UNIVERSIDAD POLITECNICA DE VALENCIA
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION

MASTER DE INGENIERIA DE SOFTWARE, METODOS FORMALES Y
SISTEMAS DE INFORMACION

MASTER THESIS

Innermost Termination of
Context-Sensitive Rewriting

CANDIDATE: SUPERVISOR:

Beatriz Alarcén Salvador Lucas

— December 2008 —

This work has been partially supported by the EU (FEDER) and the Spanish
MICINN, under grant TIN2007-68093-C02-02 and HA 2006-2007, the Generalitat
Valenciana under grant GVPRE/2008/113. Also it was partially supported by the
Spanish MICINN under FPU grant AP2005-3399.

Author’s address:

Departamento de Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia
Camino de Vera, s/n

46022 Valencia
Espana

Contents

1 Introduction 1
2 Preliminaries 5

3 Minimal innermost non-u-terminating terms and infinite innermost

u-rewrite sequences 9
3.1 Minimal innermost non-p-terminating terms 9
4 Hidden terms in minimal innermost p-rewrite sequences 13

5 Infinite innermost p-rewrite sequences starting from minimal terms 17
5.1 Infinite innermost u-rewrite sequences

starting from strongly minimal terms 19

6 Innermost Context-Sensitive Dependency Pairs 21
7 Innermost chains of ICS-DPs 23
7.1 Properties of some particular chains 25

8 Characterizing innermost termination of CSR using chains of ICS-

DPs 29
9 Mechanizing proofs of innermost p-termination using 1ICS-DPs 35
9.1 Mechanizing termination proofs with the dependency pair framework 35
9.2 (CS-termination problems and processors 37
10 Innermost termination and termination of CSR 39
10.1 Switching to innermost termination of CSR 39
10.2 ICS-DPsand IDPs 40
11 Innermost Context-Sensitive Dependency Graph 43
11.1 Definition of the innermost context-sensitive dependency graph 44
11.2 Estimating the ICS-dependency graph 45
12 Usable Rules 51

13 Narrowing Transformation 57

ii Contents

14 Simplifying monotonicity requirements for innermost p-termination 65

14.1 Usable arguments for CSR 66

14.2 Relaxing monotonicity with CS-DPs 69

15 Experiments 73
15.1 Proving termination of innermost CSR: Direct techniques vs. trans-

formations 73

15.2 Proving innermost termination of rewriting as termination of CSR . . 74
15.3 Proving innermost termination of CSR: relaxing monotonicity re-

quirements L e 75

15.4 Transforming CS-dependency pairs 76

16 Conclusions 7

Bibliography 79

A Related publications 85

Abstract

Innermost context-sensitive rewriting (CSR) has been proved useful for modeling the
computational behavior of programs of algebraic languages like Maude, OBJ, etc,
which incorporate an innermost strategy which is used to break down the nondeter-
minism which is inherent to reduction relations. Furthermore, innermost termina-
tion of rewriting is often easier to prove than termination. Thus, under appropriate
conditions, a useful strategy for proving termination of rewriting is trying to prove
termination of innermost rewriting. This phenomenon has also been investigated
for context-sensitive rewriting. Up to now, only few transformation-based meth-
ods have been proposed and used to (specifically) prove termination of innermost
CSR. Powerful and efficient techniques for proving (innermost) termination of (un-
restricted) rewriting like the dependency pairs framework have not been considered
yet. In this work, we investigate the adaptation of the Dependency Pairs Frame-
work to innermost CSR. We provide a suitable notion of innermost context-sensitive
dependency pair and show how to extend and adapt the main notions which con-
form the framework (chain, termination problem, processor, etc.). We show how to
mechanize proofs with the dependency pair framework for proving (innermost) ter-
mination of CSR. Thanks to the innermost context-sensitive dependency pairs, we
can now use powerful techniques for proving termination of innermost CSR. This is
made clear by means of some benchmarks showing that our techniques dramatically
improve over previously existing transformational techniques, thus establishing the
new state-of-the-art in the area. We have implemented them as part of the termi-
nation tool MU-TERM.

Abstract

Introduction

Most computational systems whose operational principle is based on reducing ex-
pressions can be described and analyzed by using notions and techniques coming
from the abstract model of Term Rewriting Systems (TRSs [BN98, TeR03]). Such
computational systems (e.g., functional, algebraic, and equational programming lan-
guages as well as theorem provers based on rewriting techniques) often incorporate a
predefined reduction strategy which is used to break down the nondeterminism which
is inherent to reduction relations. Eventually, this can rise problems, as each kind
of strategy only behaves properly (i.e., it is normalizing, optimal, etc.) for particu-
lar classes of programs. One of the most commonly used strategy is the innermost
one, in which only innermost redexes are reduced. Here, by an innermost redex we
mean a redex containing no other redex. The innermost strategy corresponds to
call by value or eager computation, that is, the computational mechanism of several
programming languages where the arguments of a function are always evaluated
before the application of the function which use them. It is well-known, however,
that programs written in eager programming languages frequently run into a non-
terminating behavior if the programs have not carefully been written to avoid such
problems. For this reason, the designers of such eager programming languages have
also developed some features and language constructs aimed at giving the user more
flexible control of the program execution. For instance, syntactic annotations (which
are associated to arguments of symbols) have been used in programming languages
such as Clean [NSEP92|, Haskell [HPW92], Lisp [McC60], Maude [CDEL*07], OBJ2
[FGJMS5], OBJ3 [GWM+00], CafeOBJ [FN97], etc., to improve the termination and
efficiency of computations. Lazy languages (e.g., Haskell, Clean) interpret them as
strictness annotations in order to become ‘more eager’ and efficient. Eager languages
(e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement restrictions to
become ‘more lazy’ thus (hopefully) avoiding nontermination.

Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting
that forbids reductions on some subexpressions and that has proved useful to model
and analyze such programming language features at different levels, see, e.g., [BMO6,
DLMM™*04, DLM*08, GM04, Luc01b, LM08a]. Such a restriction of the rewriting
computations is formalized at a very simple syntactic level: that of the arguments
of function symbols f in the signature F. As usual, by a signature we mean a set of

2 1. Introduction

function symbols fi,..., f,,... together with an arity function ar : F — N which
establishes the number of ‘arguments’ associated to each symbol. A replacement
map is a mapping p : F — p(N) satisfying u(f) C {1,..., k}, for each k-ary symbol
f in the signature F [Luc98]|. We use them to discriminate the argument positions on
which the rewriting steps are allowed. In C'SR we only rewrite p-replacing subterms:
every term ¢ (as a whole) is p-replacing by definition; and ¢; (as well as all its u-
replacing subterms) is a p-replacing subterm of f(ty,...) if ¢ € u(f).

Example 1 Consider the following orthogonal TRS R which is a variant of an
example in [Bor03]:

from(z) — cons(x,from(s(z)))
sel(0, cons(x,zs)) — =«
sel(s(y), cons(z,zs)) — sel(y,xs)
minus(z,0) — x
minus(s(z),s(y)) — minus(x,y)
quot(0,s(y)) — 0
quot(s(2), 5(y)) — s(quot(minus(z,y), s()))
zWquot(nil,nil) — mnil
zWquot(cons(z,zs),nil) — nil
zWquot(nil, cons(z,xs)) — nil
zWquot(cons(z, xs), cons(y,ys)) — cons(quot(z,y), zWquot(xs,ys))

together with p(cons) = {1} and u(f) = {1,...,ar(f)} for all other symbols f.
According to [GMO02a], innermost p-termination of R implies its p-termination as
well. We will show how R can easily be proved innermost p-terminating (and hence
p-terminating) by using the results in this paper.]

The replacement map in Example 1 exemplifies one of the most typical applica-
tions of context-sensitive rewriting as a computational mechanism. The declaration
p(cons) = {1} disallows reductions on the list part of the list constructor cons,
thus making possible a kind of lazy evaluation of lists. We can still use projection
operators as sel to continue the evaluation when needed. The other typical applica-
tion is the declaration p(if) = {1} which allows us to forbid reductions on the two
alternatives s and t of if-then-else expressions if(b, s,t) whereas it is still possible
to perform reductions on the boolean part b, as required to implement the usual
semantics of the operator.

Termination is one of the most interesting practical problems in computation and
software engineering. A program or computational system is said to be terminating
if it does not lead to any infinite computation for any possible call or input data.
Ensuring termination is often a prerequisite for essential program properties like
correctness. Termination is also one of the most interesting problems when dealing
with CSR. With CSR we can achieve a terminating behavior with nonterminating
TRSs by pruning (all) infinite rewrite sequences.

Our focus is on termination of innermost context-sensitive rewriting (i.e., the
variant of CSR where only the deepest p-replacing redexes are contracted). Termi-
nation of innermost context-sensitive rewriting has been proved useful for proving
termination of programs in programming languages like Maude and OBJ* which
permit to control the program execution by means of such context-sensitive anno-
tations [LucOla, LucO1b]. Techniques for proving termination of innermost CSR
were first investigated in [GMO02b, LucOla]. These papers, though, only consider
transformational techniques, where the original CS-TRS (R, i) is transformed into
a TRS Rg (where © represents the transformation which has been used) whose
innermost termination implies the innermost termination of CSR for (R,). The
dependency pairs method [AG00, GAO02, GTS04, GTSF06, HM04, HMO05|, one of
the most powerful techniques for proving termination of rewriting, had not been
investigated in connection with proofs of termination of CSR until [AGLO6]. As
shown in [AGLOT], proofs of termination using context-sensitive dependency pairs
(CSDPs) are much more powerful and faster than any other technique for proving
termination of CSR. As we show here, dealing with innermost CSR, we have a
similar situation.

Proving innermost termination of rewriting is often easier than proving termina-
tion of rewriting [AGO00] and, for some relevant classes of TRSs, innermost termina-
tion of rewriting is even equivalent to termination of rewriting [Gra95, Gra96]. In
[GMO02b, GL02] it is proved that the equivalence between termination of innermost
CSR and termination of CSR holds in some interesting cases (e.g., for orthogonal
CS-TRSs).

Plan of the paper

After some preliminaries in Chapter 2, we develop the material in the paper in
three main parts:

1. We investigate the structure of infinite innermost context-sensitive rewrite
sequences. This analysis is essential to provide an appropriate definition of
innermost context-sensitive dependency pair, and the related notions of inner-
most chains, graph, etc. Chapter 3 provides appropriate notions of minimal
innermost non-y-terminating terms and introduces the main properties of such
terms. Chapter 4 recalls the notion of hidden term in a CS-TRS. This notion
turns to be essential for the appropriate treatment of our dependency pairs.
Chapter 5 investigates the structure of infinite innermost context-sensitive
rewrite sequences starting from minimal innermost non-pu-terminating terms.

2. We define the notions of innermost context-sensitive dependency pair and in-
nermost context-sensitive chain of pairs and show how to use them to charac-
terize innermost termination of C'SR. Chapters 6 and 7 introduce the general
framework to compute and use innermost context-sensitive dependency pairs

4 1. Introduction

for proving (innermost) termination of CSR. The introduction of a new kind
of dependency pairs (the collapsing dependency pairs) leads to a notion of
innermost context-sensitive dependency chain, which is quite different from
the standard one. In Chapter 8 we prove that our innermost context-sensitive
dependency pairs approach fully characterizes termination of innermost CSR.

