

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/136098

Bernal-Garcia, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2018). Calculation of
multiple eigenvalues of the neutron diffusion equation discretized with a parallelized finite
volume method. Progress in Nuclear Energy. 105:271-278.
https://doi.org/10.1016/j.pnucene.2018.02.006

https://doi.org/10.1016/j.pnucene.2018.02.006

Elsevier

Calculation of multiple eigenvalues of the neutron
diffusion equation discretized with a parallelized finite

volume method

Alvaro Bernala,∗, Jose E. Romanb, Rafael Miróa, Gumersindo Verdúa

aInstitute for Industrial, Radiophysical and Environmental Safety, Universitat Politècnica
de València, Camı́ de Vera s/n, Valencia, Spain

bDepartment of Information Systems and Computation, Universitat Politècnica de
València, Camı́ de Vera s/n, Valencia, Spain

Abstract

The spatial distribution of the neutron flux within the core of nuclear reactors

is a key factor in nuclear safety. The easiest and fastest way to determine it

is by solving the eigenvalue problem of the neutron diffusion equation, which

only contains spatial derivatives. The approximation of these derivatives is

performed by discretizing the geometry and using numerical methods. In this

work, the authors used a finite volume method based on a polynomial expansion

of the neutron flux. Once these terms are discretized, a set of matrix equations

is obtained, which constitutes the eigenvalue problem. A very effective class of

methods for the solution of eigenvalue problems are those based on projection

onto a low-dimensional subspace, such as Krylov subspaces. Thus, the SLEPc

library was used for solving the eigenvalue problem by means of the Krylov-

Schur method, which also uses projection methods of PETSc for solving linear

systems. This work includes a complete sensitivity analysis of different issues:

mesh, polynomial terms, linear systems solvers and parallelization.

Keywords: eigenvalue problem, neutron diffusion equation, finite

volume method, Krylov subspaces

∗Corresponding author
Email addresses: abernal@iqn.upv.es (Alvaro Bernal), jroman@dsic.upv.es (Jose E.

Roman), rmiro@iqn.upv.es (Rafael Miró), gverdu@iqn.upv.es (Gumersindo Verdú)

Preprint submitted to Progress in Nuclear Energy October 22, 2019

1. Introduction

The spatial distribution of the neutron flux within nuclear reactor core is a

key factor in nuclear safety, since it is related to the power. This distribution

can be calculated by means of Monte Carlo or deterministic methods. The latter

ones solve the integro-differential neutron transport equation and they require5

typically less computational resources than the former ones. The deterministic

method most widely used in Reactor Physics is the neutron diffusion theory,

which is a simplification of the neutron transport theory based on Fick’s Law

[1].

The neutron diffusion equation is a partial differential equation contain-10

ing temporal and spatial partial derivatives. The spatial distribution can be

obtained by using the separation of variables technique for the temporal and

spatial terms. Thus, the spatial distribution of the neutron flux is obtained by

solving an eigenvalue problem, which only contains spatial derivative terms, and

is also the solution of the steady-state. The approximation of the spatial deriva-15

tive terms is performed by discretizing the geometry and using discretization

methods.

There is a large number of free and open-source or commercial mesh genera-

tors, such as Gmsh, enGrid, Netgen, Discretizer, snappyHexMesh, ICEM-CFSD,

CUBIT,etc. In this work, the authors used Gmsh [2], which is a free 3D finite20

element grid generator with a built-in Computer-aided design engine and post-

processor. The major advantages of Gmsh are that it is fast, user-friendly and

can generate tetrahedral and hexahedral meshes.

A huge variety of discretization methods can be applied to the eigenvalue

problem of the neutron diffusion equation, such as finite difference, finite ele-25

ment, finite volume or nodal methods, as discussed by several authors [1],[3].

The nodal methods [4] are the most popular numerical techniques used to solve

the neutron diffusion equation, which give accurate results in structured meshes.

However, the application of these methods in unstructured meshes dealing with

complex geometries is not straightforward and may cause problems of stability30

2

and convergence of the solution [5]. In this work, the authors used a finite vol-

ume method, because it can be easily applied to unstructured meshes and is

typically used in the transport equations due to the conservation of the trans-

ported quantity within the volume. In fact, the application of the finite volume

method to the neutron diffusion equation is feasible, as demonstrated in [6].35

Moreover, the neutron diffusion theory applied to discretized geometries re-

quires additional equations at the interfaces of two cells: neutron flux and neu-

tron current continuity, which imply an excess of equations. The neutron current

is calculated by means of Fick’s Law, which is proportional to the neutron flux

gradient, and the proportionality constant depends on the cell material [1]. In40

this work, the calculation of the gradient is perfomed by using a polynomial

expansion of the neutron flux in each cell of the discretized geometry [7, 8].

By means of this method, one obtains the same number of equations as un-

knowns and the gradient is calculated analytically. This method is explained

in Section 2. In this polynomial expansion, the polynomial terms for each cell45

were assigned previously and the coefficients of the expansion are determined

by solving the eigenvalue problem. The authors performed a sensitivity analysis

for determining the best set of polynomial terms.

