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Resumen 

 
El cacao es un producto de alto valor, no únicamente por sus características 

sensoriales, sino porque también presenta un alto contenido en antioxidantes y 

alcaloides estimulantes con efectos saludables. Debido a la alta demanda, la industria 

del cacao en polvo tiene el desafío de asegurar la calidad de grandes volúmenes de 

producción de una manera rápida y precisa, evitando la presencia de contaminantes 

o adulterantes en la materia prima, ofreciendo productos donde se preserven las 

propiedades saludables. La espectroscopia del infrarrojo cercano (NIR) es una 

tecnología rápida y no destructiva útil en el análisis de productos alimentarios. La 

presente tesis doctoral se centra en evaluar el potencial uso del NIR como una 

herramienta de control de calidad con el fin de poder resolver problemas que se 

presentan en la industria del cacao en polvo. Los problemas a resolver incluyen la 

detección de materiales no deseados o adulterantes en el cacao en polvo, y la 

monitorización rápida y precisa del contenido de flavanoles y metilxantinas del 

cacao en polvo durante el proceso de alcalinización. El primer capítulo evalúa la 

viabilidad del NIR, en combinación con análisis quimiométricos, en la detección de 

la presencia de materiales no deseados o adulterantes como son cascarilla de cacao 

o harina de algarroba. Para ello, diferentes muestras de cacao en polvo natural y con 

diferentes niveles de alcalinización (suave, medio y fuerte) fueron mezcladas con 

distintas proporciones de cascarilla de cacao (con cacao natural) o harina de 

algarroba (con cacao natural y alcalinizado).  

 

Los resultados obtenidos indican que el NIR, combinado con modelos 

estadísticos tales como el análisis discriminante por mínimos cuadrados parciales 

(PLS-DA) y la regresión parcial de mínimos cuadrados (PLS), es un método rápido 

y eficaz para identificar cualitativa y cuantitativamente materiales no deseados o 

adulterantes como la cascarilla y la algarroba en cacao en polvo, independientemente 

del grado de alcalinización o el nivel de tostado de la harina de algarroba. Mediante 
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PLS-DA, para el estudio de la mezcla de polvo de cacao con cascarilla de cacao, el 

92,5% de las muestras se clasificaron correctamente en dos grupos: muestras con un 

contenido de cascarilla inferior al 5% (considerado el límite de aceptación en polvo 

de cacao por el Codex Alimentarius) y contenidos de cascarilla entre 5 y 40%. En el 

estudio de la adulteración de cacao en polvo con harina de algarroba, el 100% de las 

muestras se clasificaron correctamente en tres grupos: cacao, harina de algarroba y 

mezclas. En ambos estudios, fue posible calcular el porcentaje de adulterante y 

material no deseado presente en las muestras mediante la construcción de modelos 

de regresión PLS. En relación a la cascarilla de cacao, el mejor modelo de predicción 

PLS se obtuvo con 1 LV con un R2 de 0,975 y 0,967, respectivamente, y un error 

cuadrático medio de 1,91 y 2,43%, para los conjuntos de calibración y validación 

externa, respectivamente. Para el estudio de adulteración con harina de algarroba, el 

modelo de regresión PLS se obtuvo con 1 variable latente (LV) con un R2 de 0,980 

y 0,974, y un error cuadrático medio de 2,9 y 3,2% para los conjuntos de calibración 

y validación externa, respectivamente. 
 

En el segundo capítulo, el análisis composicional del cacao en polvo se orientó 

al control de los cambios producidos en el contenido de flavanoles y metilxantinas 

debidos al proceso de alcalinización al que se somete el caco en polvo. Se determinó 

el contenido de catequina, epicatequina, cafeína y teobromina mediante 

cromatografía líquida de alta resolución (HPLC), correlacionándose los contenidos 

obtenidos para cada uno de estos compuestos con las determinaciones NIR. Se 

obtuvieron buenos modelos para la predicción de los compuestos mediante regresión 

PLS con valores superiores a 3 para la relación entre el rendimiento y la desviación 

(RDP), lo cual demuestra que los modelos obtenidos pueden ser utilizados para la 

rápida y fiable predicción del contenido de flavanoles y metilxantinas en cacaos 

naturales y con diferentes niveles de alcalinización. 
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Resum 
 

El cacau és un producte d'alt valor, no sols per les seues característiques 

sensorials, sinó perquè també presenta un elevat contingut en antioxidants i alcaloids 

estimulants amb efectes saludables. A conseqüència a l'alta demanda, l'industria del 

cacau en pols té el desafiament d'assegurar la qualitat de grans volums de producció 

d'una manera ràpida i precisa, evitant la presència de contaminants o adulterants en 

la matèria cosina, oferint productes a on se preserven les propietats saludables. 

L'espectroscòpia de l'infrarroig proper (NIR) és una tecnologia ràpida i no 

destructiva útil en l'anàlisi de productes alimentaris. La present tesis doctoral se 

centra en avaluar el potencial ús del NIR com una eina de control de qualitat amb 

l’objectiu de poder resoldre problemes que es presenten en l'industria del cacau en 

pols. Els problemes a resoldre inclouen la detecció de materials no desitjats o 

adulterants en el cacau en pols, i la monitorització ràpida i precisa del contingut de 

flavanols i metilxantines del cacau en pols durant el procés d'alcalinització. El primer 

capítol avalua la viabilitat del NIR, en combinació amb anàlisis quimiométrics, en la 

detecció de la presència de materials no desitjats o adulterants com són pellofa de 

cacau o farina de garrofa. Per a això, diferents mostres de cacau en pols natural i amb 

diferents nivells d'alcalinització (suau, mig i fort) foren barrejades en distintes 

proporcions de pellofa de cacau (en cacau natural) o farina de garrofa (en cacau 

natural i alcalinisat).  

 

Els resultats obtinguts per a NIR, combinats amb models estadístics com 

l’anàlisi discriminant per mínims quadrats parcials (PLS-DA) i la regressió parcial 

de mínims quadrats (PLS), és un mètode ràpid i eficaç per identificar materials no 

desitjats o adulterants com la pellofa de cacau o la farina de garrofa, amb 

independència del grau d’alcalinització del cacau o de torrat de la farina de garrofa. 

Mitjançant PLS-DA, per a l'estudi de la barreja de pols de cacau amb pellofa de 

cacau, el 92,5% de les mostres es classifiquen correctament en dos grups: mostres 
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amb un contingut de pellofa inferior al 5% (considerat el límit de acceptació en pols 

de cacau pel Codex Alimentarius) i continguts de pellofa entre 5 i 40%. A l’estudi 

d’adulteració de cacau en pols amb farina de garrofa, el 100% de les mostres es 

classifiquen correctament en tres grups: cacau, farina de garrofa i mescles. En 

ambdós estudis, s’ha pogut calcular el percentatge d’adulterant o material no desitjat 

present a les mostres mitjançant la construcció de models de regressió PLS. En 

relació amb la pellofa de cacau, el millor model de predicció PLS s’ha obtingut amb 

1 variable latent (LV), amb R2 de 0,975 i 0,967, i un error quadràtic medi  d’1,91 i 

2,43%, per als conjunts de calibratge i validació externa, respectivament. Per a 

l'estudi d’adulteració amb farina de garrofa, el model de regressió PLS s’obté amb 

una variable latent (LV) amb un R2 de 0.980 i 0.974, i un error correcte mitjà de 2,9 

i 3,2% per als conjunts de calibració i validació externa, respectivament. 

 

En el segon capítol, l'anàlisi composicional del cacau en pols s'orientà al control 

dels canvis produïts en el contingut de flavanols i metilxantines a causa del procés 

d'alcalinització al que se sotmet el cacau en pols. Es va determinar el contingut de 

catequina, epicatequina, cafeïna i teobromina mitjançant cromatografia líquida d'alta 

resolució (HPLC), i es van correlacionar els continguts obtinguts per a cadascun 

d'estos composts amb les determinacions NIR. Es van obtindré bons models per a la 

predicció dels composts mitjançant regressió PLS amb valors superiors a 3 per a la 

relació entre el rendiment i la desviació (RDP), la qual cosa demostra que els models 

obtinguts poden ser emprats per a la ràpida i fiable predicció del contingut de 

flavanols i metilxantines en cacaus naturals o amb diferents nivells d'alcalinització. 
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Abstract 
 

Cocoa is a product of high value, not only because of its sensory characteristics, 

but also because it has a high content of antioxidants and stimulating alkaloids with 

health effects. Due to the high demand, the cocoa powder industry has the challenge 

of ensuring the quality of large volumes of production in a fast and accurate way, 

avoiding the presence of contaminants or adulterants in the raw material, offering 

products where the healthy properties are preserved. The near infrared spectroscopy 

(NIR) is a rapid and non-destructive technology useful in the analysis of food 

products. The present doctoral thesis focuses on evaluating the potential use of NIR 

as a quality control tool in order to solve problems that arise in the cocoa industry 

powdered. The problems to solve include the detection of unwanted materials or 

adulterants in the cocoa powder, and the rapid and accurate monitorization of the 

flavanols and methylxanthines content in the cocoa powder during the alkalization 

process. The first chapter evaluates the viability of the NIR, in combination with 

chemometric analysis, in the detection of presence of unwanted materials or 

adulterants such as cocoa shell or carob flour. For this, different samples of natural 

cocoa powder and with different levels of alkalization (light, medium and strong) 

were mixed with different proportions of cocoa shell (with natural cocoa) or carob 

flour (with natural and alkalized cocoa). 

 

The results obtained indicate that the NIR combined with statistical models such 

as the partial least squares discriminant analysis (PLS-DA) and the partial least 

squares regression (PLS), is a fast and efficient method to identify qualitative and 

quantitative unwanted materials or adulterants such as shell and carob in cocoa 

powder, regardless of the degree of alkalization or level of roasting of carob flour. 

By PLS-DA analysis, for the study of the adulteration with cocoa shell, 92.5% of the 

samples were correctly classified into two groups: samples with a shell content of 

less than 5% (considered the acceptance limit in cocoa powder by the Codex 
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Alimentarius) and shell contents between 5 and 40%. In the study of the adulteration 

of cocoa powder with carob flour, the 100% of the samples were correctly classified 

into three groups: cocoa, carob flour and mixtures. In both studies, was possible to 

calculate the percentage of adulterant and non-wanted material present in the 

samples by means of the construction of PLS regression models. In relation to cocoa 

shell, the best PLS prediction model was obtained with 1 LV, with an R2 of 0.975 

and 0.967, respectively, and an average square error of 1.91 and 2.43%, respectively. 

For the study of adulteration with carob flour, the PLS model was obtained with 1 

latent variable (LV), with an R2 of 0.980 and 0.974, and a root mean square error 

(RMSE) of 2.9 and 3.2% for the calibration and external validation sets, respectively. 

 

In the second chapter, the compositional analysis of cocoa powder was oriented 

to the control of the changes produced in the content of flavanols and 

methylxanthines due to the process of alkalization to which the cocoa powder is 

subjected. The content of catechin, epicatechin, caffeine and theobromine were 

determined by high performance liquid chromatography (HPLC), correlating the 

contents obtained for each of these compounds with the NIR determinations. Good 

models were obtained for the prediction of compounds by regression PLS with 

values above 3 for the ratio of performance to deviation (RDP), which shows that 

the obtained models can be used for the quick and reliable prediction of flavanol 

content and methylxanthines in natural cocoas and with different alkalization levels. 
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This thesis forms part of the project “Estudio de la relación entre variables de 

procesado y cambios en la composición nutricional y perfil funcional del cacao en 

polvo. Desarrollo de una metodología predictiva aplicada al procesamiento (RTC-

2016-5241-2)”, funded by the MINISTERIO DE ECONOMIA Y EMPRESA - 

AGENCIA ESTATAL DE INVESTIGACION. 

 

 The general objective of this project is to develop a predictive methodology for 

the process variables that lead to a specific final product from a specific raw material. 

For this purpose, the relationship between the processing variables and the 

changes in the nutritional composition and functional profile of cocoa powder might 

be studied. 

 

To achieve this general objective different specific objectives have been 

proposed, among which the objective of this thesis is included. This is "to develop 

rapid methods of analysis that allow to predict the origin of a sample and its behavior 

during an alkalization process from optical measurements". 

 

The thesis is structured in six sections: introduction, objectives, scientific 

contribution, general discussion, conclusions and future perspectives. The 

introduction section focuses on a review of the conventional and alternative methods 

used for the quality and authenticity control in the cocoa industry. The objectives 

section presents the general and specific objectives of the thesis. The scientific 

contribution section is divided in two chapters, the chapter 1, Identification of cocoa 

components out of normative limits or non-declared ingredients in cocoa powders, 
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and the chapter 2, Prediction of the content of bioactive compounds of cocoa 

powders. 

 

The chapter 1 is devoted to the application of NIR spectroscopy and 

chemometric algorithms to the quantitative and qualitative determination of cocoa 

shell and carob powder in cocoa powders. 

The results included in this chapter have been published into 2 articles: 

•�ARTICLE I. Fast detection of cocoa shell in cocoa powders by near 

infrared spectroscopy and multivariate analysis. 

•�ARTICLE II. Rapid fraud detection of cocoa powder with carob flour 

using near infrared spectroscopy  

In chapter 2, the content of some of the main bioactive compounds of cocoa 

powders, which are flavanols (catechin and epicatechin) and methylxanthines 

(caffeine and theobromine) in natural and alkalized cocoa powders was established 

by high-performance liquid chromatography in order to study the influence of cocoa 

alkalization in their content. Next, these contents were predicted by means of NIR 

data and chemometrics. 

 

The results included in this chapter are now considered for their publication in 

1 article: 

 

•�Article III. Changes in methylxanthines and flavanols during cocoa 

powder processing and its quantification by near-infrared 

spectroscopy. 

 

The general discussion, conclusions, and future perspectives sections presents 

a short general discussion proposal for further possible studies.
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Abbreviations and Acronyms 
 

AAS   Atomic Absorption Spectrometry 
ABTS  2,2�-azino-bis (3-ethylbenzothiazoline-6-sulfonic 

acid) 
AOAC   Association of Official Agricultural Chemists 
ANOVA   Analysis of Variance 
ACO-PLS    Ant Colony Optimization-PLS 
AEDA   Aroma Extraction and Dilution Analysis  
ASV   Anodic Stripping Voltammetry  
BPANN   Backpropagation Neural Networks 
CARS-PLS  Competitive Adaptive Reweighted Sampling - 

Partial Least Squares 
CBE   Cocoa Butter Equivalent 
Cd    Cadmiun 
CFU   Colony Forming Unit 
CV   Cross-Validation 
CVA   Canonical Varieties Analysis 
DCF   Dark Carob Flour 
DFA   Discriminant Funtion Analysis 
DM    Dry Matter 
DMP   Dimethylpyrazines 
DPPH   -2,2-diphenyl-1picrylhydrazil 
EFSA   European Food Safety Authority 
EMSC   Extended Multiple Signal Correction 
ET    Electronic Tongue 
ESI   Electrospray Ionization 
FAME   Fatty acids methyl esters 
FC    Fermented Cocoa 
FFA   Free fatty acids 
FID   Flame Ionization Detector 
FI-ESI-MS Flow Infusion-Electrospray Ionization-Mass 

Spectrometry 
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FRAP Ferric Reducing Antioxidant Power  
FT    Fourier Transform 
FT-IR   Fourier Transform Infrared 
FT-NIR   Fourier Transform Near-Infrared 
GC-O-MS Gas Chromatography Olfactometry Mass 

Spectrometry 
HA   High adulteration 
HCA   Hierarchical Cluster Analysis 
HPLC-MSESI-QTOF  High-performance liquid chromatography coupled 

to electrospray ionisation and quadrupole time-of-
flight mass spectrometry 

HSI   Hyperspectral image 
HS-SPME   Headspace-Solid Phase Microextraction 
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Abstract 

Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma, 

color and healthy properties, and are commodities of high economic value 

worldwide. Wide ranges of conventional methods have been used for years to 

guarantee cocoa quality. Recently however, demand for global cocoa and the 

requirements of sensory, functional and safety cocoa attributes have changed. On the 

one hand, society and health authorities are increasingly demanding new more 

accurate quality control tests, including not only the analysis of physico-chemical 

and sensory parameters, but also determinations of functional compounds and 

contaminants (some of which come in trace quantities). On the other hand, increased 

production forces industries to seek quality control techniques based on fast, 

nondestructive online methods. Finally, an increase in global cocoa demand and a 

consequent rise in prices can lead to future cases of fraud. For this reason, new 

analytes, technologies and ways to analyze data are being researched, developed and 

implemented into research or quality laboratories to control cocoa quality and 

authenticity. The main advances made in destructive techniques focus on developing 

new and more sensitive methods chromatographic analysis to detect metabolites and 

contaminants in trace quantities. These methods are used to: assess cocoa quality; 

study new functional properties; control cocoa authenticity; or detect frequent 

emerging frauds. Regarding to non destructive methods, spectroscopy is the most 

explored nondestructive technique, which is conducted within the near infrared 

range, and also within the medium infrared range to a lesser extent. It is applied 

mainly in the postharvest stage of cocoa beans to analyze different biochemical 

parameters or to assess the authenticity of cocoa and its derivatives. 

 

Keywords: Cocoa quality roadmap, Chemometrics, authenticity control, 

nondestructive methods, multivariate analysis. 
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Practical Application:  

Recent trends in the cocoa sector (increased quantity and quality demands, new 

technical specifications, emerging functional properties, global food quality control 

trends, such as fast, non-destructive online methods) mean that the cocoa industry 

has new analysis requirements. This work aims to guide researchers and quality 

control technicians to the possibilities available today to control cocoa quality and 

authenticity in the fastest most reliable way to make cocoa production more efficient, 

safe, fast and innovative. 
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1.� Introduction 

�
Cocoa (Theobroma cacao L.) is a commodity of high economic value 

worldwide. Most of its production comes from West African countries (mainly the 

Ivory Coast and Ghana, which account for approximately 60% of the world’s total 

cocoa), but is usually processed in the European Union (1.3 million tons or 40% of 

the global processing market in 2014). Apart from the Europen Union, cocoa beans 

are also processed in Indonesia, EEUU and Brazil in significant quantities (CBI, 

2016; Shavez, Ahmad, Jan, & Bashir, 2017; ICCO, 2019).  

In the different producing areas, three main distinct varieties are produced. The 

most ancient and most appreciated chocolate manufacturer variety is called Criollo 

(which means native), and is that traditionally cultivated by the Aztecs and Mayans 

in Central and South America. Later a new variety that better resists diseases and 

pests, called Forastero (meaning foreign), was taken from Amazon regions to other 

cocoa-growing areas in Latin America, and was exported to other West Africa and 

East Asia countries. Finally, in order to combine the advantages of Forastero and the 

appreciated fine flavor of Criollo, a new hybrid variety was harvested, known as 

Trinitario. Besides these varieties, the Nacional variety, which is generally 

considered native to Ecuador, is receiving more attention in the cocoa market for its 

sensory properties (Crouzillat et al., 2000). Each variety has specific sensorial 

characteristics that are related to its origin, environmental conditions and 

fermentation (Chetschik et al., 2018; Loullis & Pinakoulaki, 2018). Forastero is 

considered a bulk variety, while Criollo, Trinitario and Nacional are considered fine 

varieties. Bulk cocoas usually possess strong harsh flavors, while fine cocoas are 

perceived as being more aromatic or smoother (Counet et al., 2004). Growing 

conditions and postharvest practices can condition the final features of cocoa pods 

and, thus, of cocoa products (ADM Cocoa Manual, 2006). Therefore, knowing the 

variety and geographical indication of the cocoa beans used as raw material to 

produce different cocoa products is becoming increasingly more important as it can 

condition the final quality and, hence, cocoa prices.  
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Regardless of cocoa variety, cocoa beans are subjected to different postharvest 

and industrial processes to obtain distinct cocoa products (Di Mattia et al., 2014, 

Aprotosoaie, Luca, & Miron, 2016). The first steps include cocoa bean fermentation 

and drying (Suazo, Davidov-Pardo, & Arozarena, 2014). Next fermented and dried 

cocoa beans undergo several industrial processes. Bean shelling provides nibs and 

the first subproduct: shells (Tan & Kerr, 2018). Nibs can be roasted and milled to 

obtain cocoa liquor (Ioannone et al., 2015). When cocoa liquor is pressed, two 

products are obtained: cocoa butter and cocoa cake (Oliviero, Capuano, Ca, & 

Fogliano, 2009). Finally, cocoa cake undergoes another milling step to provide cocoa 

powder. Optionally, another important step to develop color and flavor, called 

alkalization or dutching process, can be performed in different cocoa products: cocoa 

nibs, cocoa cake or cocoa powder (Pérez-Esteve, Lerma-García, Fuentes, Palomares, 

& Barat, 2016). Alkalization is normally carried out by adding sodium or potassium 

carbonate at high temperature and controlled pressure. According to the final pH, 

cocoa powders can be classified into natural (pH 5-6), light-alkalized (pH 6-7.2), 

medium-alkalized (pH 7.2-7.6) and strong-alkalized powders (pH > 7.6) (Miller et 

al., 2008). Light-alkalized cocoa powders are light brown, but darker than natural 

ones, and their flavor is less astringent and less acidic than those of natural powders. 

Strong-alkalized cocoa powders are very dark and have a much stronger flavor than 

medium-alkalized ones (Kostic, 1997). A summary of all these processes is shown 

in Figure 1.  

If cocoa bean quality is poor, the quality of the final products will be worse. So 

over the years, the cocoa industry has defined different relevant aspects, such as the 

physical characteristics with a direct bearing on manufacturing performance or 

flavor which, over time, have become the commercial standards employed 

worldwide.  
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Figure 1. Cocoa and derivatives flow processing chart. Alkalization ways: 

black (nibs), red (cocoa cake), natural cocoa powder (blue). 

 

These commercial standards for cocoa beans, cake or chocolate usually include 

parameters related to physico-chemical parameters and compositional features (see 

Table 1). These evaluations aim to obtain a product that combines ideal aroma, 

flavor, color, technological behavior and functional compounds.  
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Table 1: General quality attributes of cocoa beans, chocolate and cocoa powders. 

Quality 
attributes 

Details Observation 

Cocoa beans     
Size 
(#beans/100g) 


 100 Standard beans 

  101-110 Medium beans 
  111-120 Small beans 
  > 120 Very small beans 

Uniformity 
Variable-sized beans are harder 

to break and deshell   

Fermentation 5% slaty, 5% defectiveness Good fermented 
  10% slaty, 10% defectiveness Fair fermented 
Moisture <8% Aceptable 

Chemical residues According to authority 
regulations Under limits 

Chocolate and 
cocoa powders 

    

Fat content   Characteristic 

Fat quality 
Low in free fatty acids, show 

characteristic melting and 
solidification properties 

  

Aroma and flavor 

Without moldy off-flavors, 
smoky taints, acidic off-

flavors, proximity to another 
strong-smelling products 

Characteristic 

Color   Characteristic 
Cocoa powder     
Solubility 95% Good solubility 
Shell content < 5% in fat free-dry cocoa Aceptable 

CAOBISCO-ECA-FCC (2015), ADM Cocoa Manual (2006) 
�

This goal is fulfilled by assessing the physico-chemical cocoa characteristics in 

raw material and its derivatives in each processing stage (Miller et al., 2006). Indeed, 

each processing stage comprises key quality control processes that should be 

addressed to obtain high quality cocoa products. For example, the fermentation 
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control in the postharvest stage is crucial for the formation of aromatic compounds 

to form (Aculey et al., 2010), and further quality control points should be set to 

guarantee  quality requirements (e.g. fat content, moisture, etc.) while drying, 

industrial roasting and alkalization cocoa processes.  

Apart from its nutrients, technological properties pleasant flavor, aroma and 

color, cocoa is also known for offering many health benefits (Bonvehí, 2005) 

because it is an excellent source of antioxidants (Langer, Marshall, Day, & Morgan, 

2011). Many different bioactive compounds are present in cocoa, such as 

polyphenols, mainly flavonoids (flavanols, procyanidins, and anthocyanins) and 

methylxanthines (caffeine, theobromine) (Talbot, Mensink, Smolders, Bakeroot, & 

Plat, 2018), among others. These phytochemicals can be present at different 

concentrations depending on diverse factors like cocoa variety and cocoa processing, 

which can lead to the presence of new bioactive compounds. For example, cocoa 

roasting is a precursor for the formation of heterogeneous high-molecular-weight 

polymers known as "melanoidins", which are related to antihypertensive and 

antioxidant properties (Quiroz-Reyes & Fogliano, 2018).  

