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Abstract 23 

The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, 24 

carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal 25 

endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance 26 

behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities 27 

(cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects 28 

after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida 29 

(LC50 = 2 mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance 30 

response at soil concentrations that are close to those predicted in rice-fields and in 31 

surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50 32 

= 28 mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 33 

values above 100 mg/kg d.w.). For these pesticides, however, weight loss was identified as a 34 

sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated 35 

LC10 values. The investigated effects on the enzymatic activities of E. fetida and the 36 

observed histopathological alterations (longitudinal and circular muscle lesions, edematous 37 

tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor 38 

pesticide contamination and are proposed as alternative measures to evaluate pesticide risks 39 

on agro-ecosystems. 40 

 41 

Keywords: pesticides, histological examination, Eisenia fetida, biomarkers, terrestrial 42 

ecotoxicology 43 

 44 
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1. Introduction 49 

Rice farming constitutes one of the most important agricultural production activities 50 

worldwide. Intensive rice production involves the use of synthetic pesticides for the control of 51 

fungal diseases (e.g. Pyricularia orizae), aphid insects and unwanted weeds. Residues of 52 

pesticides applied to rice crops may accumulate in the soil for several weeks after application 53 

and can be transported by spray-drift or water runoff into surrounding ecosystems (Gregoire 54 

et al., 2009; Guzzella et al., 2006; Schulz, 2004; Papastergiou and Papadopoulou-Mourkidou, 55 

2001). Pesticide residues constitute a potential toxicological hazard for the non-target 56 

organisms inhabiting the rice fields and surrounding ecosystems, possibly contributing to 57 

biodiversity loss and to side-effects in higher trophic levels (Mesléard et al., 2005).  58 

 59 

Soil invertebrates play a fundamental role for improving soil structure and fertility, and 60 

constitute an important component of the diet of a variety of animals (e.g. birds, mammals). 61 

Amongst invertebrates, earthworms are considered to be of particular interest because of their 62 

notable contribution to organic matter decomposition, nutrient cycling and soil formation 63 

(Römbke et al., 2005; Allen, 2002; Edwards, 1998). Their ecological relevance, high biomass 64 

and frequently observed sensitivity to environmental pollution make them one of the most 65 

suitable sentinel organisms for assessing the ecological risks of pesticide residues in terrestrial 66 

ecosystems (Reinecke and Reinecke, 2007; Landrum et al., 2006; Dell’Omo et al., 1999). 67 

Earthworm species such as Eisenia fetida or Eisenia andrei have been extensively used as 68 

standard test organisms for the risk assessment of pesticides, and toxicity test protocols have 69 

been derived and widely implemented to assess their sensitivity to chemical pollution (e.g. 70 

OECD 1984; ISO 1993, 1998; Edwards and Bohlen, 1992). Such standardized tests have been 71 

mainly used to assess the acute lethal effects and biomass changes for a wide range of 72 

pesticides (Wang et al., 2012 a,b); however, pesticide effects on other sub-lethal endpoints 73 

http://www.sciencedirect.com/science/article/pii/S0043135408001516#bib19
http://www.sciencedirect.com/science/article/pii/S0043135408001516#bib35
http://www.sciencedirect.com/science/article/pii/S0043135408001516#bib35
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that are potentially more sensitive and precursors of long-term individual and population-level 74 

effects have been less investigated.   75 

 76 

The use of biomarkers constitutes a complementary approach to standard toxicity tests in the 77 

evaluation of sub-lethal effects of contaminants in earthworms, providing more information 78 

about the organism's stress response and the toxic mode of action of the evaluated substance 79 

(Gastaldi et al., 2007; Hankard et al., 2004; Kammenga et al., 2000; Scott-Fordsmand and 80 

Weeks, 2000). A variety of biomarkers have been measured in earthworms including DNA 81 

alterations, induction of metal-binding proteins, inhibition of enzymatic responses, energy 82 

reserve responses, responses in neural impulse conductivity, lysosomal membrane stability 83 

and histopathological lesions  (Scott-Fordsmand and Weeks, 2000; Sanchez-Hernandez, 2006; 84 

