Machine Translation, 31(4):163–185, 2017.
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7.2.2 Multimodal captioning

Our solution to the captioning of videos, described in Chapter 6 was presented in an
international conference:

• Á. Peris, M. Bolaños, P. Radeva, and F. Casacuberta. Video description using
bidirectional recurrent neural networks. In Proceedings of the International
Conference on Artificial Neural Networks, pages 3–11, 2016. Core B.

The captioning of egocentric, temporally-dependent videos (Section 6.2) was pre-
sented in an international journal:

• M. Bolaños, Á. Peris, F. Casacuberta, S. Soler, and P. Radeva. Egocentric video
description based on temporally-linked sequences. Journal of Visual Commu-
nication and Image Representation, 50:205216, 2018. JCR Q2.

The application of the interactive-predictive framework to multimodal systems
was presented in an international conference:

• Á. Peris and F. Casacuberta. Interactive-predictive neural multimodal systems.
In Iberian Conference on Pattern Recognition and Image Analysis, Lecture Notes
in Computer Science, in press. 2019.

In addition, although not reported in this thesis, we also tackled the visual ques-
tion answering problem, yielding a participation in an international contest and a
publication in an international conference:

• M. Bolaños, Á. Peris, F. Casacuberta, and P. Radeva, P. VIBIKNet: Visual
bidirectional kernelized network for the VQA Challenge. In VQA Challenge
Workshop in IEEE Conference on Computer Vision and Pattern Recognition.
2016. Workshop in Core A⋆ conference.

• M. Bolaños, Á. Peris, F. Casacuberta, and P. Radeva. VIBIKNet: Visual bidi-
rectional kernelized network for visual question answering. In Iberian Confer-
ence on Pattern Recognition and Image Analysis, volume 10255 of Lecture Notes
in Computer Science, pages 372–380. 2017.

7.2.3 Additional work

In parallel to the research described in this dissertation, we also studied the domain
adaptation field for MT. This research derived in the following publications:

• Á. Peris, M. Chinea-Rios and F. Casacuberta. Neural networks classifier for data
selection in statistical machine translation. The Prague Bulletin of Mathemati-
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cal Linguistics, 108(1):283–294. 2017. Presented in the 20th Annual Conference
of the European Association for Machine Translation. Core B.

• M. Chinea-Rios, Á Peris, F. Casacuberta. Adapting neural machine transla-
tion with parallel synthetic data. In: Proceedings of the Second Conference on
Machine Translation, pages 138–147, 2017.

• M. Chinea-Rios, Á. Peris, F. Casacuberta. Are automatic metrics robust and
reliable in specific machine translation tasks? In: Proceedings of the 21st Annual
Conference of the European Association for Machine Translation, pages 89–98.
2018. Core B.

Moreover, we described the NMT technology for a non-expert audience (in Span-
ish):

• F. Casacuberta and Á. Peris. Traducció automàtica neuronal. Revista Trad-
umàtica: tecnologies de la traducció, 15(1):66–74. 2017.

7.2.4 Open-source software

We released all the source code developed during this thesis as open-source reposito-
ries, with MIT license:

• https://github.com/lvapeab/nmt-keras implements all NMT systems (Chap-
ter 3) used along this thesis. The online and active learning paradigms (Chap-
ter 5) were also developed using this toolkit.

• https://github.com/lvapeab/multimodal_keras_wrapper contains the search
modifications that the interactive-predictive framework requires (Chapter 4).
This repository also encapsulates the methods used to work with multimodal
data.

• https://github.com/lvapeab/ABiViRNet implements the ABiViRNet model
(Section 6.1.3).

• https://github.com/MarcBS/TMA implements the TMA model (Section 6.2.4).

In addition to these repositories and their corresponding online documentation,
the description of the main pieces of software (see Appendix A) were yielded an
international journal publication and two presentations in an international conference:

• Á. Peris and F. Casacuberta. NMT-Keras: a very flexible toolkit with a focus
on interactive NMT and online learning. The Prague Bulletin of Mathematical
Linguistics, 111:113–124, 2018.
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• Á. Peris and F. Casacuberta. A neural, interactive-predictive system for multi-
modal sequence to sequence tasks. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, pages
81–86, 2019. Core A⋆.

• Miguel Domingo, Mercedes García-Martínez, Amando Estela Pastor, Laurent
Bié, Alexander Helle, Álvaro Peris, Francisco Casacuberta and Manuel Her-
ranz Pérez. Demonstration of a neural machine translation system with online
learning for translators.In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics: System Demonstrations, pages 70–74,
2019. Core A⋆.

Furthermore, it is worth mentioning that the NMT-Keras toolkit has served since
2017 in the practical lessons of the Machine Translation course, belonging to the
Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital Imaging,
from Universitat Politècnica de València.

7.3 Future work

The work presented in this thesis opens several future research directions, that we
aim to explore in a near future.

7.3.1 Interactive-predictive pattern recognition

The next step to take is to conduct a human experimentation in order to obtain ac-
curate measures of the actual effort spent by the users. Recent works showed positive
user perceptions on interactive-predictive neural systems, although with mixed results
in terms of productivity (Daems and Macken, 2019; Knowles et al., 2019). Performing
these evaluations with our systems with real users is at the top of our agenda.

The inclusion of active interaction (González-Rubio et al., 2010a) into NMT also
seems an interesting future direction. This protocol consists of only correcting those
parts of the hypothesis that the system considers more prone to be erroneous. Hence,
the user must only review some parts from the hypothesis. The work by Lam et al.
(2018) is close to this scenario and it should be further extended.

Moreover, the encouraging results obtained with multimodal interactive-predictive
systems open several avenues for future research. These systems can be used to tackle
a number of structured prediction tasks, e.g. data to text (Puduppully et al., 2018).
More precisely, we are interested in applying this framework to the automatic report
of medical images or to the generation of automatic life-loggers, as those described in
Section 6.2. In addition to an end-user application, these tools can also be exploited
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by human annotators, to create datasets in a more efficient way, that allow us to push
forward the research on multiple areas.

In this thesis, we experimented only with multimodal inputs. In future, we want
to explore the inclusion of multimodal feedback signals. This was already done for
statistical models, integrating speech (Alabau et al., 2011) and electronic pens (Alabau
et al., 2014) into the interactive-predictive pipeline. We think that neural models are
especially well-suited to fully exploit these multimodal feedback signals.

Finally, we used a different system for each task. In future, we would like to explore
the construction of a single interactive-predictive, multitask, multimodal system. The
recent advances achieved in multitask learning (Radford et al., 2019) heavily support
this research direction.

7.3.2 Adaptive NMT

One of the main drawbacks relating to NMT adaptation is the independence, up to
some point, of the objective function (cross-entropy) with respect to the evaluation
metric (e.g. BLEU or TER). The alternative update methods described in this thesis
(Section 5.2.2) manipulated the loss function, but they were less effective than per-
forming regular updates. To boost the effectiveness of online adaptation for NMT,
the reinforcement learning field brings exciting avenues for future work.

Reinforcement learning has been used to directly optimize BLEU, as a comple-
mentary method to the traditional maximum likelihood training (Wu et al., 2016),
during decoding (Gu et al., 2017) or to leverage weak user feedback (Sokolov et al.,
2016b; Kreutzer et al., 2017). The exploration of these approaches seems a promising
research line.

Moreover, the relationship between the interactive-predictive framework and the
reinforcement learning field seems clear: the feedback provided by the user can be
seen as system rewards. The conjunction of these two worlds is at its early stages
and few works have gone into in any depth (Sokolov et al., 2016a; Lam et al., 2018).
Hence, taking immediate advantage from user feedback via reinforcement learning
also seems a plausible future objective.

In order to develop useful adaptive systems, we also need to address the concerns
noted by the post-editors (Section 5.4.6), namely the degradation of domain-specific
terms and the incorrect generation of words due to subwords. To that end, we should
study and analyze the hypotheses produced by the adaptive system and the post-
edits performed by the users, similarly to Koponen et al. (2019) and develop effective
methods to prevent these degradations.

184



7.3. Future work

In addition, we want to integrate our adaptive systems together with other transla-
tion tools, such as translation memories or terminological dictionaries, with the aim of
improving the productivity of the post-editing process. With this feature-rich system,
we would like to conduct additional evaluations, involving more diverse languages and
domains and larger numbers of professional post-editors.

