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Highlights 

 

Immobilised cellulose tris(3,5-dichlorophenylcarbamate) modelled as chiral stationary 

phase in reversed phase conditions. 

Rs model for immobilised cellulose tris(3,5-dichlorophenylcarbamate) in chiral RPLC 

Experimental enantioresolution of structurally unrelated drugs and pesticides connected 

to their topological and molecular descriptors. 

Enantioresolution-topological/molecular descriptor model for unrelated compounds 

The pH-dependent molar total charge of the molecule as key variable for 

enantioresolution. 

The pH-dependent molar total charge as key variable for enantioresolution. 
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Parameter related to the chiral carbon connected with enantioresolution 

Protocol for enantioseparation anticipation 

 

ABSTRACT 

To the best of our knowledge, the prediction of the enantioresolution ability of 

polysaccharides-based stationary phases in liquid chromatography for structurally 

unrelated compounds has not been previously reported. In this study, structural 

information of neutral and basic compounds is used to model their enantioresolution 

levels obtained from an immobilised cellulose tris(3,5-dichlorophenylcarbamate) 

stationary phase in reversed phase conditions. Thirty-four structurally unrelated chiral 

drugs and pesticides, from seven families, are studied. Categorical enantioresolution 

levels (RsC, 0 = no baseline enantioresolution and 1 = baseline enantioresolution) are 

established from the experimental enantioresolution values obtained at a fixed 

experimental conditions. From 58 initial structural variables, three topological 

parameters (two of them connected to the chiral carbon), and six molecular descriptors 

(one of them also related with the chiral carbon), are selected after a discriminant partial 

least squares refinement process. The molar total charge of the molecule at the working 

pH is the most important variable. The relationships between RsC and the most 

important structural variables and the drug/pesticide family are evaluated. An explicit 

model is proposed to anticipate the RsC levels, which provides 100% of correct 

anticipations. A criterion is introduced to alert about the compounds that should not be 

anticipated. 

 

Keywords: 

Cellulose tris(3,5-dichlorophenylcarbamate) stationary phase 

Reversed phase liquid chromatography 

Enantioseparations 

Enantioresolution modelling 

Discriminant partial least squares 

 

 

1. Introduction 

Chiral molecules play an important role in life and medicinal sciences as well as 

in other fields such as food and environmental chemistry. Consequently, analytical 

techniques capable of differentiating between enantiomers are of great importance. 

Chromatographic and capillary electromigration techniques are the most employed 

analytical separation techniques [1-5]. 
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Due to its simplicity and accuracy, high-performance liquid chromatography 

(HPLC) with chiral stationary phases (CSPs) is one of the most widely used analytical 

technique for enantiomeric separations. The basis of analytical enantioseparations, in 

the so-called direct approach, is the formation of transient diastereomeric complexes 

between the compound and the chiral selector coated or immobilized onto the stationary 

phase. Different CSPs containing macromolecular selectors (i.e. proteins, 

polysaccharide derivatives, polymers, etc.), macrocyclic selectors (i.e. cyclodextrins, 

macrocyclic antibiotics, etc.) and low-molecular mass selectors (i.e. ligand exchange, 

chiral ion exchange, etc.) have been developed [1]. More than a hundred CSPs are 

offered commercially and about 20–30 CSPs are the most frequently employed [4]. 

In spite of the wide number of analytical applications of CSPs in HPLC, the 

fundamental mechanisms responsible for the observed chiral separations are not fully 

understood. In fact, today, the evaluation of the ability of a chiral column in HPLC for 

the enantioseparation of compounds is an expensive and time-consuming trial-and-error 

strategy. Thus, the prediction of whether a CPS is able to perform a chiral separation or 

not is of great benefit. Relatively few articles in the literature address this important 

issue in chiral HPLC method development. 

Polysaccharide based stationary phases represent by far the most widely used 

CSPs in HPLC due to their broad applicability for a large structural diversity of 

compounds. These CSPs, which can be coated or immobilised onto the stationary 

support, are cellulose- and amylose-based. These linear helical polymers are composed 

of glucose units with β (1→4) (cellulose) or (1→4) (amylose) linkages. The hydroxyl 

groups of the glucose molecules are derivatised with benzoate or phenylcarbamate 

moieties, which accept methyl groups and/or chlorine substituents in various positions 
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on the aromatic ring, yielding a large variety of derivatives with different selectivities 

and applications [2-5]. Even, differences in enantioseparations between the CPSs 

containing the same chiral selector either coated or covalently immobilised onto the 

surface of silica have been achieved [4]. 

Selector-selectand complexes are thought to be mediated via hydrogen bonds to 

the CO or NH groups of the carbamate moieties, as well as by π- π interactions between 

the phenyl rings, Van der Waals forces and steric factors [3, 5-8]. Recently, halogen 

bonding has been also described to contribute to selector-selectand complexation [9]. 

In chiral HPLC using polysaccharides-based stationary phases, normal, polar or 

reversed mobile phase conditions can be used. The mobile phase composition 

modulates the recognition process. Different chromatographic behaviours are obtained 

depending on the nature and composition of the mobile phase, due to changes produced 

in the intra-molecular hydrogen bonds of the polysaccharide structure. Thus, reversal of 

the elution order enantiomers depending on the composition of the mobile phase can be 

observed [4]. 

