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Resumen

Resumen

El cacao es un producto de alto valor, no unicamente por sus caracteristicas
sensoriales, sino porque también presenta un alto contenido en antioxidantes y
alcaloides estimulantes con efectos saludables. Debido a la alta demanda, la industria
del cacao en polvo tiene el desafio de asegurar la calidad de grandes volimenes de
produccion de una manera rapida y precisa, evitando la presencia de contaminantes
o adulterantes en la materia prima, ofreciendo productos donde se preserven las
propiedades saludables. La espectroscopia del infrarrojo cercano (NIR) es una
tecnologia rapida y no destructiva util en el analisis de productos alimentarios. La
presente tesis doctoral se centra en evaluar el potencial uso del NIR como una
herramienta de control de calidad con el fin de poder resolver problemas que se
presentan en la industria del cacao en polvo. Los problemas a resolver incluyen la
deteccion de materiales no deseados o adulterantes en el cacao en polvo, y la
monitorizacioén rapida y precisa del contenido de flavanoles y metilxantinas del
cacao en polvo durante el proceso de alcalinizacion. El primer capitulo evalua la
viabilidad del NIR, en combinacion con analisis quimiométricos, en la deteccion de
la presencia de materiales no deseados o adulterantes como son cascarilla de cacao
o harina de algarroba. Para ello, diferentes muestras de cacao en polvo natural y con
diferentes niveles de alcalinizacion (suave, medio y fuerte) fueron mezcladas con
distintas proporciones de cascarilla de cacao (con cacao natural) o harina de

algarroba (con cacao natural y alcalinizado).

Los resultados obtenidos indican que el NIR, combinado con modelos
estadisticos tales como el analisis discriminante por minimos cuadrados parciales
(PLS-DA) y la regresion parcial de minimos cuadrados (PLS), es un método rapido
y eficaz para identificar cualitativa y cuantitativamente materiales no deseados o
adulterantes como la cascarilla y la algarroba en cacao en polvo, independientemente

del grado de alcalinizacion o el nivel de tostado de la harina de algarroba. Mediante
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PLS-DA, para el estudio de la mezcla de polvo de cacao con cascarilla de cacao, el
92,5% de las muestras se clasificaron correctamente en dos grupos: muestras con un
contenido de cascarilla inferior al 5% (considerado el limite de aceptacion en polvo
de cacao por el Codex Alimentarius) y contenidos de cascarilla entre 5 y 40%. En el
estudio de la adulteracion de cacao en polvo con harina de algarroba, el 100% de las
muestras se clasificaron correctamente en tres grupos: cacao, harina de algarroba y
mezclas. En ambos estudios, fue posible calcular el porcentaje de adulterante y
material no deseado presente en las muestras mediante la construccion de modelos
de regresion PLS. En relacion a la cascarilla de cacao, el mejor modelo de prediccion
PLS se obtuvo con 1 LV con un R* de 0,975 y 0,967, respectivamente, y un error
cuadratico medio de 1,91 y 2,43%, para los conjuntos de calibracion y validacion
externa, respectivamente. Para el estudio de adulteracion con harina de algarroba, el
modelo de regresion PLS se obtuvo con 1 variable latente (LV) con un R* de 0,980
y 0,974, y un error cuadratico medio de 2,9 y 3,2% para los conjuntos de calibracion

y validacion externa, respectivamente.

En el segundo capitulo, el andlisis composicional del cacao en polvo se orientd
al control de los cambios producidos en el contenido de flavanoles y metilxantinas
debidos al proceso de alcalinizacion al que se somete el caco en polvo. Se determind
el contenido de catequina, epicatequina, cafeina y teobromina mediante
cromatografia liquida de alta resoluciéon (HPLC), correlacionandose los contenidos
obtenidos para cada uno de estos compuestos con las determinaciones NIR. Se
obtuvieron buenos modelos para la prediccion de los compuestos mediante regresion
PLS con valores superiores a 3 para la relacion entre el rendimiento y la desviacion
(RDP), lo cual demuestra que los modelos obtenidos pueden ser utilizados para la
rapida y fiable prediccion del contenido de flavanoles y metilxantinas en cacaos

naturales y con diferentes niveles de alcalinizacion.
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Resum

El cacau és un producte d'alt valor, no sols per les seues caracteristiques
sensorials, sin6 perque també presenta un elevat contingut en antioxidants i alcaloids
estimulants amb efectes saludables. A conseqiiencia a 1'alta demanda, 1'industria del
cacau en pols té el desafiament d'assegurar la qualitat de grans volums de produccié
d'una manera rapida i precisa, evitant la preséncia de contaminants o adulterants en
la matéria cosina, oferint productes a on se preserven les propietats saludables.
L'espectroscopia de l'infrarroig proper (NIR) és una tecnologia rapida i no
destructiva util en l'analisi de productes alimentaris. La present tesis doctoral se
centra en avaluar el potencial s del NIR com una eina de control de qualitat amb
I’objectiu de poder resoldre problemes que es presenten en l'industria del cacau en
pols. Els problemes a resoldre inclouen la deteccido de materials no desitjats o
adulterants en el cacau en pols, i la monitoritzaci6 rapida i precisa del contingut de
flavanols 1 metilxantines del cacau en pols durant el procés d'alcalinitzaci6. El primer
capitol avalua la viabilitat del NIR, en combinaci6é amb analisis quimiométrics, en la
deteccio de la preséncia de materials no desitjats o adulterants com sén pellofa de
cacau o farina de garrofa. Per a aix0, diferents mostres de cacau en pols natural i amb
diferents nivells d'alcalinitzaci6 (suau, mig i fort) foren barrejades en distintes
proporcions de pellofa de cacau (en cacau natural) o farina de garrofa (en cacau

natural i alcalinisat).

Els resultats obtinguts per a NIR, combinats amb models estadistics com
I’analisi discriminant per minims quadrats parcials (PLS-DA) i la regressio parcial
de minims quadrats (PLS), és un meétode rapid i eficag per identificar materials no
desitjats o adulterants com la pellofa de cacau o la farina de garrofa, amb
independéncia del grau d’alcalinitzaci6 del cacau o de torrat de la farina de garrofa.
Mitjancant PLS-DA, per a l'estudi de la barreja de pols de cacau amb pellofa de

cacau, el 92,5% de les mostres es classifiquen correctament en dos grups: mostres
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amb un contingut de pellofa inferior al 5% (considerat el limit de acceptacio en pols
de cacau pel Codex Alimentarius) i continguts de pellofa entre 5 1 40%. A I’estudi
d’adulteraci6 de cacau en pols amb farina de garrofa, el 100% de les mostres es
classifiquen correctament en tres grups: cacau, farina de garrofa i mescles. En
ambdos estudis, s’ha pogut calcular el percentatge d’adulterant o material no desitjat
present a les mostres mitjancant la construccié de models de regressio PLS. En
relacid amb la pellofa de cacau, el millor model de prediccio PLS s’ha obtingut amb
1 variable latent (LV), amb R* de 0,975 i 0,967, i un error quadratic medi d’1,91 i
2,43%, per als conjunts de calibratge 1 validacidé externa, respectivament. Per a
l'estudi d’adulteracié amb farina de garrofa, el model de regressié PLS s’obté amb
una variable latent (LV) amb un R? de 0.980 i 0.974, i un error correcte mitja de 2,9

13,2% per als conjunts de calibraci6 1 validacid externa, respectivament.

En el segon capitol, I'analisi composicional del cacau en pols s'orienta al control
dels canvis produits en el contingut de flavanols 1 metilxantines a causa del procés
d'alcalinitzaci6 al que se sotmet el cacau en pols. Es va determinar el contingut de
catequina, epicatequina, cafeina i teobromina mitjangant cromatografia liquida d'alta
resolucio (HPLC), i es van correlacionar els continguts obtinguts per a cadascun
d'estos composts amb les determinacions NIR. Es van obtindré bons models per a la
prediccio dels composts mitjangant regressié PLS amb valors superiors a 3 per a la
relacid entre el rendiment i la desviacié (RDP), la qual cosa demostra que els models
obtinguts poden ser emprats per a la rapida i fiable prediccid del contingut de

flavanols i1 metilxantines en cacaus naturals o amb diferents nivells d'alcalinitzacio.
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Cocoa is a product of high value, not only because of its sensory characteristics,
but also because it has a high content of antioxidants and stimulating alkaloids with
health effects. Due to the high demand, the cocoa powder industry has the challenge
of ensuring the quality of large volumes of production in a fast and accurate way,
avoiding the presence of contaminants or adulterants in the raw material, offering
products where the healthy properties are preserved. The near infrared spectroscopy
(NIR) is a rapid and non-destructive technology useful in the analysis of food
products. The present doctoral thesis focuses on evaluating the potential use of NIR
as a quality control tool in order to solve problems that arise in the cocoa industry
powdered. The problems to solve include the detection of unwanted materials or
adulterants in the cocoa powder, and the rapid and accurate monitorization of the
flavanols and methylxanthines content in the cocoa powder during the alkalization
process. The first chapter evaluates the viability of the NIR, in combination with
chemometric analysis, in the detection of presence of unwanted materials or
adulterants such as cocoa shell or carob flour. For this, different samples of natural
cocoa powder and with different levels of alkalization (light, medium and strong)
were mixed with different proportions of cocoa shell (with natural cocoa) or carob

flour (with natural and alkalized cocoa).

The results obtained indicate that the NIR combined with statistical models such
as the partial least squares discriminant analysis (PLS-DA) and the partial least
squares regression (PLS), is a fast and efficient method to identify qualitative and
quantitative unwanted materials or adulterants such as shell and carob in cocoa
powder, regardless of the degree of alkalization or level of roasting of carob flour.
By PLS-DA analysis, for the study of the adulteration with cocoa shell, 92.5% of the
samples were correctly classified into two groups: samples with a shell content of

less than 5% (considered the acceptance limit in cocoa powder by the Codex
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Alimentarius) and shell contents between 5 and 40%. In the study of the adulteration
of cocoa powder with carob flour, the 100% of the samples were correctly classified
into three groups: cocoa, carob flour and mixtures. In both studies, was possible to
calculate the percentage of adulterant and non-wanted material present in the
samples by means of the construction of PLS regression models. In relation to cocoa
shell, the best PLS prediction model was obtained with 1 LV, with an R* of 0.975
and 0.967, respectively, and an average square error of 1.91 and 2.43%, respectively.
For the study of adulteration with carob flour, the PLS model was obtained with 1
latent variable (LV), with an R* of 0.980 and 0.974, and a root mean square error

(RMSE) 0f 2.9 and 3.2% for the calibration and external validation sets, respectively.

In the second chapter, the compositional analysis of cocoa powder was oriented
to the control of the changes produced in the content of flavanols and
methylxanthines due to the process of alkalization to which the cocoa powder is
subjected. The content of catechin, epicatechin, caffeine and theobromine were
determined by high performance liquid chromatography (HPLC), correlating the
contents obtained for each of these compounds with the NIR determinations. Good
models were obtained for the prediction of compounds by regression PLS with
values above 3 for the ratio of performance to deviation (RDP), which shows that
the obtained models can be used for the quick and reliable prediction of flavanol

content and methylxanthines in natural cocoas and with different alkalization levels.
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PREFACE

This thesis forms part of the project “Estudio de la relacion entre variables de
procesado y cambios en la composicion nutricional y perfil funcional del cacao en
polvo. Desarrollo de una metodologia predictiva aplicada al procesamiento (RTC-
2016-5241-2)”, funded by the MINISTERIO DE ECONOMIA Y EMPRESA -
AGENCIA ESTATAL DE INVESTIGACION.

The general objective of this project is to develop a predictive methodology for

the process variables that lead to a specific final product from a specific raw material.
For this purpose, the relationship between the processing variables and the
changes in the nutritional composition and functional profile of cocoa powder might

be studied.

To achieve this general objective different specific objectives have been
proposed, among which the objective of this thesis is included. This is "to develop
rapid methods of analysis that allow to predict the origin of a sample and its behavior

during an alkalization process from optical measurements".

The thesis is structured in six sections: introduction, objectives, scientific
contribution, general discussion, conclusions and future perspectives. The
introduction section focuses on a review of the conventional and alternative methods
used for the quality and authenticity control in the cocoa industry. The objectives
section presents the general and specific objectives of the thesis. The scientific
contribution section is divided in two chapters, the chapter 1, Identification of cocoa

components out of normative limits or non-declared ingredients in cocoa powders,
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and the chapter 2, Prediction of the content of bioactive compounds of cocoa

powders.

The chapter 1 is devoted to the application of NIR spectroscopy and
chemometric algorithms to the quantitative and qualitative determination of cocoa
shell and carob powder in cocoa powders.

The results included in this chapter have been published into 2 articles:

e ARTICLE I. Fast detection of cocoa shell in cocoa powders by near

infrared spectroscopy and multivariate analysis.

o ARTICLE II. Rapid fraud detection of cocoa powder with carob flour

using near infrared spectroscopy

In chapter 2, the content of some of the main bioactive compounds of cocoa
powders, which are flavanols (catechin and epicatechin) and methylxanthines
(caffeine and theobromine) in natural and alkalized cocoa powders was established
by high-performance liquid chromatography in order to study the influence of cocoa
alkalization in their content. Next, these contents were predicted by means of NIR

data and chemometrics.

The results included in this chapter are now considered for their publication in

1 article;

o Article III. Changes in methylxanthines and flavanols during cocoa
powder processing and its quantification by near-infrared

spectroscopy.

The general discussion, conclusions, and future perspectives sections presents

a short general discussion proposal for further possible studies.
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Abstract

Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma,
color and healthy properties, and are commodities of high economic value
worldwide. Wide ranges of conventional methods have been used for years to
guarantee cocoa quality. Recently however, demand for global cocoa and the
requirements of sensory, functional and safety cocoa attributes have changed. On the
one hand, society and health authorities are increasingly demanding new more
accurate quality control tests, including not only the analysis of physico-chemical
and sensory parameters, but also determinations of functional compounds and
contaminants (some of which come in trace quantities). On the other hand, increased
production forces industries to seek quality control techniques based on fast,
nondestructive online methods. Finally, an increase in global cocoa demand and a
consequent rise in prices can lead to future cases of fraud. For this reason, new
analytes, technologies and ways to analyze data are being researched, developed and
implemented into research or quality laboratories to control cocoa quality and
authenticity. The main advances made in destructive techniques focus on developing
new and more sensitive methods chromatographic analysis to detect metabolites and
contaminants in trace quantities. These methods are used to: assess cocoa quality;
study new functional properties; control cocoa authenticity; or detect frequent
emerging frauds. Regarding to non destructive methods, spectroscopy is the most
explored nondestructive technique, which is conducted within the near infrared
range, and also within the medium infrared range to a lesser extent. It is applied
mainly in the postharvest stage of cocoa beans to analyze different biochemical

parameters or to assess the authenticity of cocoa and its derivatives.

Keywords: Cocoa quality roadmap, Chemometrics, authenticity control,

nondestructive methods, multivariate analysis.
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Practical Application:

Recent trends in the cocoa sector (increased quantity and quality demands, new
technical specifications, emerging functional properties, global food quality control
trends, such as fast, non-destructive online methods) mean that the cocoa industry
has new analysis requirements. This work aims to guide researchers and quality
control technicians to the possibilities available today to control cocoa quality and
authenticity in the fastest most reliable way to make cocoa production more efficient,

safe, fast and innovative.
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1. Introduction

Cocoa (Theobroma cacao L.) is a commodity of high economic value
worldwide. Most of its production comes from West African countries (mainly the
Ivory Coast and Ghana, which account for approximately 60% of the world’s total
cocoa), but is usually processed in the European Union (1.3 million tons or 40% of
the global processing market in 2014). Apart from the Europen Union, cocoa beans
are also processed in Indonesia, EEUU and Brazil in significant quantities (CBI,
2016; Shavez, Ahmad, Jan, & Bashir, 2017; ICCO, 2019).

In the different producing areas, three main distinct varieties are produced. The
most ancient and most appreciated chocolate manufacturer variety is called Criollo
(which means native), and is that traditionally cultivated by the Aztecs and Mayans
in Central and South America. Later a new variety that better resists diseases and
pests, called Forastero (meaning foreign), was taken from Amazon regions to other
cocoa-growing areas in Latin America, and was exported to other West Africa and
East Asia countries. Finally, in order to combine the advantages of Forastero and the
appreciated fine flavor of Criollo, a new hybrid variety was harvested, known as
Trinitario. Besides these varieties, the Nacional variety, which is generally
considered native to Ecuador, is receiving more attention in the cocoa market for its
sensory properties (Crouzillat et al., 2000). Each variety has specific sensorial
characteristics that are related to its origin, environmental conditions and
fermentation (Chetschik et al., 2018; Loullis & Pinakoulaki, 2018). Forastero is
considered a bulk variety, while Criollo, Trinitario and Nacional are considered fine
varieties. Bulk cocoas usually possess strong harsh flavors, while fine cocoas are
perceived as being more aromatic or smoother (Counet et al., 2004). Growing
conditions and postharvest practices can condition the final features of cocoa pods
and, thus, of cocoa products (ADM Cocoa Manual, 2006). Therefore, knowing the
variety and geographical indication of the cocoa beans used as raw material to
produce different cocoa products is becoming increasingly more important as it can

condition the final quality and, hence, cocoa prices.
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Regardless of cocoa variety, cocoa beans are subjected to different postharvest
and industrial processes to obtain distinct cocoa products (Di Mattia et al., 2014,
Aprotosoaie, Luca, & Miron, 2016). The first steps include cocoa bean fermentation
and drying (Suazo, Davidov-Pardo, & Arozarena, 2014). Next fermented and dried
cocoa beans undergo several industrial processes. Bean shelling provides nibs and
the first subproduct: shells (Tan & Kerr, 2018). Nibs can be roasted and milled to
obtain cocoa liquor (Ioannone et al., 2015). When cocoa liquor is pressed, two
products are obtained: cocoa butter and cocoa cake (Oliviero, Capuano, Ca, &
Fogliano, 2009). Finally, cocoa cake undergoes another milling step to provide cocoa
powder. Optionally, another important step to develop color and flavor, called
alkalization or dutching process, can be performed in different cocoa products: cocoa
nibs, cocoa cake or cocoa powder (Pérez-Esteve, Lerma-Garcia, Fuentes, Palomares,
& Barat, 2016). Alkalization is normally carried out by adding sodium or potassium
carbonate at high temperature and controlled pressure. According to the final pH,
cocoa powders can be classified into natural (pH 5-6), light-alkalized (pH 6-7.2),
medium-alkalized (pH 7.2-7.6) and strong-alkalized powders (pH > 7.6) (Miller et
al., 2008). Light-alkalized cocoa powders are light brown, but darker than natural
ones, and their flavor is less astringent and less acidic than those of natural powders.
Strong-alkalized cocoa powders are very dark and have a much stronger flavor than
medium-alkalized ones (Kostic, 1997). A summary of all these processes is shown
in Figure 1.

If cocoa bean quality is poor, the quality of the final products will be worse. So
over the years, the cocoa industry has defined different relevant aspects, such as the
physical characteristics with a direct bearing on manufacturing performance or
flavor which, over time, have become the commercial standards employed

worldwide.
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Cocoa Butter
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cocoa <
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Figure 1. Cocoa and derivatives flow processing chart. Alkalization ways:

black (nibs), red (cocoa cake), natural cocoa powder (blue).

These commercial standards for cocoa beans, cake or chocolate usually include
parameters related to physico-chemical parameters and compositional features (see
Table 1). These evaluations aim to obtain a product that combines ideal aroma,

flavor, color, technological behavior and functional compounds.
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Table 1: General quality attributes of cocoa beans, chocolate and cocoa powders.

Quality Details Observation
attributes

Cocoa beans

Size <100
(#beans/100g) - Standard beans
101-110 Medium beans
111-120 Small beans
> 120 Very small beans
Variable-sized beans are harder
Uniformity to break and deshell
Fermentation 5% slaty, 5% defectiveness Good fermented
10% slaty, 10% defectiveness Fair fermented
Moisture <8% Aceptable

According to authority

: Under limits
regulations

Chemical residues

Chocolate and
cocoa powders
Fat content Characteristic
Low in free fatty acids, show
Fat quality characteristic melting and
solidification properties
Without moldy oft-flavors,
smoky taints, acidic off-

Aroma and flavor flavors, proximity to another Characteristic
strong-smelling products

Color Characteristic

Cocoa powder

Solubility 95% Good solubility

Shell content < 5% in fat free-dry cocoa Aceptable

CAOBISCO-ECA-FCC (2015), ADM Cocoa Manual (2006)

This goal is fulfilled by assessing the physico-chemical cocoa characteristics in
raw material and its derivatives in each processing stage (Miller et al., 2006). Indeed,
each processing stage comprises key quality control processes that should be

addressed to obtain high quality cocoa products. For example, the fermentation
8
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control in the postharvest stage is crucial for the formation of aromatic compounds
to form (Aculey et al., 2010), and further quality control points should be set to
guarantee quality requirements (e.g. fat content, moisture, etc.) while drying,
industrial roasting and alkalization cocoa processes.

Apart from its nutrients, technological properties pleasant flavor, aroma and
color, cocoa is also known for offering many health benefits (Bonvehi, 2005)
because it is an excellent source of antioxidants (Langer, Marshall, Day, & Morgan,
2011). Many different bioactive compounds are present in cocoa, such as
polyphenols, mainly flavonoids (flavanols, procyanidins, and anthocyanins) and
methylxanthines (caffeine, theobromine) (Talbot, Mensink, Smolders, Bakeroot, &
Plat, 2018), among others. These phytochemicals can be present at different
concentrations depending on diverse factors like cocoa variety and cocoa processing,
which can lead to the presence of new bioactive compounds. For example, cocoa
roasting is a precursor for the formation of heterogeneous high-molecular-weight
polymers known as "melanoidins", which are related to antihypertensive and
antioxidant properties (Quiroz-Reyes & Fogliano, 2018).

Cocoa phytochemicals are an excellent ally to prevent cardiovascular and other
chronic diseases, which are the main cause of mortality in Western countries
(Gianfredi, Salvatori, Nucci, Villarini, & Moretti, 2018; Martin & Ramos, 2017). It
has been shown that cocoa’s lipid profile balance is beneficial given the presence of
stearic acid, which is a saturated fatty acid present in high proportions in cocoa butter
(ca. 35%). The behavior of this fatty acid is unusual because, despite being a
saturated fat, it behaves like an unsaturated one and has a neutral effect on blood
cholesterol levels (Torres-Moreno, Torrescasana, Salas-Salvado, & Blanch, 2015).