Cocoa phytochemicals are an excellent ally to prevent cardiovascular and other 

chronic diseases, which are the main cause of mortality in Western countries 

(Gianfredi, Salvatori, Nucci, Villarini, & Moretti, 2018; Martín & Ramos, 2017). It 

has been shown that cocoa’s lipid profile balance is beneficial given the presence of 

stearic acid, which is a saturated fatty acid present in high proportions in cocoa butter 

(ca. 35%). The behavior of this fatty acid is unusual because, despite being a 

saturated fat, it behaves like an unsaturated one and has a neutral effect on blood 

cholesterol levels (Torres-Moreno, Torrescasana, Salas-Salvadó, & Blanch, 2015). 

Polyphenols, especially epicatechin, perform neuroprotective and 

neuromodulatory action. The former action is associated with the prevention and 

reduction of neurological, cognitive and functional brain diseases (Alzheimer's, 

Parkinson's and senile dementia). The second action is related to cognition, humor, 

learning and memory skills (Ishaq & Jafri, 2017). These healthy cocoa benefits 
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promote its employment as a basic ingredient used by the pharmaceutical and 

cosmetic industries (APEDA, 2015; Oracz, Nebesny, & �y�elewicz, 2015).  

Based on cocoa’s, and therefore on chocolate’s. sensory attributes and 

functional properties, it is not surprising that global cocoa demand is increasing. 

Demand for cocoa is predicted to rise by 30% by 2020, which equals the present 

production output of the Ivory Coast (1 million tons) (Afoakwa, Quao, Takrama, 

Budu, & Saalia, 2013; Shavez et al., 2017). The extent of this growth is such that 

without empowering and investing in small-scale farmers, the industry will struggle 

to provide sufficient supply. This increasing cocoa demand, volatile prices and the 

uncertain global cocoa production, which is at risk due to climate change, can lead 

to cases of cocoa adulteration.  

In this context, the development of new and faster analysis methods is not only 

essential for guaranteeing quality specifications and costumers requirements, or for 

process control purposes; but also important to explore new properties of cocoa 

products and to detect new frauds attempting food safety and cocoa authenticity. 

Therefore, the goal of this review is to provide a comprehensive insight into both 

traditional and fast nondestructive technologies that might be used in the cocoa 

industry to assess cocoa composition and quality, to study new cocoa properties and 

to detect frequent and emerging frauds. 

 

2.� Determination of cocoa components 

�
2.1 Major components 

 

Cocoa compounds, such as fat, nitrogenous compounds, protein, moisture, ash 

and fiber, are usually evaluated by proximate analyses. Fat is determined by the 

AOAC 963:15 Method, which consists in a Soxhlet extraction method, moisture is 

determined by the AOAC 931:04 method, protein by measuring the nitrogen content 

with the Kjeldahl method (AOAC 970:22), ash by the AOAC 972:15 method and 
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fiber by AOAC 991.43. An example of a recent application of these methods is a 

study about the effect that solar heat has on cocoa beans (Abdullahi, Muhamad, 

Dzolkhifli, & Sinniah, 2018). Automation improvements of these methods have been 

incorporated into both industry and R&D laboratories. For instance, fat can be 

determined by the Soxtec™ AVANTI 2050 system (Servent et al., 2018; Sess-

Tchotch et al., 2018), while nitrogen content can be determined using an automatic 

Kjeldahl apparatus (Hue et al., 2016) or a micro-Kjeldahl apparatus, which allow 

microquantities to be established (Hashimoto et al., 2018). With these analyses, it is 

possible to establish the nutritional information of cocoa and derivatives, which is 

usually included on product labels. 

By applying these techniques, it can be concluded that fat, nitrogenous 

compounds, sugars and polyphenols are the main constituents of cocoa products. 

Cocoa fat is roughly 57%, 6.6%, and 11%, and total nitrogen content is ca. 2.5%, 

3.2% and 4.3% for nibs, cocoa shells and cocoa powder, respectively. The 

percentage of water is ca. 3.2% in nibs, 6.6% in cocoa shells and 3% in cocoa 

powder (Afoakwa et al., 2013; ICCO, 2012). Cocoa powder also contains a 

relevant polysaccharide content (comprising cellulose, hemicellulose, and pectin), 

noncarbohydrate lignin, nonstructural polysaccharides like gums and mucilage. It 

also contains considerable amount of flavanols and organic acids (ca. 4% among 

lactic and acetic acids), which are responsible for cocoa color (Shavez et al., 2017). 

Table 2 summarizes the main components of cocoa powders.  
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Table 2: Cocoa powder composition (ICCO, 2012; Krähmer et al., 2015; Lacueva 
et al., 2008). 
�
Component Major compounds (%) 
Fat 11 
Moisture 3 
Total nitrogen 4.3 
Nitrogen (corrected for alkaloids) 3.4 
Protein 20 
Nitrogen corrected for alkaloids x 6.25 % 21.2 
Ash 5.5 
Water soluble ash 2.2 
Phosphate (as P2O5) 1.9 
Ash insoluble in 50% HCl 0.08 
  
 Minor compounds (mg/g) 
Flavanols  
Catechin 0.6 
Epicatechin 5.7 
Methylxanthines 
Caffeine 6 
Theobromine 28 
Other compounds:  
Total procyanidins 
Total amino acids 
Total sugars 

22 
3.4 
8.9 

*Reference mean values, since both flavanols and methylxanthines contents are 
highly influenced by cocoa origin, postharvest and processing processes�
 

2.2 Bioactive compounds: Polyphenols and methylxanthines 

 

Polyphenols are the most relevant bioactive cocoa compounds found to date. 

They can be divided into at least 10 different classes depending on their basic 
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structure in the plant kingdom (Wollgast & Anklam, 2000). In cocoa, the flavonoids 

family constitutes the most important single group, which can be further divided into 

several classes. The main classes of flavonoids found in cocoa are summarized in 

Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Summary of the main polyphenol classes found in cocoa. 
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extension subunit (Wollgast & Anklam, 2000). In cocoa, procyanidins with a degree 

of polymerization (DP) up to decamer have been identified. Oligomers (procyanidins 

B1, B2, B5, and C1) and polymers account for 90% of total polyphenols, while 

monomers account for 5–10% (Lacueva et al., 2008). Another flavonoid class is 

anthocyanins, which is the most important group of water-soluble plant pigments 

responsible for the color of flowers and fruits of higher plants (Wollgast & Anklam, 

2000). The main anthocyanins identified in cocoa beans are cyanidin-3-arabinoside 

and cyanidin-3-galactoside, which represent ca. 4% of the total polyphenol content 

of cocoa beans, but they can be hydrolyzed during the cocoa fermentation process 

(Forsyth & Quesnel, 1957; Wollgast & Anklam, 2000). 

Other important bioactive compounds found in cocoa and cocoa products are 

methylxanthines (Li et al., 2012). The main methylxanthines present in cocoa 

include caffeine and theobromine, but low levels of theophylline have also been 

found. These compounds are related to psychoactive properties that lead to better 

daily human life (i.e., more efficient thinking, exploring, hunting, etc.) without the 

serious side effects of drugs of abuse (Franco, Oñatibia-Astibia, & Martínez-Pinilla, 

2013). 

Both polyphenol and methylxanthine compounds are responsible for the 

astringent and bitter taste of cocoa, which affects cocoa stability and digestibility (Li 

et al., 2012). Moreover, they are generally determined to control the quality of the 

cocoa products obtained from raw beans in all the processing steps until end (ready-

to-eat) products are obtained. Therefore, their determination is very important for the 

cocoa industry.  

Phenolic compounds are usually extracted from cocoa matrices using different 

solvents, and methanol is considered the most efficient one (Belš�ak, Komes, Horži�, 

Gani�, & Karlovi�, 2009), although other solvents solutions, like acetone, water and 

acetic acid, are also widely used. The polyphenol content of cocoa is usually 

evaluated by total polyphenol content (TPC), antioxidant capacity (which can be 
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obtained by different assays, which are described below), and by also quantifying 

the different individual polyphenols present in samples. 

TPC is usually determined by the Folin-Ciocalteu colorimetric assay, which is 

based on the Folin-Ciocalteu reagent’s ability to react with phenolic hydroxyl groups 

(Manzano et al., 2017).  

Antioxidant capacity can be established by methods based on both hydrogen 

atom or electron transfer reactions. The first category includes methods like ORAC 

(oxygen radical absorbance capacity), TRAP (total radical trapping antioxidant 

parameter), Crocin bleaching assay, IOU (inhibited oxygen uptake), inhibition of 

linoleic acid oxidation and inhibition of LDL (Low Density Lipoprotein) oxidation. 

The second category includes assays such as TEAC (Trolox equivalent antioxidant 

capacity), FRAP (ferric ion-reducing antioxidant parameter) DPPH (diphenyl-1-

picrylhydrazyl), copper (II) reduction capacity, etc. (Di Mattia et al., 2014). The 

heterogeneous methods (different reagents) used to determine antioxidant activity 

make the comparison of the obtained results difficult. However, the most frequently 

used assays are ABTS, DPPH, ORAC, TRAP, and FRAP. These methods can 

provide discordant results depending on the most abundant antioxidant molecules in 

the system and their interactions (Di Mattia et al., 2014).Individual determinations 

of both polyphenols and methylxanthines are usually performed by HPLC-UV, but 

the concomitant identification of other unknown compounds, mainly flavan-3-ol 

derivatives (Fayeulle et al., 2018), has led to the proliferation of innovative, 

miniaturized and/or two-dimensional HPLC methodologies (Toro-Uribe, Montero, 

López-Giraldo, Ibáñez, & Herrero, 2018). For this purpose, other detectors like mass 

spectrometry are widely used (Cádiz-Gurrea et al., 2014; Pedan et al., 2016; 

Rodríguez-Carrasco, Gaspari, Graziani, Sandini, & Ritieni, 2018). 

Many articles have been published in the literature about the determination of 

and/or the changes produced in the different types of polyphenols and 

methylxanthines among several distinct cocoa products (Gabbay Alves et al., 2017; 

Machonis, Jones, Schaneberg, Kwik-Uribe, & Dowell, 2014; Manzano et al., 2017; 
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Risner, 2008), in cocoa processing steps (Elwers, Zambrano, Rohsius, & Lieberei, 

2009; Lacueva et al., 2008; Li et al., 2012, 2014; Miller et al., 2008; Payne, Hurst, 

Miller, Rank, & Stuart, 2010; Pedan, Fischer, Bernath, Hühn, & Rohn, 2017; Quiroz-

Reyes & Fogliano, 2018), between different cocoa clones or varieties (Elwers et al., 

2009; Niemenak, Rohsius, Elwers, Omokolo Ndoumou, & Lieberei, 2006), etc. 

Therefore, some of these studies are reviewed below. 

Risner (2008) determined both methylxanthines (theobromine and caffeine) and 

flavan-3-ols (catechin and epicatechin) by HPLC in different cocoa products, 

including standard reference material baking chocolate 2384, cocoa powder, cocoa 

beans, and cocoa butter. 

Miller et al. (2006) published a study in which antioxidant capacity (the ORAC 

method), vitamin C equivalence antioxidant capacity (VCEAC), TPC and 

procyanidin contents were determined and analyzed by principal component 

analyses (PCA) to identify their behavior in different cocoa derivatives, such as 

natural cocoa powders, unsweetened baking chocolates, semisweet baking chips, 

milk and dark chocolates and chocolate syrups. The highest levels of antioxidant 

activities, TPC and procyanidins were found in natural cocoa powders, followed by 

baking chocolates, dark chocolates, baking chips, and by finally milk chocolate and 

syrups. 

In another study, the influence of alkalization on TPC, methylxanthines, flavan-

3-ols and other components, such as volatiles, free amino acids, and sugars, was 

studied in commercial cocoa powders (Li et al., 2012). The results showed that the 

content of both methylxanthines and flavan-3-ols lowered as the degree of 

alkalization increased, while a higher degree of alkalization decreased TPC. Similar 

results were found by Miller et al. (2008), who also studied the influence of 

alkalization on the antioxidant capacity (ORAC method), TPC and flavanol content 

of cocoa powders. For all the samples, the highest contents of all the determinations 

were found for natural powders.  
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The influence of the alkalization process on the content of both monomeric 

flavanols (catechin and epicatechin) and flavonols (quercetin-3-glucuronide, 

quercetin-3-glucoside, quercetin-3-arabinoside, and quercetin) in cocoa powders 

was studied by Lacueva et al. (2008). The authors concluded that the marked 

reduction found in the flavonoid content of natural cocoa powder, together with the 

change observed in the monomeric flavanol profile that resulted from alkalization 

treatment, could affect the antioxidant properties and the polyphenol bioavailability 

of cocoa powder products. 

Li et al. (2014) studied the effects of alkalization treatments on color, 

colorimetric fractions, TPC, and anthocyanin contents of cocoa powders. They 

concluded that the color qualities of cocoa powder can be improved by optimizing 

alkalization parameters. For example, cocoa powders alkalized with K2CO3 

displayed darker colors and lower TPC than the powders alkalized with NaOH. High 

temperature and basic pH conditions gave a darker color due to sugar degradation, 

Maillard reactions and anthocyanin polymerizing. 

In addition to the changes that take place during alkalization, further studies 

have studied the influence of other processing steps. One such case is the work 

published by Quiroz-Reyes et al. (2018), who evaluated the effect that roasting and 

fermentation steps had on TPC, and antioxidant capacity and proanthocyanidins, 

melanoidins and flavan-3-ols contents on two cocoa bean varieties (Forastero and 

Criollo). The results showed that the Forastero variety was characterized by the 

highest melanoidins content, antioxidant capacity (DPPH Quencher assay) and TPC 

values under severe roasting conditions, while severer thermal treatments lowered 

the concentration of TPC and proanthocyanidins in both varieties, and also 

influenced the flavan-3-ols profile. Thus it can be concluded that a proper roasting 

process design and adequate cocoa variety selection can optimize the cocoa health 

potential, especially melanoidins and phenolic compounds. 

In another study (Payne et al., 2010), the impacts of fermentation, drying, 

roasting and alkalization processes on catechin and epicatechin contents were 



Introduction 
 

 18 

evaluated in both unfermented and fermented cocoa beans. The results showed that 

unripe cocoa beans had a 29% higher level of epicatechin and the same level of 

catechin as fully ripe beans, while no significant difference in the content of both 

flavanols was observed during drying. A marked reduction (>80%) in catechin and 

epicatechin levels was observed in fermented versus unfermented beans. During 

roasting, loss of epicatechin took place along with a concomitant increase in the 

catechin level, probably due to the epimerization of epicatechin. Finally, alkalization 

led to a reduction in both catechin and epicatechin contents. Therefore, these authors 

proposed using the epicatechin/catechin ratio as a useful sensitive indicator for the 

processing history of cocoa beans. 

Pedan et al. (2017) studied the influence of different lab-scale chocolate 

manufacturing process stages (including opening fresh cocoa pods, fermentation, 

drying, roasting and conching, and finishing chocolate bars) on the content of 

oligomeric proanthocyanidins and their antioxidant capacity by the NP-HPLC-

online-DPPH methodology. For this purpose, one single batch of 5 kg of fresh 

Trinitario variety cocoa beans was studied in the different processing stages. The 

results showed that the total proanthocyanidin content continuously lowered during 

the manufacturing process, with only ca. 20% of the initial content present in 

chocolate. 

As previously indicated, several studies have been conducted in which the 

influence of cocoa clones, variety and/or origin on polyphenols content has been 

studied (Elwers et al., 2009; Niemenak et al., 2006). For example, Niemenak et al. 

(2006) compared TPC, flavanol (catechin and epicatechin) and anthocyanin 

(cyanidin-3-galactoside and cyanidin-3-arabinoside) contents of different seeds from 

Cameroon. The obtained results suggested that there was no qualitative difference in 

TPC in cocoa beans despite their genetic origin and fermentation-like process. 

However, a quantitative difference in epicatechin, catechin, cyanidin-3-galactoside 

and cyanidin-3-arabinoside, and also in three undefined substances, was found. This 

difference was attributed to growing conditions (microclimate, position of pods on 
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trees, etc.). Finally, PCA and hierarchical cluster analyses classified samples 

according to their polyphenol and anthocyanin contents. 

Alternative methods for analyzing these bioactive compounds (polyphenols and 

methylxanthines) are included in Section 4. 

 

2.3 Fatty acids 

 

It has been reported that cocoa beans and cocoa liquor have around 50g/100 g 

of fat (Hashimoto et al., 2018). This fat, also called cocoa butter, is frequently 

reported to be the main vegetable fat used in chocolate manufacturing due to its 

rheological, textural and chemical characteristics, such as triglycerides and fatty 

acids (FA) composition (Guehi et al., 2008). Cocoa butter hardness depends on the 

ratio between saturated and unsaturated fatty acid bound in triglycerides, and on the 

free fatty acids (FFA) content. Whereas cocoa butter hardness increases with a higher 

proportion of saturated fatty acids, higher FFA content reduces this parameter. Thus 

Council Directive 73/241/EEC (EU, 2000) limits maximum FFA contents to a 1.75% 

oleic acid equivalent in cocoa butter (Guehi et al., 2008). The FA profile is also 

linked to cocoa aroma quality as the presence of volatile fatty acids (e.g. acetic, 

propionic, butric, isobutric, and iso-valeric acids) is linked to low quality products 

(García-Alamilla et al., 2007). Then there is stearic fatty acid (C18:0), which offers 

health benefits (Torres-Moreno et al., 2015). In this context, the characterization of 

both the quantity and quality of FA present in cocoa seeds and cocoa products is 

important and frequently evaluated (Guehi et al., 2008).  

In cocoa butter, total FFAs are determined by measuring the amount of base 

needed to neutralize oleic acid (titration method) according to the official method 

42-1993 (IOCCC, 1996). This method consists in dissolving 5 g of extracted cocoa 

butter in 50 ml of a previously hot petroleum ether/absolute ethanol mixture (1:1, 

v/v) neutralized by adding phenolphthalein. The mixture is then titrated with 0.1N 

alcoholic KOH solution. This method was used by Guehi et al., (2008) to study how 
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storage conditions affect the FFA contents of raw cocoa beans. The above-cited 

authors used different samples of fermented-dried cocoa beans purchased from the 

Ivory Coast. The authors reported very low FFA contents (0.2-0.8%) in whole 

healthy cocoa. Their study also stated that FFA formation did not depend on either 

genotype or cocoa post-harvest processing technologies (number of fermentation 

days). However, in defective cocoa beans, high and increasing FFA contents were 

found. This increased content was attributed to the activity of microflora, which has 

been associated with initial quality and loss of the physical integrity of cocoa beans. 

The FA profile can be determined by preparing FA methyl esters (FAMEs) 

using method AOAC 948.22 and gas chromatography coupled to mass spectrometer 

detector GC-MS (Torres-Moreno et al., 2015). By the aforementioned method, 

Torres-Moreno et al., (2015) studied the influence of the geographical origin 

(Ecuador and Ghana) and processing conditions of chocolate (three roasting times: 

30.5, 34.5 and 38.5 min; two conching times: 24 and 42 h) on the FA profile. For 

this purpose, the authors used the official method 948.22 (AOAC International, 

1990b) and identified 15 FA in cocoa and chocolates. Of these, the most important 

FA were C16:0 (>25%), C18:0 (>33%) and C18:1 (>32%), expressed as the relative 

percentage of the total fatty acid content in unroasted cocoa beans and in the 

chocolate made from Ecuadorian and Ghanaian samples. For cocoa, differences in 

the FA profile were found in C12:0, C14:0, C16:0, C16:1, C17:0, C17:1 and C18:0, 

while differences were found only in C16:0, C18:0, C18:1 and C18:2 for chocolates. 

For all the samples, C16:0, C18:0, C18:1 and C18:2 were quantitatively the most 

important FA. Differences in the FA profile were explained mainly as an effect of 

the geographical origin and were not due to processing conditions in chocolate. Thus 

Ecuadorian chocolate showed a healthier FA profile with larger amounts of 

unsaturated FA and smaller amounts of saturated FA than Ghanaian chocolate. 
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2.4 Amino Acids 

 

Amino acids take part in the aroma and flavor formation of cocoa and cocoa-

related derivatives (Voigt, Textoris-Taube, & Wöstemeyer, 2018). Their content is 

also related to human health (Stark, Lang, Keller, Hensel, & Hofmann, 2008). Thus, 

in addition to total protein contents, knowing the profile of the amino acids that form 

these proteins is essential.  

High-performance liquid chromatography is the method normally used to 

analyze amino acids. As amino acids do not exhibit chromophore groups in their 

structure, they cannot be detected by UV–VIS spectrometry. Thus they have been 

traditionally derivatized before being analyzed. During the derivatization step, a 

UV–VIS nonresponding analyte can be converted into a compound with significant 

absorbance or fluorescence that allows determinations with greater sensitivity 

(Kubíc� ková et al., 2011).  

One study that aimed to correlate amino acid content with cocoa aroma was 

published by Voigt et al., (2016). These authors analyzed amino acid content in 

cocoa beans to characterize the amino acid sequence of aroma precursor peptides. 

For this purpose, amino acids were converted into their o-phthalaldehyde (OPA) 

derivatives and then separated by reversed-phase HPLC. Effluents were monitored 

fluorometrically. Another study using derivatization with a fluorescent chromophore 

to quantify the content of free amino acids in Forastero cocoa beans was conducted 

by Hinneh et al., 2018. In this work, the authors evaluated the influence of pod 

storage on the free amino acid profiles and the implications on the development of 

some Maillard reaction related to flavor volatiles. As a result, they found that 

although the concentration of free amino acids was directly proportional to pod 

storage duration, significant differences were observed for pod storage periods 

exceeding 7 days (Hinneh et al., 2018). 

In relation to health properties, amino acids and their metabolites can act as 

functional molecules. Kynurenic acid, obtained during the metabolization of amino 
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acids like tryptophan through the kynurenine pathway, exhibit antioxidant capacity. 

Several authors have attempted to quantify tryptophan content and its derivatives in 

the kynurenine pathway by liquid chromatography with various detectors. One study 

that analyzed tryptophan and its derivatives in the kynurenine pathway in cocoa is 

that reported by Yılmaz and Gökmen, 2018. In their study, the authors compared the 

content of these analytes in several fermented food products (bread, beer, red wine, 

white cheese, yogurt, kefir and cocoa powder). Tryptophan derivatives were 

determined by ultra-high-performance liquid chromatography-tandem mass 

spectrometer (UPLC–MS/MS). Of these analytes, cocoa powder contained more 

kynurenic acid, which is a neuroprotective compound (Yılmaz & Gökmen, 2018).  

The aim of another recent application of cocoa amino acids quantification was 

to assess the geographical origin (Asia, Africa and South America) of cocoa beans 

used to produce chocolate (Acierno, Alewijn, Zomer, & van Ruth, 2018). For this 

purpose, the authors tested the applicability of Flow Infusion-Electrospray 

Ionization-Mass Spectrometry (FI-ESI-MS). Among the tentatively identified 

compounds, the authors recognized free amino acids that could be used to distinguish 

the geographical origin of cocoa beans. This fell in line with other studies that have 

reported the geographical influence on the free amino acid concentration in raw 

cocoa (Rohsius, Matissek, & Lieberei, 2006). 

 

2.5 Peptides 

 

As with amino acids, the presence and concentration of certain peptides (e.g. N- 

terminal 15-kDa vicilin found in South American CCN51 samples) can be used to 

evaluate the origin of a particular cocoa. Kumari et al., (2018) used ultra-high-

performance liquid chromatography-electrospray ionization mass spectrometry 

(UHPLC-ESI-Q-q-TOF-MS) to analyze the proteins and oligopeptides of 

nonfermented and fermented beans of various geographic origins. ESI is a soft 

ionization method capable of providing both protonated and deprotonated molecules. 
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Q-TOF-MS is able to combine high sensitivity and mass accuracy for both precursor 

and product ions and, therefore, allows the elemental composition for both parent 

and fragment ions to be confirmed both quickly and efficiently. UHPLC can provide 

high resolutions for the separation of complicated natural products and improves the 

sensitivity of Q-TOF-MS detectors (Li et al., 2017). In this study, the authors 

observed how protein quantities, and their profiles that derived from two-

dimensional gel electrophoresis, showed striking differences for nonfermented beans 

depending on their geographical origin. However, in fermented beans, the detected 

diversity of peptides did not correlate with geographical origin, but to the degree of 

fermentation. These findings suggest that the variability in peptide patterns depends 

on the fermentation method applied in the country of origin, which ultimately 

indicated diversified proteolytic activities (Kumari et al., 2018). 