In order to elucidate the chiral recognition mechanism of polysaccharide chiral 

selectors, analytical separation techniques in combination with spectroscopic techniques 

such as NMR spectroscopy, Fourier transform and attenuated total reflectance IR 

spectroscopy, vibrational circular dichroism techniques as well as X-ray crystallography 

have been used [1-8]. Molecular modelling has also become a practical tool for 

evaluating the interactions between polysaccharide-based selectors and chiral 

compounds [2, 10]. 

Chemometric and chemoinformatic data mining methods might be helpful to 

extract valuable information on molecular recognition [11-12]. Among these, 
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quantitative structure–property relationships (QSPRs) are a powerful option. Different 

QSPR studies have been reported for modelling data in enantioselective 

chromatography using polysaccharides-based stationary phases, some of them are 

presented/reviewed in the paper by Del Rio [11]. In these QSPR models, 

enantioresolution-related information (retention or selectivity values) is correlated with 

different molecular properties of compounds through linear free energy relationships 

(LFERs) studies [13-16], linear solvation energy relationships (LSERs) [17], and 3D-

QSPR properties employing comparative molecular field analysis (CoMFA) [18]. 

Multiple linear regression (MLR) [15-17], artificial neural networks [18], and genetic 

algorithm [16, 18] are used as chemometric techniques. 

These studies are usually carried out for structurally related compounds using 

amylose and cellulose-based CSPs -amylose tris(3,5-dimethylphenylcarbamate) [13, 

15], cellulose tris(3,5-dimethylphenylcarbamate) [18] and immobilised amylose tris(5-

chloro-2-methylphenylcarbamate) [16]-, and normal and polar mobile phases. In these 

studies, information about the functional groups responsible for enantioresolution is 

usually obtained. It should be noted that resolution values between enantiomers have 

never been used as response variable, although it is the most practical term that 

describes how well two peaks are resolved. 

In previous papers [19-20], the enantioresolution level (RsC-level) of 

structurally unrelated basic drugs and pesticides, using sulfated β- and γ-cyclodextrins 

as chiral selectors in electrokinetic chromatography (EKC), was modelled as a function 

of structural parameters. For sulfated β-cyclodextrin, few structural descriptors, easy to 

obtain from a free on-line database, were selected [19]. In the case of sulfated γ-
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cyclodextrin, few topological parameters, mainly connected to the chiral carbon (so 

called C*-parameters) were used [20]. 

In this work, 58 structural predictor variables of 34 structurally unrelated 

compounds (basic drugs and pesticides), previously assayed in the above-mentioned 

papers, are tested to model a categorical enantioresolution RsC, as response variable. 

The main aim is to define a protocol able to anticipate the enantioresolution (RsC = 1) 

or not (RsC = 0) of new compounds based on this model. The RsC levels are assigned 

from experimental enantioresolution (Rs) values obtained using an immobilised 

cellulose tris(3,5-dichlorophenylcarbamate) CSP and hydro-organic mobile phases. To 

the best of our knowledge, this is the first report that models the enantioresolution of 

structurally unrelated compounds separated using immobilised cellulose tris(3,5-

dichlorophenylcarbamate) CSP and hydro-organic mobile phases. On the other hand, 

the importance of the predictive power (Pp) statistic to assess a discriminant partial least 

squares for one response categorical variable (DPLS1) refinement is discussed. In 

addition, the relationships between RsC and the most important structural variables and 

the drug/pesticide family are evaluated. 
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2. Materials and methods 

2.1. Instrumentation 

An Agilent Technologies 1100 chromatograph (Palo Alto, CA, USA) with a 

binary pump, an UV–visible diode array detector, a column thermostat and an 

autosampler was used. Data acquisition and processing were performed by means of the 

LC/MSD ChemStation software (B.04.02 SP1 [208], ©Agilent Technologies 2001-

2010). 

Prior to injection into the chromatographic system, analytes solutions were 

filtered through disposable 0.22 m polyethersulphone syringe filters (Frisenette, 

Knebel, Denmark). Mobile phase solutions were vacuum-filtered through 0.22 μm 

Nylon membranes (Micron Separations, Westboro, MA, USA) and were degassed in an 

Elmasonic S60 ultrasonic bath (Elma, Singen, Germany) prior to use. A Crison 

MicropH 2000 pHmeter (Crison Instruments, Barcelona, Spain) was employed to adjust 

the pH of the buffer solutions. 

 

2.2. Chemicals and solutions 

All reagents were of analytical grade. Ammonium acetate, sodium dihydrogen 

phosphate monohydrate, sodium hydroxide, acetonitrile and methanol (®Multisolvent, 

HPLC grade) were from Scharlau, S.L. (Barcelona, Spain). Diethylamine was from 

Acros Organics (Geel, Belgium). 10 mM ammonium acetate buffer solution was 

prepared by dissolving the appropriate amount of ammonium acetate in water and 

adjusting the pH to 8.0 with 2.5 M sodium hydroxide. Ultra Clear TWF UV deionised 

water (SG Water, Barsbüttel, Germany) was used to prepare solutions. 
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Bicalutamide, brompheniramine maleate, carbinoxamine maleate, 

chlorpheniramine maleate, clemastine fumarate, doxylamine succinate, ethopropazine 

hydrochloride, fenfluramine, hydroxyzine hydrochloride, methadone hydrochloride, 

methotrimeprazine maleate, nomifensine maleate, orphenadrine hydrochloride, pindolol, 

terfenadine, trimeprazine hemi(+)-tartrate and verapamil hydrochloride were from 

Sigma (St. Louis, MO, USA). Citalopram hydrobromide was from Tokyo Chemical 

Industry (Tokyo, Japan). Promethazine hydrochloride and salbutamol sulfate were from 

