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Abstract

Fourier transform infrared (FTIR) spectroscopic images provide rich infor-

mation of the biochemical tissue composition that can be analyzed together with

other microscopy modalities to perform objective pathological diagnoses. Hema-

toxylin and Eosin (H&E) stained images are the reference images that patholo-

gists use to make a final diagnosis of most diseases, such as cancer. Therefore,

H&E images may be the most interesting imaging modality to be fused with

FTIR images. Unfortunately, H&E stain introduces severe confounding artifacts

in the FTIR spectra. Thus, in repeatable studies different slices of tissue must

be used to acquire images for each imaging modality, which must be aligned

so that the different regions of tissue spatially match. The main objective of

this manuscript is to establish a complete pipeline where the two types of im-

ages (H&E and FTIR) from different tissue sections are aligned or registered.

The proposed automatic framework starts by obtaining grayscale images from

both FTIR raw data and H&E images where analogous anatomical structures

are easily distinguishable. In the first alignment step, a feature-based registra-
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tion produces a fast coarse rigid alignment by using the Scale Invariant Feature

Transform (SIFT) algorithm to automatically find and match relevant keypoints

in both grayscale images. Due to the spatial variability between samples, diffe-

rent combinations of SIFT parameters are explored and the best combination is

selected through the maximization of a similarity measure between the aligned

images. In the second alignment step, an intensity-based registration refines

the initial alignment and compensates for the local spatial differences between

the tissue sections by iteratively estimating a non-rigid transformation. This

methodology was used to register 47 colon samples from three different patho-

logical groups (16 normal, 16 intermediate and 15 tumoral) with good overall

results, which were quantitatively evaluated for both registration steps. In the

first rigid alignment step, the global median of difference in positioning com-

pared to a manual registration was under 1 pixel. In the second registration

step, the global median gain in mutual information between the registered im-

ages was 0.125 bits. In contrast to existing approaches, the proposed method

does not need a prior segmentation step that may introduce errors and reduce

the spatial information content, which is crucial when different sections of tissue

are used. It can improve the accuracy to combine the spatial information ex-

tracted from both the traditional H&E stained images and the emerging FTIR

spectroscopy.

Keywords: image alignment, correlative microscopy, fourier transform

infrared spectroscopy, histopathology, non-rigid registration

1. Introduction

Colorectal cancer is the third most diagnosed cancer worldwide with 1.36

million of new cases detected in 2012 [1]. In this type of cancer, the survival

rate is highly dependent on the stage at which the disease is diagnosed. For

instance, in the former Anglia Cancer Network the five-year relative survival

decreased from 95% at initial Stage I to 7% at metastatic Stage IV for patients

diagnosed during 2002-2006 [2].

2



The final diagnosis of colorectal cancer is performed by expert pathologists,

who examine histological sections extracted from suspicious biopsies acquired

during colonoscopy. These slices of tissue are commonly stained with Hema-

toxylin and Eosin (H&E) to color the tissue structures (nuclei in blue or purple,

cytoplasm and connective tissue in pink) and observed with an optical micro-

scope. However, this assessment is still done in a qualitative manner, relying

heavily on the judgment and experience of the pathologist. Indeed, several

studies [3, 4] have revealed a suboptimal inter-observer variability in the dif-

ferentiation and reporting of colorectal polyps, suggesting that more objective

criteria should be applied for risk stratification in screening and surveillance

guidelines.

Fourier transform infrared (FTIR) spectroscopy is a technology widely used

in industry that has recently shown an increasing capability to improve the

diagnosis of different types of cancer [5]. This technique takes advantage of

the ability of near- and mid-IR light to excite the vibrational modes of the

chemical bonds that form the tissue. The main generated signal consists of an

absorption spectrum that informs of the chemical composition of the illuminated

tissue, fitting all the characteristics to become a clinically useful biomarker [6].

When combined with array detectors and appropriate optics, a hyperspectral

image with spatially resolved chemical information can be acquired [7].

FTIR images are information-rich data structures that can be analyzed,

alone or together with other imaging modalities, to provide objective patho-

logical diagnoses. In order to develop new diagnostic algorithms, the different

regions of tissue should be correctly labeled and must spatially match between

images of distinct modalities. As commented, the H&E stained samples are the

gold standard where the pathologists can distinguish and label different anatom-

ical and pathological structures within the tissue. Therefore, H&E images may

be the most interesting imaging modality to be fused with FTIR images. How-

ever, the H&E stain irreversibly changes the chemical composition of the tissue

and introduces confounding artifacts in the FTIR spectra [8]. In some cases,

the tissue is measured by FTIR spectroscopy before applying the H&E stain.
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Nevertheless, this option is technically challenging and it impedes performing

posterior FTIR measurements and retrospective studies. Therefore, a common

solution is to measure different slices of tissue with each imaging modality.

1.1. Objective

The main objective of this manuscript is to establish a methodology where

the two types of images (H&E and FTIR) from different tissue sections are

aligned or registered. The aim of this alignment is to compute the spatial trans-

formation that communicates the coordinate systems of the two images. This

transformation makes possible to translate or fuse the spatial information con-

tained within each imaging modality. In particular, the position and auxiliary

information (e.g. pathological labels) of different regions of interest, identified

by an expert pathologist in the H&E images, can be transferred to the FTIR

coordinates with the calculated spatial transformation. In doing so, objective

diagnostic algorithms may be created in future studies by employing the fused

pixels’ information from each imaging modality.

The developed registration method must be robust against the different

sources of variability intrinsic to the problem (Sec. 1.2). Therefore, another

important objective is to assess the robustness and effectiveness of the proposed

methodology in a real-world dataset.

1.2. Problem overview

Fig.1 outlines the problem faced in this work. Different histological sections

are extracted with a microtome from a colon biopsy that has been chemically

treated and fixed in a paraffin block for preservation purposes. Some sections

follow the H&E staining process and one of them is carried to an optical micro-

scope to take RGB images in the visible spectrum range. This color image is

composed of three channels (red, green and blue) so that a three-valued intensity

vector is associated with each pixel.

Another section is directly analyzed by means of FTIR spectroscopy without

any further chemical processing. In the ideal case, this last section would be
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adjacent to the one used in the optical microscope. However, this ideal case

cannot be guaranteed in clinical routine due to problems in the handling and

cutting of the biopsy sample. FTIR sensors can measure a large quantity of

wavelengths in the near and mid-IR range, providing hyperspectral images that

may have hundreds or even thousands of channels. As can be seen in Fig. 1,

FTIR images are three-dimensional data structures with two spatial dimensions

(x, y) that define the position of each pixel and a third spectral dimension (ν),

which consists of the recorded wavenumbers (inverse of wavelengths). Thus,

each pixel has an associated absorption spectrum that represents the overall

chemical composition of a tissue portion of several squared microns.

The variability between the images of both modalities can be divided into

four main sources:

• Intensity values: due to the distinct range of wavelengths covered by each

image detector. Finding a correct relationship between intensities of cor-

responding pixels is one of the challenges of this multimodal problem.

• Pixel size: owing to the characteristics of the optics and the detectors.

This can be solved by applying a proper scaling if the exact resolutions in

both images are known or by introducing a scaling factor in the spatial

transformations.

• Coarse spatial differences: because each image device has its own spatial

reference. Therefore, large differences in spatial positions and orientation

may exist between corresponding anatomical structures.

