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Abstract: A critical step in multiple criteria optimization is setting the preferences for all the
criteria under consideration. Several methodologies have been proposed to compute the relative
priority of criteria when preference relations can be expressed either by ordinal or by cardinal
information. The analytic hierarchy process introduces relative priority levels and cardinal preferences.
Lexicographical orders combine both ordinal and cardinal preferences and present the additional
difficulty of establishing strict priority levels. To enhance the process of setting preferences,
we propose a compact representation that subsumes the most common preference schemes in a
single algebraic object. We use this representation to discuss the main properties of preferences within
the context of multiple criteria optimization.

Keywords: subjective preferences; analytic hierarchy process; lexicographic orders; powerset

1. Introduction

Setting preferences in multiple criteria optimization problems may have an important influence
on the final selection of the best solutions. However, it is usually assumed in the literature that
preferences are somehow given by the decision-maker to the analyst. Then, the focus is placed on
methodology disregarding some important features that may result critical in eliciting solutions. These
features include (1) cardinality, when preferences are given in terms of weights attached to criteria; (2)
ordinality, when preferences are expressed as a criteria order; and (3) clustering, when preferences are
grouped in hierarchies or noncontinuous levels with non-finite preferences among criteria.

Eliciting weights that accurately represent the preferences of decision-makers is a key issue in
multiobjective optimization [1]. To some extent, expressing weights implies the assumption of some
knowledge about the impact that these weights have on the performance of alternative decisions.
Indeed, decision-makers usually express their preferences for alternative solutions in terms of the
set of criteria under consideration [2]. Furthermore, weight setting in the context of multiobjective
optimization is also an interactive process in which decision-makers play a relevant role [3].

Several methodologies have been proposed to compute the relative priority of criteria when
preference relations can be expressed either by ordinal or by cardinal information. On the one hand,
the analytic hierarchy process (AHP) proposed in [4] introduces relative priority levels and cardinal
preferences. A broad range of recent AHP applications can be found in many different disciplines
dealing with environmental problems [5-7], health [8], finance [9], and product development [10].

Mathematics 2019, 7, 1092; d0i:10.3390/math7111092 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1168-7931
https://orcid.org/0000-0002-1168-7931
https://orcid.org/0000-0003-3181-7745
https://orcid.org/0000-0002-1595-0581
http://www.mdpi.com/2227-7390/7/11/1092?type=check_update&version=1
http://dx.doi.org/10.3390/math7111092
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 1092 2of 16

On the other hand, lexicographical orders [11,12] combine both ordinal and cardinal preferences and
present the additional difficulty of establishing strict priority levels where preferences among criteria
are noncontinuous. Some recent examples of lexicographic optimization applications include the
optimization of water resources planning [13], electricity market clearing [14], and combined heat and
power scheduling [15].

Despite sharing a common goal, namely, establishing priorities between decision-making
objectives, there is no unifying approach to represent and setting preferences derived from the analysis
of AHP and lexicographic orders. Furthermore, decision-makers can express their opinions by means
of ordinal or cardinal information, but they need to represent it in a suitable way to make computations
in the optimization process [16]. In this paper, we provide a compact representation of preferences that
generalizes cardinal, ordinal, and clustering approaches to manage the relative importance of goals
in a single algebraic object. This compact representation is based on the concept of powerset, which
includes all possible subsets that can be formed from a given set of goals. Our representation aims to
improve the interactive process of setting preferences. It facilitates the understanding and it allows
further analysis on the main properties of different preference setting options. In addition, we explore
the main properties of powerset preference rules within the context of multiple criteria optimization
problems. Summarizing, three important contributions must be highlighted:

o  We introduce the concept of powerset preference rule that generalizes previous approaches such

as AHP and lexicographical orders.

e We provide a unique and compact representation of preferences for objectives based on both
ordinal and cardinal information.

e We propose two theoretical results on the properties of powerset preference rules, namely,
alignment, and preference order.

As the influence of preference setting in the solution of an optimization problem may be
remarkable, we argue that this analysis may result fruitful for decision-makers in several ways.
First, we establish a link between AHP and lexicographical orders, as both methodologies are more
related than it may seem at first glance. Indeed, both methods aim to express preferences for different
objectives. Second, we solve the problem of combining both ordinal and cardinal information by relying
on the concept of powerset preference rule. We also combine both clusters of objectives and complex
hierarchical structures in a single algebraic object. Third, from the analysis of the main properties of
powerset preference rules, decision-makers can better understand the implications and importance
of weight setting through the common interactive process in multiobjective optimization. Detection
of inconsistencies and a more effective way to develop this interactive process are the main benefits
that decision-makers can derive from the proposal described in this paper. In addition, researchers
have now the opportunity to propose new theoretical results, as this compact representation and the
definition of powerset preference rules pave the way to formal reasoning.

In addition to this introduction, this paper includes Section 2, where useful background on setting
preferences multicriteria optimization problems is given. Section 3 is the central part of this paper
where the concept of powerset preference rule is introduced. Section 4 explores the main properties of
powerset preference rules, and Section 5 concludes.

