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ABSTRACT

The most common parameters and functions used to characterize wave groups
in linear seas are reviewed and interrelated in a unified manner. A three—
axis representation of run lengths is uséd to characterize wave groups using
exponential and Markov chain approximations. A relationship between four
parameters (Q,, Q,, &° = 4p°) and the correlation coefficient between consecu-
tive wave heights (ry,(1)) is demonstrated. The wave height function method
is reviewed in some detail in order to relate the run length theory with
énve]ope theories. The theoretical estimates used to demonstrate the rela-
tionships between the various parameters must be considered as only first-
order trends to parameter estimates computed from real wave data due to the

statistical variability in these estimates.
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INTRODUCTION

The tendency of ocean waves to appear in groups is receiving increased
attention by coastal and ocean engineers. There is a general agreement that
wave grouping characteristics affect the stability of some types of maritime
structures. Table 1 is a list of references in which wave groups were used to

analyze various coastal phenomena and engineering problems.
[INSERT TABLE 1]

In spite of the evidence that wave groups are important in a variety of
coastal and ocean applications, our ability to incorporate the effects of wave
groups into current design methods is Timited. The difficulty of including
the effects of wave groups into engineering design is due in part to the
variety of theories and parameters used to characterizé wave groups. Table 2
suhmarizes the parameters and functions from various methodologies that are
used to analyze and to characterize wave groups. It is obvious from Table 2
that the variety of parameters and functions from the various methodologies
makes it difficult to incorporate the wave group concept into engineering
design in a consistent manner. Here we attempt to identify the similarities
and relationships among the various parameterﬁ, functions, and methodologies

most commonly used to analyze wave groups.
[INSERT TABLE 2]

A previous review by Rye (1982) of the different wave group parameters
and methodologies led to a conclusion that wave groups measured from field
data compared quite well with those obtained from numerical simulations
derived from linear algorithms. The validity of the Tinear hypothesis was
also obtained by Goda (1983) and Elgar et al. (1984, 1985) from their analyses

of real ocean waves measured in water depths greater than 10 meters. Field



observations from Battjes and Vledder (1984) also support the Tinear hypothe-
sis. Therefore, nonlinear wave-wave interaction models will not be included
in this comparison of methods used to analyze wave groups in linear, random
seas.

The parameters and functions Tisted in Table 2 that are used in the
various methodologies will first be identified and interrelated where possi-
ble. Next, three methods of analyses of wave groups which incorporate most of
these parameters and functions will be reviewed in some detail. These three
methods of analyses are: 1) wave height function; 2) three-axis representa-
tion of run lengths; and 3) correlation coefficient between successive wave

heights.

REVIEW OF WAVE GROUP METHODOLOGIES

Four decades ago, Tucker (1950) identified the presence of waves in the
surf zone with periods between 1 to 5 minutes and suggested that these long
waves were generated by wave groups. Although Tucker (1950) noted the
importance to engineering design from these wave groups in the analysis of
harbor resonance, the real importance of wave‘grouping did not arise until the
seminal study by Goda (1970).

In this seminal study, Goda (1970) used linear numerical simulations to
demonstrate that ocean waves in a random field are not completely randomly
distributed. Instead, real ocean waves demonstrate a tendency to appear in
groups in a manner that depends on the peakedness of the spectrum. He
introduced the concepts of a length of a run of high waves and of a length of
a total run of waves as well as the peakedness parameter, Q. The methods and
parameters introduced by Goda (1970) have been the most widely used in the

succeeding studies lTisted in Table 2.



Run Lengths (Goda, 1970)

The length of a run of high waves, L, is defined as the number of
consecutive wave heights that are higher than a specified threshold value
(e.g., h =H., o Hg Hy Hg--.). The length of a total run of waves, ,l, is
the total number of wave heights that occur between the time of the first
exceedance above the specified threshold value, h, and the time of the first

re—exceedance above the same specified threshold value.
[INSERT FIG. 1 HERE]

Figure 1 illustrates the procedure used to determine the run lengths from
a sequence of wave heights. In Fig. 1, h = the specified threshold wave
height; ,L,(m) = the m" Tength of a run of high waves; and ,L,(m) = the meP
Tength of a total run of waves.