Guinama (Valencia, Spain). Bupivacaine was from Caiman Chemical Co (Ann Arbor, 

MI, USA). Amlodipine was from Alfa Aesar (Karlsruhe, Germany). All the rest of 

drugs tested were kindly donated by several pharmaceutical laboratories: acebutolol 

hydrochloride by Italfarmaco (Madrid, Spain); atenolol by Zeneca Farma (Madrid, 

Spain); fluoxetine hydrochloride by Alter (Madrid, Spain); mepivacaine hydrochloride 

and prilocaine hydrochloride by Laboratorios Inibsa (Barcelona, Spain); metoprolol 

tartrate by Ciba Geigy (Barcelona, Spain); propanocaine by Laboratorio Seid 

(Barcelona, Spain); propranolol hydrochloride by ICI Farma (Madrid, Spain); timolol 

maleate by Merck Sharp & Dohme (Madrid, Spain); and viloxazine hydrochloride by 

Astra Zeneca (Cheshire, UK). All racemic pesticides (benalaxyl, hexaconazole, 

imazalil, myclobutanil, metalaxyl and penconazole) were from Dr. Ehrenstofer 

(Augsburg, Germany). 

Stock standard solutions of compounds used in this study were prepared by 

dissolving 10 mg of the racemic mixture in 10 mL of methanol. Working solutions were 

prepared by dilution of the stock standard solutions using the mobile phase solution. 

The solutions were stored under refrigeration at 5°C. 
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2.3. Methodology for the chiral separation of compounds 

The experimental enantioresolution (Rs) values of the compounds listed in Table 

1 were obtained using an immobilised cellulose tris(3,5-dichlorophenylcarbamate) 

column (Chiralart Cellulose-SC; 3 μm, 150 × 4.6 mm i.d.; YMC Separation Technology 

Co., Ltd.; Tokyo, Japan). A ternary mixture consisting of ammonium acetate buffer (10 

mM, pH 8) / acetonitrile / diethylamine (60/40/0.1, v/v/v) was used as mobile phase. 

The mobile phase flow rate was 1.0 mL min−1 and the injection volume was 2 μL. The 

detection was performed in the UV at 220 nm for all compounds, except for 

ethopropazine, methotrimeprazine, promethazine and trimeprazine whose detection was 

performed at 254 nm. The column was thermostatted at 25 °C. 

 

2.4. Software and calculations 

Most of the structural variables used in this study were taken from the online 

ChemSpider chemical structure database [21] and were previously assayed in a study to 

anticipate the experimental enantioresolution of chiral compounds in electrokinetic 

chromatography using two sulfated cyclodextrins as chiral selectors [19, 20]. The first 

seven variables (x1 to x7) correspond to the C*-parameters. These parameters are 

calculated as the count of atoms/groups bonded to the chiral carbon (C*), for instance 

C*X (C*-heteroatoms) and C*hA (C*-aromatic heterocycles) [20]. Variables x8 to x25 

correspond to molecular descriptors predicted by ACD/Labs and ChemAxon 

calculations: minimal z length (zmin), molecular surface area (MSA), orbital 

electronegativity of the chiral carbon atom (OEC*) and surface tension (ST), among 

others. Variables x26 to x55 correspond to molecular topological parameters predicted by 

ChemAxon; for instance, aromatic ring count (Arc). In addition, from the molecular 
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descriptor logarithm of octanol–water partition coefficient (logP, from ACD/Labs), 

variable x56, two additional variables (x57 and x58), the apparent logP at a given pH 

(logD) and the molar total charge (), were calculated in this work at pH 8 (the working 

pH), using the following equations [22]: 

log 𝛿𝑖 = log (
𝛽𝑖ℎ𝑖

1 + 𝛽1ℎ + 𝛽2ℎ2 + ⋯ + 𝛽𝑖ℎ𝑖 + ⋯ + 𝛽𝑛ℎ𝑛
) 

(1) 

log 𝐷 = log 𝑃 + log 𝛿𝑖 (2) 

𝛼 = ∑ 𝑎𝑗𝛿𝑗

𝑛

𝑗=0

 
(3) 

In these equations, i is the molar fraction of the neutral form of the compound, 

h is the proton concentration (i.e. h = 10-8 M at pH 8.0), i is the protonation cumulative 

constant (for a polyprotic system, n = K1·K2·…·Ki·…·Kn), aj is the value with its sign 

of the net charge of the considered specie (i.e. -1, 0, +1, +2, …) and j the molar 

fraction of the considered specie at the considered pH. The values of the logarithm of 

the protonation constants (logK) used to calculate the molar fractions were taken from 

the literature [23]. 

It should be noted that logD is available from ACD/Labs only at pH 5.5 and 7.4, 

so we preferred to use eqs. 1 and 2 to perform the calculation at the experimental pH (8) 

used to obtain the enantioresolution data. On the other hand,  (eqs. 1 and 3), non-

included in the above-mentioned papers [19, 20], was introduced for the first time in 

this work as a potential predictor variable for enantioresolution. ACCEPTED M
ANUSCRIP
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Principal component analysis (PCA) and discriminant partial least squares, for 

one response categorical variable (DPLS1) models have been performed using The 

Unscrambler® v.9.2 multivariate analysis software [24]. 