Polyphenols, especially epicatechin, perform neuroprotective and
neuromodulatory action. The former action is associated with the prevention and
reduction of neurological, cognitive and functional brain diseases (Alzheimer's,
Parkinson's and senile dementia). The second action is related to cognition, humor,

learning and memory skills (Ishaq & Jafri, 2017). These healthy cocoa benefits
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promote its employment as a basic ingredient used by the pharmaceutical and
cosmetic industries (APEDA, 2015; Oracz, Nebesny, & Zyzelewicz, 2015).

Based on cocoa’s, and therefore on chocolate’s. sensory attributes and
functional properties, it is not surprising that global cocoa demand is increasing.
Demand for cocoa is predicted to rise by 30% by 2020, which equals the present
production output of the Ivory Coast (1 million tons) (Afoakwa, Quao, Takrama,
Budu, & Saalia, 2013; Shavez et al., 2017). The extent of this growth is such that
without empowering and investing in small-scale farmers, the industry will struggle
to provide sufficient supply. This increasing cocoa demand, volatile prices and the
uncertain global cocoa production, which is at risk due to climate change, can lead
to cases of cocoa adulteration.

In this context, the development of new and faster analysis methods is not only
essential for guaranteeing quality specifications and costumers requirements, or for
process control purposes; but also important to explore new properties of cocoa
products and to detect new frauds attempting food safety and cocoa authenticity.
Therefore, the goal of this review is to provide a comprehensive insight into both
traditional and fast nondestructive technologies that might be used in the cocoa
industry to assess cocoa composition and quality, to study new cocoa properties and

to detect frequent and emerging frauds.

2. Determination of cocoa components

2.1 Major components

Cocoa compounds, such as fat, nitrogenous compounds, protein, moisture, ash
and fiber, are usually evaluated by proximate analyses. Fat is determined by the
AOAC 963:15 Method, which consists in a Soxhlet extraction method, moisture is
determined by the AOAC 931:04 method, protein by measuring the nitrogen content
with the Kjeldahl method (AOAC 970:22), ash by the AOAC 972:15 method and

10
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fiber by AOAC 991.43. An example of a recent application of these methods is a
study about the effect that solar heat has on cocoa beans (Abdullahi, Muhamad,
Dzolkhifli, & Sinniah, 2018). Automation improvements of these methods have been
incorporated into both industry and R&D laboratories. For instance, fat can be
determined by the Soxtec™ AVANTI 2050 system (Servent et al., 2018; Sess-
Tchotch et al., 2018), while nitrogen content can be determined using an automatic
Kjeldahl apparatus (Hue ef al., 2016) or a micro-Kjeldahl apparatus, which allow
microquantities to be established (Hashimoto ef al., 2018). With these analyses, it is
possible to establish the nutritional information of cocoa and derivatives, which is
usually included on product labels.

By applying these techniques, it can be concluded that fat, nitrogenous
compounds, sugars and polyphenols are the main constituents of cocoa products.
Cocoa fat is roughly 57%, 6.6%, and 11%, and total nitrogen content is ca. 2.5%,
3.2% and 4.3% for nibs, cocoa shells and cocoa powder, respectively. The
percentage of water is ca. 3.2% in nibs, 6.6% in cocoa shells and 3% in cocoa
powder (Afoakwa et al., 2013; ICCO, 2012). Cocoa powder also contains a
relevant polysaccharide content (comprising cellulose, hemicellulose, and pectin),
noncarbohydrate lignin, nonstructural polysaccharides like gums and mucilage. It
also contains considerable amount of flavanols and organic acids (ca. 4% among
lactic and acetic acids), which are responsible for cocoa color (Shavez et al., 2017).

Table 2 summarizes the main components of cocoa powders.

11
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Table 2: Cocoa powder composition (ICCO, 2012; Krdhmer et al., 2015; Lacueva

et al., 2008).

Component Major compounds (%)
Fat 11
Moisture 3
Total nitrogen 43
Nitrogen (corrected for alkaloids) 3.4
Protein 20
Nitrogen corrected for alkaloids x 6.25 % 21.2
Ash 5.5
Water soluble ash 2.2
Phosphate (as P,Os) 1.9
Ash insoluble in 50% HCl 0.08

Minor compounds (mg/g)

Flavanols

Catechin 0.6
Epicatechin 5.7
Methylxanthines

Caffeine 6
Theobromine 28
Other compounds:

Total procyanidins 22
Total amino acids 3.4
Total sugars 8.9

*Reference mean values, since both flavanols and methylxanthines contents are

highly influenced by cocoa origin, postharvest and processing processes

2.2 Bioactive compounds: Polyphenols and methylxanthines

Polyphenols are the most relevant bioactive cocoa compounds found to date.

They can be divided into at least 10 different classes depending on their basic

12
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structure in the plant kingdom (Wollgast & Anklam, 2000). In cocoa, the flavonoids
family constitutes the most important single group, which can be further divided into

several classes. The main classes of flavonoids found in cocoa are summarized in

Figure 2.
Monomeric Epicatef:hin,
> Flavanols | Catechin
Gallocatechin,
Epigallocatechin
Procyanidins B1,
B2, B3, B4, B5, C1
Oligomeric and and polymers,
. polymeric mostly homologues
Polyphenols ~ —» Flavonoids P Flavanols > flavanols P! of epicatechin with
(procyanidins) 2 to 18 monomeric
units

cyanidin-3-arabinoside,
cyanidin-3-galactoside

»  Antocyanins —»

quercetin-3-arabinoside,
quercetin-3-glucoside
(isoquercitrin), quercetin
aglycone, quercetin-3-
galactoside (hyperoside),
quercetin-3-glucuronide

» Flavonols

apigenin, apigenin-8-C-
glucoside (vitexin), apigenin-6-
"| C-glucoside (isovitexin), luteolin,
and luteolin-7-O-glucoside

> Flavones

Figure 2: Summary of the main polyphenol classes found in cocoa.

The most abundant flavonoids in cocoa comprise monomeric flavanols (or
flavan-3-ols) and their oligomeric and polymeric forms (known as procyanidins)
(Lacueva et al., 2008). Monomeric flavanols include epicatechin (reported as the
major monomeric flavanol in cocoa that represents ca. 35% of total phenolic content
(Lacueva et al., 2008), catechin (found in smaller amounts) and also traces of
gallocatechin and epigallocatechin (Wollgast & Anklam, 2000). Procyanidins, also
known as condensed tannins, are mostly flavan-3,4-diols, which are 4 — 8 or4 — 6

bound to condensed dimers, trimers or oligomers with epicatechin as the main
13
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extension subunit (Wollgast & Anklam, 2000). In cocoa, procyanidins with a degree
of polymerization (DP) up to decamer have been identified. Oligomers (procyanidins
B1, B2, BS, and C1) and polymers account for 90% of total polyphenols, while
monomers account for 5-10% (Lacueva et al., 2008). Another flavonoid class is
anthocyanins, which is the most important group of water-soluble plant pigments
responsible for the color of flowers and fruits of higher plants (Wollgast & Anklam,
2000). The main anthocyanins identified in cocoa beans are cyanidin-3-arabinoside
and cyanidin-3-galactoside, which represent ca. 4% of the total polyphenol content
of cocoa beans, but they can be hydrolyzed during the cocoa fermentation process
(Forsyth & Quesnel, 1957; Wollgast & Anklam, 2000).

Other important bioactive compounds found in cocoa and cocoa products are
methylxanthines (Li ef al., 2012). The main methylxanthines present in cocoa
include caffeine and theobromine, but low levels of theophylline have also been
found. These compounds are related to psychoactive properties that lead to better
daily human life (i.e., more efficient thinking, exploring, hunting, etc.) without the
serious side effects of drugs of abuse (Franco, Onatibia-Astibia, & Martinez-Pinilla,
2013).

Both polyphenol and methylxanthine compounds are responsible for the
astringent and bitter taste of cocoa, which affects cocoa stability and digestibility (L1
et al., 2012). Moreover, they are generally determined to control the quality of the
cocoa products obtained from raw beans in all the processing steps until end (ready-
to-eat) products are obtained. Therefore, their determination is very important for the
cocoa industry.

Phenolic compounds are usually extracted from cocoa matrices using different
solvents, and methanol is considered the most efficient one (BelS¢ak, Komes, Horzi¢,
Gani¢, & Karlovi¢, 2009), although other solvents solutions, like acetone, water and
acetic acid, are also widely used. The polyphenol content of cocoa is usually

evaluated by total polyphenol content (TPC), antioxidant capacity (which can be
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obtained by different assays, which are described below), and by also quantifying
the different individual polyphenols present in samples.

TPC is usually determined by the Folin-Ciocalteu colorimetric assay, which is
based on the Folin-Ciocalteu reagent’s ability to react with phenolic hydroxyl groups
(Manzano et al., 2017).

Antioxidant capacity can be established by methods based on both hydrogen
atom or electron transfer reactions. The first category includes methods like ORAC
(oxygen radical absorbance capacity), TRAP (total radical trapping antioxidant
parameter), Crocin bleaching assay, IOU (inhibited oxygen uptake), inhibition of
linoleic acid oxidation and inhibition of LDL (Low Density Lipoprotein) oxidation.
The second category includes assays such as TEAC (Trolox equivalent antioxidant
capacity), FRAP (ferric ion-reducing antioxidant parameter) DPPH (diphenyl-1-
picrylhydrazyl), copper (II) reduction capacity, etc. (Di Mattia et al., 2014). The
heterogeneous methods (different reagents) used to determine antioxidant activity
make the comparison of the obtained results difficult. However, the most frequently
used assays are ABTS, DPPH, ORAC, TRAP, and FRAP. These methods can
provide discordant results depending on the most abundant antioxidant molecules in
the system and their interactions (Di Mattia et al., 2014).Individual determinations
of both polyphenols and methylxanthines are usually performed by HPLC-UV, but
the concomitant identification of other unknown compounds, mainly flavan-3-ol
derivatives (Fayeulle et al., 2018), has led to the proliferation of innovative,
miniaturized and/or two-dimensional HPLC methodologies (Toro-Uribe, Montero,
Lopez-Giraldo, Ibaiiez, & Herrero, 2018). For this purpose, other detectors like mass
spectrometry are widely used (Cadiz-Gurrea et al., 2014; Pedan et al., 2016,
Rodriguez-Carrasco, Gaspari, Graziani, Sandini, & Ritieni, 2018).

Many articles have been published in the literature about the determination of
and/or the changes produced in the different types of polyphenols and
methylxanthines among several distinct cocoa products (Gabbay Alves et al., 2017,

Machonis, Jones, Schaneberg, Kwik-Uribe, & Dowell, 2014; Manzano et al., 2017,
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Risner, 2008), in cocoa processing steps (Elwers, Zambrano, Rohsius, & Lieberei,
2009; Lacueva et al., 2008; Li et al., 2012, 2014; Miller et al., 2008; Payne, Hurst,
Miller, Rank, & Stuart, 2010; Pedan, Fischer, Bernath, Hiihn, & Rohn, 2017; Quiroz-
Reyes & Fogliano, 2018), between different cocoa clones or varieties (Elwers et al.,
2009; Niemenak, Rohsius, Elwers, Omokolo Ndoumou, & Lieberei, 2006), etc.
Therefore, some of these studies are reviewed below.

Risner (2008) determined both methylxanthines (theobromine and caffeine) and
flavan-3-ols (catechin and epicatechin) by HPLC in different cocoa products,
including standard reference material baking chocolate 2384, cocoa powder, cocoa
beans, and cocoa butter.

Miller et al. (2006) published a study in which antioxidant capacity (the ORAC
method), vitamin C equivalence antioxidant capacity (VCEAC), TPC and
procyanidin contents were determined and analyzed by principal component
analyses (PCA) to identify their behavior in different cocoa derivatives, such as
natural cocoa powders, unsweetened baking chocolates, semisweet baking chips,
milk and dark chocolates and chocolate syrups. The highest levels of antioxidant
activities, TPC and procyanidins were found in natural cocoa powders, followed by
baking chocolates, dark chocolates, baking chips, and by finally milk chocolate and
syrups.

In another study, the influence of alkalization on TPC, methylxanthines, flavan-
3-ols and other components, such as volatiles, free amino acids, and sugars, was
studied in commercial cocoa powders (Li ef al., 2012). The results showed that the
content of both methylxanthines and flavan-3-ols lowered as the degree of
alkalization increased, while a higher degree of alkalization decreased TPC. Similar
results were found by Miller et al. (2008), who also studied the influence of
alkalization on the antioxidant capacity (ORAC method), TPC and flavanol content
of cocoa powders. For all the samples, the highest contents of all the determinations

were found for natural powders.
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The influence of the alkalization process on the content of both monomeric
flavanols (catechin and epicatechin) and flavonols (quercetin-3-glucuronide,
quercetin-3-glucoside, quercetin-3-arabinoside, and quercetin) in cocoa powders
was studied by Lacueva et al. (2008). The authors concluded that the marked
reduction found in the flavonoid content of natural cocoa powder, together with the
change observed in the monomeric flavanol profile that resulted from alkalization
treatment, could affect the antioxidant properties and the polyphenol bioavailability
of cocoa powder products.

Li et al. (2014) studied the effects of alkalization treatments on color,
colorimetric fractions, TPC, and anthocyanin contents of cocoa powders. They
concluded that the color qualities of cocoa powder can be improved by optimizing
alkalization parameters. For example, cocoa powders alkalized with K,CO;
displayed darker colors and lower TPC than the powders alkalized with NaOH. High
temperature and basic pH conditions gave a darker color due to sugar degradation,
Maillard reactions and anthocyanin polymerizing.

In addition to the changes that take place during alkalization, further studies
have studied the influence of other processing steps. One such case is the work
published by Quiroz-Reyes et al. (2018), who evaluated the effect that roasting and
fermentation steps had on TPC, and antioxidant capacity and proanthocyanidins,
melanoidins and flavan-3-ols contents on two cocoa bean varieties (Forastero and
Criollo). The results showed that the Forastero variety was characterized by the
highest melanoidins content, antioxidant capacity (DPPH Quencher assay) and TPC
values under severe roasting conditions, while severer thermal treatments lowered
the concentration of TPC and proanthocyanidins in both varieties, and also
influenced the flavan-3-ols profile. Thus it can be concluded that a proper roasting
process design and adequate cocoa variety selection can optimize the cocoa health
potential, especially melanoidins and phenolic compounds.

In another study (Payne et al., 2010), the impacts of fermentation, drying,

roasting and alkalization processes on catechin and epicatechin contents were
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evaluated in both unfermented and fermented cocoa beans. The results showed that
unripe cocoa beans had a 29% higher level of epicatechin and the same level of
catechin as fully ripe beans, while no significant difference in the content of both
flavanols was observed during drying. A marked reduction (>80%) in catechin and
epicatechin levels was observed in fermented versus unfermented beans. During
roasting, loss of epicatechin took place along with a concomitant increase in the
catechin level, probably due to the epimerization of epicatechin. Finally, alkalization
led to a reduction in both catechin and epicatechin contents. Therefore, these authors
proposed using the epicatechin/catechin ratio as a useful sensitive indicator for the
processing history of cocoa beans.

Pedan et al. (2017) studied the influence of different lab-scale chocolate
manufacturing process stages (including opening fresh cocoa pods, fermentation,
drying, roasting and conching, and finishing chocolate bars) on the content of
oligomeric proanthocyanidins and their antioxidant capacity by the NP-HPLC-
online-DPPH methodology. For this purpose, one single batch of 5 kg of fresh
Trinitario variety cocoa beans was studied in the different processing stages. The
results showed that the total proanthocyanidin content continuously lowered during
the manufacturing process, with only ca. 20% of the initial content present in
chocolate.

As previously indicated, several studies have been conducted in which the
influence of cocoa clones, variety and/or origin on polyphenols content has been
studied (Elwers et al., 2009; Niemenak et al., 2006). For example, Niemenak et al.
(2006) compared TPC, flavanol (catechin and epicatechin) and anthocyanin
(cyanidin-3-galactoside and cyanidin-3-arabinoside) contents of different seeds from
Cameroon. The obtained results suggested that there was no qualitative difference in
TPC in cocoa beans despite their genetic origin and fermentation-like process.
However, a quantitative difference in epicatechin, catechin, cyanidin-3-galactoside
and cyanidin-3-arabinoside, and also in three undefined substances, was found. This

difference was attributed to growing conditions (microclimate, position of pods on
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trees, etc.). Finally, PCA and hierarchical cluster analyses classified samples
according to their polyphenol and anthocyanin contents.
Alternative methods for analyzing these bioactive compounds (polyphenols and

methylxanthines) are included in Section 4.

2.3 Fatty acids

It has been reported that cocoa beans and cocoa liquor have around 50g/100 g
of fat (Hashimoto ef al., 2018). This fat, also called cocoa butter, is frequently
reported to be the main vegetable fat used in chocolate manufacturing due to its
rheological, textural and chemical characteristics, such as triglycerides and fatty
acids (FA) composition (Guehi et al., 2008). Cocoa butter hardness depends on the
ratio between saturated and unsaturated fatty acid bound in triglycerides, and on the
free fatty acids (FFA) content. Whereas cocoa butter hardness increases with a higher
proportion of saturated fatty acids, higher FFA content reduces this parameter. Thus
Council Directive 73/241/EEC (EU, 2000) limits maximum FFA contents to a 1.75%
oleic acid equivalent in cocoa butter (Guehi et al., 2008). The FA profile is also
linked to cocoa aroma quality as the presence of volatile fatty acids (e.g. acetic,
propionic, butric, isobutric, and iso-valeric acids) is linked to low quality products
(Garcia-Alamilla et al., 2007). Then there is stearic fatty acid (C18:0), which offers
health benefits (Torres-Moreno et al., 2015). In this context, the characterization of
both the quantity and quality of FA present in cocoa seeds and cocoa products is
important and frequently evaluated (Guehi ef al., 2008).

In cocoa butter, total FFAs are determined by measuring the amount of base
needed to neutralize oleic acid (titration method) according to the official method
42-1993 (I0CCC, 1996). This method consists in dissolving 5 g of extracted cocoa
butter in 50 ml of a previously hot petroleum ether/absolute ethanol mixture (1:1,
v/v) neutralized by adding phenolphthalein. The mixture is then titrated with 0.1N
alcoholic KOH solution. This method was used by Guehi ef al., (2008) to study how
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storage conditions affect the FFA contents of raw cocoa beans. The above-cited
authors used different samples of fermented-dried cocoa beans purchased from the
Ivory Coast. The authors reported very low FFA contents (0.2-0.8%) in whole
healthy cocoa. Their study also stated that FFA formation did not depend on either
genotype or cocoa post-harvest processing technologies (number of fermentation
days). However, in defective cocoa beans, high and increasing FFA contents were
found. This increased content was attributed to the activity of microflora, which has
been associated with initial quality and loss of the physical integrity of cocoa beans.

The FA profile can be determined by preparing FA methyl esters (FAMEs)
using method AOAC 948.22 and gas chromatography coupled to mass spectrometer
detector GC-MS (Torres-Moreno et al., 2015). By the aforementioned method,
Torres-Moreno et al., (2015) studied the influence of the geographical origin
(Ecuador and Ghana) and processing conditions of chocolate (three roasting times:
30.5, 34.5 and 38.5 min; two conching times: 24 and 42 h) on the FA profile. For
this purpose, the authors used the official method 948.22 (AOAC International,
1990b) and identified 15 FA in cocoa and chocolates. Of these, the most important
FA were C16:0 (>25%), C18:0 (>33%) and C18:1 (>32%), expressed as the relative
percentage of the total fatty acid content in unroasted cocoa beans and in the
chocolate made from Ecuadorian and Ghanaian samples. For cocoa, differences in
the FA profile were found in C12:0, C14:0, C16:0, C16:1, C17:0, C17:1 and C18:0,
while differences were found only in C16:0, C18:0, C18:1 and C18:2 for chocolates.
For all the samples, C16:0, C18:0, C18:1 and C18:2 were quantitatively the most
important FA. Differences in the FA profile were explained mainly as an effect of
the geographical origin and were not due to processing conditions in chocolate. Thus
Ecuadorian chocolate showed a healthier FA profile with larger amounts of

unsaturated FA and smaller amounts of saturated FA than Ghanaian chocolate.
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2.4 Amino Acids

Amino acids take part in the aroma and flavor formation of cocoa and cocoa-
related derivatives (Voigt, Textoris-Taube, & Wdostemeyer, 2018). Their content is
also related to human health (Stark, Lang, Keller, Hensel, & Hofmann, 2008). Thus,
in addition to total protein contents, knowing the profile of the amino acids that form
these proteins is essential.

High-performance liquid chromatography is the method normally used to
analyze amino acids. As amino acids do not exhibit chromophore groups in their
structure, they cannot be detected by UV-VIS spectrometry. Thus they have been
traditionally derivatized before being analyzed. During the derivatization step, a
UV-VIS nonresponding analyte can be converted into a compound with significant
absorbance or fluorescence that allows determinations with greater sensitivity
(Kubickova et al., 2011).

One study that aimed to correlate amino acid content with cocoa aroma was
published by Voigt ef al., (2016). These authors analyzed amino acid content in
cocoa beans to characterize the amino acid sequence of aroma precursor peptides.
For this purpose, amino acids were converted into their o-phthalaldehyde (OPA)
derivatives and then separated by reversed-phase HPLC. Effluents were monitored
fluorometrically. Another study using derivatization with a fluorescent chromophore
to quantify the content of free amino acids in Forastero cocoa beans was conducted
by Hinneh et al., 2018. In this work, the authors evaluated the influence of pod
storage on the free amino acid profiles and the implications on the development of
some Maillard reaction related to flavor volatiles. As a result, they found that
although the concentration of free amino acids was directly proportional to pod
storage duration, significant differences were observed for pod storage periods
exceeding 7 days (Hinneh et al., 2018).

In relation to health properties, amino acids and their metabolites can act as

functional molecules. Kynurenic acid, obtained during the metabolization of amino
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acids like tryptophan through the kynurenine pathway, exhibit antioxidant capacity.
Several authors have attempted to quantify tryptophan content and its derivatives in
the kynurenine pathway by liquid chromatography with various detectors. One study
that analyzed tryptophan and its derivatives in the kynurenine pathway in cocoa is
that reported by Yilmaz and Gokmen, 2018. In their study, the authors compared the
content of these analytes in several fermented food products (bread, beer, red wine,
white cheese, yogurt, kefir and cocoa powder). Tryptophan derivatives were
determined by ultra-high-performance liquid chromatography-tandem mass
spectrometer (UPLC-MS/MS). Of these analytes, cocoa powder contained more
kynurenic acid, which is a neuroprotective compound (Y1lmaz & Gékmen, 2018).
The aim of another recent application of cocoa amino acids quantification was
to assess the geographical origin (Asia, Africa and South America) of cocoa beans
used to produce chocolate (Acierno, Alewijn, Zomer, & van Ruth, 2018). For this
purpose, the authors tested the applicability of Flow Infusion-Electrospray
Ionization-Mass Spectrometry (FI-ESI-MS). Among the tentatively identified
compounds, the authors recognized free amino acids that could be used to distinguish
the geographical origin of cocoa beans. This fell in line with other studies that have
reported the geographical influence on the free amino acid concentration in raw

cocoa (Rohsius, Matissek, & Lieberei, 2006).

