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Abstract—In capsule endoscopy (CE), preparation of the small
bowel before the procedure is believed to increase visibility of
the mucosa for analysis. However, there is no consensus on the
best method of preparation, while comparison is difficult due to
the absence of an objective automated evaluation method.

The method presented here aims to fill this gap by auto-
matically detecting regions in frames of CE videos where the
mucosa is covered by bile, bubbles and remainders of food.
We implemented two different machine learning techniques for
supervised classification of patches: one based on hand-crafted
feature extraction and Support Vector Machine classification and
the other based on fine-tuning different convolutional neural
network (CNN) architectures, concretely VGG-16 and VGG-19.

Using a data set of approximately 40,000 image patches
obtained from 35 different patients, our best model achieved an
average detection accuracy of 95.15% on our test patches, which
is similar to significantly more complex detection methods used
for similar purposes. We then estimate the probabilities at a pixel
level by interpolating the patch probabilities and extract statistics
from these, both on per-frame and per-video basis, intended for
comparison of different videos.

Index Terms—image processing, machine learning, support
vector machines, local binary patterns, capsule endoscopy, small
bowel preparation, convolutional neural networks

I. INTRODUCTION

The main advantage of capsule endoscopy (CE) to tradi-
tional endoscopy is that it allows visualisation of the middle
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part of the intestine. However, there is a relatively frequent
presence of intestinal content [1], such as bile, bubbles and
remainders of food. It is generally believed that adequate
preparation of the patient can help to reduce the amount
of intestinal content and thus increase visibility. Different
preparation methods exist, with different tolerance levels for
the patient, but there is no consensus on which is the most
adequate due to conflicting results in comparative studies.

The conflicting results are partly due to significant differ-
ences between evaluation methods. Some studies have made
use of human evaluation methods [1], which clearly have a
subjective nature, while other studies have employed different
computerised methods [2], which mainly focus on the time-
line with the dominant colours per frame displayed in the
software that comes with the PillCam® capsule. Therefore,
there is a need for an objective automated evaluation method
that can be used as a standard among different clinical centres.

In this work, we aim to meet this need through the develop-
ment of two different methods for automatic detection of bile,
bubbles or food debris, and estimation of the degree of mucosa
visibility from the detection results. Fig. 1 shows examples
of the different cases of interest for our detection method.
This paper is structured as follows. First, we discuss relevant
work that has already been done in this field in Section II.
In Section III we present our method, while the obtained
results are presented in Section IV. Finally, we present our
conclusions and lines of future work in Section V.
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Fig. 1. Different situations of interest in our work. (a) Bile. (b) Bubbles in clear liquid. (c) Bile with bubbles and food debris. (d) Uncovered mucosa.

II. BACKGROUND

The topic of uninformative frame regions due to intestinal
content in CE has been investigated in previous work. The
first work done on this, to the best of our knowledge, is the
work by Vilarifio et al from 2006. [3] It is limited only to the
detection of entire frames that contain bubbles, through an
unsupervised learning method based on a threshold applied to
the response of an image to a bank of Gabor filters.

A multi-stage method detecting both bubbles and bile was
first proposed by Bashar et al. [4] and later modified by
Sun et al. [5]. It detects uninformative frames in two stages,
where each stage is focused on a certain type of content.
Both methods use local colour histograms for the detection of
liquid, but where Bashar et al. make use of Laguerre Gauss
circular harmonic function filters for the detection of bubbles,
Sun et al. use local quantised histograms of classic colour
local binary patterns (CLBP). Sun et al. also chose for a
k-nearest neighbour classifier instead of the support vector
machine (SVM) classifier used by Bashar et al.

Other methods have attempted to detect both types of
intestinal content in a single stage. Namely, Khun et al.
[6] used colour wavelet decomposition in combination with
an SVM classifier for this purpose. Segui et al. [7] instead
extracted a 64-bin colour histogram, which they concatenated
with the number of points from speeded up robust features
(SURF). They separately used SVM and neural network (NN)
classification, obtaining higher accuracy for SVM in general.

In all of the methods above, the part of supervised learning
was limited to entire frames, while in some of them unsuper-
vised segmentation algorithms are applied to detected frames
to segment the area with intestinal content. The work done by
Haji-Maghsoudi et al. [8] attempts to directly classify regions
instead of frames. They use a complex, multi-step approach
and make use of two NN classifiers. The first classifier is
applied to whole images, using morphological operations and
fuzzy k-means in the feature extraction. The result of the
classification of an image is then used to define the parameters
of a segmentation algorithm that is applied to it, after which
it is divided into non-overlapping regions of 32 x 32 pixels.
From these regions they extract statistical features and then
classify those through a second NN classifier obtaining the
final classification results.