During DPLS1 model refinement (variable selection stage), the predictive 

power, Pp, has been used as the optimization parameter to define the effective 

predictive ability of the model. Pp was calculated using the following equation [25]: 

Pp = 2EVCV – EV (4) 

where EV is the explained variance and EVCV its cross-validated value for the response 

variable. A value of Pp  55% has been considered acceptable for discriminant models 

[19]. 

 

3. Results and discussion 

3.1. Experimental and categorised enantioresolution 

Table 1 shows the experimental enantioresolution data (Rs) obtained using the 

screening procedure depicted in section 2.3 for the compounds studied (Table S1 in 

supplementary data includes the 2D structure of the compounds). Compounds are 

arranged according to their drug/pesticide families. In previous papers dealing with 

enantioresolution modelling in EKC, the modelling of categorised (RsC) instead of 

experimental Rs values were recommended [19, 20]. The use of a categorical RsC 

variable to be modelled and predicted fits the main aim of the present paper, which is 

just to anticipate whether a new compound will be enantioresolved or not in the 

chromatographic conditions assayed. So, the experimental Rs values were converted 

into categorised RsC values (see Table 1). Compounds showing baseline 
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enantioresolution (e.g. Rs ≳ 1.7; No = 1, 5, 6, 7, 8, 9, 23 and 24 in Table 1) were 

assigned to RsC = 1. The rest of compounds were assigned to RsC = 0, with the 

exception of propranolol (No 27; Rs = 1.4), for which an RsC = 0.5 was selected, taking 

into account that it is close to the baseline enantioresolution in these conditions.  

 

3.2. Structural influence (influential compounds) 

The detection and elimination of influential compounds with dissimilar structure 

is of utmost importance prior to developing any kind of model. These compounds could 

disturb the internal structure of latent variables of the further DPLS1 model, so they 

should be eliminated to avoid the alteration of structure-enantioresolution relationships. 

In order to detect possible influential compounds, a PCA analysis was performed (see 

details in supplementary data). For this purpose, the structural information described in 

section 2.4 were organised into a 3458 X-matrix. The options autoscaled data and 

leave-one-out (LOO) cross-validation were chosen. 

Figure 1A shows the PC1-PC2 bi-plot showing the scores (relationships between 

compounds) and loadings (relationships between variables). As can be observed, 

terfenadine and verapamil (No 22 and 33, respectively, in Table 1; whose scores are 

indicated in the plot) have differential scores in the direction of a superimposed axis 

(dashed line). This axis represents a large set of correlated variables related to the 

molecular size (e.g. variables x18, MSA and x23, MM). For instance, the molecular mass 

(MM) of the compounds No 22 and 33 are 471.70 and 454.60 Da, respectively. 

However, the rest of compound have MM values in the 238.33 to 336.43 Da range. The 

molecular surface area (MSA; from Chem Axon) is another example of molecular 

dissimilarity. Whereas MSA values of the compounds 22 and 33 are 780.90 and 797.90 

ACCEPTED M
ANUSCRIP

T



12 

 

Å^2, respectively, for the rest of compound are in the 374.70 to 579.98 Å^2 range. 

Thus, fixing threshold limits for one or two of these variables could enable to identify 

new influential compounds without the need to perform a new PCA analysis. 

Figure 1B shows the Influence plot (Residual vs. Leverage) for compounds. It 

confirms that terfenadine and verapamil are influential (high leverage), in agreement 

with the results obtained in previous papers [19, 20]. Influential compounds (with 

different structures from the majority) could disturb the structure-RsC relationship and 

should be eliminated. 

 

3.3. Modelling the structure-RsC relationship (DPLS1) and variable selection process 

DPLS1 modelling was selected to relate the structural data (X-matrix) to the RsC 

data (y-vector), as suggested in previous papers [19, 20]. To build the DPLS1 model, 

the influential compounds No 22 and 33 were omitted. As in the PCA analysis, 

autoscaled data and the LOO cross-validation options were used. 

Several criteria were adopted to optimise the model. Ideally, the model should fit 

the following goals: (i) A primary goal is to achieve full discrimination between the 

group of compounds with predicted RsC = 0 and 1, for the calibration outputs (all 

compounds in the model), and if possible, for the cross-validated outputs; (ii) The 

predictive power Pp has to be  55%, (the recommended level [19]); (iii) The optimal 

number of latent variables (ko) has to be close to 1, for instance, ko = 1 or 2 (ko = 1, is 

the ideal value here since there is just one response variable, RsC); (iv) The final model 

has to have significant or almost significant variables (i.e. b ± Ub does not include 

zero). 
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The initial DPLS1 model derived provided full discrimination between 

compounds having RsC = 0 and 1 in the calibration set (see Fig. S1 in supplementary 

data). Therefore, this initial model fits the primary goal of this work. However, some 

compounds were misclassified in the cross-validated outputs (mainly No 1 and 23, 

validation plot in Fig. S1). In addition, other negative aspects were also observed. A 

poor predictive power was obtained, Pp = 0, due to an excessive distance between EV 

and EVCV, 78.3% and 30.6%, respectively. This fact also justifies the differences in the 

prediction success rates between the calibration and cross-validated outputs. On the 

other hand, a value of ko = 4 was obtained (far from the ideal one), indicating an 

excessive model complexity. Finally, the scaled regression coefficients indicate that 

practically all the variables were non-significant, with the exception of x4 (C*hA), x57 

(logD) and x58 (α). These three variables will probably remain in the final model, but 

most of the rest would contribute negatively to the poor predictive ability of the current 

model. 