3. We describe a suitable framework for dealing with proofs of termination of
(innermost) CSR by using the previous results. Chapter 9 provides an adapta-
tion of the dependency pair framework [GTS04, GTSF06] to (innermost) CSR
by defining appropriate notions of CS-termination problem and CS-processor
which rely in the notions and results investigated in the second part of the
paper. Chapter 10 relates innermost termination of C'SR and u-termination
as well as with full rewriting. Chapter 11 introduces the notion of innermost
contezt-sensitive (dependency) graph and the associated CS-processor which
formalizes the usual practice of analyzing the absence of infinite (minimal) in-
nermost chains by considering the (maximal) cycles in the dependency graph.
As in the standard case, the ICS-dependency graph is not computable, so
we show how to obtain the estimated 1CS-dependency graph which is a com-
putable overestimation of it. Chapter 12 adapts the notion of usable rules to
deal with proofs of innermost C'SR by using term orderings. We introduce the
notion of p-reduction pair, which is the straightforward adaptation of reduction
pairs used for dealing with dependency pairs in the standard case. Chapter 13
adapts narrowing transformation of pairs in [GTSFO06] to (innermost) CSR
and the new framework. Chapter 14 adapts to the context-sensitive setting,
the notion of usable argument introduced by Férnandez [Fer(05] to prove in-
nermost termination of rewriting by proving termination of CSR. In this way,
we can prove innermost termination of CSR by proving innermost termina-
tion of CSR using a more restrictive replacement map. We also include this
criterion as a processor in the (innermost) context-sensitive dependency pairs
framework.

The paper ends with an experimental evaluation of our techniques in Chapter 15.
Chapter 16 concludes.

Preliminaries

This chapter collects a number of definitions and notations about term rewriting.
More details and missing notions can be found in [BN98, Ohl02, TeR03].

Let A be a set and R C A X A be a binary relation on A. We denote the transitive
closure of R by R* and its reflexive and transitive closure by R*. We say that R is
terminating (strongly normalizing) if there is no infinite sequence a; R as R ag---.
A reflexive and transitive relation R is a quasi-ordering.

Signatures, Terms, and Positions

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, ...}, each having a fixed arity given
by a mapping ar : F — N. The set of terms built from F and X is 7(F,X). A
term is ground if it contains no variable. A term is said to be linear if it has no
multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p,q, ... are rep-
resented by chains of positive natural numbers used to address subterms of t. We
denote the empty chain by A. Given positions p, ¢, we denote their concatenation
as p.q. Positions are ordered by the standard prefix ordering: p < ¢ if 3¢’ such that
q = p.q¢" If pis a position, and @ is a set of positions, p.QQ = {p.q | ¢ € Q}. The set
of positions of a term ¢ is Pos(t). Positions of nonvariable symbols in ¢ are denoted
as Posg(t), and Posy(t) are the positions of variables. The subterm at position p
of ¢ is denoted as t|, and t[s], is the term ¢ with the subterm at position p replaced
by s.

We write t > s, read s is a subterm of t, if s = t|, for some p € Pos(t) and t > s
if t>sand ¢t # s. We write ¢ [f s and ¢ 1§ s for the negation of the corresponding
properties. The symbol labeling the root of ¢ is denoted as root(t). A contest is a
term C' € 7 (F U {O}, X) with a ‘hole’ O (a fresh constant symbol). We write C[|,
to denote that there is a (usually single) hole [0 at position p of C. Generally, we
write C[] to denote an arbitrary context and make explicit the position of the hole
only if necessary. C[]| =0 is called the empty context.

6 2. Preliminaries

Substitutions

A substitution is a mapping o : X — T(F,X). Denote as ¢ the ‘identity’
substitution: e(xz) = x for all x € X. The set Dom(c) = {x € X | o(x) # z} is
called the domain of o.

Remark 2 In this paper, we do not impose that the domain of the substitutions is
finite. This is usual practice in the dependency pairs approach, where a single sub-
stitution is used to instantiate an infinite number of variables coming from renamed
versions of the dependency pairs (see below). [|

Whenever Dom(c) N Dom(c’) = @, for substitutions o, 0’, we denote by o U o', a
substitution such that (¢ Uo’)(z) = o(z) if x € Dom(o) and (o0 U o')(x) = o'(z) if
x € Dom(d’).

Renamings and unifiers

A renaming is an injective substitution p such that p(z) € X for all z € X'. For
renamings, we assume that Var(p) is finite (which is the usual practice) and also
idempotency, i.e., p(p(z)) = p(x) for all z € X.

The quasi-ordering of subsumption < over 7(F,X) ist < t' < Jo. ' = o(t).
We denote as 0 < ¢’ the fact that o(z) < o'(x) for all z € X, thus extending the
quasi-ordering to substitutions.

A substitution o such that o(s) = o(t) for two terms s,t € T (F,X) is called a
unifier of s and t; we also say that s and ¢ unify (with substitution o). If two terms
s and t unify, then there is a unique (up to renaming of variables) most general
unifier (mgu) @ which is minimal (w.r.t. the subsumption quasi-ordering <) among
all other unifiers of s and ¢.

A relation R C T(F,X) x T(F,X) on terms is stable if for all terms s,t €
7T (F, X), and substitutions o, we have o(s) R o(t) whenever s R ¢.

Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (I, r), written [— r, with {,r € T(F,X),l ¢ X
and Var(r) € Var(l). The left-hand side (lhs) of the rule is [and r is the right-hand
side (rhs). A rewrite rule [— r is said to be collapsing if r € X. A Term Rewriting
System (TRS) is a pair R = (F, R), where R is a set of rewrite rules. Given TRSs
R = (F,R) and R' = (F,R'), we let RUR' be the TRS (FUF,RUR'). An
instance o(l) of a lhs [of a rule is called a redex. Given R = (F, R), we consider F
as the disjoint union F = C W D of symbols ¢ € C, called constructors and symbols
f € D, called defined functions, where D = {root(l) | | - r € R} and C = F — D.

Example 3 Consider again the TRS in Example 1. The symbols from, sel, minus,
quot and zWquot are defined, and s, 0, cons, and nil are constructors. []

For simplicity, we often write | — r € R instead of | — r € R to express that the
rule [— r is a rule of R.

A term t € T(F, X) rewrites to s (at position p), written t 25 s (or just t — s,
ort —g s), if t|, = o(l) and s = t[o(r)],, for some rule I — r € R, p € Pos(t) and
substitution 0. We write t 235 s if t 55 s for some q > p. A TRS R is terminating
if its one step rewrite relation —5 is terminating.

Innermost rewriting

A term is a normal form if it contains no redex. A substitution ¢ is normalized
if o(x) is a normal form for all x € Dom(c). A term f(ty,...,t;) is argument nor-
malized if ¢; is a normal form for all 1 <7 < mn. An innermost redex is an argument
normalized redex. A term s rewrites innermost to t, written s —; t, if s — ¢ at
position p and s, is an innermost redex. Let R be a TRS. For any symbol f let
Rules(R, f) be the set of rules [— 7 defining f and such that the left-hand sides [
are argument normalized. For any term ¢ the set of usable rules U(R, 1) is as follows:

U(R, x) = O
U(R, f(t1,...,t,)) = Rules(R,f)uU |J UR, t)U U U(R/,r)
icar(f) I—re Rules(r.f)

where R'= R — Rules(R, f).

(Innermost) Context-Sensitive Rewriting

A mapping p : F — o(N) is a replacement map (or F-map) it Vf € F, u(f) C
{1,...,ar(f)} [Luc98]. Let Mz be the set of all F-maps (or Mg for the F-maps of
a TRS (F,R)). Let pt be the replacement map given by ur(f) = {1,...,ar(f)}
for all f € F (i.e., no replacement restrictions are specified).

A binary relation R on terms is p-monotonic if whenever ¢ R s we have that
flt, oo tia,t o ty) R f(t, . tiq, 8, tg) for all f € F i € u(f), and ¢, s,
t1,...,tp € T(F,X). If Ris pur-monotonic, we just say that R is monotonic.

The set of p-replacing positions Pos”(t) of t € T(F,X) is: Pos”(t) = {A}, if
t € X and Pos”(t) = {A} UUic,roor(r)) ©-Pos”(t]:), if t € X. When no replacement
map is made explicit, the p-replacing positions are often called active; and the non-
p-replacing ones are often called frozen. The following result about CSR is often
used without any explicit mention.

Proposition 4 [Luc98] Lett € T(F,X) and p = q.¢' € Pos(t). Then p € Pos"(t)
iff ¢ € Post(t) N q' € Pos'(t|,)

8 2. Preliminaries

The p-replacing subterm relation >, is given by ¢, s if there is p € Pos"(t) such
that s = t|,. We write ¢t >, sif t>, s and t # s. We write t >, s to denote that s is
a non-p-replacing (hence strict) subterm of ¢: ¢ >, s if there is p € Pos(t) — Pos”(t)
such that s = ¢|,. The set of pi-replacing variables of a term ¢, i.e., variables occurring
at some p-replacing position in ¢, is Var#(t) = {x € Var(t) | t>,x}. The set of non-
p-replacing variables of ¢, i.e., variables occurring at some non-p-replacing position
in ¢, is Varf(t) = {x € Var(t) | t>yx}. Note that Var®(t) and Var#(t) do not need
to be disjoint.

A pair (R, p) where R is a TRS and p € My is often called a CS-TRS. In
contezt-sensitive rewriting, we (only) contract p-replacing redexes: t p-rewrites to

s, written ¢ <, s (or t —x_, s and even t — s), if t ox s and p € Pos"(t).

Example 5 Consider R and p as in Example 1. Then, we have:
from(0) <, cons(0, from(s(0)) +, cons(0, cons(s(0), from(s(s(0)))

Since the second argument of cons is not p-replacing, we have that
2 ¢ Pos"(cons(0,from(s(0))), and the redex from(s(0)) cannot be p-rewritten.
]

A term t is p-terminating (or (R, u)-terminating, if we want an explicit reference
to the involved TRS R) if there is no infinite p-rewrite sequence t = t; —, ty —,
-, t, <, - starting from t. A TRS R is p-terminating if <, is terminating.
A prnormal form is a term which cannot be p-rewritten. Let NF,(R) (or just
NF, if no confusion arises) be the set of y-normal forms of a TRS R.
A substitution o is g-normalized if o(z) is a p-normal form for all x € Dom(o).
A term t = f(t1,...,1) is argument p-normalized if ¢; is a p-normal form for all
i € u(f). A p-innermost redex is an argument p-normalized redex, i.e., t = o(l) for
some substitution o and rule [— r € R and for all p € Pos”(t — A), t|, € NF,. A

term s innermost p-rewrites to ¢, written s < ¢, if s r t, p € Pos*(s), and s, is

. . o A A
a p-innermost redex. Let innermost p-rewriting below the root be Ln = (<>—> N

;). Termination of CSR is fully captured by the so-called p-reduction orderings,
i.e., well-founded, stable orderings 3 which are y-monotonic. A TRS R is innermost

p-terminating if <, ; is terminating. We write s ;R,u,i tit s =% ,;tand ¢ € NF,.

A term t p-narrows to a term s (written ¢ ~»g ¢), if there is a nonvariable
p-replacing position p € Pos'z(t) and a rule [— r in R (sharing no variable with ¢)
such that |, and [unify with most general unifier § and s = 0(¢[r],).

Minimal innermost non-u-terminating
terms and infinite innermost
(-rewrite sequences

Given a TRS R = (CWD, R), the minimal nonterminating terms associated to R are
nonterminating terms ¢ whose proper subterms u (i.e., t > u) are terminating; 7., is
the set of minimal nonterminating terms associated to R [HM04, HMO07]. Minimal
nonterminating terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term ¢ € 7,
(i.e.,, s> 1), and

2. minimal nonterminating terms ¢ are always rooted by a defined symbol f € D:
Vt € T, root(t) € D.

Considering the structure of the infinite rewrite sequences starting from a minimal
nonterminating term t = f(ty,...,tx) € 7 is helpful to come to the notion of
dependency pair.