2. Setting Preferences in Multicriteria Optimization Problems

The concept of attribute refers to interesting values for a decision-maker that related to an objective
reality that can be measured [12]. Let us assume that these measures can be expressed by means of a
general mathematical function g;(x) that ultimately depends on vector of solutions x within feasible
set X'. From the set of all possible attributes, decision-makers select those that result of interest for
them. In addition, they establish the desired direction of improvement (maximization or minimization)
and some aspiration levels (if any). As a result, attributes are transformed in given a set of criteria
G = {s1(x),82(x),...,84(x)}. From this set, a general multicriteria optimization problem can be
formulated under a maximization point of view:
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max [g1(x), 82(x),- .-, 4(x)] M

subject to
xeX. )

Each function g;(x) is a measure of the achievement of the i-th criterion. However, the presence
of multiple criteria requires setting specific preferences, priorities, or weights to express the relative
importance of the achievement of each criterion. For instance, if ¢;(x) measures return and g, (x)
measures safety of an investment x, but return is assessed by a decision-maker to be twice more
important than safety, we can reasonably use the following weighted objective function,

wy - g1(x) +wy - go(x) = 0.67 - g1(x) +0.33 - go(x). (3)

Note that Equation (3) is a scalarizing function [17] used as a surrogate to measure global
achievement according to the particular preferences for a decision-maker. These preferences are
expressed by means of cardinal information, i.e., by means of weights w; and w,. However, preferences
for criteria can also be expressed using ordinal information by establishing strict priority levels of
criteria, as in the case of lexicographical optimization [11,12]. The fulfillment of some criteria are
immeasurably preferred to the fulfillment of another set of criteria. Criteria are then classified in
groups, priority levels, or clusters and the preference among clusters may be either finite (AHP) or
infinite (lexicographical orders). In addition, if several criteria are at the same priority level, cardinal
information is used to expressed preferences among criteria within the level [18].

To facilitate the analysis, criteria (and clusters of criteria) can be organized in complex structures
such as hierarchies or networks. The analytic hierarchy process (AHP) proposed by [4], and its
generalization—the analytic network process (ANP) [19]—is the most common approach to set
preferences in a multicriteria context. The relative importance of criteria and the final priorities are
computed considering the relationship between clusters of criteria and the specific priority established
among criteria within a cluster.

Summarizing, we find in the literature three main approaches to set preferences in a multicriteria
optimization context: (1) A basic approach when the number of criteria is small as described
in Equation (3); (2) AHP: when complex structures are used to establish cardinal priorities; and
(3) lexicographical orders: when ordinal information is required to set strict priority levels between
clusters and, at the same time, cardinal information is used to establish numerical preferences among
criteria within a cluster. The main features of these approaches are summarized in Table 1. Next, we
consider these last two approaches in more detail.

Table 1. Features of main approaches to set preferences.

Approach Cardinal Ordinal Clustering

Basic v
AHP/ANP Ve v
Lexicographical v v v

2.1. Analytic Hierarchy Process

The AHP [4] has become one of the most widely used tools in the resolution of complex
decision-making problems. All the pairwise comparisons generated by the relative weights of the
criteria represent judgments made by decision-makers. The AHP provides a systematic process to
incorporate factors such as logic, experience or knowledge, emotion, and a sense of optimization into a
decision-making methodology [20]. A detailed description of the AHP method can be found in [21].
AHP has been applied in a broad range of application areas [22,23]. There has been a steady-state
increase in its usage since its introduction, due to its ease of application. A large body of research
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concerning with AHP applications in different disciplines can be found in literature including, but not
limited to, wastewater services [7], new product development [10], Internet finance [9], sustainable
and renewable energy [24,25], water resources management [5,6], agriculture [26], health [8], nuclear
power [27], climate change [28], and presidential elections [29].

A useful tool to set and work with preferences in AHP is a comparison matrix. For each cluster
of criteria of size 1, decision-makers establish specific preferences by setting element 4;; of matrix
A € R"™" to a numeric value. As an illustrative example, let us consider the concept of sustainability.
The intersection of economic, social, and environmental criteria is usually known as sustainability [30].
While designing public policies, a government may be interested in sustainable policies, namely, those
that consider not only economic but also social and environmental aspects. As a result, we are dealing
with a multiple criteria decision-making problem, but we need to set preferences in the achievement
of the economic, social, and environmental criteria. AHP relies on a numerical scale and a pairwise
comparison matrix to set these priorities. The numerical scale ranges from 1 (both criteria are equally
important) to 9 (one criterion is extremely more important than another one). An example of the
pairwise comparison between economic, social and environmental criteria is summarized in Table 2.

Table 2. Establishing priorities between economic, social, and environmental criteria.