Model refinement (e.g. elimination of noisy variables, that is, those with the 

worst Ub/b ratios) has proven to be convenient in order to improve its performance. 

Also Pp has been proposed to control the progress of refinement instead of other more 

common parameters as EV or EVCV [19 and references therein]. In the present study, the 

process of model refinement was performed in two stages, due to the high number of 

variables. In addition, the Pp value was used as an indicator to control the quality of the 

model. 

In the first refinement stage, the elimination of noisy variables was carried out in 

turn in several steps, deleting up to 4 variables at each step. The process was stopped 

when the remaining variables in the model showed comparable importance (comparable 
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b ± Ub values). In this case, model refinement was stopped for 15 remaining variables. 

Figure 2 shows the evolution of the parameters ko and EV, EVCV and Pp while 

decreasing the number of variables into the model during this refinement stage. As can 

be expected, the values of Pp raise and ko decrease along the process, indicating an 

improvement in the quality of the model.  

On the other hand, as can be seen in Figure 2, the use of EV (related with the 

calibration set) to control the refinement progress is not adequate in this case. The 

model refinement from 35 to 31 remaining variables resulted in a decrease in the EV 

values, due to the change from ko = 4 to ko = 2. This decrease in the EV values suggests 

an apparent loss of predictive ability that would lead to incorrectly stopping the 

refinement process. EVCV seems to be a better diagnostic indicator. However, from 31 to 

24 remaining variables (with ko = 2), there is a stabilization of the parameter (even a 

little decrease) that would incorrectly suggest no further improvement, as in the case of 

EV. Therefore, Pp (relating both calibration and cross-validated outputs) is the best 

option to measure the improvement of the DPLS1 model. Pp also exhibits a higher 

relative slope (improvement) than EVCV. To the best of our knowledge, this is the first 

time that the superiority of Pp to control model refinement, compared with other more 

conventional criteria, is outlined. In fact, a high Pp value guaranties a short distance 

between calibration and cross-validated predictions (i.e. the model robustness) and, as a 

consequence, can assure the achievement of the primary goal mentioned above. 

In the second refinement stage, the elimination of variables was performed one 

by one, eliminating each time that one whose elimination greatly improved Pp, without 

affecting negatively the others consolidated rules. This stage was stopped when the 

elimination of any new variable worsen the quality of the model (Pp or any other 
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feature). Some technical details of the final model can be seen in supplementary data 

(Fig S2). Only nine variables, with acceptable b ± Ub values, remained in the final 

model: two chiral-topological parameters, x1 and x4 (C*X and C*hA, respectively), a 

molecular topological parameter, x36 (Arc) and six molecular descriptors, x11, x18 x21, 

x25, x57 and x58 (zmin, MSA, OEC*, ST, logD and , respectively). 

The model exhibited good discrimination between predicted RsC = 0 and 1 data 

for calibration, and cross-validated outputs. It exhibited, a Pp value of 56% (EV = 

78.4% and EVCV = 67.4%), with ko = 2, near to the ideal value. So, the model was 

considered satisfactory for the purpose of this work. The values of the variables 

included in the final model for the compounds studied are shown in Table 2. 

 

3.4. RsC-variables relationships 

The magnitude of the scaled regression coefficients (b-magnitude) reflects the 

importance of each selected variable to describe the enantioresolution. Positive b-values 

indicate positive contributions (i.e. a high value of the variable favours the 

enantioresolution) and vice versa. According to this, α (negative contribution) is the 

variable that contributes the most to enantioresolution since its coefficient doubles the 

importance over the other variables (see Fig S2 in supplementary data). Therefore, 

neutral and low charged compounds (α close to zero) have a priori the largest 

probability of enantioresolution. 

The other eight variables of the model have similar importance between them 

(similar coefficient magnitudes). This fact indicates that their contribution to the 

enantioresolution is almost equivalent. The absence of heteroatoms or aromatic 

heterocycles (C*X and C*hA; negative coefficients) directly linked to the chiral carbon 
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(C*), as well as the presence of the aromatic rings in the molecule (aromatic ring count 

(Arc); positive contribution), also improve the enantioresolution. In the same way, low 

zmin and MSA values and high OEC*, ST and logD values enhance the 

enantioresolution. It should be noted that logD but not logP was selected to obtain the 

final model. Thus, for ionisable compounds, the effective hydrophobicity, adjusted with 

the mobile phase pH, could contribute to improve the enantioresolution. 

As stated in the introduction section, the results obtained confirm that 

hydrophobic, electronic and steric factors are the main interactions responsible of 

enantiorecognition in polysaccharide-based stationary phases. 

As can be seen in Table 2, seven of the enantioresolved compounds (No = 5, 6, 

7, 8, 9, 23 and 24) have low α values (in the 0 – 0.33 range), while the majority of the 

non-enantioresolved compounds have α > 0.92. This behaviour is in agreement with that 

previously stated. However, for some compounds the contribution of the rest of 

variables becomes more important than the effect of α. For example, although 

nomifensine (No 1) has a relatively high α value (0.88; unfavourable for RsC), it is 

enantioresolved due to the combination of other favourable parameters (e.g. it has the 

lowest MSA value, 374.7 Å2). On the contrary, enantioresolution was not achieved for 

metalaxyl (No 10) despite being a neutral compound (α = 0; favourable for RsC). This 

molecule has, for instance, one C*X (the C*-N bound) and just one aromatic ring (Arc = 

1), among other non-favourable contributions (see Table 2). 