Goda (1970) derived a probability density function (p.d.f.) for L, and
,L, for uncorrelated wave heights. However, Tinear numerical simulations by
Goda (1970) showed that if n(t) was a realization of an ergodic Gaussian
stochastic process, the corresponding p.d.f. of L, and ,L, departed signifi-
cantly from the uncorrelated case as a function of the spectral shape.

High values of L, and ,L, are associated with larger wave groups.
Therefore, parameters Tike the average run lengths of 1[h and 2[h, and the
-éamp1e p.d.f., p(yL,) and p(,L,), have been widely used to characterize wave
groups in ocean wave records. Also a variety of threshold levels, h, have
been used (h = Hg, H .4 Hyoo).

The numerical experiments of Goda (1970) indicated that the character-
istics of wave groups in irregular wave trains were correlated with spectral

peakedness. The dimensionless spectral peakedness parameter introduced by

Goda (1970) was



2 r f S2(f) df
0

L [, 5u(P) df]z

The statistical properties of the run Tengths introduced by Goda (1970)

(1)

were further refined by Kimura (1980).

Markov Chain Hypothesis (Kimura, 1980)
To analyze the statistical properties of the run lengths, Kimura (1980)
introduced a Markov chain hypothesis for a sequence of wave heights. He
estimated a p.d.f. for ,L, and ,L, as a function of a single correlation
parameter, p. The joint p.d.f., p(H,,H,), for two successive wave heights,
H, = H, and H, = H,, is given by
4H,H,

H
p(Hsz) = m exp "[1/(1“492)] [

rms

2hHe 4H,H,p
0 ( (2)

2 1—4,02)H2

rms rms

where p = the correlation parameter, H, . = the root-mean-square value of wave

rm

heights, and I,(-) = the modified Bessel function of the first kind of order

zero. The correlation coefficient between consecutive wave heights is given
by

— — 2 f—
(1) = E-(] Tp—)ﬂsé? = (3)

where K and E = the complete elliptic integrals of the first and second kinds,

respectively, with parameter (2p) [cf. Abramowitz and Stegun, 1968, p. 590].
The probability P, that H, does not exceed h when H, is below the thresh-

old height, h; and the probability P, that H, does exceed the threshold level

h when H, also exceeds h, may be defined as follows:

h

0

h rh
P, = L JD p(H,,H,)dH,dH, /j q(H,)dH, (4)



p, = J: J: p(Hy , H,) dH,d, /JT q(H,)dH,

where q(H) = a marginal p.d.f. given by the Rayleigh distribution.
(1980) gives the p.d.f.’s and expected values for L, and ,L, as

p(,L) = Pt (1-p,)

E(,L) = 1/(1-P,)
(1-P;) (1-P,)
plel) = ey (Pl - PR

] 1
EGL) = 1p,y * (1=P,)

where L = (L, for notational convenience.

Kimura

(5)

(9)

Because of the relationship between the correlation parameter, p, and the

correlation coefficient between consecutive wave heights, ry,(1), given by Eq.

(3); p(,L) and p(,L) depend on only one single parameter; viz., ry(1).

Goda (1983) found ry,(1) to be an excellent parameter to describe the run

Tengths from an analysis of Tong-traveled swell waves.

Tong-traveled swell data agreed quite well with the approximations in the

He also found that the

Kimura theory. Battjes and Vledder (1984) observed that the distribution of

Tengths of runs exceeding h = H,,; in records from the North Sea also agreed

quite well with the Kimura theory. They suggested using the parameter

k2 = (2p)% derived from the variance spectrum S (f) to characterize the wave

groups.

Earlier, Rye (1974) had identified the parameter ry(:) as a parameter

useful to analyze wave groups.