Economic Social Environmental Sum Priorities

Economic 1 1/7 1/3 15 0.09
Social 7 1 3 11.0 0.65
Environmental 3 1/3 1 4.3 0.26
Total 16.8 1.00

According to the numerical scale proposed by Saaty, the social criterion is very strongly more
important than the economic one and the environmental criterion is moderately more important than
the economic one. Finally, the social criterion is moderately more important than the environmental
one. To obtain the final priorities following the approximate method proposed by Saaty, we sum
the values of each row and divide by the sum of all judgments. Alternatively, we can normalize
the judgments in any column by dividing each entry by the sum of that column and by averaging
normalized values for each row. However, rather than the method to establish priorities, in this paper,
we focus on the representation of preferences and its main properties. The algebraic object equivalent
to Table 2 is the following matrix,

1 1/7 1/3
A=|7 1 3], ()
3. 1/3 1

Note that the AHP implies reciprocal judgments, meaning that 4;; = 1/4;;. In addition, consistency
is a desired property. Here, perfect consistency means that a;x = a;; - ajx. That is, if the social criterion is
moderately more important than the environmental criterion and, at the same time, the environmental
criterion is moderately more important than the economic criterion, the social criterion should be
extremely more important than the economic criterion for consistency. Note that consistency does
not perfectly holds in matrix A, as 413 = 0.33 is not exactly a5 - a3 = 0.43. Although some level
of inconsistency can be accepted, decision-makers must check this property when setting preferences.
An additional requirement of the AHP is the homogeneity of elements to be compared, as ranges are
restricted to the scale of 1 to 9. We cannot compare a grain of sand to a mountain.

However, the main feature of the AHP is that preferences are established hierarchically, meaning
that more general criteria subsume specific criteria. A hierarchy can be represented graphically as a
parent node and several child nodes linked to it as shown in Figure 1. This graph defines the relative
importance that subcriteria (growth, risk, and profits) have on a parent node (economic). Priorities
among the subcriteria are then established by clusters (growth, risk, and profits on the one hand, and
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social, economic, and environmental performance on the other hand). Then, the relative importance
of lower-level criteria (growth, risk, and profits) on the overall goal (sustainability) is weighted by
the priority of the economic criterion with respect to same-level criteria (social and Environmental).
As a result, we need a comparison matrix for each of the clusters in the hierarchy. Finally, each criterion
in the hierarchy has an influence in the overall criterion (Sustainability).

Figure 1. A graph representing a hierarchy of criteria: Sustainability (Sust), Social, Environmental
(Env), Economic (Eco), and its three subcriteria: Risk, Growth, and Profits.

2.2. Lexicographic Orders

The lexicographic approach to multiobjective optimization was first introduced by [31] and later
developed mainly by [18,32]. Lexicographic orders [1,11,12,33] are useful when a decision-maker has a
predefined ordering of criteria. Because of that, lexicographic optimization is also known as preemptive
optimization. In lexicographic orders, optimization is organized in strict priority levels, meaning that
higher priority levels are infinitely more important than lower priority levels for optimization purposes.
There is no trade-off between the achievement goals in different priority levels. The achievement of
goals in a higher priority level are immeasurably preferred to the achievement of goals in a lower
priority level. However, the achievement levels of other priority level goals can also be determined,
therefore allowing an interesting sensitivity analysis [34]. As a result, optimization takes place in a
sequential manner. Optimal solutions for higher priority levels are considered as invariant input data
for lower level optimization.

Some examples of the use of lexicographic orders in multiple criteria optimization are the following.
The authors of [32] proposed a lexicographic goal program to select projects or investment opportunities
from a given finite set to maximize profits as a first priority and market share as a second priority. The
authors of [34] tackled natural resource planning problems with economic, environmental, and social
criteria in the development of forest energy plantations in Eastern Ontario by means of lexicographic
goal programming. The authors of [13] described the optimization of water resources planning for
Lago Maggiore in Italy to maximize flood protection, minimize supply shortage for irrigation, and
maximize electricity generation where the order of objectives is strict and prescribed by law. More
recently, the authors of [14] proposed a multi-objective lexicographic optimization framework for
electricity market clearing, and the authors of [15] relied on lexicographic orders for combined heat
and power scheduling.

As criteria placed in a higher priority level are strictly preferred to those placed in a lower priority
level, cardinal, or numerical information is not appropriate to set preferences between priority levels.
Instead, we require ordinal information to establish preferences, namely, a binary relation between
priority levels. In the hierarchy represented in Figure 1, if we assume that the Economic criterion is
strictly preferred to the Social criterion and, at the same time, the Social criterion is strictly preferred,
we are dealing with the following lexicographic maximization problem,
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Lex max [¢1(x), £2(x), g3(x)] 5)

subject to
xe kX (6)

where g71(x), g2(x), and g3(x) represent, respectively, the achievement of the Economic, Social, and
Environmental criteria. Here, the order of goals in expression (5) is very important, as it is only when
goal g1 (x) is optimized that goal g»(x) is considered, and, in turn, it is only when g»(x) is optimized
that g3(x) is considered. Goals are then ordered as the words in a dictionary. However, we can find
numerical preferences among the criteria within the same priority level. In the example shown in
Figure 1, a conservative manager may consider risk twice more important than growth and profits.
The lexicographic maximization of Equation (5) should then be expanded to consider the relative
importance of the subcriteria that form the Economic criterion.