For the solution of the eigenvalue problem, a very effective class of methods

are those based on projection onto a low-dimensional subspace, such as Krylov50

subspaces. There are several softwares and libraries containing the algorithm

of these methods, which have been widely used. Currently, the state of the

art for calculating eigenvalue problems is the SLEPc library [9, 10]. SLEPc,

the Scalable Library for Eigenvalue Problem Computations, is a software li-

brary for the solution of large, sparse eigenproblems on parallel computers. It55

provides projection methods or other methods with similar properties, such as

Krylov-Schur or Jacobi-Davidson. SLEPc is built on top of PETSc (Portable,

Extensible Toolkit for Scientific Computation) [11] and extends it with all the

functionality necessary for the solution of eigenvalue problems, which includes

matrix operations and solution of linear systems. In this work, the authors60

used the Krylov-Schur algorithm of SLEPc for solving the eigenvalue problem

3

and different methods for solving the linear systems. Further details on these

methods are given in Section 2.

Finally, the authors applied the method to a VVER reactor, which has

hexagonal geometry. The authors already tested the method in other type of65

reactors in previous works [7],[8], which have Cartesian geometry. The polyno-

mial expansion in these reactors with Cartesian geometry is composed of the

following terms: 1, x, y, z, x2, y2, z2. However, in VVER reactors, the poly-

nomial expansion is composed of other terms, as discussed in Section 2. The

polynomial terms used in VVER reactors give matrices which have excellent70

condition numbers, as shown in Section 3.4.

The novelty of this work includes two issues. First, a complete sensitivity

analysis of the method applied to VVER reactors, involving the polynomial

expansion, mesh and linear systems. Second, the parallelization of the method,

showing excellent results of speedup, as shown in Section 3.75

The outline of the paper is as follows. Section 2 explains the numerical

methods, which is divided into two subsections. Subsection 2.1 shows the finite

volume discretization of the neutron diffusion equation. Subsection 2.2 describes

the matrices used in the eigenvalue problem and how it is solved. Section

3 defines the reactor used for the validation of the method and displays the80

results. Section 4 summarizes the major conclusions of this work.

2. Method

2.1. Neutron diffusion equation discretized with the Finite Volume Method

There are several approaches of the neutron diffusion equation depending on

the energy discretization. The most commonly used in commercial nuclear re-85

actors is the two energy group discretization. Eqs.(1)-(2) show the steady-state,

two energy group discretization, neutron diffusion equation, without upscatter-

ing, for each energy group respectively. One can extend this method to more

energy groups.

4

0 = −∇ ~J1(~r)− (Σa,1(~r) + Σs,1→2(~r))φ1(~r) +

+
1

k
(νΣf,1(~r)φ1(~r) + νΣf,2(~r)φ2(~r)) (1)

0 = −∇ ~J2(~r)− Σa,2(~r)φ2(~r) + Σs,1→2(~r)φ1(~r) (2)

In Eqs.(1)-(2), Σa,g is the absorption macroscopic cross section of the neu-90

trons of the g energy group, Σs,1→2 is the scattering macroscopic cross section

of the neutrons from the first energy group to the second one, νΣf,g is the

nu-fission macroscopic cross section of the neutrons of the g energy group, φg

is the neutron flux of the g energy group, ~Jg is the neutron current of the g

energy group. Although φg is called neutron flux, it is a scalar variable. The95

macroscopic cross sections are coefficients depending on the material, the en-

ergy group and the nuclear reactions. They are related to the probability of

a particular nuclear reaction of neutrons with target nuclei and their units are

cm−1. Absorption reactions eliminate neutrons, while nu-fission reactions pro-

duce neutrons by fission. Scattering reactions from the first energy group to100

the second one eliminate neutrons of the first energy group and produce them

in the second energy group. The unit of the neutron flux is cm−2s−1. These

equations represent an eigenvalue problem, in which k is the eigenvalue and φg

is the eigenvector. The neutron current is, according to Fick’s law, proportional

to the gradient of the neutron flux, as shown in Eq.(3). In this equation, Dg is105

called the diffusion coefficient, its unit is cm and depends on the material and

energy group.

~Jg(~r) = −Dg(~r)~∇φg(~r) (3)

Numerical methods should be applied to Eqs.(1)-(2) to obtain algebraic

terms. Firstly, the geometry is discretized by using a mesh generator, such

as Gmsh [2]. The discretized geometry will be composed of cells such as tetra-110

hedra or hexahedra, containing only one homogenized material. Secondly, the

5

finite volume method and divergence theorem are applied to Eqs.(1)-(2), pro-

ducing Eqs.(4)-(5) for each cell i. In these equations, nf is the number of faces

for each cell, Sj is the area of the face j of cell i, Jg,i,j is the face averaged value

of ~Jg at face j of cell i, Vi is the volume of cell i, Σis,1→2 is the value of Σs,1→2115

in cell i, νΣif,g is the value of νΣf,g in cell i and φg,i is the cell averaged value

of φg in cell i.

nf∑
j=1

SjJ1,i,j + Vi
(
Σia,1 + Σis,1→2

)
φ1,i =

1

k
Vi
(
νΣif,1φ1,i + νΣif,2φ2,i

)
(4)

nf∑
j=1

SjJ2,i,j + ViΣ
i
a,2φ2,i − ViΣis,1→2φ1,i = 0 (5)

Equations (4)-(5) do not contain derivatives, but Jg,i,j is not known. These

values are obtained by applying the finite volume method to Eq.(3) producing

Eq.(6). In this equation, Di
g is the value of Dg in cell i and ~∇φg,i,j is the face120

averaged value of the gradient of the neutron flux at face j for cell i. Eq.(6)

does not contain derivatives, because ~∇φg,i,j is a face averaged value.