Regarding the active learning framework that we applied to NMT (Section 5.5),
we also want explore new lines of work in future. First, we intend to apply our
method to other datasets, involving linguistically diverse language pairs and low-
resource scenarios, in order to observe whether the results obtained in this work hold.
We also aim to devise sampling strategies that take into account the cognitive effort or
time required to interactively translate a sentence. Moreover, the proposed sampling
strategies (Section 5.5.2) can be used as a data selection technique, to perform domain
adaptation. It would be interesting to assess their performance on this task.

7.3.3 Multimodal captioning

The results obtained in the video captioning task suggest that deep structures help to
transfer the knowledge from an input sequence of frames to the output caption. The
application of three-dimensional ConvNets (Tran et al., 2015) allows the recognition
of actions and may solve some of the ambiguities existing in the tested methods,
which only cope with object and scenes recognition. Preliminary results, although not
reported in this thesis, indicate the capabilities of these architectures. Moreover, the
attention mechanism implemented in our model exploited the temporal relationships
of the video frames. An additional future step should study the inclusion of spatial-
temporal attention models to better model videos.

Regarding to egocentric vision and our temporarily-linked model, we should study
methods of increasing even more the context. If we have available the sequence of
events of a full day, we could introduce not only previous events to the system, but also
the following ones. Furthermore, we should aim to look further than the immediately
previous event, incorporating longer-term memory. Transformer-like architectures are
very powerful modelers of long-range dependencies (Agrawal et al., 2018; Devlin et al.,
2018; Radford et al., 2019). Moreover, application of life-long learning techniques (e.g.,
Kaiser et al., 2017) can also bring improvements to the modeling of these long-term
relationships.

Finally, and as stated above, we intend to apply these multimodal techniques,
combined with the interactive-predictive framework, to the development of medical
applications, such as x-ray imaging analysis (Bustos et al., 2019), or the efficient
exploitation of medical databases such as the DICOM standard (Mildenberger et al.,
2002), following the structured data-to-text framework.
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Appendix A

The NMT-Keras toolkit

To easily develop new deep learning models is a key feature in this fast-moving field.
Within the scope of this thesis, we developed NMT-Keras1, a flexible toolkit for
neural machine translation, based on the Keras library for deep learning (Chollet
et al., 2015). Keras is an API written in Python which provides high-level interfaces
to numerical computation libraries, such as Theano (Theano Development Team,
2016) or TensorFlow (Abadi et al., 2016). Keras is well-structured and documented,
with designing principles that make it modular and extensible, being easy to construct
complex models.

Following the spirit of the Keras library, we developed NMT-Keras, released un-
der MIT license, that aims to provide a highly-modular and extensible framework to
NMT. NMT-Keras supports advanced features, including support of INMT (Chap-
ter 4), continuous adaptation (Section 5.2) and active learning (Section 5.5.1) strate-
gies. An additional goal, is to ease the usage of the library, but allowing the user to
configure most of the options involving the NMT process.

Several toolkits currently offer fully-fledged NMT systems. Among them, we can
highlight OpenNMT (Klein et al., 2017), Tensor2Tensor (Vaswani et al., 2018) or
Nematus (Sennrich et al., 2017). NMT-Keras differentiates from them by offering
interactive-predictive and long-term learning functionalities, with the final goal of
fostering a more productive usage of the NMT system.

1https://github.com/lvapeab/nmt-keras
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This appendix describes the main design and features of NMT-Keras. First, we
review the deep learning framework which is the basis of the toolkit. Next, we sum-
marize the principal features and functionality of the library.

A.1 Design

NMT-Keras relies on two main libraries: a modified version of Keras2, which provides
the framework used to train the neural models; and a wrapper around it, named
Multimodal Keras Wrapper3, designed to ease the usage of Keras and the management
of data. These tools represent a general deep learning framework, able to tackle
different problems, involving several data modalities. The problem of NMT is an
instantiation of the sequence-to-sequence task, applied to textual inputs and outputs.
NMT-Keras is designed to tackle this particular task. The reason to rely on a fork of
Keras is because this allows us to independently design functions for our problems at
hand, which may be confusing for the general audience of Keras. However, in a near
future we hope to integrate our contributions into the main Keras repository.

A.1.1 Keras

As mentioned before, Keras is a high-level deep learning API, which provides a neat
interface to numerical computation libraries. Keras allows to easily implement com-
plex deep learning models by defining the layers as building blocks. This simplicity,
together with the quality of its code, has made Keras to be one of the most popu-
lar deep learning frameworks. It is also well-documented, and supported by a large
community, which fosters its usage.

In Keras, a model is defined as a directed graph of layers or operations, containing
one or more inputs and one or more outputs. Once a model has been defined, it is
compiled for training, aiming to minimize a loss function. The optimization process
is carried out, via gradient descent, by means of an optimizer.

Once the model is compiled, we feed it with data, training it as desired. Once a
model is trained, it is ready to be applied on new input data.

2https://github.com/MarcBS/keras
3https://github.com/lvapeab/multimodal_keras_wrapper
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A.1.2 Multimodal Keras Wrapper

The Multimodal Keras Wrapper allows to handle the training and application of com-
plex Keras models, data management (including multimodal data) and application
of additional callbacks during training. The wrapper defines two main objects and
includes a number of extra features:

Dataset: A Dataset object is a database adapted for Keras, which acts as data
provider. It manages the data splits (training, validation, test). It accepts
several data types, including text, images, videos and categorical labels. In the
case of text, the Dataset object builds the vocabularies, loads and encodes text
into a numerical representation and also decodes the outputs of the network
into natural language. In the case of images or videos, it also normalizes and
equalizes the images; and can apply data augmentation.

Model wrapper: This is the core of the wrapper around Keras. It connects the
Keras library with the Dataset object and manages the functions used to train
and apply the Keras models. When dealing with sequence-to-sequence models,
it implements a beam search procedure. It also contains a training visualization
module and ready-to-use convolutional neural networks architectures.

Extra: Additional functionalities include extra callbacks, I/O management and eval-
uation of the system outputs. To compute the translation quality metrics of the
models, we use the coco-caption evaluation tool (Chen et al., 2015), which pro-
vides common evaluation metrics: BLEU, METEOR, CIDEr, and ROUGE-L.
Moreover, we modified it4 to also include TER.

A.1.3 NMT-Keras

The NMT-Keras library makes use of the aforementioned libraries, to build a complete
NMT toolkit. The library is compatible with Python 2 and 3. The training of NMT
models is done with the main.py file. The hyperparameters are set via a configuration
file (config.py), and can also be set from the command line interface. To train an
NMT system with NMT-Keras is straightforward:

1. Set the desired configuration in config.py.

2. Launch main.py.

The training process will then prepare the data, constructing the Dataset object
and the Keras model. The default models implemented in NMT-Keras are an atten-
tional RNN encoder–decoder (Bahdanau et al., 2015; Sennrich et al., 2017), and the

4https://github.com/lvapeab/coco-caption
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Transformer model (Vaswani et al., 2017). Once the model is compiled, the training
process starts, following the specified configuration. To translate new text with a
trained model, we use beam search.

A.2 Features

As we keep our Keras fork constantly up-to-date with the original library, NMT-Keras
has access to the full Keras functionality, including (but not limited to):

Layers: All the architectures described in Section 2.3: Fully-connected layers, Con-
vNets, RNNs (including LSTM, GRU and their bidirectional and conditional
variants) with attention mechanisms, multi-head attention layers, or embed-
ding layers. Moreover, all the techniques described in Section 2.4 to improve
the generalization capabilities of the model are available: early-stopping, weight
decay, noise injection, dropout, batch and layer normalization.

Initializers: The weights of a model can be initialized to a constant value, to val-
ues drawn from statistical distributions or according to strategies described in
Section 2.2.4.

Optimizers: A number of SGD update rules variants are implemented (Section 2.2.3):
plain SGD, RMSProp, Adagrad, Adadelta, Adam, Adamax or hypergradient
descent-based methods (Baydin et al., 2017). The learning rate can be sched-
uled according to several strategies (linear, exponential, “noam” (Vaswani et al.,
2017)).

Regularizers and constraints: Keras allows to set penalties and constraints to the
parameters and to the layer outputs of the model.