Lex max [0.5¢4(x) + 0.25¢5(x) + 0.25¢4(x), g2(x), g3(x)] (7)

where g1(x), g5(x), and ge(x) represent, respectively, the achievement of the Risk, Growth, and
Profits criteria. As a result, lexicographic multicriteria optimization requires representing preferences
by means of both cardinal (numerical) and ordinal (binary) information. This information can be
summarized in numerical matrices, as in the case of the AHP, and also in Boolean matrices to set
priority levels. Next, we propose a compact representation of preferences that subsumes AHP and
Lexicographic orders in a single algebraic object.

3. A Compact Preference Representation

In Section 1, we considered two different ways of representing preferences: (1) the measurable
way, when preferences are expressed by cardinal information (AHP), and (2) the immeasurable way,
when preferences are expressed by a ordinal information (lexicographical orders). In addition, both
the AHP and lexicographical orders imply the definition of some degree of hierarchical dependence
among criteria. These two approaches require the use of several matrices to represent the global set of
preferences for multiple criteria. Next, we rely on the concept of powerset preference rule to provide a
compact representation of preferences by means of a single algebraic object, namely, a matrix.

3.1. A Compact Representation of AHP Preferences

In multiple criteria optimization problems, setting the preferences for the criteria that are
important to decision-makers is a key issue. Given a set of criteria G = (g1(x),82(x),...,84(x)),
the main goal is to establish a set of priorities or weights for each criterion to derive the solutions.
These priorities state when and how much a criterion is preferred to another. To this end, AHP [4] is
based on binary relations among criteria.

Definition 1. Binary relation. Given a set G, a binary relation is a subset of G X G.

Let us consider a binary relation >, meaning at-least-as-good-as, defined on set G with cardinality
g = |G|. In the case of AHP [4], a pairwise comparison is a map from a binary relation to a numerical
value: ¢ : G X G — R. The partial result is a positive real variable 4;;, which reveals some degree of
preference within the interval [1/9,9] among criteria i and j, namely, g; = ;. Additionally, the global
result is a g x g matrix of preferences A as in matrix (4). In this example, goal g» is assessed by the
decision-maker to be strongly more important than g;, and g3 moderately more important than g;.
According to the numerical equivalence described in [4], this assessment implies setting element a; of
matrix A to 7 and ws; to 3. Similarly, g is assessed to be moderately more important than g3. This
assessment implies setting element w3 to 3. For reciprocity, element 4;; is set to the inverse of element
aj;, and elements 4;; are set to 1, meaning that goals are equally important. For coherence, element
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ajx = ajj - aj, meaning that if goal i is more important than goal j and j is more important than k, then
i should be more important than k. Summarizing, preferences are expressed by means of a binary
relation and a preference rule (see, e.g., in [4]).

Definition 2. Preference rule. Given a set of criteria G, a preference ruleisamap ¢ : G X G — Y, where Y is
a set of numbers.

This numerical assessment (preference rule) is usually summarized in a matrix. Due to its
hierarchical structure, AHP requires the use of a different matrix to establish preferences for criteria
within the same level. In Figure 1, a root node (g1, Sustainability) subsumes the Social, Economic,
and Environmental criteria within the same level. Risk, Growth, and Profits belong to a different
level. However, we can integrate all matrices in a single block matrix. Let A be the 3 x 3 pairwise
comparison matrix for the first level, with Social, Economic, and Environmental criteria identified as
92, 83, and g4, respectively. Let A be the 3 x 3 pairwise comparison matrix for the second level with
Risk, Growth, and Profits, denoted by g5, g6, and g7, respectively. By considering an additional 3 x 3
matrix Ag with all its elements set to zero, we can summarize these preferences by means ofa 6 x 6
block matrix as follows,

A1 A

A:
Ay A

: ®)

Note that the size of Ag is chosen to satisfy the requirement that A is a square matrix, and that
in the case where the sizes of A; and A; are different, we would require two matrices, namely, Ay
and Aj, with different sizes. This preference representation does not provide information about the
hierarchical structure described in Figure 1. As it is typical in graph theory, we can represent this
hierarchical structure using an adjacency matrix Z with element z;; set to 1 if there is a relation between
criteria i and j, zero otherwise. By convention, we consider that nodes are not connected to themselves
by setting z;; = 0.

01 1100 07
1000111
100 0000
Z=11 00 0 0 0 O )
01 0O0O0O0TO
01 00O0O0O
L0 1 0 0 0 0 0

Note that matrix Z is symmetric, as elements z13, z13, and z14 set to one require that their
reciprocals (zp1, 231, and z41, respectively) are also set to one, showing that there is a relation between
criteria g1 and subcriteria g4, g5, and g¢. By merging matrices A and Z into a larger matrix, we could
obtain a global representation of preferences and the relationship among criteria. However, to provide
a more compact representation of AHP preferences, we use the concept of powerset [35].

Definition 3. Powerset. Given a set of criteria G, the powerset of G, denoted by 29, is the set of all subsets of
G, including the empty set and G itself.