• Local spatial differences: as a consequence of not using the same tissue

sections. These dissimilarities may be divided into anatomical differences

naturally present in the tissue and local deformations introduced by the

physical manipulation, such as cutting with the microtome. If the sections

are not adjacent, these local differences are further exaggerated.

The process of finding the alignment between images acquired with different

types of sensors and matching their spatial references is called multimodal re-
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Figure 1: Problem overview. Several histological sections are extracted from a paraffin-fixed

colon biopsy. One of the sections is stained with H&E and analyzed with an optical microscope

to take a three-channel RGB image. A different section is directly measured with a FTIR

spectrometer to obtain a hyperspectral image, where each pixel has an associated spectrum

of hundreds or thousands of channels.

gistration. Classical reviews of image registration can be found in [9–12] and a

recent comprehensive overview in [13, 14], where the most recent advances in

this field are described as well as the techniques applied to medical images. In

the problem addressed in this paper, the use of images from different modalities

along with the fact that they come from different sections of tissue complicate

this task.
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1.3. Related work

Many approaches exist to deal with the problem of multimodal registration,

mainly because the decisions made in each step of the process depend on the

application and on the characteristics of the involved images. To our knowledge,

only two recent studies [15, 16] tackle the problem of registering H&E and

FTIR images. Nevertheless, in both of them the same histological sections

were firstly measured by FTIR spectroscopy and later stained with H&E to

be analyzed by optical microscopy. In [15], the images were taken from tissue

microarrays (TMAs) of prostate cancer and converted into binary form by trying

to separate the pixels that contained tissue from the background. As stated

in [15], this binarization bypasses the multimodal problem because the only

reliable features to establish a spatial correspondence between these kinds of

images are macroscopic sample shapes and empty spaces (glandular lumens and

breaks) inside the tissue. A more general problem is treated in [16], where

images of small regions of tissue obtained using FTIR or other spectroscopic

modalities are registered with whole-slide H&E images by a template matching

procedure. In that study a pre-segmentation step is performed on each image

through k-means clustering, taking the FTIR spectrum and the RGB vector

as input features for each pixel. The spatial arrangement of the segmented

pixels is then matched through an exhaustive sparse search with geometrical

restrictions (only translations or little rotations up to ±30 degrees) due to its

computational complexity. However, the pre-segmentation step diminishes the

spatial local information and can also introduce severe mistakes because the

natural clusters may not reflect the same spatial structures in both images due

to the different information contained in the RGB vectors and the FTIR spectra.

A different multimodal registration problem involving microscopic images

from adjacent sections of prostatic tissue is addressed in [17]. In that study,

several adjacent sections with different grades of cancer are stained with either

H&E, immunohistochemical or fluorescence dyes. The spatial correspondence

between adjacent sections is obtained by means of a rigid registration based on

the features automatically provided by the Scale Invariant Feature Transform
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(SIFT) [18, 19] and filtered using the Random Sample Consensus (RANSAC)

algorithm [20]. This approach is similar to the one used in the first step of the

registration framework proposed here (Sec. 2.5).

A previous study was performed to resolve the alignment problem faced

here [21]. That work presented the preliminary application of a two-step regis-

tration framework similar to the one addressed in this paper to a cohort of 7

samples. However, in that study a less robust algorithm based on Speeded Up

Robust Features (SURF) descriptor [22] was used in the first alignment step

and thorough evaluation of the results was not performed.

1.4. Proposed framework

As stated in Sec. 1.1, the objective of this study is to establish a complete

pipeline where the two types of images of the different sections of tissue are

aligned. After setting some parameters, this alignment is performed in an auto-

matic way through two registration steps which analyze different characteristics

of the grayscale images obtained from the initial images. The key step of the

suggested method is to obtain these grayscale images from the FTIR hyperspec-

tral data cube.

The proposed framework starts by obtaining grayscale images from the two

imaging modalities, which are the inputs of the registration method. The main

aim of this preliminary step is to get images with similar local contrast where

analogous anatomical structures are easily distinguishable.

The registration process consists of two steps. The first step produces a

fast coarse alignment that offers good initial conditions for the finer registra-

tion performed in the second step. The first registration step is a feature-based

registration that uses the SIFT algorithm [18, 19] to automatically find and

match relevant keypoints in both images. These matches are filtered with the

RANSAC algorithm citefischler1981 to estimate a coarse rigid transformation.

Several combinations of SIFT parameters were considered due to the wide spa-

tial variability between the studied sections of tissue, which may not be im-

mediately adjacent. The best combination of parameters in each sample was
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chosen through the maximization of a multimodal similarity measure between

the aligned images.

The second registration step consists of an intensity-based registration that

seeks to refine the alignment and to compensate for the local spatial differences

between the tissue sections of the two imaging modalities. In this last stage,

a non-rigid transformation is iteratively estimated to maximize again the same

multimodal similarity measure. Several parameters must be adjusted in the

intensity-based algorithm, but this time a global combination of parameters

was empirically fixed to reach a reasonable fine alignment.

The obtained results for the available dataset were qualitatively and quanti-

tatively assessed. The rigid transformation obtained with the first registration

step was evaluated by comparison with a gold standard rigid transformation

that was estimated based on manually selected landmarks. The evaluation of

the second non-rigid registration step is more difficult because no gold standard

can be practically established for comparison. Therefore, the results were as-

sessed by studying the modification of a different multimodal similarity measure

before and after this last registration step.

2. Materials and methods

2.1. Dataset

The available dataset consists of 47 colon samples from different pathological

groups: 16 normal (non-cancerous), 16 intermediate (comprising adenoma and

hyperplastic tissue) and 15 tumoral (cancerous). All samples were fixed and

embedded in paraffin blocks. One slice of 7 µm thickness and several contiguous

slices of 3 µm were extracted from each block with a microtome. The thicker

slice was not further treated and was measured with an FTIR imaging system.

This system consisted of an Agilent 620 FTIR microscope coupled to an Agilent

670 FTIR spectrometer with a Globarr light source and a liquid nitrogen cooled

Focal Plane Array (FPA) detector of 128× 128 pixels. IR light was transmitted

through a 15× Cassegrain reflective condenser and objective (NA = 0.62) giving
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an effective pixel size of 5.5× 5.5 µm2 and a corresponding field of view (FOV)

of 704 × 704 µm2. The samples were measured in transmission mode and the

absorption spectra were acquired between 1000-3900 cm−1 with a wavenumber

interval of 4 cm−1. Multiple frames were acquired and combined to allow a

larger overall FOV, which varied depending on the size of the sample and the

region of interest.

The rest of sections were chemically deparaffinated and stained with H&E.

One of these sections, ideally contiguous to the one measured by FTIR spec-

troscopy, was chosen to acquire RGB images with an optical microscope. A

Philip Harris DMSK211 microscope with a coupled digital camera of 1280×1024

pixels was used to record sequential images that covered the full H&E sample.

An objective lens of 20× was used, giving a pixel size of 0.4 × 0.4 µm2. The

movement of the microscope stage was automatized with a custom hardware

based on Raspberry Pi. The tiled images were stitched with Microsoft Image

Composite Editor (ICE) in order to obtain the final RGB image of the whole

sample.

2.2. Registration pipeline

A block diagram with the main steps of the proposed registration pipeline is

shown in Fig. 2. In order to illustrate the outputs of each step, a representative

image from a specific sample is shown next to each block.