Our version of Keras implements additional layers, useful for sequence-to-sequence
problems:

Improved RNNs: All RNN architectures can be used in an autoregressive way,
i.e. taking into account the previously generated token. They also integrate
attention mechanisms, supporting the add (Bahdanau et al., 2015) and dot
(Luong et al., 2015a) models.

Conditional RNNs: Conditional LSTM/GRU layers (Section 2.3.2, consisting of
cascaded applications of LSTM/GRU cells, with attention models in between.

Multi-input RNNs: LSTM/GRU networks with two and three different inputs and
independent attention mechanisms (Bolaños et al., 2018a).
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Transformer layers: Multi-head attention layers, positional encodings and position-
wise feed-forward networks (Vaswani et al., 2017).

Convolutional layers: Class activation maps (Zhou et al., 2016).

Finally, NMT-Keras supports a number of additional options. Here we list the
most important ones, but we refer the reader to the library documentation5 for an
exhaustive listing of all available options:

Deep models: Deep residual RNN layers, deep output layers (Pascanu et al., 2014)
and deep fully-connected layers to initialie the state of the RNN decoder.

Embeddings: Incorporation of pre-trained embeddings in the NMT model and em-
bedding scaling options.

Regularization strategies: Label smoothing (Szegedy et al., 2015), early-stop, weight
decay, doubly stochastic attention regularizer (Xu et al., 2015) and a fine-grained
application of dropout.

Search options: Normalization of the beam search process by length and coverage
penalty. The search can be also constrained according to the length of the
input/output sequences.

Unknown word replacement: Replace unknown words according to the attention
model (Jean et al., 2015a). The replacement may rely on a statistical dictionary.

Tokenizing options: Including full BPE support (Sennrich et al., 2016).

Integration with other tools: Support for Spearmint (Gelbart et al., 2014), for
Bayesian optimization of the hyperparameters and Tensorboard, the visualiza-
tion tool of TensorFlow.

Apart from these model options, NMT-Keras also contains scripts for ensemble
decoding and generation of N -best lists; sentence scoring, model averaging and con-
struction of statistical dictionaries (for unknown words replacement). It also contains
a client-server architecture, which allows us to access to NMT-Keras via web. Fi-
nally, in order to introduce newcomers to NMT-Keras, a set of tutorials are available,
explaining step-by-step how to construct an NMT system.

5https://nmt-keras.readthedocs.io
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A.3 Interactive-predictive and adaptive pattern recognition

All systems and protocols described in Chapter 4 and Section 6.3 have been imple-
mented and integrated into NMT-Keras. We built a demo website6 of these inter-
active, adaptive systems using the client-server features of the toolkit. The system
is deployed as a Python HTTP server that handles the requests from the client.
The client is an HTML website, which manages the interactions with the user using
JavaScript. Client and server are communicated via the HTTP protocol, using the
PHP curl tool. All code is open-source and publicly available78.

A.3.1 Usage of the interactive system

Our interactive-predictive system works as follows: initially, an input object is pre-
sented to the user in the client website. The user requests an automatic prediction of
it. Next, the client communicates the server via PHP. The server queries the neural
system, which produces an initial hypothesis applying Eq. (1.6). The hypothesis is
then sent back to the client website.

Client (web browser)

Feedback
y1, y2

Server

y1, y2, y3, y4, ..., yI
Alternative

hypothesis

User
PHP

PHP

Encoder
Decoder

Constrained
Search

(Θ)

Figure A.1: System architecture. The client, a website, presents the user several input
objects (images, videos or texts) and a prediction. The user then introduces a feedback
signal, to correct this prediction. After being introduced, the feedback signal is sent to
the server—together with the input object—for generating an alternative hypothesis, which
takes into account the user corrections.

Next, the interactive-predictive process starts: the user searches in this hypothesis
the first error, and introduces a correction with the keyboard (writing one or more
characters). When the user stops typing the correction, the system reacts, sending to
the server a request containing the input object and the user feedback (the sequence
of characters that conform the correct prefix). Then, the neural model implements

6http://casmacat.prhlt.upv.es/interactive-seq2seq.
7Server source code: https://github.com/lvapeab/interactive-keras-captioning.
8Client source code: https://github.com/lvapeab/inmt_demo_web/tree/general_ipr.
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Eq. (4.1) and produces an alternative hypothesis, such that it completes the correct
prefix. This is implemented as a constrained beam search, as described in Chapter 4.
This iteration of the process is illustrated in Fig. A.1.

This protocol is repeated until the user finds satisfactory the hypothesis given by
the system. Then, it is validated. As soon as the sentence is validated, the system
can be incrementally updated with this sample, following the online learning setup
Chapter 5. Hence, in future interactions, the system will be progressively updated,
tailoring to a given domain or to the user preferences.

A.3.2 System showcase

To show the interactive-predictive protocol described in the previous sections, we de-
veloped a website which hosts a demonstration of the system. Our demonstration
system handles three different problems, regarding three different data modalities:
text-to-text (NMT), image-to-text (image captioning) and video-to-text (video cap-
tioning). To tackle these tasks, we use the RNN-based model described in Section 3.1.
Our framework has also support for Transformer-like architectures Section 3.2.

The NMT task regards the UFAL task Section 1.4.3. The image and video cap-
tioning systems are the Flickr8k and MSVD, as described in Section 6.3. Finally, the
systems can be retrained after the validation of each sample. In our demonstration,
the systems are updated via gradient descent, but using a learning rate of 0, which
prevents a degradation of the model due to accidental misuse.

Example: image captioning

We show and analyze an image captioning example. The NMT and video captioning
tasks are alike. Fig. A.2 shows the demo website, for the image captioning task
together with the interactive-predictive captioning session, to obtain a correct sample..
In the left part of the screen, the input object is shown, in this case, an image. As the
user clicks in the “Transcript!” button, the system generates a caption of the image,
displaying it in an editable area on the right part of the screen. The user can then
introduce the desired corrections to this hypothesis. As a correction is introduced, the
system reacts, providing an alternative caption, but always considering the feedback
given by the user. As can be seen in Fig. A.2, the caption generated by the system
has some errors. With three interactions, the system was able to obtain a correct
caption for the image.

It is particularly interesting to observe that the system correctly accounts for the
singular/plural concordance of the clause in red uniform(s), depending on the subject
(A football player/A group of football players).

193



Appendix A. The NMT-Keras toolkit

Input object

Editable area:
System hypotheses

User feedback

Incremental adaptation Hypothesis acceptationGenerate initial
hypothesis

0 System A group of football players in red uniforms.

1 User A f group of football players in red uniforms.
System A f ootball player in a red uniform is holding a football.

2 User A football player in a red uniform is wholding a football.
System A football player in a red uniform is wearing a football.

3 User A football player in a red uniform is wearing a h football.
System A football player in a red uniform is wearing a helmet.

4 User A football player in a red uniform is wearing a helmet.

Figure A.2: Frontend of the client website. As the button “Transcript!” is clicked, an
initial hypothesis for the input object—in this case, an image—appears in the right area. The
user then introduces corrections of this text. The system reacts to each translation, producing
alternative hypotheses, always compliant with the user feedback. At each iteration, the user
introduces a character correction (boxed). The system modifies its hypothesis, taking into
account this feedback: keeping the correct prefix (green) and generating a compatible suffix.
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A.4 Additional applications

The modular design of Keras and Multimodal Keras Wrapper allows us to use them
to tackle other problems. Following the spirit of the toolkit, it has been modified and
applied in a variety of tasks, including sentence classification (Peris et al., 2017b), food
recognition and localization (Bolaños and Radeva, 2016; Bolaños et al., 2017), visual
question answering (Bolaños et al., 2017), MT quality estimation (Ive et al., 2018),
language transliteration (Le et al., 2019) or semantic failover for network managing
(Hsueh et al., 2018).

A.5 Summary

NMT-Keras is a toolkit built on top of Keras that aims to ease the deployment of
complex NMT systems by having a modular and extensible design. NMT-Keras has
a strong focus on building adaptive and interactive NMT systems; which leverage
the effort reduction of a user willing to obtain high-quality translations. Finally, its
flexibility allows the NMT-Keras framework to be applied directly to other problems,
such as multimedia captioning or sentence classification.