 

2.6 Sugars 

 

Cocoa sugars are cocoa aroma precursors that are present in higher proportions 

in cocoa pulp as fermentable sugars (9-13% w/w). The predominant sugars in cocoa 

beans are sucrose, fructose and glucose (Afoakwa, 2010). In cocoa beans, 

fermentation allows reducing sugar (fructose and glucose) formation. Therefore, 

during the roasting process they undergo Maillard reactions and Strecker 

degradation, which lead to the generation of desirable flavor volatiles. Thus reducing 

sugars determination is important for cocoa sensorial control purposes (Kongor et 

al., 2016).  

A traditional method to analyze total and reducing sugars in cocoa beans and 

products is that known as the phenol sulfuric acid method (Dubois, Gilles, Hamilton, 

Rebers, & Smith, 1956). This method allows simple sugars, oligosaccharides, 

polysaccharides, and their derivatives, to be detected, including methyl ethers with 

free or potentially free reducing groups as they give an orange-yellow color after 

treatment with phenol and concentrated sulfuric acid. 
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However, the identification and quantification of different reducing sugars 

require a more selective technique. One common alternative is to use gas 

chromatography after aqueous extraction and derivatization. Hinneh et al. (2018) 

analyzed the sugar profile of Forastero cocoa beans by gas chromatography. For this 

purpose, these authors obtained an extract that was then derivatized in two steps: first 

oximation and second the formation of trimethylsilylesters. The study revealed that 

on storage day 0, cocoa pods exhibited 0.672±0.004 g/100 g of fructose, 0.264±0.001 

g/100 of glucose and 0.021±0.001 g/100g of sucrose. These amounts varied with 

storage. After 3 pod storage days, the amount of glucose and sucrose had increased. 

After 7 pod storage days, these amounts lowered, while the amount of fructose 

increased, so the respective fructose-glucose ratios for 0 PS, 3 PS, and 7 PS were 

approximately 3:1, 2:1 and 4:1. This confirms the role of PS in influencing sugar 

degradation dynamics through nib acidification during fermentation.  

 

2.7 Aroma and flavor 

 

Aroma and flavor are the most appreciated cocoa bean features as they 

contribute to the final flavor of chocolates and other derived products. Samples can 

be evaluated for cocoa strength or chocolate flavor, residual acidity, bitterness and 

astringency, and for the presence of any off-flavor and positive ancillary flavors, 

such as fruity or floral. The sensory evaluation of cocoa products can be made by 

difference and descriptive tests. Difference tests are performed to compare samples, 

or samples against a standard, which include the triangle test, paired comparisons, 

ranking and the two-out of five test. No expert training is needed to carry out these 

tests (ADM Cocoa manual, 2006). Descriptive tests include the flavor profile method 

(FPM), the descriptive analysis test (QDA) and the free choice profiling (FCP), a 

variant of (QDA). Sensorial analysis methods may also include the use of a principal 

component analysis (PCA), which allows variable reduction according to inter-

related connections. The information displayed in a two-dimensional graph provides 
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essential information on the flavor profiles of cocoa samples based on descriptors. 

This method was used by Luna et al., (2002) to evaluate the flavor of Ecuadorian 

cocoa liquor, who concluded that polyphenols could be essential for the overall 

perception of cocoa liquor characteristics (CAOBISCO-ECA-FCC, 2015; Luna, 

Crouzillat, Cirou, & Bucheli, 2002). 

Aroma and flavor are conditioned by different parameters that are chemical 

(nonvolatile and volatile compounds), biological (origin, variety) and physical 

(physical integrity) (Guehi et al., 2008). Among nonvolatile flavor precursors, 

monosaccharides, disaccharides, oligosaccharides and some L-amino acids can 

contribute to the sweet taste of cocoa, while FA can contribute to acid taste. Tannin 

molecules like epicatechins, catechins, and procyanidins (total polyphenols) can 

confer bitterness and astringency. Alkaloid molecules (methylxanthines) can also 

contribute to a bitter cocoa taste (Jinap, Thien, & Yap, 1994). Thus they condition 

the sweetness, bitterness, acidity and astringency of cocoa and its derivatives. 

Volatile compounds appear in cocoa post-harvest stages, such as fermentation 

and drying. These steps occur in the origins of cocoa beans by generating 

heterogeneous materials. As previously mentioned, variety and physical integrity 

(that depend on postharvest practices) are important factors for volatiles to form. 

During fermentation and roasting, pleasant volatiles that determine chocolate 

odor, (such as aldehydes, ketones and pyrazines) are formed. Jointly with esters and 

alcohols, these compounds are also related with sweet odor (Rodriguez-Campos et 

al., 2012). Properly dried beans usually have a long shelf life, a crisp texture and 

plump appearance, a well-oxidized interior and good flavor without excessive 

acidity, hammy, smokiness or other off-flavor notes (Jinap et al, 1994).  

In contrast, inappropriate post-harvest handling (e.g. amount of mucilage in 

pods) can generate high contents of volatile fatty acids (VFA) like acetic, propionic, 

butyric, isobutyric, isovaleric acids (C2-C5), which cause strong acidic flavors and 

off odors. These off odors include rancidity, musty, stale, cheese rind, unpleasant 

and hammy flavors (García-Alamilla et al., 2007; Vázquez-Ovando, Chacón-
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Martínez, Betancur-Ancona, Escalona-Buendía, & Salvador-Figueroa, 2015). 

Nevertheless, VFA can decrease during roasting (Jinap et al., 1994). 

The free amino acids, short-chain peptides and reducing sugars formed during 

the fermentation process can also contribute to cocoa flavor development during 

roasting in Maillard reactions. Aldehydes and pyrazines are produced as a result of 

this reaction. Tetramethylpyrazines (TMP) reach their maximum level upon medium 

roasting; trimethylpyrazines (TrMP) increase steadily throughout the roasting 

process and 2,5-dimethylpyrazines (DMP) rise under strong roasting conditions. The 

sensory evaluation shows that a normal roasting degree is linked to high 

concentration ratios of TMP/DMP and TMP/TrMP between about 1.5 and 2.5, 

respectively. Low values for the above ratios are linked to over-roasted cocoa beans 

(Aprotosoaie, Luca, & Miron, 2016). So they contribute to high quality chocolates, 

and these molecules are desirable in cocoa beans (Afoakwa, Paterson, Fowler, & 

Ryan, 2009). A more extensive description can be found in (Aprotosoaie, Luca, & 

Miron, 2016). 

Regarding the analysis of aroma and flavor compounds, on the one hand, part 

of the aroma analysis is done by determining the aroma precursors that are free amino 

acids, oligopeptides, and reducing sugars. The analyses of these compounds have 

been previously described. This section reports only the methods used to study the 

combination between aroma precursors and sensory attributes. 

A profounder understanding of the aroma profile can be attained by the 

determination of individual aromatic compounds. The determination of aroma 

compounds is usually made by their extraction, separation and detection. Studies 

have been published using different extraction methods, such as headspace-solid 

phase microextraction (HS-SPME) (Miriam Torres-Moreno, Tarrega, & Blanch, 

2014), solid-phase microextraction (SPME) (Humston, Knowles, McShea, & 

Synovec, 2010), aroma extraction and dilution analyses (AEDA) and solvent-

assisted flavor evaporation (SAFE distillation) (Chetschik et al., 2018).  
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To separate compounds, gas chromatography GC is frequently used. Flame 

ionization detector FID (Cambrai et al., 2010), mass spectrometry (MS) or, for more 

accurate detection times, fly mass spectrometry (TOFMS) (Humston., 2010) are 

used for detection purposes. 

Many studies about the determination and/or changes produced in the flavor, 

aroma and taste during cocoa fermentation (Crafack et al., 2014), roasting (Torres-

Moreno et al., 2014), between different cocoa clones or varieties (Liu et al., 2017), 

and between different cocoa products (Chetschik et al., 2018), have been recently 

published. Torres-Moreno et al., (2014) extracted volatile compounds from dark 

chocolate using HS-SPME followed by GC-MS to determine the influence of the 

roasting process on chocolate aroma formation. Variations have been found in the 

chocolate aroma profile and their concentrations according to roasting time and 

geographical origin (Torres-Moreno., 2014).  

Changes in the aroma of cocoa beans with moisture damage have been analyzed 

in cocoa beans of different origins (Costa Rica, Ghana, Ivory Coast, Venezuela, 

Ecuador and Panama). SPME sampling coupled to two-dimensional gas 

chromatography combined with time of fly mass spectrometry (GC×GC–TOFMS) 

has been applied for such assessments. Twenty-nine compounds have been detected 

as a result of moisture damage (Humston., 2010). Similarly, gas chromatography 

coupled to a flame ionization detector (FID) and MS has been used to distinguish 

different cocoa types and their derivatives (Cambrai et al., 2010). 

Thanks to a high sensitivity, selectivity and reproducibility of HS-SPME-GC–

MS, the method is being increasingly used in combination with chemometrics. This 

determination technique and principal components PCA have been used to 

simultaneously understand the behavior of several aroma components (Cambrai et 

al., 2010). Li, et al., (2012) detected 80 volatile aroma compounds in cocoa powders 

of different degrees of alkalization by the aforementioned GC-MS technique. Among 

these compounds, a high acetic acid concentration was determined. Moreover, a 

decreasing trend of this acid while increasing the degree of alkalization was reported 
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(Li et al., 2012). HS-SPME-GC-MS has also been used to evaluate the inoculation 

effect of starter cultures and fermentation techniques on the volatile aroma and 

sensory profile of chocolate. As a result, 56 volatile chocolate compounds have been 

identified and aromatic profiling differences have been linked to fermentation 

technique types, but not to the used starter cultures. However, the differences were 

too small to change consumer perceptions (Crafack et al., 2014).  

Other aroma extraction methods include the aroma extraction and dilution 

analyses (AEDA) and solvent-assisted flavor evaporation (SAFE distillation), and 

both can be coupled to GC-MS. Chetschik et al. (2018) used the SAFE method to 

characterize the aromas of cocoa pulp, and how they are transformed during 

fermentation. These authors found higher 2-phenylethanol and 3-methylbutyl acetate 

concentrations in cocoa pulp than in cocoa beans in several fermentation stages. 

Conversely, quantities of odorants, such as linalool and 2-methoxyphenol, have been 

observed at larger concentrations in cocoa beans (Chetschik et al., 2018).  

In another study (Van Durme, Ingels, & De Winne, 2016), the authors used the 

in-line roasting hyphenated with a cooled injection system coupled to a gas 

chromatograph–mass spectrometer (ILR-CIS-GC–MS) to assess fermentation 

quality and the overall potential formation of cocoa aroma. For this purpose, data on 

unroasted cocoa were compared with data on conventional roasted cocoa beans 

obtained by headspace solid phase microextraction (HS-SPME-GC–MS). The 

results of this analysis revealed that similar formation trends of important cocoa 

aroma markers were found according to fermentation quality. These main markers 

of cocoa aroma were aldehyde, pyrazines, aldehydes (amyl alcohols), and pyrazines 

tetramethylpyrazine (TMP) and trimethylpyrazine (TrMP), which are present at high 

concentrations when cocoa beans are well-fermented. The aforementioned method 

requires no sample preparation and can be performed in short times (<1 h). 

Apart from methods based on the separation and identification of compounds, 

new innovative, faster and robust analytical techniques to determine aromatic 

compounds are being proposed. Concretely, the hyphenated HS-SPME-MS-nose 
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configuration, based on mass fingerprinting and pattern recognition, uses the 

hyphenated dynamic headspace-chemical sensor configuration. This equipment has 

a fully automated sample preparation unit for the online dynamic headspace isolation 

of cocoa aroma compounds. This technique has been used for the differentiation by 

the origin and fermentation degree of roasted fermented cocoa beans (from 

Indonesia, Peru, Ghana and Vietnam) by a hierarchical cluster analysis (HCA), PCA 

and one classification algorithm, namely soft independent modeling of class analogy 

(SIMCA). So a clear separation of fine flavor cocoa variety Criollo was possible, as 

was classifying samples according to their degree of roasting (Diem et al., 2015). 

Regarding origin, Liu et al. (2017) made a comparison of the aroma compounds 

of cocoa liquors from Asia, Africa and Oceania by gas chromatography-

olfactometry-mass spectrometry (GC-O-MS). With this study, components at high 

concentrations were found, such as 3-methylbutanal, acetic acid, 

tetramethylpyrazine, and 3-methylbutanoic acid, and a relation between the aroma 

profile and origin was found by PCA (Liu et al., 2017).  

 

2.8 Polycyclic aromatic hydrocarbons, toxins and heavy metals 

 

Cocoa samples can also contain compounds that could be considered of risk for 

humans. These compounds can come from soil contamination (i.e. heavy metals 

(HM), or can be generated during manufacturing practices (i.e. polycyclic aromatic 

hydrocarbons (PAHs) and mycotoxins). The levels of some of these compounds are 

regulated by the European Food Safety Authority (EFSA) (European Commission, 

2011). The methods normally used and the studies carried out to control their 

presence are described below.  
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2.8.1 Polycyclic aromatic hydrocarbons (PAHs) 

 

PAHs can be generated during incomplete combustion and are widely present 

in the environment. These compounds can contaminate foodstuffs and are related to 

human toxicity (carcinogenic, genotoxic, mutagenic) (Cordella et al., 2012). As they 

are lipophilic, their determination is usually made in cocoa butter. A frequent way to 

analyze PAHs in cocoa samples is to extract them from the sample by the method 

based on the stirred saponification of 1 g of cocoa butter in KOH (1:6), 1M at 80°C.  

After extraction, the determination is made by HPLC coupled to a fluorescence 

detector. Four PAHs have been mainly determined, namely benzo(a) anthracene, 

chrysene, fluoranthene, and benzo(b) pyrene (Bratinova, Karasek, Buttinger, & 

Wenzl, 2015). Sess-Tchotch et al., (2018) used the aforementioned extraction and 

determination method and found limits of detections (LoDs) ranging from 0.01 

µg/kg to 0.033 µg /kg for these compounds (Sess-Tchotch et al., 2018).  

Another example of the identification and quantification of polycyclic aromatic 

hydrocarbons in cocoa beans was recently presented by Belo et al., (2017). These 

authors used an accelerated solvent extraction before GC-MS to determine eight 

PAH in cocoa beans. The evaluation of the method was made by analyzing relative 

standard deviations (RSD) under repeatability and precision conditions, and average 

recoveries. The authors found precision with RSD ranging from 2.57% to 14.13% 

and from 4.36% to 19.77% under repeatability and intermediate precision conditions, 

respectively. The average recoveries of the eight PAH ranged from 74.99% to 

109.73%. These parameters, limits and measurement uncertainties met the 

performance criteria set by EU regulations.  

 

2.8.2 Toxins 

 

Not many studies about toxins in cocoa and its products can be found. The few 

studies published to date show that the most widely studied toxins in cocoa and its 
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products are ochratoxin A (OTA) (Kutsanedzie et al., 2018) and aflatoxins. 

Ochratoxin is a mycotoxin that is formed by species of Aspergillus and Penicillium. 

Aflatoxins are formed by Aspergillus flavus, A parasiticus, and other Aspergillus 

spp. The most important aflatoxin, due to its occurrence, is aflatoxin B1, which is 

classified as carcinogenic (Group 1). The presence of ochratoxins in cocoa can lead 

to such serious health problems that the European Commission has set a tolerable 

weekly intake (TWI) of 120 ng/kg b.w. However, no maximum limit has been set 

for cocoa and cocoa products as these products do not contribute significantly to 

OTA exposure in diet (European Commission, 2010). No maximum limits have been 

set for aflatoxin (Turcotte, Scott, & Tague, 2013). 

The most widespread technique to analyze toxins in cocoa is HPLC. To analyze 

ochratoxin in cocoa powder, Brera, Grossi and Miraglia (2005) developed an HPLC 

method based on OTA extraction from samples by blending with an aqueous solution 

of bicarbonate, diluting with a solution of phosphate buffer saline, filtering and 

cleaning-up by an immunoaffinity column (IAC) that contained antibodies specific 

to OTA. After washing the immunoaffinity column, OTA was eluted with methanol, 

separated by reversed-phase HPLC and quantified by fluorescence detection. This 

method was validated by an interlaboratory study, and allows the detection and 

identification of different OTA within the 0.1-2 �g/kg range. The same method was 

followed with drinking chocolate and cocoa powder to also detect ochratoxin 

(Cubero-Leon, Bouten, Senyuva, & Stroka, 2017). In this study, the authors found 

that the mean recoveries ranged from 85% to 88%, the RSD values went from 13.7% 

to 30.7% and the resulting Horwitz ratios, according to the Horwitz function 

modified by Thompson, fell within the 0.6-1.4 range for cocoa and drinking 

chocolate, respectively. 

In a recent study that aimed to determine toxins in different cocoa products, toxins 

extracts were cleaned by AflaOchra (IAC) columns before HPLC separation. Toxin 

detection was performed by a post-column photochemical reactor for aflatoxin B1 

and G1 (due to derivatization) and by fluorescence for OTA. The method’s limits of 
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quantification (LOQ) were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1). The OTA 

levels in the different analyzed samples were 1.17 ng/g in natural cocoa, 1.06 ng/g 

in alkalized cocoa, 0.49ng/g in baking cocoa, 0.39ng/g in dark chocolate, 0.19 ng/g 

in milk chocolate and 0.43 ng/g in cocoa liquor. Regarding aflatoxin, the following 

incidences were found: 0.86 ng/g in natural cocoa, 0.37 ng/g alkalized in cocoa, 0.22 

ng/g in baking chocolate, 0.19 ng/g in dark chocolate, 0.09 ng/g in milk chocolate 

and 0.43 ng/g in cocoa liquor (Turcotte et al., 2013).  

 

2.8.3 Heavy metals 

 

Heavy metals (HM) are naturally present in foodstuffs. These compounds are 

toxic to humans. Cadmium (Cd) is a heavy metal present in several foods consumed 

daily and in larger quantities, including cocoa. In order to maintain and control the 

amount of Cd in the human diet, the European Commission has set maximum Cd 

limits in certain products (European Commission, 2006), for example 0.10 mg/kg in 

milk chocolate with < 30% total dry cocoa solids, 0.30 mg/kg in milk chocolate with 

� 30% total dry cocoa solids or 0.60 mg/kg in cocoa powder sold to end consumers 

or as an ingredient in sweetened cocoa powder sold to end consumers (drinking 

chocolate). In this context, monitoring the presence of this and other HM in cocoa 

products is a growing necessity. 

To ensure compliance with regulations, CODEX STAN 228 (2001) suggests 

some Cd analytical methods, such as atomic absorption spectrometry (AAS) after 

incineration or microwave digestion (using HNO3) and Anodic Stripping 

Voltammetry (ASV), of which AAS is more widely used. 

Such is the concern today about the presence of Cd in cocoa and derived 

products that many studies have been conducted in the last 5 years to determine the 

amount of Cd present in cocoa derivatives. Cd has been determined in cocoa beans 

(Chavez et al., 2015) and plants from Ecuador (Chavez et al., 2016), in cocoa trees 

and leaves from Peru (Arévalo-Gardini, Arévalo-Hernández, Baligar, & He, 2017); 
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in cocoa beans from Indonesia (Assa, Noor, Yunus, Misnawi, & Djide, 2018); in 

cocoa powders and chocolates in the USA (Abt, Fong Sam, Gray, & Robin, 2018), 

in raw cocoa and processed chocolate mass from Poland (Kruszewski, Obiedzi�ski, 

& Kowalska, 2018), and in Italian cocoa powder and chocolate (Dico et al., 2018). 

In the study of Chavez et al., 2015, the authors determined Cd in cocoa plant 

materials (ground leaves, shells or beans). For their analysis, samples (ground leaf, 

shell or bean) were digested with nitric acid (HNO3) (Jackson et al., 1986). The 

digested samples were diluted with distilled water and filtered through a membrane 

filter prior to the Cd analysis. Then the Cd concentrations in plant digesters were 

determined by inductively coupled plasma optical emission spectrometry (ICP-

OES).  

In another article, the Cd concentrations in cocoa beans from Indonesia were 

established by atomic absorption spectrometry after digesting samples with HNO3 

and H2O in a microwave. The Cd concentration in these samples was below the LOD 

of 0.100 mg/kg (Assa, Noor, Yunus, Misnawi, & Djide, 2018).  Finally, Abt et al., 

(2018) determined Cd content in cocoa powder and chocolate products on the US 

market, and concluded that the Cd contained in these products ranged from 0.004-

3.15 mg/kg.  

3. Other analytical methods for cocoa beans trading across the value chain  

 

Apart from the compositional analysis, other quality control analyses are done 

before and during the commercialization of cocoa beans. This section indicates how 

these analyses are applied. Quality control begins in the place of origin. To do so, 

conventional methods to assess and control correct fermentation, size, and even the 

integrity, of beans are widely used after sampling the total batch (FCC, 2018; ICCO, 

2018). For fermentation quality assessments, the standard method applied is the cut 

test. It involves counting 300 beans. These 300 beans are then cut lengthwise through 

the middle and examined to infer the physical (integrity, color) and sensorial 
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characteristics of cocoa fermented beans, which provides an indication of quality 

(Lee & Djauhari, 2013; Schwan, 1998). During the cut test, the number of defective 

cocoa beans can be assessed. These defects can consist of beans with mould, damage 

caused by insects, and germinated or flat beans. The results are expressed as a 

percentage of 300 beans examined per defect kind. The amount of defective beans 

determined through cut tests is an indication of flavor characteristics (ICCO, 2018). 

Bean size is established by counting the number of cocoa beans per 100 g. By 

considering this, they are classified into three grades as follows: grade 1 (
 100 beans 

per 100 g), grade 2 (101–110 beans per 100 g) and grade 3 (111–120 beans per 100 

g). In bean mass (or weight) terms, the standard states that bean cocoa mass should 

be at least 1.0 g (CAOBISCO-ECA-FCC, 2015). 

Before commercialization, other control parameters can include color, pH and 

titratable acidity (Hinneh et al., 2018). During cocoa transformation, cocoa shell 

determination after shelling is an important factor as it affects some final product 

characteristics, such as flavor or taste. It can also be responsible for off-flavors. The 

fiber content in cocoa shells is very high. Thus it can be a problem for the grinding 

process as it can cause equipment abrasion in some cases (Mendes & Lima, 2007; 

Quelal-Vásconez et al., 2019). During shelling, cocoa shells (approx. 12-20% of the 

cocoa bean) cannot be completely removed. In order to guarantee that cocoa powders 

have been well peeled and not adulterated with cocoa shells, the Codex Alimentarius 

establishes that cocoa shells including germ must be present, but below 5% (in fat-

free dry cocoa) (Codex Alimentarius, 2014; Okiyama et al., 2017). The official 

methods followed to analyze cocoa shells content are methods AOAC 968.10 and 

970.23 (Codex Alimentarius, 2014). The first method, called the spiral vessel count, 

consists of counting spiral vessels in a defatted, ground and digested sample with the 

help of a microscope adjusted to mold counting (field of view 1.382 mm at 100 x) 

(AOAC, 2006). The second method, called the stone cell count, consists of counting 

the stone cells present in samples assisted by a microscope after laborious 

preparation (AOAC, 1984).  
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As observed in Sections 2 and 3, all the conventional methods followed to 

determine cocoa components or quality control during cocoa bean trading focus on 

destructive determinations. The inability to use the analyzed raw material, in 

combination with very long analytical procedures, high solvents utilization and 

waste production, and the need for highly skilled operators, mean that fast 

nondestructive alternative technologies must be developed. 

4. Fast nondestructive technologies applied in the cocoa industry 

�

This section contains an exhaustive analysis of the nondestructive technologies 

applied in the cocoa industry. A review of the different studies carried out with 

nondestructive techniques, analyzed products, the equipment used for analyses, 

measurement parameters, traditional methods used as references, chemometric 

model calibration and validation details. The results are presented in Table 3.  