The inputs of the process are the two raw data structures of each imaging

modality (RGB and FTIR), which were described in Sec. 1.2. The first stage

of the framework consists of obtaining representative grayscale images from the

two raw inputs. This is the key step in the pipeline and enables us to apply

registration methods that have proven to be effective in other medical areas that

operate with multimodal grayscale images [13, 14, 23, 24]. The aim is to obtain

two images with similar local contrast where analogous anatomical structures

can be easily observed. These two grayscale images, named T1 (RGB) and R

(FTIR), are the inputs of the next step.

A feature-based registration with a rigid spatial transformation is performed
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Figure 2: Block diagram of the proposed registration framework. The outputs of each step

are illustrated with a representative image from a single sample.

in the second level of the pipeline. Its main objectives are to compensate for

the coarse spatial differences between images and to provide an initial alignment

based on the correspondence of keypoints, which are automatically detected and

matched in both images using SIFT and RANSAC as described in Sec. 2.5. In

this initial alignment, the representative FTIR grayscale image R acts as the

reference image and the H&E grayscale image T1 is the target image that is

shifted through a rigid transformation to produce image T2.

In the third and final step of the framework, an intensity-based registration

is applied to perform a non-rigid spatial transformation. It takes as inputs

the unaltered reference image R and the target image T2 to produce the final

output image T3. The aim of this step is twofold: on the one hand, to refine

any remaining misalignment and on the other hand, to diminish local spatial

differences due to the use of different slices of tissue.

2.3. Representative images

The critical step in this work is converting the data structures of each modal-

ity into grayscale images such that registration can be performed in the grayscale

domain. The goal is to create two images with similar local contrast where cor-

responding anatomical structures can be easily observed. The process to obtain
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these grayscale images is different for each imaging modality.

2.3.1. H&E grayscale image

Two steps were applied to construct the H&E grayscale image:

1. Resizing: A bi-cubic interpolation with an antialiasing filter was per-

formed to downscale the original H&E color images to the same pixel

size as FTIR images.

2. Transformation to grayscale: The RGB values of the resized images were

converted to grayscale by computing the luma Y, which is the achro-

matic component representing luminance in the Y IQ color space [25]. In

the studied dataset, luma component demonstrated to have a high rate

of convergence to an optimal solution, especially in the first registration

step, as described in Sec. 3.2. In addition, it demonstrated to be more ro-

bust against different illumination conditions (some samples had uneven

spatial illumination) and staining variability (e.g. cancerous regions stain

darker than normal ones) than other chromatic components. In a theoret-

ical way, human visual system is more sensitive to luminance differences

rather than chromatic differences. The luminance is closely related to the

perceptual attribute called brightness, which is the visual sensation ac-

cording to which a source appears to emit more light or less than another

does [25]. On the other hand, absorbance values of the FTIR images may

be interpreted as the capability of an object to absorb more light or less

than another does. Therefore, theoretically luma component may be a

good candidate to be inversely related to a transformation that condenses

the absorbance values of the FTIR images (Sec. 2.3.2). As commented

before, this theoretical intuition was empirically supported by the results

obtained and compared with a manual gold standard registration. The

specific conversion to obtain Y is a weighted combination of the three-

valued vector (R,G,B):

Y = 0.299 · R+ 0.587 · G + 0.114 · B (1)
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2.3.2. FTIR grayscale image

Before transforming the FTIR hyperspectral data into a single grayscale im-

age, the spectra must be pre-processed. Pre-processing is the most relevant

stage in FTIR data analysis and interpretation [26, 27]. It is essential to remove

the unwanted effects involved in the spectral data acquisition and to highlight

specific information within the spectra. No universal pre-processing method

exists [28]; the specific combination of pre-processing steps depends on the ap-

plication.

In order to illustrate the applied pre-processing, the final representative

FTIR grayscale image of one sample is shown in Fig. 3a. In this image five

pixels have been coarsely marked with different colors and numbers. Pixels 1

and 2 exemplify two regions without tissue (substrate), pixel 3 corresponds to

a region where there is a low amount of sample (interior of lumen), pixel 4 rep-

resents a region where the presence of organic material is higher than in pixel

3 (outer region of lumen) and, finally, pixel 5 illustrates a region with the high-

est content of tissue of the selected pixels. The same colors and numbers are

used to represent the corresponding raw spectra in Fig.3b. Strong peaks due to

contaminants such as CO2 (∼2300-2400 cm−1) and paraffin (∼2800-3000 cm−1)

can be easily observed in the raw spectra because they are even present in the

substrate regions (pixels 1 and 2).

The pre-processing steps applied in these images, with the reasoning behind

their use, were:

1. Spectral window selection: The raw absorption spectra were cropped to the

so-called fingerprint region (1000-1800 cm−1), which contains the vibra-

tional frequencies of the chemical bonds from the most relevant biomolecules

[6]. Thus, attention is focused on the most informative wavenumbers and

the stronger contaminant bands are rejected (Fig. 3c).

2. Removal of remaining spectral contaminants: Relatively strong peaks due

to paraffin still appear in the fingerprint region (1360-1390 and 1430-

1490 cm−1). The absorbance values corresponding to those ranges of

13



1

2

3
4

5

(a)

wavelength (µm)
12 10 8 6 4 

wavenumber (cm-1)

1000 1500 2000 2500 3000 3500

ab
so

rb
an

ce

-1

-0.5

0

0.5

1

1.5

2

Pixel 1
Pixel 2
Pixel 3
Pixel 4
Pixel 5

(b)

wavelength (µm)
10 9.5 9  8.5 8  7.5 7  6.5 6  

wavenumber (cm-1)

1000 1100 1200 1300 1400 1500 1600 1700 1800

ab
so

rb
an

ce

-0.1

0

0.1

0.2

0.3

0.4

0.5

Pixel 1
Pixel 2
Pixel 3
Pixel 4
Pixel 5

(c)

wavelength (µm)
10 9.5 9  8.5 8  7.5 7  6.5 6  

wavenumber (cm-1)

1000 1100 1200 1300 1400 1500 1600 1700 1800

ab
so

rb
an

ce

-0.1

0

0.1

0.2

0.3

0.4

0.5

Pixel 1
Pixel 2
Pixel 3
Pixel 4
Pixel 5

(d)

Figure 3: (a) Representative FTIR grayscale image of a colon sample where five pixels have

been marked and numbered with different colors. Cyan scale bar represents 200 µm. (b) Full-

range raw spectra drawn in the same color of their corresponding pixels. (c) Raw spectra

cropped to fingerprint region. (d) Pre-processed spectra after cropping to the fingerprint

region (1000-1800 cm−1), smoothing by Savitzky-Golay filtering, rejecting the paraffin ranges

(1360-1390 and 1430-1490 cm−1) and applying rubberband baseline correction.

wavenumbers are removed from the spectra to reduce the noise produced

in the final images by the interference of these contaminants and the rest

of meaningful biochemical peaks.

3. Denoising: A Savitzky-Golay filter was applied to smooth the spectra and

reduce the random noise. Its parameters were fixed to a window size of

15 points and a 2nd order fitting polynomial, which were a good tradeoff

between noise attenuation and signal distortion in the studied dataset.

4. Baseline correction: It is crucial to diminish the spectral baseline effects

due to scattering, heterogeneity in external illumination, supporting sub-

strate or sensor’s sensitivity and other changing conditions during data

collection [27]. There is a large variety of baseline correction algorithms.

Here the rubberband baseline correction method was employed [26], which

subtracts a convex polygonal line whose edges are minima within the spec-

trum. In particular, the parameterless implementation of the rubberband

baseline correction included in the IRootLab toolbox [29] was used.

