
Universidad Politécnica de Valencia

Departamento de Sistemas Informáticos y Computación

Máster en Ingenieŕıa del Software, Métodos Formales
y Sistemas de Información

Master Thesis

Termination of Narrowing with
Dependency Pairs

Candidate:

José Iborra

Supervisor:

Maŕıa Alpuente, Santiago
Escobar

Academic Year – December 2008 –

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia

España

Contents

1 Introduction 1

1.1 Narrowing . 1

1.2 Dependency Pairs . 2

2 Preliminaries 7

2.1 Narrowing . 7

2.2 The Dependency Pairs method 10

3 Termination of Narrowing with Dependency Pairs 13

3.1 The echoing problem . 15

3.2 Narrowing Dependency Pairs . 17

3.3 Automating the method . 21

3.3.1 Extending the DP framework to narrowing 24

3.3.2 Dependency Graph processor 25

3.3.3 Reduction Pair processor 27

3.3.4 Argument Filtering processor 29

4 Implementation 31

4.1 The TRS library . 31

4.1.1 Terms and Rules . 32

4.1.2 Substitutions . 42

4.1.3 Matching . 46

4.1.4 Unification . 49

4.1.5 TRSs . 51

4.2 Modelling Dependency Pairs . 54

4.2.1 Proof searching . 56

ii Contents

4.2.2 The Dependency Graph processor 61

4.2.3 The Argument Filtering processor 64

4.2.4 The AProVe processor 69

4.2.5 Putting our solvers together 70

4.2.6 Further points . 71

4.3 Template Haskell derivations . 72

5 Conclusion 73

5.1 Related work . 73

5.2 Future work . 75

5.2.1 Restrictions and Strategies 75

5.2.2 More Processors . 75

5.3 Final Words . 76

Bibliography 77

Abstract

In this work, we extend the dependency pair approach for automated proofs of

termination in order to prove the termination of narrowing. Our extension of

the dependency pair approach generalizes the standard notion of dependency

pairs by taking specifically into account the dependencies between the left-

hand side of a rewrite rule and its own argument subterms. We demonstrate

that the new narrowing dependency pairs exactly capture the narrowing termi-

nation behavior and provide an effective termination criterion which we prove

to be sound and complete. Finally, we discuss how the problem of analyzing

narrowing chains can be recast as a standard analysis problem for traditional

(rewriting) chains, so that the proposed technique can be effectively mecha-

nized by reusing the standard DP infrastructure.

iv Abstract

1
Introduction

1.1 Narrowing

Narrowing [Fay, 1979] is a generalization of term rewriting that allows free

variables in terms (as in logic programming) and replaces pattern matching by

syntactic unification so that it subsumes both rewriting and SLD-resolution

[Hanus, 1994]. Narrowing has many important applications including:

• execution of functional–logic programming languages [Dershowitz, 1995;

Hanus, 1994; Meseguer, 1992],

• verification of security policies [Kirchner, Kirchner and de Oliveira, 2008]

and cryptographic protocols [Escobar, Meadows and Meseguer, 2006],

• equational unification [Hullot, 1980a],

• equational constraint solving [Alpuente et al., 1993; Alpuente, Falaschi

and Levi, 1995],

• symbolic reachability [Meseguer and Thati, 2007],

• automated proofs of termination for term rewriting systems [Arts and

Zantema, 1996; Giesl et al., 2006],

• type checking [Sheard, 2006],

• and model checking [Escobar and Meseguer, 2007].

2 1. Introduction

Termination of narrowing itself is of great interest to these applications.

Without it, many of these applications are simply not possible or their use-

fulness is seriously affected. For instance, for all the applications related with

reasoning, such as unification, verification and reachability, the lack of a ter-

mination proof means that narrowing only provides a semidecision procedure,

whereas with a warranty of termination one gets a full decision procedure.

Termination of narrowing is a more restrictive property than termination

of rewriting or termination of pure logic programs due to the high degree of

nondeterminism caused by the interaction of rule selection, redex selection,

and unification. In recent works [Alpuente, Escobar and Iborra, 2008a, b], we

identified some non–trivial classes of TRSs where narrowing terminates. The

results in [Alpuente, Escobar and Iborra, 2008b] generalize previously known

criteria for termination of narrowing, which were essentially restricted before

to either confluent term rewriting systems (TRSs) [Hullot, 1980a] or to left–

flat TRSs (i.e., each argument of the left–hand side of a rewrite rule is either

a variable or a ground term) that are compatible with a termination order-

ing [Christian, 1992], among other applicability conditions. Roughly speaking,

we proved in [Alpuente, Escobar and Iborra, 2008b] that confluence is a su-

perfluous requirement. We also weakened the left–flatness condition required

in [Christian, 1992] to the requirement that every non-ground, strict subterm

of the left–hand side (lhs) of every rewrite rule must be a rigid normal form,

i.e., unnarrowable. Finally, in [Alpuente, Escobar and Iborra, 2008a] we proved

modular termination of a restriction of narrowing, called basic narrowing [Hul-

lot, 1980a], in several hierarchical combinations of TRSs, which provides new

algorithmic criteria to prove termination of narrowing via termination of basic

narrowing (cf. [Alpuente, Escobar and Iborra, 2008b]).

1.2 Dependency Pairs

In recent years, the dependency pair (DP) method for automating the ter-

mination proofs of term rewriting has achieved tremendous success, as wit-

nessed by the large number of publications and tools since its introduction

in [Arts and Giesl, 2000] and subsequent reformulation in [Giesl, Thiemann

1.2. Dependency Pairs 3

and Schneider-Kamp, 2005] (see [Giesl et al., 2006; Hirokawa and Middeldorp,

2004] for extensive references thereof). In [Nguyen et al., 2008], the notions

of dependency pairs and dependency graphs, which were originally developed

for term rewriting, were adapted to the logic programming domain, leading

to automated termination analyses that are directly applicable to any definite

logic program.

Two different adaptations of the DP technique for narrowing have been

proposed recently. In [Nishida and Miura, 2006; Nishida, Sakai and Sakabe,

2003], the original dependency pair technique of [Arts and Giesl, 2000] was

adapted to the termination of narrowing, whereas [Nishida and Vidal, 2008]

adapts the logic programming dependency pair approach of [Nguyen et al.,

2008] instead, to prove termination of narrowing w.r.t. a given set of queries

that are supplemented with call modes . Unfortunately, these two methods ap-

ply only to two particular classes of TRSs: right–linear TRSs (i.e., no repeated

variables occur in the right–hand sides of the rules) or constructor systems (the

arguments of the lhs’s of the rules are constructor –i.e., data– terms). These

two classes are overly restrictive for many practical uses of narrowing, such

as the applications mentioned above. In this work, we are able to relax these

restrictions and provide a method which is applicable to any class of TRSs.

Example 1 Consider our running example, which is the non–right–linear,

non–constructor–based, non–confluent TRS adapted from [Kirchner, Kirchner

and de Oliveira, 2008], shown1 in Figure 1.1. This TRS models a security

(filtering) and routing policy that allows packets coming from external net-

works to be analyzed. We do not describe the intended meaning of each symbol

since it is not relevant for this work, but note the kind of expressivity that is

assumed in the domain of rule–based policy specification, which does not fit

in the right–linear restriction or the constructor discipline. Narrowing is ter-

minating for this TRS, but it cannot be proved by using any of the existing

methods [Alpuente, Escobar and Iborra, 2008a, b; Nishida and Miura, 2006;

Nishida, Sakai and Sakabe, 2003; Nishida and Vidal, 2008]. In this paper, we

1In this paper, variables are written in italic font and function symbols are in typewriter
font.

4 1. Introduction

filter(pckt(src, dst, established)) → accept
filter(pckt(eth0, dst, new)) → accept
filter(pckt(194.179.1.x:port, dst, new)) → filter(pckt(secure, dst, new))
filter(pckt(158.42.x.y:port, dst, new)) → filter(pckt(secure, dst, new))
filter(pckt(secure, dst:80, new)) → accept
filter(pckt(secure, dst:other, new)) → drop
filter(pckt(ppp0, dst, new)) → drop
filter(pckt(123.123.1.1:port, dst, new)) → accept
pckt(10.1.1.1:port, ppp0, s) → pckt(123.23.1.1:port, ppp0, s)
pckt(10.1.1.2:port, ppp0, s) → pckt(123.23.1.1:port, ppp0, s)
pckt(src, 123.123.1.1:port, new)→ natroute(pckt(src, 10.1.1.1:port, established),

pckt(src, 10.1.1.2:port, established))
natroute(a, b) → a
natroute(a, b) → b

Figure 1.1: The FullPolicy TRS

develop techniques that allow us to prove it automatically.

Plan of the thesis

The main contributions of this thesis are as follows:

• We present a new method for proving the termination of narrowing that

is based on a suitable extension of the DP technique to narrowing that

is applicable to any class of TRSs. Our method generalizes the standard

notion of dependency pairs to narrowing by taking the dependencies be-

tween the lhs of a rewrite rule and its own argument subterms specifically

into account.

• We demonstrate that the new narrowing dependency pairs exactly cap-

ture the termination of narrowing behavior. We provide a termination

criterion based on narrowing chains which we show to be sound and

complete.

• This allows us to develop a technique that is more general in all cases

and, for general calls (i.e., without considering call modes) strictly sub-

sumes the DP methods for proving termination of narrowing of [Nishida

1.2. Dependency Pairs 5

and Miura, 2006; Nishida, Sakai and Sakabe, 2003; Nishida and Vidal,

2008], as well as all previous (decidable) termination of narrowing cri-

teria [Alpuente, Escobar and Iborra, 2008a, b; Christian, 1992; Hullot,

1980a].

• We have implemented a tool for proving the termination of narrowing

automatically that is based on our technique, and we made it publicly

available.

After recalling some preliminaries in Section 2, in Section 3.1 we discuss

the problem of echoing , which we identify as being ultimately responsible for

the non–termination of narrowing. In Section 3.2, we develop the notion of

narrowing dependency pairs and provide a sound and complete criterion for

the termination of narrowing that is based on analyzing narrowing chains. In

Section 3.3, we discuss the effective automation of our method, which mainly

consists of two steps: DP extraction and argument filtering transformation.

In Section 4 we discuss in detail the implementation of an automatic tool

based on the method developed in this thesis. Section 5 concludes with an

analysis of the state of the art, and the possible directions for future work in

this line.

6 1. Introduction

2
Preliminaries

2.1 Narrowing

We now briefly recall the essential notions and terminology of term rewriting.

For missing notions and definitions on equations, orderings and rewriting, we

refer to [TeReSe, 2003].

Terms, variables and positions. V denotes a countably infinite set of

variables, and Σ denotes a set of function symbols, or signature, each of which

has a fixed associated arity. Terms are viewed as labelled trees in the usual

way, where T (Σ,V) and T (Σ) denote the non-ground term algebra and the

ground algebra built on Σ ∪ V and Σ, respectively. Positions are defined as

sequences of natural numbers used to address subterms of a term, with ε as the

root (or top) position (i.e., the empty sequence). Concatenation of positions

p and q is denoted by p.q, and p < q is the usual prefix ordering. The root

symbol of a term is denoted by root(t). Given S ⊆ Σ∪V , PosS(t) denotes the

set of positions of a term t that are rooted by function symbols or variables in

S. Pos{f}(t) with f ∈ Σ∪V will be simply denoted by Posf (t), and PosΣ∪V(t)

will be simply denoted by Pos(t). t|p is the subterm at the position p of t.

t[s]p is the term t with the subterm at the position p replaced with term s.

By Var(s), we denote the set of variables occurring in the syntactic object s.

By x̄, we denote a tuple of pairwise distinct variables. A fresh variable is a

variable that appears nowhere else. A linear term is one where every variable

occurs only once.

8 2. Preliminaries

Substitutions, unifiers. A substitution σ is a mapping from the set of

variables V into the set of terms T (Σ,V) with a (possibly infinite) domain

D(σ), and image I(σ). A substitution is represented as {x1 7→ t1, . . . , xn 7→ tn}
for variables x1, . . . , xn and terms t1, . . . , tn. The application of a substitution θ

to term t is denoted by tθ, using postfix notation. Composition of substitutions

is denoted by juxtaposition, i.e., the substitution σθ denotes (θ◦σ). We write

θ|̀Var(s) to denote the restriction of the substitution θ to the set of variables in

s; by abuse of notation, we often simply write θ|̀s. Given a term t, θ = ν [t]

iff θ|̀Var(t) = ν|̀Var(t), that is, ∀x ∈ Var(t), xθ = xν. A substitution θ is more

general than σ, denoted by θ ≤ σ, if there is a substitution γ such that θγ = σ.

A unifier of terms s and t is a substitution ϑ such that sϑ = tϑ. The most

general unifier of terms s and t, denoted by mgu(s, t), is a unifier θ such that

for any other unifier θ′, θ ≤ θ′.

Rewriting. A term rewriting system (TRS) R is a pair (Σ, R), where R is a

finite set of rewrite rules of the form l→ r such that l, r ∈ T (Σ,V), l 6∈ V , and

Var(r) ⊆ Var(l). For TRS R, l→ r << R denotes that l→ r is a new variant

of a rule in R such that l → r contains only fresh variables, i.e., contains no

variable previously met during any computation (standardized apart). We will

often write just R or (Σ, R) instead of R = (Σ, R). A TRS R is called left–

linear (respectively right–linear) if, for every l → r ∈ R, l (respectively r) is

a linear term. Given a TRS R = (Σ, R), the signature Σ is often partitioned

into two disjoint sets Σ = C] D, where D = {f | f(t1, . . . , tn) → r ∈ R} and

C = Σ \ D. Symbols in C are called constructors, and symbols in D are called

defined functions. The elements of T (C,V) are called constructor terms. We

often introduce a TRS as R(D, C, R). We let Def(R) denote the set of defined

symbols in R. A constructor system is a TRS whose lhs’s are terms of the

form f(c1, . . . , ck) where f ∈ D and c1, . . . , ck are constructor terms. A term

whose root symbol is a defined function is called root-defined .

A rewrite step is the application of a rewrite rule to an expression. A term

s ∈ T (Σ,V) rewrites to a term t ∈ T (Σ,V), denoted by s
p→R t, if there exist

p ∈ PosΣ(s), l→ r ∈ R, and substitution σ such that s|p = lσ and t = s[rσ]p.

When no confusion can arise, we omit the subscript in →R . We also omit the

2.1. Narrowing 9

reduced position p when it is not relevant. A term s is a normal form w.r.t.

the relation →R (or simply a normal form), if there is no term t such that

s →R t. A term is a reducible expression or redex if it is an instance of the

left hand side of a rule in R. A term s is a head normal form if there are

no terms t, t′ s.t. s →∗R t′
ε→R t. A term t is said to be terminating w.r.t.

R if there is no infinite reduction sequence t →R t1 →R t2 →R A TRS

R is (→)-terminating (also called strongly normalizing or noetherian) if every

term is terminating w.r.t. R. A TRS R is confluent if, whenever t→∗R s1 and

t→∗R s2, there exists a term w s.t. s1 →∗R w and s2 →∗R w.

Narrowing. A term s ∈ T (Σ,V) narrows to a term t ∈ T (Σ,V), denoted by

s
p
;θ,R t, if there exist p ∈ PosΣ(s), l→ r << R, and substitution θ such that

θ = mgu(s|p, l) and t = (s[r]p)θ. We use
>ε→R (resp.

>ε
;θ,R) to denote steps

in which the selected redex (resp. narrex , i.e. narrowable expression) is below

the root.

Example 2 Consider the following term rewriting system (TRS) defining the

addition add on natural numbers built from 0 and s:

add(0, y)→ y (R1)

add(s(x), y)→ s(add(x, y)) (R2)

There are infinitely many narrowing derivations issuing from the input ex-

pression add(w, s(0)) (at each step, the narrowing relation ; is labelled with

the applied substitution and rule1, and the reduced subterm is underlined):

add(w, s(0)) ;{w 7→0},(R1) s(0)
add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→0},(R1) s(s(0))
add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→s(x′)},(R2) s(s(add(x′, s(0))))

;{x 7→0},(R1) s(s(s(0)))
...

The following infinite narrowing derivation resulting from applying rule (R2)

infinitely many times can also be proved

1Substitutions are restricted to the input variables.