Proposition 6 [HM04, Lemma 1] Let R = (CW D, R) be a TRS. For all t € T,

there exist | — r € R, a substitution o and a term u € T, such that root(u) € D,
¢ 2 o(l) RN o(r) >u and there is a nonvariable subterm v of r, r > v, such that

u=o(v).

In the following, we show how to adapt this notion to investigate infinite inner-
most p-rewrite sequences.

3.1 Minimal innermost non-u-terminating terms

Before starting our discussion about (minimal) innermost non-p-terminating terms,
we provide an obvious auxiliary result about innermost u-terminating terms.

Lemma 7 Let R = (F,R) be a TRS, n € Mg, and s,t € T(F,X). Ift is innermost
p-terminating, then:

103. Minimal innermost non-u-terminating terms and infinite innermost y-rewrite sequences

1. If t>, s, then s is innermost pu-terminating.
2. Ift =% . s, then s is innermost p-terminating.

Given a TRS R = (F, R) and a replacement map p € Mz, maybe the most straight-
forward definition of minimal innermost non-u-terminating terms is the following:
let 775, be a set of minimal innermost non-p-terminating terms in the following
sense: t belongs to i7,,, if ¢ is innermost non-yx-terminating and every strict sub-
term u (i.e., t > u) is innermost p-terminating. It is obvious that root(t) € D for
all t € 17, ,. We also have:

Lemma 8 Let R = (F,R) be a TRS, n € Mg, and s € T(F,X). If s is not
innermost pi-terminating, then there is a subterm t of s (s> t) such that t € i1y,

Proof.

By structural induction. If s is a constant symbol, it is obvious: take ¢t = s.
If s = f(s1,...,sk), then we proceed by contradiction. If there is no subterm ¢ of
s such that t € i7 ,, then in particular s ¢ 17, i.e., (since s is not innermost
p-terminating) there is a strict subterm ¢ of s (s > ¢) which is not innermost p-
terminating. By the Induction Hypothesis, there is ¢ € i7., , such that ¢>¢'. Then,
we have s > t/, thus leading to a contradiction. []

Unfortunately, there can be innermost non-pu-terminating terms having no pu-
replacing subterm in 17 ,,.

Example 9 Consider the following TRS R:
a - c(t(a) tc(r) — @

together with p(c) = @ and p(f) = {1} and s = f(c(f(a))). Note that s is not
innermost p-terminating, but s ¢ 17, because f(c(f(a))) > f(a) and f(a) is not
innermost p-terminating. Note that f(c(f(a))) > P f(a). The only u-replacing strict
subterm of s is ¢c(f(a)), which is innermost p-terminating, i.e., c(f(a)) € i7,. ™

Therefore, this kind of minimal innermost non-p-terminating terms are not the most
natural ones because they could occur at non-pu-replacing positions, where no inner-
most p-rewriting step is possible. So, this simple notion would not lead to an ap-
propriate generalization of Proposition 6 to CSR. Still, we use them advantageously
below; for this reason we pay them some attention here.

There is a suitable generalization of Proposition 6 to CSR (see Proposition 18
below) based on the following notion.

Definition 10 (Minimal innermost non-y-terminating term) Let iM,, be
a set of minimal innermost non-u-terminating terms in the following sense: t belongs
to iMu,, if t is not innermost p-terminating and every strict p-replacing subterm
s of t (i.e., t >, s) is innermost p-terminating.

3.1. Minimal innermost non-y-terminating terms 11

Note that 7., C iMy,. In the following we often say that terms in i7,, are
strongly minimal innermost non-p-terminating terms. Now we have the following.

Lemma 11 Let R = (F,R) be a TRS, n € My, and s € T(F,X). If s is not
imnermost p-terminating, then there is a p-replacing subterm t of s such that t €

iMoo

Proof.

By structural induction. If s is a constant symbol, it is obvious: take ¢t = s.
If s = f(s1,...,58k), then we proceed by contradiction. If there is no p-replacing
subterm t of s such that t € iM ,, then in particular s ¢ iM,, i.e., there is
a strict p-replacing subterm t of s which is not innermost p-terminating. By the
Induction Hypothesis, ¢ contains a p-replacing subterm ¢’ which belongs to iM ..
But, since t is a p-replacing subterm of s (ie., t = s|, for some p € Pos”(s)),
t' itself is also a p-replacing subterm of s (because t' = t|, for some ¢ € Pos"(t)
and p.qg € Pos"(s) by Proposition 4) which belongs to iM ,, thus leading to a
contradiction. m

Obviously, if t € My, then root(t) is a defined symbol. Since innermost p-
terminating terms are preserved under innermost p-rewriting (Lemma 7), it follows
that M ,, is preserved under innermost p-rewritings below the root in the following
sense.

>A
Lemma 12 Let R = (F,R) be a TRS, p € Mz, and t € iMy . Ift —F u and u
is not innermost p-terminating, then u € iMy .

Proof.

All innermost p-rewritings below the root are issued on p-replacing and in-
nermost p-terminating terms which remain innermost p-terminating by Lemma 7.
Then, if u is not innermost p-terminating, all its p-replacing subterms (which are
the ones which can be originated or transformed by innermost u-rewritings from ¢
to u) have to be innermost p-terminating as well. Hence, u € iM . []

Lemma 12 does not hold for i7 ,: consider the CS-TRS (R, 1) in Example 9. We
have that f(a) € 7w ,. Now, f(a) —,; f(c(f(a))) and £(c(£(a))) is not innermost
p-terminating. However, f(c(f(a))) & 7%, as shown in Example 9.

123. Minimal innermost non-u-terminating terms and infinite innermost y-rewrite sequences

Hidden terms in minimal innermost
(i-rewrite sequences

Given a CS-TRS (R,) the hidden terms are nonvariable terms occurring on some
frozen position in the right-hand side of some rule of R. As we show in the next chap-
ter they play an important role in infinite minimal innermost p-rewrite sequences
associated to R.

Definition 13 (Hidden symbols and terms [AGLO8]) Let R = (F,R) be a
TRS and p € Mg. We say that t € T(F,X) — X is a hidden term if there is
arulel —r € R such that r >y t. Let HT (R,) (or just HT, if R and p are clear
for the context) be the set of all hidden terms in (R,un). We say that f € F is a
hidden symbol if it occurs in a hidden term. Let H(R, p) (or just H) be the set of
all hidden symbols in (R,).

Example 14 For R and p as in Example 1, the maximal hidden terms are
from(s(z)), and zWquot(zs,ys). The hidden symbols are from, s and zWquot. =

In the following, we also use DHT = {t € HT | root(t) € D} for the set of hidden
terms which are rooted by a defined symbol.

The following lemma says that frozen subterms ¢ in the contractum o(r) of a
redex o(l) which do not contain ¢, are (at least partly) ‘introduced’ by a hidden
term in the right-hand side r of the involved rule [— 7.

Lemma 15 ([AGLO8]) Let R = (F,R) be a TRS and p € Mx. Lett € T(F,X)
and o be a substitution. If there is a rule | — r € R such that o(l) t¢ t and o(r) >y,
then there is no x € Var(r) such that o(x)>t. Furthermore, there is a termt' € HT
such that r >y tand o(t') =t.

The following lemma establishes that minimal not innermost p-terminating and
non-p-replacing subterms occurring in a innermost p-rewrite sequence involving only
minimal terms directly come from the first term in the sequence or are instances of
a hidden term.

14 4. Hidden terms in minimal innermost p-rewrite sequences

Lemma 16 Let R = (F,R) be a TRS and n € Mg. Let A be an innermost jui-
rewrite sequence t; —i ty =i -+ =i t, with t; € iMy, for all i, 1 < i < n and
n > 1. If there is a term t € iM,, such that t, ¢ t and t, >y t, then t = o(s) for
some s € DHT and substitution o.

Proof. By induction on n:

1. If n = 1, then it is vacuously true because t; ¥ t and t; >yt do not simulta-
neously hold.

2. If n > 1, then we assume that ¢; ¥ t and ¢, >y t. Let | — r € R be such that
t,—1 = Clo(l)] and t,, = C[o(r)] for some context C[] and substitution o. We
consider two cases: either ¢,,_; > %t holds or not.

(a) Ift,_ 1 > z then by the induction hypothesis the conclusion follows.

(b) If t, 4 D%t does not hold, then, since assuming t,_1 >, t leads to a
contradiction (because t,,_; € iMq, in the hypothesis implies that ¢ ¢
iMoo), we have that ¢,_; ¥ t. In particular, o(l) % t; then, since ¢, >t
there must be o(r) &>, . Thus, by Lemma 15 we conclude that ¢ = oé)
for some s € ‘H7 and substitution o. Since t € iMq, ,, it follows that
root(t) = root(s) € D. Thus, s € DHT.

We use the previous results to investigate infinite sequences that combine in-
nermost p-rewriting steps on minimal innermost non-u-terminating terms and the
extraction of such subterms as p-replacing subterms of (instances of) right-hand
sides of the rules.

Proposition 17 Let R = (F,R) be a TRS and u € Mg. Let A be a finite or
A >A A >A
infinite sequence of the form ty —; s D, th ——F ty —; 59 >, th —— ts3--- with t;,

t: € iMooy, for all i > 1. If there is a term t € iMo,,, such that t >yt for some
i =1, then ty >yt ort =o(s) for some s € DHT and substitution o.

Proof. By induction on i:
1. If i =1, it is trivial.
2. If i >1and ¢t; > i t, then we consider two cases: either ¢;,_; > %t holds or not.

(a) Ift; 1 > z then by the induction hypothesis the conclusion follows.

(b) Ift; 4 >yt does not hold, thenlet [— 7 € R and o be such that £;_, = o(l)
and s;_1 = o(r) >, t,. Since t;_; >, t leads to a contradiction (because
ti-1 € iMy, implies that ¢ ¢ iM), we have that t;,_; ¥ t. Then we
consider two cases: either ¢; >t or ¢ [¥ ¢.

15

(A) If ¢ > t, since t],t € iM, the case t; >, t is excluded and the
only possibility is that ¢ >, ¢. Then, since o(l) = t;-1 ¥ ¢ and
o(r)>,t >yt Le. o(r)>yt, by Lemma 15 we conclude that t = o(s)
for some s € ‘H7 and substitution o. Since t € iMq,,, it follows
that root(t) = root(s) € D. Thus, s € DHT.

(B) If ; t¢ t, then, by applying Lemma 12 and Lemma 16 to the inner-

>A
most u-rewrite sequence t,——7t; the conclusion follows.

16

4. Hidden terms in minimal innermost y-rewrite sequences

Infinite innermost y-rewrite
sequences starting from minimal
terms

The following proposition establishes that, given a minimal not innermost
p-terminating term ¢ € iMq ,, there are only two ways for an infinite innermost
p-rewrite sequence to proceed. The first one is by using ‘visible’ parts of the rules
which correspond to u-replacing nonvariable subterms in the right-hand sides which
are rooted by a defined symbol. The second one is by showing up ‘hidden’ not
innermost p-terminating subterms which are activated by migrating variables in a
rule [— r, i.e., variables © € Var*(r) — Var*(l) which are not p-replacing in the
left-hand side [but become p-replacing in the right-hand side r.

Proposition 18 Let R = (F,R) = (CWD,R) be a TRS and o € Mg. Then for
all t € iMoo, there exist | — r € R, a substitution o such that o(l) is argument

>A A
p-normalized and a term u € iMy,, such that t —F o(l) —io(r) >, u and either
1. there is a p-replacing subterm s of r, r >, s, such that uw = o(s), or

2. there is x € Vart(r) — Vart(l) such that o(z) >, u.