The final pre-processed spectra of the selected pixels are shown in Fig. 3d.

The selected pixels have been numbered in increasing order of maximum ab-

sorbance values. Absorbance is related to the concentration and thickness of the
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biological content as stated by the famous Beer-Lambert law. There are some

metrics commonly used in vibrational spectroscopy to condense the absorbance

measurements, such as peak height or peak integral [30]. In this study, different

combinations of these metrics were explored, such as finding the maximum or

computing the integral of the complete fingerprint region or only the strongest

peak (Amide I peak, between 1630-1670 cm−1). However, it was found that the

standard deviation (std) of each spectrum was the most robust metric (in terms

of noise, sharpness and independence of previous pre-processing steps) to pro-

duce an image with a local contrast similar to the corresponding H&E grayscale

image. In particular, the intrinsic removal of the mean absorbance value per-

formed by std reduces the influence of spectral baseline artifacts (e.g. produced

by scattering) inefficiently removed in the baseline correction pre-processing

step. More specifically, if A = {A1, . . . , ANw} is the associated absorption spec-

trum of a pixel with Nw wavenumbers, then the assigned value to that pixel

was computed as:

std =

√√√√ 1

Nw − 1

Nw∑
i=1

(
Ai −A

)2
, (2)

where A = 1
Nw

∑Nw
i=1Ai is the mean absorbance value of A. The obtained std

values were linearly mapped to get a grayscale image with intensities between

0 and 255. However, this gives the substrate low gray values, as opposed to the

H&E grayscale image where the substrate has high values and appears white.

For this reason the gray values were inverted to obtain the reference image R

in the proposed registration method.

2.4. Similarity measures

Images from different imaging modalities have different intensity character-

istics due to the specific properties of each sensor. Thus, multimodal regis-

tration problems require similarity measures based on statistical relationships

between the pixels of the images rather than direct intensity relationships as in
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monomodal scenarios [31]. Two similarity measures widely used in multimodal

problems were employed: the correlation ratio and the mutual information.

The correlation ratio (CR) assumes a functional relationship between the

intensities of the registered images [32, 33]. CR does not consider any specific

relationship, whereas the correlation coefficient does. The correlation coefficient

assumes a linear relationship between intensities, making it more appropriate

for monomodal registration problems. CR can take values from 0 (no functional

dependence) to 1 (purely deterministic dependence) [33]. The closer CR is to 1,

the more similar R and T are and, in the extreme case (CR = 1), it would inform

of a hypothetical perfect alignment. To compute CR, the reference image R and

the target image T are viewed as random variables. Let x denote a pixel that

has an intensity T (x) in image T ; Ω the set of pixels in the overlapping region

between R and T ; N the total number of pixels in Ω; Ωi the subset of Ω whose

pixels have the same intensity level i in R, that is, Ωi = {x ∈ Ω, R(x) = i}; Ni
the number of pixels in Ωi; then, CR is defined as:

CR = 1− 1

Nσ2

∑
i

Niσ
2
i , (3)

where

σ2 =
1

N

∑
x∈Ω

T (x)2 −m2, m =
1

N

∑
x∈Ω

T (x),

σ2
i =

1

Ni

∑
x∈Ωi

T (x)2 −m2
i , mi =

1

Ni

∑
x∈Ωi

T (x).

Mutual information (MI) is a measure from information theory that char-

acterizes the amount of shared information between the registered images [34].

It assumes a probabilistic relationship between the intensities of the registered

images R and T . MI can range from 0 (statistical independence) to any positive

quantity and, as in CR, the higher MI, the more similar R and T are. However,

interpretation of MI is difficult because there is not a maximal value that can

be used as a reference for a hypothetical perfect alignment. MI is computed in
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terms of image entropies:

MI = HR +HT −HRT . (4)

The three involved entropies are defined as:

HR = −
∑
i

Pi log(Pi),

HT = −
∑
j

Pj log(Pj),

HRT = −
∑
i,j

Pij log(Pij),

where Pi is the probability of an intensity level i occurring in image R; Pj is the

probability of intensity level j occurring in image T ; Pij is the joint probability

of both intensity levels i in image R and j in image T occurring at the same

position.

2.5. Feature-based registration

Scale Invariant Feature Transform (SIFT) is an algorithm to detect and

describe local features in images [18, 19]. The main characteristic of SIFT

is its ability to find distinctive keypoints that are invariant to location, scale

and rotation, and robust to affine transformations (changes in scale, rotation,

shear, and position) and changes in illumination, which makes it usable for

object/pattern recognition. SIFT is the core algorithm employed for keypoint

selection and feature extraction. In the SIFT algorithm, a series of keypoints

that are invariant to scale and orientation are firstly detected by seeking extrema

in a difference-of-Gaussian (DoG) transformation. At each candidate keypoint,

a local descriptor relative to scale-invariant coordinates is computed based on

local image gradients. The feature descriptors of the candidate keypoints in both

images are matched by a nearest-neighbor strategy through minimum Euclidean

distance.

The values of four relevant SIFT parameters have been explored to get diffe-

rent rigid transformations for each sample:
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• Number of orientations (r) and width of the descriptor (n): these two

parameters change the size (rn2) of the local descriptor vector, which is

computed in a n × n array of histograms of r orientations. When these

values increase, the descriptor complexity and discriminative properties

grow. The highest rates of convergence were achieved with values of r =

{4, 8} and n = {4, 6}.

• Number of scale samples per octave (s): this parameter modifies the num-

ber of extrema detected in the DoG transformation. The higher its value,

the more candidate keypoints are detected. Although Lowe [19] experi-

mentally found an optimal value of 3, more robust results (higher rates of

convergence) were obtained with values of s = {6, 10} in this dataset.

• Ratio of distances closest/next closest (rod): each candidate keypoint is

only retained if the ratio of distances between the first and the second

nearest matched neighbor is below rod. When this threshold decreases, a

higher number of false matches is discarded although good matches can

also be rejected. The highest rates of convergence were obtained with

rod = {0.8, 0.9}.

Afterwards, the Random Sample Consensus (RANSAC) algorithm [20] is

used to filter the candidate keypoints matched by means of the SIFT descriptors.

In RANSAC, a spatial transformation model between both images must be

imposed in order to estimate its parameters. In this case, a rigid transformation

T is considered, which follows the equation:

T (x) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 ·
x1

x2

+

t1
t2

 , (5)

where the original spatial coordinates x = (x1, x2) are converted into the new

ones by applying a global translation (t1, t2) and a rotation of angle θ.

RANSAC computes the parameters t1, t2 and θ by considering a minimum

percentage of inlier matched keypoints (5% in this case) and a maximal align-

ment error between the transformed keypoints and their corresponding matches.
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For this work we limited the alignment error to a maximum of 15 pixels.

Due to the spatial variability between samples, a rigid transformation may

not be constructed for some combinations of parameters because no inlier cor-

respondences are detected. The selection of the best combination of parameters

for each sample was therefore based on the maximization of a similarity measure

(Sec. 2.4) between the output target image T2 and the reference image R. In

particular, the correlation ratio (CR) was the variable to maximize.

2.6. Intensity-based registration

The second registration step is based on a variational approach which has

been formulated in the frequency domain [35, 36], and also implemented in

the frequency domain [37] providing a fast and efficient registration method.

This method produces a non-rigid displacement field u that compensates for

the remaining differences between the reference R and the target T2 images

caused by an imperfect alignment in the first registration step and the local

spatial differences between tissues. The obtained non-rigid displacement field

u : R2 → R2 will make the transformed target image similar to the reference

image, T2(x−u(x)) ≈ R(x), where u(x) = (u1(x), u2(x))> and x is the spatial

position x = (x1, x2) ∈ R2.