Jg,i,j = −Di
g
~∇φg,i,j (6)

Since the geometry is discretized and is not homogeneous, additional inter-

faces equations are required, as discussed in Section 1. These equations are the

neutron flux continuity and the current continuity for each energy group, which125

are expressed in Eqs.(7) and (8), for face j, which is adjacent to cells i and l.

φg,i,j = φg,l,j (7)

Jg,i,j = −Jg,l,j (8)

To determine the total number of equations, the authors consider a simple

discretized geometry, like the one illustrated in Figure 1. In this figure, one can

see cell equations, which are the diffusion equations, and the face equations:

6

boundary conditions, neutron flux continuity and neutron current continuity.130

From this figure, one can conclude that the number of equations for each energy

group and cell is nf + 1.

Figure 1: Equations applied to a discretized geometry.

If one considers that φg,i,j and Jg,i,j can be calculated from φg,i, there is

only one unknown value for each energy group and cell: φg,i. Thus, the authors

proposed to expand the neutron flux in each cell to increase the number of135

unknowns, so one may obtain the same number of unknowns and equations,

as expressed in Eq.(9) and discussed in [7]. In this expansion, the monomials

pt(x, y, z) =xαtyβtzγt are fixed and the coefficients ag,i,t will be the unknowns,

which will be determined by solving the eigenvalue problem. As xαtyβtzγt are

known, one can obtain φg,i, φg,i,j and ~∇φg,i,j , as shown in Eqs.(10)-(12). In140

Eq.(12), ui,j,x, ui,j,y and ui,j,z are the direction cosines of the normal to face j.

φg,i(x, y, z) =

nf+1∑
t=1

ag,i,tpt(x, y, z) =

nf+1∑
t=1

ag,i,tx
αtyβtzγt (9)

φg,i =
1

Vi

∫
Vi

φg,i(x, y, z)dV =

nf+1∑
t=1

ag,i,t
1

Vi

∫
Vi

pt(x, y, z)dV =

nf+1∑
t=1

ag,i,tp
Vi
t

(10)

7

φg,i,j =
1

Sj

∫
Sj

φg,i(x, y, z)dS =

nf+1∑
t=1

ag,i,t
1

Sj

∫
Sj

pt(x, y, z)dS =

nf+1∑
t=1

ag,i,tp
Si,j

t

(11)

~∇φg,i,j =
1

Sj

∫
Sj

~∇φg,i(x, y, z)dS

=

nf+1∑
t=1

ag,i,t

(
ui,j,x

1

Sj

∫
Sj

dpt(x, y, z)

dx
dS + ui,j,y

1

Sj

∫
Sj

dpt(x, y, z)

dy
dS

+ui,j,z
1

Sj

∫
Sj

dpt(x, y, z)

dz
dS

)
=

nf+1∑
t=1

ag,i,t~∇pt
Si,j

(12)

For fine discretization grid containing a large number of cells and interfaces,

the number of equations will be extremely large. To reduce this number, one

can define implicitly the boundary conditions and the current continuity, as

proposed in [8]. Consequently, the number of equations for each energy group145

will be reduced to Nc+Nf , where Nc is the number of cells and Nf the number

of interfaces, that is, the number of diffusion equations and flux continuity

equations. As with the unknown values (ag,i,t), the number of unknowns should

be also reduced. For this purpose, coefficients ag,i,t will be calculated as a

weighted sum of φg,i and Jg,i,j and only one unknown current per each interface150

j will be considered: Jg,j = Jg,i,j = −Jg,l,j . For each interface j, whose adjacent

cells are i and l, the direction of Jg,j will be from cell i to cell l. So, the current

continuity will be defined implicitly and the number of unknowns is reduced.

To calculate ag,i,t in terms of φg,i and Jg,j , one can formulate Eq.(13) for

each cell i and energy group g. This equation contains the terms fi,j,t and Fg,i,j155

defined in Eqs.(14) and (15) respectively. In Eqs.(14) and (15), ui,j is equal to

1 if Jg,i,j = Jg,j and is equal to -1 if Jg,i,j = −Jg,j . Finally, one can obtain ag,i,t

8

as in Eq.(16), where I−1i is the inverse of the matrix in Eq.13.


pVi
1 · · · pVi

nf+1

fi,1,1 · · · fi,1,nf+1

...
...

fi,nf ,1 · · · fi,nf ,nf+1




ag,i,1
...

ag,i,nf+1

 =


φg,i

Fg,i,1
...