Proof.

Consider an infinite innermost p-rewrite sequence starting from ¢. By definition
of iM ,, all proper p-replacing subterms of ¢ are innermost p-terminating. There-
fore, ¢t has an inner reduction (of innermost p-rewriting steps) to an instance o (1) of
the left-hand side of a rule [— r of R, such that no strict u-replacing subterm of

o(l) is a redex, i.e. o(l) is argument p-normalized. Then we have tii* o(l) An o(r)
and o(r) is not innermost u-terminating. Note that, o(l) must be argument p-
normalized; otherwise, the last step would not be an innermost p-rewriting step.
Thus, we can write t = f(t1,...,t) and o(l) = f(ly,...,lx) for some k-ary de-
fined symbol f, and t; —§ o(l;) for all i, 1 < ¢ < k. Since all ¢; are innermost
p-terminating for i € p(f), by Lemma 7, o(l;) and all its p-replacing subterms also

18 5. Infinite innermost p-rewrite sequences starting from minimal terms

are. In particular, o(x) is innermost p-terminating for all p-replacing variables z in
l: x € Var*(l) (in fact o(x) € NF,). Since o(r) is not innermost p-terminating, by
Lemma 11 it contains a p-replacing subterm u € iMy, 0 o(r) B, u, i.e., there is a
position p € Pos"(co(r)) such that o(r)|, = u. We consider two cases:

1. If p € Posg(r) is a nonvariable position of r, then there is a p-replacing
subterm s of 7, such that u = o(s).

2. If p & Posg(r), then there is a p-replacing variable position ¢ € Pos*(r) N
Posy(r) such that ¢ < p. Let x € Var*(r) be such that r|, = x. Then,
o(z)>,u and o(z) is not innermost p-terminating (by assumption, u € iM ,
is not innermost p-terminating: by Lemma 7, o(z) cannot be innermost p-
terminating either). Since o(l;) is innermost p-terminating for all i € u(f), and
o(z) is also innermost p-terminating (in fact o(z) € NF,) for all p-replacing
variables in [, we conclude that = € Var#(r) — Var#(l).

Proposition 18 entails the following result, which establishes some properties of
infinite sequences starting from minimal innermost non-u-terminating terms.

Corollary 19 Let R = (F,R) be a TRS and p € Mg. For allt € iMy,, there is
an infinite sequence

t—i01(ly) =i 01(r1) B, t1 =] 0a(l2) =i 02(r2) B, tg —] -

where, for all i > 1, l; — r; € R are rewrite rules, o; are substitutions, o;(l;)
is argument pi-normalized, and terms t; € iMy, are minimal innermost non-ji-
terminating terms such that either

1. t; = 0i(s;) for some s; such that r; >, s;, or

2. oi(x;) Bty for some x; € Vart(r;) — Vart(l;).

Remark 20 The (—,; U >>,)-sequence in Corollary 19 can be easily viewed as
an infinite innermost p-rewrite sequence by just introducing appropriate contexts
Cil lp; with p-replacing holes: since o;(r;) &>, t;, there is p; € Pos"(o;(r;)) such that
oi(ri) = o:(ri)[ti]p;; just take Ci[], = o(r;)[O]p,. Then we get:

t =rui 01l) Drui Ciltilp, =R Ciloa(l2)lp —ruwi CilColtalplp =R

Note that, e.g., p1.p2 € Pos(C1[Ca[ta]p,]p,) (use Proposition 4). u

5.1. Infinite innermost y-rewrite sequencesstarting from strongly minimal terms 19

5.1 Infinite innermost u-rewrite sequences
starting from strongly minimal terms

In the following, we consider a function REN* which independently renames all
occurrences of p-replacing variables within a term ¢ by using new fresh variables
which are not in Var(t):

e REN(x) = y if = is a variable, where y is intended to be a fresh new variable
which has not yet been used (we could think of y as the ‘next’ variable in an
infinite list of variables); and

o REN“(f(ty,....tx)) = f([t]],. ., [tk]g) for evey k-ary symbol f, where given
aterm s € T(F, X), [s]] = REN*(s) if i € u(f) and [s]/ = s if i & u(f).
Note that REN*(t) renames all p-replacing positions of variables in ¢ by new fresh
variables y but keeps variables at non-pu-replacing positions untouched. Note that, in
contrast to a renaming substitution (often denoted by p), REN* is not a substitution:
it will replace different p-replacing occurrences of the same variable by different
variables.

Proposition 21 ([AGLO8]) Let R = (F,R) = (CWD,R) be a TRS and p € M.

>A
Lett € T(F,X)— & be a nonvariable term and o be a substitution. If o(t)—io(l)
for some (probably renamed) rule | — r € R, then REN"(t) is pi-narrowable.

Corollary 22 Let R = (F,R) be a TRS and p € Mg. Lett € T(F,X)— X be a
nonvariable term and o be a substitution such that o(t) € iMes . Then, REN*(t)
18 p-narrowable.

Proof.

By Proposition 18, there is a rule [— r and a substitution o s.t. a(t):i*a(l)
(since we can assume that variables in [and variables in t are disjoint we can apply
the same substitution o to ¢ and | without any problem). By Proposition 21, the
conclusion follows. n

In the following, we write NARR" () to indicate that ¢ is g-narrowable (w.r.t. the
intended TRS R). We also let

NHT (R,) = {t € DHT | NARR*(REN"(1))}
be the set of hidden terms which are rooted by a defined symbol, and that, after

applying REN", become p-narrowable. As a consequence of the previous results, we
have the following main result which we will use later.

20 5. Infinite innermost p-rewrite sequences starting from minimal terms

Theorem 23 Let R = (F,R) be a TRS and p € My. For allt € i1, there is
an infinite sequence

>A>‘< A >A* A >A>k
t =ty o1(li) =i o1(r1) B ti =7 0a(ly) =i 09(r2) B, te =] -

where, for all i > 1, l; — r; € R, o0; is a substitution, o;(l;) is argument p-
normalized, and t; € iMy,, 15 a minimal innermost non-u-terminating term such
that either

1. t; = 0i(s;) for some s; such that r; >, s;, or

2. oi(x;) B>, t; for some x; € Var*(r;) — Vart(l;) and t; = 0;(t;) for some t] €
NHT and substitution 0;.

Proof.

Since 175, € My, by Corollary 19, we have a sequence

>A A >A A >A
t=to——{ o1(l)) =i0o1(r1) By t1 =] 02(la) =i 0a(r2) By lo— -+
where, for all i > 1, [; — r; € R, o0; is a substitution such that o(l;) is argument
p-normalized, ¢; € iM ,, and either (1) ¢; = o;(s;) for some s; such that r; >, s;
or (2) o;(z;) >, t; for some z; € Var*(r;) — Var*(l;) (and hence o(l;) >y t; and
o(r;) >, t; as well). We only need to prove that terms t; are instances of hidden
terms in N"H7 whenever the second condition holds. By Proposition 17, for all such
terms t;, we have that either (A) oy (l;) >t or (B) t; = 0;(t}) for some t; € DHT and
substitution #;. In the second case (B), we are done by just considering Corollary

>A
22, which ensures that ¢; € N’HT. In the first one (A), since t —F o1 (l;) and o1 (1)
is not innermost p-terminating, by Lemma 12 all terms u; in the y-rewrite sequence

>A >A >A
t = U= - - -~y = 01(ly)

for m > 1, belong to iMy ,: u; € iMo, for all j, 1 < j < m. Since t € 7,
all its strict subterms (disregarding their p-replacing character) are innermost -
terminating. Therefore, ¢ ¢ ¢; (because ¢; is not u-terminating) and by Lemma 16,
ti = 0,(t}) for some t;, € DHT and substitution #;. Again, by Corollary 22 we have
ti e NHT.]

Innermost Context-Sensitive
Dependency Pairs

Lemma 8 and Theorem 23 are the basis for our definition of Innermost Context-
Sensitive Dependency Pairs (ICS-DPs) and the corresponding chains. Together,
they show that every innermost non-u-terminating term s has an associated infinite
innermost p-rewrite sequence starting from a strongly minimal subterm ¢ € 7,
(i.e., s>t). Such a sequence proceeds by first performing some innermost p-rewriting

steps below the root of t to obtain a term ¢’ (i.e., t;Aq*t’) and then applying a rule [—
r at the topmost position of ¢’ (i.e., ' = o(l) for some matching substitution ¢ such
that o(l) is argument p-normalized). According to Proposition 18, the application
of such a rule either

1. introduces a new minimal innermost non-u-terminating subterm w having a
prefix s which is a p-replacing subterm of r (ie., r >, s and u = o(s)).
Furthermore, by Corollary 22, REN*(s) must be p-narrowable; or else

2. takes a minimal innermost non-u-terminating and non-u-replacing subterm w
of t' (ie., ¢/ >y u) and

(a) brings it up to an active position by means of the binding o(x) (i.e.,
o(z) >, u) for some migrating variable x in | — r (ie., v € Var*(r) —
Vart(l)).

(b) At this point, we know that w, which is rooted by a defined symbol due

to u € iMo,, is an instance of a hidden term v’ € NHT: u = (u’') for
some substitution 6.

(c) Afterwards, further inner p-rewritings on u lead to match the left-hand-
side [’ of a new rule I’ — 7’ and everything starts again.

This process is abstracted in the following definition of innermost context-sensitive
dependency pairs.

Given a signature F and f € F, we let f* be a new fresh symbol (often called
tuple symbol or DP-symbol) associated to a symbol f [AG00]. Let F* be the set of
tuple symbols associated to symbols in F. As usual, for t = f(t1,...,tx) € T(F,X),

22 6. Innermost Context-Sensitive Dependency Pairs

we write t* to denote the marked term f*(t;,...,#;). Conversely, given a marked
term t = f4(ty,...,t), where ty,...,t, € T(F,X), we write t* to denote the term
flty, ... ty) € T(F,X). Let THF,X) = {t' | t € T(F,X) — X} be the set of

marked terms.

Definition 24 (Innermost Context-Sensitive Dependency Pairs) Let R =
(F,R) = (CWUD,R) be a TRS and pn € Mx. We define iDP(R,u) = iDP£(R, u) U
iDPx (R, 1) to be the set of innermost context-sensitive dependency pairs (1CS-DPs)
where:

iDP (R, 1)
iDP (R, 1)

We extend p € My into pif € Mzupe by p*(f) = p(f) if £ € F, and p*(f*) = u(f)
if feD.

{I* - s* |l —reRI*€NF,(R),r>, s,root(s) € D,l |5, s, NARR" (REN"(s))}
{I >z |l—reRI*€NF,(R),z € Vart(r) — Vart(l)}

The ICS-DPs u — v € iDPy(R, 1) in Definition 24, consisting of collapsing rules
only, are called the collapsing ICS-DPs.

A rule [— r of a TRS R is p-conservative if Var#(r) C Vart(l), i.e., it does
not contain migrating variables; R is p-conservative if all its rules are (see [Luc96,
Luc06]). The following fact is obvious from Definition 24.

Proposition 25 If R is a p-conservative TRS, then iDP(R, 1) = iDP£(R, 1).

Therefore, in order to deal with p-conservative TRSs R we only need to consider
the ‘classical’” dependency pairs in iDP£(R, p).

Example 26 Consider the following TRS R:

glx) — h(z) h(d) — glc)

c — d

together with u(g) = pu(h) = @ [Zan97, Example 1]. Note that R is p-conservative.
iDP(R, 1) consists of the following (noncollapsing) ICS-DPs:

G(x) — H(x) H(d) — G(c)
with p#(G) = pf(H) = @. n

If the TRS R contains non-p-conservative rules, then we also need to consider
dependency pairs with variables in the right-hand side.