Correlation Coefficient for Succeeding Waves (Rye, 1974)

Rye (1974) identified the presence of wave groups in real ocean wave
records using correlation coefficients computed from time series of wave
heights and wave periods. However, only r,,(1) has received significant

attention. The correlation coefficient for successive wave heights is given

by
1 ] (M-m) - _ .
ryp(m) = ry(0) (M=m) igl (Hy = H)(Hyy = H) 5 (10)
for wave periods by
1 1 (M-m) - -
Y‘T,T(m) = rTT(O) =) 1')=:1 (Ti" T) (Tnm" Iy & (11)

and for both wave heights and wave periods by

y L ()
i=]

(H- W) (T~ T) - (12)

itm

where (H,,T;) = the wave height and the wave period, respectively, of the E
wave in a record; and M = total number of waves in the series. The variances
are given by ry,(0) = o®(H) and r;;(0) = o(T).

[INSERT FIG. 2 HERE]

The correlation coefficient between succeeding wave heights, ry(m), can
be related to the autocorrelation function of the envelope or the wave height
function. From the relationships between H;, A(t) and H(t) illustrated in
Fig. 2, we may deduce that

Ry(m T) = Ry(m T) = ry(m) (13)
where T = a characteristic mean period; R,(7) = the autocorrelation function
of the wave envelope, A(t); and Ry(7) = the autocorrelation function of the

wave height function, H(t).

10



The envelope function, A(t), had been identified earlier by Rice (1954)

in his analysis of random noise.

Envelope and Wave Height Function (Rice, 1954)

Nolte and Hsu (1972) observed that consecutive high waves in a group of
waves can excite extreme forces in the mooring lines of large floating
vessels. Using the analysis of groups based on the envelope concept (vide
Fig. 2), they defined the average time duration for groups above a threshold
level h as a basic parameter which controls the grouping characteristics.

Assuming a narrow-banded process and the results given by Rice (1954),
Nolte and Hsu (1972) calculated the average duration time of excursion above a

threshold level, a = h/2 from

_ H,/h
Uy (14)
T
where
K = 21“2 | (15)
fog—F

where f3, = my/my; f = my/mg; m, = pth

spectral moment; and H; = the significant
wave height.
Equation (14) may also be expressed in terms of dimensionless spectral

bandwidth parameters according to

Fo M/ (/) (Bag/h)

TR 16
U Ta gz 2 /% Ly
o T W/ (1/8) (/8my/h) (17)
U0 T s ymm 2/
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where v? = (mgm, — mf)/mf is the dimensionless spectral bandwidth parameter
defined by Longuet-Higgins (1957, 1984); §2 = 1—(nﬁ/m0m2) {s the dimensionless
spectral bandwidth parameter defined by Vanmarcke (1972, 1983); To = mo/m;;
To, = Mg/, and Hg = 4/mg.

Note that both ,£{ and (0! can be considered as variables analogous to
“the mean length of a run of high waves, IEh' In addition, the parameter k, in
Eq. (15), may be expressed as k = Ty,/v = Tg,/6.

Battjes and Vledder (1984) and Longuet-Higgins (1984) have identified
similarities between the Kimura theory and the statistical properties of the

envelope function given by Rice (1954). The joint p.d.f. between successive

values of the envelope function, p(a,,a,) is given by Rice (1954) as

p(a,,a,) = —;ELEEE—-exp = —Eiiiié;—- I {—E_E jﬁfz] (18)
my(1-K°) 2my(1-£°) 1-K My
where a, = A(t,) and a, = A(t, + 7), and
ko= (05 + u5)%/m, | (19)
1y = J: S,(F) cos[2n(f~fy,)7]df (20)
Iy = j: 5,(f) sin[2n(f-Fy,)7]df | (21)

and 1, = the modified Bessel function of the first kind of order zero defined

by (cf. Abramowitz and Stegun, 1968, p. 376)
1 n
(z) = 1 J exp (z cos 0) do (22)
0