Giovanetti et al., 2010; Kiliç, 2011). The test and use of such biomarkers, however, has 85 

mainly focused on assessing metal pollution, while the number of studies evaluating 86 

biomarker responses from organic contaminants such as agricultural pesticides is rather 87 

limited (Sanchez Hernandez, 2006).  88 

 89 

The objective of the present study was to investigate the toxicity of five pesticides typically 90 

used in rice farming on the earthworm E. fetida and to identify effective enzymatic and 91 

histopathological biomarkers to assess their contamination under field conditions. Pesticide 92 

effects were assessed on mortality, weight-loss and on the avoidance behavior of E. fetida by 93 

performing acute laboratory toxicity experiments. Furthermore, the effects of the selected 94 

pesticides were assessed on different E. fetida enzymatic activities, and the pesticide damage 95 

on tissues and organs were evaluated by performing histopathological examinations. The 96 

results of this study are expected to contribute to expand our knowledge on the effects of rice 97 

farming-induced pesticide pollution on earthworms as well as to identify sensitive measures 98 

http://www.sciencedirect.com/science/article/pii/S1532045607001366#bib18
http://www.sciencedirect.com/science/article/pii/S1532045607001366#bib20
http://www.sciencedirect.com/science/article/pii/S1532045607001366#bib38
http://www.sciencedirect.com/science/article/pii/S1532045607001366#bib38
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to monitor the toxicological effects of pesticides in rice production systems and in 99 

surrounding terrestrial ecosystems.   100 

 101 

2. Material and methods 102 

2.1 Test chemicals and solutions 103 

Five pesticides that have been reported to be used or monitored in environmental samples 104 

taken in rice-producing areas of the Mediterranean region were selected (Andreu-Moliner et 105 

al., 1986; Ccanccapa et al., 2016). These were the insecticides trichlorfon and dimethoate, and 106 

the fungicides carbendazim, tebuconazole and prochloraz. The properties of the selected 107 

pesticides and the characteristics of the commercial products used in this study are described 108 

in Table 1. Stock solutions were prepared by diluting the commercial products in distilled 109 

water. Polysorbate 80 (Tween) was added at a concentration of 50 µg/L to the stock solution 110 

prepared with carbendazim and tebuconazole to increase their solubility. Stock solutions were 111 

stored in darkness at 4 ºC until further use in the toxicity experiments. 112 

2.2 Test organisms 113 

E. fetida (Savigny 1826) adults were purchased from a commercial earthworm breeding farm 114 

(Eisehumus, Alcalá de Xivert, Castellón, Spain) and maintained in a laboratory culture at 20 ± 115 

2 ºC for at least three weeks prior to use in the toxicity experiments. Twenty-four hours prior 116 

to the start of the experiments E. fetida organisms of homogeneous length and weight (200-117 

300 mg) which possessed clitellum were removed from the laboratory culture and placed on 118 

moist filter paper to allow a depuration of the gut contents. Subsequently, they were washed 119 

with distilled water, manually dried with moist paper and placed in the test units.   120 

 121 

 122 

 123 
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2.3 Toxicity tests 124 

The toxicity tests were performed according to the OECD guideline 207 (OECD, 1984). This 125 

guideline, and the exposure duration proposed by this, was selected because it is the one 126 

recommended for regulatory pesticide risk assessment to non-target soil fauna in Europe (EC 127 

2002). The artificial soil substrate was prepared by homogeneous mixing of 10% sphagnum 128 

peat, 20% kaolin clay, 69% fine sand, and 1% calcium carbonate. Distilled water was added 129 

and mixed with the dry soil to obtain a final moisture content of 40%. The pH of the obtained 130 

soil substrate was 6.0 ± 0.5 (mean ± SD). Two-hundred grams of artificial soil substrate were 131 

introduced into 500 mL glass vessels (15 cm diameter and 7 cm height). The artificial soil 132 

substrate was spiked with the pesticide solutions and was gently mixed to allow a 133 

homogeneous distribution of the pesticide. The pesticide exposure concentrations used in the 134 

toxicity experiments were determined based on range-finding tests performed with one 135 

replicate per treatment level. The final tests were performed in triplicate with five or six 136 

treatment levels in a geometric series (n = 3) and a control with five replicates (n = 5). A 137 

solvent-control treatment was added in the carbendazim and tebuconazole experiments (n = 138 

5). The exposure concentrations used in the toxicity experiments performed with the five 139 

pesticides are shown in Table 1. Ten E. fetida individuals were randomly selected, weighed 140 

and introduced into each test vessel. The test vessels were covered with plastic lids with small 141 

holes and incubated at 20 ± 2 ºC in a continuously illuminated (400-800 Lux) climatic 142 

chamber (Sanyo Versatile Environmental Test Chamber MLR-350) for 14 days. Mortality and 143 

body weight of the E. fetida organisms were monitored on day 7 and 14 after the start of the 144 

experiment, and morphological changes were qualitatively evaluated. At the end of the 145 

experiments, alive worms were introduced into Eppendorf tubes, frozen with liquid nitrogen, 146 

and stored at -80 ºC for posterior biomarker and histopathological analyses. 147 

 148 
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2.4 Avoidance behaviour tests 149 