10 2. Preliminaries

add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→s(x′)},(R2) s(s(add(x′, s(0)))) · · ·

Due to nontermination, narrowing behaves as a semi-decision procedure for the

problem of equational unification in a wide variety of equational theories. For

instance, in the equational theory defined by the above rules (R1) and (R2),

narrowing allows us to prove that the formula ∃w∃z s.t. add(w, s(0)) = s(s(z))

holds by computing the solution {w 7→ s(0), z 7→ 0}, whereas it cannot prove

that the formula ∃w s.t. add(w, s(0)) = 0 does not hold.

Under appropriate conditions, narrowing is complete as an equational uni-

fication algorithm as well as a procedure to solve reachability problems; that

is, it is able to find “more general” solutions σ for the variables of terms s and

t, such that sσ rewrites to tσ in R in a number of steps. For instance, nar-

rowing computes the solution {w 7→ s(z)} for the reachability problem ∃w∃z
s.t. add(0, w)→∗ s(z).

2.2 The Dependency Pairs method

The dependency pair technique [Arts and Giesl, 2000] is one of the most pow-

erful methods for automated termination analyses. The technique has experi-

mented several steps of evolution since it was originally introduced, and in its

current status it is commonly known as the DP framework, described exten-

sively in [Thiemann, 2007]. In order to make this thesis self-contained, in this

section we give a very brief introduction to the dependency pairs method.

Intuitively, the technique focuses on the dependency relations between de-

fined function symbols, paying particular attention to strongly connected com-

ponents within a graph of functional dependencies, in order to produce auto-

mated termination proofs. The dependency graph is extracted by considering

the dependencies between the lhs’s of a rewrite rule and all proper subterms

of the rhs of the rule. More precisely, if a term f(t1 . . . tn) rewrites to a term

C[g(s1 . . . sn)], we can analyze the terms rooted at f and g and ignore the

context for our purposes.

2.2. The Dependency Pairs method 11

The notion of dependency pair captures this idea by extracting, from every

rule, the set of relevant reduction relations.

Definition 1 (Dependency pair) LetR(D, C, R) be a TRS. If f(s1, . . . , sn)→
C[g(t1, . . . , tm)] is a rule from R with g ∈ D, then f#(s1, . . . , sn)→ g#(t1, . . . , tm)

is a dependency pair for R.

The set of all dependency pairs of R is denoted by DPR.

The trick now is that every infinite derivation contains an infinite number

of steps given with a dependency pair. Proving termination of a TRS R is

equivalent to proving that there are no infinite sequences of dependency pairs.

We call these sequences chains.

Definition 2 (Chain) [Arts and Giesl, 2000; Giesl et al., 2006] Let P ,R be

two TRS’s. A (posibly infinite) sequence of pairs s1 → t1, s2 → t2, . . . from P
is a (P ,R)–chain if there exists a substitution σ with tiσ →R si+1σ for all i.

The gist of the method is in analyzing these chains, which correspond to

infinite minimal derivations in R, and proving their absence using several

techniques in a modular way.

Theorem 1 (Termination Criterion [Arts and Giesl, 2000]) A TRS R is

terminating if and only if no infinite (DPR ,R)–chain exists.

We do not discuss in this section all the available techniques for proving the

absence of DP chains. The interested reader can find this information in [Arts

and Giesl, 2000; Hirokawa and Middeldorp, 2004; Thiemann, 2007]. Instead,

what follows is an intuition of why proving the absence of chains is easier than

working with the original TRS directly.

Consider solely, without loss of generality, almost terminating terms2, i.e.,

terms whose proper subterms are all terminating, and then mark the root

symbol with # and use DPR as an extra set of rewriting rules to R. Given

such a term t = f#(t1, , tn), the resulting derivation

t
>ε→∗R t0

ε→DPR
t1

>ε→∗R t2
ε→DPR

. . .

2also called minimal non-terminating terms

12 2. Preliminaries

has been shown to have a direct correspondence to a derivation in R. But

the nice thing is that now the rules in DPR are used in a topmost only way,

as the marked symbols never move below the root. Showing termination of

this system (R +DPR) is equivalent to showing topmost termination of DPR

relative to R (informally, relative termination [TeReSe, 2003] of S w.r.t. R
means that in any infinite (S+R) derivation one can give only a finite number

of steps in S). Both topmost termination and relative termination are easier

to prove than proving termination of S and R separately. This is one of the

advantages of working with the Dependency Pair method: we never have to

prove the termination of the original system itself, instead we decompose it

into simpler problems.

3
Termination of Narrowing with

Dependency Pairs

In this section we introduce the main ideas behind our generalization of the

Dependency Pairs method to the narrowing setting. A previous effort in this

area is the work of [Nishida, Sakai and Sakabe, 2003], where the DP method

is adapted to prove the termination of narrowing in systems that have the so-

called Top Reduced Almost Terminating (TRAT) property, defined as follows.

Given a property P on terms, a term t is said to be a minimal P term if t

satisfies P but none of the proper subterms of t does. Given a TRS R and a

binary relation ⇒ (being →R or ;R), an infinite derivation t ⇒ t1 ⇒ t2 . . .

is called almost terminating if t is a minimal non–terminating term w.r.t.

⇒. An almost terminating derivation t ⇒ t1 ⇒ t2 . . . is called top reduced

if it contains a derivation step at the root position. We say that ⇒ has the

TRAT property if, for every non-terminating term t, there exists a top reduced

almost-terminating sequence stemming from one subterm of t.

Let us briefly recall the notion of context. A context is a term with sev-

eral occurrences of a fresh symbol 2. In [Nishida, Sakai and Sakabe, 2003]

it is proved that every monotone relation has the TRAT property. Since the

rewriting relation is monotone (i.e., t→R s implies C[t]→R C[s]), then it has

the TRAT property for every TRS R (cf. [Hirokawa and Middeldorp, 2004,

Lemma 1]). In term rewriting this ensures that, in every almost terminating,

infinite term rewriting derivation, a rewriting step is given at the root. Un-

fortunately, the narrowing relation is not monotone: t ;σ,R s does not entail

C[t] ;σ,R C[s] but C[t] ;σ,R (Cσ)[s] instead.

14 3. Termination of Narrowing with Dependency Pairs

Example 3 [Christian, 1992] Consider the TRS consisting of the rule f(f(x))→
x, and the non–linear term c(f(x), x). Then there does not exist an infinite

narrowing derivation for the subterms, f(x) and x, whereas c(f(x), x) is in-

finitely narrowed without ever performing a narrowing step at the root:

c(f(x), x) ;{x 7→f(x′)} c(x′, f(x′)) ;{x′ 7→f(x′′)} c(f(x′′), x′′) . . .

As shown by the above example, in the presence of non linearity the non–

monotony of narrowing has undesirable effects for its termination, since nar-

rexes can be brought into the context by the substitution computed at the

preceding narrowing step, thus causing other terms in the context to grow.

This echoing effect plays a fatal role in the (non–) termination of narrowing.

There are some classes of TRSs in which narrowing exhibits a monotone

or monotone–like behaviour and thus enjoys the TRAT property. [Nishida,

Sakai and Sakabe, 2003] considers two such classes: right–linear TRS (w.r.t.

linear goals), and constructor systems. We note that these two classes are a

particular case of a larger characterization of narrowing termination that we

formalized in [Alpuente, Escobar and Iborra, 2008b] by the QSRNC (Quasi

stable rigidly normalized condition), though in [Alpuente, Escobar and Iborra,

2008b] we do not make the connection with TRAT explicit.

The inspiration for this work comes from realizing that monotonicity is not

really a necessary condition for the termination of narrowing, provided the

partially computed substitutions do not echo, i.e., they do not bring narrexes

into the context that might either introduce a term that does not terminate

or echo again. Let us introduce the idea by means of one example.

Example 4 Consider the non–linear input call c(f(x), x) in the non–constructor

TRS

f(g(x))→ x

g(x)→ x

The only possible derivation for this term is finite, whereas the TRS, together

with the considered non–linear input term, do not fit in any of the characteri-

zations given for TRAT [Nishida and Miura, 2006; Nishida, Sakai and Sakabe,

3.1. The echoing problem 15

2003; Nishida and Vidal, 2008] or any decidable criteria for the termination

of narrowing [Alpuente, Escobar and Iborra, 2008a, b; Christian, 1992; Hullot,

1980a]. Note that the subterm g(x) in the lhs of the first rule is a narrex.

3.1 The echoing problem

Let us start with some lessons learnt from the termination of rewriting that

would be good to transfer to the termination of narrowing. In rewriting (and

narrowing), if a TRS is not terminating then there must be a minimal non-

terminating term. In rewriting such a minimal non-terminating term is rooted

by a defined symbol but this is not true for narrowing. As in [Hirokawa and

Middeldorp, 2004], let us denote the set of all minimal non-terminating terms

w.r.t. rewriting (resp. narrowing) by T ∞ (resp. T ∞;). The following definition

is crucial.

Definition 3 (Echoing terms) Let R be a TRS. We define the set of min-

imal echoing terms w.r.t. R, denoted by T 	, as follows: s ∈ T 	 if

• s 6∈ T ∞; ,

• with a fresh binary symbol c and a variable x ∈ Var(s), c(s, x) ∈ T ∞; ,

• and there is no proper subterm s’ of s such that s′ ∈ T 	.

Now, we provide our key result for the termination of narrowing. We write

s D t to denote that t is a subterm of s, and s . t if t is a proper subterm of s.

Lemma 1 Let R be a TRS. For every term t ∈ T ∞; , we have that either

1. (top) there exists a rewrite rule l → r ∈ R, substitutions σ, ρ, a term

t′, and a non-variable subterm u of r such that t
>ε
;∗

ρ,R t′
ε

;σ,l→r rσ D u

and u ∈ T ∞; ;

2. (hybrid) there are terms t′, t′′, u, substitutions ρ, σ, a position p, and

a variable x such that t
>ε
;∗

ρ,R t′
p
;σ,R t′′, x ∈ Var(t′|p), xσ D u, and

u ∈ T ∞; ;

16 3. Termination of Narrowing with Dependency Pairs

3. (echoing) there are terms t′, t′′, u, substitutions ρ, σ, a position p, and

a variable x such that t
>ε
;∗

ρ,R t′
p
;σ,R t′′, x ∈ Var(t′|p), xσ D u, and

t′|p, u ∈ T 	.

Proof. Let D be an infinite narrowing sequence stemming from t. Since

all proper subterms of t are terminating for narrowing, D must contain a

narrowing step at the root position or there is a narrowing step which computes

a substitution that carries a narrex.

• Let us consider the case where there is a narrowing step at the top and

cases 2 and 3 do not apply. We consider the first such narrowing step

at the root t
>ε
;∗

ρ,R t′
ε

;σ,l→r rσ where σ = mgu(t′, l). By assumption,

all proper subterms of t′ are terminating for narrowing and thus terms

brought by the substitution σ are terminating for narrowing. As rσ is

not terminating for narrowing, it has a subterm u = rσ|p such that u

is not terminating for narrowing and, clearly, p ∈ Pos(r) because all

terms brought by σ are terminating for narrowing. Now, by structural

induction on r, we easily prove that there is a minimal such u.

• Let us now consider that there is no narrowing step at the top, i.e., case

1 does not apply. We consider two cases:

– If there is a term t′ and a subterm u of t′ s.t. t
>ε
;∗

ρ,R t′ D u and

u ∈ T ∞; , then u is introduced by a binding of ρ, since all proper

subterms of t are terminating for narrowing.

– If there is no such u, then the infinite narrowing derivation must

be due to a rule l → r applied infinitely many times, where l, r

and all their subterms are terminating for narrowing. This can

only happen if there is a proper subterm u of l s.t. C[u] ;∗
θ,R

C ′[u′]p′
p′
;θ′,l→r C

′θ′[rθ′]p′ ;∗
θ′′,R C ′′[u′′]p′′

p′′
;θ′′,l→r C

′′θ′′[rθ′′]p′′ · · ·
and u, u′, u′′, . . . ∈ T 	.

2

Informally, the lemma above distinguishes three different kinds of minimal

non–terminating terms.

3.2. Narrowing Dependency Pairs 17

The top case is the usual one shared by rewriting and narrowing non–

termination; the other two cases are due to non–monotonicity and thus unique

to narrowing.

In the pure echoing case, the narrowing of an echoing subterm introduces

into the context a new echoing subterm that reproduces the process again, as

in Example 3.

In the hybrid echoing case, the reduction of an echoing subterm introduces

into the context a minimal non–terminating narrex that spawns an infinite

narrowing derivation, as in Example 5 below.

Example 5 Consider the following TRS:

f(g(x))→ a g(x)→ g(x)

g(x) is in cT∞; , i.e., it is a minimal non–terminating term for narrowing.

f(x) 6∈ T ∞; , since only the derivation f(x) ;{x 7→g(x′)} a can be proven. How-

ever, given a fresh symbol c, there is a hybrid infinite narrowing derivation

stemming from the term c(f(x), x) ∈ T ∞; . Therefore, f(x) ∈ T 	.

3.2 Narrowing Dependency Pairs

In this section, we develop the notion of narrowing dependency pairs, and

provide a sound and complete criterion for the termination of narrowing that

is based on analyzing narrowing chains.

The intuition behind our method is as follows. Suppose we split the substi-

tution σ computed by a narrowing step t ;l→r,σ s into two pieces, σ ≡ σ|̀l]σ|̀t.
The σ|̀l part of the substitution has the usual effect of propagating narrexes

from the left hand side to the right hand side of the rule. On the other hand,

the σ|̀t part is responsible for the echoing of narrexes to the context that can

fire a new narrowing step. These narrexes come from the subterms of the left

hand side of the rule, as in the FullPolicy TRS of Example 3, or from the term

being narrowed itself, e.g. when c(z, h(g(x), z)) is narrowed to c(g(x), 0) by

using the rule h(y, y)→ 0 and most general unifier {z 7→ g(x), y 7→ g(x)}.

18 3. Termination of Narrowing with Dependency Pairs

Although the narrexes coming from proper subterms of the original term

may cause non–termination, standard (rewriting) termination analyses already

cope with them. However, narrexes coming from proper subterms of the lhs

of the rules are specific to narrowing, and thus we focus on them in our notion

of narrowing dependency pairs.

In order to construct the set of dependency pairs, we not only relate the

lhs of each rule with the root–defined subterms occurring in the corresponding

rhs, as in standard rewriting DP, but also with its own root–defined subterms,

i.e., those terms whose root symbol is a defined function. The resulting set of

dependency pairs faithfully captures the behaviour of infinite narrowing deriva-

tions which incrementally compute an infinite substitution, or more precisely,

where the substitution computed by narrowing contains an infinite term.

Notation Let R be a TRS defined over a signature Σ = D] C . Let Σ#

denote the extension of Σ with {f# | f ∈ D}, where f# is a fresh symbol with

the same arity as f . If t ∈ T (Σ,V) is of the form f(s1, . . . , sn) with f a defined

symbol, then t# denotes the term f#(s1, . . . , sn).

The following definition extends the traditional, vanilla DPs with a novel

kind of dependency pairs, which we call ll–dependency pairs.

Definition 4 (Narrowing Dependency Pair) Given a TRS R, we have

two types of narrowing dependency pairs:

• a lr–dependency pair (or standard1 DP) of R is a pair l# → t# where

l→ r ∈ R, r D t, and root(t) ∈ D.

• a ll–dependency pair (ll-DP) of R is a pair l# → u# where l → r ∈ R,

l . u, and root(u) ∈ D.

The set of all (narrowing) dependency pairs of R is denoted by NDPR.

Example 6 The TRS f(f(x))→ x of Example 3 has no lr–dependency pairs

and the single ll–dependency pair f#(f(x))→ f#(x).

1Modern formulations exclude pairs l# → u# when l . u. This refinement could be
applied to lr-DPs in our definition, but the pair would not be actually discarded, since it is
also computed as a ll-DP.