Longuet-Higgins (1984) assumed that 7 = my/m, = Ty, and defined a correla-

tion coefficient between successive wave heights by

12



Ry (Toy) = Myy/ (Myghop) /2 (23)

where
Mpq = JZ J: (a,-3)P(a,~2)9 p(a,,a,)da,da,

This correlation coefficient may be computed by

(24)

E - (1-k%) K/2 - n/4 (25)

Ry (Tor) = 1 = n/4

where K and E = the complete elliptic integrals of the first and second kind,

respectively, with parameter k. Equation (25) is identical to Eq. (3) from

Kimura (1980) for k = 2p.
For narrow-banded processes, Longuet-Higgins (1984) found that

K2 ¢ 1 - 4n%?

while Eq. (25) has the approximation
(27)

Ry(Typ) = K 5 0 <

Defining a wave height function as H(t) = 2A(t) and a threshold level as

h = 2a, then a change of variables given by

p(hy,h;)dh,dh, = p(a,,a,)da,da, (28)
yields
p(hyshy) = 7 play,a,) (29)
h,h (h2+h?) h,h
p(hy,h,) = — B exp |- SEE I =29 . (30)
16m5 ( 1-17) 8my(1-£7) 1-£7 4m,

Equation (30) is equal to Eq. (2) derived by Kimura when k = 2p, and Hops =

[om;

13



Defining 2, and ,¢, as the length of a run of high waves and the length
of a total run of waves computed from the envelope function at a level a =

h/2, Longuet-Higgins (1984) found the following estimates for E[,¢,] and
E[,2,]:

E[,2,,] = (2m)72 [(1w?)2/v]/ (a/ /my) (31)

which can be rewritten as

Ef e, ¢ 28 (/Bmg/h) (32)
27
and
E[,0,,] & (2m)™2 [(1+v%)2/v] expla®/2m)/ (a//my) (33)

which reduces to

E[,¢,] = E[,£,] exp[h?/8m,] (34)
since [(1+v%)Y%/v] = 1/6 and h = 2a.

Note the similarity between E[,£,] in Eq. (32) and lﬁg in Eq. (17). If
Ty, is defined to be the mean wave period, then Eq. (32) can be transformed to
Eq. (16) instead of Eq. (17).

The square of the envelope or wave height function may be related to

other methods to analyze wave groups.

n2(t) Filters and H3(t)

Medina and Hudspeth (1987) and Hudspeth and Medina (1988) identified the
following similarities between the Smoothed Instantaneous Wave Energy History
(SIWEH) (Funke and Mansard, 1979); the Local Variance Time Series (LVTS)
(Thompson and Seelig, 1984); and the squared wave height function (H*(t))

defined from the envelope of the record:

SINEH(t) = LVTS(t) = H3(t)/8 = A%(t)/2 (35)

14



Hudspeth and Medina (1988) observed that the squared wave height func-
tion, H?(t), defined on the basis of a time series and its Hilbert transform
isolates exactly the low frequency components of the squared water surface
elevation, n°(t), for a linear stochastic process. In contrast, the SIWEH
requires an arbitrary low-pass filter in order to isolate the low frequency
contributions. They also found that for linear waves the expected value of
the Groupiness Factor (GF) as defined by Funke and Mansard should be approxi-
mately equa]lto unity independent of the shape of the spectrum. This implies
that the Groupiness Factor is not an appropriate parameter to characterize
wave groupiness.

Rye (1982) introduced a more appropriate parameter which was later
verified by Goda (1983). This parameter was the mean zero-upcrossing period

of SIWEH, Tg,, defined by

1 1
Tow = 12; T

(Tsu) s (36)

I~ =

i=1

in which I = the total number of zero upcrossings of the mean Tevel in the

SIWEH; and Tp = l/Fp = the period of the peak frequency of the spectrum.
The relationship between SIWEH(t) and H?(t) given in Eq. (35) implies

that Tg,, may be related to the mean Tength of the total run of waves at the

‘threshold level h = H . From Fig. 2 and Eq. (36) we find, approximately
- 2TH - Tox
Towy * T, oty [T;‘] (37)

where ,7y = the mean duration of the total run of waves; and ,¢ = the

Tength of the total run of waves using the envelope or wave height function.