Fg,i,nf

 (13)

fi,j,t =

p
Si,j

t if face j is a boundary face of zero flux condition

−ui,j ~∇pt
Si,j

the rest of cases

(14)

Fg,i,j =

φg,i,j if face j is a boundary face of zero flux condition

−ui,j ~∇φg,i,j the rest of cases

(15)


ag,i,1

...

ag,i,nf+1

 = I−1i


φg,i

Fg,i,1
...

Fg,i,nf

 (16)

If one combines Eqs.(11) and (16), one obtains Eq.(17), which calculates

φg,i,j in terms of φg,i and Fg,i,t. The coefficients Xi,j,k are calculated as in160

Eq.(18). It is more convenient to multiply Eq.(17) by Di
g, obtaining Eq.(19),

because Di
gFg,i,j can be expressed in terms of Jg,j as in Eq.(20).

φg,i,j = Xi,j,1φg,i +

nf∑
t=1

Xi,j,t+1Fg,i,t (17)

Xi,j,k =

nf+1∑
t=1

p
Si,j

t I−1i (t, k) (18)

Di
gφg,i,j = Xi,j,1D

i
gφg,i +

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t (19)

9

Di
gFg,i,j =

0 if face j is a boundary face

ui,jJg,j if face j is an inner face

(20)

If boundary condition on face j is zero flux (φg,i,j = 0), one should calculate

Jg,i,j on this face j. For doing this, one can combine Eqs.(6), (12) and (16),

which gives Eq.(21). In this equation, coefficients Ri,j,k are calculated as in165

Eq.(22).

Jg,i,j = Ri,j,1D
i
gφg,i +

nf∑
t=1

Ri,j,t+1D
i
gFg,i,t (21)

Ri,j,k = −
nf+1∑
t=1

~∇pt
Si,j

I−1i (t, k) (22)

If one substitutes Eq.(19) into Eq.(7), which is the flux continuity, one

obtains Eq.(23). Finally, if one uses the implicit definition of the current

(Jg,i,j = ui,jJg,j) in Eqs.(4)-(5), one obtains Eqs.(24)-(25). In conclusion,

Eqs.(24)-(25) are the cell equations and Eq.(23) is the face equation of the170

final eigenvalue problem.

0 =
Di
g

Di
g

φg,i,j −
Dl
g

Dl
g

φg,l,j

=

(
Xi,j,1φg,i +

1

Di
g

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t

)

−

(
Xl,j,1φg,l +

1

Dl
g

nf∑
t=1

Xl,j,t+1D
l
gFg,l,t

)
(23)

nf∑
j=1

Sjui,jJ1,j + Vi
(
Σia,1 + Σis,1→2

)
φ1,i =

1

k
Vi
(
νΣif,1φ1,i + νΣif,2φ2,i

)
(24)

nf∑
j=1

Sjui,jJ2,j + ViΣ
i
a,2φ2,i − ViΣis,1→2φ1,i = 0 (25)

10

2.2. Eigenvalue problem of the neutron diffusion equation

Equations (23)-(25) can be arranged in matrix form as expressed in Eq.(26)

for a cell i and face j, where hg = 1
Di

g

∑nf

t=1Xi,j,t+1
Di

gFg,i,t

Jg,j
− 1
Dl

g

∑nf

t=1Xl,j,t+1
Dl

gFg,l,t

Jg,j
,

for g = 1, 2. If one considers the whole geometry, the eigenvalue problem will175

be that of Eq.(27), whose eigenvector is defined in Eq.(28).


Vi
(
Σia,1 + Σis,1→2

) ∑nf

j=1 Sjui,j 0 0

Xi,j,1 −Xl,j,1 h1 0 0

−ViΣis,1→2 0 ViΣ
i
a,2

∑nf

j=1 Sjui,j

0 0 Xi,j,1 −Xl,j,1 h2




φ1,i

J1,j

φ2,i

J2,j

 =

=
1

k


ViνΣif,1 0 ViνΣif,2 0

0 0 0 0

0 0 0 0

0 0 0 0




φ1,i

J1,j

φ2,i

J2,j

 (26)

L1,1 0

L2,1 L2,2

Φ1

Φ2

 =
1

k

M1,1 M1,2

0 0

Φ1

Φ2

 (27)

Φg =



φg,1
...

φg,Nc

Jg,1
...

Jg,Nf


(28)

From Eq.(27), one can obtain Eqs.(29) and (30). If Eqs.(29)-(30) are com-

bined, one obtains Eq.(31), which defines a matrix depending only on Φ1.

Eq.(30) is the eigenvalue problem that will be solved. The dimension of this

eigenvalue problem is half of that of Eq.(27), Φ1 is the eigenvector, k is the180

eigenvalue and the problem is solved by using an iterative process. It is im-

portant to point out that the inverse of Lg,g is not calculated in Eq.(31), but a

11

linear system is solved: y = L−1g,gz → Lg,gy = z.

L2,2Φ2 = −L2,1Φ1 (29)

kΦ1 = L−11,1 (M1,1Φ1 +M1,2Φ2) (30)

kΦ1 = AΦ1 = L−11,1

(
M1,1 −M1,2L

−1
2,2L2,1

)
Φ1 (31)

As the solution of the linear systems, the authors used the iterative solvers

of PETSc [11]. These solvers are based on a combination of a Krylov sub-185

space method and a preconditioner. PETSc includes a great variety of solvers

and preconditioners. Examples of solvers are the following methods: Conju-

gate Gradient , BiConjugate Gradient, Generalized Minimal Residual(GMRES),

Generalized Conjugate Residual, BiCGSTAB and Conjugate Gradient Squared.