3.2. Narrowing Dependency Pairs 19

(1) filter#(pckt(194.179.1.x:p, dst, new)) → filter#(pckt(secure, dst, new))
(2) filter#(pckt(194.179.1.x:p, dst, new)) → pckt#(secure, dst, new)
(3) filter#(pckt(158.42.x.y:p, dst, new)) → filter#(pckt(secure, dst, new))
(4) filter#(pckt(158.42.x.y:p, dst, new)) → pckt#(secure, dst, new)
(5) pckt#(10.1.1.1:p, ppp0, s) → pckt#(123.23.1.1:p, ppp0, s)
(6) pckt#(10.1.1.2:p, ppp0, s) → pckt#(123.23.1.1:p, ppp0, s)
(7) filter#(pckt(123.123.1.1:p, dst, new)) → pckt#(123.123.1.1:p, dst, new)
(8) pckt#(src, 123.123.1.1:p, new) → pckt#(src, 10.1.1.1:p, established)
(9) pckt#(src, 123.123.1.1:p, new) → pckt#(src, 10.1.1.2:p, established)
(10) filter#(pckt(src, dst, established)) → pckt#(src, dst, established)
(11) filter#(pckt(eth0, dst, new)) → pckt#(eth0, dst, new)
(12) filter#(pckt(194.179.1.x:p, dst, new)) → pckt#(194.179.1.x:p, dst, new)
(13) filter#(pckt(158.42.x.y:p, dst, new)) → pckt#(158.42.x.y:p, dst, new)
(14) filter#(pckt(secure, dst:80, new)) → pckt#(secure, dst:80, new)
(15) filter#(pckt(secure, dst:other, new)) → pckt#(secure, dst:other, new)
(16) filter#(pckt(ppp0, dst, new)) → pckt#(ppp0, dst, new)
(17) pckt#(src, 123.123.1.1;p, new)→ natroute#(pckt(src, 10.1.1.1:p, established),

pckt(src, 10.1.1.2:p, established))

Figure 3.1: Dependency pairs of FullPolicy

Example 7 For the TRS of Example 1 we obtain the narrowing dependency

pairs shown in Figure 3.1.

Recall that our purpose is to prove that there are no infinite narrowing deriva-

tions. Since dependency pairs model all function calls in R, this is equivalent

to proving that there are no infinite chains of narrowing dependency pairs.

For narrowing we consider suitable the following definition of chain. As in

[Giesl et al., 2006; Nishida, Sakai and Sakabe, 2003], we assume that different

occurrences of dependency pairs are variable disjoint. In the following, P is

usually a set of dependency pairs.

We often omit the (P ,R) prefix when referring to narrowing chains when

it is clear from the context. The following result establishes the soundness of

analyzing narrowing chains.

Lemma 2 Let R be a TRS. For every (NDPR,R)–narrowing chain s1 → t1,

. . . , sn → tn, there exists a narrowing derivation in R which gives at least one

reduction step for every pair in the chain.

Namely, there are contexts C1[], . . . , Cn+1[], positions p1, . . . , pn+1, terms

u1, . . . , un, and substitutions τ1, . . . , τn, ρ1, . . . , ρn−1 s.t. τi = mgu(ui, si) for

i ∈ {1, . . . , n}, and C1[u1]p1
p1
;τ1,R C2[t1τ1]p2

>p2
; ∗

ρ1,R C2ρ1[u2]p2
p2
;τ2,R C3[t2τ2]p3

>p3
; ∗

ρ2,R C3ρ2[u3]p3 · · ·Cnρn−1[un]pn
pn
;τn,R Cn+1[tnτn]pn+1.

20 3. Termination of Narrowing with Dependency Pairs

Proof. By induction on n. The case n = 0 is immediate. For n > 0, let us

consider the suffix of the narrowing sequence that first narrows using the rules

from R and then a dependency pair from the chain, i.e. t#n−1σn−1
>ε
;∗

ρn,R

u#
n

ε
;

σn,s
#
n→t#n

t#n σn. By induction hypothesis, we assume there are con-

texts C1[], . . . , Cn[], positions p1, . . . , pn, and substitutions τ1, . . . , τn−1 s.t.

C1[u1]p1
p1
;τ1,R C2[t1σ1]p2

>p2
; ∗

ρ1,R C2ρ1[u2]p2
p2
;τ2,R C3[t2σ2]p3

>p3
; ∗

ρ2,R C3ρ2[u3]p3

· · ·Cn−1ρn−2[un−1]pn−1

pn−1
; τn−1,R Cn[tn−1σn−1]pn . Now, let us consider the two

possibilities for s#
n → t#n ∈ NDPR .

• If s#
n → t#n is a vanilla lr-dependency pair, then there is a rule sn → r

and a position q s.t. r|q = tn. Therefore, t#n−1σn−1
>ε
;∗

ρn,R u#
n

ε
;

σn,s
#
n→t#n

t#n σn implies Cn[tn−1σn−1]pn
>pn
; ∗

ρn,R Cnρn[un]pn
pn
;σn,sn→r Cnρnσn[rσn]pn ,

where there exists a context Cn+1 s.t. Cnρnσn[rσn]pn = Cn+1[tnσn]q and

pn ≤ q.

• If s#
n → t#n is a ll–dependency pair, then there is a rule sn → r and

a position q s.t. sn|q = tn. Therefore, t#n−1σn−1
>ε
;∗

ρn,R u#
n

ε
;

σn,s
#
n→t#n

t#n σn implies there is a substitution τn and a variable x ∈ Var(un) ∩
Var(Cnρn) s.t. τn(x) = tn and τn(y) = σn(y) for any other variable y, and

Cn[tn−1σn−1]pn
>pn
; ∗

ρn,R Cnρn[un]pn
pn
;τn,sn→r Cnρnτn[rτn]pn , where there

exists a context Cn+1 and a position q′ ∈ Posx(un) s.t. Cnρnτn[rτn]pn =

Cn+1[tnσn]q′ .

2

Now we are able to show that, whenever there are no infinite narrowing

chains, narrowing does terminate.

Theorem 2 (Termination Criterion) A TRS R is terminating for nar-

rowing if and only if no infinite (NDPR,R)–narrowing chain exists.

Proof. The if case is straightforward from Lemma 1 and the only if case is

straightforward from Lemma 2. 2

Example 8 Consider the ll-DP d ≡ f#(f(x)) → f#(x) of Example 6. There

is a narrowing chain f#(x) ;{x 7→f(x′)},d f
#(x′) ;{x′ 7→f(x′′)},d f

#(x′′) · · · .

3.3. Automating the method 21

3.3 Automating the method

In order to automate the task of proving the absence of narrowing chains,

it would be very convenient to reformulate the problem using only rewriting

chains, as it is done in [Nishida, Sakai and Sakabe, 2003; Nishida and Vidal,

2008; Nguyen et al., 2008], since this allows us to reuse existing tools and

techniques of the rewriting DP literature. We develop our method inspired by

[Nishida and Miura, 2006] but we provide all results without requiring TRAT,

which is the main novel contribution of this section. Let us recall the notion

of argument filtering.

Definition 5 (Argument Filtering) [Arts and Giesl, 2000] An argument

filtering (AF) for a signature Σ is a mapping π that assigns to every n-ary

function symbol f ∈ Σ an argument position i ∈ {1, . . . , n}, or a (possibly

empty) list [i1, . . . , im] of argument positions with 1 ≤ ii < . . . < im ≤ n. The

signature Σπ consists of all function symbols f s.t. π(f) is some list [i1, . . . , im],

where in Σπ the arity of f is m. Every AF π induces a mapping from T (Σ,V)

to T (Σπ,V):

π(t) =

{ t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

We extend π to a TRS R as π(R) = {π(l) → π(r) | l → r ∈ R and π(l) 6=
π(r)}. For any argument filtering π and ordering >, we define

s ≥π t ⇐⇒ π(s) > π(t) or π(s) ≡ π(t)

We also define the filtering of a position p w.r.t. a term t as follows. Given a

n-ary symbol f ∈ Σ and i ∈ {1, . . . , n}, π(i, f) = j if π(f) = [i1, . . . , ij, . . . , ik],

ij = i. Given a term t and a position p ∈ Pos(t), the filtering of p w.r.t. t is

defined as follows:

π(p, t) =


ε if p = ε
π(q, t) if p = q.i, i ∈ N, π(root(t|q)) = i
π(q, t).π(i, root(t|q)) if p = q.i, i ∈ N, π(root(t|q)) = [i1, .., i, .., ik]

22 3. Termination of Narrowing with Dependency Pairs

Example 9 Consider the TRS of Example 1 and the argument filtering π(pckt)

= [1, 3] and π(f) = [1, . . . , ar(f)] for any other f ∈ Σ. Let us consider the

term

t = filter(pckt(secure, dst, new))

its filtered version is

π(t) = filter(pckt(secure, new))

and the filtering of position 1.3 is π(1.3, π(t)) = 1.2 where π(1.2, π(t)) is un-

defined.

Definition 6 Given a TRS R and an AF π, we say that π is a sound AF for

R iff π(R) is a TRS, i.e., the rhs’s of the rules do not contain extra variables

not appearing in the corresponding lhs.

Our main result in this section is Theorem 3 below that relates infinite

narrowing (P ,R)–chains to infinite rewriting (π(P), π(R))–chains. In order to

prove this result, we first need two auxiliary lemmata. The first one establishes

a correspondence between rewriting derivations in R and derivations in the

filtered TRS π(R).

Lemma 3 Given a TRS R, a sound AF π, and terms s and t, s→∗R t implies

π(s)→∗π(R) π(t). Moreover, the derivation in π(R) uses the same rules in the

same order at the corresponding filtered positions (whenever the filtered position

exists).

The next lemma extends the correspondence established in Lemma 3 to

narrowing, which can be done only when the original filtered term is ground.

The key point is that the correspondence holds regardless of the substitution

computed by narrowing. It is in fact a (one-way) lifting lemma from narrowing

derivations in R to rewriting sequences in π(R).

Lemma 4 Given a TRS R and a sound AF π, let s and t be terms s.t. π(s)

is ground. Then s ;∗
σ,R t implies π(s) →∗π(R) π(t). Moreover, the derivation

in π(R) uses the same rules in the same order at the corresponding filtered

positions (whenever the filtered position exists).

3.3. Automating the method 23

Proof. By the soundness of narrowing, s ;∗
σ,R t implies that sσ →∗R t,

and from Lemma 3 we deduce that π(sσ) →∗π(R) π(t). Finally π(t) must also

be ground as π is sound and π(s) is ground, hence π(sσ) →∗π(R) π(tσ) ≡
π(s)→∗π(R) π(t). 2

Let us recall here the standard definition of chain for rewriting.

Definition 7 (Chain) [Arts and Giesl, 2000; Giesl et al., 2006] Let P ,R be

two TRS’s. A (posibly infinite) sequence of pairs s1 → t1, s2 → t2, . . . from P
is a (P ,R)–chain if there exists a substitution σ with tiσ →R si+1σ for all i.

The following result allows us to prove the absence of narrowing chains

by analyzing standard rewriting chains. This is very useful because it means

that we can reuse all the DP infrastructure available for rewriting. Informally,

the idea is that in order to prove termination of narrowing, we must prove

termination of rewriting regardless of instantiation. Since narrowing can in-

stantiate the goal, it does not suffice with showing that the lhs is larger than

the rhs. One must show that the lhs is larger than any instance of the rhs.

Thankfully this is only necessary for one pair of the chain, due to the stability

under substitutions of the orderings employed.

Theorem 3 Let R be a TRS over a signature Σ, P be a TRS over a signature

Σ#, and π a sound AF over Σ# s.t. π(t) is ground for at least one pair s→ t ∈
P in every (P,R)–narrowing chain. If there exists no infinite (π(P), π(R))–

chain, then there exists no infinite (P,R)–narrowing chain.

Proof. By contradiction. Suppose there is such an infinite chain, and therefore

an infinite narrowing derivation exists of the form

t1
ε

;σ1,P u1 ;∗
σ2,R t2

ε
;σ2,P u2 ;∗

σ3,R · · ·

As some π(ui) is ground by assumption, by Lemma 4 there is a rewriting

derivation in π(R) of the form

π(ui)→∗π(R) π(t1)
ε→π(P) π(ui+1)

ε→π(P) . . .

24 3. Termination of Narrowing with Dependency Pairs

which by assumption must be finite. Note that every step given with a rule

from P is given in the filtered derivation too, as those steps are given at the

root position. By Lemma 4, finiteness of the filtered derivation implies that the

narrowing derivation cannot have infinite P steps, and we reach a contradiction

which proves the theorem. 2

The following straightforward consequence of Theorems 2 and 3 character-

izes termination of narrowing as a rewriting problem.

Corollary 1 Let R be a TRS over a signature Σ, and π a sound AF over Σ#

s.t. π(t) is ground for at least one pair s→ t ∈ NDPR in every (NDPR ,R)–

narrowing chain.

If there exists no infinite (π(NDPR), π(R))–chain, then narrowing termi-

nates in R.

3.3.1 Extending the DP framework to narrowing

We switch now our attention to the DP framework of [Thiemann, 2007]. In

this framework a DP problem is a tuple (P ,R) of two TRSs, R and P , where

initially P = DP (R). If there is no associated infinite chain, we say that the

problem is finite. Termination methods are then formulated as DP processors

that take a DP problem and return a new set of DP problems. A DP processor

is sound if the input problem is finite whenever all the output problems are.

The remaining of this section shows how to recast the problem of termi-

nation of narrowing in the DP framework. In the usual style [Nishida and

Vidal, 2008; Nguyen et al., 2008], we show here how to adapt a few of the

most important DP processors, and then give one that transforms a narrowing

DP problem into a rewriting one, which allows us to use any of the existing DP

processors for termination of rewriting. We speak of narrowing DP problems

to distinguish them from the standard ones. A narrowing DP problem has the

same components as an ordinary one, i.e., it is a tuple of two TRSs P and R
where initially P = NDPR .

3.3. Automating the method 25

3.3.2 Dependency Graph processor

The following definition adapts the standard notion of dependency graph to

our setting by considering narrowing dependency pairs instead of vanilla DPs.

Definition 8 (Dependency Graph) Given a (narrowing) DP problem 〈P ,R〉
its (resp. narrowing) dependency graph is the directed graph where the nodes

are the elements of P, and there is an edge from s → t ∈ P to u → v ∈ P if

s→ t, u→ v is a (resp. narrowing) chain from P.

The theorem below establishes that the narrowing dependency graph of a

narrowing DP problem is equal to the dependency graph of the rewriting DP

problem defined by the same TRS and DP set.

Theorem 4 Given a narrowing DP problem 〈P ,R〉, its narrowing dependency

graph is the same as the dependency graph of the rewriting DP problem defined

by 〈P ,R〉.

Proof. Let NG be the narrowing dependency graph for 〈P ,R〉, and G be

the dependency graph for the rewriting DP problem. Both graphs contain the

elements of P as nodes.

(⇒) We show that every edge in NG is also in G. From the definition of

narrowing chain, there is an edge from l# → r# to s# → t# if there exist terms

u1, u2 and substitutions σ1, σ2 s.t. u1
ε

;
σ1,l#→r# r#σ1

≥ε
;∗

ρ1,R u2
ε

;
σ2,s#→t#

t#σ2.

The definition of rewriting chain requires that there exists a substitution σ

s.t. r#σ →∗R s#σ. By Hullot’s lifting lemma such a σ exists and is equal to or

less general than σ1ρ1σ2.

(⇐) We show that for every edge in G is in NG too. There is an edge in

G from l# → r# to s# → t# if there exists a substitution σ s.t. σr# →∗R σs#.

By the soundness of narrowing r#σ ;∗
id,R s

#σ. If we take u1 ≡ l#σ, then the

following narrowing chain exists: u1
ε

;
σ,l#→r# r#σ ;∗

id,R s#σ
ε

;∗
σ,s#→t# t#σ.

2

26 3. Termination of Narrowing with Dependency Pairs

GFED@ABC14

��7777777

$$JJJJJJJJJJJJ

((QQQQQQQQQQQQQQQQQ GFED@ABC15

�� ��7777777

$$JJJJJJJJJJJJ
GFED@ABC16

���������

�� ��7777777
GFED@ABC17

zztttttttttttt

���������

��

GFED@ABC10@A BC OO@A BC OO?>=<89:;5 ?>=<89:;6

?>=<89:;1
))

GF //
GF ED ��GF ED��GF ED ��GF ED ��GF ED ��GF ED ��GF ED

��

@A
//@A BC OO@A BCOO@A BC OO@A BC OO

?>=<89:;7 ?>=<89:;8 ?>=<89:;9 ?>=<89:;3
uu

EDoo
EDGF�� EDGF�� EDGF�� EDGF�� EDGF�� EDGF��

BC@AOO BC@AOO BC@AOO BC@AOO BC@A

OO

?>=<89:;2

CC�������

::tttttttttttt

66mmmmmmmmmmmmmmmmmm ?>=<89:;4

OO CC�������

::tttttttttttt GFED@ABC11

[[7777777

OO CC������� GFED@ABC12

ddJJJJJJJJJJJJ

[[7777777

OO

GFED@ABC13

hhQQQQQQQQQQQQQQQQQ

ddJJJJJJJJJJJJ

[[7777777

Figure 3.2: Estimated dependency graph of FullPolicy

It is well known that computing the exact dependency graph is undecidable

and thus several approximations [Giesl et al., 2006] are used to compute an

estimated dependency graph which includes the exact graph. The following

approximation is commonly used.