Avoidance behaviour experiments were conducted according to the standard Guideline for the 150 

Earthworm Avoidance test (ISO, 2008) with the pesticide application dosages recommended 151 

to be used in rice production. Briefly, glass vessels were divided into two compartments by 152 

means of a removable plastic card. Next, each compartment was filled with 200 g of soil 153 

substrate. One compartment was spiked with pesticide stock solutions to reach the 154 

concentrations described in Table 1, whereas the other was only spiked with distilled water 155 

(control). The soil substrate used in these experiments was collected from an uncontaminated 156 

agricultural land located in the outskirts of the city of Valencia (Spain). Prior to its use in the 157 

experiments, the soil was sieved (< 5 mm) and carefully inspected to eliminate any organisms 158 

or particles that may interfere with the assay. The obtained soil substrate had a sandy-loam 159 

texture, a pH of approximately 8, low organic matter content (1.5–2.0%), and high calcium 160 

carbonate content (28%). After removing the plastic card, ten E. fetida organisms were placed 161 

on the dividing line. Then, the test units were covered with a plastic lid and incubated for 48 h 162 

at 23 ± 2 ºC under continuous light exposure. After the incubation period, the plastic card was 163 

carefully positioned within the exposed and non-exposed sections of the test unit and the 164 

number of alive worms in each compartment was counted. Each pesticide assay and 165 

additional controls (control-control) were run in triplicate (n = 3). The avoidance behavior 166 

was expressed as the percentage of worms that avoided the treated soil, expressed as the mean 167 

percentage of net responses (NR) calculated as follows: 168 

  169 

where C is the number of worms observed in the control soil; T, number of worms observed 170 

in test soil; N, total number of worms per replicate. A positive NR indicated avoidance and a 171 

negative NR indicated a non-response (or attraction) to the contaminated soil. An avoidance 172 
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response is usually judged as positive when more than 80% of the test organisms are found in 173 

the control soil compartment at the end of the test (Sánchez-Hernández, 2006). 174 

 175 

2.5 Biomarker analysis 176 

The pesticide effects on the E. fetida organisms that survived the toxicity experiments were 177 

evaluated on three different enzymatic biomarkers: cholinesterase activity (ChE), lactate 178 

dehydrogenase activity (LDH) and alkaline phosphatase activity (ALP). The earthworm 179 

samples were homogenised in a phosphate buffer, pH 7.2 (1:10 w/v). Then, the samples were 180 

centrifuged at 3500 rpm during 10 min (temperature: 4 ºC). The supernatant was poured off 181 

and used for the analyses described below.   182 

 183 

Prior to the biomarker analysis, the protein content (PC) was analysed according to the 184 

method described by Herbert et al. (1995). Dilutions of the homogenates were prepared with 185 

phosphate buffer (1:10, 1:100, 1:1000, 1:10000) in quadruplicate. Microplates of 400 µL 186 

well-volume were filled with 10 µL of the diluted homogenates and 250 µL of Bradford 187 

reagent dissolved in deionized water (1:4 v/v). After 15 min, the absorbance of the samples 188 

was read in a spectrophotometer (TECAN Infinite M200) at a wave-length of 595 nm, and the 189 

protein concentration was calculated based on a previously made calibration curve using 190 

Bovine Serum Albumin (BSA) as standard.  191 

 192 

The ChE activity in the earthworm samples was measured according to the method described 193 

by Ellman et al. (1961). Similarly to the procedure followed for the PC analysis, the samples 194 

were diluted with phosphate buffer, and 50 µL of the diluted samples were added to the 195 

microplate wells. Next, 250 µL of a reagent composed by 1000 µL of  dithiobis-2-196 

nitrobenzoic acid (DTNB) 200 µL of iodide acetylcholine and 30 mL of phosphate buffer (pH 197 
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7.2) were added. Finally, the enzymatic activity was read once per minute for 10 min in the 198 

spectrophotometer at a wave-length of 414 nm, and the final results were expressed as nmols 199 

of hydrolysed acetylcholine/min/mg of protein. 200 

 201 

The LDH activity was measured according to Vassault (1983). Briefly, 50 µL of the 202 

homogenate, 2.5 mL of a TRIS/NaCl/NADH solution and 0.5 of a TRIS/NaCl/pyruvate 203 

solution were added to a quartz cuvette. Subsequently, the absorbance was read at a wave-204 

length of 340 nm every 30 seconds for 3 minutes. The results of the spectrophotometer were 205 

recalculated to nmols of reduced pyruvate/min/mg of protein. 206 

 207 

The analyses of the ALP were performed with a commercial kinetic optimized test 208 