(d)

Table I gives an overview of the described methods and their
reported evaluation measures and values. Due to the absence
of an extensive public database, we also included the number
of images and unique patients in the different data sets used
in each method.

III. METHOD

We implemented and compared two separate methods for
classification of patches with intestinal content with the pur-
pose of automatically detecting such areas in CE images. The
first is based on hand-crafted feature extraction and training a
classifier on those features, while the other is an end-to-end
learning technique based on convolutional neural networks
(CNNs). For fair comparison of both methods, we employed
exactly the same data separation for our training and test data
in both methods. We performed the detection at a pixel level
by bilinearly interpolating probabilities between the centres
of the patches containing the pixel, using the probabilities
estimated by our model for the corresponding patches as the
values at those centres.

A. Data Separation

As we required our data to be regional, the data collection
consisted of two parts. First, medical specialists extracted the
part of 35 different CE videos that corresponds to only the
small intestine, with a resolution of 576x576 pixels. We then
extracted frames at regular intervals of one minute leading to
563 frame images, from which we extracted square regions,
hereafter referred to as patches, of predefined size. The patches
were extracted with a possible overlap of half the dimensions
both in width and in height. Specialists manually selected
and labelled several patches per image where the mucosa was
either entirely visisble, hereafter simply referred to as clean,
or fully covered by intestinal content, hereafter referred to as
dirty.

To evaluate how well our models generalise to new input
samples, we performed external 5-fold cross validation. We
ensured that patches we tested on did not originate from
the same images as patches used in the training phase by
partitioning our frame images in 5 equally sized sub-sets,
taking a different sub-set as test set for each fold and the
remaining subsets as the corresponding training data. This
way, we ended up with the data shown in Table II.



TABLE I
SUMMARY OF RELEVANT METHODS USED SO FAR, WITH THE TYPE OF INTESTINAL CONTENT THEY DETECT (WHERE B REFERS TO BUBBLES AND L
REFERS TO LIQUID), THE EVALUATION MEASURE WITH THE OBTAINED VALUE, THE DETECTION TARGET AND THE NUMBER OF FRAMES IN THE DATA
SET, WITH THE NUMBER OF DIFFERENT PATIENTS IN PARENTHESES.

Year Author IC Type | Measure | Value Target Data Set
2006 Vilarifio et al. [3] B accuracy | 95.5% frames -
2008 Bashar et al. [4] B accuracy | 99.82% | frames 14841 (3)
2008 Bashar et al. [4] B recall 97.48% | frames 11354 (3)
2009 Khun et al. [6] LB accuracy | 94.10% | frames 200 (1)
2012 Sun et al. [5] L accuracy 99.31% frames 2300 (3)
2012 Sun et al. [5] B accuracy | 97.54% | frames 1700 (3)
2012 Segui et al. [7] LB accuracy | 91.6% frames 100000 (50)
2014 | Haji-Maghsoudi et al. [8] LB accuracy | 98.15% | regions 2400 (60)

B. Method 1: Feature Extraction and SVM (FE-SVM)

In our first method we defined a hand-crafted feature
descriptor, using both colour and texture information, and
trained a classifier on those features. We later refer to this
method as FE-SVM. Specifically, our feature vector was
the concatenation of uniform rotation-invariant local binary
patterns (LBP"™2) [9] on the R, G and B colour channels and
the mean of the a and b colour channels of the patch image in
the CIE L*a*b* (CIELAB) colour space [10]. We then trained
an SVM classifier on the extracted feature data to construct
a model capable of distinguishing between both classes. In
SVM classification, we attempt to find an optimal solution to
the problem
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The function K (x;,%;) = ¢(x;)T ¢(x;) is the kernel function,
which in our case is the is the radial basis function (RBF),
given by K (x;,%;) = exp(—|x;—x;||*) with v > 0. For the
optimisation of the parameters C in Eq. (1) and + in the kernel
function, we performed an extensive grid search using internal
4-fold cross validation to prevent over-fitting, thus training 4
times for each possible combination of parameters, each time
leaving out a different partition of the data for validation. First,
we performed a coarse grid search attempting all combinations
of v and C with v ranging from 2715 to 23 and C ranging
from 275 to 2!5, with the exponent increasing in steps of 2
for each parameter. We then performed a fine grid search in
which each of the two parameters takes values between 2+~1

TABLE II
THE DATA SETS OF IMAGE PATCHES USED FOR TRAINING AND
EVALUATION IN THE 5-FOLD CROSS VALIDATION PROCEDURE IN BOTH OF
OUR METHODS.