Definition 9 (Estimated Dependency Graph) [Giesl, Thiemann and Schneider-

Kamp, 2005] Let 〈P ,R〉 be a DP problem. Let CAPR(t) be the result of replac-

ing2 all the proper subterms of t with a defined root symbol by a fresh variable,

and REN(t) the linearization of t (replacing all ocurrences of a non linear vari-

able with independent fresh variables). The nodes of the estimated dependency

graph (EDG) are the pairs of P and there is an edge from s# → t# to u# → v#

iff REN(CAPR(t)) and u are unifiable.

Example 10 For the problem of Example 1 and the set of DPs obtained in

Example 7, the EDG is shown in Figure 3.2.

For finite TRSs, infinite chains show up as cycles in the dependency graph3.

We can analyze separately every chain, that is, every cycle in the dependency

graph. This is accomplished by the Dependency Graph processor.

Theorem 5 (Dependency Graph Processor) [Giesl, Thiemann and Schneider-

Kamp, 2005] For a DP problem 〈P ,R〉, let Proc be the processor that returns

2This function was first defined for approximating loops in dependency graphs in
[Alpuente, Falaschi and Vidal, 1994], where it is called

◦
t.

3The converse does not hold, not every cycle corresponds to an infinite chain.

3.3. Automating the method 27

1 3
((

99 hh ee

Figure 3.3: Filtered FullPolicy

problems {〈P1,R〉, . . . , 〈Pn,R〉}, where P1, . . . ,Pn are the sets of nodes of ev-

ery cycle in the estimated dependency graph. Proc is sound.

Proof.

Let EG be the EDG, G the exact one, and NG the narrowing one. We

prove that every chain generates a cycle, by showing that every pair of DPs

in a chain corresponds to an edge in a cycle in EG. By definition this holds

for G, and NG. Hence one must show that G ⊆ EG, which has already been

done in e.g. [Giesl, Thiemann and Schneider-Kamp, 2005], and by Theorem 4

we have that NG ≡ G, and the claim follows. 2

Example 11 In the graph obtained in the EDG of Example 10, the only cycle

consists of (1) and (3). Thus the dependency graph processor deletes all the

other dependency pairs, and returns the problems { ({(1),(3)}, R), ({(1)},
R), ({(3)}, R)} corresponding to the graph shown in Figure 3.3.

3.3.3 Reduction Pair processor

The next processor we adapt is the standard reduction pair processor. Let us

introduce the standard notion of reduction pair.

Definition 10 (Reduction Pair) A reduction pair (�, �) consists of a quasi-

rewrite ordering � and an ordering � with the following properties: (i) � is

closed under substitutions and well founded, and (ii) (� ◦ �) ⊆ �.

For a narrowing DP problem 〈P ,R〉, this processor tries to find a reduction

pair (�, �) and a suitable filtering π s.t. all the filtered R-rules are weakly

decreasing w.r.t. �, and all filtered P pairs are weakly or strictly decreasing.

For any TRS P and relation �, let P� = {s→ t | s � t}.

28 3. Termination of Narrowing with Dependency Pairs

199

2??�������
3

��???????

eeoo

Figure 3.4: Dependency Graph

Theorem 6 (Reduction Pair processor) Let (P,R) be a narrowing DP

problem s.t. P is a cycle4, (�, �) be a reduction pair, and π be an argu-

ment filtering s.t. π(t) is ground for at least one pair s → t ∈ π(P). The

following processor is sound. Procπ(P ,R) returns

• {(P \ P�π ,R)} if P�π ∪ P�π = P, P�π is not empty, and R�π = R;

• {(P ,R)} otherwise.

Proof. By [Arts and Giesl, 2000, Theorem 11] the constraints guarantee that

there is no infinite rewriting chain from P in R, which implies no infinite

rewriting chain from π(P) in π(R). Now, by Theorem 3, there is no infinite

narrowing chain from P in R. 2

Note that it is not enough to consider all the pairs in a strongly connected

component (SCC) at once, as it is commonly done in rewriting, and that

we consider cycles instead. The reason is that the condition of Theorem 3,

groundness of one DP rhs per chain (cycle), would not be ensured when working

with SCCs instead, as the following example shows.

Example 12 Consider a TRS R with the Dependency Graph of Figure 3.4.

Our dependency graph processor decomposes this problem into three subprob-

lems corresponding to the cycles {1}, {3} and {1,2,3}. A SCC approach would

consider only the last one. Suppose we did indeed use SCCs. The reduction

pair processor defined above can synthetize a filtering π2 s.t. the rhs of (2) is

ground and an ordering s.t. (3) can be oriented strictly; upon doing so it will

remove (3) of the DP problem, thus leaving only {1,2}. This eliminates two

4Note that this requirement is easily fulfilled by running the dependency graph processor
first.

3.3. Automating the method 29

cycles at once, {3} and {1,2,3}. But this is unsound: we cannot eliminate the

cycle in {3} as we have not yet provided an argument filtering π3 s.t. the rhs

of (3) is ground and there is a suitable ordering.

3.3.4 Argument Filtering processor

We claim that it is straightforward to adapt most of the standard DP processors

in order to deal with the grounding AF requirement, and due to lack of space

we will present only one more processor, which can be used to transform a

narrowing DP problem into an ordinary one. Afterwards, any existing DP

processor for rewriting becomes applicable.

Theorem 7 (Argument Filtering Processor) Let (P, R) be a narrowing

DP problem s.t. P is a cycle, and π be an argument filtering s.t. π(t) is ground

for at least one pair s→ t ∈ π(P). Then, Procπ(P ,R) = {(Pπ, π(R)}, where

Pπ is defined as Pπ = {π(l) → π(r) | l → r ∈ P , l 7 r}. P rocπ is a sound

narrowing DP processor.

Proof. Given the narrowing DP problem P ≡ (P ,R), let Procπ(P) = P ′.

If P ′ is finite then there are no infinite rewriting (Pπ, π(R))–chains, which

means that there are no infinite (π(P), π(R))–chains, as the set of discarded

pairs π(P) \ Pπ cannot produce infinite rewriting chains [Dershowitz, 2003].

By Theorem 3, this implies that there are no infinite (P ,R)–narrowing chains.

2

Finally, we include the subterm refinement in the AF processor as it can be

the case that the rhs of a DP becomes a subterm of the lhs after the filtering.

Example 13 The set of narrowing DP problems resulting of Example 11 can

be solved by using the AF processor to transform them into rewriting problems.

• ({(1)}, R) For this problem soundness requires that π(pckt) = [1, 3].

Using the identity for all other symbols, we get the following (rewriting)

DP problem that is finite, as one can easily check with a modern termi-

nation tool implementing the DP method such as Aprove [Giesl et al.,

30 3. Termination of Narrowing with Dependency Pairs

2004], or Mu-Term [Alarcón et al., 2007]:

({filter#(pckt(194.179.1.x:p, new))→ filter#(pckt(secure, new)},R)

• ({(3)}, R) In this case, we proceed in a similar way, and the same AF

π allows us to transform the current subproblem into a finite (rewriting)

DP problem.

• ({(1),(3)}, R) Finally, by using the same AF π, we get a finite DP

problem.

This finally proves that the FullPolicy TRS is terminating for narrowing.

4
Implementation

We have implemented a tool named Narradar for the automatic proving of the

termination of narrowing, available publicly at

http://safe-tools.dsic.upv.es/narradar

The tool offers a web interface accepting TRSs in the standard TPDB for-

mat from the termination problem database1, and implements the approach

illustrated in this thesis to prove the termination of narrowing, relying on

the rewriting termination tool AproVe [Giesl et al., 2004] to solve the derived

rewriting problems. If Narradar succeeds a short report of the proof is pre-

sented. Otherwise it fails with a “don’t know” response. In both cases a

diagrammatic log of the attempted proof is presented.

Narradar itself takes roughly 1000 lines of Haskell, while another 1000 lines

are invested in a more general library that implements the key elements of

Term Rewriting systems, such as terms, substitutions, rules, matching and

unification. In the following, we describe the parts of this library essential to

Narradar, as well as Narradar itself.

4.1 The TRS library

We describe now an encoding in Haskell of the fundamental notions of term

rewriting such as terms, variables, substitutions, matching and unification.

This library serves as a basis upon which more complex tools such as Narradar

itself can be built.

1http://www.lri.fr/ marche/tpdb/format.html

32 4. Implementation

4.1.1 Terms and Rules

Terms are usually viewed as labelled trees built from a signature and a set of

variables. Usually branches contain function symbols with an arity of one or

more, whereas leafs can be either variables or function symbols of arity zero.

But this is a rather naive view of terms. We can be interested in branches or

leafs of other kinds, such as for instance a hole, if we are modelling a context,

or bottom, if we are modelling pointed terms. Therefore in the TRS library

the Haskell datatype for terms is open in the sense of OO inheritance, i.e.,

further constructors can be added at any point. We use the encoding for open

data types described by [Swierstra, 2008], where a term is the recursive closure

of a coproduct of functors.

newtype Term f = In {out::f (Term f)}

As Swierstra puts it, you can think of the type argument f as the term signa-

ture, the list of the constructors allowed in our terms. Less intuitively, Term is

just a fixed-point type-level operator which takes as parameter a functor and

ties the knot over it. All this is better understood with an example.

Two suitable functors are Var, for variables, and T, for function symbols:

data Var a = Var {idV:: Maybe String, unique::Int}

deriving (Eq, Ord)

instance Functor Var where fmap f (Var u i) = Var u i

data T id a = T {idT::id, subTerms::[a]} deriving (Eq, Ord)

instance Functor (T id) where fmap f (T id tt) = T id (map f tt)

The Var functor simply ignores its type argument, whereas in the T func-

tor – which is additionally parameterized with the type of the symbols – the

argument is used to type the subterms.

We also define the type of Holes, suitable later for building contexts:

data Hole a = Hole Int

4.1. The TRS library 33

Now that we have three functors, we can combine them by means of a

coproduct of functors, which is defined as follows

data (f :+: g) a = Inl (f a) | Inr (g a)

The type (f :+: g) is equivalent to the usual Either datatype in Haskell,

it just works with functors instead of values. A coproduct of two functors is a

functor itself too.

instance (Functor f, Functor g) => Functor (f :+: g) where

fmap f (Inl e1) = Inl (fmap f e1)

fmap f (Inr e2) = Inr (fmap f e2)

We can now construct terms as follows.

-- t = f(0,x)

t :: Term (T String :+: Var)

t = In (Inl (T "f" [In(Inr(Var (Just "x") 1))]))

Of course it is not very convenient to manipulate terms in this way. Swier-

stra introduces a notion of subtyping between functors that leads to a generic

injection function.

class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a

prj :: sup a -> Maybe (sub a)

inj is our generic injection function and now we can define smart constructors

for our functors as follows:

inject :: g :<: f => g(Expr f) -> Expr f

inject = In . inj

var u i = inject(Var u i)

term i tt = inject(T i tt)

hole = inject . Hole

34 4. Implementation

GHC infers the following types for our constructors

var :: (Var :<: f) => Int -> Maybe (String) -> Term f

term :: (T id :<: f) => id -> [Term f] -> Term f

hole :: (Hole :<: f) => Int -> Term f

And we can define rules as follows.

type Rule f = RuleG (Term f)

data RuleG a = !a :-> !a deriving (Eq, Show)

instance Functor RuleG where fmap f (l:->r) = f l :-> f r

--Lexicographic ordering

instance (Eq (RuleG a),Ord a) => Ord (RuleG a) where

compare (l1 :-> r1) (l2 :-> r2) = case compare l1 l2 of

EQ -> compare r1 r2

x -> x

lhs,rhs :: forall t. RuleG t -> t

lhs (l :-> _) = l

rhs (_ :-> r) = r

infix 1 :->

As an example let us define addition of natural numbers using the standard

Peano encoding.

s x = term "s" [x]

z = term "0" []

x = var (Just "x") 0

y = var (Just "y") 1

x +: y = term "+" [x,y]

peano = [z +: x :-> x, s x +: y :-> s (x +: y)]

-- Two example terms, with their term signature fixed

sx = s x :: Term (Var :+: T String)

sz = s z :: Term (Var :+: T String)

4.1. The TRS library 35

But we still haven’t shown the instances that give meaning to the (:<:)

operator. Swierstra presents a simple encoding with only three instances de-

signed to avoid issues with the GHC typechecker. We have found this encoding

lacking in practice and more expressive encodings are definable. However there

is no single best option, e.g. it is not possible to show transitivity to the GHC

typechecker, so currently one must interact with the typechecker to find an

encoding which ’just works’ for the problem at hand. We happily gloss over

this issue here.

The main way to define operations of terms is by means of a polymorphic

fold over their structure.

foldTerm :: (f a -> a) -> Term f -> a

foldTerm f (In t) = f (fmap (foldTerm f) t)

We must provide foldTerm with a polymorphic algebra or interpretation.

Polymorphic in the sense that, since the data constructors are not known in

advance, as usually when defining a fold over a closed datatype, we need to

resort to an open polymorphic algebra encoded by type class encoded.

Let us see a simple example, a function for pretty printing a term. We

define a Ppr type class and suitable instances. The implementation of the

instances makes use of the standard Haskell pretty printing library [Hughes,

1995].

class Functor f => Ppr f where pprF :: f Doc -> Doc

instance Ppr Var where pprF (Var Nothing u) = char ’u’ <> int u

pprF (Var (Just id) u) = text id

instance Show id => Ppr (T id) where

pprF (T n []) = text (show n)

pprF (T n [x,y])

| not (any isAlpha $ show n) = x <+> text (show n) <+> y

pprF (T n tt) = text (show n) <>

parens (cat$ punctuate comma tt)

We need to throw in an instance for (:+:) in order to make coproducts

printable too:

36 4. Implementation

instance (Ppr a, Ppr b) => Ppr (a:+:b) where

pprF (Inr x) = pprF x

pprF (Inl y) = pprF y

Finally, the ppr function will print any term, as long as there is a Ppr

instance for all the constructors in it.

ppr :: Ppr f => Term f -> Doc

ppr = foldTerm pprF

instance Ppr f => Show (Term f) where show = render . ppr

A nice property of this way of defining folds is that our traversals stay

open. So if we add a new term type, as we will do later for contexts, it suffices

to make the new term type an instance of our polymorphic algebra and the

traversal will work for it too.

Let us see another example, a function to calculate the size of a term (when

seen as a tree).

class (Functor f, Foldable f) => Size f where

sizeF :: f Int -> Int

instance (Functor f, Foldable f) => Size f where

sizeF f = 1 + sum f

sizeTerm = foldTerm sizeF

The Foldable class for applicative functors [Mcbride and Paterson, 2008] is

very convenient in this case, since we can define the interpretation of sizeF

once and for all for any applicative functor2. Since all our contructors for terms

are applicative by definition, this is a great thing. But first we need to make

clear that coproducts are instances of Foldable, as well as the constructors in

our term signature:

2Note that GHC forces us to ask for undecidable instances for the generic Size instance,
since the constraint is no smaller than the head of the instance.

4.1. The TRS library 37

instance (Foldable f, Foldable g) => Foldable (f :+: g) where

foldMap f (Inl x) = foldMap f x

foldMap f (Inr x) = foldMap f x

instance Foldable Var where foldMap f _ = mempty

instance Foldable (T id) where foldMap f (T _ tt) = foldMap f tt

There are more nifty things we can do using Foldable. For instance, we

can retrieve all the subterms of a term with a Foldable signature.

subterms, properSubterms :: (Functor f, Foldable f) =>

Term f -> [Term f]

subterms (In t) = concat (subterms <$> toList t)

properSubterms = tail . subterms

toList is a standard operation on Foldables which retrieves the list of all the

elements inside.