(SPINREACT S.A.). Briefly, 20 µL of the homogenate were introduced in a cuvette and 209 

mixed with 1.2 mL of a reagent formed by a solution of diethanolamine buffer (1 mmol/L; pH 210 

10.4) with magnesium chloride (0.5 mmol/L) and p-nitrophenil phosphate (10mmol/L) in a 211 

proportion of  9:1 (v/v). Finally, the absorbance was measured once per minute for 3 minutes 212 

at 405 nm, and the ALP activity was expressed in µmols of hydrolysed p-nitrophenyl/min/mg 213 

of protein. 214 

 215 

2.6 Histopathological examination 216 

After exposure to pesticides, the survived earthworms were rinsed with distilled water and 217 

fixated with 10% formaldehyde. One worm belonging to the control group, one belonging to 218 

the lowest exposure concentration, and one belonging to the highest exposure concentration 219 

were selected from each toxicity test, and were embedded into paraffin. Subsequently, each 220 

worm was sliced vertically 4 or 5 times. Each slice had a thickness of approximately 5-7 µm. 221 

Sections were mounted on glass microscope slides with one drop of albumin and stained with 222 
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haematoxylin-eosin. Finally, the samples were examined by an optical microscope (x4 and 223 

x10) connected to a digital camera (NIKON ECLIPSE E400), which allowed to take pictures 224 

of the earthworm sections. The differences between the pesticide exposed earthworm samples 225 

and the control earthworm samples were qualitatively described.  226 

 227 

2.7 Statistical analyses 228 

The calculation of the concentrations causing 10% and 50% of mortality (LC10 and LC50, 229 

respectively) in the toxicity experiments and their corresponding 95% confidence intervals 230 

(CI) were calculated by Probit analysis using SPSS (version 16.0). The weight loss data and 231 

the biomarker response data were analysed by using a one-way ANOVA followed by a post-232 

hoc analysis using the Fisher’s least significant difference (LSD) test with STATGRAPHICS 233 

PLUS (version 5.1). Prior to this analysis, the data were checked for normality by using the 234 

Shapiro-Wilk test and for homogeneity of the variance by the Cochran test. The No Observed 235 

Effect Concentration (NOEC) was derived as the highest tested pesticide concentration that 236 

did not show significant effects as compared to the control. The data obtained from the 237 

avoidance behaviour test was analysed using a Chi-squared test to compare the observed and 238 

expected number of individuals in the two soils and to determine whether an avoidance 239 

response was present. All statistical tests were performed using a significance level of 0.05. 240 

 241 

3. Results and discussion 242 

3.1 Individual-level responses 243 

The results of the toxicity experiments performed with the five tested pesticides are shown in 244 

Table 2. Mortality in the control test units was not recorded during the 14-day experimental 245 

period. Recorded mortality on day 7 was in most cases not sufficient to fit a dose-response 246 

curve and, therefore, the LC10 and LC50 values for this time point were, for the majority of 247 



11 
 

the studied pesticides, not calculated. The exception was the fungicide prochloraz, which 248 

induced the fastest toxic response with a very steep dose-response curve, resulting in an 249 

LC10-7d value of 280 mg/kg d.w. and an LC50-7d value of 285 mg/kg d.w. Carbendazim was 250 

found to be highly toxic to E. fetida, with an LC50-14d of 2.0 mg/kg d.w and an LC10-14d of 251 

1.1 mg/kg d.w. The insecticide dimethoate showed a moderate toxicity to E. fetida, with and 252 

LC50-14d of 28 mg/kg d.w. The rest of the studied pesticides were found to exert relatively 253 

low toxicity to E. fetida on day 14 after the start of the exposure period, with LC50 values 254 

higher than 100 mg/kg d.w.  The results of this study are in agreement with previous studies, 255 

which already identified a high toxicity of carbendazim to E. fetida (Garcia et al., 2008; Ellis 256 

et al., 2007; Van Gestel, 1992; Van Gestel et al., 1992; Vonk et al., 1986). 257 

 258 

Morphological changes were assessed at day 7 and 14. No morphological changes were 259 

clearly observed at day 7 for the majority of the pesticides, except at the highest tested 260 

concentration for carbendazim (6 mg/kg) and tebuconazole (142 mg/kg), at which worms 261 

exhibited body constrictions, slimming, coiling and curling. On day 14, an excessive mucus 262 

secretion was observed at the 1.2 and 1.8 mg/kg treatment levels for carbendazim, and at the 263 