The non-parametric registration can be approached in terms of calculus of

variations by defining the following energy functional to be minimized:

J [u] = D[R, T2;u] + αS[u]. (6)

The energy term D measures the distance between the deformed target and

the reference images; S is a penalty term which acts as a regularizer and deter-

mines the smoothness of the displacement field; and α > 0 weighs the influence

of the regularization.

The distance measure D is chosen depending on the datasets to be registered.

In this application, since the H&E and FTIR datasets do not share the same

intensity range (multimodal problem), statistical-based measures are more ap-

propriate. Among the similarity measures described in Sec. 2.4, the correlation

19



ratio (CR) was used in this case because it provided more accurate alignments

and had a better behavior against wrong global minima during its optimization.

The regularization term S gives the smoothness characteristics to the displace-

ment field [38]. In this problem, we used the diffusion term, which is given by

the energy of the first derivatives of u [35].

As described in [35], the energy functional (Eq. (6)) can be translated into

the frequency domain by means of Parseval’s theorem. Then J [u] = J̃ [ũ], with

ũ(ω) = (ũ1(ω), ũ2(ω))> being the frequency counterpart of the displacement

field, ω = (ω1, ω2) is the two-dimensional variable in the frequency domain.

The minimization of the energy functional J̃ [ũ] leads to the translation of the

Euler-Lagrange equation into the frequency domain and provides the following

iteration for the Fourier transform of the l-th component of the displacement

field:

ũ
(ξ)
l (ω) = H(ω)

(
ũ

(ξ−1)
l (ω)− α f̃ (ξ−1)

l (ω)
)
, (7)

where ξ ∈ N is the iteration index, l = {1, 2} in this 2D problem, H(ω) is a low

pass filter in the frequency domain and f̃(ω) = (f̃1(ω), f̃2(ω))> is the Fourier

transform of the external forces field. For further details, please refer to [35, 36].

From Eq. (7), the target image is iteratively modified by u and goes through

different intermediate states Ti until the final image T3(x) = T2(x − u(x)) is

obtained. Eq. (7) provides a stable implementation for the computation of a

numerical solution for the displacement field in a more efficient way than existing

approaches if the two-dimensional fast Fourier transform is used [36].

The values of the most relevant parameters in this step were: a maximum

number of iterations (ξmax) equal to 400 and α = 500. The images R and T2

were pre-processed with a 3 × 3 and a 5 × 5 median filter, respectively, before

applying this last registration step to avoid excessive local distortions that may

be induced by noise artifacts.
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2.7. Evaluation

No ground truth for alignment evaluation exists in this problem mainly for

two reasons: placing external fiducial marks in the microscopic tissue is not

trivial; the deformations produced during the processing of the different slices

of tissue can be highly variable. Even so, special care was taken to evaluate the

obtained results in both registration stages.

The rigid registration step (Sec. 2.5) was assessed by a procedure similar to

the one used in [17]: an artificial rigid transformation was computed in each

sample as a gold standard for comparison. This gold standard transformation

was estimated by applying Procrustes analysis [39–41] to a set of manually se-

lected landmarks or control points. These sets of landmarks were manually

chosen by trying to select anatomical structures shared by both images to reg-

ister (R and T1), such as distinctive points in the glands or in the tissue border.

Formally, a set of Np points {xi} were selected in the original target image T1

and their corresponding set of points {yi} were marked in the reference image

R, where i = 1, . . . , Np. For each sample, five corresponding points (Np = 5)

were selected in both images. As an illustration, Fig. 4 shows the images T1

and R of one tissue sample where the two corresponding sets of points {xi} and

{yi} are marked with different colored diamonds.

The set {xi} can be mapped into the reference space of image R with

a generic rigid transformation (Eq. (5)) to give a set of transformed points

{T (xi)}. The root-mean-square of the distances between the points of a generic

transformed set {T (xi)} and their corresponding {yi} points is the Fiducial

Registration Error (FRE) [41]:

FRE =

√√√√ 1

Np

Np∑
i=1

(T (xi)− yi)
2
, (8)

Two FRE values can be computed for each sample by applying each rigid

transformation: one for the gold standard transformation computed with Pro-

crustes analysis (FREPA) and one for the transformation obtained with the

proposed feature-based registration (FREFB). These values respectively inform
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Figure 4: Illustration of the sets of manual landmarks used in the evaluation of the feature-

based registration step. Cyan scale bars represent 200 µm. (a) Target image T1 with five

manually selected points {xi} marked with diamonds. (b) Reference image R with the cor-

responding set of manually selected points {yi} (diamonds), the transformed set {TPA(xi)}

(asterisks) obtained by Procrustes analysis and the transformed set {TFB(xi)} (circles) ob-

tained by the feature-based registration step.

of the mean alignment error in pixel units of the transformed sets {TPA(xi)} and

{TFB(xi)}. Procrustes analysis [39] computes the optimal linear transformation

(rigid in this case) by least squares minimization of the distances between the

cloud of landmarks selected in the reference image R ({yi}) and their corre-

sponding transformed landmarks from the target image T1 ({T (xi)}), i.e., by

minimizing FRE [40, 41]. Thus, FREPA represents the lowest possible error (in
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terms of minimum least squares) for the manually selected sets of landmarks,

what justifies the use of Procrustes analysis as the gold standard rigid transfor-

mation. The difference error (∆FRE = FREFB − FREPA) was also computed

for each sample to show explicitly the disagreement between both rigid regis-

tration methods. The transformed sets {TPA(xi)} and {TFB(xi)} for one tissue

sample have been represented in Fig. 4b with asterisks and circles, respectively.

As can be seen, the agreement between the two rigid registrations in the chosen

sample is very high.

The evaluation of the non-rigid transformation performed in the intensity-

based registration step (Sec. 2.6) is not an easy task and no well-established

validation methods exist [11, 31]. The comparison with a manual gold standard

transformation based on selected landmarks is not appropriate due to the local

deformations produced by the non-rigid transformation. These spatially uneven

deformations may lead to a deceptive estimation of the errors in the positioning

of the manually selected landmarks, which are actually very difficult to pick due

to the use of different slices of tissue. A usual validation method for non-rigid

intensity-based approaches is the computation of a similarity measure (Sec. 2.4)

between the target and the reference images before and after applying the non-

rigid registration [31]. In order to avoid false conclusions, the similarity measure

used for this evaluation must be different from the one (CR) maximized during

the registration. In this case, MI was computed for each sample and its im-

provement was statistically analyzed by pathological group and over the whole

dataset. In each group, the right-tailed Wilcoxon signed-rank test [42] was ap-

plied, whose null hypothesis states that the differences before and after applying

the intensity-based registration step have zero median, meanwhile the alternate

hypothesis states that the median of these differences is positive. A p-value was

obtained for each group to assess the statistical significance of rejecting the null

hypothesis in favor of the alternate hypothesis of this non-parametric test.

Finally, careful visual assessment remains the first and most important val-

idation check [11, 31] especially in this multimodal registration problem which

involves non-rigid deformations. The best visual results were obtained when
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CR was considered as the similarity measure to maximize through the complete

registration pipeline. It must be remarked that the subjectivity in this last as-

sessment is unavoidable due to the high variability introduced by the non-rigid

distortions.