2.5 Peptides

As with amino acids, the presence and concentration of certain peptides (e.g. N-
terminal 15-kDa vicilin found in South American CCN51 samples) can be used to
evaluate the origin of a particular cocoa. Kumari et al., (2018) used ultra-high-
performance liquid chromatography-electrospray ionization mass spectrometry
(UHPLC-ESI-Q-q-TOF-MS) to analyze the proteins and oligopeptides of
nonfermented and fermented beans of various geographic origins. ESI is a soft

ionization method capable of providing both protonated and deprotonated molecules.
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Q-TOF-MS is able to combine high sensitivity and mass accuracy for both precursor
and product ions and, therefore, allows the elemental composition for both parent
and fragment ions to be confirmed both quickly and efficiently. UHPLC can provide
high resolutions for the separation of complicated natural products and improves the
sensitivity of Q-TOF-MS detectors (Li et al., 2017). In this study, the authors
observed how protein quantities, and their profiles that derived from two-
dimensional gel electrophoresis, showed striking differences for nonfermented beans
depending on their geographical origin. However, in fermented beans, the detected
diversity of peptides did not correlate with geographical origin, but to the degree of
fermentation. These findings suggest that the variability in peptide patterns depends
on the fermentation method applied in the country of origin, which ultimately

indicated diversified proteolytic activities (Kumari et al., 2018).

2.6 Sugars

Cocoa sugars are cocoa aroma precursors that are present in higher proportions
in cocoa pulp as fermentable sugars (9-13% w/w). The predominant sugars in cocoa
beans are sucrose, fructose and glucose (Afoakwa, 2010). In cocoa beans,
fermentation allows reducing sugar (fructose and glucose) formation. Therefore,
during the roasting process they undergo Maillard reactions and Strecker
degradation, which lead to the generation of desirable flavor volatiles. Thus reducing
sugars determination is important for cocoa sensorial control purposes (Kongor et
al., 2016).

A traditional method to analyze total and reducing sugars in cocoa beans and
products is that known as the phenol sulfuric acid method (Dubois, Gilles, Hamilton,
Rebers, & Smith, 1956). This method allows simple sugars, oligosaccharides,
polysaccharides, and their derivatives, to be detected, including methyl ethers with
free or potentially free reducing groups as they give an orange-yellow color after

treatment with phenol and concentrated sulfuric acid.
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However, the identification and quantification of different reducing sugars
require a more selective technique. One common alternative is to use gas
chromatography after aqueous extraction and derivatization. Hinneh et al. (2018)
analyzed the sugar profile of Forastero cocoa beans by gas chromatography. For this
purpose, these authors obtained an extract that was then derivatized in two steps: first
oximation and second the formation of trimethylsilylesters. The study revealed that
on storage day 0, cocoa pods exhibited 0.672+0.004 g/100 g of fructose, 0.264+0.001
g/100 of glucose and 0.021+0.001 g/100g of sucrose. These amounts varied with
storage. After 3 pod storage days, the amount of glucose and sucrose had increased.
After 7 pod storage days, these amounts lowered, while the amount of fructose
increased, so the respective fructose-glucose ratios for 0 PS, 3 PS, and 7 PS were
approximately 3:1, 2:1 and 4:1. This confirms the role of PS in influencing sugar

degradation dynamics through nib acidification during fermentation.

2.7 Aroma and flavor

Aroma and flavor are the most appreciated cocoa bean features as they
contribute to the final flavor of chocolates and other derived products. Samples can
be evaluated for cocoa strength or chocolate flavor, residual acidity, bitterness and
astringency, and for the presence of any off-flavor and positive ancillary flavors,
such as fruity or floral. The sensory evaluation of cocoa products can be made by
difference and descriptive tests. Difference tests are performed to compare samples,
or samples against a standard, which include the triangle test, paired comparisons,
ranking and the two-out of five test. No expert training is needed to carry out these
tests (ADM Cocoa manual, 2006). Descriptive tests include the flavor profile method
(FPM), the descriptive analysis test (QDA) and the free choice profiling (FCP), a
variant of (QDA). Sensorial analysis methods may also include the use of a principal
component analysis (PCA), which allows variable reduction according to inter-

related connections. The information displayed in a two-dimensional graph provides
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essential information on the flavor profiles of cocoa samples based on descriptors.
This method was used by Luna et al., (2002) to evaluate the flavor of Ecuadorian
cocoa liquor, who concluded that polyphenols could be essential for the overall
perception of cocoa liquor characteristics (CAOBISCO-ECA-FCC, 2015; Luna,
Crouzillat, Cirou, & Bucheli, 2002).

Aroma and flavor are conditioned by different parameters that are chemical
(nonvolatile and volatile compounds), biological (origin, variety) and physical
(physical integrity) (Guehi et al., 2008). Among nonvolatile flavor precursors,
monosaccharides, disaccharides, oligosaccharides and some L-amino acids can
contribute to the sweet taste of cocoa, while FA can contribute to acid taste. Tannin
molecules like epicatechins, catechins, and procyanidins (total polyphenols) can
confer bitterness and astringency. Alkaloid molecules (methylxanthines) can also
contribute to a bitter cocoa taste (Jinap, Thien, & Yap, 1994). Thus they condition
the sweetness, bitterness, acidity and astringency of cocoa and its derivatives.

Volatile compounds appear in cocoa post-harvest stages, such as fermentation
and drying. These steps occur in the origins of cocoa beans by generating
heterogeneous materials. As previously mentioned, variety and physical integrity
(that depend on postharvest practices) are important factors for volatiles to form.

During fermentation and roasting, pleasant volatiles that determine chocolate
odor, (such as aldehydes, ketones and pyrazines) are formed. Jointly with esters and
alcohols, these compounds are also related with sweet odor (Rodriguez-Campos et
al., 2012). Properly dried beans usually have a long shelf life, a crisp texture and
plump appearance, a well-oxidized interior and good flavor without excessive
acidity, hammy, smokiness or other off-flavor notes (Jinap et al, 1994).

In contrast, inappropriate post-harvest handling (e.g. amount of mucilage in
pods) can generate high contents of volatile fatty acids (VFA) like acetic, propionic,
butyric, isobutyric, isovaleric acids (C2-C5), which cause strong acidic flavors and
off odors. These off odors include rancidity, musty, stale, cheese rind, unpleasant

and hammy flavors (Garcia-Alamilla et al., 2007; Vazquez-Ovando, Chacon-
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Martinez, Betancur-Ancona, Escalona-Buendia, & Salvador-Figueroa, 2015).
Nevertheless, VFA can decrease during roasting (Jinap et al., 1994).

The free amino acids, short-chain peptides and reducing sugars formed during
the fermentation process can also contribute to cocoa flavor development during
roasting in Maillard reactions. Aldehydes and pyrazines are produced as a result of
this reaction. Tetramethylpyrazines (TMP) reach their maximum level upon medium
roasting; trimethylpyrazines (TrMP) increase steadily throughout the roasting
process and 2,5-dimethylpyrazines (DMP) rise under strong roasting conditions. The
sensory evaluation shows that a normal roasting degree is linked to high
concentration ratios of TMP/DMP and TMP/TrMP between about 1.5 and 2.5,
respectively. Low values for the above ratios are linked to over-roasted cocoa beans
(Aprotosoaie, Luca, & Miron, 2016). So they contribute to high quality chocolates,
and these molecules are desirable in cocoa beans (Afoakwa, Paterson, Fowler, &
Ryan, 2009). A more extensive description can be found in (Aprotosoaie, Luca, &
Miron, 2016).

Regarding the analysis of aroma and flavor compounds, on the one hand, part
of the aroma analysis is done by determining the aroma precursors that are free amino
acids, oligopeptides, and reducing sugars. The analyses of these compounds have
been previously described. This section reports only the methods used to study the
combination between aroma precursors and sensory attributes.

A profounder understanding of the aroma profile can be attained by the
determination of individual aromatic compounds. The determination of aroma
compounds is usually made by their extraction, separation and detection. Studies
have been published using different extraction methods, such as headspace-solid
phase microextraction (HS-SPME) (Miriam Torres-Moreno, Tarrega, & Blanch,
2014), solid-phase microextraction (SPME) (Humston, Knowles, McShea, &
Synovec, 2010), aroma extraction and dilution analyses (AEDA) and solvent-

assisted flavor evaporation (SAFE distillation) (Chetschik ef al., 2018).
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To separate compounds, gas chromatography GC is frequently used. Flame
ionization detector FID (Cambrai ef al., 2010), mass spectrometry (MS) or, for more
accurate detection times, fly mass spectrometry (TOFMS) (Humston., 2010) are
used for detection purposes.

Many studies about the determination and/or changes produced in the flavor,
aroma and taste during cocoa fermentation (Crafack et al., 2014), roasting (Torres-
Moreno et al., 2014), between different cocoa clones or varieties (Liu et al., 2017),
and between different cocoa products (Chetschik ef al., 2018), have been recently
published. Torres-Moreno et al., (2014) extracted volatile compounds from dark
chocolate using HS-SPME followed by GC-MS to determine the influence of the
roasting process on chocolate aroma formation. Variations have been found in the
chocolate aroma profile and their concentrations according to roasting time and
geographical origin (Torres-Moreno., 2014).

Changes in the aroma of cocoa beans with moisture damage have been analyzed
in cocoa beans of different origins (Costa Rica, Ghana, Ivory Coast, Venezuela,
Ecuador and Panama). SPME sampling coupled to two-dimensional gas
chromatography combined with time of fly mass spectrometry (GCxGC-TOFMS)
has been applied for such assessments. Twenty-nine compounds have been detected
as a result of moisture damage (Humston., 2010). Similarly, gas chromatography
coupled to a flame ionization detector (FID) and MS has been used to distinguish
different cocoa types and their derivatives (Cambrai et al., 2010).

Thanks to a high sensitivity, selectivity and reproducibility of HS-SPME-GC-
MS, the method is being increasingly used in combination with chemometrics. This
determination technique and principal components PCA have been used to
simultaneously understand the behavior of several aroma components (Cambrai et
al.,2010). Li, et al., (2012) detected 80 volatile aroma compounds in cocoa powders
of different degrees of alkalization by the aforementioned GC-MS technique. Among
these compounds, a high acetic acid concentration was determined. Moreover, a

decreasing trend of this acid while increasing the degree of alkalization was reported
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(Li et al., 2012). HS-SPME-GC-MS has also been used to evaluate the inoculation
effect of starter cultures and fermentation techniques on the volatile aroma and
sensory profile of chocolate. As a result, 56 volatile chocolate compounds have been
identified and aromatic profiling differences have been linked to fermentation
technique types, but not to the used starter cultures. However, the differences were
too small to change consumer perceptions (Crafack et al., 2014).

Other aroma extraction methods include the aroma extraction and dilution
analyses (AEDA) and solvent-assisted flavor evaporation (SAFE distillation), and
both can be coupled to GC-MS. Chetschik et al. (2018) used the SAFE method to
characterize the aromas of cocoa pulp, and how they are transformed during
fermentation. These authors found higher 2-phenylethanol and 3-methylbutyl acetate
concentrations in cocoa pulp than in cocoa beans in several fermentation stages.
Conversely, quantities of odorants, such as linalool and 2-methoxyphenol, have been
observed at larger concentrations in cocoa beans (Chetschik ez al., 2018).

In another study (Van Durme, Ingels, & De Winne, 2016), the authors used the
in-line roasting hyphenated with a cooled injection system coupled to a gas
chromatograph—mass spectrometer (ILR-CIS-GC-MS) to assess fermentation
quality and the overall potential formation of cocoa aroma. For this purpose, data on
unroasted cocoa were compared with data on conventional roasted cocoa beans
obtained by headspace solid phase microextraction (HS-SPME-GC-MS). The
results of this analysis revealed that similar formation trends of important cocoa
aroma markers were found according to fermentation quality. These main markers
of cocoa aroma were aldehyde, pyrazines, aldehydes (amyl alcohols), and pyrazines
tetramethylpyrazine (TMP) and trimethylpyrazine (TrMP), which are present at high
concentrations when cocoa beans are well-fermented. The aforementioned method
requires no sample preparation and can be performed in short times (<1 h).

Apart from methods based on the separation and identification of compounds,
new innovative, faster and robust analytical techniques to determine aromatic

compounds are being proposed. Concretely, the hyphenated HS-SPME-MS-nose
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configuration, based on mass fingerprinting and pattern recognition, uses the
hyphenated dynamic headspace-chemical sensor configuration. This equipment has
a fully automated sample preparation unit for the online dynamic headspace isolation
of cocoa aroma compounds. This technique has been used for the differentiation by
the origin and fermentation degree of roasted fermented cocoa beans (from
Indonesia, Peru, Ghana and Vietnam) by a hierarchical cluster analysis (HCA), PCA
and one classification algorithm, namely soft independent modeling of class analogy
(SIMCA). So a clear separation of fine flavor cocoa variety Criollo was possible, as
was classifying samples according to their degree of roasting (Diem et al., 2015).
Regarding origin, Liu ef al. (2017) made a comparison of the aroma compounds
of cocoa liquors from Asia, Africa and Oceania by gas chromatography-
olfactometry-mass spectrometry (GC-O-MS). With this study, components at high
concentrations were found, such as 3-methylbutanal, acetic acid,
tetramethylpyrazine, and 3-methylbutanoic acid, and a relation between the aroma

profile and origin was found by PCA (Liu et al., 2017).

2.8 Polycyclic aromatic hydrocarbons, toxins and heavy metals

Cocoa samples can also contain compounds that could be considered of risk for
humans. These compounds can come from soil contamination (i.e. heavy metals
(HM), or can be generated during manufacturing practices (i.e. polycyclic aromatic
hydrocarbons (PAHs) and mycotoxins). The levels of some of these compounds are
regulated by the European Food Safety Authority (EFSA) (European Commission,
2011). The methods normally used and the studies carried out to control their

presence are described below.
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2.8.1 Polycyclic aromatic hydrocarbons (PAHs)

PAHs can be generated during incomplete combustion and are widely present
in the environment. These compounds can contaminate foodstuffs and are related to
human toxicity (carcinogenic, genotoxic, mutagenic) (Cordella et al., 2012). As they
are lipophilic, their determination is usually made in cocoa butter. A frequent way to
analyze PAHs in cocoa samples is to extract them from the sample by the method
based on the stirred saponification of 1 g of cocoa butter in KOH (1:6), 1M at 80°C.

After extraction, the determination is made by HPLC coupled to a fluorescence
detector. Four PAHs have been mainly determined, namely benzo(a) anthracene,
chrysene, fluoranthene, and benzo(b) pyrene (Bratinova, Karasek, Buttinger, &
Wenzl, 2015). Sess-Tchotch et al., (2018) used the aforementioned extraction and
determination method and found limits of detections (LoDs) ranging from 0.01
ng/kg to 0.033 pg /kg for these compounds (Sess-Tchotch et al., 2018).

Another example of the identification and quantification of polycyclic aromatic
hydrocarbons in cocoa beans was recently presented by Belo et al., (2017). These
authors used an accelerated solvent extraction before GC-MS to determine eight
PAH in cocoa beans. The evaluation of the method was made by analyzing relative
standard deviations (RSD) under repeatability and precision conditions, and average
recoveries. The authors found precision with RSD ranging from 2.57% to 14.13%
and from 4.36% to 19.77% under repeatability and intermediate precision conditions,
respectively. The average recoveries of the eight PAH ranged from 74.99% to
109.73%. These parameters, limits and measurement uncertainties met the

performance criteria set by EU regulations.

2.8.2 Toxins

Not many studies about toxins in cocoa and its products can be found. The few

studies published to date show that the most widely studied toxins in cocoa and its
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products are ochratoxin A (OTA) (Kutsanedzie ef al., 2018) and aflatoxins.
Ochratoxin is a mycotoxin that is formed by species of Aspergillus and Penicillium.
Aflatoxins are formed by Aspergillus flavus, A parasiticus, and other Aspergillus
spp. The most important aflatoxin, due to its occurrence, is aflatoxin B1, which is
classified as carcinogenic (Group 1). The presence of ochratoxins in cocoa can lead
to such serious health problems that the European Commission has set a tolerable
weekly intake (TWI) of 120 ng/kg b.w. However, no maximum limit has been set
for cocoa and cocoa products as these products do not contribute significantly to
OTA exposure in diet (European Commission, 2010). No maximum limits have been
set for aflatoxin (Turcotte, Scott, & Tague, 2013).

The most widespread technique to analyze toxins in cocoa is HPLC. To analyze
ochratoxin in cocoa powder, Brera, Grossi and Miraglia (2005) developed an HPLC
method based on OTA extraction from samples by blending with an aqueous solution
of bicarbonate, diluting with a solution of phosphate buffer saline, filtering and
cleaning-up by an immunoaffinity column (IAC) that contained antibodies specific
to OTA. After washing the immunoaffinity column, OTA was eluted with methanol,
separated by reversed-phase HPLC and quantified by fluorescence detection. This
method was validated by an interlaboratory study, and allows the detection and
identification of different OTA within the 0.1-2 pg/kg range. The same method was
followed with drinking chocolate and cocoa powder to also detect ochratoxin
(Cubero-Leon, Bouten, Senyuva, & Stroka, 2017). In this study, the authors found
that the mean recoveries ranged from 85% to 88%, the RSD values went from 13.7%
to 30.7% and the resulting Horwitz ratios, according to the Horwitz function
modified by Thompson, fell within the 0.6-1.4 range for cocoa and drinking
chocolate, respectively.

In a recent study that aimed to determine toxins in different cocoa products, toxins
extracts were cleaned by AflaOchra (IAC) columns before HPLC separation. Toxin
detection was performed by a post-column photochemical reactor for aflatoxin Bl

and G1 (due to derivatization) and by fluorescence for OTA. The method’s limits of

31



Introduction

quantification (LOQ) were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1). The OTA
levels in the different analyzed samples were 1.17 ng/g in natural cocoa, 1.06 ng/g
in alkalized cocoa, 0.49ng/g in baking cocoa, 0.39ng/g in dark chocolate, 0.19 ng/g
in milk chocolate and 0.43 ng/g in cocoa liquor. Regarding aflatoxin, the following
incidences were found: 0.86 ng/g in natural cocoa, 0.37 ng/g alkalized in cocoa, 0.22
ng/g in baking chocolate, 0.19 ng/g in dark chocolate, 0.09 ng/g in milk chocolate
and 0.43 ng/g in cocoa liquor (Turcotte ef al., 2013).

2.8.3 Heavy metals

Heavy metals (HM) are naturally present in foodstuffs. These compounds are
toxic to humans. Cadmium (Cd) is a heavy metal present in several foods consumed
daily and in larger quantities, including cocoa. In order to maintain and control the
amount of Cd in the human diet, the European Commission has set maximum Cd
limits in certain products (European Commission, 2006), for example 0.10 mg/kg in
milk chocolate with < 30% total dry cocoa solids, 0.30 mg/kg in milk chocolate with
> 30% total dry cocoa solids or 0.60 mg/kg in cocoa powder sold to end consumers
or as an ingredient in sweetened cocoa powder sold to end consumers (drinking
chocolate). In this context, monitoring the presence of this and other HM in cocoa
products is a growing necessity.

To ensure compliance with regulations, CODEX STAN 228 (2001) suggests
some Cd analytical methods, such as atomic absorption spectrometry (AAS) after
incineration or microwave digestion (using HNOs3) and Anodic Stripping
Voltammetry (ASV), of which AAS is more widely used.

Such is the concern today about the presence of Cd in cocoa and derived
products that many studies have been conducted in the last 5 years to determine the
amount of Cd present in cocoa derivatives. Cd has been determined in cocoa beans
(Chavez et al., 2015) and plants from Ecuador (Chavez et al., 2016), in cocoa trees

and leaves from Peru (Arévalo-Gardini, Arévalo-Hernandez, Baligar, & He, 2017);
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in cocoa beans from Indonesia (Assa, Noor, Yunus, Misnawi, & Djide, 2018); in
cocoa powders and chocolates in the USA (Abt, Fong Sam, Gray, & Robin, 2018),
in raw cocoa and processed chocolate mass from Poland (Kruszewski, Obiedzinski,
& Kowalska, 2018), and in Italian cocoa powder and chocolate (Dico et al., 2018).
In the study of Chavez et al., 2015, the authors determined Cd in cocoa plant
materials (ground leaves, shells or beans). For their analysis, samples (ground leaf,
shell or bean) were digested with nitric acid (HNO3) (Jackson et al., 1986). The
digested samples were diluted with distilled water and filtered through a membrane
filter prior to the Cd analysis. Then the Cd concentrations in plant digesters were
determined by inductively coupled plasma optical emission spectrometry (ICP-
OES).

In another article, the Cd concentrations in cocoa beans from Indonesia were
established by atomic absorption spectrometry after digesting samples with HNO;
and H,O in a microwave. The Cd concentration in these samples was below the LOD
of 0.100 mg/kg (Assa, Noor, Yunus, Misnawi, & Djide, 2018). Finally, Abt ef al.,
(2018) determined Cd content in cocoa powder and chocolate products on the US
market, and concluded that the Cd contained in these products ranged from 0.004-

3.15 mg/kg.

3. Other analytical methods for cocoa beans trading across the value chain

Apart from the compositional analysis, other quality control analyses are done
before and during the commercialization of cocoa beans. This section indicates how
these analyses are applied. Quality control begins in the place of origin. To do so,
conventional methods to assess and control correct fermentation, size, and even the
integrity, of beans are widely used after sampling the total batch (FCC, 2018; ICCO,
2018). For fermentation quality assessments, the standard method applied is the cut
test. It involves counting 300 beans. These 300 beans are then cut lengthwise through

the middle and examined to infer the physical (integrity, color) and sensorial
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characteristics of cocoa fermented beans, which provides an indication of quality
(Lee & Djauhari, 2013; Schwan, 1998). During the cut test, the number of defective
cocoa beans can be assessed. These defects can consist of beans with mould, damage
caused by insects, and germinated or flat beans. The results are expressed as a
percentage of 300 beans examined per defect kind. The amount of defective beans
determined through cut tests is an indication of flavor characteristics (ICCO, 2018).
Bean size is established by counting the number of cocoa beans per 100 g. By
considering this, they are classified into three grades as follows: grade 1 (< 100 beans
per 100 g), grade 2 (101-110 beans per 100 g) and grade 3 (111-120 beans per 100
g). In bean mass (or weight) terms, the standard states that bean cocoa mass should
be at least 1.0 g (CAOBISCO-ECA-FCC, 2015).