 

4.1 Types of non-destructive techniques used 

 

Several fast nondestructive technologies, such as electronic tongue, electronic 

nose, hyperspectral image, terahertz spectroscopy and infrared spectroscopy, have 

been widely explored and applied in the cocoa industry (Table 3). Electronic tongue 

has been used for the rapid identification of cocoa beans according to their 

geographical locations (Teye et al., 2014a). Electronig tongue and near infrared 

spectroscopy, together with a chemometric analysis, has been used for the accurate 

classification of cocoa bean varieties (Teye, Huang, Takrama, & Haiyang, 2014c) 

and for the rapid determination of total polyphenols contents in cocoa beans (Huang 

et al., 2014). An electronic nose / gas chromatography-mass spectrometry (GC-MS) 

system combined with artificial neural network (ANN) has been used for detrmining 

roasting degree in cocoa beans (Tan & Kerr, 2018). Electronic nose combined with 

pressure controlled generated stimulation has been used in chocolate classification 
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(Valdez & Gutiérrez, 2016). The hyperspectral image analysis has been used for 

cocoa bean quality assessments (Soto et al., 2015) and to predict the fermentation 

index, polyphenol content and antioxidant activity in single cocoa beans (Caporaso 

et al., 2018). These analyses have been done with whole cocoa beans and spectra 

measurements have been correlated with conventional PLS determinations with 

promising results. Terahertz (THz) spectroscopy has been utilized to control 

tempering in chocolate factories (Weiller, Tanabe, & Oyama, 2018). Terahertz (THz 

spectroscopy energy corresponds to collective molecular macro-vibrations and is 

considered a promising potential to identify macromolecules (i.e., polymer and 

biomolecules). This nondestructive noncontact technique has been used to 

characterize polytypes of crystals formed on the basis of FA combination in the 

chocolate structure. For this purpose, two chocolates are analyzed and the 

measurements normally taken by X-ray diffraction (XRD) are compared with optical 

microscopic observations and THz spectroscopy measurements, with similar results 

(Weiller, et al., 2018). Infrared spectroscopy has been used to predict major 

(moisture, carbohydrate, fat, protein) or minor functional compounds (theobromine, 

catechin, organic acids, etc.) (Álvarez, Pérez, Cros, Lares, & Assemat, 2012; Huang 

et al., 2014; Krähmer et al., 2015; Veselá et al., 2007) and for quality control 

(discrimination of cocoa beans according to geographical origin, prediction of cocoa 

powder adulterations, prediction of methylxanthines and polyphenols in alkalized 

cocoa powder, etc.) (Quelal-Vásconez et al 2020; Quelal-Vásconez et al., 2019; 

Quelal-Vásconez, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 2018; Teye, 

Huang, Dai, & Chen, 2013).  

Of all of the above-described technologies, infrared spectroscopy offers a 

number of important advantages over traditional chemical methods. It is 

nondestructive, noninvasive, requires minimal or no sample preparation, its 

precision is high and it can act as a multi-analytical technique because several 

determinations can be simultaneously made. Infrared spectroscopy also offers the 

possibility of measuring physico-chemical properties (Veselá et al., 2007).  
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4.2 Infrared spectroscopy 

 

Infrared spectroscopy (IR) involves the interaction of infrared radiation with 

matter. It is conventionally divided into three wavelength regions: near-infrared 

(NIR: 750–2500 nm or 13333–4000 cm-1), mid-infrared (MIR: 2500–25 000 nm or 

4000–400 cm-1), and far-infrared (25–1000 �m or 400–10 cm-1). The distinction 

made among these three regions may vary depending on the type of instrumentation 

used to acquire IR spectral information.  

 

4.2.1 NIR spectra acquisition 

The IR method or technique is run with an instrument called an infrared 

spectrometer (or spectrophotometer) to produce an infrared spectrum. A generalized 

spectrophotometer has four parts: 1) an energy source; 2) a wavelength selection 

device; 3) a detector; 4) a data processing system. 

The most explored technologies for cocoa studies are near infrared spectroscopy 

(NIR), Fourier-transform near infrared spectroscopy (FTNIR) and, to a lesser extent, 

Fourier-transform infrared spectroscopy (FTIR). The term Fourier-transform 

infrared spectroscopy originates from the fact that a Fourier transform (a 

mathematical process) is required to convert raw data (collected in frequencies in an 

interferogram) into the actual spectrum. In an NIR instrument, values are reported in 

nm, generally from 900 to 2500 nm, or from 650 to 2500 nm if the visible region is  

included (Nielsen, Snitkjaer, & Van Den Berg, 2008). The values with an FTIR 

instrument are generally reported in cm-1, from 4000 to 10000 cm-1 (Teye & Huang, 

2015a) or from 4000 to 12500 cm-1 (Sunoj, Igathinathane, & Visvanathan, 2016).  

Several optical alternatives are available for IR spectroscopy: ‘reflectance’, 

‘transmittance’, ‘transflectance’, and ‘interactance’ (Alander, Bochko, 

Martinkauppi, Saranwong, & Mantere, 2013; Cortés, Blasco, Aleixos, Cubero, & 

Talens, 2019). The majority of studies for cocoa powder (Quelal-Vásconez et al., 

2018) or cocoa beans (Caporaso et al., 2018) use reflectance (Table 3), but 
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transflectance has been used for semi-solids and liquids like cocoa butter or 

chocolate (Bolliger, Zeng, & Windhab, 1999).  
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Table 3: Non-destructive research of cocoa and sub-products applied in off-

line and in-line process mode 
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Table 3 (continued 2) 

 

��
�

��

	
�

��
��
�

�

�
�

��
��

�
���

��



��
��
��


�
���

�	
��
��
	�
���

��
��
��
�
�


�
���
�

��

�
���

��

�

��

�
���
�

��

��
��
���

��
��
	�

��
��
��
��

�	
��
��
�

��
�

��
�

��


��
�

�

�

��
��
��

��
�%
*8

�&
*+
 �
)-
�*
+7
�

�&
$
'&
*!+
!&
%�
#�

�%
�#
/*
!*�
8�
 �
%&
#!�
�

*,
�*
+�
%�
�*
3�

&)
��
%!
���

�!�
*3�

�'
!��

+�
� 
!%
3�#
��
+!�
�

��
!�
3��
�)
$
�%
+�
+!&
%�

+!$
�3
�'	

	!
� 
�'
�)
�&
)$

�%
��
�

#!(
,!
��

� 
)&
$
�+
&�
)�
' 
/�

	�
��
3��


3�*
�%
*&
)/
�

+�
*+
�9�

��
:3�
��

*�
� 
)&
$
�+
&�
)�
' 
/�

$
�*
*�*
'�
�+
)&
$
�+
)/
�

��


�3
��
,+
�+�

*+
����

��
8�

�
�9


,#
+!8
�,
)'
&*
���

%�
#/0

�)
3�

�)
,"
�)
��
'+
!�*

3��
++#
!%
��
%3
�

��
)$

�%
/:
3��

�5
�?@

C>
>�
+&
�A
D>
>�
�$

8

? 4�
)�
*&
#,
+!&

%�
F�
�$

8?
4�*
��
%*
�A
@

BF
�*�

$
'#
�*

��
�

��
�-
��
?>
J
�&,

+�
� 
�&
�)
&$

!%
��

?6
EA
8A
6>
@�

$
�7
?>
>�

��
�)
� 
$
�)
��
�

��
63�
9@
>?
C:

��
�%
*8

�&
*+
 �
)-
�*
+7
�

��
)$

�%
+�
+!&

%�8
��
)$

�%
+�
���

%�
�

,%
��
)$

�%
+�
�

	�
��
3��


3�*
�%
*&
)/
�

+�
*+
3��

�

�3
��
,+
�+�

*+
���
��
�

�

�#
�*
*!�
!��

+!&
%5
�

��
K@
D4
��
��
K@
D4
�

��
,#
+�
)�
+�
��
F>
6�

��
#!�
)�
+!&

%�
G>
4�

�)
��
!�+
!&
%�
B@

��


3��
!�
��

��
�-
��
&%
��
&,
+

?>
>J

�
�#�

**
!�!
��
+!&

%4
�

�

��
�5
>6
GF
3�

')
��
!�+
!&
%�

*!%
��
�C
J

��
/�
3�

	,
�%
�3
���

!3�
;�
��

!3�
9@
>?
B�
:

��
�%
*8
�&
*+
 �
)-
�*
+�

8�
��
�

�&
#&
)!$

�+
)/
�9�

&#
!%
8

�!
&�
�#
+�
,:
3�

� 
!%
�#�
/�
)�

� 
)&
$
�+
&�
)�
' 
/�

�%
��
	�

��

��
5��

�+
���

&#
#�
�+
!&
%5
��
*+
)�
��

)�
%�
�

9�
#'
 �
�

��

��
&$

'�
%/
3��
&,
#&
,*
�3
�

�)
�%
��
:3�
'&
+�
%+
!&
$
�+
)!�
�� 

�$
!��

#�
*�
%*
&)
*6�
����
����
����
����
����
����
����
����
����
����
����
����

��
8�

�
5��
%+
�)
!*


��

���

�
�9�
 �
)$

&
�#
��
+)&

%�
�&
$
'�
%/
3��

��
:��
(,
!'
'�
��

.
!+ 

��%
�!%
�!
,$

��
�#
#!,
$
��)
*�
%!
��
�

9
%
��

�*
:�'
 &
+&
�!
&�
��
��
+�
�+
&)
6�

�
�5
�?>

>>
>8
B>
>>
�$

8?
4��

��
%*
�A@

4�
!%
+�
)-
�#
�A6
FC
��
$

8?
4�)
�*
&#
,+
!&
%�
F�

�$
8?
4�@
C1
�4
� 
,$

!�
!+/
�D
>J

??
>�
*�
$
'#
�*
�9F
>�

��
#!�
)�
+!&

%��
%�
�A
>�

')
��
!�+
!&
%:

�,
*!&

%�
+�
� 
%!
(,
�*
5�#
&.

�
#�
-�
#�&
��

��
*+
)�
�+
!&
%�.

!+ 
�

��
�3
�9�

!8�
��
:�

��
�'

+!$
�#
���

+�
�

�,
*!&

%�
$
&�
�#
5�

�'
>6
GF
@3
�

�

��
��>

6G
>>
�

���
8?
�%
��
�!
�*
�

>6
>?
A�
!%
�+ 

��
')
��
!�+
!&
%�
*�
+�

	,
�%
��
��
�

��
63�
9@
>?
B:



Introduction 
�

 41 

Table 3 (continued 3) 
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Table 3 (continued 4) 
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Table 3 (continued 5) 
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Table 3 (continued 6) 
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4.2.2 Multivariate data analysis 

 

Due to the complex and the large amount of hidden information in IR 

spectral data, particular attention should be paid to data mining with 

chemometrics for the IR spectroscopy analysis. Multivariate data analysis or 

chemometrics is the science of extracting information from chemical systems 

by data-driven means. It offers lots of applications and diverse natures. 

Specifically, it is used in IR applications to extract rich information from IR 

spectra, including preprocessing spectral data, reducing variables, building 

calibration models (quantitative) and/or classification (qualitative) analyses, 

and model transfer, and all this to acquire more information from data 

(Martens et al., 2003).  

A multivariate analysis generally involves the following steps: data 

exploration, data preprocessing, quantitative or qualitative model calibrations, 

and finally external validation. Data exploration allows a group of samples to 

be found, the relation between variables, management with outliers samples 

by means of a PCA or a parallel factor analysis (PARAFAC) (Bro, 1997; 

Rodrigues, Condino, Pinheiro, & Nunes, 2016). Data preprocessing can be 

handled with preprocessing algorithms, such as: smoothing methods 

(Savitzky-Golay, Gaussian filter, median filter, moving average); 

normalization and scaling, detrending (Levasseur-garcia, 2018), 1st Derivate, 

2nd Derivate-Savitzky Golay (Savitzky & Golay, 1964), Standard Normal 

Variation (SNV) (Teye, Uhomoibhi, & Wang, 2016), Orthogonal Signal 

Correction (OSC) (Wold, Antti, Lindgren, & Öhman, 1998) and Multiple 

Scatter Correction (MSC) to build and enhance calibration models (Su & Sun, 

2017). The selected preprocessing method can be related to data features to, 

for example, rid up multiplicative and additive effects in spectra. As seen in 

Table 3, datasets are usually divided into calibration and validation, except 
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those carried out by Krämer et al., (2015) and Sunoj et al., (2018), who 

performed only cross-validation. Calibration datasets are composed of a 

different number of samples, from 65 (Permanyer & Perez, 1989) samples in 

the calibration set to 190 at the time of this study (Caporaso, Whitworth, 

Fowler, & Fisk, 2018). High accuracy has been obtained for calibration 

models by employing proper multivariate linear regressions, such as PLSR, 

PCR, SVMR, and other statistical algorithms like artificial neural networks 

(ANN) (Teye & Huang, 2015a; Teye, Huang, Lei, & Dai, 2014b; Teye et al., 

2015b). PLS with variable selection, such as Sinergy Interval-PLS (Si-PLS), 

Ant Colony Optimization-PLS (ACO-LS), Competitive Adaptive Reweighted 

Sampling - PLS (CARS - PLS), Synergy Interval-Genetic Algorithm-PLS (Si-

GAPLS) (Kutsanedzie et al., 2018), Modified Partial Least Squares (mPLS) 

and Synergy Interval Backpropagation Neural Networks Regression (Si-

BPANNR). Efficient classification results have been obtained with tools like 

support vector machine (SVM), discriminant partial least squares (PLS-DA) 

(Berrueta, Alonso, & Héberger, 2007), LDA, SIMCA, SVM, QDA and KNN 

(Teye, Uhomoibhi, & Wang, 2016; Teye, Huang, Han, & Botchway, 2014a). 

To build calibration models, all the spectra can be used, or variable selection 

methods also are employed to obtain computationally efficient algorithms. 

However, a variable selection can be performed to avoid complex 

models. Table 3 also shows that full cross-valitadion is widely used during 

model calibration. The evaluation of model performance is made by 

parameters, such as the coefficient of determination of calibration, cross-

validation and validation (R2), coefficient of correlations (R), root mean error 

of calibration, cross-validation and validation and the relation deviation 

prediction (RPD). Sometimes both bias and slope are considered.  
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4.3 Applications 

 

4.3.1 Non-destructive determination of constituents and industrial 

processing monitoring 

 

Very few studies done with nondestructive technologies have been 

applied in the cocoa industry. Of these, the most frequently used non-

destructive are NIR and FT-NIR (Table 3). The majority of studies have been 

done in the postharvest (fermentation/drying) stage of cocoa beans. 

Biochemical parameters like fat (Álvarez et al., 2012; Weiller et al., 2018), 

sugars, polyphenols, procyanidins (Whitacre et al., 2003), methylxanthines, 

moisture and pH (Krähmer et al., 2013; Sunoj et al., 2016; Veselá et al., 2007) 

have been evaluated. The aim of these studies was the quality control of end 

products, and/or the determination of authenticity through compositional 

analyses or by clustering samples from their spectral fingerprint (origin, 

varietal classification).  

Near infrared light is sensitive to the sample’s physical properties. These 

physical conditions can cause variations in measured spectra, and have been 

identified in spectra as multiplicative and additive effects. These effects, due 

to light scatter, are minimized using a sample of a small homogenized particle 

size (Barbin et al., 2018). Most studies have employed ground beans more 

than whole beans, partly as a way to minimize the aforementioned variations 

and effects (Barbin et al., 2018) (Table 3)  

In relation to measurement modes, Dickens, (1999) defined four ways to 

implement measurement equipment into processes: (i) off-line: a sample 

analysis run away from the production line (i.e., laboratory); (ii) at-line: 

manual random sample extraction from the production line and an analysis 

performed close to the process line; (iii) on-line: samples separated from the 
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production line which, after being analyzed in a recirculation loop (by-pass), 

are returned. (iv) in-line: samples are analyzed on the running production line 

(in situ) (Dickens & Dickens, 1999; Osborne, 2000). Table 3 shows that the 

performance of this nondestructive analysis done in the off-line mode in 

almost all the studies carried out by NIR in cocoa beans. Only Bolliger 

performed an in-line application of NIR in 1999 to monitor the rheological 

properties (viscosity, melting enthalpy) of chocolate in the tempering stage. 

In connection with cocoa bean fermentation, the degree of fermentation 

and flavor profile are routinely determined in both the trade and industry by a 

cut test (color check). Both assessments require specially trained personnel. 

Sensory evaluation is highly subjective depending on the sensory panel 

(Afoakwa et al., 2013). So fermentation has been the subject of different 

approaches, such as characterization by spectroscopic and chromatographic 

methods (Aculey et al., 2010). Accordingly, Table 3 shows that the lower 

value predicted by NIR is in ppm units of a metabolite (NH3) product of 

fermentation. NH3 contents have been found to fall within a range of 46-332 

ppm with a standard error of prediction (SEP) of 20 ppm (Hue et al., 2014).  

The fermentation of cocoa beans has been analyzed by NIR and EDGE 

to gain a better understanding of the fermentation mechanisms related to the 

microbiological factor. A good correlation between both measurements has 

been found (Nielsen et al., 2008). NIR integrated with an electronic tongue 

(ET) and multivariate analyses have been applied to perform a 100% 

(accuracy) classification of five cocoa bean varieties. Accurate classifications 

can be attributed to three functional groups (second overtone) of methylene (–

CH2), methyl (CH3) and ethenyl (–CH=CH–). Theobromine, for instance, has 

one methyl group, while caffeine has two methyl groups. These compounds 

may play an important role in discriminating employed cocoa bean varieties 

(Teye, Huang, Takrama, et al., 2014c).  
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Bacteria (e.g. Staphylococcus aureus, Bacillus cereus) in cocoa powders 

have been found to affect their quality grades, and these bacteria can be 

detected by the FT-MIR spectral system (Ramalingam et al., 2009). The total 

fungi count (TFC) in cocoa beans has been evaluated by Fourier transform 

near infrared spectroscopy (FT-NIRS) combined with synergy interval-

genetic algorithm-PLS (Si-GAPLS). This technique allowed a prediction 

coefficient of 0.975 to be obtained, along with a root mean square error of 

prediction (RMSE) of 0.384 CFU/mL and a ratio prediction deviation RPD of 

4.32 (Kutsanedzie et al., 2018). 

 

4.3.2 Authenticity and adulterations 

 

Table 4 shows details of the studies carried out by the nondestructive 

techniques used to assess the authenticity and adulteration of cocoa products. 

Trilcová et al., 2004 showed that NIR and FTIR spectroscopy can be used as 

a very fast and reliable tool for cocoa powder authentication. The term 

authenticity refers to the inherent quality attributes of cocoa, and has been 

included in new food fraud authenticity policies and identified as product 

integrity (Manning, 2016). The authenticity of cocoa and its derivatives is 

determined by studies that aim to identify the origin of raw material, varietal 

purity, compositional parameters, detection of adulterants, etc. 

The sensory characteristics of cocoa products have created an increasing 

consumer trend to choose cocoa of a specific origin. These preferences have 

allowed more appreciated cocoa origins whose quality is differenced by 

market prices. This differentiation has yielded bad commercial practices, like 

mixing more expensive cocoa beans of the highest quality and an outstanding 

origin with other lower quality cocoa kinds that are cheaper to obtain 

fraudulent economic benefits (Magagna et al., 2017).  
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The determination of origin has been evaluated by the phenolic 

fingerprint (D’Souza et al., 2017). Most of these studies have been conducted 

by the compositional analysis mentioned in Section 2. Nondestructive 

technologies like NIRS have been applied to classify cocoa by its origin. As a 

result, classification percentages according to the geographical origin of cocoa 

beans of 90.63 (LDA), 75 (KNN), 96.88 (BPANN) and 100 (SVM) have been 

obtained by Teye et al., 2013.  

Cocoa products and derivative fraud are related to intentional 

contamination, and to noncompliance to product descriptions and 

adulterations. The used adulterants are low-cost raw material (Van Ruth, 

Huisman, & Luning, 2017), such as different flours like carob or chicory, 

which have been processed to substitute cocoa powder (Loullis & 

Pinakoulaki, 2018; Salem & Ohaad Fahad, 2012). The NIR technique and the 

multivariate analysis have been used for the quantitative and qualitative 

detection of carob flour added to cocoa powder (Quelal-Vásconez et al., 

2018). In another study, Quelal-Vásconez et al., 2019 quantitatively 

determined the presence of cocoa shells by NIR and a PLS model. These 

authors also classified between two categories of cocoa blends with 92.5% 

accuracy: (1) presence of < 5% cocoa shells; (2) presence of > 5% cocoa shells 

in cocoa powders. 

Another adulteration type is to add different vegetal or animal fats to 

cocoa butter (Jahurul et al., 2018; Kucha, Liu, & Ngadi, 2018). These fats can 

come from pork, palm, Garnicia indica, Madhuca butyracea and other 

vegetable origins with lower market values (Reddy & Prabhakar, 1994). These 

fats are considered cocoa butter equivalents (CBE) and should not exceed 5% 

of the final cocoa product (EU, 2000). However, these less expensive 

materials and their intentional additions aim to lower production costs in 

industry.  
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No specific regulation exists for the products used as raw materials for 

the food industry. Industries (beverages, bakery, pastries) are responsible for 

testing their raw materials and for searching ways to detect adulterants 

(Beulens, Broens, Folstar, & Hofstede, 2005;�Trafialek & Kolanowski, 2017) 

to ensure the precedence and content of these raw materials. Traceability is 

one of the ways to ensure the food safety of end products. Other studies have 

been done to detect added molecules, which are not declared in products like 

vanillin and ethyl vanillin (Pérez-Esteve et al., 2016). Cocoa powder 

adulteration by means of identifying the fingerprints of cocoa powder 

polysaccharides has been studied, and has provided the possibility of finding 

from 15%, or more, cocoa shell powder and 10% exogenous plant material 

(Yang et al., 2015).  

FTIR has been applied to detect cocoa butter equivalents CBE (allowed 

in chocolate up to 5%: palm oil, illipe, sal, shea, kokum gurgi and mango 

kernel). FTIR is considered a rapid screening method to distinguish pure and 

vegetable fats, but a single global statistical model to predict the precise level 

of added fat is still not available. The large uncertainty in predicting CBE has 

been connected to the wide natural variability of samples (precise 

geographical origin). So it was difficult to detect CBE in CB mixtures (e.g. 

illipe) (Whitacre et al., 2003) 
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Table 4: Authenticity evaluated with non-destructive methods 
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Table 4 (Continued 2) 
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Table 4 (Continued 3) 

 
NA: Not apply, NE: Not specify 
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Nondestructive technologies have been used to improve processes with 

new control and evaluation methods (e.g. the fermentation index, the degree 

of alkalization) and replaced or improving the conventional analysis methods 

(chromatography, sensory analysis, etc.). Several results about certain features 

like fat, moisture, color, proteins, pH (Moros, Iñón, Garrigues, & de la 

Guardia, 2007) and functional compounds (antioxidants) have been obtained 

by only spectra measurements. As the NIR technology has demonstrated its 

versatility, its applications are rapidly increasing not only to control the safety 

of cocoa products, but also to improve their quality, and to optimize times and 

costs.  

Despite all the successful applications regarding the use of alternative 

methodologies to analyze and control the above-described cocoa quality, their 

implementation into the cocoa industry poses challenges, such us the 

simultaneous presence of a variety of chemical compounds (nutrients, 

phytochemicals, adulterants, contaminants, etc.) in cocoa products with 

diverse structures and concentrations. This circumstance makes spectrometric 

signals very complex and difficult to analyze. However, technology is rapidly 

advancing and new equipment include improved signal collection and 

software capable of performing chemometric analyses, which are key to 

acquire reliable information. 

5. Conclusions 

 

The analytical methods applied to control the quality and authenticity of 

cocoa products and their derivatives in industry and research laboratories have 

mainly been conventional ones to date. They are conventional because they 

have been used for years and are characterized by tasks like sampling, sample 

preparation to extract target compounds and quantitative determination by 

using chemical reagents. The majority of these methods are standardized and 
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used especially for monitoring and optimizing the process during cocoa flow 

production by individual analyses of attributes (color, pH, acidity and 

proximal analysis) by wet chemistry. Most of the advances made in these 

methods are related to analyte extraction to improve sensitivity accuracy and 

analysis speed, also to the application of multivariate data analyses. For 

sensitivity and accuracy determinations, chromatographic methods like HPLC 

and GCMS, and its inline utilization, are the most well-developed ones, while 

multivariate data analyses are mainly employed to determine the authenticity 

parameters (i.e. origin or varietal features) of cocoa products. The most 

explored nondestructive technique is spectroscopy, which is conducted within 

the near infrared range, and also within the medium infrared range to a lesser 

extent. Most NIR and FTIR studies have been conducted in the postharvest 

stage of cocoa beans by analyzing biochemical parameters like fat, sugars, 

polyphenols, procyanidins, methylxanthines, moisture and pH, or for the 

purpose of assessing the authenticity of cocoa and its derivatives by 

identifying the origin of raw material, varietal purity, compositional 

parameters or the detection of adulterants. 
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2. Objectives 

2.1 General Objective 

 

The main objective of this thesis was to evaluate the potential use of near 

infrared spectroscopy as a tool for quality control in the cocoa powder industry, 

especially to quickly and non-destructively identify the presence and quantify the 

content of unwanted materials (cocoa shell) or adulterants (carob flour), as well as 

to predict the content of the main bioactive compounds of cocoa powders 

(methylxanthines and flavanols). 