15



Rice (1954), Bendat and Piersol (1986), and Medina and Hudspeth (1987)
give the following approximations for the spectra of H(t) and H2(t):

Sy(f) = (8-2m) my T,(f) 5 Sy,(f) = 64 mf T,(f) (38a,b)

where the envelope spectral density function (unit variance) is defined by
r(f) =2 r S (x+F) S, (x)dx (39)
2 Jo n 1
My

where o’[H(t)] = (8-2m)m, and o?[H?(t)] = 64 mj.

Medina and Hudspeth (1987) demonstrated that the envelope spectral
density function (unit variance), I, (f), given in Eq. (39) is usually a
monotonically decreasing function with a maximum value at f = 0. This maximum
value is closely related to the grouping characteristics and to the variabili-

ty of the variance of the process since
I,(0) = 4T, = QT ' (40)

where T, = a temporal spectral peakedness parameter introduced by Medina et
al. (1985); and Q, = a dimensionless spectral peakedness parameter proposed by
Medina and Hudspeth (1987). This peakedness parameter is similar to the Goda
peakedness parameter, Q,, and is also related to parameters introduced by

Tucker (1963) and Blackman and Tukey (1959). The Q, parameter is defined as
2m, ’
= | surar (41)
0

Finally, the envelope of the autocorrelation function has also been used

to analyze wave groups.

Envelope of the Autocorrelation Function (Rye, 1982)
Figure 3 illustrates the spectrum autocorrelation function and corre-

sponding envelope for a rectangular and for a Goda-JONSWAP spectra (y = 3.3).

16



Because the rectangular-shaped spectrum demonstrates a local maximum in the
envelope of the autocorrelation function at 7 = 1.5/B where B = rectangular
spectral bandwidth, Rye (1982) attempted to analyze wave groups using the

envelope of the autocorrelation function.
[INSERT FIG. 3 HERE]

Note that in Fig. 3b the envelope of the autocorrelation function for the
Goda-JONSWAP spectrum decreases monotonically. Because of this monotonic
behavior and because of the statistical variability in real ocean wave
records, Rye was not successful in using the local maxima of envelope of the
autocorrelation function to characterize wave groups.

However, it will be shown in the following that the envelope of the
autocorrelation function is related to the spectrum of the wave height
function. Therefore, the envelope of the autocorrelation function may be used

to characterize wave groups.

WAVE HEIGHT FUNCTION ANALYSIS
Assuming that the sea surface elevation at a point is an ergodic Gaussian
stochastic process having a variance spectrum, S, (f), a realization may be

approximated by
M
n(t) = Zl R, cos (2nf. t + @,) (42)
m:

where M = the total number of wave components in the realization; R, f_, and

m
6, = the amplitude, the frequency, and a random phase angle, respectively, of
the m*" wave component. The random phase angle is uniformly distributed in
the interval U[0,2n]. The Hilbert transform, 7(t), of n(t) (Bendat and

Piersol, 1986), is given by

17



M

n(t) = 21 R, sin (2nf,t + 0,) (43)
m=

and the analytical function by
AF(t) = n(t) + Jn(t) = A(t) exp(J[o(t) + ¢]) (44)

where j = /=I; A(t) = the envelope function; and [0(t) + ¢] = the instanta-

neous phase angle defined by
A(t) = [n2(t) + #2(t)1Y% 5 o(t) + ¢ = ARCTAN[A(t)/n(t)] (45a,b)

In the complex plane, Hudspeth and Medina (1988) identified three
interpretations of AF(t): 1) a vertical displacement of a point floating in
the sea surface, 2) a horizontal displacement, and 3) an orbital movement. An
instantaneous wave height, H(t) = 2A(t), and a local frequency, Q(t) =
do(t)/dt, were defined. The statistical properties of these two functions
were evaluated and related to characteristics of wave groups.