Before commercialization, other control parameters can include color, pH and
titratable acidity (Hinneh et al., 2018). During cocoa transformation, cocoa shell
determination after shelling is an important factor as it affects some final product
characteristics, such as flavor or taste. It can also be responsible for off-flavors. The
fiber content in cocoa shells is very high. Thus it can be a problem for the grinding
process as it can cause equipment abrasion in some cases (Mendes & Lima, 2007;
Quelal-Vasconez et al., 2019). During shelling, cocoa shells (approx. 12-20% of the
cocoa bean) cannot be completely removed. In order to guarantee that cocoa powders
have been well peeled and not adulterated with cocoa shells, the Codex Alimentarius
establishes that cocoa shells including germ must be present, but below 5% (in fat-
free dry cocoa) (Codex Alimentarius, 2014; Okiyama et al., 2017). The official
methods followed to analyze cocoa shells content are methods AOAC 968.10 and
970.23 (Codex Alimentarius, 2014). The first method, called the spiral vessel count,
consists of counting spiral vessels in a defatted, ground and digested sample with the
help of a microscope adjusted to mold counting (field of view 1.382 mm at 100 x)
(AOAC, 2006). The second method, called the stone cell count, consists of counting
the stone cells present in samples assisted by a microscope after laborious

preparation (AOAC, 1984).
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As observed in Sections 2 and 3, all the conventional methods followed to
determine cocoa components or quality control during cocoa bean trading focus on
destructive determinations. The inability to use the analyzed raw material, in
combination with very long analytical procedures, high solvents utilization and
waste production, and the need for highly skilled operators, mean that fast

nondestructive alternative technologies must be developed.

4. Fast nondestructive technologies applied in the cocoa industry

This section contains an exhaustive analysis of the nondestructive technologies
applied in the cocoa industry. A review of the different studies carried out with
nondestructive techniques, analyzed products, the equipment used for analyses,
measurement parameters, traditional methods used as references, chemometric

model calibration and validation details. The results are presented in Table 3.

4.1 Types of non-destructive techniques used

Several fast nondestructive technologies, such as electronic tongue, electronic
nose, hyperspectral image, terahertz spectroscopy and infrared spectroscopy, have
been widely explored and applied in the cocoa industry (Table 3). Electronic tongue
has been used for the rapid identification of cocoa beans according to their
geographical locations (Teye et al., 2014a). Electronig tongue and near infrared
spectroscopy, together with a chemometric analysis, has been used for the accurate
classification of cocoa bean varieties (Teye, Huang, Takrama, & Haiyang, 2014c)
and for the rapid determination of total polyphenols contents in cocoa beans (Huang
et al.,2014). An electronic nose / gas chromatography-mass spectrometry (GC-MS)
system combined with artificial neural network (ANN) has been used for detrmining
roasting degree in cocoa beans (Tan & Kerr, 2018). Electronic nose combined with

pressure controlled generated stimulation has been used in chocolate classification
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(Valdez & Gutiérrez, 2016). The hyperspectral image analysis has been used for
cocoa bean quality assessments (Soto et al., 2015) and to predict the fermentation
index, polyphenol content and antioxidant activity in single cocoa beans (Caporaso
et al., 2018). These analyses have been done with whole cocoa beans and spectra
measurements have been correlated with conventional PLS determinations with
promising results. Terahertz (THz) spectroscopy has been utilized to control
tempering in chocolate factories (Weiller, Tanabe, & Oyama, 2018). Terahertz (THz
spectroscopy energy corresponds to collective molecular macro-vibrations and is
considered a promising potential to identify macromolecules (i.e., polymer and
biomolecules). This nondestructive noncontact technique has been used to
characterize polytypes of crystals formed on the basis of FA combination in the
chocolate structure. For this purpose, two chocolates are analyzed and the
measurements normally taken by X-ray diffraction (XRD) are compared with optical
microscopic observations and THz spectroscopy measurements, with similar results
(Weiller, et al., 2018). Infrared spectroscopy has been used to predict major
(moisture, carbohydrate, fat, protein) or minor functional compounds (theobromine,
catechin, organic acids, etc.) (Alvarez, Pérez, Cros, Lares, & Assemat, 2012; Huang
et al., 2014; Kriahmer et al., 2015; Vesela et al., 2007) and for quality control
(discrimination of cocoa beans according to geographical origin, prediction of cocoa
powder adulterations, prediction of methylxanthines and polyphenols in alkalized
cocoa powder, etc.) (Quelal-Vasconez et al 2020; Quelal-Vasconez et al., 2019,
Quelal-Vésconez, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 2018; Teye,
Huang, Dai, & Chen, 2013).

Of all of the above-described technologies, infrared spectroscopy offers a
number of important advantages over traditional chemical methods. It is
nondestructive, noninvasive, requires minimal or no sample preparation, its
precision is high and it can act as a multi-analytical technique because several
determinations can be simultaneously made. Infrared spectroscopy also offers the

possibility of measuring physico-chemical properties (Vesela et al., 2007).
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4.2 Infrared spectroscopy

Infrared spectroscopy (IR) involves the interaction of infrared radiation with
matter. It is conventionally divided into three wavelength regions: near-infrared
(NIR: 750-2500 nm or 13333—4000 cm™), mid-infrared (MIR: 2500—25 000 nm or
4000—400 cm™), and far-infrared (25-1000 pum or 40010 cm™). The distinction
made among these three regions may vary depending on the type of instrumentation

used to acquire IR spectral information.

4.2.1 NIR spectra acquisition

The IR method or technique is run with an instrument called an infrared
spectrometer (or spectrophotometer) to produce an infrared spectrum. A generalized
spectrophotometer has four parts: 1) an energy source; 2) a wavelength selection
device; 3) a detector; 4) a data processing system.

The most explored technologies for cocoa studies are near infrared spectroscopy
(NIR), Fourier-transform near infrared spectroscopy (FTNIR) and, to a lesser extent,
Fourier-transform infrared spectroscopy (FTIR). The term Fourier-transform
infrared spectroscopy originates from the fact that a Fourier transform (a
mathematical process) is required to convert raw data (collected in frequencies in an
interferogram) into the actual spectrum. In an NIR instrument, values are reported in
nm, generally from 900 to 2500 nm, or from 650 to 2500 nm if the visible region is

included (Nielsen, Snitkjaer, & Van Den Berg, 2008). The values with an FTIR
instrument are generally reported in cm™, from 4000 to 10000 cm™ (Teye & Huang,
2015a) or from 4000 to 12500 cm™ (Sunoj, Igathinathane, & Visvanathan, 2016).

Several optical alternatives are available for IR spectroscopy: ‘reflectance’,
‘transmittance’,  ‘transflectance’, and ‘interactance’ (Alander, Bochko,
Martinkauppi, Saranwong, & Mantere, 2013; Cortés, Blasco, Aleixos, Cubero, &
Talens, 2019). The majority of studies for cocoa powder (Quelal-Vasconez et al.,

2018) or cocoa beans (Caporaso et al., 2018) use reflectance (Table 3), but
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transflectance has been used for semi-solids and liquids like cocoa butter or

chocolate (Bolliger, Zeng, & Windhab, 1999).
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Table 3 (continued 3)
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Table 3 (continued 5)
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4.2.2 Multivariate data analysis

Due to the complex and the large amount of hidden information in IR
spectral data, particular attention should be paid to data mining with
chemometrics for the IR spectroscopy analysis. Multivariate data analysis or
chemometrics is the science of extracting information from chemical systems
by data-driven means. It offers lots of applications and diverse natures.
Specifically, it is used in IR applications to extract rich information from IR
spectra, including preprocessing spectral data, reducing variables, building
calibration models (quantitative) and/or classification (qualitative) analyses,
and model transfer, and all this to acquire more information from data
(Martens et al., 2003).

A multivariate analysis generally involves the following steps: data
exploration, data preprocessing, quantitative or qualitative model calibrations,
and finally external validation. Data exploration allows a group of samples to
be found, the relation between variables, management with outliers samples
by means of a PCA or a parallel factor analysis (PARAFAC) (Bro, 1997;
Rodrigues, Condino, Pinheiro, & Nunes, 2016). Data preprocessing can be
handled with preprocessing algorithms, such as: smoothing methods
(Savitzky-Golay, Gaussian filter, median filter, moving average);
normalization and scaling, detrending (Levasseur-garcia, 2018), 1* Derivate,
2" Derivate-Savitzky Golay (Savitzky & Golay, 1964), Standard Normal
Variation (SNV) (Teye, Uhomoibhi, & Wang, 2016), Orthogonal Signal
Correction (OSC) (Wold, Antti, Lindgren, & Ohman, 1998) and Multiple
Scatter Correction (MSC) to build and enhance calibration models (Su & Sun,
2017). The selected preprocessing method can be related to data features to,
for example, rid up multiplicative and additive effects in spectra. As seen in

Table 3, datasets are usually divided into calibration and validation, except

45



Introduction

those carried out by Kriamer et al., (2015) and Sunoj et al., (2018), who
performed only cross-validation. Calibration datasets are composed of a
different number of samples, from 65 (Permanyer & Perez, 1989) samples in
the calibration set to 190 at the time of this study (Caporaso, Whitworth,
Fowler, & Fisk, 2018). High accuracy has been obtained for calibration
models by employing proper multivariate linear regressions, such as PLSR,
PCR, SVMR, and other statistical algorithms like artificial neural networks
(ANN) (Teye & Huang, 2015a; Teye, Huang, Lei, & Dai, 2014b; Teye et al.,
2015b). PLS with variable selection, such as Sinergy Interval-PLS (Si-PLS),
Ant Colony Optimization-PLS (ACO-LS), Competitive Adaptive Reweighted
Sampling - PLS (CARS - PLS), Synergy Interval-Genetic Algorithm-PLS (Si-
GAPLS) (Kutsanedzie et al., 2018), Modified Partial Least Squares (mPLS)
and Synergy Interval Backpropagation Neural Networks Regression (Si-
BPANNR). Efficient classification results have been obtained with tools like
support vector machine (SVM), discriminant partial least squares (PLS-DA)
(Berrueta, Alonso, & Héberger, 2007), LDA, SIMCA, SVM, QDA and KNN
(Teye, Uhomoibhi, & Wang, 2016; Teye, Huang, Han, & Botchway, 2014a).
To build calibration models, all the spectra can be used, or variable selection
methods also are employed to obtain computationally efficient algorithms.
However, a variable selection can be performed to avoid complex
models. Table 3 also shows that full cross-valitadion is widely used during
model calibration. The evaluation of model performance is made by
parameters, such as the coefficient of determination of calibration, cross-
validation and validation (R?), coefficient of correlations (R), root mean error
of calibration, cross-validation and validation and the relation deviation

prediction (RPD). Sometimes both bias and slope are considered.
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4.3 Applications

4.3.1 Non-destructive determination of constituents and industrial

processing monitoring

Very few studies done with nondestructive technologies have been
applied in the cocoa industry. Of these, the most frequently used non-
destructive are NIR and FT-NIR (Table 3). The majority of studies have been
done in the postharvest (fermentation/drying) stage of cocoa beans.
Biochemical parameters like fat (Alvarez et al., 2012; Weiller et al., 2018),
sugars, polyphenols, procyanidins (Whitacre et al., 2003), methylxanthines,
moisture and pH (Krdhmer et al., 2013; Sunoj et al., 2016; Vesela et al., 2007)
have been evaluated. The aim of these studies was the quality control of end
products, and/or the determination of authenticity through compositional
analyses or by clustering samples from their spectral fingerprint (origin,
varietal classification).

Near infrared light is sensitive to the sample’s physical properties. These
physical conditions can cause variations in measured spectra, and have been
identified in spectra as multiplicative and additive effects. These effects, due
to light scatter, are minimized using a sample of a small homogenized particle
size (Barbin et al., 2018). Most studies have employed ground beans more
than whole beans, partly as a way to minimize the aforementioned variations
and effects (Barbin et al., 2018) (Table 3)

In relation to measurement modes, Dickens, (1999) defined four ways to
implement measurement equipment into processes: (i) off-line: a sample
analysis run away from the production line (i.e., laboratory); (ii) at-line:
manual random sample extraction from the production line and an analysis

performed close to the process line; (iii) on-line: samples separated from the
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production line which, after being analyzed in a recirculation loop (by-pass),
are returned. (iv) in-line: samples are analyzed on the running production line
(in situ) (Dickens & Dickens, 1999; Osborne, 2000). Table 3 shows that the
performance of this nondestructive analysis done in the off-line mode in
almost all the studies carried out by NIR in cocoa beans. Only Bolliger
performed an in-line application of NIR in 1999 to monitor the rheological
properties (viscosity, melting enthalpy) of chocolate in the tempering stage.
In connection with cocoa bean fermentation, the degree of fermentation
and flavor profile are routinely determined in both the trade and industry by a
cut test (color check). Both assessments require specially trained personnel.
Sensory evaluation is highly subjective depending on the sensory panel
(Afoakwa et al., 2013). So fermentation has been the subject of different
approaches, such as characterization by spectroscopic and chromatographic
methods (Aculey et al., 2010). Accordingly, Table 3 shows that the lower
value predicted by NIR is in ppm units of a metabolite (NH3) product of
fermentation. NH3 contents have been found to fall within a range of 46-332

ppm with a standard error of prediction (SEP) of 20 ppm (Hue ef al., 2014).

The fermentation of cocoa beans has been analyzed by NIR and EDGE
to gain a better understanding of the fermentation mechanisms related to the
microbiological factor. A good correlation between both measurements has
been found (Nielsen et al., 2008). NIR integrated with an electronic tongue
(ET) and multivariate analyses have been applied to perform a 100%
(accuracy) classification of five cocoa bean varieties. Accurate classifications
can be attributed to three functional groups (second overtone) of methylene (—
CH,), methyl (CH3) and ethenyl (-CH=CH-). Theobromine, for instance, has
one methyl group, while caffeine has two methyl groups. These compounds
may play an important role in discriminating employed cocoa bean varieties

(Teye, Huang, Takrama, et al., 2014c).
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Bacteria (e.g. Staphylococcus aureus, Bacillus cereus) in cocoa powders
have been found to affect their quality grades, and these bacteria can be
detected by the FT-MIR spectral system (Ramalingam e al., 2009). The total
fungi count (TFC) in cocoa beans has been evaluated by Fourier transform
near infrared spectroscopy (FT-NIRS) combined with synergy interval-
genetic algorithm-PLS (Si-GAPLS). This technique allowed a prediction
coefficient of 0.975 to be obtained, along with a root mean square error of
prediction (RMSE) of 0.384 CFU/mL and a ratio prediction deviation RPD of
4.32 (Kutsanedzie et al., 2018).

4.3.2 Authenticity and adulterations

Table 4 shows details of the studies carried out by the nondestructive
techniques used to assess the authenticity and adulteration of cocoa products.
Trilcova et al., 2004 showed that NIR and FTIR spectroscopy can be used as
a very fast and reliable tool for cocoa powder authentication. The term
authenticity refers to the inherent quality attributes of cocoa, and has been
included in new food fraud authenticity policies and identified as product
integrity (Manning, 2016). The authenticity of cocoa and its derivatives is
determined by studies that aim to identify the origin of raw material, varietal
purity, compositional parameters, detection of adulterants, etc.

The sensory characteristics of cocoa products have created an increasing
consumer trend to choose cocoa of a specific origin. These preferences have
allowed more appreciated cocoa origins whose quality is differenced by
market prices. This differentiation has yielded bad commercial practices, like
mixing more expensive cocoa beans of the highest quality and an outstanding
origin with other lower quality cocoa kinds that are cheaper to obtain

fraudulent economic benefits (Magagna et al., 2017).
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The determination of origin has been evaluated by the phenolic
fingerprint (D’Souza et al., 2017). Most of these studies have been conducted
by the compositional analysis mentioned in Section 2. Nondestructive
technologies like NIRS have been applied to classify cocoa by its origin. As a
result, classification percentages according to the geographical origin of cocoa
beans 0f 90.63 (LDA), 75 (KNN), 96.88 (BPANN) and 100 (SVM) have been
obtained by Teye et al., 2013.

Cocoa products and derivative fraud are related to intentional
contamination, and to noncompliance to product descriptions and
adulterations. The used adulterants are low-cost raw material (Van Ruth,
Huisman, & Luning, 2017), such as different flours like carob or chicory,
which have been processed to substitute cocoa powder (Loullis &
Pinakoulaki, 2018; Salem & Ohaad Fahad, 2012). The NIR technique and the
multivariate analysis have been used for the quantitative and qualitative
detection of carob flour added to cocoa powder (Quelal-Vésconez et al.,
2018). In another study, Quelal-Vasconez et al., 2019 quantitatively
determined the presence of cocoa shells by NIR and a PLS model. These
authors also classified between two categories of cocoa blends with 92.5%
accuracy: (1) presence of < 5% cocoa shells; (2) presence of > 5% cocoa shells
in cocoa powders.

Another adulteration type is to add different vegetal or animal fats to
cocoa butter (Jahurul et al., 2018; Kucha, Liu, & Ngadi, 2018). These fats can
come from pork, palm, Garnicia indica, Madhuca butyracea and other
vegetable origins with lower market values (Reddy & Prabhakar, 1994). These
fats are considered cocoa butter equivalents (CBE) and should not exceed 5%
of the final cocoa product (EU, 2000). However, these less expensive
materials and their intentional additions aim to lower production costs in

industry.
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No specific regulation exists for the products used as raw materials for
the food industry. Industries (beverages, bakery, pastries) are responsible for
testing their raw materials and for searching ways to detect adulterants
(Beulens, Broens, Folstar, & Hofstede, 2005; Trafialek & Kolanowski, 2017)
to ensure the precedence and content of these raw materials. Traceability is
one of the ways to ensure the food safety of end products. Other studies have
been done to detect added molecules, which are not declared in products like
vanillin and ethyl vanillin (Pérez-Esteve et al., 2016). Cocoa powder
adulteration by means of identifying the fingerprints of cocoa powder
polysaccharides has been studied, and has provided the possibility of finding
from 15%, or more, cocoa shell powder and 10% exogenous plant material
(Yang et al., 2015).

FTIR has been applied to detect cocoa butter equivalents CBE (allowed
in chocolate up to 5%: palm oil, illipe, sal, shea, kokum gurgi and mango
kernel). FTIR is considered a rapid screening method to distinguish pure and
vegetable fats, but a single global statistical model to predict the precise level
of added fat is still not available. The large uncertainty in predicting CBE has
been connected to the wide natural variability of samples (precise
geographical origin). So it was difficult to detect CBE in CB mixtures (e.g.
illipe) (Whitacre et al., 2003)
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Nondestructive technologies have been used to improve processes with
new control and evaluation methods (e.g. the fermentation index, the degree
of alkalization) and replaced or improving the conventional analysis methods
(chromatography, sensory analysis, etc.). Several results about certain features
like fat, moisture, color, proteins, pH (Moros, Iion, Garrigues, & de la
Guardia, 2007) and functional compounds (antioxidants) have been obtained
by only spectra measurements. As the NIR technology has demonstrated its
versatility, its applications are rapidly increasing not only to control the safety
of cocoa products, but also to improve their quality, and to optimize times and
costs.

Despite all the successful applications regarding the use of alternative
methodologies to analyze and control the above-described cocoa quality, their
implementation into the cocoa industry poses challenges, such us the
simultaneous presence of a variety of chemical compounds (nutrients,
phytochemicals, adulterants, contaminants, etc.) in cocoa products with
diverse structures and concentrations. This circumstance makes spectrometric
signals very complex and difficult to analyze. However, technology is rapidly
advancing and new equipment include improved signal collection and
software capable of performing chemometric analyses, which are key to

acquire reliable information.

5. Conclusions

The analytical methods applied to control the quality and authenticity of
cocoa products and their derivatives in industry and research laboratories have
mainly been conventional ones to date. They are conventional because they
have been used for years and are characterized by tasks like sampling, sample
preparation to extract target compounds and quantitative determination by

using chemical reagents. The majority of these methods are standardized and
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used especially for monitoring and optimizing the process during cocoa flow
production by individual analyses of attributes (color, pH, acidity and
proximal analysis) by wet chemistry. Most of the advances made in these
methods are related to analyte extraction to improve sensitivity accuracy and
analysis speed, also to the application of multivariate data analyses. For
sensitivity and accuracy determinations, chromatographic methods like HPLC
and GCMS, and its inline utilization, are the most well-developed ones, while
multivariate data analyses are mainly employed to determine the authenticity
parameters (i.e. origin or varietal features) of cocoa products. The most
explored nondestructive technique is spectroscopy, which is conducted within
the near infrared range, and also within the medium infrared range to a lesser
extent. Most NIR and FTIR studies have been conducted in the postharvest
stage of cocoa beans by analyzing biochemical parameters like fat, sugars,
polyphenols, procyanidins, methylxanthines, moisture and pH, or for the
purpose of assessing the authenticity of cocoa and its derivatives by
identifying the origin of raw material, varietal purity, compositional

parameters or the detection of adulterants.
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2. Objectives
2.1 General Objective

The main objective of this thesis was to evaluate the potential use of near
infrared spectroscopy as a tool for quality control in the cocoa powder industry,
especially to quickly and non-destructively identify the presence and quantify the
content of unwanted materials (cocoa shell) or adulterants (carob flour), as well as
to predict the content of the main bioactive compounds of cocoa powders

(methylxanthines and flavanols).

2.2. Specific Objectives

¢ To create a collection of representative cocoa samples with different origins
and alkalization degrees, as well as different cocoa shell and carob flours, and to use
these samples to create a battery of “adulterated” samples with known quantities of
cocoa shell and carob flour.

e To measure the NIR spectra of all the samples and to correlate them with the
added cocoa shell or carob flour contents, or with the methylxanthines and flavanols
content.

eTo develop and an HPLC method for the quantification of the
methylxanthines and flavanols (such as catechin, epicatechin, caffeine and
theobromine) present in cocoa powders characterized by different alkalization.

e To assess the influence of the alkalization level on the methylxanthines and
flavanols content of the cocoa powders.

e To obtain classification models able to discriminate between samples of
cocoa powders in categories related to the levels of cocoa shell (> 5 % and <5-40%)
or carob flour content (cocoa powders, adulterated cocoa powders and carob flours),
the article I evaluated by means of the sensitivity, specificity and the NER and the

article II evaluated by their accuracy.
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¢ To obtain prediction models able to determine the level of presence of cocoa
shell (0 to 40%), the percentage of adulteration with carob flour in cocoa powder and
the flavanols and methylxanthines content of the cocoa powders, which will be
evaluated by means of statistical parameters such as the coefficients of determination

(R?), the Root Mean Square Errors and the Ratio Prediction Deviation (RPD).
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3. Scientific Contributions

The thesis is divided into two different chapters:

a. Identification of cocoa components out of normative limits or non-declared
ingredients in cocoa powders.
The results included in this chapter have been published into 2 articles:
e ARTICLE I Fast detection of cocoa shell in cocoa powders by near infrared
spectroscopy and multivariate analysis.
e ARTICLE II. Rapid fraud detection of cocoa powder with carob flour using

near infrared spectroscopy

b. Prediction of the content of bioactive compounds of cocoa powders.