We would like to improve the frontend of our website. Inspecting the attributes
of black-box neural models is a relevant research topic, and it is under active devel-
opment (e.g. Zeiler and Fergus, 2014; Ancona et al., 2017). Visualizing these relevant
attributes would help to understand the model predictions and behavior. Moreover,
a more sophisticated frontend would allow us to implement interesting features, such
as mapping the attention weights through the input sequence or the implementation
of more complex interaction protocols, such as touch-based interaction (Marie and
Max, 2015) or segment-based interaction (Peris et al., 2017c).

We also intend to continue the active development of the tool, including new
functionalities and improving the quality of the source code. Moreover, we hope to
integrate our tool into the Keras ecosystem in a near future.
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Human post-editors survey

We show the results of the survey conducted in Section 5.4.6. Recall that this research
was done in collaboration with Miguel Domingo and the team from Pangeanic.

B.1 Initial questionnaire

Prior to starting the post-editing task, we collected some demographics of post-editors:

User 1 User 2 User 3

Gender Female Male Female
Age 27 24 30
Years of training 6 3 6
Years of experience 5 1.5 5
1st language Spanish Spanish/Catalan Spanish
2nd language English
Frequency of use of MT Every 2-3 weeks
Time using MT Several months 1.5 years 2 years
Satisfaction w.r.t. MT Somewhat satisfied
Will to apply MT in the future Not sure Yes
Feasibility of MT in industry Somewhat likely Highly likely
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Moreover, they freely answered to the question What experience, if any, do
you have of post-editing machine translation?:

User 1: It has been quite positive when post-editing texts of certain fields. But it has
been limited.

User 2: I’ve post-edited texts and reviewed post-edition of documents with different
scope and extension for about a year. Depending on the request and type of text,
it can save up time and enhance productivity. In my opinion, clear criteria to
the extent and amount of post-edition work should be stated for each task (or
generally).

User 3: It is slow and not accurate with some kinds of texts.

B.2 Final questionnaire

After performing each post-editing task, users completed the following questionnaire.
We show the question in boldface font and next, we plot the answers given by the
users, grouping them according to the uses of an adaptive or a static system.

How satisfied are you with the translation you have produced?

100.0%

Very satisfied.
Somewhat satisfied.
Neutral.
Somewhat dissatisfied.
Very dissatisfied.

Adaptive system.

67.0%

33.0%

Very satisfied.
Somewhat satisfied.
Neutral.
Somewhat dissatisfied.
Very dissatisfied.

Static system.
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Would you have preferred to work on your translation from scratch
instead of post-editing machine translation?

100.0% Yes.
No.

Adaptive system.

100.0% Yes.
No.

Static system.

Do you think that you will want to apply machine translation in your
future translation tasks?

100.0%
Yes, at some point.
No, never.
I'm not sure yet.

Adaptive system.

100.0%
Yes, at some point.
No, never.
I'm not sure yet.

Static system.

Based on the post-editing task you have performed, how much do you
rate machine translation outputs on the following attributes?

Grammar Style Overal quality

Very below average

Below average

Average

Above average

Very above average
User 1
User 2
User 3

Adaptive system.

Grammar Style Overal quality

Very below average

Below average

Average

Above average

Very above average
User 1
User 2
User 3

Static system.
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Based on the post-editing task you have performed, which of these
statements will you go for?

33.0%

33.0%

33.0%

I had to post-edit ALL the outputs.
I had to post-edit about 75 % of the outputs.
I had to post-edit 25 50 % outputs.
I only had to post-edit VERY FEW outputs.

Adaptive system.

67.0%

33.0%

I had to post-edit ALL the outputs.
I had to post-edit about 75 % of the outputs.
I had to post-edit 25 50 % outputs.
I only had to post-edit VERY FEW outputs.

Static system.

Based on the post-editing task you have performed, how often would
you have preferred to translate from scratch rather than post-editing ma-
chine translation?

33.0%

67.0%

Always.
In most of the cases (75 % of the outputs or more).
In almost half of the cases (approximately 50 %).
Only in a very few cases (less than 25 %).

Adaptive system.

33.0%

67.0%

Always.
In most of the cases (75 % of the outputs or more).
In almost half of the cases (approximately 50 %).
Only in a very few cases (less than 25 %).

Static system.

Once the users finished their translation jobs, we asked them to guess which system
was adaptive and which was static. All they guessed correctly.

Finally, we asked them to give their opinions regarding the experiment:

Opinions on adaptive systems

User 1: Machine translation was very good in some of the outputs but there were
few sentences which were incomplete or useless. Also -if this has to resemble
a translation project in real life- we should have some reference, other TMs,
instructions about terminology, etc.
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User 2: Despite recurrent mistakes also found in Test 1 (repetition, mistranslation,
nonsense words...), the online learning system was noticeable, for product names,
grammatical structures and lexical-wise as well.

User 3: The corrections applied in one segment were in general reflected in the fol-
lowing segments, which was very helpful, as only style has to be slightly corrected
in those segments. However, it seemed that the learning was not performed in
the instance of the corrected term appearing inmediately after, but it was some
instances below when the term started to be translated appropriately after learn-
ing. As I progressed in the translation, some times it seemed that the term was
"forgotten", and again was wrongly translated. It is important to mention that
in some cases, totally made-up words appeared as a result of the MT (for ex.
"absolvido", "los padtillas"), which I had not introduced myself.

Opinions on static systems

User 1: In this case the translations I confirmed were not influencing the following
MT outputs, so the task of post-editing has been less fluent.

User 2: In many instances, the machine translation output was helpful. There were
other cases where the segment was not fully translated (only a few words present,
I saved some screenshots) or there were unnecessary repetition of terms, which
needed a greater deal of edition. I didn’t get to appreciate the online training
system, or at least to a full extent. I had to correct the name of the product in
every segment, for example.

User 3: In some cases the output was just a couple of words instead of the full sen-
tence or paragraph. Moreover, the fuzzy matches were not applied and it seemed
that learning was not performed as I kept having the same wrong terms after
having previously changed them and confirmed segments.

201





List of Figures

1.1 MT technology in WMT . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 MLP with a single layer . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Bidirectional recurrent neural network . . . . . . . . . . . . . . . . . . 30

2.3 LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Conditional RNN unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Multi-head attention mechanism . . . . . . . . . . . . . . . . . . . . . 36

3.1 RNN encoder–decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The Transformer model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Single iteration of prefix-based IMT . . . . . . . . . . . . . . . . . . . 68

4.2 Segment-based IMT iteration . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Constrained search for segment-based interaction . . . . . . . . . . . . 73

4.4 Character-level interaction . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Constrained vocabulary for character-level interaction . . . . . . . . . 76

203



List of Figures

4.6 INMT at subword level . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Word-level versus character-level interaction . . . . . . . . . . . . . . . 84

4.8 PB-SMT prefix-based IMT session . . . . . . . . . . . . . . . . . . . . 86

4.9 INMT prefix-based session . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 INMT segment-based session. . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 INMT prefix-based session at character level . . . . . . . . . . . . . . . 89

5.1 Static and adaptive IMT . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Translation quality depending on the optimizer . . . . . . . . . . . . . 105

5.3 Translation quality depending on the number of updates per sample . 106

5.4 Translation quality for the alternative optimizers . . . . . . . . . . . . 108

5.5 Samples from the XRCE, UFAL and TED tasks. . . . . . . . . . . . . 115

5.6 Cumulative TER and KSMR of static and adaptive NMT systems . . 121

5.7 INMT session from scenario #1 . . . . . . . . . . . . . . . . . . . . . . 122

5.8 INMT session from scenario #1 with online learning . . . . . . . . . . 123

5.9 SDL Trados Studio user interface . . . . . . . . . . . . . . . . . . . . . 125

5.10 hTER and hBLEU per sentence . . . . . . . . . . . . . . . . . . . . . . 128

5.11 Evolution of BLEU with respect to the amount of training data . . . . 137

5.12 Translation quality as a function of human effort . . . . . . . . . . . . 138

6.1 Inception module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Architecture of the ABiViRNet model for video captioning . . . . . . 147

6.3 MSVD sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Outline of the TMA model . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Architecture of the TMA model . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Histogram of duration of events from EDUB-SegDesc . . . . . . . . . . 160