2.8. Implementation

All the steps that compose the suggested registration framework, includ-

ing its evaluation, were implemented in MATLAB. As external programs, the

IRootLab toolbox [29] was used to perform the pre-processing of FTIR images

(Sec. 2.3) and the implementation of SIFT and RANSAC algorithms included

in the software Fiji/ImageJ [43, 44] were linked with our in-house MATLAB

algorithms through the MIJ Java package [45].

The implemented code was applied to the available dataset (Sec. 2.1) in a

computer with a processor Intelr CoreTM i7-4790K @ 4.00GHz and 16GB of

RAM memory, running under Windows 8.1 and with the version R2016b of

MATLAB installed. Fig. 5 shows the running times in this computer platform

versus the size of the reference image R, in terms of total number of pixels. As

described in Sec.2.1, the FTIR reference imageR is composed of different frames

of 128×128 pixels which cover the corresponding region of interest in each sam-

ple. As can be seen in Fig. 5a, the computation time for the complete proposed

framework varies from around 40 to 360 seconds, with an increasing but not

clear relationship with the size of the reference image R. However, as presented

in Fig. 5b the running time in the intensity-based registration step does follow

a linear relationship with the size of R with an estimated slope by least-squares

(coefficient of determination R2 = 0.99) of 1.6 miliseconds/pixel. The variabil-

ity in the total running time comes from the feature-based registration step,

whose computation not only depends on the size of the images to be registered

but also on their content. Images with higher number of relevant structures

increases the detection of candidate keypoints and the time for matching and

filtering them with SIFT and RANSAC algorithms (Sec. 2.5).

Tab. 1 summarizes the most relevant parameters of both registration steps,
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Figure 5: Running times (in the computer platform described in the main text) vs. number

of pixels of reference image R using the samples of the available dataset for (a) the complete

proposed framework and (b) the intensity-based registration step.

including the applied values in the available dataset and the risks of using too

low or too high values. The relevance of SIFT parameters in the feature-based

registration step were described in Sec. 2.5. Choosing incorrect values of these

parameters would create incorrect or insufficient matches between keypoints,

leading to the computation of wrong rigid transformations or, even worse, the

failure of finding any transformation. In the intensity-based registration step,

the main parameter that can be tuned is α, which controls the smoothness

of the applied deformation. The higher α, the smoother the deformation, at

the risk of not compensating sufficiently for the local spatial differences. On

the contrary, the lower α, the more unrealistic excessive deformations may be

applied. Finally, ξmax is mainly related to the chosen α. In this case, a relatively

high value of ξmax was selected to be conservative.

As last remarks, the suggested parameter values should be a good starting

point for other datasets with different sources of variability between images.

In the feature-based registration step, the indicated methodology of exploring

different combinations of parameters and choosing the one that maximizes a

similarity measure between images (CR in this case) demonstrated to be able to

handle satisfactorily different scenarios. In the intensity-based registration step,

the results did not change significantly up to a double or a half of the applied
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Table 1: Summary of the most relevant parameters of each registration step.

Registration step Symbol Description Applied values Risk of low values Risk of high values

Feature-based

r
Number of

orientations
{4, 8}

Descriptor with

lacking information

Descriptor with

excessive noisen
Width of

descriptor
{4, 6}

s
Number of scale

samples per octave
{6, 10}

Not enough

keypoints

Many confounding

keypoints

rod
Ratio of distances

closest/next closest
{0.8, 0.9}

Right matches

discarded

Wrong matches

retained

Intensity-based

α
Weight of

regularization
500

Excessive

local deformation

Insufficient

local deformation

ξmax
Maximum number

of iterations
400

Optimal solution

not reached

Excessive

computation time

values.

3. Results

3.1. Qualitative results

One sample per pathological group has been chosen to present the most rel-

evant images obtained in the different steps of the proposed registration frame-

work. Fig.6 shows the images of the chosen intermediate sample, Fig.7 the nor-

mal sample and Fig. 8 the tumoral sample. In these figures, the automatically-

detected inlier keypoints of the feature-based registration step (Sec. 2.5) have

been marked in the original target T1 and reference R images. The output target

images of the feature-based T2 and the intensity-based T3 registrations are also

shown. These output images have been independently overlaid with the refer-

ence image R to create composite RGB images whose gray levels denote regions

with similar intensities in the two overlaid images, whereas magenta and green

regions correspond to different intensities. Although the presence of magenta

or green in some cases does not mean a bad alignment (due to the multimodal-

ity of the overlaid images), these representations allow a better visualization of

the alignment produced by each registration step. Finally, and also for better

visualization of the applied deformation, the figures show synthetic grids with

the same dimensions than T2 and T3, which were deformed with the non-rigid

displacement fields u computed in the intensity-based registration step. Each
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(a) T1

(b) R (c) T2 (d) T3

(e) R and T2 com-

posite

(f) R and T3 com-

posite

(g) Deformation

Figure 6: Registration results for an intermediate sample. Cyan scale bars represent 200 µm.

(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R

with automatically-detected inlier keypoints. (c) Feature-based registration output image

T2. (d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid

images R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid

deformed with the non-rigid displacement field computed in the intensity-based registration

step.
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(a) T1

(b) R (c) T2 (d) T3

(e) R and T2 com-

posite

(f) R and T3 com-

posite

(g) Deformation

Figure 7: Registration results for a normal sample. Cyan scale bars represent 200 µm.

(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R

with automatically-detected inlier keypoints. (c) Feature-based registration output image T2.

(d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid im-

ages R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid

deformed with the non-rigid displacement field computed in the intensity-based registration

step.
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(a) T1

(b) R (c) T2 (d) T3

(e) R and T2 com-

posite

(f) R and T3 com-

posite

(g) Deformation

Figure 8: Registration results for a tumoral sample. Cyan scale bars represent 200 µm.

(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R

with automatically-detected inlier keypoints. (c) Feature-based registration output image

T2. (d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid

images R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid

deformed with the non-rigid displacement field computed in the intensity-based registration

step.

squared interval of the undeformed synthetic grids was chosen to occupy 16

pixels both in horizontal and vertical directions.

As can be seen in figures 6 to 8, the feature-based registration step is capable

of compensating for coarse misalignment (very relevant in the chosen interme-

diate sample) and cropping the initial target image to the region of interest of

the reference image. It can be observed that the detected inlier keypoints of the

tumoral sample are placed near the edge of the tissue. In the intermediate and

the normal samples, the keypoints are also identified in the inner region of the

tissue, mainly close to the glandular regions. As the SIFT algorithm detects

keypoints at different resolutions, the ones which appear outside the tissue at

this resolution belong to the border of the tissue at a lower resolution.

29



It can also be seen that the intensity-based registration step refines the

general misalignment (better appreciated in the chosen normal sample) and

also produces local deformations that improve the correspondences inside the

tissue. These local modifications can be better viewed in the glands of the

intermediate and normal tissues.

3.2. Quantitative evaluation

3.2.1. Feature-based registration

Due to the variability between tissue sections in the studied samples, 16

combinations of the SIFT parameters (Sec. 2.5) were considered in order to in-

crease the probabilities of convergence and optimization of the first registration

step. Tab. 2 shows the 16 combinations (IDcomb) of the four SIFT parameters

(r, n, s and rod) explored for each sample. The table also presents the number

(#) and the percentage (%) of samples which have chosen each combination as

optimal (in terms of maximal CR) in the feature-based registration step. As

can be seen, although three combinations of parameters have not been selected

as optimal, there is not a clearly prevailing combination. This fact justifies the

exploration of different SIFT parameters in this dataset. The exact combination

(IDcomb) of SIFT parameters that each sample has chosen as optimal is shown

in the supplementary-file.