The results included in this chapter are now considered for their publication in
1 article:

e Article Ill. Changes in methylxanthines and flavanols during cocoa powder

processing and its quantification by near-infrared spectroscopy.
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Abstract

Cocoa shell must be removed from the cocoa bean before or after the roasting
process. In the case of a low efficient peeling process or the intentional addition of
cocoa shell to cocoa products (i.e. cocoa powders) to increase the economic benefit,
quality of the final product could be unpleasantly affected. In this scenario, the
Codex Alimentarius on cocoa and chocolate has established that cocoa cake must
not contain more than 5% of cocoa shell and germ (based on fat-free dry matter).
Traditional analysis of cocoa shell is very laborious. Thus, the aim of this work is to
develop a methodology based on near infrared (NIR) spectroscopy and multivariate
analysis for the fast detection of cocoa shell in cocoa powders. For this aim, binary
mixtures of cocoa powder and cocoa shell containing increasing proportions of cocoa
shell (up to ca. 40% w/w based on fat-free dried matter) have been prepared. After
acquiring NIR spectra (1100-2500 nm) of pure samples (cocoa powder and cocoa
shell) and mixtures, qualitative and quantitative analysis were done. The qualitative
analysis was performed by using principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA), finding that the model was able to
correctly classify all samples containing less than 5% of cocoa shell. The quantitative
analysis was performed by using a partial least squares (PLS) regression. The best
PLS model was the one constructed using extended multiple signal correction plus
orthogonal signal correction pre-treatment using the 6 main wavelengths selected
according to the Variable Importance in Projection (VIP) scores. Determination
coefficient of prediction and root mean square error of prediction values of 0.967
and 2.43, respectively, confirmed the goodness of the model. According to these
results it is possible to conclude that NIR technology in combination with
multivariate analysis is a good and fast tool to determine if a cocoa powder contains

a cocoa shell content out of Codex Alimentarius specifications.

Keywords: Cocoa powder, Cocoa shell, NIR, PLS, PLS-DA
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1. Introduction

Cocoa powder is a cocoa bean (Theobroma cacao. L) derivative largely
consumed around the world due to its capacity to give color, flavor and eating
pleasure to a myriad of food preparations (Dico ef al., 2018).

The obtaining of cocoa powder from cocoa beans follows different steps. First
of all, beans must be peeled, starting with the peeling of the bean before or after a
roasting process. During the same peeling, cocoa cotyledon must be separated from
cocoa shell (12-20% of the cocoa seed), yielding fragments of cotyledon, called nibs
(Okiyama, Navarro, & Rodrigues, 2017). During the shelling step, shell should be
perfectly separated, removing large parts of shells and leaving nib particles
practically unbroken (Beckett, 2009). The performance of this proce- dure is very
relevant since the presence of cocoa shell in cocoa beans derivatives (cocoa liquor,
cocoa powder or chocolate) adversely affects the final product quality (Mendes &
Lima, 2007). Concretely, it can have an influence in some characteristics of the final
product such as the flavor or taste; it can also be responsible of off-flavors.
Additionally, fiber content in cocoa shell is really high. Thus, it can be a problem for
the grinding process, causing equipment abrasion in some cases.

Bearing this in mind it is not surprising that shell content in cocoa powders is a
quality parameter to be controlled. Concretely, the Codex Alimentarius establishes
a maximum amount of 5% of cocoa shells in cocoa cake (based on fat-free dry
matter) (Codex Alimentarius, 2016).

Analysis of cocoa shell in cocoa products might be done following the AOAC
968.10 or the 970.23 methods (Codex Alimentarius, 2016). The first method, called
spiral vessel count consists of counting the spiral vessels in a defatted, grinded and
digested sample with the help of a microscope adjusted to mold counting (field of
view 1.382mm at 100x) (AOAC, 1084). The second method, called stone cell count,
consists of microscope assisted counting the stone cells present in the samples after

a really laborious preparation (AOAC, 1984).
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Since those methods are really arduous, recent attempts to develop alternative
methods have been done. Researchers from the Nestlé Research Center proposed a
gas-liquid chromatography procedure based on the detection of fatty acid
tryptamides (FATs) in the sample, since FATs are compounds more abundant in
cocoa shells than in other parts of cocoa seed. This work, carried out with only cocoa
originating from the Ivory Coast, demonstrated that it might be an appropriate tool
for the determination and prediction of the shell content in cocoa liquor (Hug, Golay,
Giuffrida, Dionisi, & Destaillats, 2006). In another work, Yang et al. (2015)
proposed the employment of polysaccharide fingerprint established by high
performance liquid chromatography followed by principal component analysis to
identified cocoa powders adulterated with cocoa or other plant shells such as
chestnut, longan, peanut, etc. However, only cocoa powders containing cocoa or
other plant shell percentages higher than 15 and 10%, respectively, were detected
using this methodology. Therefore, even when these methodologies (determination
of FATs, HPLC polysaccharide fingerprint, etc.) are more sensible, accurate and
faster than the methods proposed by the Codex Alimentarius, their use as routine
techniques for shell content determination still have certain limitations such as the
limit of detection or the fact that they need sample preparation, require specialized
personnel and they are destructive. To avoid these drawbacks common in traditional
chemical analysis techniques, recent attempts on developing accurate and sensi- tive
analytic techniques based on near infrared (NIR) spectroscopy have been done. Due
to the ability of NIR spectroscopy to provide a spectrum that acts as a ‘fingerprint’
distinctive of a particular sample, this technology is now widely used as a
successful quality control tool (Lerma-Garcia, Cortés, Talens, & Barat, 2018).
Concretely, in the cocoa sector NIR spectroscopy has been employed for the
prediction of majority (moisture, carbohydrate, fat, protein) or minority functional
compounds (theobromine, catechin, organic acids, etc.) (Krdhmer et al., 2015;
Veseld et al., 2007; Alvarez et al., 2012) as well as for quality control (dis-
crimination of cocoa beans according to geographical origin, prediction of cocoa

powder adulterations, etc) (Quelal ef al., 2018; Teye, Huang, Dai, & Chen, 2013).
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In this scenario, the goal of this work is the fast determination of cocoa shell
content in cocoa powders in concentrations higher than the limit established by the

Codex Alimentarius (5%) by means of NIR spectroscopy and a multivariate analysis.

2. Materials and methods

2.1 Cocoa powder and shell Samples

A total of 20 natural cocoa powders and 2 cocoa shells, gently provided by Olam
Food Ingredients (Cheste, Spain) or purchased in the market from different origins
(Ghana, Ivory Coast, Cameroon, Peru and Indonesia) were employed in this study.
In order to predict the presence of cocoa shell in cocoa powders using partial least
squares (PLS), binary mixtures containing cocoa powder and cocoa shell were
prepared. The mixtures contained percentages of cocoa shells in cocoa powder
(based on fat-free dry matter) from ca. 2.5-40%. Percentages higher than 40% were
not considered since over this percentage the presence of cocoa shell is sensory
evident. To improve the robustness of the PLS model, all 20 cocoa powder samples
(coming from different origins and obtained after different processings) were
randomly selected to perform a total of 12 binary mixtures for each percentage (2.5,
5, 7.5, 10, 20 and 40%), in which both cocoa shell samples were also considered.
Thus, a total of 72 mixtures were obtained. Once all mixtures were prepared, they
were poured in hermetic plastic containers and stored at 20 + 2 °C under dark

conditions until use.

2.2 NIR spectra acquisition

The 94 samples (20 cocoa powders, 2 cocoa shells and 72 binary mixtures) were
measured with a spectrophotometer FOSS NIR 5000 (Silver Spring, MD, USA). A
uniform thickness and surface were secured during spectra scanning using a device
with 380 mm of diameter and 1cm of thick with a quartz windows which was filled

with 5 g of sample. The spectrophotometer gives the measurements in relative
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absorbance units (log 1/R), which could be correlated with chemical constituents
(Liu, Sun, & Ouyang, 2010; Martens, Nielsen, & Engelsen, 2003). Each sample was
scanned 32 times in a range comprised between 1100 and 2500 nm at 2 nm intervals
(700 points). The samples were measured twice and no differences between them

were found.

2.3 Statistical analysis

Spectral data were pre-treated and analysed using qualitative and quantitative
models by means of the chemometric software Unscrambler v10.5 (CAMO Software
AS, Oslo, Norway).

The PCA model was performed using raw data to identify different sample
groups and to find and remove defective outliers (Adnan, Horsten, Pawelzik, &
Morlein, 2017; Bro & Smilde, 2014).

The PLS was performed in order to predict the presence of cocoa shell in the
cocoa powders and the PLS-DA (Berrueta, Alonso, & Héberger, 2007; Prats-
Montalban, Jerez-Rozo, Romanach, & Ferrer, 2012), was constructed to evaluate its
capability in classifying samples according to the following categories: cocoa
powders containing less than 5% cocoa shell (w/w), and cocoa powders containing
from 5 to 40% cocoa shell (w/w).

Both analyses were performed using the pre-treated spectra. The spectral pre-
treatments tried included extended multiple signal correction (EMSC) (Martens et
al., 2003), standard normal variation (SNV), 2™ derivative with the Savitzky-Golay
(S-G), orthogonal signal correction (OSC) and combinations of all of them with
OSC.

To construct both PLS and PLS-DA models, two data matrices were used. The
first one employed for the PCA and PLS model construction, contained the spectra
of all samples (N=94) and the same 700 X- variables. In this case, all individual
cocoa shell percentages were considered as Y-variable. The second matrix,

employed for the PLS-DA model construction, included the spectra of 92 samples
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(in which the spectra of cocoa shells were not considered since the considered cate-
gories were cocoa shell contents below 5% and between 5 and 40%) and 700
predictors or X-variables (wavelengths), and also a dependent Y-variable containing
the 2 categories previously described (<5% and 5-40% cocoa shell based on fat-free
dry matter, w/w).

For both, PLS-DA and PLS models construction, the use of all spectra
wavelengths was considered, jointly with the use of the most important wavelengths.
The PLS and the score of Variable Importance in Projection (VIP) were combined
together for these selection (Botelho, Reis, Oliveira, & Sena, 2015).

To select the optimal factor number and to avoid the over-fitting of both PLS
and PLS-DA models, leave-one-out cross-validation was used using 70% of the data,
which were randomly selected. The remaining 30% of the data were used as an
external validation set.

PLS models accuracy was evaluated by the required number of latent variables
(LVs), the coefficient of determination of calibration (R*c), RMSEC, the coefficient
of determination of cross-validation (R’cy), RMSECV, the coefficient of
determination for prediction (R”), the root mean square error of prediction
(RMSEP), the ratio of prediction deviation (RPD, which is calculated as ratio
between the standard deviation of reference values in training set and RMSEP) and
the bias value (which establishes the difference between experimental values and
NIR predictions). Bias value can be positive (overestimating) or negative
(underestimating), indicating values near to zero a minimum deviation from
experimental and predicted values (Cantor, Hoag, Ellison, Khan, & Lyon, 2011).

On the other hand, the number of latent variables (LVs) for the PLS-DA model
was determined by the low value of the root mean square error of calibration
(RMSEC), and the root mean square error of leave-one-out cross-validation
(RMSECV) (Botelho et al., 2015). The PLS-DA classification performance was
evaluated by sensitivity, specificity and by the non-error rate (NER). Sensitivity is
the model ability related to a correct classification of the samples with different

levels of cocoa shell content. The model capacity to correctly determine the samples
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which not correspond to the class and correctly refuse them is the specificity
(Almeida, Fidelis, Barata, & Poppi, 2013). The non-error rate (NER) is the average
of the sensitivities of the different categories (Manfredi, Robotti, Quasso, Mazzucco,

Calabrese, & Marengo, 2018).

3. Results and discussion

3.1 Cocoa powder and shell spectra, pre-treated spectra and PCA analysis

The mean raw spectra of cocoa powders, cocoa shells and binary mixtures of
them at different percentages are shown in Figure. 1a. As shown in this figure, the
main bands observed appeared at 1470, 1930 and 2130 nm, although other bands at
1730, 2310 and 2350 nm were also evidenced. Although all spectra have a similar
pattern of absorbance, the relative absorbance of these bands is different for the
different types of samples: cocoa shell is characterized by the highest relative
absorbance, which decreased when the content of cocoa shell in the samples
decreased. The signal at 1470 nm correspond to the firs overtone of O-H and N-H
stretching which is associated with a CONH, structure (peptide) and related to a
protein (Osborne, Fearn, & Hindle, 1993).

The signal at 1930 nm is related with asymmetric stretching and rocking of
water, weakly bounded water, proteins, and aromatics (Vesela et al., 2007), while
the wavelength at 2130 nm can be assigned to N-H combination bands (CONH>)
(Ribeiro, Ferreira, & Salva, 2011). On the other hand, the band at 1730 nm could be
assigned to the first overtone of C-H (Ribeiro et al., 2011), while 2310 and 2350 nm
are mostly related to stretching and rocking vibrations of CH2 of polysaccharides

(Vesela et al., 2007).
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Figure 1. Mean spectra of cocoa powders and shells and mixtures of them at

different percentages from (a) raw and (b) pre-treated with EMSC-OSC spectra.

The mean spectra obtained after the application of the EMSC-OSC pre-
treatment is shown in Figure. 1b. In this case, the principal wavelengths were 1420,
1470, 1730, 1764, 1930, 2174, 2310, 2350 and 2390 nm. Most of the bands have
been previously described, while the other ones could be attributed to the first
overtones of symmetric and anti-symmetric C-H stretch vibration (CH»-groups)
(1764 nm) (Krdhmer et al., 2015), to a combination of C-H (2174 nm) (Ma et al.,
2017) and to the combination of C-H stretch and C-H deformation modes (2390 nm)
(Wang et al., 2018).

In order to have a more precise idea about the relation between samples and
variables a PCA model, a non-supervised method was performed with the raw
spectra data to identify possible sample groupings. The score plot of the two first
principal components (PCs) is shown in Figure. 2. A total of 98% of the variance is
explained by these two first PCs (87 and 11% for PC, and PC,, respectively). Along
PCi, cocoa shell samples are clearly separated from the remaining ones, in which
any clear tendency was observed, although samples containing high cocoa shell
percentages (40% w/w) seemed to be located closer to the PC; values of cocoa shell.
According to the X-loading values (data not shown), the wavelengths with higher
weights were 1930, 1420 and 1470 nm for the PC; and for the PC, were 1644, 1326,
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2146, 2310 and 2350 nm. Some of these peaks (1930, 1470, 2310 and 2350 nm)
matched with the main peaks observed in raw spectra, which have been previously
mentioned. The other bands corresponded to the fist overtone of the hydroxyl and
amino groups (1420 nm) and first overtone of C-H (1644 nm) (Ribeiro et al., 2011),
the second overtone of C-H (1326 nm) (Ma, Wang, Chen, Cheng, & Lai, 2017) and
the combination of C-C and C-H stretching (2146 nm) (Workman, & Weyer, 2008).
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Figure 2. PCA score plot of the two first PCs showing the distribution of all the
samples considered in this study. Samples were labelled as follows: cocoa shell

content < 5%, comprised between 5 and 20%, 40% and pure cocoa shells.

3.2 Prediction of the added cocoa shell percentage in cocoa powders by PLS

A total of 8 PLS models using all the available wavelengths (700) as variables,
one for each pre-treatment considered in the study, were performed. The results
obtained are summarized in Table 1. At the sight of the results, the best PLS model
was the one constructed using the EMSC+OSC pre-treatment. In order to reduce the
high dimensionality of the spectral data, the most important wavelengths were
selected according to the VIP scores (Figure. 3). These VIP scores determine the
significance of each variable in the projection used by a given PLS model by means
of their coefficients in every component, jointly with the significance of each
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component in regression (Botelho et al., 2015). As it could be observed in Figure. 3,
the most important variables are wavelengths at 1930, 1420 and 1470 nm at positive
values of LVy, and 2310, 2350 and 1730 nm at negative values of LV,. These
wavelengths are mostly the same previously mentioned in both raw and pre-treated
spectra, which demonstrated their importance in cocoa shell content prediction. Most
of these wavelengths have been previously described in literature in the prediction
of several compounds (such as fat, carbohydrates, polysaccharides, moisture,
polyphenols, etc.) of cocoa beans and derived products (Huang et al., 2014; Krahmer
et al., 2015; Quelal-Vasconez, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens,

2018; Vesela et al., 2007).
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Figure 3. Variable importance in projection (VIP) scores of the PLS model

constructed to predict cocoa shell percentages.

Using the EMSC+OSC pre-treatment and the six wavelengths obtained in the
VIP scores as variables, another PLS model was constructed. The results obtained
for this model are also shown in Table 1. Compared to the best model obtained with
the same pre-treatment but using all the available wavelengths, this model is less

complex although all the other parameter values are very similar.
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Table 1: Results of the PLS models constructed for predicting cocoa shell
percentage using different pre-treatments and different number of wavelengths with

a calibration and validation sets.

Pretreatment #W #LV Calibration  Cross-validation Validation
R?c RMSEC R’cy RMSECV R?% RMSEP Bias RPD

Raw data 700 7 0908 3.68 0.694  6.83 0.930 3.52  0.351 3.46
EMSC 700 7 0936 3.06 0857 4.64 0941 324  0.095 3.77
SNV 700 7 0931 318 0862 4.5 0.940 327  0.057 3.72
2nd Der. (S-G) 700 7 0967 220 0936  3.09 0.955 296 -0.021 4.11
0SC 700 1 0990 120 0989 1.5 0.851 5.16 -0.059 2.36
EMSC-0SC 700 1 0974 192 0973 2.01 0.967 241  0.204 5.06
SNV+0SC 700 1 0978 1.79 0.976 1.89 0.967 255 -0.278 4.77
2nd Der. (S-G)+0SC 700 30944 285 0942 296 0939 333 -0.104 3.66
EMSC-0SC 6 1 0975 191 0973 201 0.967 2.43  0.195 5.03

#W = number of wavelengths used to construct de model; #LV = latent variables;
R2 = determination coefficient; RMSEC = Root mean square error of calibration;
RMSECV = Root mean square error of cross-validation, RMSEP = Root mean
square error of prediction; RPD = Ratio prediction deviation; EMSC = Extended
multiple scatter correction; 2" Der. (S-G) = Second derivative and Savitzky Golay

smoothing, SNV = Standard Normal Variate, OSC = Orthogonal signal correction.

The plot representing the predicted versus the measured cocoa shell percentages
of the prediction set samples constructed with PLS data of the model constructed
using the 6 wavelengths as variables is shown in Figure. 4. A good linear fit due to
the closer relationship between the reference values and the NIR spectra is
observed, displaying the reliability and accuracy of the NIR in determining the

percentage of cocoa shell present in the cocoa powders.
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Figure 4. Predicted versus measured cocoa shell percentages by PLS model

constructed using the 6 main wavelengths in the prediction set.

3.3 Classification of cocoa powder samples according to the added level of cocoa
shell

Since PCA is a non-supervised method, and it is not possible to observe a clear
separation between the different sample categories, a supervised discriminant model,
PLS-DA, was next constructed using all the available wavelengths (700) and the
EMSC-OSC pre-treatment. The best model was obtained with 2 LVs with RMSEC
and RMSECYV values of 0.24 and 0.28, respectively, with most of the variability
explained by the LV, (72%).

Next, using the 6 most relevant wavelengths as variables, another PLS-DA
model was constructed. The discriminant plot obtained using the two LVs for the
classification of samples according to the different categories is shown in Figure. 5.
As it can be observed in this figure, separation between the two categories is
achieved along LV, with negative scores related to the samples containing < 5%

cocoa shell, and positive scores related to samples containing 5-40% cocoa shell.
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Figure 5. PLS-DA discriminant plot constructed using the two first LVs to
classify cocoa powders according to the following categories: cocoa shell content <
5% and cocoa shell content comprised between 5 and 40%. Both calibration (C<5%
and C 5-40%) and external validation (V<5% and V 5-40%) set samples have been

included and represented with different symbols.

Once constructed, the model was validated with the external validation set
samples. The results obtained for both calibration and external validation sets for this
model are included in Table 2. As it can be observed in the confusion table for the
calibration samples, all samples were correctly classified. On the other hand, for the
external validation set, all samples of the <5% category were correctly classified,
while 3 samples of the 5-40% category were misclassified. Even if the number of
misclassified samples is very low, it should be highlighted that all the “misclassified
samples” corresponded to samples containing a 5% cocoa shell (based on fat-free
dry matter), which is the limit established by the Codex Alimentarius, and thus the
borderline of both categories. Next, the PLS-DA classification performance was
evaluated by the sensitivity, specificity and NER values, which are also included in
Table 2. Taking into account the values reported and the comments previously

mentioned, it could be concluded that the PLS-DA model constructed is able to
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reliable discriminate between samples containing cocoa shell percentages below and

upper 5%.

Table 2. Confusion table, sensitivity (SENS), specificity (SPEC) and non-error
prediction rates (NER) of the PLS-DA model constructed with variable selection to
discriminate cocoa powders into two categories: cocoa powders with < 5% and

between 5-40% cocoa shell.