From the definition of H?(t) and its spectrum, S,,(f), the inverse of the
hean frequency of S,,(f) can be interpreted as the average mean period, Q?Wms’
of Hz(t) which can be normalized by the mean wave period, Ty, to obtain the
average length of a total run of waves at a threshold Tevel h = H (vide Eq.
(37)).

[INSERT FIG. 4 HERE]

Figure 4 illustrates different envelope spectral density functions (unit
variance) normalized by 6T,. The normalized mean period, 2?Hms/GTV, of H(t)
is equal to unity in Fig. 4 for the rectangular spectrum. Therefore, for the
rectangular spectrum the average length of a total run of waves at h = H

may be approximated by

6T

— 14

z'zﬂmS = Ty 1.5 Q (46)

18



On the other hand, the normalized envelope spectral density functions for
the Goda-JONSWAP spectra in Fig. 4 have normalized mean periods, 2?Hmm/6Tu,
which are smaller than unity. As a consequence, the expected length of a
total run of waves at h = H__ are lower than for the rectangular spectrum.
Therefore, the expected lTength of a total run of waves for real wave spectra

will be proportional to the estimate for a rectangular spectrum according to

0, = 1.5 Q.C, (47)

rms
where C, = a constant of proportionality that is a function of the spectral
shape and the Nyquist frequency f, = 1/2AT where AT = the sampling time
interval of the squared-wave height function. In order to compare estimates
of run lengths given by Eq. (47) with observations of run lengths computed
from discrete waves, the value of AT should be approximately equal to Ty
because discrete wave heights should be comparable with values of H(t)
discretized at this time interval.

Figure 5 illustrates the effect of spectral shape (y = 1.0, 3.3, and
10.0) and of samp]jng time intervals (AT = T, and T,/2) on the constant of

proportionalities, C,, for the Goda-JONSWAP spectrum.
[INSERT FIG. 56 HERE]

3 The similarity between the spectral peakedness parameters, Q; and Qg,
defined by Eqs. (1) and (41) appears to be useful for comparing methods for
data analyses. For the Goda—JONSWAP spectra, the ratio Qp/Qe £ 0.87 with a
slight tendency to increase with increasing values of 7.

Following the ideas presented in Eqs. (38) and (39) to characterize wave
groups by an envelope spectral density function (unit variance), Fn(f), it is

reasonable to consider the Fourier transform of T, (f) as a potentially useful

19



function. The Fourier transform of I (f) is the square of the envelope of the

autocorrelation function of the stochastic process (Bendat and Piersol, 1986).
[INSERT FIG. 6 HERE]

Figure 6 illustrates the Wiener-Khinchine relations for a) waves and b)
envelopes. Figure 6a shows the unit variance spectrum, Sn(f)/mo, the corre-
sponding autocorrelation function, R (7), and its envelope, ARn(T); and the
Hilbert transform of the autocorrelation function, ﬁn(f). Similarly, Fig. 6b
shows the envelope spectral density function (unit variance), I, (f); its
Fourier transform, Aiﬁr) = Ry, (7); as well as the square of the autocorrela-
tion function, Ri(r), and the square of its Hilbert transform, ﬁi(?). Note
that the autocorrelation function of the squared envelope, Eﬂ(f), is the
square of the envelope of the autocorrelation function, Aﬁn(f).