By using the manually selected landmarks, the fiducial registration error for

the Procrustes analysis (FREPA) considered as the gold standard registration,

the proposed feature-based registration (FREFB) and the differences between

them (∆FRE = FREFB − FREPA) were computed for each sample (see the

supplementary-file). Fig. 9 presents the box plots [46] which summarize the

distributions of these error metrics if the samples are divided into the three

pathological groups or if all samples are considered. In these boxplots, whiskers

extend to the most extreme data point that is no more than 1.5 times the

interquartile range (IQR) from the edge of the box. All the values outside the

whiskers range are considered as outliers (red plus signs).
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Table 2: Explored combinations, identified by a number (IDcomb), of the four SIFT param-

eters (r, n, s and rod) with the number (#) and the percentage (%) of samples which has

chosen each combination as optimal in the feature-based registration step.

IDcomb

SIFT parameters

# %

r n s rod

1 4 4 6 0.8 6 13.0

2 4 4 6 0.9 0 0.0

3 4 4 10 0.8 4 8.7

4 4 4 10 0.9 2 4.3

5 4 6 6 0.8 2 4.3

6 4 6 6 0.9 5 10.9

7 4 6 10 0.8 3 6.5

8 4 6 10 0.9 9 19.6

9 8 4 6 0.8 1 2.2

10 8 4 6 0.9 0 0.0

11 8 4 10 0.8 2 4.3

12 8 4 10 0.9 0 0.0

13 8 6 6 0.8 3 6.5

14 8 6 6 0.9 2 4.3

15 8 6 10 0.8 4 8.7

16 8 6 10 0.9 3 6.5

As can be seen in Fig. 9a, the FREPA values (blue box plots) are very simi-

lar between pathological groups, being their medians around 6 pixels. Only one

outlier exists for the intermediate group, although three samples (with FREPA

values above 15 pixels) are considered as outliers in the group of all samples. A

higher dispersion exists in FREFB values (green box plots) although their dis-

tributions are also similar between pathologies and their median values remain

under 10 pixels for all the groups. Three outliers are present in the intermedi-

ate group with values between 20 and 50 pixels and one extreme outlier with a

FREFB value over 90 pixels exists in the normal group. In Fig. 9b, the distribu-

tions of the paired differences of errors (∆FRE) show a bit higher dispersion in

the normal group with a median of 2.2 pixels meanwhile the rest of pathologi-

cal groups have a median error difference under 1 pixel. If all the samples are

considered, the median of (∆FRE) is also under 1 pixel with a low dispersion,

excluding the 5 outlier samples with (∆FRE) values above 10 pixels. It must

be remarked that there was one tumor sample (TUM13; see supplementary-file)

where no evaluation was performed because no corresponding points could be

manually identified.
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Figure 9: Evaluation of the feature-based registration step. Box plots for the intermedi-

ate (INT), normal (NOR), tumoral (TUM) and ALL samples groups representing (a) the

fiducial registration error for the Procrustes analysis (FREPA) gold standard registration

(blue), the proposed feature-based (FREFB) registration (green) and (b) their differences

(∆FRE = FREFB −FREPA). In both subfigures, the empty regions of the vertical axes have

been cropped to improve the visualization.

3.2.2. Intensity-based registration

In order to assess the improvement due to the non-rigid transformation pro-

vided by the intensity-based registration, the reference image R was compared

with the initial target image T2 and with the final target image T3. To that

end, the mutual information before (MIbefore; computed between R and T2) and

after (MIafter; computed between R and T3) the last registration step as well

as their difference (∆MI = MIafter −MIbefore) were computed for each sample

(see the supplementary-file). Fig. 10 shows the box plots of the distributions of

these MI values divided by pathological groups and considering all the samples.

The rules regarding the notches, whiskers and outliers of these box plots are the

same as in Fig. 9.

As observed in Fig.10a, the distributions of MIafter are above their respective

distributions of MIbefore for all the groups. Although these tendencies suggest

an improvement in the alignment of the images, it is not possible to state con-

fidently such an improvement due to the partial overlap caused by the spread

of the corresponding distributions. The analysis of the paired differences ∆MI

removes the within-sample variability and reduces the source of uncertainty to

32



INT NOR TUM ALL

M
I (

bi
ts

)

0.5

1

1.5

2

2.5

Before (R-T
2
)

After (R-T
3
)

(a)

INT NOR TUM ALL

"
M

I (
bi

ts
)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 10: Evaluation of the intensity-based registration step. Box plots for the intermediate

(INT), normal (NOR), tumoral (TUM) and ALL samples groups representing (a) the mutual

information before (MIbefore; computed between R and T2) the intensity-based registration

(blue), after (MIafter; computed between R and T3) the intensity-based registration (green)

and (b) their differences (∆MI = MIafter −MIbefore).

the spread in these differences [47]. The distributions of ∆MI (Fig.10b) present

predominant positive values (at exception of one intermediate and two normal

samples; see the supplementary-file) with medians around 0.1 bits in the three

pathological groups and a median of 0.125 bits in the group of all samples. The

right-tailed Wilcoxon signed-rank test [42] returned p-values under 0.001 for all

the groups, supporting the alternate hypothesis that the medians of all ∆MI

distributions are greater than 0. This result suggests that there is a statistically

significant improvement in the alignment of the images.

4. Discussion

The main novelty of this work is the use of a representative grayscale image

extracted from the FTIR hyperspectral data cube which condenses the most rel-

evant information of the biological structures of the tissue. The pre-processing

to extract this grayscale image is crucial to get a spatial contrast similar to

the grayscale image obtained from the H&E image. This grayscale image pro-

vides higher spatial information than the binary or the clustered images which

were used as inputs in other previous approaches that treated to solve similar
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multimodal registration problems [15, 16]. These increase in local information

is essential in this work in order to tackle the additional problem of aligning

different sections of tissue.

In the feature-based registration step a medium level of information at diffe-

rent levels of resolution is explored by the SIFT algorithm to automatically

detect relevant landmarks. No optimal combination of SIFT parameters clearly

prevailed in the studied samples (Tab.2), which justifies the use of different SIFT

values and an optimization procedure in terms of CR. This fact also confirms

the wide morphological variability between samples, whose sections of tissue

may not even be adjacent. Regarding the differences in pathology, normal and

intermediate samples have more distinctive references inside the tissue due to

the presence of glandular structures, meanwhile tumoral tissue contains more

heterogeneous structures as the severity of cancer increases. As a consequence,

the automatically detected inlier keypoints in the tumoral samples are mainly

located at the tissue borders, which may be a problem if not enough border

regions are captured in the image. Apart from that, similar results were ob-

tained for all the pathological groups in the comparison of the feature-based

registration step with a gold standard manual registration. Most of samples

obtained a difference in positioning error (∆FRE) under 10 pixels and the me-

dian of the distribution of all samples was under 1 pixel. These differences may

be considered quite satisfactory taking into account that the main purpose of

the first registration step is to provide a coarse initial alignment for the second

registration step.

The final intensity-based registration step is essential to refine the initial

coarse alignment provided by the detected keypoints and to compensate for

the spatial unevenness between the different sections of tissue. This step is

a complement of the first registration step because it considers the images at

the lowest level of information given by their intensities. The values of the

parameters used in this step were empirically tuned in the studied dataset as a

good global tradeoff between achieving a finer alignment and avoiding excessive

local deformations. The statistical significant increase of the mutual information
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shared between the registered images confirmed the alignment improvement that

had been already visually observed, independently of the pathological state.