Category # Samples SENS (%) SPEC (%) NER (%)
<5% 5-40%
Calibration set samples

<5% 22 0 22 100 100 100
5-40% 0 40 40 100 100
22 40 62
External validation set samples
<5% 10 0 10 100 85 9.5
5-40% 3 17 20 85 100 )
13 17 30

4. Conclusions

NIR spectroscopy in combination with PLS and PLS-DA statistical models has
been shown to be a rapid and effective method to determine cocoa shell content in
cocoa powders. Using a PLS analysis, it was possible to quantify the percentage of
cocoa shell present in cocoa powders. The best PLS prediction model was
constructed using the 6 main wavelengths (1420, 1470, 1730, 1930, 2310 and 2350)
selected according to the VIP scores, obtaining 1 LV with R*c and R*cy 0f 0.975 and
0.973, respectively, and RMSEC and RMSECV of 1.91 and 2.01, respectively.
Regarding the validation samples, R*» was 0.967 while RMSEP was 2.43,
confirming the goodness of the model. On the other hand, the PLS-DA analysis show
that 92.5% of the validation set samples were correctly classified into two groups:

samples with a shell content lower than 5% (considered the acceptance limit in cocoa
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powders by the Codex Alimentarius) and shell contents between 5 and 40%. These
results indicate that this technology is therefore an important tool for cocoa
producers and clients, who will be able to discriminate among samples in or out
specifications, avoiding the use of destructive techniques that require a complex
preparation of the sample or techniques that imply an important expense for the

company.
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Abstract

Cocoa powder is a highly valuable global product that can be adulterated with
low-cost raw materials like carob flour as small amounts of this flour would not
change the color, aroma and taste characteristics of the final product. Rapid methods,
like NIR technology combined with multivariate analysis, are interesting for such
detection. In this work, unaltered cocoa powders with different alkalization levels,
carob flours with three different roasting degrees, and adulterated samples, prepared
by blending cocoa powders with carob flour at several proportions, were analysed.
The diffuse reflectance spectra of the samples of 1100 - 2500 nm were acquired in a
Foss NIR spectrophotometer. A qualitative and a quantitative analysis were done.
For the qualitative analysis, a principal component analysis (PCA) and a partial least
squares discriminant analysis (PLS-DA) were performed. Good results (100%
classification accuracy) were obtained, which indicates the possibility of
distinguishing pure cocoa powders from adulterated samples. For the quantitative
analysis, a partial least squares (PLS) regression analysis was performed. The most
robust PLS prediction model was obtained with one factor (LV), a coefficient of
determination for prediction (RP2) of 0.974 and a root mean square error of
prediction (RMSEP) of 3.2% for the external set. These data allowed us to conclude
that NIR technology combined with multivariate analysis enables the identification
and determination of the amount of natural cocoa powder present in a mixture

adulterated with carob flour.

Keywords: Cocoa powder, adulteration, carob flour, NIR, PCA, PLS.
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1. Introduction

Cocoa powder, thanks to its characteristic and pleasant flavour and aroma, is
one of the most valued commodities around the world (Bonvehi, 2005). Among its
applications in the food industry, the formulation of beverages, confectionery,
bakery and pastry products stands out (Shankar, Levitan, Prescott, & Spence, 2009).
Apart from flavour and aroma, cocoa is highly appreciated as a natural colouring
agent, partly because of the current tendency to restrict the use of artificial colors.

During cocoa processing, it is possible to modify cocoa color and aroma through
roasting and/or alkalization processes. Roasting consists of exposing cocoa beans to
temperatures of 130—150°C for 1545 min. It is used to inactivate microorganisms
and to develop the characteristic brown color, mild aroma and texture of commercial
natural beans (Bonvehi, 2005, Krysiak, 2006; Afoakwa, Budu, Mensah-Brown,
Felix & Ofosu-Snsah, 2014). Alkalization is an optional operation to reduce acidity,
bitterness and astringency, and to darken cocoa’s color. This procedure involves
using an alkali (generally potassium carbonate) in combination with oxygen, water
and high temperatures. These extreme conditions provoke, among others, Maillard
reactions and polyphenol oxidations and polymerizations, which end up with flavor
and color modifications from light brown (natural) to red, dark brown or extremely
black (Miller et al., 2008; Li et al., 2012).

In recent years, the demand for cocoa powder has increased and its supplies
have tightened, thus its price has steadily grown (Fadel, Mageed, Samad, & Lotfy,
2006). Consequently, there is a demand to develop cocoa substitutes. Some studies
suggest that cocoa-like aromas can be found in roasted carobs (Arrighi, Hartman &
Ho, 1997). Carob pods are characterized by a high sugar content (around 50%),
composed essentially of sucrose. This high sugar content favors the same chemical
reactions that occur during the roasting and alkalization of cocoa: caramelization of
high sugar content and Maillard reactions between amino acids and sugars (Fadel et

al., 2006). In this way, toasted carob can provide similar aromas to cocoa.
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Bearing in mind this striking aromatic and visual similarity between carob flour
(natural or toasted) and cocoa (natural or alkalized), some traders have seen that
selling carob (average price of 940 US§/tonne) as cocoa (1945 US$/tonne), by
omitting this substitution, is a profitable option to increase their benefits (ICCO,
2017). However, this deliberate, intentional and undeclared substitution of one
product for another with a lower price is food fraud that not only affects producers
and consumers, but also the physico-chemical properties of the manufactured
product. Some studied examples comprise milk chocolates and chocolate cakes, in
which some percentages of cocoa powder have been substituted for carob flour
(Salem & Ohaad Fahad, 2012; Rosa, Tessele, Prestes, Silveira, & Franco, 2015).

To detect food adulteration, the three most widespread technologies are liquid
chromatography, infrared spectroscopy and gas chromatography (Moore, Spink, &
Lipp, 2012). Liquid and gas chromatography analyses need long sample preparation
times, method optimization, and high-cost materials and reagents, while infrared
spectroscopy is fast, reliable, less expensive and a chemical-free alternative (Ellis et
al., 2012). Near infrared spectroscopy (NIR) is an infrared spectroscopy type
characterized by recording reflectance or transmittance spectra within the region
from 750 nm to 2500 nm. These spectra act as a ‘fingerprint’ that is characteristic of
a particular sample molecule and allows its identification. Some examples of using
NIR and multivariate analyses in the cocoa sector include the prediction of basic
food components, such as moisture, carbohydrate, fat, protein, theobromine and
catechin and total polyphenol content (Vesela et al., 2007; Alvarez et al., 2012;
Huang et al., 2014). In other sectors, NIR in combination with a multivariate analysis
has been employed to detect starch in onion powders, acid whey, starch, maltodextrin
in skim powder milk, Sudan dyes in chili powders, and talcum powder in teas
(Lohumi, Lee, Lee, & Cho, 2014; Capuano, Boerrigter-Eenling, Koot, & van Ruth,
2015; Haughey, Galvin-King, Ho, Bell, & Elliott, 2015; Li, Zhang, & He, 2016).
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In this context, the aim of this work was the rapid detection of the adulteration
of cocoa powders, regardless of their alkalization level, with carob flours by applying

NIR and a multivariate analysis.

2. Materials and methods

2.1 Raw materials

In order to analyse a good representative set of samples of the variability in
commercial cocoa and carob flour, cocoa powders with different alkalization levels
(n=12), as well as carob flour powders with three different roasting degrees (n=6)
were used in this study. The samples used were natural cocoa (NC), lightly alkalized
cocoa (LAC), medium alkalized cocoa (MAC), strong alkalized cocoa (SAC), light
carob flour (LCF), medium carob flour (MCF) and dark carob flour (DCF).

OLAM Food Ingredients, Spain (Cheste, Valencia), kindly donated cocoa
powders. Carob flour powders were bought from a local specialized supermarket.
Raw samples were placed inside a glass container and stored in a dry dark

atmosphere until were used.

2.2 The physico-chemical characterization of raw materials

Each of the raw samples was characterized according to their extractable pH
value and extrinsic color. All measurements were taken in triplicate. For extractable
pH determination, the process described in The Zaan Manual (Olam, 2017) was
followed. For that purpose, 10g of cocoa powder were suspended in 90 mL of boiling
distilled water and stirred. After decreasing temperature to 20-25°C in a cold bath,
sample pH was measured with a digital pH-meter (Crison Instruments, S.A.,
Barcelona, Spain) previously calibrated with 3 buffer solutions: pH 4.01, pH 7.0 and
pH 9.21 (T=25 °C). According to pH value, samples were classified in four different
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categories: natural cocoa powders (5< pH<6), light alkalized (6<pH<7.2), medium
alkalized (7.2< pH<7.6) and strong alkalized powders (pH >7.6) (Miller et al., 2008).

To determine the extrinsic color, a cocoa powder sample was placed in a
methacrylate cuvette by unifying the degree of compaction through small successive
shocks. Color was measured in a spectrocolorimeter Minolta CM 3600D (Tokyo,
Japan). Reflectance spectra (between 400 - 700 nm) were used to obtain color
coordinates L*, a* and b* for D65 illuminant and 10° observer. Hue (h"*) and
chroma (C*) were estimated by Equation 1 and Equation2, respectively.

*

h* = arctg% (1)

C'=vVa’+ b* (2
2.3 Preparing adulterated samples

In this study, two batches of 234 samples composed of 12 unaltered cocoa
powders, 6 carob flours, and 216 adulterated samples, were used. The adulterated
samples were prepared by blending the 12 cocoa powders with the 6 different carob
flours at different proportions. For all the 72 possible cocoa-carob combinations,
three different levels of adulteration were prepared: low adulteration LA (0-20%),
medium adulteration MA (20-40%) and high adulteration HA (40-60%). The upper
limit (60%) was set by considering that above this concentration, adulteration would
become evident due to the characteristic carob aroma (Cantalejo, 1997). The specific
adulteration percentage at a given level was determined randomly from a uniform
distribution (each adulteration percentage had the same probability of being
selected), following the Latin Hypercube Strategy (LHS) (Helton & Davis, 2003).
The adulterated samples were placed in a glass container and stored in a dry dark

atmosphere until used.
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2.4 Collecting near-infrared spectra

All samples were scanned in a FOSS NIR 5000 System spectrophotometer
(Silver Spring, MD, USA) equipped with a transport module. Round sample cups
(3.8 cm diameter x 1cm thick quartz windows) were filled with each sample (about
5 g) so that the surface and thickness remained uniform during spectral collection.
The instrument measures diffuse reflectance and automatically converts it into
relative absorbance (log 1/R) to obtain a linear correlation with the concentration of
the product’s chemical constituents (Martens, Nielsen, & Engelsen, 2003). Thirty-
two successive scans with 700 points (wavelengths) from each sample were collected

within a wavelength range from 1100 nm to 2500 nm at 2-nm intervals.

2.5 Chemometric analysis

An analysis of variance (ANOVA) was used to determine the differences in pH
and extrinsic color among samples. Data were statistically processed using
Statgraphics Centurion XVI (Manugistics Inc., Rockville, MD, USA).
Simultaneously, color parameters C*, h* and L* and pH were used in a principal
component analysis (PCA) to show the samples and their relationship. Before the
analysis, an autoscaling was performed in order to improve the weights of the
variable with small values.

A multivariate analysis was conducted by a qualitative analysis and a
quantitative analysis by The Unscrambler v10.4 (CAMO Software AS, OSLO,
Norway). For the qualitative analysis, a PCA and a partial least squares discriminant
analysis (PLS-DA) was performed. The PCA was run with raw data, while the PLS-
DA (Berrueta, Alonso, & Héberger, 2007) was constructed after applying spectra 2"
derivative Savitzky-Golay smoothing (2nd derivative S-G) (Savitzky & Golay,
1951) and orthogonal signal correction (OSC). Both pre-treatments were applied to
acquire useful information, improve the signal-to-noise ratio and remove systematic
variation from the predictor matrix X unrelated, or orthogonal, to matrix Y (Wold,

Antti, Lindgren, & Ohman, 1998; Pizarro et al., 2004). For the quantitative analysis,
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a partial least squares (PLS) regression analysis was performed. In order to evaluate
and correct the multiplicative and additive effects caused by different light scattering
in the spectroscopic measurement (Cozzolino ef al., 2011; Stohner ef al., 2012), four
PLS models were tested. The PLS were constructed using the raw spectrum and by
applying three pre-treatments to the spectrum: 2™ derivative S-G, OSC and the

combination of them.

2.5.1 Developing calibration models

Two databases were used for the analysis. The first database consisted of 468
spectra and 700 variables (wavelengths, nm) was used for the PCA and PLS models.
For the PLS-DA classification samples were divided into three categories (0=Cocoa;
1=Adulterated samples and 2=Carob flour) and a second database with 142 spectra
and 700 variables was created to balance the number of samples that belonged to
each category. Moreover, the spectra of each database were randomly separated into
two different data sets. A set with 70% of the spectra was used to create and evaluate
the model by leave-one-out cross-validation. The other set, with 30% of the
remaining samples, was used for external validation. The relative performance of the
constructed models was assessed by the required number of latent variables (LVs),
the coefficient of determination for calibration (R%c), the root mean square error of
calibration (RMSEC), the coefficient of determination for cross validation (R%cv)
and the root mean square error of leave-one-out cross validation (RMSECV). A
model can be considered good when a few LVs are required, and when it has low
RMSEC and RMSECYV and high R?c and R?cv. A cut-off value of = 0.5 was used for
the classification of the samples (Dong, Zhao, Hu, Dong, & Tan, 2017).

2.5.2 External validation

To assess the models’ predictive capability, the coefficient of determination for

prediction (R’P), the root mean square error of prediction (RMSEP), the ratio of
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prediction deviation (RPD = SD/RMSEP), where SD was the standard deviation of
the Y-variable in the prediction set, and bias were used. The RPD is more meaningful
than only looking at the error of prediction. An RPD value lower than 2 is considered
insufficient for application, one between 2 and 2.5 is considered for approximate
quantification, and values between 2.5 and 3 are taken as a good model, while models
with RPD values above 3 can be considered excellent and most reliable for analytical
tasks (Sunoj, Igathinathane & Visvanathan, 2016). The bias estimates the difference
between the experimental value and NIR predictions, and can be positive or negative.
Positive values indicate that the model overestimates, while negative values suggest
otherwise. Higher bias values indicate that NIR predictions vary significantly from
the experimental values (Cantor, Hoag, Ellison, Khan, & Lyon, 2011), so it is better

if it comes close to zero.

3. Results and discussion

3.1 Raw materials characterization

Table 1 contains the color parameters and pH values of the different raw
materials. As observed, the obtained pH values ranged from 5.3 (NCI1) to 7.9
(SAC3). According to these values and following the Miller Classification, twelve
samples were considered natural cocoas (NC; 5<pH<6), three samples light alkalized
cocoas (LAC; 5<pH<6.2), tree samples medium alkalized cocoas (MAC;
7.2<pH<7.6) and three samples strong alkalized cocoas (SAC; PH > 7.6). pH can
be used as an indicator of the degree of alkalization that occurs during production
because the pH value of cocoa powder is related to the amount and type of alkali
used in the process (OLAM Cocoa Manual, 2017; Pérez, Lerma, Fuentes, Palomares,
& Barat, 2016). The inclusion of cocoas with different degrees of alkalization during
the model-building phase assures that it might be used with independence of the

cocoa powder processing.
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The lightness (L*) values measured in the cocoa samples ranged from 31
(SAC1) to 50 (NC3). The maximum lightness value appeared in a NC sample (NC3).
The L* value progressively lowered according to the degree of alkalization to the
minimum value in the SAC samples with a very dark color. The differences in the
lightness in the NC samples (NC1, NC2 and NC3) could be due to a different
geographical origin or to distinct processing in the fermentation or roasting stages
(Afoakwa, et al., 2014).

The chroma (C*) values oscillated between 11 (SAC1) and 22 (NC2). As seen
in Table 1, the higher the alkalization degree, the lower purity becomes.

Hue (h*), unlike the other parameters, does not follow a linear relationship with
an increased pH value. Cocoa samples evolve from a more yellow-orange hue (h *
= 60) to a more orange-red one (h* = 43) in the alkaline cocoa samples.

The pH of carob flours ranged from 4.5 to 5.1, with no trend observed between
the pH value and the degree of toasting samples. Thus, carob samples could be added
to the NC beans in high proportions without significantly changing the mixture’s pH
value.

The L* values in the carob flours ranged from 34 (DCF) to 49 (LCF), which
meant that lightness progressively lowered as the degree of roasting increased. When
these values were compared with those of cocoa, were found no statistical
differences (p<0.05) between the NC samples and natural carob meal (LCF samples),
nor between the lightness of MAC and SAC samples and roasted carob (MCF and
DCF). These minor differences in lightness would favor the adulteration of cocoa
with carob meal.

The chroma (C*) of the samples also decreased as the degree of roasting rose,
with values of 23.7 for LCF samples that lowered to 13 for strong roasted carob
(DCF samples). When comparing the C* values between cocoa and carob, we found
a similarity between both. Thus the C* values would be the equivalent between
natural cocoa and natural carob meal, and between medium/strong cocoa beans and

roasted carob.
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The hue (h*) values for the carob flours gave no significant differences with an
increasing degree of roasting, but only a slight decrease. The values obtained for the
carob flour samples were 61 on average. These values coincided with those observed
in the NC samples.

Cocoa color parameters are generally affected by several factors, including the
degree of roasting and alkalization. The strong alkalized ones were dark, while the
natural ones were lighter. The roasting result was darkened cocoa or carob due to the
formation of brown pigments (Zyzelewicz, Krysiak, Nebesny, & Budryn, 2014),

with changes noted in the values of the individual color parameters.
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Table 1. Color parameters and pH (mean and standard deviation) values for the

carob and cocoa pure samples.

Article 2

Color Parameters
Product pH £sd
L* +sd C*+sd h* + sd

LCF1 48.6+0.4%  23.6+03°  61.0£03°  5.03+0.01°
LCF2 47.70+0.06%  24.140.2°  60.98+0.11°  5.12+0.01°
LCF3 4614024  26.340.7°  61.5+0.3°  4.67+0.01°
LCF4 44.1740.3%  20.7402°  61.1£0.3°  4.911+0.01°
MCF 37.6£04% 169407  60.240.5°  4.851+0.01°

DCF 34.5+1.5° 12.9:£0.9° 60£2° 4.817+0.01°

NC1 48.7+0.2¢ 20.140.5%  58.840.4°  5.391+0.01°

NC2 48.33+0.13°  223+0.4%  59.5£0.3°  5.46+0.01°
NC3 50.3£0.6°  22.19+41.02%  60.040.4°  5.70+0.01°
LACI 42.3+0.6°  224+0.7¢  543+04°  6.901+0.01°
LAC2 442+0.5°  18.63+1.02%¢  55.0£0.9°  6.96+0.02°
LAC3 41.740.5*  19.8040.13%  54.5£0.5°  6.98+0.01¢
MACI 44.9+1.5¢ 182¢ 55.740.6°  7.24+0.01°
MAC2 41.9+0.7° 18.0+0.6%  54.2+0.5°  7.34+0.03¢
MAC3  3585+1.05>  16.0+0.8*  43.040.6°  7.43+0.01¢
SACI 32.1+0.8° 11.6£0.9°  46.5+0.6°  7.81+0.01°
SAC2 39.4+0.5°  19.76+0.99°  51.4+0.8°  7.84+0.01°
SAC3 40.1+0.2° 17.340.8°  53.2+0.6°  7.9240.01°

Values in the same column followed by the same letter(s) are not significantly
different according to ANOVA at a 95% Confidence level. For cocoas (N): Natural
cocoa (NC), light alkalized cocoa (LAC), medium alkalized cocoa (MAC) and strong
alkalized cocoa (SAC). For carob flours (A): light carob flour (LCF), medium carob
flour (MCF) and dark carob flour (DCF).

In order to know how the physico-chemical properties explained the different

characteristics between the cocoa and carob flour samples, a PCA was performed
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with the pH and color parameters. Figure 1 shows the two-dimensional scatter plot
of scores for two principal components (PCs) from projection results and allows the
visualization of the distribution of the scores of the samples of cocoa and carob
powder. The two PCs explain over 94% of the variation. The first PC explains 78
% of the variance and is related with the roasted degree of the carob, or alkalization
of the cocoa powder, whereas the second PC explains 16 % of the total variance and
is related with the difference between level of alkalized cocoa and the carob flour.

The natural cocoa NC and light carob flour LCF scores were close, which
indicated that these samples were related and had similar pH characteristics and color
parameters. The positive scores on component 1 and component 2 corresponded to
the samples with different degrees of alkalization. This position and the loading
values of the variables led to the conclusion that the samples with low lightness and
high pH were the alkaline cacao samples, while the samples with low lightness and
low pH were those of roasted carob flour (Dark (DCF) and medium (MCF)). This
agrees with the results presented by other authors (Bulca, 2016; Yousif & Alghzawi,
2000), which indicated that carob flour could not be visually separated from cocoa
powder, not even when the other groups of the alkalized and roasting samples were
blended.
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Figure 1. Score plot of the first and the second principal components of the PCA
model using color parameters L*, C*, h* and pH of pure carob and cocoa powder
samples (n=18, in triplicate). NC: natural Cocoa; LAC: light alkalized cocoa; MAC:
medium alkalized cocoa; SAC: strong alkalized cocoa; LCF: light carob flour; MCF:

medium carob flour; DCF: dark carob flour.
3.2 Spectral differences analysis of carob and cocoa powder

The spectra of the relative absorbance of cocoa powder and carob flour are
represented in Figure 2 (a, b). All the cocoa spectra display a similar absorbance
pattern, this pattern differs between cocoa and carob flour in relation to the

absorbance intensity.
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Figure 2. Spectra with raw data within the 1100 - 2500 nm range (a) Cocoa. (b)

Carob flour.

Raw data were preprocessed by applying the 2" derivative S-G and OSC.
Examples of the pretreated spectra of cocoa (brown) and carob (gray) are shown in
Figure 3. As observed, after this pretreatment the differences between both spectra
types became more evident than in the untreated spectra. It can be stated how
divergence pointed between both spectra types being located especially in the
magnitude of reflectance at 1438, 1728, 2312, 2324, 2350 nm. As expected from the
compositional differences, between cocoa powder and carob flours, these
wavelengths were associated with the vibration of the functional groups that cocoa
powder contains like theobromine and caffeine (1728 nm) (Cozzolino et al., 2011),
and epicathechin (2312, 2324 nm) (Esteban, Gonzélez, & Pizarro, 2004; Teye &
Huang, 2015).
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Figure 3. Second derivative, Savitzky Golay smoothing and orthogonal signal
correction pretreated the cocoa (brown) and carob (grey) spectra within the 1100 -

2500 nm range.

3.2 Classification model

A PCA was performed as a non-supervised learning algorithm with the raw
spectra data to evaluate the relationship among samples. Figure 4 shows the score
plot of the first two principal components (PC). The first two PC explain 91% of the
total variance among the samples. The first PC explains 71% of total variance and
might be related to sample processing. The different natural cocoas are found in the
negative region, whereas the alkalinized samples are distributed across the negative
and positive regions. These differences could be due to alkali, the stage in which it
has been alkalized (bean or cake), and the degree of alkalization that can produce
different color changes (red or dark brown) (Miller et al., 2008). The second PC
explains 20% of variability and might be related to the percentage of cocoa powder
in the sample. Pure cocoa powders are located in the positive region, while pure
carob flours are found in the negative region. The samples with different levels of
adulteration lie in the middle: low (0-20%), medium (20-40%) and high (40-60%).