204



List of Figures

6.7 Keyword co-occurrence frequency . . . . . . . . . . . . . . . . . . . . . 160

6.8 Text-related statistics from the EDUB-SegDesc . . . . . . . . . . . . . 161

6.9 Subset from a day from the dataset EDUB-SegDesc . . . . . . . . . . 162

6.10 Egocentric captioning results . . . . . . . . . . . . . . . . . . . . . . . 168

6.11 Egocentric captioning results samples from initial events . . . . . . . . 169

6.12 Success and failure cases of the TMA model . . . . . . . . . . . . . . . 170

6.13 Multimodal interactive-predictive session . . . . . . . . . . . . . . . . . 175

A.1 Interactive-predictive system architecture . . . . . . . . . . . . . . . . 192

A.2 Frontend of the demonstration website . . . . . . . . . . . . . . . . . . 194

205





List of Tables

1.1 Main figures of the XRCE, TED, UFAL and Europarl corpora . . . . 15

2.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Parameter update rules . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Translation quality for the XRCE task . . . . . . . . . . . . . . . . . . 57

3.2 Translation quality for the TED task . . . . . . . . . . . . . . . . . . . 58

3.3 Translation quality for the UFAL task . . . . . . . . . . . . . . . . . . 59

3.4 Translation quality for the Europarl task . . . . . . . . . . . . . . . . . 60

4.1 Prefix-based interaction results . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Segment-based interaction results . . . . . . . . . . . . . . . . . . . . . 81

4.3 KSMR of interactive-predictive systems at character level . . . . . . . 82

4.4 Average system response time per interaction . . . . . . . . . . . . . . 85

5.1 RRR and UNF for all corpora . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Best online optimizer for each task. . . . . . . . . . . . . . . . . . . . . 107

207



List of Tables

5.3 Static versus adaptive RNN-based NMT systems . . . . . . . . . . . . 110

5.4 Static versus adaptive Transformer-based NMT systems . . . . . . . . 110

5.5 Static versus adaptive INMT systems . . . . . . . . . . . . . . . . . . . 111

5.6 Vocabulary coverage, RRR and UNF of in-domain sets with respect to
the out-of-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Out-of-domain static versus adaptive RNN-based NMT systems . . . . 113

5.8 Static versus adaptive Transformer-based NMT systems . . . . . . . . 114

5.9 KSMR of adaptive INMT systems compared to static INMT . . . . . 116

5.10 Static versus adaptive fine-tuned RNN-based NMT systems . . . . . . 117

5.11 Static versus adaptive Transformer-based NMT systems . . . . . . . . 118

5.12 KSMR of fine-tuned adaptive INMT compared to static INMT . . . . 119

5.13 Online learning times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.14 Results of the simulated experiments. TER and BLEU were computed
considering the reference sentences. ⋆ indicates statistically significant
differences between the static and the adaptive systems. . . . . . . . . 126

5.15 Distribution of users, test sets and scenarios for post-editing . . . . . . 126

5.16 Results on human post-editing . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Optimal hyperparameters for each captioning model . . . . . . . . . . 150

6.2 Text generation results for each model on the MSVD dataset . . . . . 150

6.3 Figures of the EDUB-SegDesc dataset . . . . . . . . . . . . . . . . . . 160

6.4 Results of different pre-trained decoders on EDUB-SegDesc . . . . . . 164

6.5 TMA results on EDUB-SegDesc compared to the state of the art . . . 165

6.6 Unsatisfactory models for EDUB-SegDesc . . . . . . . . . . . . . . . . 167

6.7 Prediction quality for image and video captioning systems . . . . . . . 173

6.8 Effort required by interactive-predictive multimodal systems . . . . . . 174

208



Bibliography

N. Aafaq, S. Z. Gilani, W. Liu, and A. Mian. Video description: A survey of methods,
datasets and evaluation metrics. arXiv:1806.00186, 2018.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, volume 16, pages 265–283, 2016.

M. Aghaei, M. Dimiccoli, C. C. Ferrer, and P. Radeva. Towards social pattern charac-
terization in egocentric photo-streams. Computer Vision and Image Understanding,
171:104–117, 2018.

R. R. Agrawal, M. Turchi, and M. Negri. Contextual handling in neural machine
translation: Look behind, ahead and on both sides. In Proceedings of the 21st
Annual Conference of the European Association for Machine Translation, pages
11–20, 2018.

V. Alabau, L. Rodríguez-Ruiz, A. Sanchis, P. Martínez-Gómez, and F. Casacuberta.
On multimodal interactive machine translation using speech recognition. In Pro-
ceedings of the International Conference on Multimodal Interaction, pages 129–136,
2011.

V. Alabau, R. Bonk, C. Buck, M. Carl, F. Casacuberta, M. García-Martínez,
J. González-Rubio, P. Koehn, L. A. Leiva, B. Mesa-Lao, D. Ortiz-Martínez,
H. Saint-Amand, G. Sanchis-Trilles, and C. Tsoukala. CASMACAT: An open
source workbench for advanced computer aided translation. The Prague Bulletin
of Mathematical Linguistics, 100:101–112, 2013.

209



Bibliography

V. Alabau, A. Sanchis, and F. Casacuberta. Improving on-line handwritten recog-
nition in interactive machine translation. Pattern Recognition, 47(3):1217–1228,
2014.

V. Alabau, M. Carl, F. Casacuberta, M. García-Martínez, J. González-Rubio,
B. Mesa-Lao, D. Ortiz-Martínez, M. Schaeffer, and G. Sanchis-Trilles. New Di-
rections in Empirical Translation Process Research, chapter Learning Advanced
Post-editing, pages 95–110. New Frontiers in Translation Studies. 2016.

R. B. Allen. Several studies on natural language and back-propagation. In Proceedings
of the IEEE First International Conference on Neural Networks, pages 335–341,
1987.

L. B. Almeida, T. Langlois, and J. D. Amaral. Parameter adaptation in stochastic
optimization. On-line Learning in Neural Networks, pages 111–134, 1998.

M. Ancona, E. Ceolini, C. Öztireli, and M. Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv:1711.06104,
2017.

A. G. Arenas. Productivity and quality in the post-editing of outputs from translation
memories and machine translation. Localisation Focus, 7(1):11–21, 2008.

A. G. Arenas. Productivity and quality in MT post-editing. 2009.

D. Ataman and M. Federico. Compositional representation of morphologically-rich
input for neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, pages 305–311, 2018.

F. Azadi and S. Khadivi. Improved search strategy for interactive machine translation
in computer-asisted translation. In Proceedings of the XV Machine Translation
Summit, pages 319–332, 2015.

J. L. Ba, J. R. Kiros, and G. Hinton. Layer normalization. arXiv:1607.06450, 2016.

P. Bahar, C. Brix, and H. Ney. Towards two-dimensional sequence to sequence model
in neural machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3009–3015, 2018.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv:1409.0473, 2015.

A. V. M. Barone, J. Helcl, R. Sennrich, B. Haddow, and A. Birch. Deep architectures
for neural machine translation. In Proceedings of the Second Conference on Machine
Translation, pages 99–107, 2017.

210



Bibliography

S. Barrachina, O. Bender, F. Casacuberta, J. Civera, E. Cubel, S. Khadivi, A. La-
garda, H. Ney, J. Tomás, E. Vidal, and J.-M. Vilar. Statistical approaches to
computer-assisted translation. Computational Linguistics, 35(1):3–28, 2009.

A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood. Online learning
rate adaptation with hypergradient descent. arXiv:1703.04782, 2017.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differ-
entiation in machine learning: a survey. Journal of Machine Learning Research, 18
(153):1–43, 2018.

O. Bender, S. Hasan, D. Vilar, R. Zens, and H. Ney. Comparison of generation strate-
gies for interactive machine translation. In Proceedings of the Annual Conference
of the European Association for Machine Translation, pages 33–40, 2005.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. Machine Learning Research, pages 1137–1155, 2003.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Pro-
ceedings of the 26th annual International Conference on Machine Learning, pages
41–48, 2009.

L. Bentivogli, N. Bertoldi, M. Cettolo, M. Federico, M. Negri, and M. Turchi. On the
evaluation of adaptive machine translation for human post-editing. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 24(2):388–399, 2016.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(1):281–305, 2012.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A cpu and gpu math compiler
in python. In Proceedings of the 9th Python in Science Conference, volume 1, pages
3–10, 2010.