As an illustrative example, given G = (g1, §2), the powerset of G is

29 = (@,81,82,(31,82))- (10)

Note that if § = |G| is the cardinality of G, the cardinality of 29 is |29| = 21. Then, to establish
a hierarchical structure in which a subset of goals are clustered for comparison purposes, we next
introduce the concept of powerset preference rule as follows.
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Definition 4. Powerset preference rule. Given a set of criteria G, a powerset preference rule is a map
¢ :29 x29 — Y, where Y is a set of numbers.

Let us consider the following powerset preference rule ¢ : 29 x 29 — R,

ajj € [L9] if Qi = Q)
¢(Qi,Qj) =1 1/a if Qi =Qj (11)

0 otherwise.

where Q; and Q; are subsets of G, and a;; is an integer number restricted to the interval [1,9], as it
is customary in AHP to describe a cardinal binary relation < among pairs of goals. This powerset
preference rule allows us to compactly represent AHP preferences including clusters (subsets) of goals
that are related in a hierarchical mode. Then, by replacing the economic goal with subset (R,G,P),
denoting Risk, Growth, and Profits, we can compactly represent AHP preferences as shown in Table 3.
Subset (R,G,P) is at the same hierarchical level than the Social and Environmental goals. In turn, Risk,
Growth, and Profits within subset (R,G,P) are equally important according to the information provided
by the decision-maker. As a result, the hierarchical structure of AHP and its preferences are both
completely and compactly described by a powerset preference rule as in Equation (11).

Table 3. A compact preference representation of analytic hierarchy process (AHP) where (R, G, P) =

(Risk, Growth, Profits).
(R,G,P) Soc Env Risk Growth Profits
R,G,P) 1 1/7 1/3 0 0 0
Soc 7 1 3 0 0 0
Env 3 1/3 1 0 0 0
Risk 0 0 0 1 1 1
Growth 0 0 0 1 1 1
Profits 0 0 0 1 1 1

Note that Table 3, as an example of the output derived form the preference rule in Equation (11),
is a different object than the supermatrix described in [19]. A supermatrix summarizes the influences
of a set of elements in a cluster of criteria on any other element. These influences are represented by
weight vectors derived from pairwise comparisons between criteria. Here, we represent these pairwise
comparisons (including individual criteria and sets of criteria) and the particular relationship between
criteria in a more compact way by means of a single algebraic object. Nevertheless, the supermatrix
can also be derived from the representation of preferences proposed in this work.

To better illustrate our proposal, we next use a real example from recent literature. Consider
the credit evaluation for Internet finance companies in [9]. The authors use a survey within an AHP
configuration described in Table 4 to propose a framework for evaluating credit indexes of Internet
start-ups in China. Multiple pairwise comparisons are performed and stored in separate tables, as
shown in Appendix C in [9], to keep the integrity of the hierarchical structure. By using the concept
of powerset, we propose to summarize all the pairwise comparisons in single table regardless of its
size. Even though this approach may present difficulties in user visualization, it represents a clear
advantage when processing information automatically through the use of computers.

Criteria C1-C8 and also B4-B12 in Table 4 can be regarded as operational criteria, as indicators (or
measures) for all of them are going to be used to evaluate the overall performance of a company. On
the other hand, criteria such as Al or B3 can be called cluster criteria, as there is no specific indicator
linked to them. Their role in the hierarchy is to gather other operational criteria into a cluster. These
operational criteria (C1-C8 and B4-B12) form set G, and from this set we can select the elements of
powerset 29 that are required to establish the pairwise comparisons in the usual way of AHP. This
subset of 29 is summarized in Table 5. A matrix with these 24 elements both in rows and columns
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is the single algebraic object required to establish the pairwise comparison. Note that set (C1-C4) is
equivalent to B1 but note also that a key point of our proposal is the strict use of elements of 29 to be
able to identify the hierarchy of AHP, namely, set (C1-C4). Indeed, B1 is only a cluster criteria: an
auxiliary element to gather other criteria.

Table 4. Hierarchy of criteria G described in [9].

Criterion Layer Index Layer Second Index Layer
A1 Financial status B1 Debt Solvency C1 Debt/assets ratio
C1 Current ratio
C3 Quick ratio
C4 Cash ratio
B2 Profitability C5 Profit ratio
C6 Return on assets
B3 Operational capacity C7 Inventory turnover
C8 Receivable turnover
A2 Credit status B4 Loan repayment
B5 Payment capability
B6 Taxes capability
A3 Enterprise development B7 Operators quality
B8 Staff quality
B9 Prospects
A4 Internet financial status B10 Customer evaluation

B11 Logistics
B12 Turnover index

Table 5. Elements of powerset 29 derived from Table 4.