5.0 and 11 mg/kg treatment levels for dimethoate. 264 

 265 

All pesticides resulted in a significant weight loss in the exposed worms as compared to the 266 

controls (Table 2). Weight loss in the control worms ranged between 3% and 9% on day 7, 267 

and increased up to 20% on day 14 of exposure. Weight loss in the exposed worms showed a 268 

clear dose-response relationship in all experiments. Average weight-loss percentages for the 269 

exposed organisms reached 36% and 61% on day 7 and 14 after the start of the experiment, 270 

respectively. At the end of the experiment, significant effects on weight loss were found to be 271 

below the lowest exposure concentration for trichlorfon, tebuconazole and prochloraz. A 272 
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NOEC of 1.2 and 5 mg/kg d.w. was calculated for carbendazim and dimethoate, respectively 273 

(Table 2). Our results indicate that the weight loss endpoint was for some pesticides (e.g. 274 

trichlorfon, dimethoate, tebuconazole) two times more sensitive than mortality, confirming 275 

this endpoint as a valuable indicator for field monitoring, as also indicated by Frampton et al. 276 

(2006) and Xiao et al. (2006). 277 

 278 

The results of the avoidance behaviour test performed with the control soil (control-control) 279 

showed that E. fetida were randomly distributed among both soil compartments. A significant 280 

avoidance response was measured for the fungicide carbendazim (Fig. 1). On average, 87% of 281 

the tested worms avoided the soil compartment contaminated with carbendazim at a 282 

concentration of 2.3 mg/kg d.w. These results are in close agreement with the calculated 283 

avoidance NOECs reported by Garcia et al. (2008) for artificial tropical soils and European 284 

natural soils (<1 mg/kg d.w.). As for the rest of studied pesticides, a significant avoidance 285 

behaviour could not be identified. For tebuconazole a slight attraction effect was observed, 286 

however, this effect was not significant when compared to the controls (Fig. 1). 287 

 288 

Our results indicate a clear correspondence between the observed mortality effects and the 289 

avoidance behaviour. Carbendazim showed an elevated avoidance response (87%) at a 290 

concentration near its LC50, whereas the other pesticides were tested at concentrations 291 

between 10 and 200 times below their respective LC50, thus showing no avoidance response. 292 

The avoidance test has a number of advantages such as its short duration and lower 293 

laboriousness in comparison to the standard mortality or reproduction tests. Moreover this test 294 

is based on the fact that organisms possess chemoreceptors highly sensitive to chemicals in 295 

their environment. This test is proposed as a short-term screening tool in ecological risk 296 

assessment schemes for contaminated land, for triggering other tests in case of pollution 297 
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concerns, and for the identification of concentration ranges to be investigated in longer-term 298 

experiments (Da Luz et al., 2004; Amorim et al., 2005).  299 

 300 

3.2 Biomarker and histopathological responses  301 

All tested pesticides significantly inhibited the ChE activity of E. fetida at the lowest exposure 302 

concentration (Table 3). As expected, trichlorfon and dimethoate (acethylcholinesterase 303 

inhibitors) resulted in the highest toxic effects on the acethylcholine metabolism, with a 304 

percentage of ChE activity inhibition of approximately 50% at the lowest tested concentration 305 

(Fig. 2a,b).  Such levels of ChE inhibition have also been observed for other organophosphate 306 

insecticides, such as chlorpyrifos or malathion, in E. fetida and other earthworm species e.g. 307 

Drawida willsi (Rao et al., 2003; Panda and Sahu, 2004). LDH activity was significantly 308 

inhibited by the exposure to trichlorfon, dimethoate and prochloraz (e.g. Fig. 2c), with 309 

NOECs below the lowest tested pesticide concentration (Table 3) and percentages of 310 

inhibition at the lowest exposure concentration of about 70% for trichlorfon, and 20-25% for 311 

dimethoate and prochloraz. Carbendazim also resulted in a decrease of the LDH activity, 312 

however, significant effects only occurred at soil concentrations higher than 0.8 mg/kg d.w. 313 

Exposure to tebuconazole significantly increased LDH activity in soil concentrations up to 314 

142 mg/kg d.w., but a significant decrease was observed in the highest exposure concentration 315 