4.1. Advantages and limitations

Taking into account the previous considerations, the main advantages of the

proposed method may be divided in the following points:

• Simplification of the multimodal problem: the multimodal problem of find-

ing the correspondence between the three-valued H&E pixels and the

hyper-valued FTIR pixels is simplified by condensing their information in

grayscale images. It allows the use of registration methods in the grayscale

domain, which for example have been successfully and efficiently applied

in other medical areas.

• Gain of spatial information: using grayscale images augments the spatial

information, compared to other related approaches recently published. In

particular, a simple binarization is applied in [15], meanwhile previous in-

dependent segmentations by clustering within each image are proposed in

[16]. It must be remarked that in those studies the same tissue section was

measured by FTIR microspectroscopy and then stained to get the H&E

image. Therefore, relatively simple spatial transformations had to be cal-

culated; specially restricted in [16], where only translations and rotations

up to ±30 degrees were considered due to its computational complexity

and probably to the uncertainty introduced by the pre-segmentation step.

In this problem, the gain in spatial information provided by the grayscale

image is crucial to compensate for the local spatial differences caused by

employing distinct tissue sections for H&E and FTIR images. In addi-

tion, the suggested approach avoids pre-segmentation steps, which would

increase the complexity of the problem (segmentation is maybe the most

challenging task in medical image analysis) and may accumulate errors

coming from the incorrect partition of corresponding anatomical struc-

tures.
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• Estimation of local deformations: the computation of non-rigid spatial

transformations by the intensity-based registration step is another im-

provement compared to [17], where distinct tissue sections treated with

different stains are aligned only with rigid transformations. The com-

puted non-rigid displacements are deciding to improve the alignment of

more distant sections and compensate for the deformations due to the

handling and cutting of the biopsies.

• Robustness against pathological variability : the methodology is versatile

and robust against distinct sources of variability, including different mor-

phological configurations depending on the pathological state. This ro-

bustness is increased in the first registration step by considering different

combinations of parameters and maximizing a similarity measure (CR).

On the other hand, the main limitations of the framework are:

• Presence of distinctive anatomical structures: the feature-based registra-

tion step tries to find relevant keypoints normally present inside the tissue

in normal or intermediate pathological states, such as glandular struc-

tures. However, the tissue heterogeneity increases with the pathological

state and the distance between tissue sections. Therefore, in those cases

the presence of tissue borders in the recorded images may be crucial to

find an optimal spatial transformation.

• Global regularization in non-rigid registration step: the smoothness of the

displacement field is equally defined in the whole image by the parameter

α. This characteristic may be problematic in samples with uneven local

deformations, for example, due to the presence of different pathological

regions. Therefore, there may be zones where under- or over-deformations

may be computed.

• Possible unrealistic deformations: because the intensity-based registration

method only considers the low-level information of pixels’ intensities. A

possible solution would be to create a model of tissue deformation with
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higher levels of information, which may require challenging tasks such as

pre-segmenting inner tissue structures (e.g. nuclei or glands) or estimating

mechanical properties of the biological material.

• Automatic parameter optimization in non-rigid registration step: single

values for the parameter α and the related ξmax were fixed for all the

samples as a good global tradeoff, but better results may be obtained by

individually tuning these parameters. However, the main challenge is to

pick the optimal values automatically without applying over-deformations.

Opposing to the feature-based registration step, where the best combi-

nation of parameters is chosen by the maximization of CR, there is no

auxiliary reliable metric that may indicate the optimal configuration for

each sample.

5. Conclusions

A multimodal registration framework for the automatic alignment of FTIR

spectroscopic and H&E stained images from different histological sections has

been presented. This methodology was used to register 47 colon samples from

three different pathological groups (16 normal, 16 intermediate and 15 tumoral)

with good overall qualitative and quantitative results. The proposed method

exploits the information of concentration and thickness contained in the ab-

sorbance FTIR spectra to generate a grayscale image with a contrast similar to

the one obtained from the H&E image. Thus, the morphological structures are

highlighted and can be used as a reference for the alignment of the two mul-

timodal images. This approach does not need a prior segmentation step that

may introduce errors and reduce the spatial information content.

This automatic method can be easily extrapolated to other kinds of patholo-

gies, such as prostate or breast cancer, where the inner part of the tissue contains

relevant morphological structures. Moreover, it can also be applied to more het-

erogeneous tissues if their borders are also captured in the image. The values of

the parameters used in the two steps of the registration framework may be tuned
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depending on the intrinsic morphological variability of the tissue. In particular,

the required deformations computed in the second registration step should be

higher as the distance of the sections of tissue to register increases.

The proposed method can improve the accuracy to combine the spatial in-

formation extracted from both the traditional H&E stained images and the

emerging FTIR spectroscopy, even if different sections of tissue are used. These

combinations can result in richer diagnostic algorithms which may consider com-

plementary aspects of the pathological tissue, following the same philosophy of

other approaches that fuse different medical imaging modalities.
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Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, F. L. Martin,

Using Fourier transform IR spectroscopy to analyze biological materials,

Nature Protocols 9 (8) (2014) 1771–1791. doi:10.1038/nprot.2014.110.

[29] J. Trevisan, P. P. Angelov, A. D. Scott, P. L. Carmichael, F. L. Mar-

tin, IRootLab: a free and open-source MATLAB toolbox for vibrational

biospectroscopy data analysis, Bioinformatics 29 (8) (2013) 1095–1097.

doi:10.1093/bioinformatics/btt084.

[30] D. Mayerich, M. Walsh, M. Schulmerich, R. Bhargava, Real-time inter-

active data mining for chemical imaging information: application to au-

tomated histopathology, BMC Bioinformatics 14 (1) (2013) 1–11. doi:

10.1186/1471-2105-14-156.

[31] W. R. Crum, T. Hartkens, D. L. G. Hill, Non-rigid image registration:

theory and practice, The British Journal of Radiology 77 (suppl 2) (2004)

S140–S153. doi:10.1259/bjr/25329214.

[32] A. Roche, G. Malandain, X. Pennec, N. Ayache, The correlation ra-

tio as a new similarity measure for multimodal image registration, in:

W. M. Wells, A. Colchester, S. Delp (Eds.), Medical Image Comput-

ing and Computer-Assisted Intervention — MICCAI’98: First Interna-

tional Conference Cambridge, MA, USA, October 11–13, 1998 Proceed-

ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 1115–1124.

doi:10.1007/BFb0056301.

[33] A. Roche, G. Malandain, N. Ayache, X. Pennec, Multimodal image regis-

tration by maximization of the correlation ratio, Tech. Rep. 3378, INRIA

(1998).

42

http://dx.doi.org/10.1016/j.chemolab.2012.03.011
http://dx.doi.org/10.1038/nprot.2014.110
http://dx.doi.org/10.1093/bioinformatics/btt084
http://dx.doi.org/10.1186/1471-2105-14-156
http://dx.doi.org/10.1186/1471-2105-14-156
http://dx.doi.org/10.1259/bjr/25329214
http://dx.doi.org/10.1007/BFb0056301


[34] F. Maes, D. Vandermeulen, P. Suetens, Medical image registration using

mutual information, Proceedings of the IEEE 91 (10) (2003) 1699–1722.

doi:10.1109/JPROC.2003.817864.
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