 

2.2. Specific Objectives  

�

•�To create a collection of representative cocoa samples with different origins 

and alkalization degrees, as well as different cocoa shell and carob flours, and to use 

these samples to create a battery of “adulterated” samples with known quantities of 

cocoa shell and carob flour.  

•�To measure the NIR spectra of all the samples and to correlate them with the 

added cocoa shell or carob flour contents, or with the methylxanthines and flavanols 

content. 

•�To develop and an HPLC method for the quantification of the 

methylxanthines and flavanols (such as catechin, epicatechin, caffeine and 

theobromine) present in cocoa powders characterized by different alkalization. 

•�To assess the influence of the alkalization level on the methylxanthines and 

flavanols content of the cocoa powders. 

•�To obtain classification models able to discriminate between samples of 

cocoa powders in categories related to the levels of cocoa shell (> 5 % and <5-40%) 

or carob flour content (cocoa powders, adulterated cocoa powders and carob flours), 

the article I evaluated by means of the sensitivity, specificity and the NER and the 

article II evaluated by their accuracy. 
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•�To obtain prediction models able to determine the level of presence of cocoa 

shell (0 to 40%), the percentage of adulteration with carob flour in cocoa powder and 

the flavanols and methylxanthines content of the cocoa powders, which will be 

evaluated by means of statistical parameters such as the coefficients of determination 

(R2), the Root Mean Square Errors and the Ratio Prediction Deviation (RPD). 

�
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3. Scientific Contributions 

The thesis is divided into two different chapters:  

 

a.� Identification of cocoa components out of normative limits or non-declared 

ingredients in cocoa powders.  

The results included in this chapter have been published into 2 articles: 

•� ARTICLE I. Fast detection of cocoa shell in cocoa powders by near infrared 

spectroscopy and multivariate analysis. 

•� ARTICLE II. Rapid fraud detection of cocoa powder with carob flour using 

near infrared spectroscopy  

b.� Prediction of the content of bioactive compounds of cocoa powders.  

The results included in this chapter are now considered for their publication in 

1 article: 

•� Article III. Changes in methylxanthines and flavanols during cocoa powder 

processing and its quantification by near-infrared spectroscopy. 

� �



 
 

 86 

�



Chapter 1 
 

87 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

3.1 CHAPTER 1. Identification of cocoa 

components out of normative limits or non-

declared ingredients in cocoa powders.�
�
�
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Abstract 

 

Cocoa shell must be removed from the cocoa bean before or after the roasting 

process. In the case of a low efficient peeling process or the intentional addition of 

cocoa shell to cocoa products (i.e. cocoa powders) to increase the economic benefit, 

quality of the final product could be unpleasantly affected. In this scenario, the 

Codex Alimentarius on cocoa and chocolate has established that cocoa cake must 

not contain more than 5% of cocoa shell and germ (based on fat-free dry matter). 

Traditional analysis of cocoa shell is very laborious. Thus, the aim of this work is to 

develop a methodology based on near infrared (NIR) spectroscopy and multivariate 

analysis for the fast detection of cocoa shell in cocoa powders. For this aim, binary 

mixtures of cocoa powder and cocoa shell containing increasing proportions of cocoa 

shell (up to ca. 40% w/w based on fat-free dried matter) have been prepared. After 

acquiring NIR spectra (1100–2500 nm) of pure samples (cocoa powder and cocoa 

shell) and mixtures, qualitative and quantitative analysis were done. The qualitative 

analysis was performed by using principal component analysis (PCA) and partial 

least squares discriminant analysis (PLS-DA), finding that the model was able to 

correctly classify all samples containing less than 5% of cocoa shell. The quantitative 

analysis was performed by using a partial least squares (PLS) regression. The best 

PLS model was the one constructed using extended multiple signal correction plus 

orthogonal signal correction pre-treatment using the 6 main wavelengths selected 

according to the Variable Importance in Projection (VIP) scores. Determination 

coefficient of prediction and root mean square error of prediction values of 0.967 

and 2.43, respectively, confirmed the goodness of the model. According to these 

results it is possible to conclude that NIR technology in combination with 

multivariate analysis is a good and fast tool to determine if a cocoa powder contains 

a cocoa shell content out of Codex Alimentarius specifications. 

 
Keywords: Cocoa powder, Cocoa shell, NIR, PLS, PLS-DA 
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1.� Introduction  
 
Cocoa powder is a cocoa bean (Theobroma cacao. L) derivative largely 

consumed around the world due to its capacity to give color, flavor and eating 

pleasure to a myriad of food preparations (Dico et al., 2018).  

The obtaining of cocoa powder from cocoa beans follows different steps. First 

of all, beans must be peeled, starting with the peeling of the bean before or after a 

roasting process. During the same peeling, cocoa cotyledon must be separated from 

cocoa shell (12–20% of the cocoa seed), yielding fragments of cotyledon, called nibs 

(Okiyama, Navarro, & Rodrigues, 2017). During the shelling step, shell should be 

perfectly separated, removing large parts of shells and leaving nib particles 

practically unbroken (Beckett, 2009). The performance of this proce- dure is very 

relevant since the presence of cocoa shell in cocoa beans derivatives (cocoa liquor, 

cocoa powder or chocolate) adversely affects the final product quality (Mendes & 

Lima, 2007). Concretely, it can have an influence in some characteristics of the final 

product such as the flavor or taste; it can also be responsible of off-flavors. 

Additionally, fiber content in cocoa shell is really high. Thus, it can be a problem for 

the grinding process, causing equipment abrasion in some cases.  

Bearing this in mind it is not surprising that shell content in cocoa powders is a 

quality parameter to be controlled. Concretely, the Codex Alimentarius establishes 

a maximum amount of 5% of cocoa shells in cocoa cake (based on fat-free dry 

matter) (Codex Alimentarius, 2016). 

Analysis of cocoa shell in cocoa products might be done following the AOAC 

968.10 or the 970.23 methods (Codex Alimentarius, 2016). The first method, called 

spiral vessel count consists of counting the spiral vessels in a defatted, grinded and 

digested sample with the help of a microscope adjusted to mold counting (field of 

view 1.382mm at 100x) (AOAC, 1084). The second method, called stone cell count, 

consists of microscope assisted counting the stone cells present in the samples after 

a really laborious preparation (AOAC, 1984).  
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Since those methods are really arduous, recent attempts to develop alternative 

methods have been done. Researchers from the Nestlé Research Center proposed a 

gas-liquid chromatography procedure based on the detection of fatty acid 

tryptamides (FATs) in the sample, since FATs are compounds more abundant in 

cocoa shells than in other parts of cocoa seed. This work, carried out with only cocoa 

originating from the Ivory Coast, demonstrated that it might be an appropriate tool 

for the determination and prediction of the shell content in cocoa liquor (Hug, Golay, 

Giuffrida, Dionisi, & Destaillats, 2006). In another work, Yang et al. (2015) 

proposed the employment of polysaccharide fingerprint established by high 

performance liquid chromatography followed by principal component analysis to 

identified cocoa powders adulterated with cocoa or other plant shells such as 

chestnut, longan, peanut, etc. However, only cocoa powders containing cocoa or 

other plant shell percentages higher than 15 and 10%, respectively, were detected 

using this methodology. Therefore, even when these methodologies (determination 

of FATs, HPLC polysaccharide fingerprint, etc.) are more sensible, accurate and 

faster than the methods proposed by the Codex Alimentarius, their use as routine 

techniques for shell content determination still have certain limitations such as the 

limit of detection or the fact that they need sample preparation, require specialized 

personnel and they are destructive. To avoid these drawbacks common in traditional 

chemical analysis techniques, recent attempts on developing accurate and sensi- tive 

analytic techniques based on near infrared (NIR) spectroscopy have been done. Due 

to the ability of NIR spectroscopy to provide a spectrum that acts as a ‘fingerprint’ 

distinctive of a particular sample, this technology is now widely used as a 

successful quality control tool (Lerma-García, Cortés, Talens, & Barat, 2018). 

Concretely, in the cocoa sector NIR spectroscopy has been employed for the 

prediction of majority (moisture, carbohydrate, fat, protein) or minority functional 

compounds (theobromine, catechin, organic acids, etc.) (Krähmer et al., 2015; 

Veselá et al., 2007; Álvarez et al., 2012) as well as for quality control (dis- 

crimination of cocoa beans according to geographical origin, prediction of cocoa 

powder adulterations, etc) (Quelal et al., 2018; Teye, Huang, Dai, & Chen, 2013). 
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In this scenario, the goal of this work is the fast determination of cocoa shell 

content in cocoa powders in concentrations higher than the limit established by the 

Codex Alimentarius (5%) by means of NIR spectroscopy and a multivariate analysis. 

 

2. Materials and methods  
 
2.1 Cocoa powder and shell Samples 

 
A total of 20 natural cocoa powders and 2 cocoa shells, gently provided by Olam 

Food Ingredients (Cheste, Spain) or purchased in the market from different origins 

(Ghana, Ivory Coast, Cameroon, Peru and Indonesia) were employed in this study. 

In order to predict the presence of cocoa shell in cocoa powders using partial least 

squares (PLS), binary mixtures containing cocoa powder and cocoa shell were 

prepared. The mixtures contained percentages of cocoa shells in cocoa powder 

(based on fat-free dry matter) from ca. 2.5–40%. Percentages higher than 40% were 

not considered since over this percentage the presence of cocoa shell is sensory 

evident. To improve the robustness of the PLS model, all 20 cocoa powder samples 

(coming from different origins and obtained after different processings) were 

randomly selected to perform a total of 12 binary mixtures for each percentage (2.5, 

5, 7.5, 10, 20 and 40%), in which both cocoa shell samples were also considered. 

Thus, a total of 72 mixtures were obtained. Once all mixtures were prepared, they 

were poured in hermetic plastic containers and stored at 20 ± 2 °C under dark 

conditions until use. 

 
2.2 NIR spectra acquisition 
 

The 94 samples (20 cocoa powders, 2 cocoa shells and 72 binary mixtures) were 

measured with a spectrophotometer FOSS NIR 5000 (Silver Spring, MD, USA). A 

uniform thickness and surface were secured during spectra scanning using a device 

with 380 mm of diameter and 1cm of thick with a quartz windows which was filled 

with 5 g of sample. The spectrophotometer gives the measurements in relative 
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absorbance units (log 1/R), which could be correlated with chemical constituents 

(Liu, Sun, & Ouyang, 2010; Martens, Nielsen, & Engelsen, 2003). Each sample was 

scanned 32 times in a range comprised between 1100 and 2500 nm at 2 nm intervals 

(700 points). The samples were measured twice and no differences between them 

were found. 

 

2.3 Statistical analysis 
 

Spectral data were pre-treated and analysed using qualitative and quantitative 

models by means of the chemometric software Unscrambler v10.5 (CAMO Software 

AS, Oslo, Norway).  

The PCA model was performed using raw data to identify different sample 

groups and to find and remove defective outliers (Adnan, Hörsten, Pawelzik, & 

Mörlein, 2017; Bro & Smilde, 2014).  

The PLS was performed in order to predict the presence of cocoa shell in the 

cocoa powders and the PLS-DA (Berrueta, Alonso, & Héberger, 2007; Prats-

Montalbán, Jerez-Rozo, Romañach, & Ferrer, 2012), was constructed to evaluate its 

capability in classifying samples according to the following categories: cocoa 

powders containing less than 5% cocoa shell (w/w), and cocoa powders containing 

from 5 to 40% cocoa shell (w/w).  

Both analyses were performed using the pre-treated spectra. The spectral pre-

treatments tried included extended multiple signal correction (EMSC) (Martens et 

al., 2003), standard normal variation (SNV), 2nd derivative with the Savitzky-Golay 

(S-G), orthogonal signal correction (OSC) and combinations of all of them with 

OSC. 

To construct both PLS and PLS-DA models, two data matrices were used. The 

first one employed for the PCA and PLS model construction, contained the spectra 

of all samples (N=94) and the same 700 X- variables. In this case, all individual 

cocoa shell percentages were considered as Y-variable. The second matrix, 

employed for the PLS-DA model construction, included the spectra of 92 samples 
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(in which the spectra of cocoa shells were not considered since the considered cate- 

gories were cocoa shell contents below 5% and between 5 and 40%) and 700 

predictors or X-variables (wavelengths), and also a dependent Y-variable containing 

the 2 categories previously described (<5% and 5–40% cocoa shell based on fat-free 

dry matter, w/w).  

For both, PLS-DA and PLS models construction, the use of all spectra 

wavelengths was considered, jointly with the use of the most important wavelengths. 

The PLS and the score of Variable Importance in Projection (VIP) were combined 

together for these selection (Botelho, Reis, Oliveira, & Sena, 2015). 

To select the optimal factor number and to avoid the over-fitting of both PLS 

and PLS-DA models, leave-one-out cross-validation was used using 70% of the data, 

which were randomly selected. The remaining 30% of the data were used as an 

external validation set.  

PLS models accuracy was evaluated by the required number of latent variables 

(LVs), the coefficient of determination of calibration (R2
C), RMSEC, the coefficient 

of determination of cross-validation (R2
CV), RMSECV, the coefficient of 

determination for prediction (R2
P), the root mean square error of prediction 

(RMSEP), the ratio of prediction deviation (RPD, which is calculated as ratio 

between the standard deviation of reference values in training set and RMSEP) and 

the bias value (which establishes the difference between experimental values and 

NIR predictions). Bias value can be positive (overestimating) or negative 

(underestimating), indicating values near to zero a minimum deviation from 

experimental and predicted values (Cantor, Hoag, Ellison, Khan, & Lyon, 2011).  

On the other hand, the number of latent variables (LVs) for the PLS-DA model 

was determined by the low value of the root mean square error of calibration 

(RMSEC), and the root mean square error of leave-one-out cross validation 

(RMSECV) (Botelho et al., 2015). The PLS-DA classification performance was 

evaluated by sensitivity, specificity and by the non-error rate (NER). Sensitivity is 

the model ability related to a correct classification of the samples with different 

levels of cocoa shell content. The model capacity to correctly determine the samples 

-



Article 1 
�

97 

which not correspond to the class and correctly refuse them is the specificity 

(Almeida, Fidelis, Barata, & Poppi, 2013). The non-error rate (NER) is the average 

of the sensitivities of the different categories (Manfredi, Robotti, Quasso, Mazzucco, 

Calabrese, & Marengo, 2018). 

 
3.� Results and discussion 
 
3.1�Cocoa powder and shell spectra, pre-treated spectra and PCA analysis 

 

The mean raw spectra of cocoa powders, cocoa shells and binary mixtures of 

them at different percentages are shown in Figure. 1a. As shown in this figure, the 

main bands observed appeared at 1470, 1930 and 2130 nm, although other bands at 

1730, 2310 and 2350 nm were also evidenced. Although all spectra have a similar 

pattern of absorbance, the relative absorbance of these bands is different for the 

different types of samples: cocoa shell is characterized by the highest relative 

absorbance, which decreased when the content of cocoa shell in the samples 

decreased. The signal at 1470 nm correspond to the firs overtone of O-H and N-H 

stretching which is associated with a CONH2 structure (peptide) and related to a 

protein (Osborne, Fearn, & Hindle, 1993).  

The signal at 1930 nm is related with asymmetric stretching and rocking of 

water, weakly bounded water, proteins, and aromatics (Veselá et al., 2007), while 

the wavelength at 2130 nm can be assigned to N–H combination bands (CONH2) 

(Ribeiro, Ferreira, & Salva, 2011). On the other hand, the band at 1730 nm could be 

assigned to the first overtone of C-H (Ribeiro et al., 2011), while 2310 and 2350 nm 

are mostly related to stretching and rocking vibrations of CH2 of polysaccharides 

(Veselá et al., 2007). 
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Figure 1. Mean spectra of cocoa powders and shells and mixtures of them at 

different percentages from (a) raw and (b) pre-treated with EMSC-OSC spectra. 

 

The mean spectra obtained after the application of the EMSC-OSC pre-

treatment is shown in Figure. 1b. In this case, the principal wavelengths were 1420, 

1470, 1730, 1764, 1930, 2174, 2310, 2350 and 2390 nm. Most of the bands have 

been previously described, while the other ones could be attributed to the first 

overtones of symmetric and anti-symmetric C-H stretch vibration (CH2-groups) 

(1764 nm) (Krähmer et al., 2015), to a combination of C-H (2174 nm) (Ma et al., 

2017) and to the combination of C-H stretch and C-H deformation modes (2390 nm) 

(Wang et al., 2018). 

In order to have a more precise idea about the relation between samples and 

variables a PCA model, a non-supervised method was performed with the raw 

spectra data to identify possible sample groupings. The score plot of the two first 

principal components (PCs) is shown in Figure. 2. A total of 98% of the variance is 

explained by these two first PCs (87 and 11% for PC1 and PC2, respectively). Along 

PC1, cocoa shell samples are clearly separated from the remaining ones, in which 

any clear tendency was observed, although samples containing high cocoa shell 

percentages (40% w/w) seemed to be located closer to the PC1 values of cocoa shell. 

According to the X-loading values (data not shown), the wavelengths with higher 

weights were 1930, 1420 and 1470 nm for the PC1 and for the PC2 were 1644, 1326, 
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2146, 2310 and 2350 nm. Some of these peaks (1930, 1470, 2310 and 2350 nm) 

matched with the main peaks observed in raw spectra, which have been previously 

mentioned. The other bands corresponded to the fist overtone of the hydroxyl and 

amino groups (1420 nm) and first overtone of C-H (1644 nm) (Ribeiro et al., 2011), 

the second overtone of C-H (1326 nm) (Ma, Wang, Chen, Cheng, & Lai, 2017) and 

the combination of C-C and C-H stretching (2146 nm) (Workman, & Weyer, 2008).  

 
Figure 2. PCA score plot of the two first PCs showing the distribution of all the 

samples considered in this study. Samples were labelled as follows: cocoa shell 

content < 5%, comprised between 5 and 20%, 40% and pure cocoa shells.  

3.2�  Prediction of the added cocoa shell percentage in cocoa powders by PLS 

A total of 8 PLS models using all the available wavelengths (700) as variables, 

one for each pre-treatment considered in the study, were performed. The results 

obtained are summarized in Table 1. At the sight of the results, the best PLS model 

was the one constructed using the EMSC+OSC pre-treatment. In order to reduce the 

high dimensionality of the spectral data, the most important wavelengths were 

selected according to the VIP scores (Figure. 3). These VIP scores determine the 

significance of each variable in the projection used by a given PLS model by means 

of their coefficients in every component, jointly with the significance of each 
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component in regression (Botelho et al., 2015). As it could be observed in Figure. 3, 

the most important variables are wavelengths at 1930, 1420 and 1470 nm at positive 

values of LV1, and 2310, 2350 and 1730 nm at negative values of LV1. These 

wavelengths are mostly the same previously mentioned in both raw and pre-treated 

spectra, which demonstrated their importance in cocoa shell content prediction. Most 

of these wavelengths have been previously described in literature in the prediction 

of several compounds (such as fat, carbohydrates, polysaccharides, moisture, 

polyphenols, etc.) of cocoa beans and derived products (Huang et al., 2014; Krähmer 

et al., 2015; Quelal-Vásconez, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 

2018; Veselá et al., 2007).  

 

 
Figure 3. Variable importance in projection (VIP) scores of the PLS model 

constructed to predict cocoa shell percentages. 

 

Using the EMSC+OSC pre-treatment and the six wavelengths obtained in the 

VIP scores as variables, another PLS model was constructed. The results obtained 

for this model are also shown in Table 1. Compared to the best model obtained with 

the same pre-treatment but using all the available wavelengths, this model is less 

complex although all the other parameter values are very similar. 
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Table 1: Results of the PLS models constructed for predicting cocoa shell 

percentage using different pre-treatments and different number of wavelengths with 

a calibration and validation sets. 

 
#W = number of wavelengths used to construct de model; #LV = latent variables; 

R2 = determination coefficient; RMSEC = Root mean square error of calibration; 

RMSECV = Root mean square error of cross-validation; RMSEP = Root mean 

square error of prediction; RPD = Ratio prediction deviation; EMSC = Extended 

multiple scatter correction; 2nd Der. (S-G) = Second derivative and Savitzky Golay 

smoothing, SNV = Standard Normal Variate, OSC = Orthogonal signal correction.  

 

The plot representing the predicted versus the measured cocoa shell percentages 

of the prediction set samples constructed with PLS data of the model constructed 

using the 6 wavelengths as variables is shown in Figure. 4. A good linear fit due to 

the closer relationship between the reference values and the NIR spectra is 

observed, displaying the reliability and accuracy of the NIR in determining the 

percentage of cocoa shell present in the cocoa powders. 

 

Pretreatment #W #LV Calibration Cross-validation Validation 
� � � R2C RMSEC R2CV RMSECV R2P RMSEP Bias RPD 
Raw data 700 7 0.908 3.68 0.694 6.83 0.930 3.52 0.351 3.46 
EMSC 700 7 0.936 3.06 0.857 4.64 0.941 3.24 0.095 3.77 
SNV 700 7 0.931 3.18 0.862 4.55 0.940 3.27 0.057 3.72 
2nd Der. (S-G) 700 7 0.967 2.20 0.936 3.09 0.955 2.96 -0.021 4.11 
OSC 700 1 0.990 1.20 0.989 1.25 0.851 5.16 -0.059 2.36 
EMSC-OSC 700 1 0.974 1.92 0.973 2.01 0.967 2.41 0.204 5.06 
SNV+OSC 700 1 0.978 1.79 0.976 1.89 0.967 2.55 -0.278 4.77 
2nd Der. (S-G)+OSC 700 3 0.944 2.85 0.942 2.96 0.939 3.33 -0.104 3.66 
EMSC-OSC 6 1 0.975 1.91 0.973 2.01 0.967 2.43 0.195 5.03 
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Figure 4. Predicted versus measured cocoa shell percentages by PLS model 

constructed using the 6 main wavelengths in the prediction set. 

 
3.3�Classification of cocoa powder samples according to the added level of cocoa 

shell 
 
Since PCA is a non-supervised method, and it is not possible to observe a clear 

separation between the different sample categories, a supervised discriminant model, 

PLS-DA, was next constructed using all the available wavelengths (700) and the 

EMSC-OSC pre-treatment. The best model was obtained with 2 LVs with RMSEC 

and RMSECV values of 0.24 and 0.28, respectively, with most of the variability 

explained by the LV1 (72%). 

Next, using the 6 most relevant wavelengths as variables, another PLS-DA 

model was constructed. The discriminant plot obtained using the two LVs for the 

classification of samples according to the different categories is shown in Figure. 5. 

As it can be observed in this figure, separation between the two categories is 

achieved along LV1, with negative scores related to the samples containing < 5% 

cocoa shell, and positive scores related to samples containing 5-40% cocoa shell.  
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Figure 5. PLS-DA discriminant plot constructed using the two first LVs to 

classify cocoa powders according to the following categories: cocoa shell content < 

5% and cocoa shell content comprised between 5 and 40%. Both calibration (C<5% 

and C 5-40%) and external validation (V<5% and V 5-40%) set samples have been 

included and represented with different symbols. 

 

Once constructed, the model was validated with the external validation set 

samples. The results obtained for both calibration and external validation sets for this 

model are included in Table 2. As it can be observed in the confusion table for the 

calibration samples, all samples were correctly classified. On the other hand, for the 

external validation set, all samples of the <5% category were correctly classified, 

while 3 samples of the 5-40% category were misclassified. Even if the number of 

misclassified samples is very low, it should be highlighted that all the “misclassified 

samples” corresponded to samples containing a 5% cocoa shell (based on fat-free 

dry matter), which is the limit established by the Codex Alimentarius, and thus the 

borderline of both categories. Next, the PLS-DA classification performance was 

evaluated by the sensitivity, specificity and NER values, which are also included in 

Table 2. Taking into account the values reported and the comments previously 

mentioned, it could be concluded that the PLS-DA model constructed is able to 



Article 1 
 

 104 

reliable discriminate between samples containing cocoa shell percentages below and 

upper 5%. 