N. Bertoldi and M. Federico. Domain adaptation for statistical machine translation
with monolingual resources. In Proceedings of the Workshop on Statistical Machine
Translation, pages 182–189, 2009.

N. Bertoldi, M. Cettolo, and M. Federico. Cache-based online adaptation for ma-
chine translation enhanced computer assisted translation. Proceedings of the XIV
Machine Translation Summit, pages 35–42, 2013.

A. Betancourt, P. Morerio, C. S. Regazzoni, and M. Rauterberg. The evolution of
first person vision methods: A survey. IEEE Transactions on Circuits and Systems
for Video Technology, 25(5):744–760, 2015.

211



Bibliography

E. Biçici and D. Yuret. Optimizing instance selection for statistical machine trans-
lation with feature decay algorithms. IEEE/ACM Transactions on Audio, Speech
and Language Processing, 23(2):339–350, 2015.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
Computation, 7(1):108–116, 1995.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, 2006. ISBN 0387310738.

J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza, A. Sanchis,
and N. Ueffing. Confidence estimation for machine translation. In Proceedings of
the International Conference on Computational Linguistics, pages 315–321, 2004.

M. Bloodgood and C. Callison-Burch. Bucking the trend: Large-scale cost-focused
active learning for statistical machine translation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 854–864, 2010.

O. Bojar, C. Buck, C. Callison-Burch, B. Haddow, P. Koehn, C. Monz, M. Post,
H. Saint-Amand, R. Soricut, and L. Specia, editors. Proceedings of the Eighth
Workshop on Statistical Machine Translation. 2013.

O. Bojar, C. Buck, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, M. Huck,
A. J. Yepes, P. Koehn, and J. Kreutzer. Proceedings of the Second Conference on
Machine Translation. 2017a.

O. Bojar, B. Haddow, D. M. , R. Sudarikov, A. Tamchyna, and D. Vari. Report
on building translation systems for public health domain (deliverable D1.1). Tech-
nical Report H2020-ICT-2014-1-644402, Technical report, Health in my Language
(HimL), 2017b.

O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck,
A. J. Yepes, P. Koehn, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, L. Spe-
cia, M. Turchi, and K. Verspoor, editors. Proceedings of the Third Conference on
Machine Translation. 2018.

M. Bolaños, M. Dimiccoli, and P. Radeva. Toward storytelling from visual lifelogging:
An overview. IEEE Transactions on Human-Machine Systems, 47(1):77–90, 2017.

M. Bolaños and P. Radeva. Simultaneous food localization and recognition. In Pro-
ceedings of the 23rd International Conference on Pattern Recognition, pages 3140–
3145, 2016.

M. Bolaños, A. Ferrà, and P. Radeva. Food ingredients recognition through multi-
label learning. In Proceedings of the International Conference on Image Analysis
and Processing, pages 394–402, 2017.

212



Bibliography

M. Bolaños, Á. Peris, F. Casacuberta, and P. Radeva. Vibiknet: Visual bidirectional
kernelized network for visual question answering. In Iberian Conference on Pat-
tern Recognition and Image Analysis, volume 10255 of Lecture Notes in Computer
Science, pages 372–380, 2017.

M. Bolaños, Á. Peris, F. Casacuberta, S. Soler, and P. Radeva. Egocentric video de-
scription based on temporally-linked sequences. Journal of Visual Communication
and Image Representation, 50:205–216, 2018a.

M. Bolaños, M. Valdivia, and P. Radeva. Where and what am i eating? image-based
food menu recognition. In Proceedings of the European Conference on Computer
Vision, pages 590–605, 2018b.

L. Bottou. Une approche theorique de l’apprentissage connexionniste et applications
a la reconnaissance de la parole. PhD thesis, 1991.

S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods, 2003. Lecture notes of
EE392o, Stanford University, Autumn Quarter.

D. Britz, A. Goldie, M.-T. Luong, and Q. Le. Massive exploration of neural machine
translation architectures. In Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1442–1451, 2017.

P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty,
R. L. Mercer, and P. S. Roossin. A statistical approach to machine translation.
Computational Linguistics, 16:79–85, 1990.

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics,
19(2):263–311, 1993.

A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-Vayá. Padchest: A large
chest x-ray image dataset with multi-label annotated reports. 2019.

D. Cai, H. Zhang, and N. Ye. Improvements in statistical phrase-based interactive
machine translation. In Proceedings of the International Conference on Asian Lan-
guage Processing, pages 91–94, 2013.

C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz, and J. Schroeder. (Meta-) evalua-
tion of machine translation. In Proceedings of the Workshop on Statistical Machine
Translation, pages 136–158, 2007.

A. Cartas, M. Dimiccoli, and P. Radeva. Batch-based activity recognition from ego-
centric photo-streams. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2347–2354, 2017.

213



Bibliography

G. A. Casañ and M. A. Castaño. Distributed representation of vocabularies in the
RECONTRA neural translator. In Proceedings of the Sixth European Conference
on Speech Communication and Technology, pages 2423–2426, 1999.

M.-A. Castaño and F. Casacuberta. A connectionist approach to machine translation.
In Proceedings of the International Conference on Theoretical and Methodological
Issues in Machine Translation, pages 160–167, 1997.

S. Castilho, J. Moorkens, F. Gaspari, I. Calixto, J. Tinsley, and A. Way. Is neural
machine translation the new state of the art? The Prague Bulletin of Mathematical
Linguistics, 108(1):109–120, 2017.

D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd, H. Christensen, and
I. Essa. Predicting daily activities from egocentric images using deep learning. In
Proceedings of the 2015 ACM International symposium on Wearable Computers,
pages 75–82, 2015.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 4960–
4964, 2016.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT press, 2006.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robin-
son. One billion word benchmark for measuring progress in statistical language
modeling. arXiv:1312.3005, 2013.

B. Chen and C. Cherry. A systematic comparison of smoothing techniques for
sentence-level bleu. In Proceedings of the Ninth Workshop on Statistical Machine
Translation, pages 362–367, 2014.

D. L. Chen and W. B. Dolan. Collecting highly parallel data for paraphrase evaluation.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics, pages 190–200, 2011.

X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Mi-
crosoft COCO captions: Data collection and evaluation server. arXiv:1504.00325,
2015.

S. Cheng, S. Huang, H. Chen, X.-Y. Dai, and J. Chen. Primt: A pick-revise frame-
work for interactive machine translation. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1240–1249, 2016.

D. Chiang. Hope and fear for discriminative training of statistical translation models.
Journal of Machine Learning Research, 13:1159–1187, 2012.

214



Bibliography

M. Chinea-Rios, Á. Peris, and F. Casacuberta. Adapting neural machine translation
with parallel synthetic data. In Proceedings of the Second Conference on Machine
Translation, pages 138–147, 2017.

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do,
G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L.
Rosen, B. J. Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter,
A. Shrikumar, J. Xu, E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexandari,
Z. Lu, D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley, M. H. S.
Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter, and C. S. Greene. Op-
portunities and obstacles for deep learning in biology and medicine. Journal of The
Royal Society Interface, 15(141), 2018.

K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. In Proceedings of the Workshop
on Syntax, Semantic and Structure in Statistical Translation, pages 103–111, 2014.

F. Chollet et al. Keras. https://github.com/keras-team/keras, 2015. GitHub
repository.

L. Chrisman. Learning recursive distributed representations for holistic computation.
Connection Science, 3(4):345–366, 1991.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning.
Machine Learning, 15(2):201–221, 1994.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment
for machine learning. In BigLearn Workshop in Advances in Neural Information
Processing Systems, 2011.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob-
lems. In Proceedings of the Annual Conference on Computational Learning Theory,
pages 99–115, 2001.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

J. M. Crego, J. Kim, G. Klein, A. Rebollo, K. Yang, J. Senellart, E. Akhanov,
P. Brunelle, A. Coquard, Y. Deng, S. Enoue, C. Geiss, J. Johanson, A. Khalsa,
R. Khiari, B. Ko, C. Kobus, J. Lorieux, L. Martins, D. Nguyen, A. Priori,
T. Riccardi, N. Segal, C. Servan, C. Tiquet, B. Wang, J. Yang, D. Zhang,
J. Zhou, and P. Zoldan. SYSTRAN’s pure neural machine translation systems.
arXiv:1610.05540, 2016.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989.