Examples of preconditioner are the following methods: Jacobi, SOR, Incom-190

plete LU and Additive Schwarz. The authors performed a sensitivity analysis

in Section 3.4 and found out that the fastest solver was GMRES [12] with the

Additive Schwarz preconditioner.

For the calculation of the eigenvalue problem, the authors have applied

the Krylov-Schur algorithm implemented in SLEPc [9, 10]. The Krylov-Schur195

method is an Arnoldi method which uses an implicit restart based on a Krylov-

Schur decomposition [13].

The method of Arnoldi is a Krylov-based projection method that computes

an orthonormal basis of the Krylov subspace of order m associated with matrix

A and initial vector x0. This Krylov subspace is given in Eq. (32). Projection200

methods for eigenvalue problems are intended for computing a partial eigenso-

lution, that is, given a square matrix A of order N , the objective is to compute

a small number of eigenpairs, λi , xi , i = 1, · · · ,m, with m� N . The Arnoldi

method computes not only this orthonormal basis (Vm), but also the projected

12

matrix H at the same time in an efficient and numerically stable way.205

Km(A, x0) = span
{
x0,Ax0,A2x0, · · · ,Am−1x0

}
(32)

This projection method calculates the eigenvalue problem Hyi = θiyi, of

order m, instead of Axi = λixi, of order N . Taken into account that (H =

V TmAVm) and (V TmVm = Im), one concludes that the pair (λi,Vmyi) can be

taken as an approximation of the eigenpair (λi,xi) of matrix A. This method

will converge very fast, if the initial vector x0 is rich in the direction of the210

wanted eigenvectors, which is usually not the case. So, many iterations may

be required, which implies a growth in storage requirements and computational

time. A solution for this problem is to stop after some iterations and restart

the method, by using a new initial vector computed from the recently obtained

spectral approximations.215

Different approaches can be used for the restart: explicit and implicit. Ex-

plicit algorithms calculate the initial vector as a linear combination of the cur-

rent eigenvector approximations, but it is difficult to choose the appropriate

parameters. Implicit algorithms combine the Arnoldi process with the implic-

itly shifted QR algorithm, in which an m-step Arnoldi factorization is compacted220

into an (m − d)-step Arnoldi factorization, which retains the relevant eigenin-

formation of the large factorization. The implementation of the implicit restart

in a numerically stable way is difficult, but it is solved by using a Krylov-Schur

decomposition. More information about this decomposition can be found in

[13].225

3. Results

The outline of this section is as follows. Subsection 3.1 describes the reactor

and models used to evaluate the method. Subsection 3.2 analyzes the polyno-

mial expansion of the neutron flux for a specific mesh and linear system solver.

Subsection 3.3 performs a sensitivity analysis of different meshes for a specific230

polynomial expansion of the neutron flux and linear system solver. Subsection

13

3.4 compares the computational time of different linear system solvers of PETSc.

Subsection 3.5 shows the capability of the method in parallel computation.

As with the numerical results, the first five largest eigenvalues and their

eigenvectors were calculated in each simulation. All the CPU time values re-235

ported in this work have been obtained on an AMD Opteron(TM) Processor

6272 with the CentOS 6.8 operating system.

The Power Errors (PE) and Eigenvalue Errors (EE) are used to evaluate

the results and are defined in Eqs.(33) and (34). The power for each cell (Pi)

is defined in Eq.(35). The constant is a normalization factor to obtain Mean240

Power (MP) equals 1.0, which is defined in Eq.(36). In this work, all the

eigenvalue errors are exhibited, but only the power errors corresponding to the

first eigenvector are shown, due to the extent of the results.

PEi(%) =
|Pi − Pi,ref |

Pi,ref
· 100 (33)

EE(pcm) =
k− kref
kref

· 105 (34)

Pi = constant ·
(
Σif,1φg,1 + Σif,2φg,2

)
(35)

MP =

∑
i |Pi|Vi∑
i Vi

(36)

3.1. Reactor VV1K3D

VV1K3D is a Water-Water Energetic Reactor (VVER) mockup. It is com-245

posed of 1690 hexagonal prisms, distributed in 10 axial levels of 20 cm in length.

All the hexagonal prisms are regular and their flat-to-flat distance is 23.6 cm.

A cross section of the reactor is displayed in Figure 2, in which each number

represents an assembly type. Assemblies from 1 to 5 are composed of materials

from 1 to 5, respectively. Composition of assembly 6 varies with the axial level:250

in the first five axial levels it is composed of material 4 and in the last ones it is

composed of material 3. The cross sections of the 5 materials and two energy

14

groups are shown in Table 1 [14]. Boundary conditions are zero flux for all

boundaries.

Figure 2: Assembly distribution in VV1K3D reactor.