 

Table 2. Confusion table, sensitivity (SENS), specificity (SPEC) and non-error 

prediction rates (NER) of the PLS-DA model constructed with variable selection to 

discriminate cocoa powders into two categories: cocoa powders with < 5% and 

between 5-40% cocoa shell. 

 

 
 
 
4.� Conclusions 
 

NIR spectroscopy in combination with PLS and PLS-DA statistical models has 

been shown to be a rapid and effective method to determine cocoa shell content in 

cocoa powders. Using a PLS analysis, it was possible to quantify the percentage of 

cocoa shell present in cocoa powders. The best PLS prediction model was 

constructed using the 6 main wavelengths (1420, 1470, 1730, 1930, 2310 and 2350) 

selected according to the VIP scores, obtaining 1 LV with R2
C and R2

CV of 0.975 and 

0.973, respectively, and RMSEC and RMSECV of 1.91 and 2.01, respectively. 

Regarding the validation samples, R2
P was 0.967 while RMSEP was 2.43, 

confirming the goodness of the model. On the other hand, the PLS-DA analysis show 

that 92.5% of the validation set samples were correctly classified into two groups: 

samples with a shell content lower than 5% (considered the acceptance limit in cocoa 

�

 Category # Samples  SENS (%) SPEC (%) NER (%) 
 <5% 5-40%      

Calibration set samples     

<5% 22 0 22  100 100 100 5-40% 0 40 40  100 100 
22 40 62 

�
External validation set samples 
<5% 10 0 10  100 85 

92.5 
5-40% 3 17 20  85 100 
  13 17 30     
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powders by the Codex Alimentarius) and shell contents between 5 and 40%. These 

results indicate that this technology is therefore an important tool for cocoa 

producers and clients, who will be able to discriminate among samples in or out 

specifications, avoiding the use of destructive techniques that require a complex 

preparation of the sample or techniques that imply an important expense for the 

company. 
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Abstract 
 

Cocoa powder is a highly valuable global product that can be adulterated with 

low-cost raw materials like carob flour as small amounts of this flour would not 

change the color, aroma and taste characteristics of the final product. Rapid methods, 

like NIR technology combined with multivariate analysis, are interesting for such 

detection. In this work, unaltered cocoa powders with different alkalization levels, 

carob flours with three different roasting degrees, and adulterated samples, prepared 

by blending cocoa powders with carob flour at several proportions, were analysed. 

The diffuse reflectance spectra of the samples of 1100 - 2500 nm were acquired in a 

Foss NIR spectrophotometer. A qualitative and a quantitative analysis were done. 

For the qualitative analysis, a principal component analysis (PCA) and a partial least 

squares discriminant analysis (PLS-DA) were performed. Good results (100% 

classification accuracy) were obtained, which indicates the possibility of 

distinguishing pure cocoa powders from adulterated samples. For the quantitative 

analysis, a partial least squares (PLS) regression analysis was performed. The most 

robust PLS prediction model was obtained with one factor (LV), a coefficient of 

determination for prediction (RP2) of 0.974 and a root mean square error of 

prediction (RMSEP) of 3.2% for the external set. These data allowed us to conclude 

that NIR technology combined with multivariate analysis enables the identification 

and determination of the amount of natural cocoa powder present in a mixture 

adulterated with carob flour. 

 
Keywords: Cocoa powder, adulteration, carob flour, NIR, PCA, PLS.  
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1.� Introduction 
 

Cocoa powder, thanks to its characteristic and pleasant flavour and aroma, is 

one of the most valued commodities around the world (Bonvehí, 2005). Among its 

applications in the food industry, the formulation of beverages, confectionery, 

bakery and pastry products stands out (Shankar, Levitan, Prescott, & Spence, 2009). 

Apart from flavour and aroma, cocoa is highly appreciated as a natural colouring 

agent, partly because of the current tendency to restrict the use of artificial colors.  

During cocoa processing, it is possible to modify cocoa color and aroma through 

roasting and/or alkalization processes. Roasting consists of exposing cocoa beans to 

temperatures of 130–150°C for 15–45 min. It is used to inactivate microorganisms 

and to develop the characteristic brown color, mild aroma and texture of commercial 

natural beans (Bonvehí, 2005, Krysiak, 2006; Afoakwa, Budu, Mensah-Brown, 

Felix & Ofosu-Snsah, 2014). Alkalization is an optional operation to reduce acidity, 

bitterness and astringency, and to darken cocoa’s color. This procedure involves 

using an alkali (generally potassium carbonate) in combination with oxygen, water 

and high temperatures. These extreme conditions provoke, among others, Maillard 

reactions and polyphenol oxidations and polymerizations, which end up with flavor 

and color modifications from light brown (natural) to red, dark brown or extremely 

black (Miller et al., 2008; Li et al., 2012).  

In recent years, the demand for cocoa powder has increased and its supplies 

have tightened, thus its price has steadily grown (Fadel, Mageed, Samad, & Lotfy, 

2006). Consequently, there is a demand to develop cocoa substitutes. Some studies 

suggest that cocoa-like aromas can be found in roasted carobs (Arrighi, Hartman & 

Ho, 1997). Carob pods are characterized by a high sugar content (around 50%), 

composed essentially of sucrose. This high sugar content favors the same chemical 

reactions that occur during the roasting and alkalization of cocoa: caramelization of 

high sugar content and Maillard reactions between amino acids and sugars (Fadel et 

al., 2006). In this way, toasted carob can provide similar aromas to cocoa. 
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Bearing in mind this striking aromatic and visual similarity between carob flour 

(natural or toasted) and cocoa (natural or alkalized), some traders have seen that 

selling carob (average price of 940 US$/tonne) as cocoa (1945 US$/tonne), by 

omitting this substitution, is a profitable option to increase their benefits (ICCO, 

2017). However, this deliberate, intentional and undeclared substitution of one 

product for another with a lower price is food fraud that not only affects producers 

and consumers, but also the physico-chemical properties of the manufactured 

product. Some studied examples comprise milk chocolates and chocolate cakes, in 

which some percentages of cocoa powder have been substituted for carob flour 

(Salem & Ohaad Fahad, 2012; Rosa, Tessele, Prestes, Silveira, & Franco, 2015). 

To detect food adulteration, the three most widespread technologies are liquid 

chromatography, infrared spectroscopy and gas chromatography (Moore, Spink, & 

Lipp, 2012). Liquid and gas chromatography analyses need long sample preparation 

times, method optimization, and high-cost materials and reagents, while infrared 

spectroscopy is fast, reliable, less expensive and a chemical-free alternative (Ellis et 

al., 2012). Near infrared spectroscopy (NIR) is an infrared spectroscopy type 

characterized by recording reflectance or transmittance spectra within the region 

from 750 nm to 2500 nm. These spectra act as a ‘fingerprint’ that is characteristic of 

a particular sample molecule and allows its identification. Some examples of using 

NIR and multivariate analyses in the cocoa sector include the prediction of basic 

food components, such as moisture, carbohydrate, fat, protein, theobromine and 

catechin and total polyphenol content (Veselá et al., 2007; Álvarez et al., 2012; 

Huang et al., 2014). In other sectors, NIR in combination with a multivariate analysis 

has been employed to detect starch in onion powders, acid whey, starch, maltodextrin 

in skim powder milk, Sudan dyes in chili powders, and talcum powder in teas 

(Lohumi, Lee, Lee, & Cho, 2014; Capuano, Boerrigter-Eenling, Koot, & van Ruth, 

2015; Haughey, Galvin-King, Ho, Bell, & Elliott, 2015; Li, Zhang, & He, 2016). 
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In this context, the aim of this work was the rapid detection of the adulteration 

of cocoa powders, regardless of their alkalization level, with carob flours by applying 

NIR and a multivariate analysis. 

 

2. Materials and methods 
 
2.1 Raw materials 

 

In order to analyse a good representative set of samples of the variability in 

commercial cocoa and carob flour, cocoa powders with different alkalization levels 

(n=12), as well as carob flour powders with three different roasting degrees (n=6) 

were used in this study. The samples used were natural cocoa (NC), lightly alkalized 

cocoa (LAC), medium alkalized cocoa (MAC), strong alkalized cocoa (SAC), light 

carob flour (LCF), medium carob flour (MCF) and dark carob flour (DCF).  

OLAM Food Ingredients, Spain (Cheste, Valencia), kindly donated cocoa 

powders. Carob flour powders were bought from a local specialized supermarket. 

Raw samples were placed inside a glass container and stored in a dry dark 

atmosphere until were used. 

 
2.2 The physico-chemical characterization of raw materials 

 

Each of the raw samples was characterized according to their extractable pH 

value and extrinsic color. All measurements were taken in triplicate. For extractable 

pH determination, the process described in The Zaan Manual (Olam, 2017) was 

followed. For that purpose, 10g of cocoa powder were suspended in 90 mL of boiling 

distilled water and stirred. After decreasing temperature to 20-25ºC in a cold bath, 

sample pH was measured with a digital pH-meter (Crison Instruments, S.A., 

Barcelona, Spain) previously calibrated with 3 buffer solutions: pH 4.01, pH 7.0 and 

pH 9.21 (T=25 ºC). According to pH value, samples were classified in four different 
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categories: natural cocoa powders (5< pH<6), light alkalized (6<pH<7.2), medium 

alkalized (7.2< pH<7.6) and strong alkalized powders (pH >7.6) (Miller et al., 2008).  

To determine the extrinsic color, a cocoa powder sample was placed in a 

methacrylate cuvette by unifying the degree of compaction through small successive 

shocks. Color was measured in a spectrocolorimeter Minolta CM 3600D (Tokyo, 

Japan). Reflectance spectra (between 400 - 700 nm) were used to obtain color 

coordinates L*, a* and b* for D65 illuminant and 10° observer. Hue (h^*) and 

chroma (��) were estimated by Equation 1 and Equation2, respectively.  

 

	� � �
��� ��
�� (1) 

 

�� � ���� 
 ���� (2) 
 
2.3 Preparing adulterated samples 

 

In this study, two batches of 234 samples composed of 12 unaltered cocoa 

powders, 6 carob flours, and 216 adulterated samples, were used. The adulterated 

samples were prepared by blending the 12 cocoa powders with the 6 different carob 

flours at different proportions. For all the 72 possible cocoa-carob combinations, 

three different levels of adulteration were prepared: low adulteration LA (0-20%), 

medium adulteration MA (20-40%) and high adulteration HA (40-60%). The upper 

limit (60%) was set by considering that above this concentration, adulteration would 

become evident due to the characteristic carob aroma (Cantalejo, 1997). The specific 

adulteration percentage at a given level was determined randomly from a uniform 

distribution (each adulteration percentage had the same probability of being 

selected), following the Latin Hypercube Strategy (LHS) (Helton & Davis, 2003). 

The adulterated samples were placed in a glass container and stored in a dry dark 

atmosphere until used.  
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2.4 Collecting near-infrared spectra  
 

All samples were scanned in a FOSS NIR 5000 System spectrophotometer 

(Silver Spring, MD, USA) equipped with a transport module. Round sample cups 

(3.8 cm diameter x 1cm thick quartz windows) were filled with each sample (about 

5 g) so that the surface and thickness remained uniform during spectral collection. 

The instrument measures diffuse reflectance and automatically converts it into 

relative absorbance (log 1/R) to obtain a linear correlation with the concentration of 

the product’s chemical constituents (Martens, Nielsen, & Engelsen, 2003). Thirty-

two successive scans with 700 points (wavelengths) from each sample were collected 

within a wavelength range from 1100 nm to 2500 nm at 2-nm intervals. 
 

2.5 Chemometric analysis 
 

An analysis of variance (ANOVA) was used to determine the differences in pH 

and extrinsic color among samples. Data were statistically processed using 

Statgraphics Centurion XVI (Manugistics Inc., Rockville, MD, USA). 

Simultaneously, color parameters C*, h* and L* and pH were used in a principal 

component analysis (PCA) to show the samples and their relationship. Before the 

analysis, an autoscaling was performed in order to improve the weights of the 

variable with small values. 

A multivariate analysis was conducted by a qualitative analysis and a 

quantitative analysis by The Unscrambler v10.4 (CAMO Software AS, OSLO, 

Norway). For the qualitative analysis, a PCA and a partial least squares discriminant 

analysis (PLS-DA) was performed. The PCA was run with raw data, while the PLS-

DA (Berrueta, Alonso, & Héberger, 2007) was constructed after applying spectra 2nd 

derivative Savitzky-Golay smoothing (2nd derivative S-G) (Savitzky & Golay, 

1951) and orthogonal signal correction (OSC). Both pre-treatments were applied to 

acquire useful information, improve the signal-to-noise ratio and remove systematic 

variation from the predictor matrix X unrelated, or orthogonal, to matrix Y (Wold, 

Antti, Lindgren, & Öhman, 1998; Pizarro et al., 2004). For the quantitative analysis, 
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a partial least squares (PLS) regression analysis was performed. In order to evaluate 

and correct the multiplicative and additive effects caused by different light scattering 

in the spectroscopic measurement (Cozzolino et al., 2011; Stohner et al., 2012), four 

PLS models were tested. The PLS were constructed using the raw spectrum and by 

applying three pre-treatments to the spectrum: 2nd derivative S-G, OSC and the 

combination of them. 
 

2.5.1 Developing calibration models 

 

Two databases were used for the analysis. The first database consisted of 468 

spectra and 700 variables (wavelengths, nm) was used for the PCA and PLS models. 

For the PLS-DA classification samples were divided into three categories (0=Cocoa; 

1=Adulterated samples and 2=Carob flour) and a second database with 142 spectra 

and 700 variables was created to balance the number of samples that belonged to 

each category. Moreover, the spectra of each database were randomly separated into 

two different data sets. A set with 70% of the spectra was used to create and evaluate 

the model by leave-one-out cross-validation. The other set, with 30% of the 

remaining samples, was used for external validation. The relative performance of the 

constructed models was assessed by the required number of latent variables (LVs), 

the coefficient of determination for calibration (R2
C), the root mean square error of 

calibration (RMSEC), the coefficient of determination for cross validation (R2
CV) 

and the root mean square error of leave-one-out cross validation (RMSECV). A 

model can be considered good when a few LVs are required, and when it has low 

RMSEC and RMSECV and high R2
C and R2

CV. A cut-off value of ± 0.5 was used for 

the classification of the samples (Dong, Zhao, Hu, Dong, & Tan, 2017). 

 

2.5.2 External validation 

 

To assess the models’ predictive capability, the coefficient of determination for 

prediction (R2P), the root mean square error of prediction (RMSEP), the ratio of 
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prediction deviation (RPD = SD/RMSEP), where SD was the standard deviation of 

the Y-variable in the prediction set, and bias were used. The RPD is more meaningful 

than only looking at the error of prediction. An RPD value lower than 2 is considered 

insufficient for application, one between 2 and 2.5 is considered for approximate 

quantification, and values between 2.5 and 3 are taken as a good model, while models 

with RPD values above 3 can be considered excellent and most reliable for analytical 

tasks (Sunoj, Igathinathane & Visvanathan, 2016). The bias estimates the difference 

between the experimental value and NIR predictions, and can be positive or negative. 

Positive values indicate that the model overestimates, while negative values suggest 

otherwise. Higher bias values indicate that NIR predictions vary significantly from 

the experimental values (Cantor, Hoag, Ellison, Khan, & Lyon, 2011), so it is better 

if it comes close to zero. 

 

3. Results and discussion 

 

3.1 Raw materials characterization 

 
Table 1 contains the color parameters and pH values of the different raw 

materials. As observed, the obtained pH values ranged from 5.3 (NC1) to 7.9 

(SAC3). According to these values and following the Miller Classification, twelve 

samples were considered natural cocoas (NC; 5<pH<6), three samples light alkalized 

cocoas (LAC; 5<pH<6.2), tree samples medium alkalized cocoas (MAC; 

7.2<pH<7.6) and three samples strong alkalized cocoas (SAC; PH > 7.6).  pH can 

be used as an indicator of the degree of alkalization that occurs during production 

because the pH value of cocoa powder is related to the amount and type of alkali 

used in the process (OLAM Cocoa Manual, 2017; Pérez, Lerma, Fuentes, Palomares, 

& Barat, 2016). The inclusion of cocoas with different degrees of alkalization during 

the model-building phase assures that it might be used with independence of the 

cocoa powder processing. 
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The lightness (L*) values measured in the cocoa samples ranged from 31 

(SAC1) to 50 (NC3). The maximum lightness value appeared in a NC sample (NC3). 

The L* value progressively lowered according to the degree of alkalization to the 

minimum value in the SAC samples with a very dark color. The differences in the 

lightness in the NC samples (NC1, NC2 and NC3) could be due to a different 

geographical origin or to distinct processing in the fermentation or roasting stages 

(Afoakwa, et al., 2014). 

The chroma (C*) values oscillated between 11 (SAC1) and 22 (NC2). As seen 

in Table 1, the higher the alkalization degree, the lower purity becomes. 

Hue (h*), unlike the other parameters, does not follow a linear relationship with 

an increased pH value. Cocoa samples evolve from a more yellow-orange hue (h * 

= 60) to a more orange-red one (h* = 43) in the alkaline cocoa samples.  

The pH of carob flours ranged from 4.5 to 5.1, with no trend observed between 

the pH value and the degree of toasting samples. Thus, carob samples could be added 

to the NC beans in high proportions without significantly changing the mixture’s pH 

value. 

The L* values in the carob flours ranged from 34 (DCF) to 49 (LCF), which 

meant that lightness progressively lowered as the degree of roasting increased. When 

these values were compared with those of cocoa, were found no statistical 

differences (p<0.05) between the NC samples and natural carob meal (LCF samples), 

nor between the lightness of MAC and SAC samples and roasted carob (MCF and 

DCF). These minor differences in lightness would favor the adulteration of cocoa 

with carob meal. 

The chroma (C*) of the samples also decreased as the degree of roasting rose, 

with values of 23.7 for LCF samples that lowered to 13 for strong roasted carob 

(DCF samples). When comparing the C* values between cocoa and carob, we found 

a similarity between both. Thus the C* values would be the equivalent between 

natural cocoa and natural carob meal, and between medium/strong cocoa beans and 

roasted carob. 
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The hue (h*) values for the carob flours gave no significant differences with an 

increasing degree of roasting, but only a slight decrease. The values obtained for the 

carob flour samples were 61 on average. These values coincided with those observed 

in the NC samples. 

Cocoa color parameters are generally affected by several factors, including the 

degree of roasting and alkalization. The strong alkalized ones were dark, while the 

natural ones were lighter. The roasting result was darkened cocoa or carob due to the 

formation of brown pigments (Zyzelewicz, Krysiak, Nebesny, & Budryn, 2014), 

with changes noted in the values of the individual color parameters. 
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Table 1. Color parameters and pH (mean and standard deviation) values for the 

carob and cocoa pure samples.  

Product 
Color Parameters 

pH ± sd 
L* ± sd C* ± sd h* ± sd 

LCF1 48.6±0.4de 23.6±0.3e 61.0±0.3b 5.03±0.01a 
LCF2 47.70±0.06de 24.1±0.2e 60.98±0.11b 5.12±0.01a 
LCF3 46.1±0.2de 26.3±0.7e 61.5±0.3b 4.67±0.01a 
LCF4 44.17±0.3de 20.7±0.2e 61.1±0.3b 4.911±0.01a 
MCF 37.6± 0.4ab 16.9±0.7bc 60.2±0.5a 4.851±0.01a 
DCF 34.5±1.5a  12.9±0.9a 60±2a 4.817±0.01a 
NC1 48.7±0.2e   20.1±0.5de 58.8±0.4c 5.391±0.01a 
NC2 48.33±0.13e 22.3±0.4de 59.5±0.3c 5.46±0.01b 
NC3 50.3±0.6e 22.19±1.02de 60.0±0.4c 5.70±0.01b 

LAC1 42.3±0.6c 22.4±0.7cd 54.3±0.4c 6.901±0.01c 
LAC2 44.2±0.5c 18.63±1.02cd 55.0±0.9c 6.96±0.02c 
LAC3 41.7±0.5b 19.80±0.13bc 54.5±0.5c 6.98±0.01d 
MAC1 44.9±1.5c 18±2cd 55.7±0.6c 7.24±0.01c 
MAC2 41.9±0.7b 18.0±0.6bc 54.2±0.5c 7.34±0.03d 
MAC3 35.85±1.05b 16.0±0.8bc 43.0±0.6c 7.43±0.01d 
SAC1 32.1±0.8a 11.6±0.9b 46.5±0.6c 7.81±0.01e 
SAC2 39.4±0.5a 19.76±0.99b 51.4±0.8c 7.84±0.01e 
SAC3 40.1±0.2a 17.3±0.8b 53.2±0.6c 7.92±0.01e  

 

Values in the same column followed by the same letter(s) are not significantly 

different according to ANOVA at a 95% Confidence level. For cocoas (N): Natural 

cocoa (NC), light alkalized cocoa (LAC), medium alkalized cocoa (MAC) and strong 

alkalized cocoa (SAC). For carob flours (A): light carob flour (LCF), medium carob 

flour (MCF) and dark carob flour (DCF). 

In order to know how the physico-chemical properties explained the different 

characteristics between the cocoa and carob flour samples, a PCA was performed 
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with the pH and color parameters. Figure 1 shows the two-dimensional scatter plot 

of scores for two principal components (PCs) from projection results and allows the 

visualization of the distribution of the scores of the samples of cocoa and carob 

powder.  The two PCs explain over 94% of the variation. The first PC explains 78 

% of the variance and is related with the roasted degree of the carob, or alkalization 

of the cocoa powder, whereas the second PC explains 16 % of the total variance and 

is related with the difference between level of alkalized cocoa and the carob flour.  

The natural cocoa NC and light carob flour LCF scores were close, which 

indicated that these samples were related and had similar pH characteristics and color 

parameters. The positive scores on component 1 and component 2 corresponded to 

the samples with different degrees of alkalization. This position and the loading 

values of the variables led to the conclusion that the samples with low lightness and 

high pH were the alkaline cacao samples, while the samples with low lightness and 

low pH were those of roasted carob flour (Dark (DCF) and medium (MCF)). This 

agrees with the results presented by other authors (Bulca, 2016; Yousif & Alghzawi, 

2000), which indicated that carob flour could not be visually separated from cocoa 

powder, not even when the other groups of the alkalized and roasting samples were 

blended. 
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Figure 1. Score plot of the first and the second principal components of the PCA 

model using color parameters L*, C*, h* and pH of pure carob and cocoa powder 

samples (n=18, in triplicate). NC: natural Cocoa; LAC: light alkalized cocoa; MAC: 

medium alkalized cocoa; SAC: strong alkalized cocoa; LCF: light carob flour; MCF: 

medium carob flour; DCF: dark carob flour.

 
3.2 Spectral differences analysis of carob and cocoa powder 

The spectra of the relative absorbance of cocoa powder and carob flour are 

represented in Figure 2 (a, b). All the cocoa spectra display a similar absorbance 

pattern, this pattern differs between cocoa and carob flour in relation to the 

absorbance intensity.  
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Figure 2. Spectra with raw data within the 1100 - 2500 nm range (a) Cocoa. (b) 

Carob flour. 

 
Raw data were preprocessed by applying the 2nd derivative S-G and OSC. 

Examples of the pretreated spectra of cocoa (brown) and carob (gray) are shown in 

Figure 3. As observed, after this pretreatment the differences between both spectra 

types became more evident than in the untreated spectra. It can be stated how 

divergence pointed between both spectra types being located especially in the 

magnitude of reflectance at 1438, 1728, 2312, 2324, 2350 nm. As expected from the 

compositional differences, between cocoa powder and carob flours, these 

wavelengths were associated with the vibration of the functional groups that cocoa 

powder contains like theobromine and caffeine (1728 nm) (Cozzolino et al., 2011), 

and epicathechin (2312, 2324 nm) (Esteban, González, & Pizarro, 2004; Teye & 

Huang, 2015).  
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Figure 3. Second derivative, Savitzky Golay smoothing and orthogonal signal 

correction pretreated the cocoa (brown) and carob (grey) spectra within the 1100 - 

2500 nm range. 