The wavelengths that corresponded to the highest loading values were 1100,
1464, 1936, 2108, 2276, 2330 and 2486 nm for the first PC, and 1116, 1324 1460,

1576, 1728, 1914, 1976, 2106, 2262, 2310 and 2494 nm for the second PC. The
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wavelengths from 971 and 1400 nm were related to the ascending part of the water
first overtone absorption peak O—H stretching bonds at 1722 nm C-H stretching was
also present, which are associated with water and sugar content (Alvarez et al., 2012;
Cozzolino, Smyth, & Gishen, 2003; X. Y. Huang et al., 2014; Talens et al., 2013).
The wavelengths at 1736 and 2319-2328 nm were related to the absorption of the C—
H bonds, CH3 combination and C-C stretching. These are features of fatty acids,
proteins and polysaccharides in cocoa powder and could be associated with a fat
content of approximately 10-12% (Vesela et al., 2007; Westad, Schmidt, & Kermit,
2008). The absorption bands of 1728, 2108 and 2494 nm coincided approximately
with those that were used to predict the total fat content in cocoa beans by (Ribeiro,
Ferreira, & Salva, 2011; Teye & Huang, 2015). Variations were related to the
compositional characteristics of the cocoa categories and the adulterant carob
powder. The found wavelengths were similar to a study performed in cocoa beans
(Teye et al., 2015b). Therefore, absorption in wavelengths (as a result of vibrational
reactions) contains chemical information that helps explain the observed differences
between the carob and cocoa powder pure samples and their several adulteration
proportions.

Since the generated spectra correspond to an adulteration level on a continuous
scale, it was not possible to see well-separated groups (high, medium and low
adulterated) in this PCA, especially for the percentages that fell within the limits.
With this information, a PLS-DA analysis was created to generate a model with

categorized spectra, which allowed the detection of gross adulterations levels.
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Figure 4. The NIR PCA score plot to separate pure cocoa powder and different levels
of adulteration with carob flour (high adulteration HA (40-60%), low adulteration

LA (0-20%) and medium adulteration MA (20-40%)).

As the PCA was unable to see samples in the different groups according to their
adulteration percentages, a qualitative model that used the supervised PLS-DA was
employed. In order to improve the model’s accuracy, the original spectra were pre-
processed using 2™ derivative S-G (9-point window, second-order polynomial) and
an OSC. For the PLS-DA (Figure 5), three latent variables (LVs) were generated
with most of the variation (67%) explained by the first LV and 12% by the second.
In this way, separation was achieved mainly by using the first latent variable with
the most negative scores for the pure cocoa samples, and the most positive scores
related to the adulterate samples and carob powder (pure adulterant). In visually
terms, the scores plot differences among the 100% cocoa powder, adulterated cocoa
powders and 100% carob powder indicated the possibility of using this approach to
quickly screen for adulteration. The determination coefficient (R?) of this PLS-DA
model was 0.969. The cross-validation determination coefficient (R*cv), based on
full cross-validation, was 0.901. Those values indicate the goodness of the

classification model.
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triangles) carob powder (gray squares) and adulterations (blue circles).

In order to measure the robustness of the PLS-DA model, validation with an
external data set was performed. Table 2 shows the model’s capability to classify
100% of the samples in their corresponding groups (cocoa, carob or adulterated

samples).

Table 2. Results for classification accuracy of the PLS-DA model.

Cocoa Carob Adulterated Classification
Cocoa 7 0 0 100%
Carob 0 4 0 100%
Adulterated 0 0 32 100%

3.3 Adulterant Prediction

A PLS was performed with the calibration set. The prediction was done with the

validation set. The models were constructed by applying different pre-treatments to
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the studying the spectra. The statistical indicators of the goodness of fit of each

model are presented in Table 3.

Table 3. Results of the PLS models constructed for the prediction of carob flour

content in cocoa powders.

trel;:l(;ent #LV Calibration Cross-validation Prediction
R%c RMSEC R?’cy RMSECV R% RMSEP  Bias RPD
Raw data 7 0.951 4.530 0.945 4.785 0.961 4.397 0.197 4.65
2" Der. S-G 5 0.978 3.082 0.974 3.28 0.979 3.271 0.749 6.25
OSC 1 0.975 3.165 0.975 3.214 0.974 3.555 0.474 5.75
2" Der. S-G
+ OSC 1 0.980 2.856 0.979 2.897 0.974 3.237 0.626 6.32

2" Der. S-G = Second derivative-Savitzky Golay; OSC = Orthogonal signal
correction; #LV = latent variables; R*c = coefficient of determination for calibration;
RMSEC = root mean square error of calibration; R?cy = coefficient of determination
for cross-validation; RMSECV = root mean square error of cross-validation; R% =
coefficient of determination for prediction; RMSEP = root mean square error of
prediction; Bias = estimation of the difference between the experimental value and

NIR predictions; RPD = ratio of prediction deviation.

Good models were obtained with high R? values and low RMSE values for the
calibration, cross-validation and prediction, depending on spectral data processing.
The RPD values were higher than 3, which meant that all these models, even the
model without the preprocessing data, could be considered excellent and most
reliable for the analytical tasks. This indicated that the multiplicative and additive

effects in the spectra of cocoa powder, and with the equipment used for the
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measurements in this study, were minimal due to even the model without
pretreatment to correct that effects was excellent. However, it is important to point
out that the models with pre-treatments obtained a smaller number of LV, which
made the model more parsimonious. Figure 6 presents the observed (x axis) versus
predicted (y axis) values. The predicted values were obtained with a model that used
2" Derivative S-G and OSC. We can observe that the PLS algorithm predicted very
well with an R%*cy of 0.979 and an RMSECV of 2.897%. The prediction of the
external validation group gave a low RMSEP of 3.237% and an R% of 0.974. The
similarity among RMSEC, RMSECV and RMSEP indicated that the possibility of
over-fitting the model was very low and confirmed its good prediction capacity. The
2" derivative S-G and the OSC pretreatment improved the RPD, which was 35.48%
higher compared to the PLS model with the raw data, and used only one latent
variable (LV). Other studies have found good models with one LV when orthogonal
signal correction was used (Esteban et al., 2004). The relative notorious
improvement of the RPD in the pretreated model could be due to the NIR signal
being affected by environmental (moisture) and physical factors (product’s particle
size distribution). According to Huang et al., those factors generated light scattering
and, consequently, significant differences arose. Additionally, these factors affect
the effective sample pathlength and result in additive, multiplicative and wavelength-
dependent effects. In some cases, wavelength-dependent scattering is related with
baseline shifts, tilt or curvature scaling variation. In certain instances, spectra
variations mask any subtle chemical variation, which can produce inaccurate results.
Thus pretreatment is effective for cushioning the aforementioned effects (Huang et

al., 2010).
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Figure 6. Predicted versus observed values of the adulterant percentages (n=140) of

the pure cocoa and carob powder at different levels of adulterated samples.

4. Conclusions

Near infrared spectroscopy (NIR) combined with PLS-DA and PLS statistical
models has been shown to be a rapid effective method to identify adulterations of
cocoa powder with Carob flour, regardless of the alkalization or roasting level. In
contrast, these adulterations would not be readily detectable by routine techniques
such as determination of pH analysis and color measurement.

With the PLS-DA analysis, all (100%) the samples were correctly classified into
three groups: cocoa, carob flour and mixtures. The PLS analysis enabled the
percentage of adulteration to be calculated with the samples. The PLS model was
obtained with one factor with an R of 0.979 and 0.974, and a mean squared error of
2.9 and 3.2 for the calibration and external validation sets, respectively.

This technique is, therefore, an important tool for cocoa merchants, who will be
able to better control the product’s quality by avoiding the use of destructive

techniques that require complex sample preparations or techniques that imply much
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expense for companies. Given the excellent results obtained, we expect this method

to become increasingly important in the cocoa industry and to reduce food fraud.
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Abstract

Variation in methylxanthines (theobromine and caffeine) and flavanols
(catechin and epicatechin) was studied in a large set of cocoa powders (covering
different origins, processing parameters and alkalisation levels). The content of these
compounds was established by high-performance liquid chromatography (HPLC),
whose results showed that the alkalisation process lowered the content of all
analytes, whose loss was more evident in flavanols. Therefore, the determination of
these analytes in a huge set of samples allowed not only better knowledge of the
concentration variability in natural commercial cocoas from different origins, but
also the understanding of the effect that industrial alkalisation has on these contents.
The feasibility of reflectance near-infrared spectroscopy (NIRS) combined with
partial least square (PLS) to non-destructively predict these contents, was also
evaluated. All the analytes were generally well predicted, with predictions for
methylxanthines (R2P 0.819-0.813 and RMSEP 0.068-0.022%, and bias 0.005 and
0.007 for theobromine and caffeine, respectively) and for flavanols (R2P 0.830—
0.824; RMSEP 8.160-7.430% and bias —1.440 and —1.034 for catechin and
epicatechin, respectively). Thus NIRS could be an alternative fast reliable method

for the routine assessment of these analytes in the cocoa industry.

Keywords: cocoa powder, methylxanthines, flavanols, HPLC, near-infrared
spectroscopy.

Abbreviations: HPLC, high performance liquid chromatography; GC, gas
chromatography; IR, infrared spectroscopy; NIRS, near infrared spectroscopy; PLS,
partial least square; PCA, principal component analysis; LV, latent variable;
RMSEC, root mean square error of calibration; RMSECV, root mean square error of
cross-validation; RMSEP, root mean square error of prediction; R’c, coefficient of
determination for calibration; R?cv, coefficient of determination for cross-validation;

R?p, coefficient of determination for prediction; RPD, ratio of prediction deviation;
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LOD, limit of detection; LOQ, limit of quantification; S-G, Savitzky-Golay; OSC,

orthogonal signal correction.

1. Introduction

Cocoa powder is the most important raw material of confectionery products,
chocolate-flavoured bakeries, ice-creams and drinks (Miller et al., 2008). Apart from
technologic properties, cocoa (Theobroma cacao L.) and its derived products are
well considered for being a rich source of methylxanthines and polyphenols (Langer,
Marshall, Day, & Morgan, 2011).

Methylxanthines (i.e. theobromine and caffeine) are pharmacologically active
alkaloids responsible for a bitter cocoa taste and desirable physiological effects; e.g.
stimulation of the central nervous system and gastric secretion, diuresis,
bronchodilation, and stimulation of skeletal muscles in high doses (Franco, Ofatibia-
Astibia, & Martinez-Pinilla, 2013). They also display health benefits in diseases
involving cell death in the nervous system (Ofiatibia-Astibia, Franco, & Martinez-
Pinilla, 2017).

The main type of polyphenols (known for their demonstrated antioxidant and
anti-inflammatory properties) in cocoas are flavanols. This family of compounds
includes catechin and epicatechin (monomeric species) and procyanidins
(oligomeric and polymeric fractions). Among them, epicatechin is the most abundant
flavanol in cocoa and accounts for 35% of the total polyphenolic fraction (Lacueva
et al., 2008).

While producing cocoa powder from cocoa beans, seeds are primarily
fermented, dried and roasted. Then broken beans (nibs) are ground, heated and
liquefied. The product of these operations, cocoa liquour, is pressed to obtain two
different fractions: cocoa powder and butter. Optionally, nibs or cake can be treated
with an alkali dissolved in water. This alkalisation reduces acidity, bitterness and
astringency by improving and enhancing the aromatic features of cocoa powder

(Kongor et al., 2016). Alkalisation also allows colour development by transforming
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the typical light brown hues of natural cocoa powder into reddish or very dark ones.
These colour changes derive from a sequence of chemical reactions between
alkalizing agents and pigments in the presence of water and oxygen at high
temperatures. Finally, the dispersibility of cocoa powder increases with alkalisation.
This property facilitates the use of cocoa powders in different industries like dairy
products (Afoakwa, Paterson, Fowler, & Ryan, 2008).

Cocoa powder processing not only strongly affects the sensory properties of
cocoa and derived products, but also alters flavonoid and methylxanthine fractions
(Payne, Hurst, Miller, Rank, & Stuart, 2010). However, studies to date have used
small sample numbers and have, thus provided conclusions that can be read only as
behaviour tendencies.

The commonest techniques employed to analyse methylxanthines and flavanols
from cocoa extracts or isolated fractions are high-performance liquid
chromatography (HPLC) or gas chromatography (GC) (Cadiz-Gurrea et al., 2014,
Elwers, Zambrano, Rohsius, & Lieberei, 2009; Fayeulle et al., 2018, Humston,
Knowles, McShea, & Synovec, 2010; Machonis, Jones, Schaneberg, Kwik-Uribe, &
Dowell, 2014; Van Durme, Ingels, & De Winne, 2016), which provide reliable and
accurate descriptions of individual cocoa qualities. Recently, the use of novel
methods based on on-line comprehensive two-dimensional liquid chromatography
coupled to tandem mass spectrometry (LC x LC-MS/MS) have allowed the
characterization of new secondary metabolites of cocoa beans (Toro-Uribe,
Montero, Lopez-Giraldo, Ibanez, & Herrero, 2018). However, these methods are not
recommended for routine raw material quality controls as they are destructive,
require specialised personnel, sample preparation and expensive equipments. Thus
simpler, faster and non-destructive techniques are required.

An alternative is infrared spectroscopy (IR is a fast non-destructive analytical
tool that needs little samples preparation), which is useful for both qualitative and
quantitative analyses of molecules. Finally, the application of chemometric

techniques to IR data provides a powerful tool to develop methods capable of
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classifying or characterising samples (Vergara-Barberan, Lerma-Garcia, Herrero-
Martinez, & Simo-Alfonso, 2015).

Recent studies into commercially cocoa derivates have shown the suitability of
near IR (NIR) for the quantification of main constituents like fat, protein, moisture
and carbohydrates (Vesela et al., 2007). NIRS has also been shown appropriate to
determine parameters like geographical origin (Teye, Huang, Dai, & Chen, 2013),
fermentation quality (Hue et al., 2014), fermentation index or pH (Sunoj,
Igathinathane, & Visvanathan, 2016), and minor valuable components like organic
acids (Krdhmer et al., 2015), caffeine, theobromine and epicatechin in unfermented
and sun-dried beans (Alvarez, Pérez, Cros, Lares, & Assemat, 2012), procyanidins
(Whitacre et al., 2003) and adulterations with carob flour (Quelal-Vasconez, Pérez-
Esteve, Arnau-Bonachera, Barat, & Talens, 2018) and cocoa shell (Quelal-
Véasconez, Lerma-Garcia, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 2019).
Despite these advances in cocoa characterisation by NIRS, as far as we know, the
effect of cocoa powder processing on methylxanthine and flavanol content by this
technique has not yet been studied.

In this context, the objective of this work is twofold. Firstly, to study the effect
of cocoa powder processing on methylxanthines (theobromine and caffeine) and
flavanols (catechin and epicatechin) contents in a large batch of samples (with
different origins, processing parameters and alkalisation levels). Secondly, to
evaluate the feasibility of reflectance NIRS combined with partial least square (PLS)

to non-destructively predict the content of these compounds in cocoa powders.

2. Materials and methods

2.1 Reagents and samples

The employed reagents were: caffeine, theobromine, catechin and epicatequin
(Sigma-Aldrich, St. Louis, Missouri, USA), acetonitrile (J.T. Baker, The

Netherlands), methanol (Labkem, Barcelona, Spain) and acetic acid glacial (Sharlau,
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Barcelona, Spain). Deionised water was obtained using an Aquinity deioniser
(Membrapure GmbH, Berlin, Germany).

Samples comprised 86 cocoa powders provided by Olam Food Ingredients
Company (Cheste, Spain) or purchased in different nationals and international
markets, to assure variability in cocoa origin (Ivory Coast (n=22), Ghana (n=28),
Indonesia (n=12), Ecuador (n=7), Peru (n=4), or undeclared (n=33), year of
production (2017 (n=67) or 2018 (n=19)) and processing practices (natural or
alkalised cocoa powders).

Before analysing, samples were characterised according to their extractable pH
and colour. Extractable pH determination was performed by the procedure described
in the ADM Cocoa Manual (2006). CIE L*a*b colour coordinates were obtained by
measuring the reflection spectrum using a 10° observer and D65 illuminant (Minolta,
CM 3600D, Tokyo, Japan). Extractable and colour data were used to classify cocoa
powders into five categories: natural (NC) (pH 5.0-6.0), light-alkalised (LAC) (pH
6.0—7.2), medium-alkalised (MAC) (pH 7.2-7.6), strong-alkalised (SAC) (pH > 7.6)
and black powders (BC) (pH > 7.6 and very low L values) (Miller ef al., 2008).

2.2. Instrumentation and experimental conditions

2.2.1. Methylxanthines and flavanols extraction

In order to extract methylxanthines and flavanols from cocoa powders, the
protocol of Lacueva et al. (2008) was adapted: 0.5 g of cocoa powder was weighed,
suspended in 5 mL H,O at 100°C+20 mL methanol, mixed for 20 min at 36°C by
constant agitation, and centrifuged for 10 min at 10,000 rpm at room temperature.
Finally, the obtained supernatants were filtered using 0.22 um pore size PTFE filters
(Scharlab, Barcelona, Spain). The obtained samples were immediately injected into

the HPLC system or stored at -20°C.
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2.2.2. HPLC determination of methylxanthines and flavanols

Analyte determination was performed in a liquid chromatograph model
LaChrom Elite (Hitachi Ltd., Tokyo, Japan), equipped with an auto-sampler and a
UV detector (models L-220 and L-2400, respectively). A 5-um analytical column
was used, model Liquid Purple C18 (250 x 4.6 mm i.d.) from Analisis Vinicos
(Tomelloso, Spain). The mobile phase was prepared by mixing 2% aqueous acetic
acid (phase A) and a ternary mixture composed of acetonitrile—H,O—acetic acid in
the 40:9:1 v/v/v proportion (phase B). The following gradient (adapted from Elwers
et al., 2009) was used: 0-8 min, 10% B; 8-20 min, 10-15% B; 20-35 min, 15-90% B;
35-50 min, 90% B, then back to the initial conditions. Other chromatographic
conditions were: UV detection, 280 nm; column temperature, 40°C; injection
volume, 20 pL; flow rate, 1.2 mL min™.

The differences in analyte content with the various different alkalisation levels
were established by a multifactorial ANOVA (95% confidence level of LSD;
p<0.05), constructed using Statgraphics Centurion XV from Manugistics Inc.

(Rockville, MD, USA).

2.2.3. NIR spectra collection

The 86 cocoa powders were scanned in a FOSS NIR 5000 System
spectrophotometer, equipped with a transport module (Silver Spring, MD, USA).
Samples (ca. 5.0 g) were measured by filling a round sample cup (3.8 cm diameter
x 1 cm-thick quartz windows) to preserve unvarying surface and thickness during
spectral collection. For each sample, 32 sequential scans with 700 wavelengths were
measured from 1100 and 2500 nm at 2-nm intervals. Samples were measured twice,

and the mean spectra were employed for the statistical analysis.
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2.3. Spectral data analysis

Calibration models to predict the methylxanthines (theobromine and caffeine)
and flavanols (catechin and epicatechin) contents (previously established by HPLC)
were constructed by PLS analysis of the spectral data using Unscrambler v10.4
software from the CAMO Software AS (OSLO, Norway). PLS is a multivariate
calibration method that could be used to correlate NIR spectra data with chemical
component contents. Spectral data were organised in a matrix containing the number
of cocoa samples (N = 86) in rows and the X- and Y-variables in columns. The X-
variables corresponded to the 700 wavelengths, while the Y-variables were the
HPLC-determined analyte contents. For PLS model construction, the 86 samples
were separated into two datasets: the 67 samples from, 2017 were employed to create
and evaluate the PLS models by leave-one-out cross-validation, while the 19 samples
from 2018 were used as an external validation set.

Before any spectral treatment, all spectra were used to construct a principal
component analysis (PCA) model, which was employed to identify and remove
defective spectral outliers using the Q residual values and the Hotelling T> with a
95% confidence limit (Bro & Smilde, 2014). Moreover, with the aim of detecting
similarities among the samples, NIR spectra data were employed to build a clustering
model by using the hierarchical complete-linkage method (HCL). This method aims
to find similarities and patterns between samples, being this information represented
in a dendrogram plot (Wajrock, Antille, Rytz, Pineau, & Hager, 2008).

Finally, PLS models were constructed with no spectral pretreatment (raw data)
and with three different pre-treatments: 2™ derivative performed with the Savitzky-
Golay smoothing algorithm (2nd derivative S-G) (Savitzky & Golay, 1951),
orthogonal signal correction (OSC) (Wold, Antti, Lindgren, & Ohman, 1998), and
their combination. The PLS models' accuracy was evaluated by: the required number
of latent variables (LVs), the root mean square error of calibration (RMSEC) and
cross-validation (RMSECYV), and the coefficient of determination for calibration

(R%c) and cross-validation (R%cy). The PLS models’ predictive capability was judged
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by considering: the coefficient of determination for prediction (R*P), the root mean
square error of prediction (RMSEP), the bias, the standard error of prediction (SEP)
and the ratio of prediction deviation (RPD) (calculated as the ratio between the
standard deviation of the reference values -training set- and RMSEP). Performance
of the different models was considered good when the number of LVs, and RMSE
and SE values were low, when R? value tended to unit, and when bias values were
near to zero, for both the calibration and external prediction parameters (Quelal-
Vasconez et al., 2019). Regarding RPD, a value between 2.0 and 2.5 makes
approximate quantitative predictions possible, while values between 2.5 and 3.0, and
above 3.0, indicates a prediction that could be considered good and excellent,

respectively (Saeys, Mouazen, & Ramon, 2005).
3. Results and discussion
3.1 Alkalisation level evaluation

The 86 cocoa powders were physico-chemically characterised and divided into
five categories according to their extractable pH values and colour (Miller et al.,
2008). By contemplating these values, 23 cocoa samples were classified as natural,
19 as light-alkalised, 21 as medium-alkalised, 19 as strong-alkalised and 4 as black
powders. Considering the linear correlation between alkalisation and pH (Pérez-
Esteve, Lerma-Garcia, Fuentes, Palomares, & Barat, 2016), this classification was
taken into account to study the relationship between alkalisation intensity and the

changes found in caffeine, theobromine, catechin and epicatechin contents.

3.2 HPLC determination of methylxanthines and flavanol contents in cocoa
powders

By applying the experimental conditions included in Section 2.2.1, analyte peak
identification was achieved by comparing the retention times of the sample peaks
with the retention times of the standards. Four peaks were observed at retention times

of 5.1, 9.1, 12.0 and 15.8 min, which respectively corresponded to theobromine,
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catechin, caffeine and epicatechin. These compounds were quantified using external
calibration curves. To construct them, six standard solutions at different
concentrations within the ranges showed in Table 1 were prepared and injected. In
all cases, R? above 0.9996 were observed. The other parameters in Table 1 were limit
of detection (LOD) and limit of quantification (LOQ), which were estimated
following the ICH guidelines (1996). The obtained values ranged between 0.005-0.1
and 0.017-0.33 mg L' for LODs and LOQs, respectively. These values were lower
than those previously reported by others (Gottumukkala, Nadimpalli, Sukala, &
Subbaraju, 2014; Risner, 2008; Srdjenovic, Djordjevic-Milic, Grujic, Injac, &
Lepojevic, 2008). In order to assure that no matrix effect was observed in the
quantification of analytes, standard addition calibration curves (considering the
linearity ranges in Table 1) were constructed. The four curves provided R? above
0.9995 and similar slopes to the external calibration curves. Therefore, it was
concluded that the external calibration curves were correctly used to quantify these

analytes in cocoa powders.
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Table 1 Linear ranges, determination coefficient, LOD and LOQ of the

determination of methylxanthines and monomeric flavanols by HPLC.