Innermost chains of ICS-DPs

An essential property of the dependency pairs method is that it provides a char-
acterization of termination of TRSs R as the absence of infinite (minimal) chains
of dependency pairs [AG00, GTSF06]. As we prove in Chapter 8, this is also true
for innermost CSR when ICS-DPs are considered. First, we have to introduce a
suitable notion of innermost chain which can be used with ICS-DPs. As in the DP-
framework [GTS04, GTSF06|, where the procedence of pairs does not matter, we
rather think of another TRS P which is used together with R to build the chains.
Once this more abstract notion of chain is introduced, it can be particularized to be
used with ICS-DPs, by just taking P = iDP(R, p).

In innermost CSR, we only perform reduction steps on innermost p-replacing
redezes. Therefore, we have to restrict the definition of chains in order to obtain an
appropriate notion corresponding to innermost CSR. Regarding innermost reduc-
tions, arguments of a redex should be in normal form before the redex is contracted
and, regarding C'SR, the redex to be contracted has to be in a u-replacing position.

Definition 27 (Innermost chain of pairs - Minimal chain) Let R = (F,R)
and P = (G, P) be TRSs and u € Mz g. An innermost (P, R, u)-chain is a finite
or infinite sequence of pairs u; — v; € P, together with a substitution o satisfying

that, for alli > 1, o(u;) € NF,(R) and :

1. if vy & Var(u;) — Vart(u;), then o(v;) ‘L)R,u,i o(uit1), and

2. if v; € Var(w;) — Var*(u;), then there is s; € T(F,X) such that o(v;) >, s;

|
and sg SR O(Uit1).

As usual, we assume that different occurrences of dependency pairs do not share any
variable (renaming substitutions are used if necessary). An innermost (P, R, u)-
chain is called minimal if for all i > 1,

1. if v; € Var(u;) — Vart(u;), then o(v;) is innermost (R, p)-terminating, and

2. if v; € Var(us) — Var*(u;), then s* is innermost (R, p)-terminating and 35; €
NHT (R, u) such that s; = o(5;).

24 7. Innermost chains of ICS-DPs

Note that the condition v; € Var(u;) — Var*(u;) in Definition 27 implies that v; is
a variable. Furthermore, since each u; — v; € P is a rewrite rule (i.e., Var(v;) C
Var(u;)), v; is a migrating variable in the rule u; — v;.

Remark 28 (Conventions about P) The following conventions about the com-
ponent P = (G, P) of our chains will be observed during our development:

1. According to the usual terminology [GTSF06], we often call pairs to the rules
u—veP.

2. Marking is part of the definition of chain: we have to mark terms s; € 7 (F, X)
before connecting them to the instance o (u;11) of the left-hand side of the next
pair. Since marked symbols f* are fresh (w.r.t. the signature F of the TRS
R), we also assume that D N F = @ and D* C G (since we only mark defined
symbols, we do not need to extend the marking to F).

3. We also silently assume that P contains a finite set of rules. This is essential
in many proofs.

In the following, the pairs in a CS-TRS (P, i), where P = (G, P), are partitioned
according to its role in Definition 27 as follows:

Py ={u—veP|veVar(u)—Var*(u)} and Pg = P — Py

Remark 29 (Collapsing pairs) Note that all pairs in Py = (G, Py) are collaps-
ing. The rulesin Pg = (G, Pg) can be collapsing as well: a rewrite rule f(z) — x € P
with u(f) = {1} does not belong to Py but rather to Pg because x is not a migrating
variable.

Despite this fact, we refer to Py as the set of collapsing pairs in P because its
intended role in Definition 27 is capturing the computational behavior of collapsing
ICS-DPs in iDPx (R,). u

Remark 30 (Notation for chains) In general, an innermost (P, R, i1)-chain can
be written as follows:

o(uy) —p, o Eﬁ th L’R,u,i o(uz) —p, o ‘th to L’R,u,i e
where, for all # > 1 and u; — v; € P,
1. if u; — v; € P, then t; = o(v;),
2. if u; — v; € Py, then t; = sf for some term s; such that o(v;) >, s;.
The relation Eft is defined as follows:
o 5 ¢ is equivalent to s>, t* if s € T(F,X) and t € T4 F, X), and

e s lzﬁt is equivalent to s =t for s,t € TH(F, X).

7.1. Properties of some particular chains 25

7.1 Properties of some particular chains

In the following, we let NHT; p(R, 1) C NHT (R, 1) (or just NHT,; » if R and
are clear from the context) be as follows:

NHT; p(R,p) = {t € NHT (R, 1) | 3u — v € P, 30,0, 0(t) ppi 0/ ()}

This sets contains the narrowable hidden terms which innermost ‘connect’ with
some pair in P.

Remark 31 Note that N'H7; p(R, 1) is not computable, in general, due to the
need of checking the reachability of 6 (u) from §(#¥) using innermost CSR. Suitable
(over) approximations are discussed below. n

We let P denote the subTRS of Py containing the rules whose migrating variables
occur on non-u-replacing immediate subterms in the left-hand side:

PL={f(us,...,up) w2 €Px|3i,1 <i<kidu(f),r e Var(u)}
Proposition 32 Let R = (F,R) and P = (G, P) be TRSs and p € Mz g.

1. If NHT ;p = &, then every infinite minimal innermost (P, R, u)-chain is an
infinite minimal innermost (Pg, R, p)-chain and there is no infinite minimal
innermost (Px, R, jt)-chain.

2. If P = P, then there is no infinite innermost (P, R, u)-chain.

Proof.

1. By contradiction. Assume that there is an infinite minimal innermost (P, R, u1)-
chain containing any u; — v; € Pxy. By Definition 27, such a pair must be

!
followed by a pair u; 1 — v;11 € P such that ei(g’ﬁ) i 0(uit1) for some
5; € NHT and substitution ;. Therefore, t, € NHT ;p, but NHT ;p = &,
leading to a contradiction.

2. By contradiction. Assume that there is an infinite innermost chain which only
uses dependency pairs u; — x; € Py for all i > 1. Let f; = root(u;) for i > 1.
Then, by definition of P4, for all i > 1 thereis j; € {1,...,ar(f;)}—u(f;) such
that w;|;, > ;. According to Definition 27, we have that o(u;)|;, > o(z;) >, s;

for some term s; such that 3? ‘;R,u,i o(u;y1), with root(s?) = root(uiy1) = fir1
and j;11 & p(fir1). Since no innermost p-rewriting step is possible on the j;,1-
th immediate subterm s;|;,,, of s;, it follows that s;|;,,, = 0(it1)j,, >0 (@is1),
ie., o(x;)>o(xq) foralli > 1. We get an infinite sequence o(x1)>0(xe)>>- - -
which contradicts well-foundedness of .

26

7. Innermost chains of ICS-DPs

The following proposition establishes some important ‘basic’ cases of (absence

of) infinite context-sensitive chains of pairs which are used later. Note that in the
innermost case, obviously, also holds.

Proposition 33 Let R = (F,R) and P = (G, P) be TRSs and u € Mz g.

1. If P =&, then there is no (innermost) (P, R, p)-chain.
. If R = @, then there is no infinite (innermost) (Px, R, u)-chain.

3. Let u — v € Pg be such that v' = 6(u) for some substitution 6 such that 6(u) €

NF,(R) and renamed version v of v. Then, there is an infinite innermost

(P, R, 1)-chain.

Proof.

1. Trivial.

2. By contradiction. If there is an infinite (Py, R, pt)-chain, then, since there is

no rule in R, there is a substitution o such that
o(ur) —p, o(xr) Eﬁ t1 = o(ug) —p, o(xs) Eﬁ to = o(ug)---

where t; = ¢ for some terms s; € T (F, X) such that o (z;)>,s; for i > 1. Since
x; € Var(u;) and w; is not a variable, we have u; > x;, hence o(u;) > o(x;) (by
stability of &), and also o (u;) > s; for all i > 1. Since s; and o(u;41) only differ
in the root symbol, we can actually say that s; > s;,1 for all ¢ > 1. Thus, we
obtain an infinite sequence s1>so>- - - which contradicts the well-foundedness
of .

. Since we always deal with renamed versions u; — v; of the pair u — v € P, for

each x € Var(u), we write z; to denote the ‘name’ of the variable x in u; — v;.
According to our hypothesis, we can assume the existence of substitutions
;11 such that v; = 6;,1(u;y1). Note that, for all z € Var(u) and i > 1,
Var(0i:1(uis1)) € Var(v;) € Var(u;) and §(u) € NF,(R) is needed to deal

only with innermost p-chains.

We can define an infinite innermost ({u — v}, &, p)-chain (hence an innermost
(P, R, i)-chain) by using the renamed versions u; — v; of u — v for ¢ > 1
together with ¢ given (inductively) as follows: for all x € Var(u), o(z1) = 4
and o(z;) = o(6;(x;)) for all i > 1. Note that o(v;) = 0(0;41(uiv1)) = o(uisq)
for all 7 > 1.

7.1. Properties of some particular chains 27

The following example shows that Proposition 33(2) does not hold for TRSs P
with arbitrary rules.

Example 34 Consider P = {F(z) — z,G(z) — F(g(z))} together with a TRS R
with an emtpy set of rules: R = (F,@). Let u be given by u(f) = @ forall f € FUG.
Note that Py consists of the pair F(z) — x because x € Var(F(z)) — Var*(F(z)).
Then, we have an infinite chain

F(g<x>> TP 8(36) E;ﬂ; G(:U) —P.u F(g(x)) SR

Note that this chain is not minimal because N'H7 = &, hence g(z) is not an
instance of any term in N'H7T . n

28

7.

Innermost chains of ICS-DPs

Characterizing innermost termination
of CSR using chains of ICS-DPs

The following result establishes the soundness of the innermost context-sensitive
dependency pairs approach. As usual, in order to fit the requirement of variable-
disjointness among two arbitrary pairs in a chain of pairs, we assume that appro-
priately renamed ICS-DPs are available when necessary.

Theorem 35 (Soundness) Let R be a TRS and o € Mg. If there is no infinite
minimal innermost (iDP(R, i), R, pi*)-chain, then R is innermost u-terminating.

Proof.

By contradiction. If R is not innermost u-terminating, then by Lemma 8 there
is t € i7,. By Theorem 23, there are rules [; — r; € R, matching substitutions
o;, such that o;(l;) is argument p-normalized and terms t; € iM ,, for i > 1 such
that

>A* A >A* A >A*
t =1ty 01(l) =ioi(r) Byt =7 0a(la) =i 0a(r2) Bty -

where either (D1)

t; = o0i(s;) for some s; such that r; >, s; or (D2) o;(z;) >, t; for
some x; € Vart(r;) —

Vart(l;) and t; = 6;(t;) for some t, € N'H7T. Furthermore,

since ti_lixﬁkai(li) and ¢, € iMy, (in particular, tg =t € i7,, C iMs,), by
Lemma 12, 0;(1;) € iM, for all i > 1. Note that, since t; € iM ,, we have that
t? is innermost p-terminating (with respect to R), because all p-replacing subterms
of t; (hence of t! as well) are innermost y-terminating and root(t*) is not a defined
symbol of R.