Material Group Dg (cm) Σa,g (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)

1 1 1.38320 8.3859·10−3 4.81619·10−3 1.64977·10−2

2 3.86277·10−1 6.73049·10−2 8.46154·10−2

2 1 1.38299 1.15550·10−2 4.66953·10−3 1.47315·10−2

2 3.89403·10−1 8.10328·10−2 8.52264·10−2

3 1 1.39522 8.9443·10−3 6.04889·10−3 1.56219·10−2

2 3.86225·10−1 8.44801·10−2 1.19428·10−1

4 1 1.39446 1.19932·10−2 5.91507·10−3 1.40185·10−2

2 3.87723·10−1 9.89671·10−2 1.20497·10−1

5 1 1.39506 9.1160·10−3 6.40256·10−3 1.54981·10−2

2 3.84492·10−1 8.93878·10−2 1.29281·10−1

Table 1: Cross section data for VV1K3D

The reactor was modeled and meshed by means of Gmsh [2]. Three meshes255

were used. Mesh 1 is shown in Figure 3, which divides each hexagonal prism in

3 hexahedra as displayed in Figure 4 (left). Mesh 2 divides each hexahedron of

Mesh 1 in 2x2x2 hexahedra and Mesh 3 divides each hexahedron of Mesh 1 in

15

3x3x3 hexahedra as exhibited in Figure 4.

Figure 3: Mesh 1 of VV1K3D reactor.

Figure 4: Subdivisions of hexagonal prism in Mesh 1, 2 and 3.

3.2. Analysis of the polynomial set260

In this subsection, different polynomial sets are tested in Mesh 3. As the cells

of this mesh are hexahedra, the number of faces of each cell (nf) is 6. Thus, the

polynomial expansion is limited to 7 (7 = nf +1) as discussed in Subsection 2.1.

There are infinitely many possible polynomial sets, so the authors restricted the

sets to monomials xαtyβtzγt of order 2, that is, αt + βt + γt ≤ 2. There are ten265

3D monomials of order 2: 1, x, y, z, x2, y2, z2, xy, xz and yz. Thus, there are

120 possible 7-combinations of the set composed of these ten monomials. The

authors tested these 120 combinations, and only 2 of them gave valid results.

The first one is :1, x, y, z, x2, z2 and xy. The second one is :1, x, y, z, y2, z2

and xy.270

16

The linear system solver used is GMRES with Additive Schwarz precondi-

tioner. This preconditioner uses Incomplete LU preconditioner as local precon-

ditioner by default. The computational time for each polynomial combination

was: 4 minutes and 43 seconds for the first one; 4 minutes and 54 seconds for

the second one. The results are evaluated considering that Combination 1 is275

the reference. In this work, the authors did not use other methods as reference

solutions because of two reasons. First, the authors tested the method in other

geometries and meshes in previous works, showing accurate results [8]. Second,

the goal of this work is the sensitivity analysis of the method with the main

variables affecting the numerical method: polynomial expansion, mesh and lin-280

ear system solvers. The eigenvalue results are displayed in Table 2, which are

accurate because EE < 100 pcm. Table 3 exhibits the axial power errors for

the different axial levels, which are good since they are lower than 1 %. It

can be concluded that for fine meshes, the results are almost insensitive to the

polynomial sets.285

Eigenvalue Combination 1 Combination 2 EE(pcm)

1 1.005460 1.005503 4.23

2 0.987339 0.987434 9.62

3 0.987319 0.987403 8.57

4 0.968399 0.968575 18.14

5 0.964224 0.964336 11.64

Table 2: Eigenvalue results for Mesh 3

Axial level 10 9 8 7 6 5 4 3 2 1

PE(%) 0.09 0.08 0.08 0.05 0.02 0.04 0.08 0.11 0.16 0.12

Table 3: Axial power results for Mesh 3

3.3. Analysis of the mesh

In this subsection, a sensitivity analysis of the mesh is performed, but the

polynomial set is fixed to Combination 1: 1, x, y, z, x2, z2 and xy. Meshes 1,

17

2 and 3 defined in Subsection 3.1 were used. The linear system solver used is

GMRES with Additive Schwarz preconditioner.290

The number of rows of matrices Lg,g for each mesh is: 19323 for Mesh 1;

158412 for Mesh 2; 538947 for Mesh 3. The computational time for each mesh

was: 5 seconds for Mesh 1; 58 seconds for Mesh 2; 4 minutes and 43 seconds

for Mesh 3. The results are evaluated considering that Mesh 3 is the reference.

Table 4 shows the eigenvalue results. The axial power results are exhibited in295

Table 5. One can conclude that Mesh 2 is more accurate than Mesh 1; but

results of Mesh 1 are good enough, because the maximum eigenvalue error is

about 100 pcm and the maximum axial power error is about 1 %.