Elements of 29

(1)

(C2)

(C3)

(C4)

(C1,C2,C3,C4) = B1
(C5)

(Ce)

(C5, C6) = B2

(C7)

10 (C8)

11 (C7,C8)=B3

12 (C1,C2,C3,C4,C5,C6,C7,C8) = Al

Yt
o

O 0N ONUT WN -

13 (B4)

14 (B5)

15 (B6)

16 (B4, B5,B6) = A2
17 (BY)

18 (B8)

19  (BY)

20 (B7,BS,BY)=A3
21  (B10)

22 (B11)

23 (B12)

24 (B10,Bl11, B12) = A4
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3.2. A Compact Representation of Lexicographical Preferences

Recall from Section 2 that lexicographic orders define strict priority levels, where the achievement
of goals are organized in subsets with immeasurable (ordinal) preferences for high priority levels with
respect to low priority levels. However, a measurable (cardinal) preference is established among goals
within the same priority level. To manage the ordinal preferences of subsets of goals, we can rely again
on the concept of powerset preference rule. To illustrate the use of a powerset preference rule, so as to
represent lexicographical orderings, we use an example of lexicographic goal programming described
in [12] (p. 35), which we slightly modify for illustrative purposes.

Assume that a decision-maker is dealing with five goals. The decision-maker establishes the next
priority levels: Q1 with goals g4 and g5; Q» with goal g1; Q3 with goal g7; and Q4 with goal g3. As we
are dealing with lexicographic goal programming, the decision-maker aims to minimize either positive
(pj) or negative (77;) deviations, or both, from specific targets. Then, the following program describes
the optimization problem,

Lex min [(0.67p4 +0.33p5), (01), (112), (0.5173 + 0.503)] (12)
subject to
gl:xy +x2+#%1 —p1 =300 (13)
g2 : 1000x1 + 3000x; 4 172 — p2 = 400,000 (14)
g3 :x1 +x2 4+ 143 —p3 =400 (15)
g4 :x1 + 14— pg = 300 (16)
85 xp+ 115 — p5 = 200 (17)

with non-negative decision variables x; for i = 1,2 and also non-negative goal deviation variables p;
and 1 forj=1,2,3,4,5.
Let us first consider the following powerset preference rule ¢ : 29 x 29 — {0,1},

L if Qi = Qy

P(Qj: Qi) = { 0 otherwise, (18)

where Q; and Qy are subsets of G. We can build a matrix of powerset preferences that directly derives
from rule in Equation (18), as shown in Table 6.

Table 6. A matrix representation of a lexicographical order.

(pa,ps)  (p1) (12)  (3,p3)

(P4, 05) 1 1 1 1
(01) 0 1 1 1
(172) 0 0 1 1
(13, p3) 0 0 0 1

Table 6 expresses an order in the priority of the achievements. As G; = Gy, G1 >~ Gz, and Gy = Gy
hold, but G2 = Gy, G3 = Gy, and G4 = G; do not hold, we conclude that G; has the top priority. A
similar reasoning leads to the lexicographical ordering G; >~ G, = Gz = G4, expressing a priority in
the achievement of G; with respect to Gz, Gs, and Gy4. In addition, G; ~ G for j = k, as we assume
that Gj = G and Gy =~ Gj simultaneously holds. Note also that within priority levels Q; and Q4, the
decision-maker establishes a cardinal preference among positive and negative deviations. In priority
level Qq, positive deviation py4 is twice more important than ps. In priority level Q4, negative deviation
13 is equally important than p3. We can integrate these cardinal preferences with ordinal preferences
described in Equation (12) by considering a more general powerset preference rule ¢ : 29 x 29 — R:
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aj > 1 if Q= Qx

19
0< ajx < 1 otherwise. (19)

@(Qj, Qk) = {
Table 7 is a particular realization of the powerset preference rule described in Equation (19). From
its observation, we are able to build objective function in Equation (12) provided that we are told
that an additive rule is followed within priority levels, as is customary in goal programming. More
precisely, the ordering of priority levels G, Gy, Gs, and Gy is expressed in the same way as in Table 6.
Then, cardinal preferences between pairs of goals within priority levels are expressed using a numerical
scale as in AHP. Let us consider four additional priority levels that we identify with single decision
variables denoting goals: Gs = (p1), G¢ = (p5), Gz = (13), and Gg = (p3). As ¢(ps, p5) = 2, we infer
that p4 is twice more important than ps, as is described in Equation (12). Moreover, as ¢(#3, p3) = 1, we
infer that both deviations are equally important for the decision-maker. The rest of entries in Table 7,
where ¢(Gj, Gy) = 0 and ¢(Gy, G;) = 0, denote that no preference has been established among subsets
of goals (including singletons). These subsets are then incomparable [36].

Table 7. A compact representation of a lexicographical order.

(pa,ps)  (p1) (m12)  (m3,p3) (ps) (ps) (w3) (p3)

(p4, p5) 1 1 1 1 0 0 0 0
(01) 0 1 1 1 0 0 0 0
(12) 0 0 1 1 0 0 0 0
(713, 03) 0 0 0 1 0 0 0 0
(04) 0 0 0 0 1 2 0 0
(05) 0 0 0 0 /2 1 0 0
(13) 0 0 0 0 0 0 1 1
(03) 0 0 0 0 0 0 1 1

Generalizing, we aim to minimize a vector of priorities levels (G1,Gy,...,Gy), where each priority
level Gj =f (gj), with g]' C G, is usually a linear combination of goals that have to be minimized at
priority j. Each pair of priority levels—G; and Gy—are related by a powerset preference rule ¢(G;, Gi)
that can express ordinal (among priority levels) and cardinal relations (among particular goals or
singletons) at the same time. As G is a subset of 29 and Boolean numbers are also real numbers,
the powerset preference rule ¢ : 29 x 29 — R suffices to compactly express lexicographical orders
by means of a single algebraic object, namely, a matrix. Note also that AHP is a particular case of
lexicographical orders with one priority level Gy = f(G) that can be expressed as a linear combination
of weighted goals according to a cardinal preference hierarchy.