Figure 3 shows the final DPLS1 score plot. Scores are labelled by their ordered 

numbers (No in Table 1; Figure 3A), RsC values (Figure 3B, upper part) and their 

families (Figure 3C, lower part). As can be seen, compounds having RsC = 1 are located 

in the right space, which is logical attending the RsC position in the loading plot (Fig. 
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S2 in supplementary data). These points correspond to the family 2 (fungicides, except 

metalaxyl, No 10) and to two local anaesthetics and one antidepressant (families 4 and 

1, respectively). In the central part of the score plot, several families are mixed, all of 

them with RsC = 0. β-blockers (family 5, RsC = 0) are located in the left upper 

quadrant, except propranolol (No 27), the only compound close to the baseline 

enantioresolution (RsC = 0.5). Thus, the DPLS1 results are discreetly conditioned by the 

families of the compounds studied. 

 

3.5. Explicit model for enantioresolution anticipation 

In order to easily anticipate whether or not a new compound will be 

enantioresolved, a practical explicit model was derived from DPLS1. For this purpose, 

raw (de-scaled) coefficients were calculated from the scaled ones. The following 

equation was obtained (eq. 5): 

eRs = -1.28 - 0.14 C*X - 0.22 C*hA - 0.078 zmin - 0.0022 MSA + 0.25 OEC* + 

0.024 ST + 0.22 Arc + 0.072 logD - 0.57 α    (5) 

where eRs refers to an output related to Rs that should be seen as an indicative value 

since categorical Rs data were used to obtain the model. Figure 4 shows the eRs outputs 

obtained from eq. 5 vs the initial assigned RsC values (Table 1) for the compounds of 

the calibration set. 

To anticipate enantioresolution, eRs outputs have to be transformed into 

anticipated-RsC (aRsC) outputs, comparable to the categorical (RsC) levels previously 

stablished. For this purpose, as Figure 4 shows, it is necessary to apply the following 

rules: (i) aRsC = 1, full enantioresolution, for eRs > 0.5; (ii) aRsC = 0.5, almost full 
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enantioresolution, for eRs between 0.4 and 0.5 and (iii) aRsC = 0, poor or no 

enantioresolution, for eRs < 0.4.  

Alternatively, a simpler approach can be applied to establish if a molecule will 

be completely enantioresolved (aRsC = 1) or not (aRsC = 0). In this case, aRsC levels 

(0 or 1) are calculated by directly rounding the eRs values to integer numbers (without 

decimal digits). Table 2 shows the aRsC values obtained by applying this direct rule. 

Such anticipations are identical to those obtained by applying the previous rules, except 

for propranolol (RsC = 0.5) as expected. For this compound, this approach anticipates 

no full enantioresolution (aRsC = 0), which strictly agrees with the experimental result, 

Rs = 1.4. An anticipation success rate of 100% was obtained by comparing aRsC (Table 

2) and RsC assignations from experimental data (Table 1). 

 

3.6. Protocol for a safe aRsC anticipation and additional remarks 

A complete protocol to perform a safe aRsC anticipation for a new compound in 

the current conditions is: 

 Step-1a. Obtain MSA from ChemAxon (this value will be necessary in further 

steps). Optionally, obtain the molecular mass (MM). 

 Step-1b. If MSA is outside the 350 – 600 Å2  range the anticipation is not 

recommended (for more security, anticipation should not be done if MM is outside 

the 200 - 350 Da range). Otherwise, continue to the next steps. 

 Step-2a. Locate the chiral carbon (C*) in the 2D structure of the chiral compound. 

Find the presence or absence of C*-heteroatoms (C*X) and C*-aromatic 

heterocycles (C*hA) bonds. Assign a value to these parameters according to the 
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criteria: C*X presence (1); C*X absence (0); C*hA presence (1); C*hA absence (0). 

Count the aromatic rings in the whole molecule (Arc is also provided by 

ChemAxon). 

 Step-2b. Use ChemAxon to calculate the values of the variables zmin, MSA, OEC*, 

ST and pKa. From ACD/LogP estimate logP. 

 Step-2c. Calculate logD and α at pH 8, according to eqs. 1-3. 

 Step-3. Use eq. 5 to estimate eRs. Round this value to an integer number for a rapid 

anticipation of enantioresolution, (aRsC only 0 or 1). Alternatively, use the 

following criteria for a 3-level aRsC: baseline enantioresolution (aRsC = 1) if eRs > 

0.5, poor or non enantioresolution (aRsC = 0) if eRs < 0.4, and almost full 

enantioresolution (aRsC = 0.5) if eRs is in the 0.4 – 0.5 range. 

 

The LOO cross-validation strategy performed on the final DPLS1 model is 

virtually equivalent to the use of an external validation strategy [25]. Note that in this 

approach, the prediction, in turn, of each single compound (acting at that moment as an 

external validation sample), is made with a model very close to the final model (just 

excluding the compound to be predicted). 

On the other hand, to test the anticipative ability of the protocol with compounds 

non included to build the model, four molecules (fenfluramine, amlodipine, bupivacaine 

and bicalutamide), satisfying the step-1b of the protocol, were first anticipated and then 

chromatographed for experimental confirmation. Table 3 shows the values of the 

predictive variables, the anticipated output (aRsC; consistent with Step 3 of the 

protocol) and the corresponding experimental Rs values. In all cases, experimental 

enantioresolution values confirmed the anticipation. 
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The compounds included in this study are structurally unrelated (drugs and 

pesticides) compounds. Except fungicides (compounds No 5-10), which are neutral, all 

are basic compounds, most of them fully ionised at pH = 8.0. A priori, the anticipation 

protocol should be applicable for compounds of similar nature, in experimental 

conditions similar to those used in this study (section 2.3). 