 

3.2 Classification model 

 
A PCA was performed as a non-supervised learning algorithm with the raw 

spectra data to evaluate the relationship among samples. Figure 4 shows the score 

plot of the first two principal components (PC). The first two PC explain 91% of the 

total variance among the samples. The first PC explains 71% of total variance and 

might be related to sample processing. The different natural cocoas are found in the 

negative region, whereas the alkalinized samples are distributed across the negative 

and positive regions. These differences could be due to alkali, the stage in which it 

has been alkalized (bean or cake), and the degree of alkalization that can produce 

different color changes (red or dark brown) (Miller et al., 2008). The second PC 

explains 20% of variability and might be related to the percentage of cocoa powder 

in the sample. Pure cocoa powders are located in the positive region, while pure 

carob flours are found in the negative region. The samples with different levels of 

adulteration lie in the middle: low (0-20%), medium (20-40%) and high (40-60%).  

The wavelengths that corresponded to the highest loading values were 1100, 

1464, 1936, 2108, 2276, 2330 and 2486 nm for the first PC, and 1116, 1324 1460, 

1576, 1728, 1914, 1976, 2106, 2262, 2310 and 2494 nm for the second PC. The 
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wavelengths from 971 and 1400 nm were related to the ascending part of the water 

first overtone absorption peak O–H stretching bonds at 1722 nm C-H stretching was 

also present, which are associated with water and sugar content (Álvarez et al., 2012; 

Cozzolino, Smyth, & Gishen, 2003; X. Y. Huang et al., 2014; Talens et al., 2013). 

The wavelengths at 1736 and 2319-2328 nm were related to the absorption of the C–

H bonds, CH3 combination and C-C stretching. These are features of fatty acids, 

proteins and polysaccharides in cocoa powder and could be associated with a fat 

content of approximately 10-12% (Veselá et al., 2007; Westad, Schmidt, & Kermit, 

2008). The absorption bands of 1728, 2108 and 2494 nm coincided approximately 

with those that were used to predict the total fat content in cocoa beans by (Ribeiro, 

Ferreira, & Salva, 2011; Teye & Huang, 2015). Variations were related to the 

compositional characteristics of the cocoa categories and the adulterant carob 

powder. The found wavelengths were similar to a study performed in cocoa beans 

(Teye et al., 2015b). Therefore, absorption in wavelengths (as a result of vibrational 

reactions) contains chemical information that helps explain the observed differences 

between the carob and cocoa powder pure samples and their several adulteration 

proportions.  

Since the generated spectra correspond to an adulteration level on a continuous 

scale, it was not possible to see well-separated groups (high, medium and low 

adulterated) in this PCA, especially for the percentages that fell within the limits. 

With this information, a PLS-DA analysis was created to generate a model with 

categorized spectra, which allowed the detection of gross adulterations levels.  
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Figure 4. The NIR PCA score plot to separate pure cocoa powder and different levels 

of adulteration with carob flour (high adulteration HA (40-60%), low adulteration 

LA (0-20%) and medium adulteration MA (20-40%)).

 

As the PCA was unable to see samples in the different groups according to their 

adulteration percentages, a qualitative model that used the supervised PLS-DA was 

employed. In order to improve the model’s accuracy, the original spectra were pre-

processed using 2nd derivative S-G (9-point window, second-order polynomial) and 

an OSC. For the PLS-DA (Figure 5), three latent variables (LVs) were generated 

with most of the variation (67%) explained by the first LV and 12% by the second. 

In this way, separation was achieved mainly by using the first latent variable with 

the most negative scores for the pure cocoa samples, and the most positive scores 

related to the adulterate samples and carob powder (pure adulterant). In visually 

terms, the scores plot differences among the 100% cocoa powder, adulterated cocoa 

powders and 100% carob powder indicated the possibility of using this approach to 

quickly screen for adulteration. The determination coefficient (R2) of this PLS-DA 

model was 0.969. The cross-validation determination coefficient (R2
CV), based on 

full cross-validation, was 0.901. Those values indicate the goodness of the 

classification model.  
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Figure 5. NIR PLS-DA score plot from latent variable 1 and 2, pure cocoa (brown 

triangles) carob powder (gray squares) and adulterations (blue circles). 

 

In order to measure the robustness of the PLS-DA model, validation with an 

external data set was performed. Table 2 shows the model’s capability to classify 

100% of the samples in their corresponding groups (cocoa, carob or adulterated 

samples).  

 

Table 2. Results for classification accuracy of the PLS-DA model. 

  Cocoa Carob Adulterated Classification 
Cocoa 7 0 0 100% 
Carob 0 4 0 100% 

Adulterated 0 0 32 100% 
 
3.3 Adulterant Prediction 
 

A PLS was performed with the calibration set. The prediction was done with the 

validation set. The models were constructed by applying different pre-treatments to 
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the studying the spectra. The statistical indicators of the goodness of fit of each 

model are presented in Table 3. 

 

Table 3. Results of the PLS models constructed for the prediction of carob flour 

content in cocoa powders. 

 
Pre-

treatment #LV Calibration  Cross-validation 
 

Prediction 

    R2
C RMSEC R2

CV RMSECV R2
P RMSEP Bias RPD 

Raw data 7 0.951 4.530 0.945 4.785 0.961 4.397 0.197 4.65 

2nd Der. S-G 5 0.978 3.082 0.974 3.28 0.979 3.271 0.749 6.25 

OSC 1 0.975 3.165 0.975 3.214 0.974 3.555 0.474 5.75 

2nd Der. S-G 

+ OSC 1 0.980 2.856 0.979 2.897 0.974 3.237 0.626 6.32 

 
2nd Der. S-G = Second derivative-Savitzky Golay; OSC = Orthogonal signal 

correction; #LV = latent variables; R2
C = coefficient of determination for calibration; 

RMSEC = root mean square error of calibration; R2
CV = coefficient of determination 

for cross-validation; RMSECV = root mean square error of cross-validation; R2
P = 

coefficient of determination for prediction; RMSEP = root mean square error of 

prediction; Bias = estimation of the difference between the experimental value and 

NIR predictions; RPD = ratio of prediction deviation. 

 

Good models were obtained with high R2 values and low RMSE values for the 

calibration, cross-validation and prediction, depending on spectral data processing. 

The RPD values were higher than 3, which meant that all these models, even the 

model without the preprocessing data, could be considered excellent and most 

reliable for the analytical tasks. This indicated that the multiplicative and additive 

effects in the spectra of cocoa powder, and with the equipment used for the 
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measurements in this study, were minimal due to even the model without 

pretreatment to correct that effects was excellent. However, it is important to point 

out that the models with pre-treatments obtained a smaller number of LV, which 

made the model more parsimonious. Figure 6 presents the observed (x axis) versus 

predicted (y axis) values. The predicted values were obtained with a model that used 

2nd Derivative S-G and OSC. We can observe that the PLS algorithm predicted very 

well with an R2
CV of 0.979 and an RMSECV of 2.897%. The prediction of the 

external validation group gave a low RMSEP of 3.237% and an R2
P of 0.974. The 

similarity among RMSEC, RMSECV and RMSEP indicated that the possibility of 

over-fitting the model was very low and confirmed its good prediction capacity. The 

2nd derivative S-G and the OSC pretreatment improved the RPD, which was 35.48% 

higher compared to the PLS model with the raw data, and used only one latent 

variable (LV). Other studies have found good models with one LV when orthogonal 

signal correction was used (Esteban et al., 2004). The relative notorious 

improvement of the RPD in the pretreated model could be due to the NIR signal 

being affected by environmental (moisture) and physical factors (product’s particle 

size distribution). According to Huang et al., those factors generated light scattering 

and, consequently, significant differences arose. Additionally, these factors affect 

the effective sample pathlength and result in additive, multiplicative and wavelength-

dependent effects. In some cases, wavelength-dependent scattering is related with 

baseline shifts, tilt or curvature scaling variation. In certain instances, spectra 

variations mask any subtle chemical variation, which can produce inaccurate results. 

Thus pretreatment is effective for cushioning the aforementioned effects (Huang et 

al., 2010).  
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Figure 6. Predicted versus observed values of the adulterant percentages (n=140) of 

the pure cocoa and carob powder at different levels of adulterated samples. 

 

4. Conclusions 

 

Near infrared spectroscopy (NIR) combined with PLS-DA and PLS statistical 

models has been shown to be a rapid effective method to identify adulterations of 

cocoa powder with Carob flour, regardless of the alkalization or roasting level. In 

contrast, these adulterations would not be readily detectable by routine techniques 

such as determination of pH analysis and color measurement. 

With the PLS-DA analysis, all (100%) the samples were correctly classified into 

three groups: cocoa, carob flour and mixtures. The PLS analysis enabled the 

percentage of adulteration to be calculated with the samples. The PLS model was 

obtained with one factor with an R2 of 0.979 and 0.974, and a mean squared error of 

2.9 and 3.2 for the calibration and external validation sets, respectively. 

This technique is, therefore, an important tool for cocoa merchants, who will be 

able to better control the product’s quality by avoiding the use of destructive 

techniques that require complex sample preparations or techniques that imply much 
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expense for companies. Given the excellent results obtained, we expect this method 

to become increasingly important in the cocoa industry and to reduce food fraud.  
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Abstract 
 

Variation in methylxanthines (theobromine and caffeine) and flavanols 

(catechin and epicatechin) was studied in a large set of cocoa powders (covering 

different origins, processing parameters and alkalisation levels). The content of these 

compounds was established by high-performance liquid chromatography (HPLC), 

whose results showed that the alkalisation process lowered the content of all 

analytes, whose loss was more evident in flavanols. Therefore, the determination of 

these analytes in a huge set of samples allowed not only better knowledge of the 

concentration variability in natural commercial cocoas from different origins, but 

also the understanding of the effect that industrial alkalisation has on these contents. 

The feasibility of reflectance near-infrared spectroscopy (NIRS) combined with 

partial least square (PLS) to non-destructively predict these contents, was also 

evaluated. All the analytes were generally well predicted, with predictions for 

methylxanthines (R2P 0.819–0.813 and RMSEP 0.068–0.022%, and bias 0.005 and 

0.007 for theobromine and caffeine, respectively) and for flavanols (R2P 0.830–

0.824; RMSEP 8.160–7.430% and bias �1.440 and �1.034 for catechin and 

epicatechin, respectively). Thus NIRS could be an alternative fast reliable method 

for the routine assessment of these analytes in the cocoa industry. 
 

Keywords: cocoa powder, methylxanthines, flavanols, HPLC, near-infrared 

spectroscopy. 

Abbreviations: HPLC, high performance liquid chromatography; GC, gas 

chromatography; IR, infrared spectroscopy; NIRS, near infrared spectroscopy; PLS, 

partial least square; PCA, principal component analysis; LV, latent variable; 

RMSEC, root mean square error of calibration; RMSECV, root mean square error of 

cross-validation; RMSEP, root mean square error of prediction; R2
C, coefficient of 

determination for calibration; R2
CV, coefficient of determination for cross-validation; 

R2
P, coefficient of determination for prediction; RPD, ratio of prediction deviation; 
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LOD, limit of detection; LOQ, limit of quantification; S-G, Savitzky-Golay; OSC, 

orthogonal signal correction. 

 

1.� Introduction  

 

Cocoa powder is the most important raw material of confectionery products, 

chocolate-flavoured bakeries, ice-creams and drinks (Miller et al., 2008). Apart from 

technologic properties, cocoa (Theobroma cacao L.) and its derived products are 

well considered for being a rich source of methylxanthines and polyphenols (Langer, 

Marshall, Day, & Morgan, 2011). 

Methylxanthines (i.e. theobromine and caffeine) are pharmacologically active 

alkaloids responsible for a bitter cocoa taste and desirable physiological effects; e.g. 

stimulation of the central nervous system and gastric secretion, diuresis, 

bronchodilation, and stimulation of skeletal muscles in high doses (Franco, Oñatibia-

Astibia, & Martínez-Pinilla, 2013). They also display health benefits in diseases 

involving cell death in the nervous system (Oñatibia�Astibia, Franco, & Martínez�
Pinilla, 2017).  

The main type of polyphenols (known for their demonstrated antioxidant and 

anti-inflammatory properties) in cocoas are flavanols. This family of compounds 

includes catechin and epicatechin (monomeric species) and procyanidins 

(oligomeric and polymeric fractions). Among them, epicatechin is the most abundant 

flavanol in cocoa and accounts for 35% of the total polyphenolic fraction (Lacueva 

et al., 2008). 

While producing cocoa powder from cocoa beans, seeds are primarily 

fermented, dried and roasted. Then broken beans (nibs) are ground, heated and 

liquefied. The product of these operations, cocoa liquour, is pressed to obtain two 

different fractions: cocoa powder and butter. Optionally, nibs or cake can be treated 

with an alkali dissolved in water. This alkalisation reduces acidity, bitterness and 

astringency by improving and enhancing the aromatic features of cocoa powder 

(Kongor et al., 2016). Alkalisation also allows colour development by transforming 
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the typical light brown hues of natural cocoa powder into reddish or very dark ones. 

These colour changes derive from a sequence of chemical reactions between 

alkalizing agents and pigments in the presence of water and oxygen at high 

temperatures. Finally, the dispersibility of cocoa powder increases with alkalisation. 

This property facilitates the use of cocoa powders in different industries like dairy 

products (Afoakwa, Paterson, Fowler, & Ryan, 2008).  

Cocoa powder processing not only strongly affects the sensory properties of 

cocoa and derived products, but also alters flavonoid and methylxanthine fractions 

(Payne, Hurst, Miller, Rank, & Stuart, 2010). However, studies to date have used 

small sample numbers and have, thus provided conclusions that can be read only as 

behaviour tendencies.  

The commonest techniques employed to analyse methylxanthines and flavanols 

from cocoa extracts or isolated fractions are high-performance liquid 

chromatography (HPLC) or gas chromatography (GC) (Cádiz-Gurrea et al., 2014; 

Elwers, Zambrano, Rohsius, & Lieberei, 2009; Fayeulle et al., 2018, Humston, 

Knowles, McShea, & Synovec, 2010; Machonis, Jones, Schaneberg, Kwik-Uribe, & 

Dowell, 2014; Van Durme, Ingels, & De Winne, 2016), which provide reliable and 

accurate descriptions of individual cocoa qualities. Recently, the use of novel 

methods based on on-line comprehensive two-dimensional liquid chromatography 

coupled to tandem mass spectrometry (LC�×�LC-MS/MS) have allowed the 

characterization of new secondary metabolites of cocoa beans (Toro-Uribe, 

Montero, López-Giraldo, Ibáñez, & Herrero, 2018). However, these methods are not 

recommended for routine raw material quality controls as they are destructive, 

require specialised personnel, sample preparation and expensive equipments. Thus 

simpler, faster and non-destructive techniques are required.  

An alternative is infrared spectroscopy (IR is a fast non-destructive analytical 

tool that needs little samples preparation), which is useful for both qualitative and 

quantitative analyses of molecules. Finally, the application of chemometric 

techniques to IR data provides a powerful tool to develop methods capable of 
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classifying or characterising samples (Vergara-Barberán, Lerma-García, Herrero-

Martínez, & Simó-Alfonso, 2015).  

Recent studies into commercially cocoa derivates have shown the suitability of 

near IR (NIR) for the quantification of main constituents like fat, protein, moisture 

and carbohydrates (Veselá et al., 2007). NIRS has also been shown appropriate to 

determine parameters like geographical origin (Teye, Huang, Dai, & Chen, 2013), 

fermentation quality (Hue et al., 2014), fermentation index or pH (Sunoj, 

Igathinathane, & Visvanathan, 2016), and minor valuable components like organic 

acids (Krähmer et al., 2015), caffeine, theobromine and epicatechin in unfermented 

and sun-dried beans (Álvarez, Pérez, Cros, Lares, & Assemat, 2012), procyanidins 

(Whitacre et al., 2003) and adulterations with carob flour (Quelal-Vásconez, Pérez-

Esteve, Arnau-Bonachera, Barat, & Talens, 2018) and cocoa shell (Quelal-

Vásconez, Lerma-García, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 2019). 

Despite these advances in cocoa characterisation by NIRS, as far as we know, the 

effect of cocoa powder processing on methylxanthine and flavanol content by this 

technique has not yet been studied. 

In this context, the objective of this work is twofold. Firstly, to study the effect 

of cocoa powder processing on methylxanthines (theobromine and caffeine) and 

flavanols (catechin and epicatechin) contents in a large batch of samples (with 

different origins, processing parameters and alkalisation levels). Secondly, to 

evaluate the feasibility of reflectance NIRS combined with partial least square (PLS) 

to non-destructively predict the content of these compounds in cocoa powders. 

 

2. Materials and methods 
 

2.1 Reagents and samples 
 

The employed reagents were: caffeine, theobromine, catechin and epicatequin 

(Sigma-Aldrich, St. Louis, Missouri, USA), acetonitrile (J.T. Baker, The 

Netherlands), methanol (Labkem, Barcelona, Spain) and acetic acid glacial (Sharlau, 
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Barcelona, Spain). Deionised water was obtained using an Aquinity deioniser 

(Membrapure GmbH, Berlin, Germany). 

Samples comprised 86 cocoa powders provided by Olam Food Ingredients 

Company (Cheste, Spain) or purchased in different nationals and international 

markets, to assure variability in cocoa origin (Ivory Coast (n�=�22), Ghana (n�=�8), 

Indonesia (n�=�12), Ecuador (n�=�7), Peru (n�=�4), or undeclared (n�=�33), year of 

production (2017 (n�=�67) or 2018 (n�=�19)) and processing practices (natural or 

alkalised cocoa powders). 

Before analysing, samples were characterised according to their extractable pH 

and colour. Extractable pH determination was performed by the procedure described 

in the ADM Cocoa Manual (2006). CIE L*a*b colour coordinates were obtained by 

measuring the reflection spectrum using a 10° observer and D65 illuminant (Minolta, 

CM 3600D, Tokyo, Japan). Extractable and colour data were used to classify cocoa 

powders into five categories: natural (NC) (pH 5.0–6.0), light-alkalised (LAC) (pH 

6.0–7.2), medium-alkalised (MAC) (pH 7.2–7.6), strong-alkalised (SAC) (pH > 7.6) 

and black powders (BC) (pH > 7.6 and very low L values) (Miller et al., 2008). 

 

2.2. Instrumentation and experimental conditions 
 

2.2.1. Methylxanthines and flavanols extraction 

 

In order to extract methylxanthines and flavanols from cocoa powders, the 

protocol of Lacueva et al. (2008) was adapted: 0.5 g of cocoa powder was weighed, 

suspended in 5 mL H2O at 100ºC+20 mL methanol, mixed for 20 min at 36ºC by 

constant agitation, and centrifuged for 10 min at 10,000 rpm at room temperature. 

Finally, the obtained supernatants were filtered using 0.22 µm pore size PTFE filters 

(Scharlab, Barcelona, Spain). The obtained samples were immediately injected into 

the HPLC system or stored at -20ºC. 
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2.2.2. HPLC determination of methylxanthines and flavanols 

 

Analyte determination was performed in a liquid chromatograph model 

LaChrom Elite (Hitachi Ltd., Tokyo, Japan), equipped with an auto-sampler and a 

UV detector (models L-220 and L-2400, respectively). A 5-µm analytical column 

was used, model Liquid Purple C18 (250 x 4.6 mm i.d.) from Análisis Vínicos 

(Tomelloso, Spain). The mobile phase was prepared by mixing 2% aqueous acetic 

acid (phase A) and a ternary mixture composed of acetonitrile–H2O–acetic acid in 

the 40:9:1 v/v/v proportion (phase B). The following gradient (adapted from Elwers 

et al., 2009) was used: 0-8 min, 10% B; 8-20 min, 10-15% B; 20-35 min, 15-90% B; 

35-50 min, 90% B, then back to the initial conditions. Other chromatographic 

conditions were: UV detection, 280 nm; column temperature, 40ºC; injection 

volume, 20 µL; flow rate, 1.2 mL min-1. 

The differences in analyte content with the various different alkalisation levels 

were established by a multifactorial ANOVA (95% confidence level of LSD; 

p<0.05), constructed using Statgraphics Centurion XV from Manugistics Inc. 

(Rockville, MD, USA). 

 

2.2.3. NIR spectra collection 

 

The 86 cocoa powders were scanned in a FOSS NIR 5000 System 

spectrophotometer, equipped with a transport module (Silver Spring, MD, USA). 

Samples (ca. 5.0 g) were measured by filling a round sample cup (3.8 cm diameter 

x 1 cm-thick quartz windows) to preserve unvarying surface and thickness during 

spectral collection. For each sample, 32 sequential scans with 700 wavelengths were 

measured from 1100 and 2500 nm at 2-nm intervals. Samples were measured twice, 

and the mean spectra were employed for the statistical analysis. 
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2.3. Spectral data analysis 
 

Calibration models to predict the methylxanthines (theobromine and caffeine) 

and flavanols (catechin and epicatechin) contents (previously established by HPLC) 

were constructed by PLS analysis of the spectral data using Unscrambler v10.4 

software from the CAMO Software AS (OSLO, Norway). PLS is a multivariate 

calibration method that could be used to correlate NIR spectra data with chemical 

component contents. Spectral data were organised in a matrix containing the number 

of cocoa samples (N�=�86) in rows and the X- and Y-variables in columns. The X-

variables corresponded to the 700 wavelengths, while the Y-variables were the 

HPLC-determined analyte contents. For PLS model construction, the 86 samples 

were separated into two datasets: the 67 samples from, 2017 were employed to create 

and evaluate the PLS models by leave-one-out cross-validation, while the 19 samples 

from 2018 were used as an external validation set. 

Before any spectral treatment, all spectra were used to construct a principal 

component analysis (PCA) model, which was employed to identify and remove 

defective spectral outliers using the Q residual values and the Hotelling T2 with a 

95% confidence limit (Bro & Smilde, 2014). Moreover, with the aim of detecting 

similarities among the samples, NIR spectra data were employed to build a clustering 

model by using the hierarchical complete-linkage method (HCL). This method aims 

to find similarities and patterns between samples, being this information represented 

in a dendrogram plot (Wajrock, Antille, Rytz, Pineau, & Hager, 2008). 

Finally, PLS models were constructed with no spectral pretreatment (raw data) 

and with three different pre-treatments: 2nd derivative performed with the Savitzky-

Golay smoothing algorithm (2nd derivative S-G) (Savitzky & Golay, 1951), 

orthogonal signal correction (OSC) (Wold, Antti, Lindgren, & Öhman, 1998), and 

their combination. The PLS models' accuracy was evaluated by: the required number 

of latent variables (LVs), the root mean square error of calibration (RMSEC) and 

cross-validation (RMSECV), and the coefficient of determination for calibration 

(R2
C) and cross-validation (R2

CV). The PLS models’ predictive capability was judged 
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by considering: the coefficient of determination for prediction (R2P), the root mean 

square error of prediction (RMSEP), the bias, the standard error of prediction (SEP) 

and the ratio of prediction deviation (RPD) (calculated as the ratio between the 

standard deviation of the reference values -training set- and RMSEP). Performance 

of the different models was considered good when the number of LVs, and RMSE 

and SE values were low, when R2 value tended to unit, and when bias values were 

near to zero, for both the calibration and external prediction parameters (Quelal-

Vásconez et al., 2019). Regarding RPD, a value between 2.0 and 2.5 makes 

approximate quantitative predictions possible, while values between 2.5 and 3.0, and 

above 3.0, indicates a prediction that could be considered good and excellent, 

respectively (Saeys, Mouazen, & Ramon, 2005). 

 
3. Results and discussion  
 
3.1 Alkalisation level evaluation 

 
The 86 cocoa powders were physico-chemically characterised and divided into 

five categories according to their extractable pH values and colour (Miller et al., 

2008). By contemplating these values, 23 cocoa samples were classified as natural, 

19 as light-alkalised, 21 as medium-alkalised, 19 as strong-alkalised and 4 as black 

powders. Considering the linear correlation between alkalisation and pH (Pérez-

Esteve, Lerma-García, Fuentes, Palomares, & Barat, 2016), this classification was 

taken into account to study the relationship between alkalisation intensity and the 

changes found in caffeine, theobromine, catechin and epicatechin contents.  