First, note that iDP(R,u) is a TRS P over the signature G = F U D! and
p* € Mg as required by Definition 27. Furthermore, Pg = iDP£(R, 1) and Py =
iDPx(R, it). We can define an infinite minimal innermost (iDP(R, 11), R, u*)-chain
using ICS-DPs u; — v; for ¢ > 1, where u; = l?, and

1. v; = s* if (D1) holds. Sincet; € iMoo, we have that root(s;) € D and, because
ti = o0i(si), by Corollary 22 REN"(s;) is pu-narrowable. Furthermore, if we

30 8. Characterizing innermost termination of CSR using chains of ICS-DPs

assume that s; is a p-replacing subterm of I; (i.e., ;> s;), then o;(1;) >, 0:(s;)
which (since o4(s;) = t; € iMy,) contradicts that o;(l;) € iMoo ,. Thus,
l; ¥,5;. Moreover, since o;(l;) is argument p-normalized, it implies that ai(lf)
also, which means that o;(I¥) € NF,(R) (since root(l}) is not a defined symbol
of R) and trivially also is I*. Hence, u; — v; € iDP#(R,). Furthermore,

>A
t* = 0(v;) is innermost p-terminating. Finally, since t; = 0;(s;) —7 0341 (Lis1)
and pf extends p to FUD? by pf(f*) = u(f) for all f € D, we also have that

!
oi(v;) = Uz’(Sg) TR, ub i o1 (Uiv1).

2. v; = z; if (D2) holds. Again, since o;(l;) is argument p-normalized, it implies
that o;(%) also, which means that o;(I) € NF,(R) (since root(I?) is not a
defined symbol of R) and trivially also is lf . Clearly, u; — v; € iDPx(R,).
As discussed above, t? is innermost p-terminating. Since o;(z;) >, t;, we have

>A |
that o;(v;) >, t;. Finally, since t; —{ 0;11(l;+1), again we have that tg SRk

0it1(uir1). Furthermore, t; = 6;(t}) for some ¢; € NHT.

Regarding o, w.l.o.g. we can assume that Var(l;) N Var(l;) = @ for all i # j, and
therefore Var(u;) N Var(u;) = & as well. Then, o is given by o(x) = 0;(z) whenever
x € Var(u;) for ¢ > 1. From the discussion in points (1) and (2) above, we conclude
that the CSDPs u; — wv; for ¢« > 1 together with o define an infinite minimal
innermost (iDP(R,), R, p*)-chain which contradicts our initial assumption. n

As for arbitrary pairs, we use iDP}Y to denote the subset of dependency pairs in
iDP (R, 1) whose migrating variables occur on non-p-replacing immediate subterms
in the left-hand side.

As an immediate consequence of Theorem 35 and Propositions 32 and 33, we
have the following.

Corollary 36 (Basic innermost p-termination criteria) Let R be a TRS and
n e MR

1. IfiDP(R,u) = @, then R is innermost p-terminating.

2. If NHT ;jiopr) (R, 1) = @ and iDP£(R,) = @, then R is innermost p-
terminating.

3. IfiDP(R,n) = iDP%(R, 1), then R is innermost u-terminating.

Example 37 Consider the following TRS R [Luc98, Example 15]:

31

and(true,z) — add(0,z) — =z
and(false,y) — false add(s(z),y) — s(add(z,y))
if(true,z,y) — = from(z) — cons(x,from(s(z)))
if(false,z,y) — ¥y first(0,2) — mnil
first(s(z),cons(y,z)) — cons(y,first(z,z))

with p(cons) = p(s) = p(from) = @, p(add) = p(and) = wp(if) = {1}, and
p(first) = {1,2}. Then, iDP(R, i) = iDP%(R, p) is:

AND(true,z) — =« IF(true,z,y) — =«
ADD(0,z) — = IF(false,z,y) — y

Note also that A HT,ipp(r) = D. Thus, by any of the last two statements of
Corollary 36, we conclude the innermost p-termination of R. []

The following example shows that Corollary 36(3) does not hold for chains consisting
of arbitrary collapsing ICS-DPs.

Example 38 Consider the CS-TRS (R,) in Example 9. Note that iDP(R, u) =
iDPx(R, 1) (both iDPx(R, i) and iDP%(R, 1) are empty!). We have the following
infinite (iDP(R, 11), R, u*)-chain:
F(a) —gru, F(c(f(a))) —iopr)t F(@) =R -
[

Now we prove that the previous ICS-dependency pairs approach is not only correct
but also complete for proving innermost termination of CSR.

Theorem 39 (Completeness) Let R be a TRS and pn € Mg. If R is innermost
p-terminating, then there is no infinite minimal innermost (iDP(R, i), R, u*)-chain.

Proof.

By contradiction. If there is an infinite minimal innermost (iDP(R, u), R, u*)-
chain, then there is a substitution ¢ and dependency pairs u; — v; € iDP(R, 1) such
that o(u;) € NF,(R) and

!

L. o(v;) =i 0(Uizr), if u; — v; € IDP£(R, 1), and

2. if u; — v; = u; — x; € iDPx(R,u), then there is s; € 7 (F,X) such that

!
o(z;) >, s; and sg Sruti 0(Uis1).

for ¢ > 1. Now, consider the first dependency pair u; — v; in the sequence:

32 8. Characterizing innermost termination of CSR using chains of ICS-DPs

L. If uy — v, € iDP£(R,p), then vli is a p-replacing subterm of the right-
hand-side r; of a rule [; — r; in R. Therefore, r = Cl[vg]pl for some
p1 € Pos”(r1) and, since o(uq) € NF,(R), we can perform the innermost u-
rewriting step t; = a(uli) —rui () = U(Cl)[a(vi)]pl = 51, where a('ui)ﬁ =

o(vy) "—!>R,uﬁ,i o(ug) and o(uz) also initiates an infinite minimal innermost
(R,iDP(R, 1), u*)-chain. Note that p; € Pos"(s1).

2. If uy — = € iDPx(R, u), then there is a rule [; — r; in R such that u; = l%,
and x € Var*(ry)—Vart(ly), i.e., r = Ci[z],, for some ¢; € Pos"(ry). Further-

more, since there is a subterm s such that o(x)>,s and s* ‘L)R,uﬁ,i o(ug), we can
write o(x) = C}[s]y, for some p| € Pos"(o(x)) and context C[],,. Therefore,
since o(u;) = o(l1)* € NF,(R), we can perform the innermost p-rewriting step

ti = o(h) —rui o(r1) = o(CV)[Cf[s]p]q = s1 where s* L’R,uti o(uz) (hence

s —; u}) and o(us) initiates an infinite minimal innermost (R, iDP(R, u), 1if)-
chain. Note that p; = ¢1.p] € Pos"(s1).

Since p*(f*) = p(f), and p; € Pos*(s;), we have that s, ;R,u,i ta]o(u2)]p, = te and
p1 € Pos”(ta). Therefore, we can build in that way an infinite p-rewrite sequence

!
b —Rpui 51 7R t2 —Rpui

which contradicts the innermost p-termination of R.
]

According to this, Proposition 33(3) suggests a simple checking of innermost non-
p-termination.

Corollary 40 (Innermost non-u-termination criterion) Let R = (F, R) be a
TRS and p € Mg. If there is u — v € iDP£(R, 1) such that v' = 0(u) for some
substitution 0 and renamed version v' of v, then R is not innermost u-terminating.

As a corollary of Theorems 35 and 39, we have.

Corollary 41 (Characterization of innermost p-termination) Let R be a
TRS and p € Mg. Then, R is innermost p-terminating if and only if there is
no infinite minimal innermost (iDP(R, n), R, u*)-chain.

Example 42 Consider the following TRS R:

b

f(c(z), x)

together with p(f) = {1,2} and pu(c) = @.
There is only one iCS-DP:

—
—

33

F(c(z),z) — F(z,x)

Since p#(F) = {1,2}, if a substitution o satisfies o(F(c(z),z)) € NF,(R), then
o(z) = s is in p-normal form. Assume that the dependency pair is part of an
innermost CS-DP-chain. Since there is no way to p-rewrite F'(s,s), there must be
F(s,s) = F(c(t),t) for some term ¢, which means that s = t and c(t) = s, ie.,
t = ¢(t) which is not possible. Thus, there is no infinite innermost chain of iCS-DPs
for R, which is proved innermost terminating by Theorem 35.]

Of course, ad-hoc reasonings like in Example 42 do not lead to automation. In
following chapters we discuss how to prove termination of innermost C'SR by giving
constraints on terms that can be solved by using standard methods.

34 8. Characterizing innermost termination of CSR using chains of ICS-DPs

Mechanizing proofs of innermost
(-termination using ICS-DPs

During the last ten years, the dependency pairs method has evolved to a powerful
technique for proving termination of TRSs in practice. From the already classi-
cal Arts and Giesl’s article [AG00] to the last developments corresponding to the
so-called dependency pair framework [GTS04, GTSF06, Thi07] many new improve-
ments have been introduced.

In the DP-approach [AGO00], the starting point is a TRS R from which a set of
dependency pairs DP(R) is obtained. Then, such dependency pairs are organized
in a dependency graph DG(R) and the cycles of the graph are analyzed to show
that no infinite chains of DPs can be obtained from them. The dependency pairs
approach emphasizes (at least theoretically) a ‘linear’ (although somehow modular,
see [GAOO02]) procedure for proving termination. In this sense, the treatment of
strongly connected components of the graph (SCCs) instead of cycles, as suggested
by Hirokawa and Middeldorp [HM04, HMO05], brought an important improvement
in its practical use because it provides a way to make the proofs more incremental
without running out of the basic DP-approach. In the DP-approach, dependency
pairs are considered as components of the chains (or cycles). Since they only make
sense when an underlying TRS is given as the source of the dependency pairs,
transforming DPs is possible (the narrowing transformation is already described in
[AGO00]) but only as a final step because, afterwards, they are not dependency pairs
of the original TRS anymore.

The dependency pair framework solves these problems in a clean way, leading to
a more powerful mechanization of termination proofs.

9.1 Mechanizing termination proofs with the de-
pendency pair framework

An appealing aspect of the DP-framework [GTS04, GTSF06] is that the procedence
of pairs does not matter; they can be independent from the considered TRS. The
notion of chain is parametric on both a TRS R and a set of pairs P (a TRS, actually)

36 9. Mechanizing proofs of innermost p-termination using ICS-DPs

which are connected by using R-rewrite sequences. Regarding termination proofs,
the central notion now is that of DP-termination problem: given a TRS R and a
set of pairs P, the goal is checking the absence (or presence) of infinite (minimal)
chains. Termination of a TRS R is addressed as a DP-termination problem where
P = DP(R). The most important notion regarding mechanization of the proofs
is that of processor. A (correct) processor basically transforms DP-termination
problems into (hopefully) simpler ones, in such a way that the existence of an
infinite chain in the original DP-termination problem implies the existence of an
infinite chain in the transformed one. Here ‘simpler’ usually means that fewer pairs
are involved. Often, processors are not only correct but also complete, i.e., there is
an infinite minimal chain in the original DP-termination problem if and only if there
is an infinite minimal chain in the transformed problem. This is essential if we are
interested in disproving termination.

Processors are used in a pipe (more precissely, a tree) to incrementally simplify
the original DP-termination problem as much as possible, possibly decomposing it
into smaller pieces which are then independently treated in the very same way. The
trivial case of this iterative process comes when the set of pairs P becomes empty.
Then, no infinite chain is possible and we can provide a positive answer yes to
the DP-termination problem which is propagated upwards to the original problem
in the root of the tree. In some cases it is also possible to witness the existence
of infinite chains for a given DP-termination problem; then a negative answer no
can be provided and propagated upwards. Of course, DP-termination problems are
undecidable (in general), thus don't know answers can also be generated (for instance
by a time-out system which interrupts the usually complex search processes which
are involved in the proofs). When all answers are collected, a final conclusion about
the whole DP-termination problem can be given:

1. if we have positive answers (yes) for all problems in the leaves of the tree, then
we conclude yes as well;

2. if a negative answer (no) was raised somewhere and the DP-processors which
were used in the path from the root to the node producing the negative answer
were complete, then we conclude no as well;

3. Otherwise, the conclusion is don't know.

The notions of graph, cycles, SCCs, etc., are also part of the framework but (1)
they are incorporated as processors now, and (2) they do not refer to dependency
pairs anymore, but rather to the pairs in the (different) sets of pairs which are
obtained through the process sketched above. In this way, we obtain a much more
flexible framework to mechanize termination proofs and also to benefit from new
future developments which could lead to the introduction of new processors.