 

4. Conclusions 

Structural information of structurally unrelated chiral compounds can be 

connected with experimental enantioresolution data in HPLC obtained using 

immobilised cellulose tris(3,5-dichlorophenylcarbamate) column in reversed phase 

conditions. Safe anticipation of the categorised (i.e. favourable/unfavourable) 

enantioresolution is possible. It requires a precise discriminant PLS-based (DPLS1) 

multivariate study; i.e. combining scaled regression coefficients and their uncertainty 

intervals with the predictive power (Pp) values for a consistent model refinement. Such 

study provides double valuable information: (i) the variables more informative and their 

contribution (positive or negative) to the enantioresolution of a compound (descriptive 

function), and (ii) an explicit equation to anticipate its enantioresolution (predictive 

function). 

From 58 initial structural variables, three topological parameters (two of them 

connected to the chiral carbon), and six molecular descriptors (one of them also related 

with the chiral carbon), are selected after a discriminant partial least squares refinement 

process. The topology surrounding the chiral carbon is a relevant aspect on 

enantioresolution. However, in this case, the molar total charge, which depends on the 

mobile phase pH (α), becomes the most important descriptor. Accordingly, the 
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enantioresolution of neutral or low charged basic compounds is favoured. On the other 

hand, the model discriminates between two of the families studied, fungicides and β-

blockers. 

A stepwise protocol facilitates the anticipation of the enantioresolution without 

the need of the previous derived models. It includes threshold limits, based on the 

topological parameter aromatic ring count, to detect influential compounds whose 

anticipation becomes risky. Applying the protocol, an anticipation success rate of 100% 

for the compounds studied is obtained, when compared with the experimental results. 

The high Rs-anticipation effectiveness found suggests that the strategy could serve for 

other RPLC or in general HPLC chiral methods. 

Finally, for a given chiral selector, the experimental enantioresolution values 

depend on the chiral stationary phase features (batch, immobilisation chemistry, 

supplier, etc.). This is the main reason why a categorical instead of quantitative Rs 

variable is used in this work. It is expected that the qualitative output (aRsC = 0 or 1) 

proposed could be transferred to other columns, although it should be confirmed with 

experimental results. 
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Figure captions 

Fig. 1. Unscrambler® PCA results. (A) PC1-PC2 bi-plot showing the scores 

(relationships between compounds; +) and loadings (relationships between variables; 

). (B) Influence plot (Residual vs. Leverage) for the compounds studied. 
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Fig. 2. DPLS1 outputs as a function of the number of remaining variables in the model 

during the first stage of the refinement process. Explained (EV, ) and cross-validated 

(EVCV, +) variance values for the response variable, predictive power (Pp, ) and 

optimal number of latent variables (ko, ─). 

 

 

Fig. 2. 

 

Fig. 3. Final (refined) DPLS1 score plot. Compounds are labelled by their (A) 

numbered order (No), (B) categorical enantioresolution (RsC) and (C) drug/pesticide 

family. See further details in Table 1. 
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Fig. 4. Enantioresolution discriminant ability of eq. 5. Estimates from eq. 5 (eRs 

outputs) vs. RsC values from Table 1. Horizontal lines at 0.4 and 0.5 separate the three 

initial RsC levels (0, 0.5 and 1). 
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Table 1 

Experimental enantioresolution data (Rs). Compounds are identified by their name and numbered order 

(No). Categorical enantioresolution (RsC) levels are assigned according to the experimental observations: 

RsC = 1 if Rs > 1.7; otherwise, RsC = 0 (with the exception of propranolol; RsC = 0.5 since Rs = 1.4). 

Structural influence investigated by principal components analysis (PCA). The 2D molecular structure 

can be seen in Table S1 (Supplementary data). 

Name No Family a Rs RsC 
Structural 
influence b 

Nomifensine 1 1 6.5 1  

Citalopram 2 1 0.9 0  

Fluoxetine 3 1 0 0  

Viloxazine 4 1 0 0  

Benalaxyl 5 2 6.3 1  

Imazalil 6 2 3.7 1  

Penconazole 7 2 3.6 1  

Hexaconazole 8 2 2.7 1  

Myclobutanil 9 2 1.7 1  

Metalaxyl 10 2 0 0  

Trimeprazine 11 3 0.5 0  

Doxylamine 12 3 1.0 0  

Brompheniramine 13 3 0.6 0  

Chlorpheniramine 14 3 0.5 0  

Orphenadrine 15 3 0.3 0  

Carbinoxamine 16 3 0 0  

Clemastine 17 3 0 0  

Ethopropazine 18 3 0 0  

Hydroxyzine 19 3 0 0  

Methotrimeprazine 20 3 0 0  

Promethazine 21 3 0 0  

Terfenadine 22 3 0 0 Influential 

Mepivacaine 23 4 2.2 1  

Propanocaine 24 4 2.2 1  

Prilocaine 25 4 0.7 0  

Pindolol 26 5 0 0  

Propranolol 27 5 1.4 0.5  

Metoprolol 28 5 0.3 0  

Acebutolol 29 5 0 0  

Atenolol 30 5 0 0  

Salbutamol 31 5 0 0  

Timolol 32 5 0 0  

Verapamil 33 6 0.6 0 Influential 

Methadone 34 7 1.0 0  

a Drug/Pesticide families: 1 (antidepressants), 2 (fungicides), 3 (antihistamines), 4 (local anaesthetics), 5 (β-blockers), 