4. Properties of Powerset Preference Representations

Binary relation >~ within a powerset preference rule, described in Equation (19), presents some
basic properties such as completeness, transitivity, and antisymmetry. The transition from a set to a
powerset does not affect these properties, as there is no difference in comparing singletons (subsets
with cardinality one) and comparing subsets with either one or more than one element (subsets with
cardinality greater or equal than one). As a result, the following definitions are natural extensions of
well-known set properties to include the concept of powerset.

Definition 5. Completeness. Given a powerset 29, we say that = defined on 29 is complete when for all
Gy, Gy C 29, and we have that G, = Gy, Gy = Gy, or both.

Definition 6. Transitivity. Given a powerset 29, we say that > defined on 29 is transitive when for all
G1,G2,G3 € 29,if Gy = Gy and Gy = Ga, then Gy = Gs.
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Definition 7. Antisymmetry. Given a powerset 29, we say that G is antisymmetric when for all G1, Gy € 29,
if G1 = Gy and Gy = Gy, then G ~ Gy, where relation “~" means is-indifferent-to.

Then, a powerset preference rule ¢ from Definition 4 allows characterization of all the subsets
of G that are relevant for an agent. In addition, there are some interesting features that deserve to
be highlighted. For consistency, AHP pairwise comparisons require a matrix where 4;; = 1/4;; and
ajx & a;j - ajx. These conditions also hold for comparisons between single objectives, but not for priority
levels in lexicographical orders where consistency is respected when if a;; = 1, then aj; = 0 for i # j,
denoting strict preference for higher priority levels, i.e., G; > G;.

We next consider additional properties of powerset preference rules described in Section 3,
allowing us to characterize the relationships between goals or subset of goals. These properties present
the advantage that can be expressed algebraically by means of powerset preference rule ¢ described in
Equation (19).

Definition 8. Weak preference. Given G;, G; C 29, and a powerset preference rule ¢(G;, G;) defined on 29,
as in Equation (19), we say that G; is weakly preferred than G;, denoted by G; = G;, when (G, Gj) >1.

Weak preference is particularly important in AHP where relationships between either goals or
subsets or goals are expressed numerically within a given scale. Note that here weak means finite or
measurable even in the case of the existence of extremely more important goals than others. The reason
is to set a clear differentiation with strict preference.

Definition 9. Strict preference. Given G;, G; C 29, and a powerset preference rule ¢(G;, G;) defined on 29
as in Equation (19), we say that G; is strictly preferred than G;, denoted by G; ~ G;, when ¢(G;, G;) = 1 and

Strict preference is the type of relation established between priority levels in lexicographical
orders where higher priority levels are infinitely or immeasurably preferred to lower priority levels.
Both in AHP and lexicographical orders, the achievement of some goals may be indifferent.

Definition 10. Indifference. Given G;, G; C 29 and a powerset preference rule ¢(G;, G;) defined on 29, as in
Equation (19), we say that G; is indifferent to G;, denoted by G; ~ G;j, when ¢(G;, G;) = land ¢(G;, G;) = 1.

Indifference appears when comparing one goal to itself for obvious reasons. However, it is likely
that we also find indifference in the achievement of two particular goals either within a priority level in
lexicographical orders or within a cluster of goals in AHP. In these cases, the decision-maker is neutral
with respect the achievement of indifferent goals. On the contrary, some goals may be incomparable.

Definition 11. Incomparability. Given G;, G; C 29 and a powerset preference rule ¢(G;, G;) defined on
29 asin Equation (19), we say that G; is incomparable to Gj, denoted by G; ? G]-, when ¢(G;, G]-) =0and
QD(G], Gi) =0.

The use of powerset preference rules as a compact representation in the form of a table usually
implies comparing goals that are incomparable. Here, incomparability means that there is no need
to define preferences between two subsets of goals. There is no need to define preferences between
the Risk and the Social goal in AHP (Table 3), as risk is a subgoal of the Economic cluster of goals.
Similarly, there is no need to define preferences between particular goals of different priority levels in
lexicographical orders.

As an additional contribution of this paper, we next discuss two properties that derive from
powerset preference rules of the type ¢(G;, G;) in Equation (19), namely, alignment and preference
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order. These properties allow us to characterize powersets of criteria, therefore improving coherence
and the interactive process of setting preferences by decision-makers.

Proposition 1. Alignment. Given a powerset preference rule ¢(G;, G;) defined on 29, 0(G;, G;) is aligned if
and only if p(G;, G;) # ¢(Gj, G;) for some pair G;, G; C 29.