(Fig. 2d), indicating a possible hormesis effect. Pesticide exposure to trichlorfon, dimethoate, 316 

carbendazim and prochloraz resulted in a significant decrease of the ALP activity (e.g. Fig 317 

2e), with NOECs below the lowest tested concentration (Table 3). Tebuconazole, however, 318 

did not alter the ALP activity at the tested soil concentration range (63-213 mg/kg d.w.; Fig. 319 

2f).  The majority of the biomarker investigations on earthworm organisms have focused on 320 

assessing ChE effects (e.g. Ribera et al., 2001; Rao et al., 2003; Panda and Sahu, 2004), 321 

whereas the inhibition of other enzymatic activities has hardly been evaluated (Sanchez-322 
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Fernandez, 2006). Our results indicate that LDH and ALP, are also sensitive biomarkers of 323 

pesticide exposure and can be used to complement ChE evaluations for several pesticides with 324 

different toxic mode of action. 325 

 326 

The results of the histopathological examination showed that the tested organophosphate 327 

insecticides affected the epidermis and resulted in serious damage of the circular and 328 

longitudinal muscular layers (e.g. Fig. 3c and d). Exposure to high trichlorfon and dimethoate 329 

concentrations also resulted in internal damage, with a degradation of the tiflosol, a 330 

deformation of the dorsal blood vessel (Fig. 3c), and a degradation of the muscular layer 331 

protecting the digestive system (Fig. 3d). These damages potentially resulted in a disorder of 332 

the nervous and digestive systems. Exposure to the fungicides carbendazim and tebuconazole 333 

resulted in similar effects, with hemolimphatic edemas and occasional necrosis in the circular 334 

and longitudinal muscular layers. In the case of carbendazim, a clear flattening of the dorsal 335 

blood vessel and the ventral nerve cord was also observed (Fig. 3e). Exposure to prochloraz 336 

also resulted in effects on the muscular layers, but effects on internal tissues and organs were 337 

less noticeable at the tested exposure concentration (286 mg/kg d.w.; Fig. 3f). 338 

Histopathological examination of transverse sections of the control earthworms showed 339 

normal architecture of body wall, showing continuous cuticular membrane, intact circular and 340 

longitudinal muscles, and intact blood vessels (Fig. 3a,b). 341 

 342 

A number of studies with different earthworm species have shown comparable 343 

histopathological responses when exposed to organic pollutants (Scott-Fordsmand and 344 

Weeks, 2000; Kiliç, 2011; Saxena et al., 2014). The most common responses were 345 

disintegration of the cuticular membrane and the ectoderm layers, damages in the circular and 346 

longitudinal muscles due to necrosis, deformation in chloragogenous cells and tissue erosion, 347 
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the latter usually leading to body fragmentation (Morowati, 2000; Amaral and Rodrigues, 348 

2005; Muthukaruppan et al., 2005; Reddy and Rao, 2008; Gao et al., 2013; Saxena et al., 349 

2014). In our study, earthworms exposed to high pesticide concentrations, particularly 350 

carbendazim and tebuconazole, showed comparable histopathological damages. A study 351 

conducted with the earthworm Metaphire posthuma exposed to 0.5 mg/kg of carbofuran 352 

revealed loss of normal architecture and disintegration of cuticular membrane, epidermal 353 

cells, circular and longitudinal muscles at 14-day of exposure in soil medium, which can 354 

result in bleeding and fragmentation of the body (Saxena et al., 2014). Similar symptoms were 355 

also observed by the same authors when using the E. fetida contact test with 1.20 μg/cm2 of 356 

carbofuran, and by earlier studies using carbaryl and metal treated earthworms (Gupta and 357 

Sundararaman, 1988, 1990; Lourenço et al., 2011). Dittbrenner et al. (2011) observed 358 

significant impairment of the midgut tissue, cuticula, mucocytes and epidermal cells at 359 

imidacloprid soil concentrations ranging between 0.2 and 4.0 mg/kg in Aporrectodea 360 

caliginosa, E. fetida and L. terrestris in laboratory toxicity tests. Previous studies also 361 

revealed damages in the intestines of E. fetida exposed to organophosphate pesticides (Rao et 362 

al., 2003; Reddy and Rao, 2008).  363 

 364 

Earthworms are continuously exposed to soil chemicals through their digestive mucoses and 365 

skin, and are dependent on efficient detoxification systems for their survival (Kiliç, 2011). 366 