 
3.2 HPLC determination of methylxanthines and flavanol contents in cocoa 
powders 

 
By applying the experimental conditions included in Section 2.2.1, analyte peak 

identification was achieved by comparing the retention times of the sample peaks 

with the retention times of the standards. Four peaks were observed at retention times 

of 5.1, 9.1, 12.0 and 15.8�min, which respectively corresponded to theobromine, 
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catechin, caffeine and epicatechin. These compounds were quantified using external 

calibration curves. To construct them, six standard solutions at different 

concentrations within the ranges showed in Table 1 were prepared and injected. In 

all cases, R2 above 0.9996 were observed. The other parameters in Table 1 were limit 

of detection (LOD) and limit of quantification (LOQ), which were estimated 

following the ICH guidelines (1996). The obtained values ranged between 0.005-0.1 

and 0.017–0.33�mg�L�1 for LODs and LOQs, respectively. These values were lower 

than those previously reported by others (Gottumukkala, Nadimpalli, Sukala, & 

Subbaraju, 2014; Risner, 2008; Srdjenovic, Djordjevic-Milic, Grujic, Injac, & 

Lepojevic, 2008). In order to assure that no matrix effect was observed in the 

quantification of analytes, standard addition calibration curves (considering the 

linearity ranges in Table 1) were constructed. The four curves provided R2 above 

0.9995 and similar slopes to the external calibration curves. Therefore, it was 

concluded that the external calibration curves were correctly used to quantify these 

analytes in cocoa powders. 
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Table 1 Linear ranges, determination coefficient, LOD and LOQ of the 

determination of methylxanthines and monomeric flavanols by HPLC. 

 

Analyte 
tR 

(min) 

Linear 

range (mg 

L-1) 

R2 

LOD 

(mg L-

1) 

LOQ 

(mg L-

1) 

Theobromine 5.1 50-500 0.9998 0.005 0.017 

Catechin 9.1 1-50 0.9996 0.1 0.33 

Caffeine 12.0 5-250 0.9998 0.05 0.17 

Epicatechin 15.8 0.5-100 0.9999 0.1 0.33 

tR: retention time; R2: determination coefficient; LOD: limit of detection; LOQ: 

limit of quantification. 

Finally, the 86 cocoa powders were subjected to HPLC (see Table 2 for the 

results). The most abundant alkaloid was theobromine, whose content ranged from 

1.53±0.02 to 2.4±0.1 g/100g when considering all the samples. Statistical differences 

in theobromine content were found among alkalisation (p<0.05) as BC possessed 

lower contents than the other categories. The caffeine content ranged from 

0.1503±0.0003 to 0.412±0.003 g/100g. As with theobromine, significant differences 

were observed among samples with different alkalisation degrees (p<0.05), and this 

behaviour has been reported by other authors (Brunetto et al. 2007; Li et al., 2012).  

Among flavanols, epicatechin was the most abundant analyte. The highest 

content (536.59±0.08 mg/100g) went to a NC sample labelled as Equator origin. 

Other natural samples exhibited an average content of ca. 160 mg/100 g. Contents 

statistically lowered as the alkalisation process became more intense, and reached 

average values of ca. 80, 33, 28 mg/100 g and with LODs in the LAC, MAC, SAC 

and BC, respectively. The same behaviour was found for catechin contents. In the 

NC samples, catechin content ranged from 15.2±0.5 to 167±1.2 mg/100g. The 

highest value went to another sample from Equator. In the other natural samples, the 

average value was ca. 80 mg/100 g.  
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Table 2. Theobromine, catechin, caffeine and epicatechin content (mean, minimum 

and maximum values and their standard error) found for the different types of cocoa 

powders employed in this study.  

 
Within rows, values bearing different letters are significantly different (p < 

0.05). LOD = limit of detection 
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According to Table 2, no significant differences in catechin content were found 

in the LAC cocoa powders, but contents statistically decreased in the medium-

alkalised powders, with undetected quantities in the black powders. Similar results 

have been found by other authors. In a study done with 11 cocoa powder samples, 

Lacueva et al (2008) reported values of 200 and 70 mg/100 g for epicatechin and 

catechin in natural powders, and 30 and 25 mg/100 g in alkalised powders, 

respectively. Similar contents were observed by Payne et al. (2010), who reported 

223 and 88 mg/100 g (natural), 69 and 70 mg/100 g (light-alkalised), 26 and 36 

mg/100 g (medium-alkalised) and 4 and 9 mg/100 g (strong-alkalised) for 

epicatechin and catechin, respectively.  

 
3.3 Clustering analysis of the samples 
 

The clustering analysis of the NIR spectra shows four main groups (see Fig. 1). 

First group comprised only one sample of BC, while the second one included the 

other BCs and ca. 16% of the SAC samples. The third group included most NCs, ca. 

74% of LACs, ca. 20% of MACs and ca. 6% of SACs. Finally, the fourth group 

included the 81% of MACs, ca. 79% of SACs, 26% of LACs and the rest of NCs. In 

general, it can be observed that BC samples (minimum content of catechin and 

epicatechin detected) belonged to the first and second group and that the rest groups 

are mostly linked to strong (group 4) or mild alkalisation conditions (group 3). 

However, this grouping cannot be completely linked neither to the content or 

flavanols nor methylxanines. For instance, samples with the highest flavanols 

content (Ecuadorian samples –i.e. NC 67 or NC 52-) are not clearly separated from 

other natural or alkalised samples. Therefore, it could be concluded that in sample 

clustering, besides quantified analytes or alkalisation degrees, there are other 

chemical signals (i.e. proteins, sugars, volatiles, etc) that are affecting sample 

clustering. 
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Figure 1. Dendogram of the clustering analysis performed with the NIR spectra of 

the entire sample set (n=86). 

 

3.4. Prediction of theobromine, catechin, caffeine and epicatechin content by PLS 
 

The raw spectra of the samples (between 1100 and 2500�nm) could contain both 

useful and irrelevant information; thus, it was pre-treated to enhance the final 

outcome. For all spectra, the first applied pre-treatment was the 2nd derivative S-G, 

followed by the OSC pre-treatment and their combination. Then, the optimal pre-

treatment method to enhance the PLS models’ performance was selected by taking 

into account the values included in Table 3. As can be observed in this table, the best 

results were observed after applying the 2nd derivative S-G+OSC for all models. 

Thus, the spectra obtained after applying this pre-treatment is shown in Fig. 2. As 

seen in this figure, signal peaks at wavelengths of 1728, 1764, 1884, 2312 and 

2348�nm were evidenced. The region comprised between 1600 and 1800�nm 

predominantly corresponds to the first overtone region of carbohydrates (C–H 

bands) (Bázár et al., 2016), and the region comprised between 1700 and 2300�nm 
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normally attributes to the first overtones of C–H stretching associated with sugars 

(Osborne, Fearn, & Hindle, 1993, pp. 123–132). 

 
Figure 2. Spectra of the cocoa powders obtained from after applying 2nd 

derivative S-G + OSC pre-treatment. 

Table 3 contains the results obtained for the PLS models constructed to predict 

the different analytes. As seen for the PLS models obtained with the optimal pre-

treatment (marked in italics), all the PLS models provided satisfactory R2
C, R2

CV and 

R2
P values within ranges 0.949-0.969, 0.802-0.889 and 0.813-0.819, respectively. 

For methylxanthine content predictions, the RMSEP values were 0.068 and 0.022 

and the bias came very close to 0 (0.005 and 0.007) for theobromine and caffeine, 

respectively. With flavanols, the models provided RMSEP values of 8.160 and 

7.430, and bias values of -1.440 and 1.034 for catechin and epicatechin, respectively. 

Notwithstanding, the RPD values for all the models were above 2.0, which are 

acceptable for quantitative predictions according to the literature (Saeys et al., 2005). 

The good fit between the different analytes content measured by HPLC and the 

contents predicted by the PLS models for the evaluation set samples is shown in Fig. 

3. 
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Table 3. Results of the PLS models constructed for the prediction of theobromine, 

catechin, caffeine and epicatechin contents in cocoa powders. 

 

2nd Der. S-G = Second derivative-Savitzky Golay; OSC = Orthogonal signal 

correction; #LV = latent variables; R2
C = coefficient of determination for calibration; 

RMSEC = root mean square error of calibration; R2
CV = coefficient of determination 

for cross-validation; RMSECV = root mean square error of cross-validation; R2P = 

coefficient of determination for prediction; RMSEP = root mean square error of 

prediction; RPD = ratio of prediction deviation; N.A. = non available. 

The good fit between the different analytes content measured by HPLC and the 

contents predicted by the PLS models for the evaluation set samples is shown in 

Figure 4. 

  

Compound Pre-treatment #LV 
Calibration Cross-validation Prediction 

R2C RMSEC R2CV RMSECV R2P RMSEP bias RPD 

Theobromine 
(g/100g) 

Non-pretreated 4 0.601 0.111 0.520 0.123 0.160 0.143 -0.027 1.22 
2nd Der. S-G 6 0.976 0.027 0.774 0.084 0.78 0.073 0.008 2.07 

OSC 4 0.923 0.048 0.870 0.064 0.793 0.209 0.027 1.38 
2nd Der. S-G + OSC 3 0.969 0.030 0.889 0.058 0.819 0.068 0.005 2.13 

Catechin 
(mg/100g) 

Non-pretreated 6 0.510 11.430 0.142 15.460 0.552 13.110 -1.463 1.25 
2nd Der. S-G 2 0.290 13.722 0.170 15.212 0.311 16.272 -1.962 1.01 

OSC 7 0.950 3.680 0.820 7.125 0.158 17.986 1.829 0.91 
2nd Der. S-G + OSC 1 0.997 0.787 0.932 4.349 0.830 8.160 -1.440 2.01 

Caffeine 
(g/100g) 

Non-pretreated 7 0.832 0.026 0.763 0.031 N.A 0.058 0.026 1.09 
2nd Der. S-G 5 0.941 0.015 0.763 0.031 0.775 0.025 0.008 2.55 

OSC 3 0.911 0.019 0.869 0.023 0.031 0.051 -0.028 1.22 
2nd Der. S-G + OSC 1 0.940 0.015 0.802 0.028 0.813 0.022 0.007 2.81 

Epicatechin 
(mg/100g) 

Non-pretreated 7 0.900 5.210 0.433 12.924 0.690 9.899 -4.690 1.58 
2nd Der. S-G 5 0.972 2.740 0.295 14.412 0.644 10.592 -3.024 1.57 

OSC 1 0.999 0.050 0.999 12.968 0.470 12.970 -0.480 1.29 
2nd Der. S-G + OSC 6 0.999 0.262 0.988 1.810 0.824 7.430 -1.034 2.24 
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Figure 3. HPLC measured versus NIR predicted (a) theobromine (THEO), (b) 

catechin (CAT), (c) caffeine (CAF) and (d) epicatechin (EPI) contents by PLS in the 

prediction 
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Finally, the wavelengths with a better prediction capability according to the b 

vector profiles are shown in Fig. 4. The most important wavelengths related to 

variation in theobromine content (see Fig. 4a) are found at 1384, 1414, 1710, 1730, 

1742, 1764, 1884, 1906, 1934, 2308, 2322 and 2350�nm, among others, and agree 

with those described by Álvarez et al. (2012). Among these wavelengths, 1414, 

1730, 1764, 1906, 1934, 2308 and 2350�nm increased as theobromine content rose, 

while the rest lowered. According to literature (Veselá et al., 2007), these variations 

are characterised mainly by the stretching of H2O of weakly bounded water, proteins 

and aromatics, the first overtone of stretching of CH of aromatics, the first overtone 

of the symmetric and asymmetric stretching vibration of CH2, and the stretching and 

rocking vibrations of CH2 of polysaccharides and fats. 
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Figure 4. The B vector profiles of the PLS models constructed to predict (a) 

theobromine, (b) catechin, (c) caffeine and (d) epicatechin contents. 
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For catechin content predictions, the most important wavelengths were 1414, 

1440, 1730, 1744, 1880, 1908, 2312, 2322, 2350 and 2360�nm (see Fig. 4b). Among 

them, 1414, 1744, 1908, 2322 and 2360�nm increased as catechin content rose, while 

the rest lowered. These variations may be associated with the stretching of H2O of 

weakly bounded water, proteins and aromatics and also of non-bounded water, the 

asymmetric stretching and rocking of H2O of very weakly bounded water fat, 

asymmetric stretching and rocking of CH2 of polysaccharides and the stretching and 

rocking of CH and CC (Veselá et al., 2007). 

In the case of caffeine (see Fig. 4c), the most important wavelengths are located 

at 1414, 1646, 1940, 2272, 2312 and 2350�nm (which increase as the caffeine content 

raised) and the wavelengths at 1214, 1440, 1730, 1882, 2250, 2322, and 2360�nm 

(which decrease as the caffeine content raised). In this case, the wavelengths 

corresponded to the stretching of H2O (non-bounded water), the first overtone of 

asymmetric stretching vibration of CH2, proteins, combination of amides, the 

stretching of CH and CC and the stretching and rocking of CH2 of fats (Krähmer et 

al., 2015). 

Finally, and as shown in Fig. 4d for epicatechin prediction, the most important 

wavelengths related to the variation of epicatechin are the 1440, 1900, 2014, 2246, 

2320 and 2358�nm bands (which increase as the epicatechin content increases), and 

the 1922, 2040, 2176, 2266, 2312 and 2350�nm bands (which decrease as the 

epicatechin content raises). These bands could be assigned to the stretching of H2O 

(non-bounded water), the asymmetric stretching and rocking of H2O of very weakly 

bounded water fat, proteins and the stretching of CH and C=C (Veselá et al., 2007). 

Similar NIR chemical vibrations has been found in the quantification of total phenols 

and carotenoids in blackberries (Toledo-Martín et al., 2018), and in the 

determination of the fat, caffeine, theobromine of sun dried cocoa beans (Álvarez et 

al., 2012). 
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4. Conclusions 

 

The HPLC determination of methylxanthines and flavanols of a large collection 

of cocoa powders provided not only better knowledge of the concentration variability 

in natural cocoas from different origins, but also the understanding of the effect that 

industrial alkalisation has on those contents. A wide fluctuation in flavanol content 

was observed for natural powders, which highlights the natural variability of 

unprocessed samples given their different origins. Moreover, the effect of cocoa 

alkalisation on the content of all analytes was evidenced. Despite such evidence, the 

many analysed samples indicated strong-alkalised powders with higher analyte 

contents than some natural cocoa powders. This reinforces the importance of 

measuring the content of these analytes during raw material selection and in all the 

industrial processing steps when functional products want to be launched on the 

market. In line with this, the possibility of predicting the content of these functional 

analytes by a fast, non-destructive and reliable methodology, such as NIRS, was 

confirmed. Despite the fact that the clustering analysis did not allowed a sample 

grouping according to the alkalisation degree or the flavanols and/or methylxantines 

content by applying PLS models, all analytes were satisfactorily predicted. 

Therefore, the present results bridge the information gap in the cocoa sector about 

the variability found in these functional compounds in commercial samples, and also 

propose a fast reliable methodology to establish the content of these important 

functional compounds for the cocoa industry. 
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4. GENERAL DISCUSSION 
 

The first chapter of this thesis shows the results aimed to solve a common 

problem in cocoa industries: the adulteration/mixing of cocoa powder with cheaper 

(carob flour) or valueless (cocoa shell) materials. Article (I) concerns the 

determination of cocoa shell percentage (undesired material) present in cocoa 

powders, which can be considered a parameter to be controlled during the shelling 

process as well and in processed products. The determination of cocoa shell 

percentage was done by means of the application of NIR and multivariate analysis. 

On the other hand, in the article (II), the detection of cocoa powder adulteration with 

carob flour was done using the same methodology.  

To carry out the studies, a collection of 86 cocoa powders with different 

alkalization degrees and origins were gathered. To the mentioned samples, 6 carob 

flours of different roasting levels and 2 cocoa shells were added.  

In the study dealing with the prediction of cocoa shell content by using NIR 

(article I), from the mentioned collection, all 20 natural cocoas (coming from 

different origins and obtained after different processings) part of them obtained in a 

company that guarantees the lowest cocoa shell content were randomly selected and 

mixed with the 2 cocoa shell samples providing a total of 72 mixtures. Cocoa shell 

was added to cocoa powder samples in 7 percentages which were 0, 2.5, 5, 7.5, 10, 

20 and 40%. This maximum value was fixed since higher percentages would provide 

a product with physico-chemical characteristics (for example texture) different to 

cocoa. 

After the spectra acquisition, differences among spectra of pure cocoa shell and 

pure cocoa powders were found. These differences allowed a separation of samples 

by means of a PCA analysis. After this, different pretreatments were applied to the 

spectra, being the EMSC +OSC pretreatment the one that led to better results for 

both, PLS and PLS-DA models construction. For both cases, the use of all spectra 

wavelengths was considered, jointly with the use of the most important wavelengths 
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selected according to the Variable Importance in Projection (VIP) scores, models 

being next compared. The best prediction performance was obtained with a PLS 

model constructed with using the 6 main wavelengths selected according to VIP 

scores and 1 latent variable, which provided R2
P of 0.967, RMSEP of 2.43% and a 

RPD of 5.03. 

On the other hand, the same selected wavelengths were used for the construction 

of the PLS-DA model aimed to classify samples into two categories: cocoa powders 

containing shell contents (based on fat-free dry matter) below 5% and comprised 

between 5 and 40% (since 5% is considered the acceptance limit in cocoa powders 

by the Codex Alimentarius). The best PLS-DA model provided sensitivity, 

specificity and NER values of 100, 85 and 92.5%, respectively, for the first category 

(below 5%), while for the second one (5-40%) the values reported were 85, 100 and 

92.5%, respectively.  

In the prediction of cocoa powder adulteration with carob flour (article II), 12 

cocoas with proven authenticity with 4 alkalization degrees (3 cocoa for each 

alkalization degree) were mixed with the 6 carob. Carob flours were added to cocoa 

powder samples in percentages comprised between 0 and 40%. In this study, the 

Latin Hypercube Strategy (LHS) (Helton & Davis, 2003) was followed to perform a 

total of 216 mixtures. 

After the spectra measurements, the first exploration of the results done with a 

PCA showed different groups of samples. The most variability was related to the 

alkalization degree of cocoa samples and to the differences among cocoas and carob 

flours. After this, different pretreatments were applied to the spectra, being the 2nd 

Der. S-G + OSC pretreatment the one that led to better results. For all the PLS models 

and the PLS-DA, the use of all spectra wavelengths was considered. Using these 

pretreated spectra, a PLS-DA was built in order to classify samples into three 

categories: pure cocoa powders, adulterated cocoa powders and carob flours. A good 

PLS-DA model was obtained with an accuracy value of 100% for the classification 

of the samples of the external validation set in the three categories. Finally, the best 
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prediction of the adulteration percentage was obtained by means of PLS using 1 

latent variable, providing R2
P, RMSEP of 3.2% and a RPD of 6.3. 

Taking into account the results previously indicated for both qualitative and 

quantitative analysis of both articles, it can be concluded that NIR spectra combined 

with multivariate analysis is a good tool to assess in a fast and non-destructive way 

the presence of valueless (cocoa shell) or cheaper materials (carob flour) in cocoa 

powders. 

The second chapter of this thesis deals with the fast analysis of some bioactive 

compounds present in cocoa powders (methylxanthines and flavanols). This chapter 

contains the article (III) in which the content of these bioactive compounds were 

determined by HPLC in a huge cocoa powder sample set (n=86), covering different 

origins, processing parameters and alkalization levels, being these content next 

predicted by using NIR and PLS regression.  

By one hand, the variation of methylxanthines (theobromine and caffeine) and 

flavanols (catechin and epicatechin) content in a large cocoa powders sample set, 

was first established by HPLC. HPLC results showed on the one hand, for the 

methylxanthines values of theobromine in the range of 2.15 to 1.95 g/100g, caffeine 

values since 0.29 to 0.20 g/100g. On the other hand, for the flavanols values of 

catechin since 78.21 to 23.36 mg/100g, and for the epicatechin values in the range 

of 163.17 to 28.13 mg/100g. Concluding that the alkalization process led to a 

reduction of the content of all analytes, being this loss more evident in flavanols. The 

determination of these analytes in a huge set of samples has allowed not only a better 

knowledge of the concentration variability in natural cocoas coming from different 

origins, but also the understanding of the effect that industrial alkalization provokes 

in those contents. 

Since HPLC is a destructive technique that requires long analysis times, the 

development of an alternative and fast analytical approach able to solve this problem 

is considered. In this regard, the use of NIR followed by PLS was successfully 

proposed. Concretely, all analytes were well-predicted, with a better prediction for 
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methylxanthines (R2
p 0.882 for both analytes; RMSEP 0.020-0.061 g/100g, bias -

0.027-0.006) than for flavanols (R2
p 0.818-0.863; RMSEP 6.63-15.87 mg/100g, bias 

1.942-3.056). Moreover, the models had values of RPD higher than 3 in all the 

prediction models, which means that those models are good. 
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CONCLUSIONS 
 

This point summarizes the main conclusions of this thesis and draws out their 

implications for cocoa powder quality control. Five main general conclusions can be 

drawn from the results of this work: 

 

1. A collection of 86 cocoa samples with different origins and alkalization 

degrees, 6 carob flours and 2 cocoa shells were gathered and 

strategically used in the studies of this thesis. Besides the mentioned 

samples, a battery of mixtures with known levels of cocoa and 

undesired materials (shell or carob flour) was constructed to be used 

during the correlation of a NIR spectrum with a specific content of both 

materials. This complete set of samples with different characteristics 

allowed to obtain robust models. 

 

2. The fast detection of cocoa shell in cocoa powder is possible by means 

of NIR spectroscopy and multivariate analysis. The best results (R2
P of 

0.967 and a RMSEP of 2.43%) are found when the PLS model is built 

with the EMSC+OSC pretreated spectra, after the selection of the most 

important 6 wavelengths using VIP scores and 1 LV. Regarding the 

classification, the PLS-DA model allows the correct classification of 

92.5% of the samples of a validation set in two categories, according to 

the Codex Alimentarius recommendations (<5% and >5% of cocoa 

shell content). 

 

3. NIR spectroscopy combined with multivariate analysis is a rapid and 

non-destructive method to determine quantitative and qualitative the 

adulteration of cocoa powder with carob flour without any sample 

preparation. The PLS-DA model constructed was able to correctly 

classify the 100% of the validation set samples. The best prediction 
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model was obtained using PLS regression of the full spectra (1100-

2500 nm) after preprocessing with 2nd Der. S-G+OSC with a R2
P of 

0.974 and a RMSEP of 3.2%. 

 

4.� The determination of methylxanthines and flavanols content of cocoa 

powders by means of HPLC allow to observe a wide range of values 

for each of the analytes. These values were partially related to the 

alkalization level, since in average, higher values were found in natural 

powders, as well as lower values were found in highly alkalized ones. 

Nevertheless, it was observed that inside a category (especially in 

natural cocoas), values fluctuated a lot among samples, indicating the 

natural variability of unprocessed samples probably due to their 

different origins, varieties and harvesting conditions. Furthermore, it 

was also found that some alkalized samples presented higher flavanols 

content than certain natural ones. This highlights the importance of 

measuring the content of these analytes during raw material selection 

and during the industrial processing steps to obtain functional products. 

 

5.� NIR spectroscopy can be used as an alternative to the HPLC, as a fast 

and non-destructive method in the routine determination of catechin, 

epicatechin, caffeine and theobromine in the cocoa powder industry. 

Good performance of the PLS models were obtained for the 

determination of methylxanthines (R2
P of 0.882 for both analytes; 

RMSEP of 0.020 and 0.061%, BIAS of 0.006 and 0.027 for caffeine 

and theobromine, respectively) and flavanols (R2
P of 0.863 and 0.818; 

RMSEP of 6.63 and 15.87%, BIAS of 1.942 and 3.056 for catechin and 

epicatechin, respectively). 
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FUTURE PERSPECTIVES  
 

The prediction and classification models built in this study were constructed 

using samples that covered   different origins and alkalization degrees. Nevertheless, 

more natural variability could be considered. This natural variability in the cocoa 

intrinsic quality parameters is dependent also of environmental conditions, soil 

nutrients, fermentation practices, etc. which have not been considered in this study. 

This means that recalibration with new samples or with a higher number of samples 

might certainly improve the prediction and the discrimination capability of the 

models.  

In comparison with models obtained in articles I and II, RPD values are lower 

than those of the article III. To obtain more accurate models, a strategic calibration 

of models according to the alkalization levels could allow more accurate models, 

over all in the case of flavanols and methylxanthines content prediction from NIR 

spectra. Another strategy to increase the accuracy of the models could be the 

combined use of Near Infrared with Medium Infrared spectroscopy.  

The possibility of detection of adulterants not only offers a final product with 

higher quality but also ensures its safety. Thus, this technique could be proposed to 

the cocoa sector as a reliable method to control products authenticity. 

The understanding of alkalization process by means of NIR spectroscopy can 

give a wide insight of how to produce products with higher functional quality, 

selecting those technological parameters that avoid big losses of functional 

compounds. On the other hand, the fast determination of these compounds might 

allow the industry to quantify their content in each batch of product and include this 

information in both, product technical sheet and product label. 
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