Eigenvalue EE(pcm)

Eigenvalue Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2

1 1.005193 1.005389 1.005460 26.61 7.12

2 0.987292 0.987313 0.987339 4.78 2.64

3 0.986931 0.987234 0.987319 39.22 8.59

4 0.968356 0.968382 0.968399 4.46 1.78

5 0.962930 0.964002 0.964224 134.26 22.99

Table 4: Eigenvalue results for Combination 1

Axial level 10 9 8 7 6 5 4 3 2 1

PE(%) Mesh 1 0.97 0.88 0.72 0.44 0.02 0.44 0.72 0.93 1.08 1.10

Mesh 2 0.21 0.19 0.15 0.10 0.01 0.09 0.16 0.20 0.24 0.24

Table 5: Axial power results for Combination 1

3.4. Analysis of the linear system solver

In this subsection, the mesh and the polynomial set are fixed: Mesh 3 and300

Combination 1 (1, x, y, z, x2, z2 and xy). The authors tested the following linear

system solvers of PETSc: BiConjugate Gradient (bicg), GMRES, Generalized

Conjugate Residual (gcr), BiCGSTAB (bcgs) and Conjugate Gradient Squared

18

(cgs). The authors used these solvers because they can be applied to non-

symmetric matrices. These solvers were used with the following preconditioners305

of PETSc: Jacobi, SOR and Additive Schwarz (asm), which is the same as

Incomplete LU for one processor. The authors used the default tolerances of

PETSc.

Among all these combinations of solvers and preconditioners, only one of

them is forbidden in PETSc (for non-symmetric matrices): BiConjugate Gradi-310

ent with SOR. For the rest, the results are the same, but there are differences in

the computational time as shown in Figure 5. From this figure, one concludes

that GMRES is the fastest method in combination with the Additive Schwarz

preconditioner.

Solver - Preconditioner

gm
re

s-
as

m

cg
s-

as
m

cg
s-

ja
co

bi

bc
gs

-a
sm

gc
r-

as
m

gm
re

s-
so

r

bc
gs

-s
or

gm
re

s-
ja

co
bi

bc
gs

-ja
co

bi

gc
r-

so
r

cg
s-

so
r

bi
cg

-ja
co

bi

gc
r-

ja
co

bi

bi
cg

-a
sm

T
im

e
(s

)

0

50

100

150

200

250

300

350

400

450

Figure 5: Time results for the linear system solvers.

An important issue concerning linear solvers is the condition number of the315

matrices, because the bigger the condition number, the slower the convergence

19

of the iterative linear solvers. The condition number of a matrix can be deter-

mined as the ratio of the maximum singular value to the minimum one. The

authors calculated the condition number of matrices L1,1 and L2,2 by using the

singular value decomposition solver of SLEPc. Table 6 shows the calculated320

condition number for each mesh and polynomial combinations. In this table,

C.1 corresponds to Combination 1 and C.2 corresponds to Combination 2. One

draws two conclusions from this table. First, the matrices are well-conditioned,

since their condition number is very low. Second, the condition number of this

discretization, applied to this reactor, is almost insensitive to the mesh and the325

polynomial terms.

L1,1 L2,2

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2

56.1 56.1 56.3 56.3 62.9 56.3 74.4 74.6 74.6 74.6 74.6 74.6

Table 6: Condition number of L1,1 and L2,2

3.5. Parallelization

In this subsection, the authors assessed the capability of the parallel com-

putation of the method. The parallelization includes: geometry pre-processing,

equations discretization, eigenvalue and linear system solvers, linear algebra op-330

erations and post-processing. The parallel implementation uses the Message

Passing Interface (MPI) standard for all message-passing communication. For

testing the parallel computation, the authors run the simulation with Mesh 3,

Combination 1, GMRES solver and Additive Schwarz preconditioner. The size

of the matrices L1,1 and L2,2 for this case is 538947. To evaluate the paralleliza-335

tion, the speedup for N processors is defined as the ratio of the computational

time with one processor to the computational time with N processors. Figure 6

shows the speedup of the parallelization. This figure shows the total simulation

time. Two conclusions can be drawn from this figure. Firstly, the performance

is close to ideal till 5 processors. Secondly, a reasonably good performance gain340

20

is seen up to 14 processors in the strong scaling sense. It should be highlighted

that the efficacy of the Additive Schwarz preconditioner decreases with the num-

ber of processors, so this behavior is normal. Finally, the parallel computation

runs the case of Mesh 3 in 35 seconds, with 16 processors.

Number of Processors
2 4 6 8 10 12 14 16

S
pe

ed
up

 [t
1/

tN
]

2

4

6

8

10

12

14

16

Ideal
Method

Figure 6: Speedup of the parallelization.

4. Conclusions345

The spatial distribution of the neutron flux can be estimated by solving

the eigenvalue problem of the steady state, 2 energy group, neutron diffusion

equation.

For solving this eigenvalue problem in 3D geometries, one should discretize

the geometry and apply numerical methods. In this work, the authors used the350

mesh generator called Gmsh and the finite volume method.

The discretized geometries in the neutron diffusion equation requires addi-

tional interfaces equations: neutron flux and current continuity. These equations

imply an excess of equations, but this is solved in this work by using a polyno-

mial expansion of the neutron flux. In addition, the authors applied an implicit355

21

definition of these equations to reduce the size of the system matrices of the

eigenvalue problem.

The final eigenvalue problem was reduced to half the dimension of the orig-

inal one. Moreover, the problem was solved by using an iterative process based

on the Krylov-Schur algorithm of the SLEPc library. Among the different lin-360

ear algebra operations in this process, SLEPc solves linear systems by using the

methods of the PETSc library. These libraries are the state of the art and can

run the algorithm in parallel.