Even though Rye (1982) was unable to find any useful properties (i.e., no
Tocal maxima) in the envelope of the autocorrelation function, ARn(T), the
following analysis appears to support the hypothesis that the square of the
envelope of the autocorrelation function, Ai#r), should contain the basic
properties of the characteristics of the wave groups in a stochastic process.
Note that by Egs. (38), I, (f) is also an approximation for the spectral
density function (unit variance) of the wave height function, H(t). Its
“Fourier transform, Ai#r), should be an approximation for the autocorrelation
function of the envelope, R,(r). Therefore, according to Eqs. (13), (25), and
(27), we find

Agn(fr) £ R(7) = Ry(7) = Ry(7) (48)
Aﬁn(Tm) 2 k% = (2p)° (49)

where k = the parameter defined in Eq. (19) used by Longuet-Higgins (1984) in
Eq. (25); and 2p = the parameter used by Kimura (1980) in Eq. (3). The
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parameter, kK, used by Battjes and Vliedder (1984) in a formula similar to Eq.
(25) was defined using the envelope of the autocorrelation function; A, (7),
n

and Ty, instead of T, as the mean period.
[INSERT FIG. 7 HERE]

Figure 7 illustrates the Wiener-Khinchine relationships for the envelope
spectra for different values of vy for the Goda-JONSWAP spectrum. The envelope
spectral density functions (unit variance) have been normalized by T,. In
principle, the square of the envelope of the autocorrelation function in Fig.
by Rusl7/Tyy) & AiAT/Tm), could be used in Eq. (49) to estimate wave groupi-

ness parameters,

STATISTICS OF RUN LENGTHS

Two simple approximations have been used to define the probability
density function (p.d.f.) for the length of run of high waves and the total
run of waves: viz. 1) the exponential and 2) the Kimura approximations. The
first approximation is based on the independence between crossings of the wave
height function at a given threshold level. The second is based on a Markov

chain hypothesis for the discrete wave heights as given by Eqs. (6) to (9).

Exponential Approximation

The exponential approximation may be derived from a Poisson distribution
(cf. Longuet-Higgins, 1984). Assuming that successive upcrossings of H(t) at
a given threshold level are uncorrelated (which is reasonable for narrow-
banded processes and for large zﬁh), then

]QQJ%EJW]

1 - P(,8,) = lim {1 -1
M-+
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where P(,2,) = the probability that the length of a total run of waves is less
than ,&; &, = E[,2,] = the mean length of a total run of waves; and (,8,/m) =
a small subinterval of zﬁh which has a very low probability (= 1/m) of

detecting an upcrossing. In the limit as m =+ «,

1 - P(8) = exp[-(,4/,8,)] (51)
and, therefore

p(oly) = (1/,8,)expl-(,8/28,)] | (62)
in which p(,¢,) = the probability density function of the length of a total

run of waves.

With similar assumptions, analogous approximations for P(,€,) and p(,¢;)

yield;
P(,8,) = 1 = exp[-(,8/,8,)] (53)
p(,8,) = (1/,8)exp[~(;4,/,2,)] (54)

If the wave height function is Rayleigh distributed, then a relationship

between the average run lengths is given by

[4/18,] = 1_p%h) = exp[h®/8my] (55)

where zﬁh and ,Eh = the average values for the length of a total run of waves
_ﬁnd a run of high waves for a threshold level h, respectively; and P(h) = the
cumulative distribution function (c.d.f.) of the wave heights. Note that Eq.
(55) is equivalent to Eq. (34).

Three-Axes Representation
Both the exponential [Eqs. (51-55)] and the Markov Chain approximations
[Eqs. (6-9)] yield p.d.f.’s for ,&, and ,¢, that require knowing only the

average lengths of runs, £, and ,0,. Therefore, estimates for the pairs of
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in the estimates of the parameters ¢, ,2, (envelope), or Ly oLy, (discrete

waves) in order to realize reliable statistics of run lengths.