In the following, we adapt these ideas to CSR to provide a suitable framework
for mechanizing proofs of (innermost) termination of CSR.

9.2. CS-termination problems and processors 37

9.2 C(CS-termination problems and processors

The following definition adapts the notion of (DP-)termination problem in [GTSFO06]
to (innermost) C'SR. In our definition, we prefer to avoid ‘DP’ because, as discussed
above, dependency pairs (as such) are relevant in the theoretical framework only for
investigating a particular problem (termination of TRSs), whereas some transfor-
mations can yield sets of pairs which are not dependency pairs of the underlying
TRS anymore.

Definition 43 (CS-termination problems) A CS-termination problem T is a
tuple 7 = (P, R,u,e), where R = (F,R) and P = (G, P) are TRSs, 1 € Mxr_g
and e € {t,i} is a flag that stands for termination or innermost termination of
CSR.

A CS-termination problem is finite if there is no infinite minimal (innermost)

(P, R,)-chain.

Finite CS-termination problems correspond to those generating a positive answer
yes in the full proof process sketched above. Accordingly, CS-termination problems
which are not finite correspond to a negative answer no.

Remark 44 According to Corollary 41, we can say now that a TRS R is innermost
p-terminating if and only if the CS-termination problem (iDP(R,), R, 1,) is finite.
]

According to our previous results (Propositions 32 and 33), for some specific CS-
termination problems it is easy to say whether they are finite or not.

Proposition 45 (Basic innermost CS-termination problems) Let R = (F, R)
and P = (G, P) be TRSs and p € Mgg.

1.IfP =g, orP=TP%, or R= & and P = Px, then the CS-termination
problem (P, R, u,1) is finite.

2. If there is u — v € Pg such that v' = 0(u) for some substitution 6 such that

o(u) € NF,(R) and renamed version v' of v, then the CS-termination problem
(P, R, u,1) is not finite.

The CS-termination problems in Proposition 45 provide the necessary base cases for
our proofs of innermost termination of CSR. The following definition adapts the
notion of processor [GTSF06] to CSR.

Definition 46 (CS-processor) A CS-processor Proc is a mapping from
CS-termination problems into sets of CS-termination problems. A CS-processor
Proc is

38 9. Mechanizing proofs of innermost p-termination using ICS-DPs

e sound if for all CS-termination problems 7, T is finite whenever 7’ is finite for
all 7" € Proc(T).

e complete if for all CS-termination problems T, whenever T is finite, then 7' is
finite for all T € Proc(r).

In following chapters we describe a number of sound and (most of them) complete
CS-processors.

10

Innermost termination and
termination of CSR

In this chapter we are going to comment some interesting points that relate in-
nermost termination of CSR to p-termination. We show that our definition of
ICS-DPs coincides (in the most important points) with the standard one for prov-
ing termination of innermost rewriting if no replacement restrictions are considered
(equivalently, if the top replacement map ut(f) = {1,...,ar(f)} for all f € F
is used). Of course, when proving p-termination of a TRS we are also proving
innermost p-termination (the converse does not hold). For this reason, although
many standard techniques that we have developed for proving termination of C'SR
are not mentioned here (see [AGL08]) they can also be used for proving innermost
p-termination (as in full rewriting). However, it is most interesting the other side,

since proving innermost termination always offers simpler proofs. Something similar
happens with CSR.

10.1 Switching to innermost termination of CSR

Proving innermost termination of rewriting is often easier than proving termina-
tion of rewriting [AGO0] and, for some relevant classes of TRSs (locally confluent
overlay systems), innermost termination of rewriting is equivalent to termination
of rewriting [Gra95, Gra96]. In [GMO02b] it is proved that the equivalence between
termination of innermost CSR and termination of CSR holds in some interesting
cases (e.g., for orthogonal). The pair (o(1)[o(r")],, o(r)) is called a critical pair and
is also called an overlay if p = A. A critical pair (¢, s) is trivial if ¢t = s. The critical
pairs of a TRS R are the critical pairs between any two of its (renamed) rules; this
includes overlaps of a rule with a renamed variant of itself, except at the root, i.e.,
if p=A. A TRS R is left-linear if for all | — r € R, [is a linear term. A left-linear
TRS without critical pairs is called orthogonal. This fact was noticed by Lucas in a
personal communication to the authors showing the following example:

Example 47 Consider the following TRS R:

40 10. Innermost termination and termination of CSR

together with u(f) = {1,2} and pu(g) = @. This system is nonoverlapping and
innermost p-terminating, but not p-terminating since f(c,c)) —, £(c,g(c))) —,
f(c,c) =, - [

Thanks to this, the following result was formulated:

Theorem 48 ([GMO02b]) Let R = (F, R) be a orthogonal TRSs and pn € Mg. R
is p-terminating if and only if it is innermost pu-terminating.

So, whenever it is possible, we switch to innermost p-termination since, proofs
often are easier due to the fact that when we consider an innermost rewriting step,
we know that every possible subterm of our redex is in normal form with respect
to our rewriting relation. For instance, in the next chapter we show that this is an
advantage when estimating the graph.

Now we show that our framework coincide with the standard one for proving full
(innermost) termination when no replacement map is considered.

10.2 ICS-DPs and IDPs

Given a TRS R and a replacement map p, if no replacement restrictions are imposed,
Le, u(f)=A{1,...,ar(f)} for all f € F, then no collapsing pair is possible, and we
would have &>, = >, and iDP(R, 1) = iDP£(R, p).

Regarding the ICS-DPs in iDP£(R, i), Definition 24 differs from the standard
definition of dependency pair (e.g., [AG00, GTSF06]) in two additional requirements:

1. Asin [HMO04], which follows Dershowitz’s proposal in [Der04], we require that
subterms s of the right-hand sides r of the rules [— r which are considered
to build the dependency pairs I* — s* are not subterms of the left-hand side

(ie., I Pus).

2. Asin [LMO8b], we require ‘narrowability’ of the (appropriately renamed) term
s: NARRY(REN"(s)).

3. We explicitly require that the left-hand side [of a rule [— r is argument
p-normalized when considering the dependency pair I* — s* (or I —), that
is, I* € NF,(R). In the standard definition, this is exploited when building the
graph but, in our definition, we avoid the introduction of spurious pairs from
the beginning.

10.2. ICS-DPs and IDPs 41

Except for these provisos, we could say that Definition 24 boils down to the definition
of dependency pair when no replacement restrictions are imposed.

Regarding the definition of (minimal) chain (Definition 27), the correspondence is
exact: if 4 imposes no replacement restriction, then —x ;=<>x ,; and our definition
coincides with the standard one (see, e.g., [GTSF06, Definition 3]): again, since all
variables are p-replacing now, item (2) in Definition 27 does not apply. Due to the
absence of replacement restrictions, we have Var#(u) = Var(u), hence Var(u) —
Var*(u) = @ for all u — v € P. Then, the condition v & Var(u) — Vart(u)
vacuously holds and all pairs in P satisfy item (1) of Definition 27.

In the following chapters we are going to show some powerful techniques adapted
from standard rewriting to deal with proofs of innermost termination of CSR.

42

10.

Innermost termination and termination of CSR

11

Innermost Context-Sensitive
Dependency Graph

CS-termination problems draw our attention to the analysis of infinite minimal
(innermost) (P, R, u)-chains. In general, an infinite sequence S = ay, as, ..., ay, . ..
of objects a; belonging to a set A can be represented as a path in a graph G whose
nodes are the objects in A, and whose arcs among them are appropriately established
to represent S (in particular, an arc from a; to a;;1 should be established if we want
to be able to capture the sequence above). Actually, if A is finite, then the infinite
sequence S defines at least one cycle in GG since there is a finite number of different
objects a; € A in S, there is an infinite tail S" = a,,, api1, ... of S where all objects
a; occur infinitely many times for all ¢« > m. This clearly corresponds to a cycle in

G.

In the dependency pairs approach [AGO00], a dependency graph DG(R) is associ-
ated to the TRS R. The nodes of the dependency graph are the dependency pairs in
DP(R); there is an arc from a dependency pair u — v to a dependency pair v’ — v’
if there are substitutions 6 and ¢ such that 6(v) —% 6'(u).

In more recent approaches, the analysis of infinite chains of dependency pairs as
such is just a starting point. Many often, chains of dependency pairs are transformed
into chains of more general pairs which cannot be considered dependency pairs
anymore. This is the case for the narrowing or instantiation transformations, among
others, see [GTSFO06] for instance. Still, the analysis of the cycles in the graph build
out from such pairs is useful to investigate the existence of infinite (minimal) chains
of pairs. Thus, a more general notion of graph of pairs DG(P,R) associated to a
set of pairs P and a TRS R is considered; the pairs in P are used now as the nodes
of the graph but they are connected by R-rewriting in the same way [GTSF0G,
Definition 7].

In the following section we consider these points to provide an appropriate defini-
tion of the innermost context-sensitive (dependency) graph which takes into account
the ideas developed in previous chapters.

44 11. Innermost Context-Sensitive Dependency Graph

11.1 Definition of the innermost context-sensitive
dependency graph

According to the discussion above, our starting point are two TRSs R = (F, R) and
P = (G, P) together with a replacement map u € Mz g. Our aim is obtaining a
notion of graph which is able to represent all infinite minimal innermost chains of
pairs as given in Definition 27.

When considering pairs u — v € Pg, we can proceed as in the standard case
to define appropriate connections to other pairs v’ — v’ € P: there is an arc from

u— v tou — v if O(v) ‘L)R,u,i 0’ (u') for some substitutions 6 and ¢ such that 0(u)
and 0'(uv’) € NF,(R). When considering collapsing pairs u — v € Py, we know that

such pairs can only be followed by a pair v/ — v’ € P such that 6(¢*) ‘L’R,u,i 0’ (u') for
some t € N'HT and substitutions # and ¢’ such that ¢'(u') € NF,(R) (see Definition
27).

Definition 49 (Innermost Context-Sensitive Graph of Pairs) Let R =
(F,R) and P = (G, P) be TRSs and pu € Mg,g. The innermost context-sensitive
(ICS-)graph associated to R and P (denoted |G(P, R, 1)) has P as the set of nodes

and arcs which connect them as follows:

1. There is an arc from u — v € Pg to u' — v' € P if there are substitutions 0
and ' such that 6(v) C!—>RW ¢ (v') and 6(u),0'(u') € NF,(R).

2. There is an arc from uw — v € Py tou' — v' € P if there ist € NHT (R, i)
and substitutions 6 and 0 such that 0(t*) ‘L)R,u,i ¢ (u') and &' (u') € NF,(R)

In termination proofs, we are concerned with the so-called strongly connected com-
ponents (SCCs) of the dependency graph, rather than with the cycles themselves
(which are exponentially many) [HMO05]. A strongly connected component in a
graph is a maximal cycle, i.e., a cycle which is not contained in any other cycle. The
following result justifies the use of SCCs for proving the absence of infinite minimal
(innermost) (P, R, pt)-chains.

Theorem 50 (SCC processor) Let R = (F,R) and P = (G, P) be TRSs and
1€ Mgzyg. Then, the processor Procsce given by

Procsco (P, R, 1, 1) = {(Q, R, 1) | Q contains the pairs of an SCC in IG(P, R, u)}
1s sound and complete.