%This is not really code

toList :: Foldable f => f a -> [a]

We can use subterms to define many useful operations on terms.

vars :: (Var :<: s, Foldable s, Functor s) =>

Term s -> [Var (Term s)]

vars t = nub [v | u <- subterms t, Just v@Var{} <- [open u]]

collect :: (Foldable f, Functor f) =>

(Term f -> Bool) -> Term f -> [Term f]

collect pred t = [u | u <- subterms t, pred u]

isLinear :: (Var :<: s, Foldable s, Functor s) => Term s -> Bool

isLinear t = length(nub vars_t) == length vars_t

where vars_t = vars t

38 4. Implementation

In order to pattern match on Term values we used an open combinator, which

fails if the term has not the right type. It is similar in concept to a cast

operation for dynamic typing.

open :: (g :<: f) => Term f -> Maybe (g (Term f))

open (In t) = prj t

Here is an operation to extract the symbol at the root position of a term (if

any) which relies on open.

rootSymbol :: (T id :<: f) => Term f -> Maybe id

rootSymbol t | Just (T root _) <- open t = Just root

| otherwise = Nothing

In other cases, it is more convenient to use prj directly.

collectIds :: (T id :<: f) => Term f -> [id]

collectIds = foldTerm f where

f t | Just (T id ids) <- prj t = id : concat ids

| otherwise = []

foldTermM :: (Monad m, Traversable f) =>

(f a -> m a) -> Term f -> m a

foldTermM f (In t) = f =<< mapM (foldTermM f) t

foldTermM is a generalization for monadic algebras, but only available if the

constructor signature is Traversable by applicative functors.

foldTerm and foldTerM provide a bottom-up traversal on a Term value. We

can also define top-down traversals, but then the algebra provided must operate

on Terms exclusively. Top-down traversals are implemented by foldTermTop.

foldTermTop :: Functor f =>

(f (Term f) -> f(Term f)) -> Term f -> Term f

foldTermTop f (In t)= In (foldTermTop f ‘fmap‘ f t)

We will see an example of a top-down traversal in next section when we define

a function to annotate subterms with their position.

4.1. The TRS library 39

Working with positions

Positions are specified as lists of Ints, where the empty list corresponds to the

root position. The expression (t ! p) denotes the subterm of t at position p.

type Position = [Int]

(!) :: Foldable f => Term f -> Position -> Term f

In t ! (i:ii) = (toList t !! i) ! ii

t ! [] = t

We can annotate all the components of a term with their position as follows.

First we declare the WithNote functor, which allows to attach a note to a base

functor f.

newtype WithNote note f a = Note (note, f a) deriving (Show)

instance Functor f => Functor (WithNote note f) where

fmap f (Note (p, fx)) = Note (p, fmap f fx)

note :: Term (WithNote note f) -> note

note (In (Note (note,_))) = note

dropNote :: Functor f => Term (WithNote note f) -> Term f

dropNote = foldTerm f where f (Note (note,t)) = In t

Annotating with positions is a top-down fold over a term previously ex-

tended to contain notes with a bottom-up fold. Remember that top-down

folds cannot really modify the structure of a term, this needs to be done by a

bottom-up fold. But it is awkward to work with the positions in a bottom-up

way, so that’s why we split the work in two folds.

The AnnotateWithPos class defines the algebra for extending a term’s sig-

nature to carry notes of positions. The notes are initialized in the appropriate

default way for every constructor in the signature.

class (t :<: f) => AnnotateWithPos t f where

40 4. Implementation

annotateWithPosF :: t (Term (WithNote Position f)) ->

Term (WithNote Position f)

instance (T id :<: f) => AnnotateWithPos (T id) f where

annotateWithPosF (T n tt) =

In$ Note ([], (inj$ T n [In (Note (i:p, t))

| (i, In(Note (p,t))) <- zip [0..] tt]))

instance (t :<: f) => AnnotateWithPos t f where

annotateWithPosF t = In $ Note ([], inj t)

instance ((a :+: b) :<: f, AnnotateWithPos a f, AnnotateWithPos b f)

=> AnnotateWithPos (a :+: b) f where

annotateWithPosF (Inr x) = annotateWithPosF x

annotateWithPosF (Inl y) = annotateWithPosF y

To complete the process, the top-down fold mergePosF propagates the po-

sitions from the top using appendPos.

annotateWithPos :: AnnotateWithPos f f =>

Term f -> Term (WithNote Position f)

annotateWithPos = foldTermTop mergePosF . foldTerm annotateWithPosF

where

mergePosF (Note (p,t)) = Note (p, fmap (appendPos p) t)

appendPos p (In (Note (p’, t’))) = In (Note (p++p’, t’))

Before leaving, we will throw in some additional instances that will be useful

when manipulating annotated terms.

instance Traversable f => Traversable (WithNote note f) where

traverse f (Note (p, fx)) = (Note . (,) p) <$> traverse f fx

instance Foldable f => Foldable (WithNote note f) where

foldMap f (Note (_p,fx)) = foldMap f fx

instance (Functor f, Eq (Term f)) => Eq (Term (WithNote note f))

where t1 == t2 = dropNote t1 == dropNote t2

instance (Functor f, Ord (Term f)) => Ord (Term (WithNote note f))

where t1 ‘compare‘ t2 = compare (dropNote t1) (dropNote t2)

4.1. The TRS library 41

instance (Show note, Ppr t) => Ppr (WithNote note t) where

pprF (Note (p,t)) = pprF t <> char ’_’ <> text (show p)

instance IsVar f => IsVar (WithNote note f) where

isVarF (Note (_,t)) = isVarF t

uniqueIdF (Note (_,t)) = uniqueIdF t

Binary operations on Open Datatypes

So far we have seen how to consume terms individually. The definition of

binary functions over terms is based on zipping. The zipTermF type class

below allows us to zip together the subterms of terms which have a matching

shape. If the shape does not match, then zipTerm fails in the corresponding

monad.

class Functor f => ZipTerm f where

zipTermF :: Monad m => (a -> b -> m c) -> f a -> f b -> m (f c)

zipTermF_ :: Monad m => (a -> b -> m ()) -> f a -> f b -> m ()

zipTermF_ f t u = zipTermF f t u >> return ()

zipTermM :: (ZipTerm f, Monad m) =>

(Term f -> Term f -> m c) -> Term f -> Term f -> m (f c)

zipTermM f (In t) (In u) = zipTermF f t u

We need an instance to distribute zipping over the coproduct of functors,

and further instances for each of our term constructor types.

instance (ZipTerm a, ZipTerm b) => ZipTerm (a :+: b) where

zipTermF f (Inl x) (Inl y) = Inl ‘liftM‘ zipTermF f x y

zipTermF f (Inr x) (Inr y) = Inr ‘liftM‘ zipTermF f x y

zipTermF f _ _ = fail "zipTermF"

zipTermF_ f (Inl x) (Inl y) = zipTermF_ f x y

zipTermF_ f (Inr x) (Inr y) = zipTermF_ f x y

zipTermF_ f _ _ = fail "zipTermF"

instance Eq id => ZipTerm (T id) where

zipTermF f (T s1 tt1) (T s2 tt2) = do

42 4. Implementation

unless(s1 == s2 && length tt1 == length tt2) $ fail "zipTermF"

T s1 ‘liftM‘ zipWithM f tt1 tt2

zipTermF_ f (T s1 tt1) (T s2 tt2) = do

unless(s1 == s2 && length tt1 == length tt2) $ fail "zipTermF"

zipWithM_ f tt1 tt2

instance ZipTerm Var where

zipTermF f (Var u1 i) (Var u2 _) | u1 == u2 = return (Var u1 i)

| otherwise = fail "zipTermF"

Note that this definition requires that the terms not only have the same

shape, but also are in the same coproduct. If we want to zip terms of different

coproducts we must first reinject the smaller coproduct into the larger one.

reinject :: (f :<: g) => Term f -> Term g

reinject = foldTerm inject

From zipTermM we can reconstruct the standard rendition of zip.

zipTerm :: ZipTerm f => Term f -> Term f -> Maybe (f(Term f, Term f))

zipTerm = zipTermM (*) where a * b = return (a,b)

In the following sections there are several examples on how to use zipTerm,

as our definitions of matching and unification rely heavily on it.

4.1.2 Substitutions

A substitution is a mapping from variables to terms. This simple statement is

a little bit more tricky when working with open data types, since the user of

the library might wish to add new constructors for variables, which we cannot

anticipate yet. To stay flexible, we define the fold IsVar.

class Functor f => IsVar f where

isVarF :: f x -> Bool

uniqueIdF :: f x -> Maybe Int

instance IsVar Var where isVarF _ = True

4.1. The TRS library 43

uniqueIdF(Var _ u) = Just u

instance (IsVar a, IsVar b) => IsVar (a:+:b) where

isVarF (Inr x) = isVarF x

isVarF (Inl y) = isVarF y

uniqueIdF (Inr x) = uniqueIdF x

uniqueIdF (Inl x) = uniqueIdF x

instance Functor otherwise => IsVar otherwise where

isVarF _ = False; uniqueIdF _ = Nothing

isVar :: IsVar f => Term f -> Bool

isVar = foldTerm isVarF

uniqueId :: IsVar f => Term f -> Maybe Int

uniqueId = foldTerm uniqueIdF

For instance, this is how we use this class to extract all the variables of a

term.

vars’ :: (IsVar s, Ord (Term s), Foldable s, Functor s) =>

Term s -> [Term s]

vars’ = nub . collect isVar

isGround :: (IsVar f, Ord(Term f), Foldable f, Functor f) =>

Term f -> Bool

isGround = null . vars’

Our substitutions are isomorphic to an association list.

type Subst f = SubstG (Term f)

newtype SubstG a = Subst {fromSubst:: Map.Map Key a}

deriving (Eq, Functor, Show)

As representation of the domain, we are going to use not the uniques, but

the variable contructors themselves. This is to stay friendly when showing

44 4. Implementation

substitutions to the user. However, we will employ a fast Ord instance based

on the underlying unique to keep things reasonably efficient.

data Key where KeyTerm :: (Ppr f, IsVar f) => Term f -> Key

instance Eq Key where t1 == t2 = keyUnique t1 == keyUnique t2

instance Ord Key where

compare k1 k2 = keyUnique k1 ‘compare‘ keyUnique k2

instance Show Key where showsPrec _ (KeyTerm t) = (show(ppr t) ++)

keyUnique (KeyTerm t) = (‘fromMaybe‘ uniqueId t)

(error "used a non variable in the domain of a substitution")

The creator of Key values is responsible for ensuring that only terms which are

really variables are used in the domain of a substitution. In order to build a

substitution, there are several options. One can handle the keys as values of

type Var, or as values of type Term. Both seem reasonable enough, since while

the former is more correct, the latter is more convenient. Therefore we provide

a polymorphic function mkSubst that accepts both alternatives.

class MkSubst a f | a -> f where mkSubst :: a -> Subst f

instance IsVar fs => MkSubst [(Var h, Term fs)] fs where

mkSubst vv_tt = mkSubst [(In (Var u i), t)

| (Var u i,t) <- vv_tt]

instance (Ppr k, IsVar k, IsVar fs) =>

MkSubst [(Term k, Term fs)] fs where

mkSubst = mkSubst . map (first KeyTerm)

. filter (isJust.uniqueId.fst)

instance IsVar f => MkSubst [(Key, Term f)] f where

mkSubst = mkSubst . Map.fromList

instance IsVar f => MkSubst (Map Key (Term f)) f where

mkSubst = normalize . Subst

normalize (Subst map) =

Subst $ Map.filterWithKey

4.1. The TRS library 45

(\k t -> Just(keyUnique k) /= uniqueId t) map

We want Subst to be an ADT, therefore the Key data type must not be

exported, and neither the Subst constructor. The application of a substitution

is defined as follows3.

applySubst :: (IsVar f, f :<: fs) =>

Subst fs -> Term f -> Term fs

applySubst s t = foldTerm (applySubstF s) t

applySubstF :: (IsVar f, f :<: fs) =>

Subst fs -> f (Term fs) -> Term fs

applySubstF s t

| isNothing uid = inject t

| Just i <- uid = fromMaybe (inject t) $ lookupKey s i

where uid = uniqueIdF t

lookupSubst :: IsVar g => Subst f -> Term g -> Maybe (Term f)

lookupSubst s t | Just i <- uniqueId t = lookupKey s i

| otherwise = Nothing

lookupKey :: Subst f -> Int -> Maybe (Term f)

lookupKey (Subst s) i =

Map.lookup (KeyTerm (inV (Var Nothing i))) s

inV :: Var t -> Term Var

inV (Var n i) = In (Var n i)

Substitutions are monoids with the empty substitution as the identity ele-

ment and left biased union as the associative operator.

instance IsVar f => Monoid (Subst f) where

3in order to keep this text simple, we omit the code to rename free variables in the
codomain of the substitution

46 4. Implementation

mempty = Subst mempty

mappend (Subst map1) s2@(Subst map2) =

mkSubst (map2 ‘mappend‘ map1’)

where Subst map1’ = mkSubst (applySubst s2 <$> map1)

The last piece we need is a function to extend a substitution with a new

binding. We can build this easily on top of the Monoid instance we defined,

by creating a singleton substitution and appending the remaining.

insertSubst :: (Ppr k, IsVar k, IsVar fs) =>

Term k -> Term fs -> Subst fs -> Subst fs

insertSubst v t sigma = mkSubst [(v,t)] ‘mappend‘ sigma

4.1.3 Matching

We are now in a position to implement matching already. We say that a term

t matches a term l if there is a substitution σ such that t = lσ. We define this

in Haskell by means of a Match class.

A first naive attempt

class (Functor f1, Functor f2) => Match f1 f2 where

matchF :: (f1:<:g, f2:<:g, Match g g, IsVar g) =>

f1(Term g) -> f2(Term g) -> Maybe (Subst g)

class Match f f => Matchable f; instance Match f f => Matchable f

match :: (IsVar f, Matchable f) =>

Term f -> Term f -> Maybe (Subst f)

match (In t) (In u) = matchF t u

This says that we can match two terms of different shapes as long as they

are built with the same coproduct. We need to use a multi parameter type class

for the first time so far. There are two constraints added to the matchF type

signature; we need them on the term signature because match is recursive

in the instances we will define now. Let’s start with the instances for the

coproduct. We need to decompose coproducts on both sides.

4.1. The TRS library 47

instance (Match c a, Match d a) => Match (c :+: d) a where

matchF (Inl x) y = matchF x y

matchF (Inr x) y = matchF x y

instance (Match a c, Match a d) => Match a (c :+: d) where

matchF x (Inl y) = matchF x y

matchF x (Inr y) = matchF x y

We need a third instance to disambiguate in the case we encounter a co-

product on both sides.

instance (Match a c, Match a d, Match b c, Match b d) =>

Match (a :+: b) (c :+: d) where

matchF (Inl x) (Inl y) = matchF x y

matchF (Inr x) (Inr y) = matchF x y

matchF (Inl x) (Inr y) = matchF x y

matchF (Inr x) (Inl y) = matchF x y

That was all the boilerplate needed, and now we can define the meaningful

instances. In particular, a variable matches anything, any other constructor

matches only terms with the same shape, as long as the subterms match.

instance (Foldable f, ZipTerm f) => Match f f where

matchF t u = fold <$> zipTermF match t u

instance Functor f => Match Var f where

matchF v u = Just $ mkSubst [(v, inject u)]

instance Match Var Var where

matchF v u = Just $ mkSubst [(v, inject u)]

But since the Var instance makes use of inject, it cannot be typed unless

we show the compiler that the functor bound to f is really a member of the term

signature. That is, we need to add a constraint f :<: g to the Var instance,

where g is the term signature, but g is not in scope here. We therefore need

to add the constraint to the matchF type signature in the declaration of the

Match class. However, this does not work as expected, because then we need

48 4. Implementation

to show that this constraint is fulfilled in recursive calls to matchF, and here we

run into problems in the coproduct instances. The GHC typechecker cannot

deduce c :<: g from the knowledge that c:+:d :<: g. And that is for good

reason: the type checker is no theorem prover.

Splitting the work A solution to this problem is to add the term signature

as a parameter of the Match type class, so that it is in scope later when we

need it. This works but it introduces noise and is less than ideal. We want

to hide this to the user as much as we can. To accomplish that, we introduce

two new classes. As a boon this also allows us to control the order in which

the decomposition of the functor products is performed. We will decompose

first the lhs in the two params class MatchL. At this point if we have a var in

the lhs we can already match. Next we decompose the rhs in the three params

class MatchR. Finally, the user will see the two params class Match we defined

before.