CORRELATION BETWEEN SUCCESSIVE WAVE HEIGHTS

Analyzing wave groups in long-traveled swell waves, Goda (1983) pointed
out that the correlation coefficient between consecutive wave heights, ry,(1),
is a better parameter to define the length of runs of wave heights than is the

spectral peakedness parameter, Q.

p- On the other hand, he noted that r(l) is

probably correlated with Qp and could, therefore, be considered as an internal
parameter to describe the phenomenon of wave'grouping. We demonstrate this

correlation later in Fig. 11.
[INSERT FIG. 9 HERE]

If T,(f) is approximately the spectral density function of the wave
height function, then its Wiener-Khinchine transform pair illustrated in Fig.
7b should be approximately the autocorrelation function of the wave height
function. Therefore, a correlation between successive wave heights could be
estimated from the Wiener-Khinchine pair. Figure 9 represents estimations of
ryg(m) from Goda-JONSWAP spectra using Eq. (48) and values from the Wiener-

Khinchine pairs illustrated in Fig. 7.
[INSERT FIG. 10 HERE]

It appears reasonable that values of r,,(1) computed from discrete waves
should be approximately equivalent to values of ry,(1) computed from wave
height envelopes discretized at AT = T,. Figure 10 compares three sets of
observed values for ry(m) computed from long-traveled swell waves by Goda

(1983) with theoretical estimates computed from Goda-JONSWAP spectra using two
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cut-off frequencies. These two theoretical estimates for R,(7) were obtained

from two sampling intervals; viz. AT = T,/16 & AT = T,,.
[INSERT FIG. 11 HERE]

Five of the parameters Tisted in Table 2 to characterize wave groups may
be related to each other in a simple manner. Figure 11 illustrates this
simple theoretical relationship using Eqs. (13, 17, and 48) and the Wiener-
Khinchine pairs shown in Fig. 7. the theoretical relationships were computed
from Goda—-JONSWAP spectra for 6 values of the peak enhancement factor, 7,
using two different values for the cut-off frequency for the envelope spectra
given by f;' = 2AT for AT = Ty, and T, /16. The first quadrant [ry,(1) vs. Q)]
compares the observations of long-traveled swell waves and the numerical
simulations of Kimura that were reported by Goda (1983) with theoretical
estimates computed using the two cut-off frequencies (AT = T, and T,/16).
The second quadrant [Qp vs. Q,] demonstrates the c]ose-simi]arity (QP/Qe &
0.87) between the spectral peakedness parameters computed by Eqs. (1 and 41).
The third quadrant [Qp vs. K’[=(2p)%1] illustrates theoretically using Eq.
(49) the relationship between these two parameters as a function of the two
cut-off frequencies for the envelope spectra. Finally, the fourth quadrant
[nz[=(2p)2]‘vs. ry (1)1 presents the relationship between these two parameters

“defined in Eq. (27).
Of course, estimates of the 5 parameters that are related theoretically

in Fig. 11 will be less correlated when computed from real ocean wave data due

to the statistical variability of the functions used to estimate them.

SUMMARY AND CONCLUSIONS
The parameters and functions derived from the most commonly used method-

ologies to characterize wave groups in linear waves have been reviewed and
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interrelated in a unified manner. The run Tength methodology and the exponen—
tial and Markov chain approximations have been interrelated in a three-—axes
representation of run lengths. A second interrelationship was made for the
envelope theory; for the wave height function theory; for the n?(t) filter
theories; and for the correlation function theories. Finally, the correlation
coefficient between consecutive wave heights (r,,(1)) was shown to be highly
correlated with the spectral peakedness parameters (Qp and Q).

The wave height function method was reviewed in some detail in order to
demonstrate the relationship between the run lengths theory and the envelope
theories. A three-axes representation demonstrated that run lengths computed
from a discrete wave height method did not correlate with run lengths computed
from a continuous envelope.

Four parameters (Qp, Q., K2 = 4p2) used to characterize wave groups were
compared with the correlation coefficient (ry (1)) for order to demonstrate
that each parameter was useful. However, because of their interrelationship,
only one of the parameters or the correlation coefficient is independent.

Finally, run Tengths and any of the wave group parameters must be
estimated from a Tinear random process; and are, therefore, subject to a
statistical variability. Very long data records are required in order to
reduce to an acceptable Tevel the statistical variability of estimates of
these parameters and functions. The theoretical estimates provided in this
review must be interpreted as first-order trends to the estimates computed

from real data.
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