Training Test
Clean | Dirty | Clean | Dirty
Fold 1 | 17378 | 16974 | 5395 4541
Fold 2 | 18109 | 16358 | 4555 5249
Fold 3 | 17888 | 16329 | 4809 5283
Fold 4 | 17819 | 16508 | 4888 5077
Fold 5 | 17084 | 17522 | 5733 3911

and 2Ft1 with k being the exponent with highest average
validation accuracy for that parameter among the 4 folds in
the coarse grid search. Here we increased £ in steps of 0.25
instead and we chose the value for which we obtain highest
average validation accuracy among the 4 folds.

In the same way, we simultaneously optimised the parame-
ters of LBP""2, concretely the number of neighbours (8 or 16)
and the radius (ranging from 1 to 10), along with the patch size
of s x s pixels (s = 64, s = 32 and s = 16), attempting each
different combination of both these parameters and the SVM
parameters. As for the patch size, the patches were annotated
in the greatest size s = 64 in order to programmatically extract
a smaller region around the centre of each patch as our data
for the smaller patch sizes, as all patches were either entirely
clean or entirely dirty. Fig. 2c shows an example of all patches
we can extract from an image this way when s = 64.

C. Method 2: Convolutional Neural Networks

Our second method is based on deep learning through
convolutional neural networks (CNNs). A CNN is a type of
artificial neural network specifically designed for image data
[11], which automatically automatically extracts features from
raw image data as opposed to hand-crafted feature extraction.
It extracts these features in convolutional layers, i.e. layers that
convolve the image through a bank of filters of pre-defined
size, where we define the filter values as its weights. For the
training procedure, the input images are divided into a training
set and a validation set. The images in the training set are
then divided into batches of a chosen size and each time a
batch has been fed through the network and the error has been
measured, the weights of the network are updated according
to a chosen optimisation algorithm. Once an epoch has been
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Fig. 2. (a) An example of an image from our data set. (b) The mask we
apply to this image. (c) All patches we could extract from the area of interest
using our method with patch size s = 64.



completed, i.e. the network has been trained in this way on
all batches a single time, the performance is measured on the
validation set using a chosen metric. This training procedure is
usually repeated until the performance on the validation data
no longer improves or until a maximum number of epochs
has been completed.

The above training procedure requires a significant amount
of labeled input data and computational resources. Regardless,
CNNs have been applied successfully in different computer
vision domains in recent years, largely made possible by the
concept of transfer learning: taking the base of existing CNN
models that were trained on vast amounts of labelled image
data and reusing this in a new model [12]. As the higher
layers are more relevant to the specific task, we can define new
classification layers for our task and either only train those,
using the base taken from the existing model as a feature
extractor, or go deeper and also retrain the higher layers of
the base, keeping the weights of the lowest layers fixed. We
will do the latter, which is also referred to as fine-tuning.

In our case, we separately fine-tuned two VGGNet archi-
tectures [13], namely VGG-16 and VGG-19. We chose for
these architectures since we found the VGGNet architectures
to be most successful in previous work on CE images [14].
Additionally, they are the most widely used purely sequential
architectures and have consistent filter sizes in the convolu-
tional layers. For these reasons they are intuitive architec-
tures to comprehend and to fine-tune. Namely, VGGNet was
the first architecture to consistently use 3x3 kernel sizes in
the convolutional layers, replacing larger kernels employed
in AlexNet. By concatenating multiple convolutional layers
with this kernel size, the network becomes deeper and more
complex features can be represented at a lower cost.

VGG-16 and VGG-19 both consist of 5 sequential blocks,
which on its turn consist of sequential convolutional layers
followed by a max pooling layer. The architectures differ in
the number of convolutional layers they contain as visualised
in Fig. 3. Both architectures originally have three fully con-
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nected layers and a soft-max layer for classification, leading
to a total of 16 and 19 weight layers respectively. However,
for both architectures we removed those layers and replaced
them by two fully connected layers, one of size 4096 and the
other of size 2048, followed by a soft-max layer. In this way,
we ended up with the final architectures shown in Fig. 3. We
also defined a drop-out of 0.5 and 0.25 respectively for the
two fully connected layers to avoid over-fitting, which is a
common problem of deeper CNN architectures.

For training our models, we made use of the Keras frame-
work [15] in Python with TensorFlow [16] as its backend.
We retrained the weights of our modified VGG-16 and VGG-
19 architectures from the lowest layer of the highest con-
volutional block in both cases. We partitioned each of our
training data sets into a training set and a validation set,
ensuring a 20% of the data in the validation set. As per the
image size used to pre-train the networks, we had to rescale
our patch images from 64x64 to 224x224. We set all the
other parameters explained above empirically. We used the
accuracy as our performance metric and trained the networks
for a maximum of 100 epochs or until validation accuracy
no longer improved during 15 epochs or more. We set the
batch size to 4 due to memory limitations and the optimisation
algorithm to Stochastic Gradient Descent (SGD). For SGD we
used the binary cross-entropy loss function and established
a momentum of 0.98 and a learning rate of 0.0001 without
decay. To increase the robustness of our models, we also used
data augmentation with a rate of 0.02.