Note that for terms with only function symbols and variables, the second

decomposition step is unnecessary. It might be useful however in the event

that the user of the library introduces some other constructor in the signature

with a particular matching behaviour.

class (f:<:g) => MatchL f g where

matchL :: f(Term g) -> g(Term g) -> Maybe (Subst g)

instance ((c:+:d) :<: a, MatchL c a, MatchL d a) =>

MatchL (c:+:d) a where

matchL (Inl x) y = matchL x y

matchL (Inr x) y = matchL x y

instance (Var:<:g, IsVar g) => MatchL Var g where

matchL v@Var{} t = Just $ mkSubst [(v, In t)]

instance MatchR f g g => MatchL f g where matchL = matchR

class (f1:<:g, f2:<:g) => MatchR f1 f2 g where

matchR :: f1 (Term g) -> f2 (Term g) -> Maybe (Subst g)

instance ((c:+:d):<:g, MatchR a c g, MatchR a d g) =>

4.1. The TRS library 49

MatchR a (c :+: d) g where

matchR x (Inl y) = matchR x y

matchR x (Inr y) = matchR x y

instance (f:<:gs, g:<:gs, IsVar gs, Match gs gs, Match f g) =>

MatchR f g gs where matchR = matchF

4.1.4 Unification

We follow the same scheme for the implementation of unification. Below

we show how to adapt the standard Martelli&Montanari algorithm to open

datatypes. In this case there is not much point in establishing an ordering in

the product decomposition, since we can’t just stop on the presence of a vari-

able in the lhs; we need to fully decompose the rhs too. But even so, splitting

the task in two type classes makes it easier because there are less ambiguities

to deal with than when one tries to define all the decomposition instances in

the same type class.

class UnifyL f f => Unifyable f

instance UnifyL f f => Unifyable f

class (f :<: g) => UnifyL f g where

unifyL :: (MonadPlus m, MonadEnv g m) =>

f (Term g) -> g (Term g) -> m ()

instance (UnifyL a c, UnifyL b c, (a:+:b):<:c) =>

UnifyL (a :+: b) c where

unifyL (Inl x) y = unifyL x y

unifyL (Inr x) y = unifyL x y

instance UnifyR f g g => UnifyL f g where unifyL = unifyR

class (f1 :<: g, f2 :<: g) => UnifyR f1 f2 g where

unifyR :: (MonadPlus m, MonadEnv g m) =>

f1 (Term g) -> f2 (Term g) -> m ()

instance (UnifyR c a g, UnifyR c b g, (a:+:b):<:g) =>

UnifyR c (a :+: b) g where

50 4. Implementation

unifyR x (Inl y) = unifyR x y

unifyR x (Inr y) = unifyR x y

instance (f1:<:g, f2:<:g, Unifyable g, Ppr g, Unify f1 f2) =>

UnifyR f1 f2 g where unifyR = unifyF

That was all the boilerplate code for the decomposition, now we can define

the Unify class, where the real work is done.

class Unify f1 f2 where

unifyF :: (f1 :<: g, f2:<:g, Unifyable g, Ppr g,

MonadPlus m, MonadEnv g m) =>

f1(Term g) -> f2(Term g) -> m ()

instance Unify Var t where unifyF v t = varBind (inV v) (inject t)

instance Unify t Var where unifyF t v = varBind (inV v) (inject t)

instance Unify Var Var where

unifyF v@(Var n i) w@(Var _ j)

| i == j = return ()

| otherwise = do

mb_t <- readVar (inV v)

case mb_t of

Nothing -> varBind (inV v) (inject w)

Just t -> unify’ t (inject w)

instance (Foldable f, ZipTerm f) => Unify f f where

unifyF t u = zipTermF_ unify’ t u

unify’ :: (MonadPlus m, MonadEnv f m, Unifyable f) =>

Term f -> Term f -> m ()

unify’ (In t) (In u) = unifyL t u

Unification makes use of an environment monad which provides operations for

binding a variable, reading the contents of a variable, applying the environ-

ment to an entire term, and finally retrieving the environment. The concrete

implementation of this monad, which we do not show here, can be made on

top of a State monad, or also on top of a monad with references such as the

IO monad.

4.1. The TRS library 51

class (Functor m, Monad m, IsVar f) => MonadEnv f m | m -> f where

varBind :: (IsVar g, Ppr g) => Term g -> Term f -> m ()

readVar :: IsVar g => Term g -> m (Maybe (Term f))

apply :: (IsVar g, g:<:f) => Term g -> m (Term f)

getEnv :: m (Subst f)

instance (IsVar f, Functor m, MonadState (Subst f) m) => MonadEnv f m

where

varBind = (modify.) . insertSubst

apply t = get >>= \sigma -> return (applySubst sigma t)

getEnv = get

readVar = gets . flip lookupSubst

runEnv m = execStateT m mempty

And finally this is the unify function for the end user.

unify :: (MonadPlus m, Unifyable f, IsVar f) =>

Term f -> Term f -> m (Subst f)

unify t u = runEnv (unify’ t u)

4.1.5 TRSs

It is useful to introduce the type of TRSs, which package a set of rules together

with a description of the signature used by those rules. For that we introduce

the Signature datatype, carrying the Sets of constructors and defined symbol,

as well as the arity function. All this information is extracted from a set of

Rules in the natural way.

data Signature id = Sig { constructorSymbols :: Set id

, definedSymbols :: Set id

, arity :: Map id Int}

deriving (Show, Eq)

getSignatureFromRules :: (T id :<: f, Ord id, Foldable f) =>

52 4. Implementation

(id -> id) -> [Rule f] -> Signature id

getSignatureFromRules mkLabel rules =

Sig{arity= Map.fromList

[(mkLabel f,length tt)

| l :-> r <- rules, t <- [l,r]

, Just (T f tt) <- map open (subterms t)]

, definedSymbols = Set.fromList dd

, constructorSymbols =

Set.fromList $ map mkLabel $

[root | l :-> r <- rules

, t <- subterms r ++ properSubterms l

, Just root <- [rootSymbol t]] \\ dd

}

where dd = nub [root | l :-> _ <- rules

, let Just root = rootSymbol l]

Signatures are Monoids in the obvious way.

instance Ord id => Monoid (Signature id) where

mempty = Sig mempty mempty mempty

mappend (Sig c1 s1 a1) (Sig c2 s2 a2) =

Sig (mappend c1 c2) (mappend s1 s2) (mappend a1 a2)

Additionally we define TRSC, an alias for a set of constraints that a con-

structor signature must fulfill in order to be used in a TRS. Namely, it must

support Vars, it must support function symbols which must also be in Ord,

it must be matchable and unifiable, and finally it must also be Traversable,

which in turn implies Foldable. From this point, every time we inspect a set

of rules inside a TRS, GHC will be able to deduce that all these constraints

hold. This is very handy to alleviate the number of constraints we must include

later in types of functions that manipulate TRSs.

class (T id :<: f, Ord id, Var :<: f, IsVar f, ZipTerm f

, Ord(Term f), Traversable f, Unifyable f, Matchable f

4.1. The TRS library 53

, AnnotateWithPos f f) => TRSC id f

instance (T id :<: f, Ord id, Var :<: f, IsVar f, ZipTerm f

, Ord(Term f), Traversable f, Unifyable f, Matchable f

, AnnotateWithPos f f) => TRSC id f

data TRS id f where

TRS :: TRSC id f => [Rule f] -> Signature id -> TRS id f

tRS :: (TRSC id f) => [Rule f] -> TRS id f

rules :: TRS id f -> [Rule f]

sig :: TRS id f -> Signature id

tRS rules = TRS rules (getSignatureFromRules id rules)

rules (TRS r _) = r

sig (TRS _ s) = s

TRSs are monoidal too.

instance TRSC id f => Monoid (TRS id f) where

mempty = TRS mempty mempty

mappend (TRS r1 _) (TRS r2 _) =

TRS rr (getSignature rr) where rr = r1 ‘mappend‘ r2

For convenience, we are going to define an overloaded getSignature version

which works on anything that has an associated Signature, including sets of

rules and TRSs.

class SignatureC a id | a -> id where

getSignature :: a -> Signature id

instance (T id :<: f, Ord id, Foldable f) =>

SignatureC [Rule f] id

where getSignature = getSignatureFromRules id

instance SignatureC (TRS id f) id where getSignature = sig

Finally, we introduce the familiar isConstructor and isDefined predi-

cates, as well as the getArity function.

54 4. Implementation

isDefined, isConstructor :: (T id :<: f, Ord id) =>

TRS id f -> Term f -> Bool

isConstructor trs t = (‘Set.member‘ constructorSymbols (sig trs))

‘all‘ collectIds t

isDefined = (not.) . isConstructor

getArity :: (Show id, Ord id) => Signature id -> id -> Int

getArity Sig{arity} f = (‘fromMaybe‘ Map.lookup f arity)

(error("getArity: symbol " ++ show f ++ " not in signature"))

4.2 Modelling Dependency Pairs

Until now we have described the relevant parts of the TRS library. We have

seen that the TRS library provides terms with open signatures. Let us begin

by fixing the constructors signature of the terms used in Narradar.

type Basic = T String :+: Var

type BasicId = T Identifier :+: Var

We are going to need the ability to mark function symbols as dependency pairs,

and for that reason we make use of terms with identifiers of type Identifier

instead of String. Such terms are denoted by the signature BasicId.

data Identifier = IdFunction String | IdDP String

deriving (Eq, Ord)

instance Show Identifier where

show (IdFunction f) = f; show (IdDP n) = n ++ "#"

markDPSymbol (IdFunction f) = IdDP f

markDPSymbol f = f

unmarkDPSymbol (IdDP n) = IdFunction n

unmarkDPSymbol n = n

markDP, unmarkDP :: (T Identifier :<: f) => Term f -> Term f

4.2. Modelling Dependency Pairs 55

markDP t

| Just (T (n::Identifier) tt) <- open t

= term (markDPSymbol n) tt

| otherwise = t

unmarkDP t

| Just (T (n::Identifier) tt) <- open t

= term (unmarkDPSymbol n) tt

| otherwise = t

unmarkDPRule, markDPRule :: (T Identifier :<: f) =>

Rule f -> Rule f

markDPRule = fmap markDP

unmarkDPRule = fmap unmarkDP

We project TRSs with String function symbols as follows.

mkTRS :: [Rule Basic] -> TRS Identifier BasicId

mkTRS rr = TRS rules’ (getSignatureFromRules id rules’) where

rules’ = fmap2 (foldTerm mkTIdF) rr :: [Rule BasicId]

fmap2 :: (Functor f, Functor g) => (a -> b) -> f(g a) -> f(g b)

fmap2 = fmap . fmap

class (Functor f, Functor g) => MkTId f g where

mkTIdF :: f (Term g) -> Term g

instance (T Identifier :<: g) => MkTId (T String) g where

mkTIdF (T f tt) = term (IdFunction f) tt

instance (MkTId f1 g, MkTId f2 g) => MkTId (f1 :+: f2) g where

mkTIdF (Inl x) = mkTIdF x; mkTIdF (Inr x) = mkTIdF x

instance (a :<: g) => MkTId a g where

mkTIdF t = inject(fmap reinject t)

We define DPs and DP problems as follows.

type DP f = Rule f

56 4. Implementation

type Problem f = Problem_ (TRS Identifier f)

data Problem_ a = Problem ProblemType a a deriving (Eq,Show)

data ProblemType = Rewriting | Narrowing deriving (Eq, Show)

So a Problem carries two TRSs, one for the rules and one for the DPs. And

we have two types of problems, for rewriting and for narrowing. The signature

of a problem is the sum of the signatures of the rules and the DPs.

instance SignatureC (Problem f) Identifier where

getSignature (Problem _ trs@TRS{} dps@TRS{}) =

sig trs ‘mappend‘ sig dps

We define functions getPairs and getLPairs to extract the right(standard)

and left(narrowing) dependency pairs.

getPairs :: TRS Identifier f -> [DP f]

getPairs trs@TRS{} =

[markDP l :-> markDP rp | l :-> r <- rules trs,

rp <- collect (isDefined trs) r]

getLPairs :: TRS Identifier f -> [DP f]

getLPairs trs@TRS{} = [markDP l :-> markDP lp

| l :-> _ <- rules trs

, lp <- properSubterms l

, isDefined trs lp]

getNPairs :: TRS Identifier f -> [DP f]

getNPairs trs = getPairs trs ++ getLPairs trs

4.2.1 Proof searching

The solution of a DP problem is reached after a proof search using the available

problem processors. This proof search is recorded via the functor ProofT.

4.2. Modelling Dependency Pairs 57

data ProofF f s k =

And {procInfo::ProcInfo, problem::Problem f, subProblems::[k]}

| Or {procInfo::ProcInfo, problem::Problem f, subProblems::[k]}

| Success {procInfo::ProcInfo, problem::Problem f, res::s}

| Fail {procInfo::ProcInfo, problem::Problem f, res::s}

| DontKnow{procInfo::ProcInfo, problem::Problem f}

| MPlus k k

| MZero

deriving (Show)

A proof tree with terms of constructor signature f contains conjunctive and

disjunctive branches with subproblems of type k, and success, failure, and don’t

know leaves which may contain a description of type s. The MPlus branches

and MZero leaves are used later to build a MonadPlus instance (MonadPlus

models a simplified version of computational search). The datatype ProcInfo

identifies the available problem processors.

data ProcInfo = AFProc (Maybe AF)

| DependencyGraph

| Polynomial

| External ExternalProc

| NarrowingP

deriving (Eq, Show)

data ExternalProc = MuTerm | Aprove | Other String

deriving (Eq, Show)

We define a predicate isSuccess to find out whether a proof has been

completed or not.

isSuccessF :: ProofF f s Bool -> Bool

isSuccessF Fail{} = False

isSuccessF Success{} = True

isSuccessF DontKnow{} = False

isSuccessF (And _ _ ll) = and ll

58 4. Implementation

isSuccessF (Or _ _ ll) = or ll

isSuccessF MZero = False

isSuccessF (MPlus p1 p2) = p1 || p2

ProofF is a functor on the branches of the search tree. But this time we

will automatically derive its instances (as well as the ones for Problem, which

is a functor too). Even more, we require it to be traversable by applicative

functors, and we will derive the Traversable instances too. 4

As it is a functor, we can automatically extract a free monad out of ProofF

[Swierstra, 2008]. We will build our solvers on top of this monad. Let us

introduce first the standard definition of a free monad.

-- This is the standard encoding of Free Monads, see

-- http://comonad.com/reader/2008/monads-for-free

data Free f a = Impure (f (Free f a)) | Pure a

instance Functor f => Monad (Free f) where

return = Pure

Pure a >>= f = f a

Impure fa >>= f = Impure (fmap (>>= f) fa)

All we need to declare a free monad Proof out of our functor ProofF is a

simple type synonym declaration!

type Proof f s a = Free (ProofF f s) a

type ProblemProof s f = Proof f s (Problem f)

We are going to work with monadic actions on DP Problems. In free monad

speak, a Pure value is an actual value, wrapped inside the monad, whereas

an Impure value encodes some kind of effect. The constructors of the Functor

used to instantiate the free monad determine what kind of impure actions are

available. Later, some interpretation function translates these hints of impure

effects into actual effects. In our case, there is no translation involved: what

4The instances are derived via Template Haskell thanks to the package Data.Derive. The
code to invoke the derivations is included at the end of this chapter.

4.2. Modelling Dependency Pairs 59

we are interested in is the very ProofF object constructed during the search of

the solution. What the free monad construction does in our case is to extend

our ProofF trees with a new type of leaves, Pure leaves. Binding in the Proof

monad corresponds to mapping a function to only the Pure leaves and then

joining the tree returned to the rest of the tree5. In general, the type of values

in Pure leaves can be anything, so we can for instance construct a ProofF tree

with Strings in the Pure leaves. At the moment however (this may change

later when we want to display our proof trees), we are interested only in Proof

trees with Problems at the Pure leaves. ProblemProof is a type synonym to

stress that fact.

Before continuing, let us introduce smart constructors to lift the ProofF

contructors to the Proof monad.

success = ((Impure.).) . Success

failP = ((Impure.).) . Fail

andP = ((Impure.).) . And

orP = ((Impure.).) . Or

choiceP = (Impure.) . MPlus

dontKnow= (Impure.) . DontKnow

We also need a monad transformer version of Proof, since some of our

solvers must invoke an external tool via the IO monad.