Proof. From Definition 2, ¢(G;, G;) is a numerical assessment of the preference of G; over G;.
If 9(Gi,Gj) = ¢(Gj,G;), then the numerical assessment is inconclusive. Therefore, alignment
necessarily requires that ¢(G;, G;) # ¢(G;, G;). O

Note that alignment characterizes lexicographical orders, as the presence of at least two priority
levels implies alignment for one of them. This feature requires that the reciprocals are different as in
¢(p1,12) # @(112, p1) in Table 7. The absence of alignment implies that there is no preference among
subsets of goals. Consider the special case of AHP matrix representation with all elements of the main
diagonal set to one, zero otherwise. In this case, the condition ¢(G;, G;) = ¢(Gj, G;) holds because no
preference has been established. No alignment or positioning of decision-makers for the achievement
of a subset of goals is expressed. Note also that alignment is a different concept than weak and strict
preference from Definitions 8 and 9. Indeed, strict preference G; > G; implies alignment, but alignment
does not imply strict preference because the expression of alignment ¢(G;, G;) is not limited to zero-one
as in the case of the AHP numerical scale. Furthermore, weak preference G; = Gj is inconclusive with
respect to alignment because it is unknown if G; = G; holds.

Proposition 2. Preference order. Given a powerset preference rule ¢ defined on set 29 with cardinality q and
a sequence of integers 1 < i < j < k < g such that G;, Gj, Gy C 29, ¢ defines a total order of preferences
{Gi, Gj, Gy} if and only if @ is positive and monotonically increasing in the interval of integers (i, k), i.e., if and
only if 0 < ¢(G;, G;) < ¢(Gj, Gy).

Proof. A total order is a binary relation over a set satisfying completeness, antisymmetry, and
transitivity. The first condition, ¢(G;, Gj) > 0, ensures completeness of subsets; the second
condition, ¢(G;, G;) = ¢(G;, G;), permits antisymmetry when i < j = k; and the third condition,
¢(G;, Gj) < q)(Gj, Gy ), allows transitivity when i < j < k. Therefore, {G;, Gj, Gy} is a total order of
preferences. O

Monotonicity in Proposition 2 depends on the actual arrangement of the elements of powerset 29.
As a result, some permutations of 29 may be monotonically increasing in (i, k) and some others
may not be. Consider again the AHP example described in Table 3 within the interval (1,3).
The ordered sequence {(R, G, P), Soc, Env} is not monotonically increasing, but the permutation
{(R, G, P), Env, Soc} is monotonically increasing. As a result, a monotonically increasing sequence
of goals in AHP is an ordered sequence such that goals are at-least-as-important-as preceding goals.
In lexicographical orders, a monotonically decreasing sequence of priority levels is an ordered sequence
of levels, such that priority levels are infinitely more important than subsequent priority levels.
In Table 6, the sequence {(p4, p5), (01), (12), (13, 03) } is monotonically decreasing in (1,4), showing a
preemptive ordering of priority levels established by a decision-maker.

Alignment and preference order are two examples of interesting theoretical results that may help
practitioners to achieve a better understanding of complex schemes of preferences. These properties
combined with a unique representation of preferences enable both decision-makers and analysts
to enhance the interactive process of multiple criteria optimization [3]. Interactive processes rely
on iterative algorithms in which preference elicitation and optimization stages are repeated until a
satisfactory solution is obtained. As a result, a global overview of preferences for objectives and a
sound preference rule based of set theory support decision-makers to obtain better solutions.
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5. Conclusions

The relative importance of goals in multiple criteria optimization problems may have an impact
on the final solutions proposed to decision-makers. Either cardinal or ordinal information is required
to establish preference among goals that, in addition, may be structured in clusters (hierarchically
or by means of strict priority levels). To improve the interactive process of setting preferences in
multiple criteria optimization problems, in this paper, we show that a single compact representation
summarizing both AHP and lexicographical orders is possible. To this end, we introduce the concept
of powerset preference rule. As the powerset derived from a set of goals includes all possible subsets
of goals, a powerset preference rule allows us to compactly represent preferences of both AHP and
lexicographic orders. In addition, we study the link between AHP and lexicographic orders, showing
that the former is a special case of the latter.

This compact representation also facilitates the understanding of the main properties of different
preference setting options. In this sense, we discuss the main relations that can be established among
the goals of multiple criteria optimization problems. More precisely, we study the case of alignment
of objectives that can be identified through a given powerset preference rule. We also characterize
preference orders, describing a ranking of priorities that are easier to understand by decision-makers,
especially when a large number of objectives are considered.

Although the compact representation described in this paper may help decision-makers to better
understand the impact of preference setting on the results derived from optimization, our proposal
is limited to providing a preference scheme. This scheme can be used as an input to optimization
methods, and it provides a more effective way to develop the interactive process of preference eliciting
and optimization. In addition, it allows to deploy mechanisms of formal reasoning that may lead to
detect inconsistencies in preferences or to establish interesting theoretical properties. The search for
further theoretical results derived from this compact representation is a natural extension of this work.
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