. Linear LOD LOQ
R
Analyte range (mg R? (mgL” (mgL-
(min)
LY D D
Theobromine 5.1 50-500 0.9998 0.005  0.017
Catechin 9.1 1-50 0.9996 0.1 0.33

Cafteine 12.0 5-250 0.9998  0.05 0.17
Epicatechin ~ 15.8 0.5-100 0.9999 0.1 0.33

tr: retention time; R*: determination coefficient; LOD: limit of detection; LOQ:
limit of quantification.

Finally, the 86 cocoa powders were subjected to HPLC (see Table 2 for the
results). The most abundant alkaloid was theobromine, whose content ranged from
1.53+0.02 to 2.4+0.1 g/100g when considering all the samples. Statistical differences
in theobromine content were found among alkalisation (p<0.05) as BC possessed
lower contents than the other categories. The caffeine content ranged from
0.1503+0.0003 to 0.412+0.003 g/100g. As with theobromine, significant differences
were observed among samples with different alkalisation degrees (p<0.05), and this
behaviour has been reported by other authors (Brunetto ef al. 2007; Li et al., 2012).

Among flavanols, epicatechin was the most abundant analyte. The highest
content (536.59+0.08 mg/100g) went to a NC sample labelled as Equator origin.
Other natural samples exhibited an average content of ca. 160 mg/100 g. Contents
statistically lowered as the alkalisation process became more intense, and reached
average values of ca. 80, 33, 28 mg/100 g and with LODs in the LAC, MAC, SAC
and BC, respectively. The same behaviour was found for catechin contents. In the
NC samples, catechin content ranged from 15.2+0.5 to 167+1.2 mg/100g. The
highest value went to another sample from Equator. In the other natural samples, the

average value was ca. 80 mg/100 g.
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Table 2. Theobromine, catechin, caffeine and epicatechin content (mean, minimum

and maximum values and their standard error) found for the different types of cocoa

powders employed in this study.
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Within rows, values bearing different letters are significantly different (p <

0.05). LOD = limit of detection
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According to Table 2, no significant differences in catechin content were found
in the LAC cocoa powders, but contents statistically decreased in the medium-
alkalised powders, with undetected quantities in the black powders. Similar results
have been found by other authors. In a study done with 11 cocoa powder samples,
Lacueva et al (2008) reported values of 200 and 70 mg/100 g for epicatechin and
catechin in natural powders, and 30 and 25 mg/100 g in alkalised powders,
respectively. Similar contents were observed by Payne et al. (2010), who reported
223 and 88 mg/100 g (natural), 69 and 70 mg/100 g (light-alkalised), 26 and 36
mg/100 g (medium-alkalised) and 4 and 9 mg/100 g (strong-alkalised) for

epicatechin and catechin, respectively.

3.3 Clustering analysis of the samples

The clustering analysis of the NIR spectra shows four main groups (see Fig. 1).
First group comprised only one sample of BC, while the second one included the
other BCs and ca. 16% of the SAC samples. The third group included most NCs, ca.
74% of LACs, ca. 20% of MACs and ca. 6% of SACs. Finally, the fourth group
included the 81% of MAC:s, ca. 79% of SACs, 26% of LACs and the rest of NCs. In
general, it can be observed that BC samples (minimum content of catechin and
epicatechin detected) belonged to the first and second group and that the rest groups
are mostly linked to strong (group 4) or mild alkalisation conditions (group 3).
However, this grouping cannot be completely linked neither to the content or
flavanols nor methylxanines. For instance, samples with the highest flavanols
content (Ecuadorian samples —i.e. NC 67 or NC 52-) are not clearly separated from
other natural or alkalised samples. Therefore, it could be concluded that in sample
clustering, besides quantified analytes or alkalisation degrees, there are other
chemical signals (i.e. proteins, sugars, volatiles, etc) that are affecting sample

clustering.
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Figure 1. Dendogram of the clustering analysis performed with the NIR spectra of

the entire sample set (n=86).

3.4. Prediction of theobromine, catechin, caffeine and epicatechin content by PLS

The raw spectra of the samples (between 1100 and 2500 nm) could contain both
useful and irrelevant information; thus, it was pre-treated to enhance the final
outcome. For all spectra, the first applied pre-treatment was the 2™ derivative S-G,
followed by the OSC pre-treatment and their combination. Then, the optimal pre-
treatment method to enhance the PLS models’ performance was selected by taking
into account the values included in Table 3. As can be observed in this table, the best
results were observed after applying the 2™ derivative S-G+OSC for all models.
Thus, the spectra obtained after applying this pre-treatment is shown in Fig. 2. As
seen in this figure, signal peaks at wavelengths of 1728, 1764, 1884, 2312 and
2348 nm were evidenced. The region comprised between 1600 and 1800 nm
predominantly corresponds to the first overtone region of carbohydrates (C—H

bands) (Bazar et al., 2016), and the region comprised between 1700 and 2300 nm
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normally attributes to the first overtones of C—H stretching associated with sugars

(Osborne, Fearn, & Hindle, 1993, pp. 123—-132).
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Figure 2. Spectra of the cocoa powders obtained from after applying 2™

derivative S-G + OSC pre-treatment.

Table 3 contains the results obtained for the PLS models constructed to predict
the different analytes. As seen for the PLS models obtained with the optimal pre-
treatment (marked in italics), all the PLS models provided satisfactory R*c, R?cv and
R?» values within ranges 0.949-0.969, 0.802-0.889 and 0.813-0.819, respectively.
For methylxanthine content predictions, the RMSEP values were 0.068 and 0.022
and the bias came very close to 0 (0.005 and 0.007) for theobromine and caffeine,
respectively. With flavanols, the models provided RMSEP values of 8.160 and
7.430, and bias values of -1.440 and 1.034 for catechin and epicatechin, respectively.
Notwithstanding, the RPD values for all the models were above 2.0, which are
acceptable for quantitative predictions according to the literature (Saeys et al., 2005).
The good fit between the different analytes content measured by HPLC and the
contents predicted by the PLS models for the evaluation set samples is shown in Fig.

3.
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Table 3. Results of the PLS models constructed for the prediction of theobromine,

catechin, caffeine and epicatechin contents in cocoa powders.

Calibration Cross-validation Prediction

Compound Pre-treatment #LV -
R’c RMSEC R’cv RMSECV R?» RMSEP bias RPD
Non-pretreated 4 0601 0111 0520  0.123 0.160  0.143  -0.027  1.22
Theobromine 2" Der. S-G 6 0976 0027 0774  0.084 0.78  0.073 0.008 2.07
(g/100g) 0SC 4 0923 0048 0870  0.064  0.793  0.209 0.027 1.38
2" Der. -G+ 0OSC 3 0969 0.030 0.889  0.058 0.819  0.068 0.005  2.13
Non-pretreated 6 0510 11430 0.142 15460 0552 13.110  -1.463 1.25
Catechin 2" Der. S-G 20290 13722 0.170 15212 0311 16272  -1.962  1.01
(mg/100g) 0osc 7 0950 3.680 0.820  7.125 0.158 17.986  1.829 0.91
2 Der. -G+ 0OSC 1 0997 0.787 0932  4.349 0.830 8160  -1.440  2.01
Non-pretreated 7 0832 002 0.763 0.031 NA  0.058 0.026 1.09
Caffeine 2" Der. S-G 5 0941 0015 0.763 0.031 0.775  0.025 0.008 2.55
(g/100g) 0sc 3 0911 0019 0.869 0.023 0.031  0.051 -0.028 122
2 Der. S-G+0OSC 1  0.940 0.0I15 0.802 0.028 0.813  0.022 0.007 281
Non-pretreated 7 0900 5210 0433 12924  0.690 9.899  -4.690 158
Epicatechin 2" Der. S-G 5 0972 2740 0295 14412  0.644 10592  -3.024  1.57
(mg/100g) 0osc 10999 0050 0999 12968 0470 12970  -0.480 1.9
2 Der. -G+ 0OSC 6 0999 0.262 0.988 1.810 0.824 7430  -1.034 224

2" Der. S-G = Second derivative-Savitzky Golay; OSC = Orthogonal signal

correction; #LV = latent variables; R*c = coefficient of determination for calibration;

RMSEC = root mean square error of calibration; R?cv = coefficient of determination

for cross-validation; RMSECV = root mean square error of cross-validation; R’P =

coefficient of determination for prediction; RMSEP = root mean square error of

prediction; RPD = ratio of prediction deviation; N.A. = non available.

The good fit between the different analytes content measured by HPLC and the

contents predicted by the PLS models for the evaluation set samples is shown in

Figure 4.
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Figure 3. HPLC measured versus NIR predicted (a) theobromine (THEO), (b)

catechin (CAT), (c) caffeine (CAF) and (d) epicatechin (EPI) contents by PLS in the

prediction
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Finally, the wavelengths with a better prediction capability according to the b
vector profiles are shown in Fig. 4. The most important wavelengths related to
variation in theobromine content (see Fig. 4a) are found at 1384, 1414, 1710, 1730,
1742, 1764, 1884, 1906, 1934, 2308, 2322 and 2350 nm, among others, and agree
with those described by Alvarez et al. (2012). Among these wavelengths, 1414,
1730, 1764, 1906, 1934, 2308 and 2350 nm increased as theobromine content rose,
while the rest lowered. According to literature (Vesela et al., 2007), these variations
are characterised mainly by the stretching of H,O of weakly bounded water, proteins
and aromatics, the first overtone of stretching of CH of aromatics, the first overtone
of the symmetric and asymmetric stretching vibration of CH,, and the stretching and

rocking vibrations of CH; of polysaccharides and fats.
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For catechin content predictions, the most important wavelengths were 1414,
1440, 1730, 1744, 1880, 1908, 2312, 2322, 2350 and 2360 nm (see Fig. 4b). Among
them, 1414, 1744, 1908, 2322 and 2360 nm increased as catechin content rose, while
the rest lowered. These variations may be associated with the stretching of H,O of
weakly bounded water, proteins and aromatics and also of non-bounded water, the
asymmetric stretching and rocking of H,O of very weakly bounded water fat,
asymmetric stretching and rocking of CH; of polysaccharides and the stretching and
rocking of CH and CC (Vesela ef al., 2007).

In the case of caffeine (see Fig. 4c), the most important wavelengths are located
at 1414, 1646, 1940, 2272, 2312 and 2350 nm (which increase as the caffeine content
raised) and the wavelengths at 1214, 1440, 1730, 1882, 2250, 2322, and 2360 nm
(which decrease as the caffeine content raised). In this case, the wavelengths
corresponded to the stretching of H,O (non-bounded water), the first overtone of
asymmetric stretching vibration of CH,, proteins, combination of amides, the
stretching of CH and CC and the stretching and rocking of CH. of fats (Krdhmer et
al., 2015).

Finally, and as shown in Fig. 4d for epicatechin prediction, the most important
wavelengths related to the variation of epicatechin are the 1440, 1900, 2014, 2246,
2320 and 2358 nm bands (which increase as the epicatechin content increases), and
the 1922, 2040, 2176, 2266, 2312 and 2350 nm bands (which decrease as the
epicatechin content raises). These bands could be assigned to the stretching of H,O
(non-bounded water), the asymmetric stretching and rocking of H,O of very weakly
bounded water fat, proteins and the stretching of CH and C=C (Vesela et al., 2007).
Similar NIR chemical vibrations has been found in the quantification of total phenols
and carotenoids in blackberries (Toledo-Martin et al., 2018), and in the
determination of the fat, caffeine, theobromine of sun dried cocoa beans (Alvarez et

al., 2012).

161



Article 3

4. Conclusions

The HPLC determination of methylxanthines and flavanols of a large collection
of cocoa powders provided not only better knowledge of the concentration variability
in natural cocoas from different origins, but also the understanding of the effect that
industrial alkalisation has on those contents. A wide fluctuation in flavanol content
was observed for natural powders, which highlights the natural variability of
unprocessed samples given their different origins. Moreover, the effect of cocoa
alkalisation on the content of all analytes was evidenced. Despite such evidence, the
many analysed samples indicated strong-alkalised powders with higher analyte
contents than some natural cocoa powders. This reinforces the importance of
measuring the content of these analytes during raw material selection and in all the
industrial processing steps when functional products want to be launched on the
market. In line with this, the possibility of predicting the content of these functional
analytes by a fast, non-destructive and reliable methodology, such as NIRS, was
confirmed. Despite the fact that the clustering analysis did not allowed a sample
grouping according to the alkalisation degree or the flavanols and/or methylxantines
content by applying PLS models, all analytes were satisfactorily predicted.
Therefore, the present results bridge the information gap in the cocoa sector about
the variability found in these functional compounds in commercial samples, and also
propose a fast reliable methodology to establish the content of these important

functional compounds for the cocoa industry.
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4. GENERAL DISCUSSION

The first chapter of this thesis shows the results aimed to solve a common
problem in cocoa industries: the adulteration/mixing of cocoa powder with cheaper
(carob flour) or valueless (cocoa shell) materials. Article (I) concerns the
determination of cocoa shell percentage (undesired material) present in cocoa
powders, which can be considered a parameter to be controlled during the shelling
process as well and in processed products. The determination of cocoa shell
percentage was done by means of the application of NIR and multivariate analysis.
On the other hand, in the article (II), the detection of cocoa powder adulteration with
carob flour was done using the same methodology.

To carry out the studies, a collection of 86 cocoa powders with different
alkalization degrees and origins were gathered. To the mentioned samples, 6 carob
flours of different roasting levels and 2 cocoa shells were added.

In the study dealing with the prediction of cocoa shell content by using NIR
(article I), from the mentioned collection, all 20 natural cocoas (coming from
different origins and obtained after different processings) part of them obtained in a
company that guarantees the lowest cocoa shell content were randomly selected and
mixed with the 2 cocoa shell samples providing a total of 72 mixtures. Cocoa shell
was added to cocoa powder samples in 7 percentages which were 0, 2.5, 5, 7.5, 10,
20 and 40%. This maximum value was fixed since higher percentages would provide
a product with physico-chemical characteristics (for example texture) different to
cocoa.

After the spectra acquisition, differences among spectra of pure cocoa shell and
pure cocoa powders were found. These differences allowed a separation of samples
by means of a PCA analysis. After this, different pretreatments were applied to the
spectra, being the EMSC +OSC pretreatment the one that led to better results for
both, PLS and PLS-DA models construction. For both cases, the use of all spectra

wavelengths was considered, jointly with the use of the most important wavelengths
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selected according to the Variable Importance in Projection (VIP) scores, models
being next compared. The best prediction performance was obtained with a PLS
model constructed with using the 6 main wavelengths selected according to VIP
scores and 1 latent variable, which provided R% of 0.967, RMSEP of 2.43% and a
RPD of 5.03.

On the other hand, the same selected wavelengths were used for the construction
of the PLS-DA model aimed to classify samples into two categories: cocoa powders
containing shell contents (based on fat-free dry matter) below 5% and comprised
between 5 and 40% (since 5% is considered the acceptance limit in cocoa powders
by the Codex Alimentarius). The best PLS-DA model provided sensitivity,
specificity and NER values of 100, 85 and 92.5%, respectively, for the first category
(below 5%), while for the second one (5-40%) the values reported were 85, 100 and
92.5%, respectively.

In the prediction of cocoa powder adulteration with carob flour (article II), 12
cocoas with proven authenticity with 4 alkalization degrees (3 cocoa for each
alkalization degree) were mixed with the 6 carob. Carob flours were added to cocoa
powder samples in percentages comprised between 0 and 40%. In this study, the
Latin Hypercube Strategy (LHS) (Helton & Davis, 2003) was followed to perform a
total of 216 mixtures.

After the spectra measurements, the first exploration of the results done with a
PCA showed different groups of samples. The most variability was related to the
alkalization degree of cocoa samples and to the differences among cocoas and carob
flours. After this, different pretreatments were applied to the spectra, being the 2nd
Der. S-G + OSC pretreatment the one that led to better results. For all the PLS models
and the PLS-DA, the use of all spectra wavelengths was considered. Using these
pretreated spectra, a PLS-DA was built in order to classify samples into three
categories: pure cocoa powders, adulterated cocoa powders and carob flours. A good
PLS-DA model was obtained with an accuracy value of 100% for the classification

of the samples of the external validation set in the three categories. Finally, the best
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prediction of the adulteration percentage was obtained by means of PLS using 1
latent variable, providing R*, RMSEP of 3.2% and a RPD of 6.3.

Taking into account the results previously indicated for both qualitative and
quantitative analysis of both articles, it can be concluded that NIR spectra combined
with multivariate analysis is a good tool to assess in a fast and non-destructive way
the presence of valueless (cocoa shell) or cheaper materials (carob flour) in cocoa
powders.

The second chapter of this thesis deals with the fast analysis of some bioactive
compounds present in cocoa powders (methylxanthines and flavanols). This chapter
contains the article (III) in which the content of these bioactive compounds were
determined by HPLC in a huge cocoa powder sample set (n=86), covering different
origins, processing parameters and alkalization levels, being these content next
predicted by using NIR and PLS regression.

By one hand, the variation of methylxanthines (theobromine and caffeine) and
flavanols (catechin and epicatechin) content in a large cocoa powders sample set,
was first established by HPLC. HPLC results showed on the one hand, for the
methylxanthines values of theobromine in the range of 2.15 to 1.95 g/100g, caffeine
values since 0.29 to 0.20 g/100g. On the other hand, for the flavanols values of
catechin since 78.21 to 23.36 mg/100g, and for the epicatechin values in the range
of 163.17 to 28.13 mg/100g. Concluding that the alkalization process led to a
reduction of the content of all analytes, being this loss more evident in flavanols. The
determination of these analytes in a huge set of samples has allowed not only a better
knowledge of the concentration variability in natural cocoas coming from different
origins, but also the understanding of the effect that industrial alkalization provokes
in those contents.

Since HPLC is a destructive technique that requires long analysis times, the
development of an alternative and fast analytical approach able to solve this problem
is considered. In this regard, the use of NIR followed by PLS was successfully

proposed. Concretely, all analytes were well-predicted, with a better prediction for
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methylxanthines (R?, 0.882 for both analytes; RMSEP 0.020-0.061 g/100g, bias -
0.027-0.006) than for flavanols (R?, 0.818-0.863; RMSEP 6.63-15.87 mg/100g, bias
1.942-3.056). Moreover, the models had values of RPD higher than 3 in all the

prediction models, which means that those models are good.
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CONCLUSIONS

This point summarizes the main conclusions of this thesis and draws out their
implications for cocoa powder quality control. Five main general conclusions can be

drawn from the results of this work:

1. A collection of 86 cocoa samples with different origins and alkalization
degrees, 6 carob flours and 2 cocoa shells were gathered and
strategically used in the studies of this thesis. Besides the mentioned
samples, a battery of mixtures with known levels of cocoa and
undesired materials (shell or carob flour) was constructed to be used
during the correlation of a NIR spectrum with a specific content of both
materials. This complete set of samples with different characteristics

allowed to obtain robust models.

2. The fast detection of cocoa shell in cocoa powder is possible by means
of NIR spectroscopy and multivariate analysis. The best results (R*p of
0.967 and a RMSEP of 2.43%) are found when the PLS model is built
with the EMSC+OSC pretreated spectra, after the selection of the most
important 6 wavelengths using VIP scores and 1 LV. Regarding the
classification, the PLS-DA model allows the correct classification of
92.5% of the samples of a validation set in two categories, according to
the Codex Alimentarius recommendations (<5% and >5% of cocoa

shell content).

3. NIR spectroscopy combined with multivariate analysis is a rapid and
non-destructive method to determine quantitative and qualitative the
adulteration of cocoa powder with carob flour without any sample
preparation. The PLS-DA model constructed was able to correctly

classify the 100% of the validation set samples. The best prediction
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model was obtained using PLS regression of the full spectra (1100-
2500 nm) after preprocessing with 2nd Der. S-G+OSC with a R% of
0.974 and a RMSEP of 3.2%.

The determination of methylxanthines and flavanols content of cocoa
powders by means of HPLC allow to observe a wide range of values
for each of the analytes. These values were partially related to the
alkalization level, since in average, higher values were found in natural
powders, as well as lower values were found in highly alkalized ones.
Nevertheless, it was observed that inside a category (especially in
natural cocoas), values fluctuated a lot among samples, indicating the
natural variability of unprocessed samples probably due to their
different origins, varieties and harvesting conditions. Furthermore, it
was also found that some alkalized samples presented higher flavanols
content than certain natural ones. This highlights the importance of
measuring the content of these analytes during raw material selection

and during the industrial processing steps to obtain functional products.

NIR spectroscopy can be used as an alternative to the HPLC, as a fast
and non-destructive method in the routine determination of catechin,
epicatechin, caffeine and theobromine in the cocoa powder industry.
Good performance of the PLS models were obtained for the
determination of methylxanthines (R% of 0.882 for both analytes;
RMSEP of 0.020 and 0.061%, BIAS of 0.006 and 0.027 for caffeine
and theobromine, respectively) and flavanols (R% of 0.863 and 0.818;
RMSEP of 6.63 and 15.87%, BIAS of 1.942 and 3.056 for catechin and

epicatechin, respectively).
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FUTURE PERSPECTIVES

The prediction and classification models built in this study were constructed
using samples that covereddifferent origins and alkalization degrees. Nevertheless,
more natural variability could be considered. This natural variability in the cocoa
intrinsic quality parameters is dependent also of environmental conditions, soil
nutrients, fermentation practices, etc. which have not been considered in this study.
This means that recalibration with new samples or with a higher number of samples
might certainly improve the prediction and the discrimination capability of the
models.

In comparison with models obtained in articles I and II, RPD values are lower
than those of the article III. To obtain more accurate models, a strategic calibration
of models according to the alkalization levels could allow more accurate models,
over all in the case of flavanols and methylxanthines content prediction from NIR
spectra. Another strategy to increase the accuracy of the models could be the
combined use of Near Infrared with Medium Infrared spectroscopy.

The possibility of detection of adulterants not only offers a final product with
higher quality but also ensures its safety. Thus, this technique could be proposed to
the cocoa sector as a reliable method to control products authenticity.

The understanding of alkalization process by means of NIR spectroscopy can
give a wide insight of how to produce products with higher functional quality,
selecting those technological parameters that avoid big losses of functional
compounds. On the other hand, the fast determination of these compounds might
allow the industry to quantify their content in each batch of product and include this

information in both, product technical sheet and product label.
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