215

https://github.com/keras-team/keras


Bibliography

J. Daems and L. Macken. Interactive adaptive smt versus interactive adaptive nmt:
a user experience evaluation. Machine Translation, pages 1–18, 2019.

I. Dagan and S. P. Engelson. Committee-based sampling for training probabilis-
tic classifiers. In Proceedings of the Twelfth International Conference on Machine
Learning, pages 150–157. 1995.

A. A. Dara, J. van Genabith, Q. Liu, J. Judge, and A. Toral. Active learning for post-
editing based incrementally retrained MT. In Proceedings of the 14th Conference
of the European Chapter of the Association for Computational Linguistics, volume
2: Short Papers, pages 185–189, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

M. Denkowski, C. Dyer, and A. Lavie. Learning from post-editing: Online model
adaptation for statistical machine translation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Computational Linguistics, pages
395–404, 2014a.

M. Denkowski, A. Lavie, I. Lacruz, and C. Dyer. Real time adaptive machine trans-
lation for post-editing with cdec and transcenter. In Proceedings of the 14th Con-
ference of the European Chapter of the Association for Computational Linguistics,
pages 72–77, 2014b.

J. Devlin. Sharp models on dull hardware: Fast and accurate neural machine trans-
lation decoding on the CPU. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2820–2825, 2017.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul. Fast and robust
neural network joint models for statistical machine translation. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pages 1370–1380,
2014.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

M. Dimiccoli, M. Bolaños, E. Talavera, M. Aghaei, S. G. Nikolov, and P. Radeva.
SR-clustering: Semantic regularized clustering for egocentric photo streams seg-
mentation. Computer Vision and Image Understanding, 155:55–69, 2017.

A. R. Doherty, S. E. Hodges, A. C. King, A. F. Smeaton, E. Berry, C. J. Moulin,
S. Lindley, P. Kelly, and C. Foster. Wearable cameras in health. American Journal
of Preventive Medicine, 44(3):320–323, 2013.

216



Bibliography

M. Domingo, Á. Peris, and F. Casacuberta. Interactive-predictive translation based
on multiple word-segments. In Proceedings of the 19th Annual Conference of the
European Association for Machine Translation, pages 282–291, 2016.

M. Domingo, Á. Peris, and F. Casacuberta. Segment-based interactive-predictive
machine translation. Machine Translation, 31:1–23, 2018.

K. Dranch, R. Beninatto, and T. Johnson. The size and state of the language services
industry, including ranking of top 100 LSPs by revenue. Technical report, Nimdzi,
2018.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159,
2011.

C. Dyer, V. Chahuneau, and N. A. Smith. A simple, fast, and effective reparameter-
ization of IBM Model 2. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 644–648, 2013.

S. Edunov, M. Ott, M. Auli, D. Grangier, and M. Ranzato. Classical structured
prediction losses for sequence to sequence learning. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 355–364, 2018.

M. Elbayad, L. Besacier, and J. Verbeek. Pervasive attention: 2d convolutional neural
networks for sequence-to-sequence prediction. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning, pages 97–107, 2018.

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

J. L. Elman. Distributed representations, simple recurrent networks, and grammatical
structure. Machine Learning, 7(2-3):195–225, 1991.

C. Fan and D. J. Crandall. Deepdiary: Automatically captioning lifelogging image
streams. In Proceedings of European Conference on Computer Vision, pages 459–
473, 2016.

C. Fan, Z. Zhang, and D. J. Crandall. Deepdiary: Lifelogging image captioning and
summarization. Journal of Visual Communication and Image Representation, 55:
40–55, 2018.

A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier,
and D. Forsyth. Every picture tells a story: Generating sentences from images. In
Proceedings of the European Conference on Computer Vision, pages 15–29, 2010.

217



Bibliography

A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric activities. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 407–414,
2011.

M. Federico, N. Bertoldi, M. Cettolo, M. Negri, M. Turchi, M. Trombetti, A. Catte-
lan, A. Farina, D. Lupinetti, A. Martines, A. Massidda, H. Schwenk, L. Barrault,
F. Blain, P. Koehn, C. Buck, and U. Germann. The matecat tool. In Proceed-
ings of the 25th International Conference on Computational Linguistics: System
Demonstrations, pages 129–132, 2014.

M. L. Forcada and R. P. Ñeco. Recursive hetero-associative memories for translation.
In Proceedings of the International Work-Conference on Artificial Neural Networks,
pages 453–462, 1997.

G. Foster, P. Isabelle, and P. Plamondon. Target-text mediated interactive machine
translation. Machine Translation, 12:175–194, 1997.

J. French. The time travellers CAPM. Investment Analysts Journal, 46(2):81–96,
2017.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36(4):193–202, 1980.

P. Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38,
1994.

S. Gandrabur and G. Foster. Confidence estimation for text prediction. In Proceedings
of the Conference on Computational Natural Language Learning, pages 315–321,
2003.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1243–1252, 2017.

M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown
constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, pages 250–259, 2014.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual predic-
tion with LSTM. Neural Computation, 12(10):2451–2471, 2000.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, pages 249–256, 2010.

218



Bibliography

K. Goel and J. Naik. Deepseek: A video captioning tool for making videos searchable.
cs224d.stanford.edu, 2016.

J. González-Rubio and F. Casacuberta. Cost-sensitive active learning for computer-
assisted translation. Pattern Recognition Letters, 37:124–134, 2014.

J. González-Rubio, D. Ortiz-Martínez, and F. Casacuberta. Balancing user effort and
translation error in interactive machine translation via confidence measures. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics,
pages 173–177, 2010a.

J. González-Rubio, D. Ortiz-Martínez, and F. Casacuberta. On the use of confidence
measures within an interactive-predictive machine translation system. In Proceed-
ings of the Annual Conference of the European Association for Machine Translation,
page [no page numbers], 2010b.

J. González-Rubio, D. Ortiz-Martínez, and F. Casacuberta. An active learning sce-
nario for interactive machine translation. In Proceedings of the 13th international
conference on multimodal interfaces, pages 197–200, 2011.

J. González-Rubio, D. Ortiz-Martínez, and F. Casacuberta. Active learning for in-
teractive machine translation. In Proceedings of the Conference of the European
Chapter of the Association for Computational Linguistics, pages 245–254, 2012.

J. González-Rubio, D. Ortiz-Martínez, J.-M. Benedí, and F. Casacuberta. Interactive
machine translation using hierarchical translation models. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 244–254,
2013.

J. González-Rubio, J.-M. Benedí, D. Ortiz-Martínez, and F. Casacuberta. Beyond
prefix-based interactive translation prediction. In Proceedings of the Conference on
Computational Natural Language Learning, pages 198–207, 2016.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

E. Granell, V. Romero, and C. D. Martínez-Hinarejos. An interactive approach with
off-line and on-line handwritten text recognition combination for transcribing his-
torical documents. In Proceedings of the International Association for Pattern
Recognition Workshop on Document Analysis Systems, pages 269–274, 2016.

A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850,
2013.

A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber.
A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on Pattern Analysis and Machine Intelligence, 31(5):855–868, 2009.

219



Bibliography

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In Proceedings of the Institute of Electrical and Electronics Engi-
neers International Conference on Acoustics, Speech and Signal Processing, pages
6645–6649, 2013.

S. Green, J. Heer, and C. D. Manning. The efficacy of human post-editing for lan-
guage translation. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 439–448, 2013a.

S. Green, S. Wang, D. Cer, and C. D. Manning. Fast and adaptive online training of
feature-rich translation models. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, volume 1, pages 311–321, 2013b.

S. Green, J. Chuang, J. Heer, and C. D. Manning. Predictive translation memory: A
mixed-initiative system for human language translation. In Proceedings of the An-
nual Association for Computing Machinery Symposium on User Interface Software
and Technology, pages 177–187, 2014.

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. LSTM:
A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28(10):2222–2232, 2017.

J. Gu, K. Cho, and V. O. Li. Trainable greedy decoding for neural machine transla-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1958–1968, 2017.

G. Haffari, M. Roy, and A. Sarkar. Active learning for statistical phrase-based machine
translation. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 415–423, 2009.