-- (built upon Luke Palmer control-monad-free hackage package)

newtype FreeT f m a =

FreeT {unFreeT :: m (Either a (f (FreeT f m a)))}

editEither l r = either (Left . l) (Right . r)

conj f = FreeT . f . unFreeT

instance (Functor f, Functor m) => Functor (FreeT f m) where

fmap f = conj $ fmap (editEither f ((fmap.fmap) f))

5in other words, recall that x >>= f = join(fmap f x)

60 4. Implementation

instance (Functor f, Monad m) => Monad (FreeT f m) where

return = FreeT . return . Left

m >>= f = FreeT $ unFreeT m >>= \r ->

case r of

Left x -> unFreeT $ f x

Right xc -> return . Right $ fmap (>>= f) xc

instance (Functor f) => MonadTrans (FreeT f) where

lift = FreeT . liftM Left

type ProofT f s m a = FreeT (ProofF f s) m a

type ProblemProofT s m f = ProofT f s m (Problem f)

runProofT x = unwrap x

We define some operations on free monads, as well as a generic projection

between free monad transformers and regular free monads.

foldFree :: Functor f => (a -> b) -> (f b -> b) -> Free f a -> b

foldFree pure _ (Pure x) = pure x

foldFree pure imp (Impure x) = imp (fmap (foldFree pure imp) x)

foldFreeT :: (Traversable f, Monad m) =>

(a -> m b) -> (f b -> m b) -> FreeT f m a -> m b

foldFreeT p i m = do

r <- unFreeT m

case r of

Left x -> p x

Right fx -> join (liftM i (mapM (foldFreeT p i) fx))

unwrap :: (Traversable f, Monad m) => FreeT f m a -> m(Free f a)

unwrap = foldFreeT (return . Pure) (return . Impure)

wrap :: (Functor f, Monad m) => Free f a -> FreeT f m a

wrap = FreeT . foldFree (return . Left)

(return . Right . fmap FreeT)

4.2. Modelling Dependency Pairs 61

By means of foldFree and foldFreeT we can lift ProofF folds to the

associated free monad. Note that foldFreeT requires that the functor f is

traversable, as it needs to sequence a monadic action through the structure of

a f value. This is why we required traversability for ProofF.

As an example, this is how we lift the isSuccessF predicate to the Proof

and ProofT monads.

isSuccess :: Proof f s a -> Bool

isSuccess = foldFree (const False) isSuccessF

isSuccessT :: Monad m => ProofT f s m a -> m Bool

isSuccessT = foldFreeT (const $ return False) (return.isSuccessF)

Finally, the Proof and ProofT free monads (transformer) are also in MonadPlus,

since proof finding involves search.

%Not valid GHC code

instance MonadPlus (Proof f s) where

mzero = Impure MZero

p1 ‘mplus‘ p2 = if isSuccess p1 then p1 else choiceP p1 p2

instance Monad m => MonadPlus (ProofT f s m) where

mzero = FreeT $ return $ Right MZero

p1 ‘mplus‘ p2 = FreeT $ do

s1 <- runProofT p1

if isSuccess s1 then unFreeT(wrap s1)

else do s2 <- runProofT p2

unFreeT (wrap(choiceP s1 s2))

In the next section, after defining a few processors, we will show how to

use ProofF free monad to build a minilanguage of proof tactics.

4.2.2 The Dependency Graph processor

This processor involves building a graph out of the Dependency Pairs and

computing all the cycles it contains. For representing the graphs we use Martin

62 4. Implementation

Erwig’s graph library, [Erwig, 2001], using an adapted version of Liu and Wang

algorithm to compute the cycles in a graph.

-- "A new way to enumerate cycles in graph" - Hongbo Liu, Jiaxin Wang

cycles :: Graph gr => gr a b -> [[Node]]

cycles gr = (nub . map (sort . nub . map fst))

(concatMap liuwang [[(n,n)] | n <- nodes gr]) where

liuwang path = [path ++ [closure]

| let closure = (tpath, hpath)

, closure ‘elem‘ edges gr] ++

concatMap liuwang

[path++[(tpath,n)]

| n <- suc gr tpath

, n /= hpath

, (tpath,n) ‘notElem‘ path]

where tpath = (snd.last) path

hpath = (fst.head) path

The approximations ren and cap are straightforward to define with the

machinery introduced so far.

ren :: (Var :<: f, Traversable f) => Term f -> Term f

ren t = runSupply (foldTermM f t) where

f t | Just Var{} <- prj t = var Nothing <$> next

| otherwise = return (inject t)

cap :: TRS Identifier f -> Term f -> Term f

cap trs@TRS{} t | Just (T (s::Identifier) tt) <- open t

= term s [if isDefined trs t’

then var Nothing i else t’

| (i,t’) <- [0..] ‘zip‘ tt]

| otherwise = t

We employ the well known Supply monad defined on top of State to obtain

an infinite supply of fresh names in cap.

4.2. Modelling Dependency Pairs 63

class MonadSupply i m | m -> i where next :: m i

newtype Supply i a = Supply {runSupply_ :: State [i] a}

deriving (Functor, Monad, MonadSupply i)

instance MonadSupply e (State [e]) where

next = do

elems <- get

put (tail elems)

return (head elems)

runSupply :: (Num i, Bounded i, Enum i) => Supply i a -> a

runSupply m = evalState (runSupply_ m) [0..]

With these tools, constructing the dependency graph processor is easy.

It is provided by the monadic cycleProcessor function below. First one

computes the estimated dependency graph (EDG) making use of the ren and

cap functions, and then cycles computes the cycles in the EDG, which are

then used to build a number of subproblems under a conjunction branch.

cycleProcessor :: Problem f -> ProblemProof String f

cycleProcessor problem@(Problem typ trs@TRS{} dps)

| null cc= success DependencyGraph problem

("We need to prove termination for all the cycles."

++ "There are no cycles, so the system is terminating")

| otherwise =

andP DependencyGraph problem

[return $ Problem typ trs (tRS$ select (rules dps) ciclo)

| ciclo <- cc]

where cc = cycles $ getEDG trs (rules dps)

getEDG :: TRS Identifier f -> [DP f] -> G.Gr () ()

getEDG trs@TRS{} dps = G.mkUGraph [0.. length dps - 1]

[(i,j) | (i,_:->t) <- zip [0..] dps

64 4. Implementation

, (j,u:->_) <- zip [0..] dps

, inChain t u]

where inChain t u = isJust (unify u (ren $ cap trs $ t))

select :: (Ord t, Enum t, Num t) => [a] -> [t] -> [a]

select xx ii = go 0 xx (sort ii) where

go _ [] _ = []

go _ _ [] = []

go n (x:xx) (i:ii) | n == i = x : go (succ n) xx ii

| otherwise = go (succ n) xx (i:ii)

select is a function to retrieve consecutive indexes from a list. It must satisfy

the following property.

propSelect xx ii = map (xx!!) ii’ == select xx ii’

where types = (xx::[Int], ii::[Int])

ii’ = filter (< length xx) (map abs ii)

We just defined the dependency graph processor as a monadic action in

the ProofF free monad. In the incoming sections we will see how to combine

it with other proof processors in order to build a proof tactic.

4.2.3 The Argument Filtering processor

Before defining the AF processor we need to introduce the AF datatype for

argument filterings, as well as some algebra to manipulate them.

newtype AF = AF {fromAF:: Map Identifier (Set Int)}

deriving (Eq, Ord)

singletonAF :: Identifier -> [Int] -> AF

cut :: Identifier -> [Int] -> AF -> AF

cutAll :: [(Identifier, [Int])] -> AF -> AF

lookupAF :: Monad m => Identifier -> AF -> m [Int]

4.2. Modelling Dependency Pairs 65

fromListAF :: [(Identifier,[Int])] -> AF

toListAF :: AF -> [(Identifier,[Int])]

singletonAF id ii = AF (Map.singleton id (Set.fromList ii))

cut id ii (AF m) = AF $ Map.insertWith (flip Set.difference) id

(Set.fromList ii) m

cutAll xx af = foldr (uncurry cut) af xx

lookupAF id (AF m) = maybe (fail "not found")

(return.Set.toList)

(Map.lookup id m)

fromListAF = AF

. Map.fromListWith Set.union

. map (second Set.fromList)

toListAF (AF af) = Map.toList (Map.map Set.toList af)

nullAF (AF af) = Map.null af

unionAF (AF m1) (AF m2) =

AF$ Map.unionWith Set.intersection m1 m2

concatAF [] = error "concatAF: cannot concat the empty set"

concatAF [af] = af

concatAF xx = foldr1 union xx

mapAF :: (Identifier -> [Int] -> [Int]) -> AF -> AF

mapAF f (AF af) =

AF$ Map.mapWithKey

(\k ii -> Set.fromList (f k (Set.toList ii))) af

initAF t | sigt <- getSignature t = fromListAF

[(d, [0.. getArity sigt d -1])

| d <-toList(definedSymbols sigt ‘mappend‘

constructorSymbols sigt)

, getArity sigt d > 0]

66 4. Implementation

instance Show AF where

show = unlines

. fmap show

. fmap (second Set.toList)

. Map.toList

. fromAF

The most important operation is application of AFs to terms, rules or sets

of rules. We introduce an overloaded operation applyAF by means of a type

class. This is the traditional use of type classes to express adhoc polymorphism.

class ApplyAF t where applyAF :: AF -> t -> t

instance (Functor f, ApplyAF a) => ApplyAF (f a) where

applyAF af = fmap (applyAF af)

instance (T Identifier :<: f) => ApplyAF (Term f) where

applyAF af = foldTerm f

where

f t | Just (T (n::Identifier) tt) <- prj t

, Just ii <- lookupAF n af = term n (select tt ii)

| otherwise = inject t

instance ApplyAF (TRS Identifier f) where

applyAF af trs@TRS{} = tRS$ applyAF af (rules trs)

We define now afProcessor, a monadic action in the ProofF monad. For

every DP, we compute all the possible minimal AFs which make it ground by

means of the function findGroundAF. The computed AFs are minimal in the

sense that they never cut more information than needed. Next we sort and

select the list of AFs according to some heuristic. In this case we use a simple

definedness heuristic, selecting first those AFs which cut less information.

The result of afProcessor is an Or composition of a set of Rewriting

problems, which can be now discharged to an external solver. We note that

the definition of afs makes use of the Set restricted monad [Sittampalam and

Gavin, 2008] to uniformly guarantee uniqueness of filtered positions.

afProcessor :: Problem f -> ProblemProof String f

4.2. Modelling Dependency Pairs 67

afProcessor p@(Problem Narrowing trs dps@TRS{}) =

if null orProblems

then failP (AFProc Nothing) p "Could not find a grounding AF"

else orP (AFProc Nothing) p orProblems

where

afs = findGroundAF p =<< Set.fromList (rules dps)

orProblems =

[return $ applyAF af (Problem Rewriting trs dps)

| af <- sortByDefinedness (Set.toList afs)

]

sortByDefinedness = sortBy (flip compare ‘on‘ dpsSize)

dpsSize af = sizeTRS (applyAF af dps)

sizeTRS = sum . fmap sum . fmap2 sizeTerm . rules

on is the well known combinator using for sorting a list on a view of the

elements.

on cmp view x y = view x ‘cmp‘ view y

The battlehorse is the Set–monadic findGroundAF function, which must

compute all the existing sound AFs which ground the rhs of the given DP.

But first we must introduce a few intermediate tools. The condition of a

sound AF is that the filtered TRS must not contain extra variables. We define

an overloaded function extraVars to compute the extra variables of a rule or

TRS.

class (IsVar f) => ExtraVars t f | t -> f

where extraVars :: t -> [Term f]

instance (Ord (Term f), IsVar f) => ExtraVars (TRS id f) f where

extraVars trs@TRS{} = concatMap extraVars (rules trs)

instance (Ord (Term f), IsVar f, Foldable f) => ExtraVars (Rule f) f

where extraVars (l:->r) = nub (vars’ r \\ vars’ l)

varsPositions computes the list of variable positions in a term. For this we

first annotate the subterms with their positions, then retrieve the variables in

the term, and then just keep the positions and drop the terms.

68 4. Implementation

varPositions :: (AnnotateWithPos f f, Var :<: f, Foldable f) =>

Term f -> [Position]

varPositions t = [p | In(Note (p,t)) <- subterms (annotateWithPos t)

, Just Var{} <- [prj t]]

The definition of findGroundAF, arguably one of the most involved pieces of

code in Narradar, is given below. Roughly, we first compute all the minimal

AFs which ground the rhs of the DP, and then just strengthen them until the

sound invariant is fulfilled.

findGroundAF :: (Ord(Term f), AnnotateWithPos f f) =>

Problem f -> DP f -> Set AF

findGroundAF p@(Problem _ trs@TRS{} dps) (_:->r)

| isVar r = mzero

| otherwise = mkGround r >>= invariantEV

where ...

mkGround returns the AF that cuts all the variables in a term t.

mkGround :: Term f -> Set AF

mkGround t = cutPP af0 t varsp

where varsp = varsPositions t

af0 = initAF p

The cutPP helper computes all the minimal extensions to an AF af that cut a

set of positions pp from a term t. It is defined in terms of cutP, which returns

all the minimal extensions of an AF af to cut a position p from a term t (and

fails for the root position which cannot be cut).

cutPP :: AF -> Term f -> [Position] -> Set AF

cutPP af t [] = return af

cutPP af t pp = concatAF ‘liftM‘ (mapM (cutP af t) pp)

cutP :: AF -> Term f -> Position -> Set AF

cutP af t [] = mzero

4.2. Modelling Dependency Pairs 69

cutP af t p = Set.fromList

[cutAll [(root, [last sub_p])] af

| sub_p <- reverse (tail $ inits p)

, Just root <- [rootSymbol (t ! init sub_p)]]

The invariant is decomposed on two conditions: (1) that there are no extra

vars in the rules, and (2) that there are no extra vars in the DPs. The fixpoint

of the composition of these two subinvariants is just what we need.

invariantEV :: AF.AF -> Set AF.AF

invariantEV = fix (\f -> subinvariantEV trs f >=>

subinvariantEV dps f)

subinvariantEV :: TRS Identifier f ->

(AF -> Set AF) -> (AF -> Set AF)

subinvariantEV trs@TRS{} rec af

| null extra = return af

| otherwise = foldM cutEV af (rules trs) >>= rec

where extra = extraVars (applyAF af trs)

Finally cutEV simply returns the AF which cuts all the extra vars in a rule.

cutEV af rule@(_:->r)

| extra <- extraVars (annotateWithPos <$> applyAF af rule)

= cutPP af r (map note extra)

As said, invariantEV is the fixpoint of the composition of the two subinvari-

ants, both defined by subinvariantEV, a function with explicit recursion knot

rec which computes the extension of an AF to cut all the extra variables in

a TRS, done via a Set-monadic fold over the list rules of the TRS. Moreover,

note how in fact all the helper functions are monadic in Set. The use of the

Set monad greatly simplifies the task of combining them in this problem.

4.2.4 The AProVe processor

The only remaining bit is to define a processor which calls AProVe with a

rewriting problem and returs either a Success leaf, or a Fail leaf. Such a

70 4. Implementation

processor will necessarily make use of IO, and for this reason it must be defined

on top of the ProofT monad transformer. We show only the type signature.

aproveProcessor :: Problem f -> ProblemProofT String IO f

4.2.5 Putting our solvers together

Composition of solvers in the Proof monad is simply monadic bind. However,

while most of our solvers are in the Proof monad, we need to compose also the

AProVe solver, which is in the ProofT monad over IO. In order to be able to

compose the two types of solvers, we need to lift the pure ones to the ProofT

monad. We do so by means of wrap.

liftProof :: Monad m => (a -> Proof f s b) -> a -> ProofT f s m b

liftProof f m = wrap (f m)

For instance, this is how we would compose the solvers described in this section

for Narradar.

basicSolver :: Problem f -> ProblemProofT String IO f

basicSolver = liftProof cycleProcessor >=>

liftProof afProcessor >=>

aproveProcessor

Description of more complex strategies with ease is possible. Consider two

hypothetical processors for forward instantiation and narrowing instantiation.

forwardProcessor, narrowingProcessor :: Problem f -> ProblemProof s f

We can define a strategy s.t. it first tries our basic solver above, and only if it

fails then it tries to refine the graph using one of the processors below before

trying again.

basic = liftProof afProcessor >=> aproveProcessor

strat = liftProof cycleProcessor >=>

(basic .|. liftProof ((narrowingProcessor .|. forwardProcessor)

>=> cycleProcessor))

4.2. Modelling Dependency Pairs 71

Above we make use of MonadPlus based alternative composition (.|.). Note

how we enforce the application of the dependency graph processor after any

refinement of the graph.