6 and 7 (other families of drugs). 
b Influential compounds (with dissimilar structure) are not used to build the discriminant model. 
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Table 2 

Variables selected in the final discriminant partial least squares (DPLS1) model: heteroatoms linked to 

the chiral carbon (C*X), aromatic heterocycles linked to the chiral carbon (C*hA), minimal z length 

(zmin), molecular surface area (MSA), orbital electronegativity of the chiral carbon atom (OEC*), surface 

tension (ST), aromatic ring count (Arc), apparent logarithm of octanol–water partition coefficient (logD) 

and molar total charge (). Their contribution sign to the enantioresolution is indicated in brackets. 

Anticipated-RsC values (aRsC) after rounding the eRs outputs (eq. 5) to integer values. 

No C*X (-) C*hA (-) zmin (-) MSA (-) OEC* (+) ST (+) Arc (+) logD (+) α (-) aRsC 

1 0 0 7.05 374.70 8.42 46.60 2 1.22 0.88 1 

2 1 1 10.86 499.26 9.10 49.90 2 0.72 0.98 0 

3 1 0 8.89 449.60 8.83 33.00 2 2.28 0.98 0 

4 1 0 7.40 391.60 8.86 36.80 1 0.69 0.61 0 

5 1 0 9.68 520.10 8.97 44.50 2 3.88 0.00 1 

6 1 0 7.71 382.90 8.92 40.80 2 3.56 0.06 1 

7 0 0 7.66 389.70 8.25 42.90 2 3.66 0.00 1 

8 0 0 8.17 432.90 9.00 46.10 2 3.66 0.00 1 

9 0 0 8.56 423.80 8.92 44.70 2 2.82 0.00 1 

10 1 0 9.14 459.43 8.48 40.50 1 2.15 0.00 0 

11 0 0 7.69 469.40 7.82 43.50 2 3.54 0.96 0 

12 1 1 8.79 463.90 9.23 39.30 2 1.60 0.88 0 

13 0 1 9.32 432.60 8.58 43.10 2 2.08 0.97 0 

14 0 1 9.29 428.51 8.58 42.10 2 1.91 0.97 0 

15 1 0 8.73 467.00 8.99 38.00 2 3.20 0.88 0 

16 1 1 9.53 444.30 9.15 43.00 2 1.84 0.88 0 

17 1 0 9.62 549.20 9.06 39.70 2 4.13 0.97 0 

18 1 0 8.29 500.40 8.17 42.90 2 4.23 0.98 0 

19 1 0 7.78 579.98 8.54 47.80 2 1.81 0.40 0 

20 0 0 9.86 518.60 7.82 42.80 2 3.50 0.96 0 

21 1 0 8.61 439.30 8.16 44.10 2 3.69 0.92 0 

23 1 0 6.44 423.60 8.76 44.00 1 1.86 0.33 1 

24 1 0 7.76 522.70 8.86 41.10 2 5.30 0.25 1 

25 1 0 8.42 387.30 8.72 38.50 1 1.49 0.44 0 

26 0 0 6.92 399.50 8.83 47.50 2 -0.57 1.86 0 

27 0 0 8.31 426.90 8.83 42.70 2 1.63 0.97 0 

28 0 0 6.50 474.70 8.83 37.10 1 0.11 0.98 0 

29 0 0 6.86 560.30 8.83 43.20 1 0.37 0.97 0 

30 0 0 5.96 440.41 8.83 45.00 1 -1.58 0.98 0 
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31 0 0 6.38 405.96 8.84 49.20 1 -1.41 0.96 0 

32 0 0 7.75 497.99 8.83 52.50 1 -1.09 0.98 0 

34 1 0 10.05 540.01 8.31 37.10 2 3.05 0.93 0 

 

 

Table 3 

Application of the protocol to obtain anticipated enantioresolution values (aRsC) for new compounds non 

included to build the model and experimental enantioresolution values (Rs). See further details for other 

variables in Table 2. 

Compound 
C*X 

(-) 

C*hA 

(-) 

zmin 

(-) 

MSA a 

(-) 

OEC* 

(+) 

ST 

(+) 

Arc 

(+) 

logD 

(+) 

α 

(-) 
eRs b aRsC Rs 

Fenfluramine 1 0 8.79 359.91 8.05 26.30 1 0.83 0.99 < 0.4 0 0 

Amlodipine 0 0 11.71 570.90 8.42 44.40 1 2.71 0.96 < 0.4 0 0.6 

Bupivacaine 1 0 8.21 517.09 8.82 41.60 1 3.30 0.50 < 0.4 0 0.8 

Bicalutamide 1 0 6.99 527.46 9.44 58.20 2 4.94 0 > 0.5 1 1.7 

a Step-1b criterion. MSA values are in the 350 – 600 Å2 range (anticipation can be performed). 
b Step-3 criterion. eRs outputs from eq. 5 used for anticipating aRsC: baseline enantioresolution (aRsC = 1) if eRs > 

0.5 and poor or non enantioresolution (aRsC = 0) if eRs < 0.4. 
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