IV. RESULTS

For method 1, we first optimised the parameters of our
feature extraction during the cross-validation procedure as
explained in Section III-B. The optimal parameters we found
in this way were: 16 neighbours p and a radius r of 1 for LBP,
and 64 for s in the patch size s x s. For method 2 we used
the optimal value of 64 for s in the patch size s x s found in
method 1. We did not need to optimise any feature extraction
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Fig. 3. An overview of the VGG-architectures we implemented, with our modified VGG-16 at the top and our modified VGG-19 at the bottom, where
each rectangle represents a layer of the network. The layers surrounded by the red rectangles are the layers we defined by which we replaced the fully
connected layers of the original VGG-16 and VGG-19 architectures. The text corresponds to the output sizes. The far left layers are the input layers, yellow
are convolutional layers, blue are max pooling layers, light gray are flattening layers, red are fully connected layers and green are the softmax classification

layers.



parameters for this method, as the neural networks learns the
features by itself.

The results obtained per fold in our 5-fold cross-validation
and the average results over the folds, both for FE-SVM with
the optimal parameters and for the different CNN architec-
tures, are given in Table III. We used macro-averaging to
obtain the average results. Visualising the probabilities as a
heat map using the VGG-19 model with the highest average
accuracy, we obtained images as shown in Fig. 4.

V. CONCLUSIONS AND FUTURE WORK

We presented and compared two different methods to auto-
matically detect uninformative areas in CE videos: one based
on hand-crafted feature extraction and SVM classification and
the other based on CNNs. While previous work has applied
computationally expensive, multi-stage approaches, in this
work we showed that similarly high accuracy can be achieved
with the decision of a single model without any pre-processing
or post-processing of the images, obtaining an accuracy of
95.15%.

We trained our models on an extensive database of more
than 40000 annotated regions from frames from videos of 35
patients, ensuring a high variability of the data, and ensured
a fair evaluation of the performance of our classifiers on new
patches by using a test set of patches that originated from
frames that were not used for training. For the VGG-19 and
VGG-16 models from our CNN-based method we obtained
similarly high results, which significantly outperformed our
hand-crafted feature extraction method.

Instead of employing segmentation methods as in previous
research, we developed a method that uses the overlap between
patches and the patch probabilities given by the model to
estimate probabilities at a pixel level. We can then use
the estimated probabilities to determine the percentage of
covered mucosa in each frame of a video and thus calculate
a percentage over the whole video. In a clinical setting, these

TABLE III
RESULTS OBTAINED IN TERMS OF ACCURACY, SENSITIVITY AND
SPECIFICITY.
Method Fold Accuracy | Sensitivity | Specificity
Fold 1 85.32% 89.43% 80.42%
Fold 2 87.62% 86.94% 88.21%
FE + SVM Fold 3 86.84% 89.83% 84.12%
Fold 4 87.83% 93.64% 82.23%
Fold 5 88.75% 89.60% 87.50%
Average 87.32% 90.73% 83.71%
Fold 1 93.49% 92.59% 94.64%
Fold 2 95.04% 93.50% 96.45%
VGG-16 Fold 3 94.10% 90.83% 97.53%
Fold 4 93.71% 89.46% 98.73%
Fold 5 95.32% 94.98% 95.86%
Average 94.33% 92.27% 96.61%
Fold 1 95.15% 94.59% 95.84%
Fold 2 95.92% 95.43% 96.35%
VGG-19 Fold 3 94.33% 91.00% 97.83%
Fold 4 94.62% 91.75% 97.77%
Fold 5 95.74% 96.60% 94.48%
Average 95.15% 93.87% 96.45%

results can be used to automatically and objectively evaluate
how different methods of small bowel preparation for CE
affect the visibility of the mucosa.

In cases where our method fails, it appears to do so mainly
on image areas containing slightly turbid liquid that blurring
the mucosa, while obscuring it sufficiently to complicate the
diagnosis of a pathology. We also observed how it can fail
on more densely present bile, particularly when it appears to
have a colour similar to the intestinal mucosa (e.g. due to
the illumination). Examples of such cases are shown in the
bottom row of Fig. 4.

In future work, in order to further improve results, we
may incorporate more of the aforementioned images into
our training data to train a model that is more invariant to
illumination changes and is stricter with turbid liquid. It could
also be interesting to investigate combining the strengths of
the different models we trained, e.g. by creating a classifier
ensemble, and to study further inclusion of pathological areas,
accounting for their low frequency. More importantly, in order
to meet the objective of developing a standard for this purpose,
we need to clinically evaluate our method by comparing
sequential frame classification of our algorithm in new videos
with manual classification by multiple medical specialists.
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