Any cell death or necrosis that is not rapidly repaired usually produces failures in the osmotic 367 

regulation (Morowati, 2000). As a mechanism to prevent osmotic failures, earthworms 368 

present a large regeneration capacity.  In case of tissue damage, the chloragogen cells are able 369 

to migrate to the wound or lost tissue and regenerate it (Vogel and Seifert, 1992; Cancio et al., 370 

1995; Morgan et al., 2002; Reddy and Rao, 2008). Alterations in the chloragogen cell activity 371 

produced by exposure to high pesticide concentrations are likely to be responsible of the 372 
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observed impairment in enzymatic activities (i.e., ChE, LDH and ALP) and can be considered 373 

precursors of lethal and sub-lethal effects. 374 

 375 

3.3 Relevance for risk assessment 376 

Acute Toxicity Exposure Ratios (TERs) for the tested pesticides in the rice fields were 377 

calculated by dividing the calculated LC50-14d by the recommended pesticide application 378 

dosages shown in Table 1. For the pesticides that have a logKow larger than 2 (i.e., 379 

tebuconazole and prochloraz; Table 1), the LC50 values were divided by 2 as proposed in EC 380 

(2002). The calculated TERs were equal or larger than 10 for all pesticides, indicating no 381 

short-term risks for the rice-field earthworm populations, except for carbendazim which had a 382 

TER of 0.9 (Table 2). Mortalities of about 50% of the in-field population are expected at the 383 

recommended dosages of carbendazim. Burrows and Edwards (2004) calculated a Predicted 384 

Environmental Concentration (PEC) for carbendazim of 0.76 mg a.i./kg d.w. in terrestrial 385 

ecosystems surrounding agricultural fields and found an EC50-28d for earthworm biomass of 386 

1.9 mg/kg d.w. using terrestrial microcosms. Based on the chemical fate calculations of their 387 

study and the acute weight loss NOEC calculated here, it is expected that carbendazim results 388 

in sub-lethal effects (e.g. growth impairment) in earthworm populations after application. 389 

Therefore, its ecotoxicological impacts should be further evaluated under field conditions. 390 

Daam et al. (2011) demonstrated that the sensitivity of other earthworm species can be up to 391 

two orders of magnitude higher than that of E. fetida, and De Silva et al. (2009) indicated that 392 

lethal and sub-lethal responses of earthworms are largely dependent on temperature and soil 393 

properties. These findings suggest that the preliminary risk calculations performed here could 394 

be somewhat underprotective. Therefore, further research should be dedicated to identify 395 

sensitive earthworm species that can be used for the risk assessment of pesticides in rice 396 
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paddies, preferably using soils with the same characteristics as those found under natural 397 

conditions. 398 

 399 

Biomarkers are an important element in the ecological risk assessment of organic pesticide 400 

pollution. This study has demonstrated that ChE, LDH and ALP can effectively be used as 401 

biomarkers of carbendazim exposure at environmentally relevant concentrations (i.e., PEC 402 

calculated by Burrows and Edwards, 2004), and shows that, with few exceptions (e.g. LDH 403 

and ALP for tebuconazole), the evaluated enzymatic responses have a sensitivity that is at 404 

least two times higher than the measured acute lethal endpoints. Furthermore, this study 405 

shows that morphological changes in the body wall and gastrointestinal tract could be used as 406 

early warning signals of pesticide contamination and could be added to earthworm’s 407 

standardized tests for the evaluation of contaminated ecosystems, and used in a multi-408 

biomarker approach to assess individual-level effects of pesticide pollution. The next 409 

challenge, however, remains on establishing a mechanistic link between the biochemical and 410 

morphological responses observed here and behavioural responses (e.g. feeding, mating), to 411 

quantify effects on earthworm populations and their mediated ecological functions (e.g. 412 

organic matter decomposition, soil formation). 413 
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Tables 592 

Table 1. Characteristics of the pesticide active ingredients and formulations used in this 593 

study, and exposure concentrations used in the laboratory experiments.  594 

 Trichlorfon Dimethoate Carbendazim Tebuconazole Prochloraz 

Pesticide type Organophosphate 
insecticide 

Organophosphate 
insecticide 

Benzimidazole 
fungicide 

Triazole 
fungicide 

Imidazole 
fungicide 

Mode of action Acetylcholinesterase  
inhibitor 

Acetylcholinesterase  
inhibitor 

Inhibition of 
mitosis and cell 

division 

Disrupts 
membrane 
function 

Disrupts 
membrane 
function 

Pesticide properties a      
Molecular mass (g/mol) 257.4 229.3 191.2 307.8 376.7 
Solubility in water (mg/L) 120000 39800 8 36 26.5 
Kow (-) 2.69 5.06 30.2 5010 3160 
Koc (L/kg) 10 28.3 225 769 500 
Laboratory soil DT50 (d) 18 2.6 40 73 120 