The method developed in this work was evaluated in a VVER reactor. Sev-

eral sensitivity analyses were performed: polynomial expansion, mesh and linear365

solvers. The authors tested several polynomial sets up to order 2 and found out

that only two combinations gave valid results for the mesh used: the first one

is 1, x, y, z, x2, z2 and xy; the second one is 1, x, y, z, y2, z2 and xy. As

regards the mesh, excellent results are obtained even for coarse meshes. With

respect to the linear solvers, the fastest one is GMRES using the Addditive370

Schwarz preconditioner. The authors also studied the condition number of the

system matrices and they drew two conclusions. First, the matrices are well-

conditioned. Second, the condition number of this discretization, applied to this

reactor, is almost insensitive to the mesh and the polynomial terms.

Finally, the authors evaluated the capability of parallelization of the method.375

Excellent speedup is obtained till 5 processors. A reasonably good performance

gain is seen up to 14 processors in the strong scaling sense.

As regards the future work, the authors will perform the parallelization of

the multigroup neutron diffusion equation. This multigroup formulation will

include any number of energy groups, upscattering terms and fission production380

in any energy group.

Acknowledgments

This work has been partially supported by the Spanish Ministerio de Ed-

uación Cultura y Deporte under the grant FPU13/01009, the Spanish Minis-

22

terio de Ciencia e Innovación under the project ENE2014-59442-P, the Span-385

ish Ministerio de Economı́a y Competitividad and the European Fondo Eu-

ropeo de Desarrollo Regional (FEDER) under the project ENE2015-68353-P

(MINECO/FEDER), the Generalitat Valenciana under the project PROME-

TEOII/2014/008, and the Spanish Ministerio de Economı́a y Competitividad

and the European Fondo Europeo de Desarrollo Regional (FEDER) under the390

project TIN2016-75985-P.

References

References

[1] W. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001.

[2] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element395

mesh generator with built-in pre- and post-processing facilities, Interna-

tional Journal for Numerical Methods in Engineering 79 (2009) 1309–1331.

doi:10.1002/nme.2579.

[3] A. Hébert, Applied Reactor Physics, Second Edition, Presses interna-

tionales Polytechnique, 2016.400

[4] K. Smith, An analytic nodal method for solving the two-group, multidi-

mensional static and transient neutron diffusion equations, Ph.D. thesis,

Department of Nuclear Engineering, MIT (1979).

[5] K. Hoffmann, S. T. Chiang, Computational fluid dynamics, Vol. II, Engi-

neering Education System, 2000.405

[6] A. Bernal, R. Miró, D. Ginestar, G. Verdú, Resolution of the generalized

eigenvalue problem in the neutron diffusion equation discretized by the

finite volume method, Abstract and Applied Analysis 2014 (2014) 1–15.

doi:10.1155/2014/913043.

23

http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1155/2014/913043

[7] A. Bernal, J. Roman, R. Miró, D. Ginestar, G. Verdú, Development of410

a finite volume inter-cell polynomial expansion method for the neutron

diffusion equation, Journal of Nuclear Science and Technology 53 (2016)

1212–1223. doi:10.1080/00223131.2015.1102661.

[8] A. Bernal, J. Roman, R. Miró, G. Verdú, Assembly discontinuity factors for

the neutron diffusion equation discretized with the finite volume method.415

application to bwr, Annals of Nuclear Energy 97 (2016) 76–85. doi:10.

1016/j.anucene.2016.06.023.

[9] V. Hernandez, J. E. Roman, V. Vidal, Slepc: A scalable and flexible toolkit

for the solution of eigenvalue problems, ACM Transactions on Mathemat-

ical Software 31 (2005) 351–362. doi:10.1145/1089014.1089019.420

[10] V. Hernandez, J. E. Roman, V. Vidal, Slepc: Scalable library for eigenvalue

problem computations, Lecture Notes in Computer Science 2565 (2003)

377–391.

[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,

L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.425

McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc

users manual, Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National

Laboratory (2016).

URL http://www.mcs.anl.gov/petsc

[12] Y. Saad, M. H. Schultz, Gmres - a generalized minimal residual algorithm430

for solving nonsymmetric linear-systems, SIAM Journal on Scientific and

Statistical Computing 7 (1986) 856–869. doi:10.1137/0907058.

[13] G. Stewart, A krylov-schur algorithm for large eigenproblems, SIAM Jour-

nal on Matrix Analysis and Applications 23 (2002) 601–614. doi:10.1137/

S0895479800371529.435

[14] Y. Chao, Y. Shatilla, Conformal mapping and hexagonal nodal methods-ii:

24

http://dx.doi.org/10.1080/00223131.2015.1102661
http://dx.doi.org/10.1016/j.anucene.2016.06.023
http://dx.doi.org/10.1016/j.anucene.2016.06.023
http://dx.doi.org/10.1016/j.anucene.2016.06.023
http://dx.doi.org/10.1145/1089014.1089019
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/S0895479800371529
http://dx.doi.org/10.1137/S0895479800371529
http://dx.doi.org/10.1137/S0895479800371529

Implementation in the anc-h code, Nuclear Science and Engineering 121

(1995) 210–225.

25