E. Hasler, B. Haddow, and P. Koehn. Margin infused relaxed algorithm for moses.
The Prague Bulletin of Mathematical Linguistics, 96:69–78, 2011.

E. Hasler, A. Gispert, G. Iglesias, and B. Byrne. Neural machine translation de-
coding with terminology constraints. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, volume 2, pages 506–512, 2018.

G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the
Annual Meeting of the Cognitive Science Society, pages 12–24, 1986.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-
nische Universität München, 91:1, 1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

220



Bibliography

M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a rank-
ing task: Data, models and evaluation metrics. Journal of Artificial Intelligence
Research, 47:853–899, 2013.

C. Hokamp and Q. Liu. Lexically constrained decoding for sequence generation using
grid beam search. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, volume 1, pages 1535–1546, 2017.

C. Hori, T. Hori, T.-Y. Lee, Z. Zhang, B. Harsham, J. R. Hershey, T. K. Marks, and
K. Sumi. Attention-based multimodal fusion for video description. In Proceedings
of the IEEE International Conference on Computer Vision, pages 4203–4212, 2017.

S.-W. Hsueh, T.-Y. Lin, W.-I. Lei, C.-L. P. Ngai, Y.-H. Sheng, and Y.-S. Wu. Semantic
failover in software-defined networking. In Proceedings of the IEEE 23rd Pacific
Rim International Symposium on Dependable Computing, pages 299–308, 2018.

K. Hu and P. Cadwell. A comparative study of post-editing guidelines. In Pro-
ceedings of the 19th Annual Conference of the European Association for Machine
Translation, pages 34206–353, 2016.

J. Hutchins. Two precursors of machine translation: Artsrouni and trojanskij. Inter-
national Journal of Translation, 16(1):11–31, 2004.

J. M. Inesta and C. Pérez-Sancho. Interactive multimodal music transcription. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 211–215, 2013.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the International Conference on
Machine Learning, pages 448–456, 2015.

J. Ive, F. Blain, and L. Specia. deepQuest: A framework for neural-based quality
estimation. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 3146–3157, 2018.

Y. Iwashita, A. Takamine, R. Kurazume, and M. S. Ryoo. First-person animal ac-
tivity recognition from egocentric videos. In Proceedings of the 22nd International
Conference on Pattern Recognition, pages 4310–4315, 2014.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabu-
lary for neural machine translation. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics and the International Joint Conference
on Natural Language Processing, pages 1–10, 2015a.

S. Jean, O. Firat, K. Cho, R. Memisevic, and Y. Bengio. Montreal neural machine
translation systems for WMT15. In Proceedings of the Tenth Workshop on Statis-
tical Machine Translation, pages 134–140, 2015b.

221



Bibliography

Y. Jia, M. Carl, and X. Wang. Post-editing neural machine translation versus phrase-
based machine translation for english–chinese. Machine Translation, pages 1–21,
2019.

M. I. Jordan. Artificial neural networks. chapter Attractor Dynamics and Parallelism
in a Connectionist Sequential Machine, pages 112–127. 1990.

Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio. Learning to remember rare events.
arXiv:1703.03129, 2017.

N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 1700–1709, 2013.

S. Kang and K. Cho. Conditional molecular design with deep generative models.
arXiv:1805.00108, 2018.

S. Karimova, P. Simianer, and S. Riezler. A user-study on online adaptation of neural
machine translation to human post-edits. Machine Translation, 32(4):309–324,
2018.

A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3128–3137, 2015.

M. Kay. The proper place of men and machines in language translation. Technical
report, 1980. Xerox Palo Alto Research Center.

H. Khayrallah, B. Thompson, K. Duh, and P. Koehn. Regularized training objective
for continued training for domain adaptation in neural machine translation. In
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation,
pages 36–44, 2018.

Y. Kim. Convolutional neural networks for sentence classification. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages
1746–1751, 2014.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush. Opennmt: Open-source
toolkit for neural machine translation. Proceedings of the Annual Meeting of the
Association for Computational Linguistics, System Demonstrations, pages 67–72,
2017.

R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In
Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, pages 181–184, 1995.

222



Bibliography

R. Knowles and P. Koehn. Neural interactive translation prediction. In Proceedings
of the Association for Machine Translation in the Americas, pages 107–120, 2016.

R. Knowles, M. Sanchez-Torron, and P. Koehn. A user study of neural interac-
tive translation prediction. Machine Translation, In Press, 2019. doi: 10.1007/
s10590-019-09235-8.

P. Koehn. Statistical significance tests for machine translation evaluation. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 388–395, 2004.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceed-
ings of the Machine Translation Summit, pages 79–86, 2005.

P. Koehn. A process study of computer-aided translation. Machine Translation, 23
(4):241–263, 2010a.

P. Koehn. Statistical machine translation. Cambridge University Press, 2010b.

P. Koehn and R. Knowles. Six challenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Translation, pages 28–39, 2017.

P. Koehn and C. Monz, editors. Proceedings on the Workshop on Statistical Machine
Translation. 2006.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst.
Moses: Open source toolkit for statistical machine translation. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pages 177–180,
2007.

P. Koehn, C. Tsoukala, and H. Saint-Amand. Refinements to interactive translation
prediction based on search graphs. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pages 574–578, 2014.

M. Koponen, L. Salmi, and M. Nikulin. A product and process analysis of post-
editor corrections on neural, statistical and rule-based machine translation output.
Machine Translation, pages 1–30, 2019.

S. S. R. Kothur, R. Knowles, and P. Koehn. Document-level adaptation for neu-
ral machine translation. In Proceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 64–73, 2018.

J. Kreutzer, A. Sokolov, and S. Riezler. Bandit structured prediction for neural
sequence-to-sequence learning. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 1503–1513, 2017.

223



Bibliography

R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. Carlos Niebles. Dense-captioning
events in videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 706–715, 2017.

N. Krishnamoorthy, G. Malkarnenkar, R. J. Mooney, K. Saenko, and S. Guadarrama.
Generating natural-language video descriptions using text-mined knowledge. In
Proceedings of the Twenty-Seventh Association for the Advancement of Artificial
Intelligence Conference on Artificial Intelligence, volume 1, pages 541–547, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012.

A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In
Advances in Neural Information Processing Systems, pages 950–957, 1992.

P. Kuznetsova, V. Ordonez, T. Berg, and Y. Choi. Treetalk: Composition and com-
pression of trees for image descriptions. Transactions of the Association of Com-
putational Linguistics, 2(1):351–362, 2014.

A. L. Lagarda, D. Ortiz-Martínez, V. Alabau, and F. Casacuberta. Translating with-
out in-domain corpus: Machine translation post-editing with online learning tech-
niques. Computer Speech & Language, 32(1):109–134, 2015.

S. M. Lakew, M. Cettolo, and M. Federico. A comparison of transformer and recurrent
neural networks on multilingual neural machine translation. In Proceedings of the
27th International Conference on Computational Linguistics, pages 641–652, 2018.

T. K. Lam, J. Kreutzer, and S. Riezler. A reinforcement learning approach to
interactive-predictive neural machine translation. In Proceedings of the European
Association for Machine Translation conference, pages 169–178, 2018.

P. Langlais, G. Lapalme, and M. Lorange. TransType: Development-evaluation cycles
to boost translator’s productivity. Machine Translation, 17(2):77–98, 2002.

A. Lavie and M. J. Denkowski. The METEOR metric for automatic evaluation of
machine translation. Machine Translation, 23(2-3):105–115, 2009.

N. T. Le, F. Sadat, L. Menard, and D. Dinh. Low-resource machine transliteration
using recurrent neural networks. ACM Transactions on Asian and Low-Resource
Language Information Processing, 18(2):13, 2019.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989a.

224



Bibliography

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

Y. LeCun et al. Generalization and network design strategies. Connectionism in
perspective, pages 143–155, 1989b.

J. Lee, K. Cho, and T. Hofmann. Fully character-level neural machine translation
without explicit segmentation. Transactions of the Association for Computational
Linguistics, 5:365–378, 2017.

A. Levenberg, C. Callison-Burch, and M. Osborne. Stream-based translation models
for statistical machine translation. In Proceedings of the Human Language Technolo-
gies: the 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 394–402, 2010.

D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learn-
ing. In Machine Learning Proceedings, pages 148–156, 1994.
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