Pesticide formulations      
Commercial name Dipterex 80 PS Citan 40 KAR-50 Folicur 25 EW Octagon 
Active ingredient (%) 80 40 50 25 45 
Formulation form Powder Liquid Powder Liquid Liquid 
Purchased from Bayer Inagra Kenogard Bayer Aventis 

Exposure concentrations      

Toxicity tests (mg/kg d.w.) 33, 50, 75, 113, 
169, 253 5.0, 11, 25, 57, 128 0.8, 1.2, 1.8, 

2.6, 4.0, 6.0 
63, 95, 142, 

213, 320 
188, 216, 

249, 286, 329 

Avoidance tests (mg/kg d.w.) b 4.6 2.7 2.3 1.4 2.3 

a Pesticide properties obtained from the PPDB database: http://sitem.herts.ac.uk/aeru/ppdb/en/. Last accessed on 15th June 2014. 595 
b Recommended pesticide application dosages. 596 
 597 
 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 
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 607 
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 609 

 610 

 611 
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Table 2. Results of the toxicity experiments performed with E. fetida and calculated acute 612 

Toxicity Exposure Ratios (TERs) based on the recommended application dosages. 613 

Concentrations are provided in mg/kg d.w. 614 

 Mortality Weight loss 

Acute TERs  14 days 7 days 14 days 

Pesticide Dose-response 
slope±s.e. 

LC10  
(95% CI) 

LC50  
(95% CI) NOEC NOEC 

Trichlorfon 6.5 ± 0.9 77 (64-88) 122 (110-136) 33 <33 27 

Dimethoate 3.1 ± 0.4 11 (7.1-14) 28 (23-35) <5.0 5.0 10 

Carbendazim 5.1 ± 0.6 1.1 (0.9-1.2) 2.0 (1.7-2.2) 0.8 1.2 0.9 

Tebuconazole 5.4 ± 0.7 104 (83-121) 180 (161 -204) 63 <63 64 

Prochloraz 23 ± 3.4 229 (216-239) 261 (252-270) <188 <188 57 

 615 

 616 

 617 

 618 

 619 

 620 
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 624 

 625 
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 629 
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Table 3. Results of the biomarker analysis with E. fetida a. 636 

  
Trichlorfon Dimethoate Carbendazim Tebuconazole Prochloraz 

ChE 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Effect ↓ ↓ ↓ ↓ ↓ 

NOEC (mg/kg d.w.) < 33 < 5 <0.8 <63 <188 

LDH 

p-value <0.001 <0.001 0.08 <0.001 <0.001 

Effect ↓ ↓ ↓ ↑/↓ ↓ 

NOEC (mg/kg d.w.) < 33 < 5 0.8 <63 < 188 

ALP 

p-value 0.001 0.007 <0.001 0.23 <0.001 

Effect ↓ ↓ ↓ NS ↓ 

NOEC (mg/kg d.w.) <33 < 5 <0.8 > 213 <188 
a A p-value lower than 0.05 indicates that the pesticide had a significant effect on the evaluated biomarker. The 637 

arrows ↑ and ↓ indicate an increase or decrease of the measured enzymatic activity, respectively, and NS 638 

indicates a non-significant increase or decrease in the tested concentration range. The NOEC values correspond 639 

to the highest pesticide concentration that did not result in significant effect as compared to the controls. 640 

 641 
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 643 

 644 
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Figures 658 

Figure 1. Results of the avoidance behaviour test (average ± relative standard deviation).  659 

 660 

 661 

* Significant avoidance response caused by the tested pesticide concentration (p<0.05). 662 
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Figure 2. Biomarker activity of E. fetida organisms after a 14 d pesticide exposure period 676 

(mean ± SD). The asterisk indicates significant differences with the control (p<0.05). 677 
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Figure 3. Histological sections of earthworms.  A: Epidermis; B: Circular muscular layer; C: 686 

Longitudinal muscular layer; D: Celoma; E: Tiflosol; F: Intestinal space; G: Dorsal blood 687 

vessel; H: Ventral nerve cord. 688 

            a. Control (x4) b. Control (x10) 

  
              c. Trichlorfon (169 mg/kg d.w.)  d. Dimethoate (57 mg/kg d.w.) 

  
              e. Carbendazim (4 mg/kg d.w.)  f. Prochloraz (286 mg/kg d.w.) 
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