(.|.) :: MonadPlus m => (b -> m a) -> (b -> m a) -> b -> m a

f .|. g = \x -> f x ‘mplus‘ g x

Running the processor is accomplished, essentially, by applying the solver

to a concrete problem and then unwraping the ProofT to a Proof value.

runSolver problem solver = unwrap (solver problem)

4.2.6 Further points

• We have not described here how to avoid unnecessary work when running

a proof search. Concretely, we regard as work the number of rewriting

termination proofs requested to AProVe. The implementation described

above fully explores the proof tree and apparently makes no effort to stop

once a successful branch is found. But since Haskell is a lazy language

and all what should be needed is careful control when manipulating (e.g.

displaying) such a proof tree, see e.g. [Wadler, 1985] on the use lazy-

ness for search. For instance, the isSuccess predicate we defined before

will evaluate up to successful branches without requiring any changes.

However, solvers defined in or lifted over the IO monad defeat lazyness,

as unwrap will eagerly evaluate all the proof tree. Roughly, the solution

to recover lazyness is either to define a custom interpreter in imperative

style to replace unwrap by computing alternatives in Or branches sequen-

tially and stopping as soon as success is found, or to carefully annotate

IO processors with unsafeInterleaveIO to demand lazy IO.

• We also omitted the details of exploring different branches concurrently,

which is crucial for a fast performing solver. Narradar makes a few

efforts in this direction but we don’t include the details here. Roughly,

one can abstract over the shape of a ProofT computation and extract

the list of all Pure leaves. The leaves can then be computed in parallel

72 4. Implementation

by the next processor and then reinserted in the shape; this works on

any kind of proof tree and processor. But this is to naive, we don’t really

want to compute all the leaves in parallel; instead, we want to minimize

speculative work by trying one path below every Or branch at a time.

• Narradar does several things with ProofF objects we have omitted in

this report. There are modules to export a proof object as a HTML

document, as a [Gra, N.d.] document for analysis of the proof search, or

as a simple String for a command line interface. This could be extended

to output proofs as XML, LaTeX, or as certificates for a theorem prover

to verify the proof, as it is done in the CoLOR project6.

4.3 Template Haskell derivations

instance Functor (ProofF f s) where fmap = fmapDefault

instance Foldable (ProofF f s) where foldMap = foldMapDefault

instance Foldable Problem_ where foldMap = foldMapDefault

instance Foldable RuleG where foldMap = foldMapDefault

$(derive makeFunctor ’’Problem_)

$(derive makeTraversable ’’Problem_)

-- $(derive makeFunctor ’’ProofF) workaround for a TH problem

$(derive makeTraversable ’’ProofF)

$(derive makeTraversable ’’RuleG)

$(derive makeTraversable ’’Var)

$(derive makeTraversable ’’T)

6http://color.loria.fr

5
Conclusion

5.1 Related work

Although we have mentioned related work several times along the thesis, this

section contains a more in-depth discussion of the state of the art.

The earliest positive result in the literature concerning the termination of

ordinary narrowing was proved in [Christian, 1992] and holds for left-flat TRSs

(each argument occurring at the lhs of a rewrite rule is either a variable —

often called shallow [Comon, Haberstrau and Jouannaud, 1994]— or a ground

term) compatible with a termination ordering. We can now give a better

characterization of the left-flatness condition. Left-flatness ensures two key

properties:

1. No defined symbols in the patterns of left hand sides mean no ll-dependency

pairs.

2. No variables below the root position in left hand sides, together with

compatibility with a termination ordering, means that no inductive con-

structions can be expressed. Therefore, such a TRS can always be trans-

lated to an equivalent non recursive encoding.

These two properties ensure the existence of a NDP termination proof for left–

flat systems. To see why, note that due to point 1 we have no ll-dependency

pairs, and due to point 2 we have no cycle between the lr-dependency pairs.

In recent work [Alpuente, Escobar and Iborra, 2008b], the authors classified

a number of (mostly) syntactic restrictions under which narrowing is termi-

74 5. Conclusion

nating. All the results in that paper, with the exception of Theorem 101, can

be proved independently with the DPN method exposed in this paper. Briefly,

and using the terminology introduced in that paper

• The srnf–based condition implies no ll-dependency pairs.

• The right–srnf condition implies no lr-dependency pairs.

• The rnf–based condition together with reachability completeness means

no ll-dependency pairs can be involved in an infinite chain.

• The left–plain condition together with reachability completeness means

no ll-dependency pairs can be involved in an infinite chain.

• The right–rnf condition together with reachability completeness means

no lr-dependency pairs can be involved in an infinite chain.

From these points one can come up with suitable combinations to obtain

the syntactic classes enumerated in [Alpuente, Escobar and Iborra, 2008b].

Two adaptations of the DP method to narrowing have recently appeared

in the literature. [Nishida, Sakai and Sakabe, 2003] and [Nishida and Miura,

2006] introduced a similar, in power, method, which is restricted to classes

of TRSs where narrowing has the TRAT property. We do away with this

restriction and further develop their method with new, more obviously correct

proofs, subsuming their method in all cases except for the case of TRSs with

extra variables in the right hand side, which we do not consider.

The automatic method for the termination of narrowing with modes intro-

duced in [Nishida and Vidal, 2008] has a component based on the DP method,

but it also provides an alternative formulation based on the argument filtering

transformation.

1and the result on linear goals, since in this work we do not parameterize on the starting
goals

5.2. Future work 75

5.2 Future work

5.2.1 Restrictions and Strategies

We have not considered in this thesis restrictions of narrowing that improve its

efficiency or termination properties, such as Basic Narrowing [Hullot, 1980b],

Needed Narrowing [Antoy and Hanus, 1994], Natural Narrowing [?] or Inner-

most Narrowing [Bosco, Giovannetti and Moiso, 1988] to cite a few. Extending

our method to handle these restricted forms of narrowing will surely enhance

its usefulness and applicability, and we intend to pursue this goal at least for

some of the enumerated restrictions. Particularly Innermost Narrowing which

should be fairly direct, by taking advantage of all the work done on Q-restricted

rewriting in modern formulations of the DP framework, e.g. see [Thiemann,

2007].

5.2.2 More Processors

We have shown how to adapt existing DP processors to the narrowing setting,

and provided one processor to recast a narrowing DP problem as a rewrit-

ing DP problem. But there is still room for improvement, by adapting more

rewriting processors or working on processors specific for narrowing.

Example 14 Consider the TRS R formed by the single rule

f(a(x), b(y))→ f(y, y)

By analyzing it with our method we obtain a single narrowing dependency pair

f#(a(x), b(y))→ f#(y, y)

There is only one choice of AF for making its right hand side ground, π(f) =

{}, and we obtain the rewriting dependency pair

f# → f#

which clearly constitutes a loop.

However R contains no infinite narrowing derivations.

76 5. Conclusion

5.3 Final Words

We have introduced a new technique for termination proofs of narrowing via

termination of rewriting that is based on a suitable generalization of depen-

dency pairs. Although several refinements of the notion of dependency pairs

such as [Giesl et al., 2006; Hirokawa and Middeldorp, 2004] had been proposed

previously for termination analysis of TRSs, this is the first time that the no-

tion of dependency pair has been extended to deal with narrowing on arbitrary

TRSs and queries. This is possible because we first identified the character-

ized the behaviour of infinite narrowing derivations with the notion of echoing

terms.

Our contribution is threefold:

1. we ascertained the suitable notions that allow us to detect when the

terms in a narrowing derivation actually do echo;

2. our approach leads to much weaker conditions for verifying the termi-

nation of narrowing that subsume all previously known termination of

narrowing criteria;

3. the resulting method can be effectively mechanized. We have imple-

mented our technique in a tool that is publicly available2.

2http://safe-tools.dsic.upv.es/narradar

Bibliography

Alarcón, B., R. Gutiérrez, J. Iborra and S. Lucas. 2007. “Proving Termina-

tion of Context-Sensitive Rewriting with MU–TERM.” Electr. Notes Theor.

Comput. Sci. 188:105–115.

Alpuente, M., M. Falaschi and G. Levi. 1995. “Incremental Constraint Sat-

isfaction for Equational Logic Programming.” Theoretical Computer Science

142(1):27–57.

Alpuente, M., M. Falaschi and G. Vidal. 1994. Compositional Analysis for

Equational Horn Programs. In 4th Int’l Conf. on Algebraic and Logic Pro-

gramming, ALP’94. Vol. 850 of LNCS Springer pp. 77–94.

Alpuente, M., M. Falaschi, M. Gabbrielli and G. Levi. 1993. The semantics

of equational logic programming as an instance of CLP. In Logic Program-

ming Languages: Constraints, Functions and Objects, ed. K. R. Apt, J. W.

de Bakker and J. J. M. M. Rutten. Cambridge, Massachussets, USA: The

MIT Press pp. 49–81.

Alpuente, M., S. Escobar and J. Iborra. 2008a. Modular Termination of Basic

Narrowing. In Proc. 19th Int’l Conf. on Rewriting Techniques and Applica-

tions, RTA’08. LNCS Berlin: Springer-Verlag. To appear.

Alpuente, M., S. Escobar and J. Iborra. 2008b. “Termination of Narrowing

revisited.” Theoretical Computer Science . To appear.

Antoy, Sergio and Michael Hanus. 1994. A Needed Narrowing Strategy. In

Journal of the ACM. ACM Press pp. 268–279.

Arts, T. and H. Zantema. 1996. Termination of Logic Programs Using Se-

mantic Unification. In Int’l Workshop on Logic-based Program Synthesis and

Transformation. Vol. 1048 of Lecture Notes in Computer Science Springer-

Verlag pp. 219–233.

78 5. Bibliography

Arts, T. and J. Giesl. 2000. “Termination of Term Rewriting using Depen-

dency Pairs.” Theoretical Computer Science 236(1-2):133–178.

Bosco, P. G., E. Giovannetti and C. Moiso. 1988. “Narrowing vs. SLD-

resolution.” Theoretical Computer Science 59:3–23.

Christian, J. 1992. Some Termination Criteria for Narrowing and E-

Narrowing. In 11th Int’l Conf. on Automated Deduction CADE’92. Vol. 607

of LNCS Springer pp. 582–588.

Comon, Hubert, Marianne Haberstrau and Jean-Pierre Jouannaud. 1994.

“Syntacticness, Cycle-Syntacticness, and Shallow Theories.” Information and

Computation 111(1):154–191.

Dershowitz, N. 1995. Goal Solving as Operational Semantics. In Int’l Logic

Programming Symposium, ILPS’95. Cambridge, MA: MIT Press pp. 3–17.

Dershowitz, N. 2003. Termination Dependencies. In Proc. of the 6th Int’l

Workshop on Termination. Technical Report DSIC-II/15/03 pp. 27–30.

Erwig, Martin. 2001. “Inductive graphs and functional graph algorithms.” J.

Funct. Program. 11(5):467–492.

Escobar, S., C. Meadows and J. Meseguer. 2006. “A Rewriting-Based Infer-

ence System for the NRL Protocol Analyzer and its Meta-Logical Properties.”

Theoretical Computer Science 367(1-2):162–202.

Escobar, S. and J. Meseguer. 2007. Symbolic Model Checking of Infinite-State

Systems Using Narrowing. In 18th Int’l Conference on Rewriting Techniques

and Applications, RTA 2007. Vol. 4533 of Lecture Notes in Computer Science

Springer-Verlag pp. 153–168.

Fay, M. 1979. First-Order Unification in an Equational Theory. In 4th Int’l

Conference on Automated Deduction, CADE’79. pp. 161–167.

Giesl, J., R. Thiemann and P. Schneider-Kamp. 2005. The Dependency Pair

Framework: Combining Techniques for Automated Termination Proofs. In

5.3. Bibliography 79

11th Int’l Conference on Logic for Programming, Artificial Intelligence, and

Reasoning, LPAR 2005. Vol. 3452 of LNCS Springer pp. 301–331.

Giesl, J., R. Thiemann, P. Schneider-Kamp and S. Falke. 2004. Automated

Termination Proofs with AProVE. In Proc. 15th Int’l Conf. on Rewriting

Techniques and Applications, RTA’04. LNCS pp. 210–220.

Giesl, J., R. Thiemann, P. Schneider-Kamp and S. Falke. 2006. “Mechanizing

and Improving Dependency Pairs.” J. Autom. Reasoning 37(3):155–203.

Gra. N.d. “The GraphViz Project.” http://www.graphviz.org.

Hanus, M. 1994. “The Integration of Functions into Logic Programming:

From Theory to Practice.” Journal of Logic Programming 19&20:583–628.

Hirokawa, N. and A. Middeldorp. 2004. Dependency Pairs Revisited. In Proc.

15th Int’l Conf. on Rewriting Techniques and Applications, RTA’04. Vol. 3091

of LNCS Springer pp. 249–268.

Hughes, John. 1995. The Design of a Pretty-printing Library. In Advanced

Functional Programming, ed. Johan Jeuring and Erik Meijer. Vol. 925 of

Lecture Notes in Computer Science Springer pp. 53–96.

Hullot, J.-M. 1980a. Canonical Forms and Unification. in 5th Int’l Conference

on Automated Deduction CADE’80 [Hullot, 1980b] pp. 318–334.

Hullot, J.-M. 1980b. Canonical Forms and Unification. In 5th Int’l Conference

on Automated Deduction CADE’80. Vol. 87 of LNCS Berlin: Springer-Verlag

pp. 318–334.

Kirchner, C., H. Kirchner and A. Santana de Oliveira. 2008. Analysis of

Rewrite-Based Access Control Policies. In Proc. 3rd Int’l Workshop on Secu-

rity and Rewriting Techniques, SecreT 2008. Elsevier ENTCS.

Mcbride, Conor and Ross Paterson. 2008. “Applicative programming with

effects.” J. Funct. Program. 18(1):1–13.

80 5. Bibliography

Meseguer, J. 1992. Multiparadigm logic programming. In 3rd Int’l Conference

on Algebraic and Logic Programming, ALP’92. Vol. 632 of LNCS Berlin:

Springer-Verlag pp. 158–200.

Meseguer, J. and P. Thati. 2007. “Symbolic reachability analysis using nar-

rowing and its application to verification of cryptographic protocols.” Higher-

Order and Symbolic Computation 20(1-2):123–160.

Nguyen, M. T., P. Schneider-Kamp, D. de Schreye and J. Giesl. 2008. Termi-

nation Analysis of Logic Programs based on Dependency Graphs. In 17th Int’l

Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR

2007. Vol. 4915 of LNCS Springer pp. 8–22.

Nishida, N. and G. Vidal. 2008. “Termination of Narrowing via Termina-

tion of Rewriting.”. Submitted for Publication. Preliminary version in Proc.

FLOPS 2008 , LNCS 4989:113–129, 2008.

Nishida, N. and K. Miura. 2006. Dependency Graph Method for Proving

Termination of Narrowing. In 8th Int’l Workshop on Termination, WST’06.

pp. 12–16.

Nishida, N., M. Sakai and T. Sakabe. 2003. “Narrowing-based simulation of

term rewriting systems with extra variables.” Electr. Notes Theor. Comput.

Sci. 86(3).

Sheard, T. 2006. Type-Level Computation Using Narrowing in Ωmega. In

Programming Languages meets Program Verification. Vol. 1643.

Sittampalam, Ganesh and Peter Gavin. 2008. “The Restricted Monad li-

brary.” http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rmonad.

Swierstra, Wouter. 2008. “Data types la carte.” Journal of Functional Pro-

gramming 18(04):423–436.

TeReSe, ed. 2003. Term Rewriting Systems. Cambridge, UK: Cambridge

University Press.

5.3. Bibliography 81

Thiemann, René. 2007. The DP Framework for Proving Termination of Term

Rewriting PhD thesis RWTH Aachen University.

Wadler, Philip. 1985. How to replace failure by a list of successes. In Proc. of a

conference on Functional programming languages and computer architecture.

New York, NY, USA: Springer-Verlag New York, Inc. pp. 113–128.