Proof.

We prove soundness by contradiction. Assume that Procgcc is not sound. Then,
there is an innermost CS-termination problem 7 = (P, R, u,i) such that, for all

11.2. Estimating the ICS-dependency graph 45

7" € Procsce(7), 7' is finite but 7 is not finite. Thus, there is an infinite minimal
innermost (P, R, ut)-chain A. Since P contains a finite number of pairs, there is
P’ C P and a tail B of A which is an infinite minimal innermost (P’, R, u1)-chain
where all pairs in P’ are infinitely often used. According to Definition 49, this
means that P’ is a cycle in IG(P, R, 1), hence it belongs to some SCC with nodes
in Q, i.e., P C Q. Hence B is an infinite minimal innermost (Q, R, p)-chain, i.e.,
= (Q,R, 11, 1) is not finite. Since 7" € Procgoc(T), we obtain a contradiction.
Regarding completeness, since @ C P for some SCC in IG(P, R, 1) with nodes
in Q, every infinite minimal (Q,R, u,e)-chain is an infinite minimal innermost
(P, R, i)-chain, hence the processor is complete as well. []

As a consequence of this theorem, we can separately work with the strongly con-
nected components of IG(P, R, i), disregarding other parts of the graph.

Now we can use these notions to introduce the innermost context-sensitive de-
pendency graph.

Definition 51 (Innermost Context-Sensitive Dependency Graph (ICS-DG))
Let R = (F,R) be a TRS and n € Mg. The Innermost Context-Sensitive Depen-
dency Graph associated to R and p is IDG(R, p) = IG(iDP(R, 1), R, 1i).

Example 52 Consider the following CS-TRS R in [GM02a]:

f(g(b)g (8(a))

f
£ f(a)
b

LUl

a

together with pu(f) = {1} and pu(g) = @. Then the set of dependency pairs in
[ALO7a] for proving innermost p-termination of R was:

and p*(F) = {1}. Now, with the new definition of iDP(R, 1) we do not obtain any
of these pairs since the first one does not have the py-narrowability condition and the
rest have the left-hand side not argument p-normalized. So, now, iDP(R, u) = @.

]

11.2 Estimating the ICS-dependency graph

In general, the (innermost context-sensitive) dependency graph of a TRS is not
computable: it involves reachability of &(u’) from 8(v) (for u — v € Pg) or O(t*)

46 11. Innermost Context-Sensitive Dependency Graph

(for t € N'HT, p) using innermost CSR; as in the unrestricted case, the reachability
problem for innermost CSR is undecidable.

So, we need to use some approximation of it. Following [AGO00], we describe how
to approximate the ICS-dependency graph of a CS-TRS.

Given a set A of ‘defined’ symbols, we let CAP\ be as follows (if A is clear from
the context, sometimes we omit it in our examples):

CaPR(x) = =z if z is a variable
L B Yy if feA
CaPA(fltr, o t)) = { P []]) otherwise

where y is intended to be a new, fresh variable which has not yet been used and
given a term s, [s]/ = CAPA (s) if i € pu(f) and [s]/ = s if ¢ & pu(f). Function CaPk
is intended to provide a suitable approximation of reachability problems 6(s) SR
0'(t) by means of unification. The idea is obtaining the maximal prefix context C[]
of s (i.e., s = C[s1,...,s,] for some terms si,...,s,) which we know (without any
‘look-ahead’ for applicable rules) that cannot be changed by any reduction starting
from s. Therefore, C[] is a constructor context, i.e., only function symbols which
are not in A occur in C[]. Furthermore, terms sq,...,s, above must be rooted
by defined symbols (i.e., root(s;) € A for i € {1,...,n}). Now, we replace those
subterms s; which are at p-replacing positions (i.e., s; = sl,, for some p; € Pos"(s))
by some variable z, and we leave untouched the non-pu-replacing ones. In this way,
we are able to capture any possible ‘evolution’ of 6(s;) by p-rewriting.

The following result whose proof is similar to that of [AG00, Theorem 21] (we
only need to take into account the replacement restrictions indicated by the replace-
ment map p) formalizes the correctness of this approach.

Proposition 53 Let R = (F,R) = (CWD,R) be a TRS and u € Mg. Let s,t €
T(F,X) be such that Var(s) N\ Var(t) = @ and 0,0" be substitutions. If 0(s) —%_,
0'(t), then REN*(CAPL(s)) and t unify.

According to Proposition 53, given terms s,t € 7 (F, X’) and substitutions 6, ',
the reachability of ¢'(¢) from 6(s) by p-rewriting can be approzimated as unifi-
cation of REN*(CAP/,{(s)) and ¢t. However, since we are dealing with innermost
pu-termination, we can take advantage of this and go further in a more accurate
approximation. In order to automatically build the Innermost Context-Sensitive
Dependency Graph it is necessary to approximate it since for two noncollapsing
pairs © — v and u' — ' it is undecidable to know if there exist two substitu-
tions € and 6" such that (v) p-reduces innermost to 6(u’) and 6(u) and ¢'(u’) are
instantiated to p-normal forms. As we have commented, in the context-sensitive
setting, we have adapted functions CAP and REN to be applied only on p-replacing
subterms [AGL06]. In the innermost setting it is not necessary to use REN since
all variables are always instantiated to normal forms and cannot be reduced and

11.2. Estimating the ICS-dependency graph 47

CApr,(v) substitutes every subterm with a defined root symbol by fresh variables
only if the term is not equal to subterms of u. To approximate the ICS-dependency
graph, however, we have to combine both of them: we use CAP} ,(v) to replace
all p-replacing subterm rooted with a defined symbol whenever the term was not
equal to a p-replacing subterm of the left-hand side of the dependency pair u. We
use RENY (v) to replace by fresh variables those ones that are replacing in v but not
in u since they are not p-normalized. The differences between the above definition
are: for the CAP function, now, [s]/ = Carly ,(s) if i € p(f) and s is not equal to

a p-replacing subterm of u and [s]f = s otherwise and for the function REN (see
Section 5.1) we have that now, [s]/ = REN(s) if i € u(f) and the variable is not

pi-replacing in u and [s]/ = s otherwise. So, we have the following:

Definition 54 (Estimated Innermost Context-Sensitive Graph of Pairs)
Let R = (F,R) and P = (G, P) be TRSs and 1 € Mr_ g. The estimated [CS-graph
associated to R and P (denoted EIG(P,R, 1)) has P as the set of nodes and arcs
which connect them as follows:

1. There is an arc from u — v € Pg to v’ — o' € P if REN,(CAP) ,(v)) and v’
unify by some mgu o such that o(u),o(u') € NF,(R).

2. There is an arc fromu — v € Py tou' — v' € P if there ist € NHT ; p(R, 1)
such that REN*(CAPK (#*)) and ' unify by some mgu o such that o(u') €
NF,(R).

Proposition 55 (Correctness of the Estimated ICS-Graph of Pairs) LetR
=(F,R) and P = (G, P) be TRSs and jn € Mg g.

1. If there are pairs u — v € Pg and v’ — v € P and substitutions 6 and 6’ such
that 6(v) <L>RM 0'(u') and 0(u), 0 (u') € NF,(R), then RENY(CAPY ,(v)) and
u' unify by some mgu o such that o(u),o(u’) € NF,(R).

2. If there are pairs u — v € Py and u' — v' € P and there ist € NHT (R, i)

and substitutions 0 and 0’ such that O(t*) ;R,u,i ¢ (u') and 0'(v') € NF,(R,
then there is t € N'HT; p(R,u) such that REN*(CAPK (t*)) and u' unify by
some mgu o such that o(u') € NF,(R);.

According to Definition 51, we would have the corresponding one for the estimated

ICS-DG: EIDG(R, i) = EIG(iDP(R, 1), R, 1.
Example 56 Consider the following TRS R [Zan97, Example 4]:

f(x) — cons(z,f(g(x)))
g0) — s(0)

48 11. Innermost Context-Sensitive Dependency Graph

g(s(z)) — s(s(glx)))
sel(0,cons(z,y)) — =«

sel(s(z),cons(y,2)) — sel(x,z)

with 1(0) = @, u(f) = u(g) = p(s) = p(cons) = {1}, and p(sel) = {1,2}. Then,

G(s(z)) — G(z) (11.1)
SEL(s(z), cons(y,z2)) — SEL(z,z) (11.2)
SEL(s(z), cons(y,2)) — =z (11.3)

and NHT = {f(g(z)),g(z)}. Regarding pairs (11.1) and (11.2) in iDP£(R, p),
there is an arc from (11.1) to itself and another one from (11.2) to itself. Re-
garding the only collapsing pair (11.3), we have REN"(CAP"(F(g(x)))) = F(y) and
REN*(CAP*(G(z))) = G(y). Since F(y) does not unify with the left-hand side of
any pair, and G(y) unifies with the left-hand side G(s(x)) of (11.1) and G(s(x)) is in
p-normal form, there is an arc from (11.3) to (11.1), see Figure 11.1. Thus, there
are two cycles: {(11.1)} and {(11.2)}. [

The following example shows that using REN! provides a better approximation of
the ICS-DG than using REN" for noncollapsing pairs.

Example 57 Consider the following TRS R:

f(a,b,x) f(x,z,x)

—
—
—

(o)

together with p(f) = {1,2}. There are two ICS-dependency pairs:

— F(z,z,2)

R is not innermost p-terminating:
F(Eu G, C) (_>R,,uﬁ,i F<a7 G, C) C_>"R,,uu,i F(a7 b7 C) ;)iDP('R,,u,i),,uﬁ F(gv c, C) %'R,,uﬁ,i o

In order to build the ICS-DG, since there are not hidden terms, we have to check if
RENE(CAPE(F(z,x,2))) = REN’f(ab@)(CAP’%(a’b@)(F(x,x,x))) = F(2", 2", z) uni-
fies with F(a,b,y) so, we get a cycle. However, if we use p(f) = {1, 3}, the system
now is innermost p-terminating but if we use the REN version for CSR we get

11.2. Estimating the ICS-dependency graph 49

o

11.3

Figure 11.1: Estimated ICS-DG for the CS-TRS (R,) in Example 56

REN“(CAP’f‘(a’b@) (F(z,z,x))) = F(2"”, 2" z) again unifies with F(a, b, x) and we ob-
tain a spurious cycle. By using REN/, we obtain
REN;(a,b,x)(CAP%(a,b,x)(F(x’ z,x))) = F(z,z,) (since there are not migrating vari-
ables now) which does not unify with F(a, b, y). Now, innermost p-termination can
be easily proved since there are no cycles in the ICS-DG.

u

After showing that REN! provides a better approximation of the ICS-DG for
noncollapsing pairs, we are going to show that for the collapsing pairs this is not
true since we can lead into and underestimation of the graph and conclude a false
result.

Example 58 Consider the following TRS R which is a variant of Example 57:

50 11. Innermost Context-Sensitive Dependency Graph

f(a,b,z) — g(f((z,z,x))
glx) — w
c — b

R is not innermost p-terminating:

F(E,C,C) (_>R,,,Lﬁ,i F(aygv C) (_>R,,u,ﬁ,i F(a’bzc) MiDP(R,y),#ﬁ,i G(f(avb’ C)) MiDP(R,M),p‘ﬁ,i F(E,C,C) (_>R7,,Lﬁ,i

We have NHT = {f(x,z,z)}. Regarding the pair (11.4) € iDP£(R, 1), there is an
obvious arc from (11.4) to (11.5). Regarding the only collapsing pair (11.5), since
we do not have any information in the hidden terms about migrating variables, we
have to use REN*. In this way, we have that REN*(CAP*(F(z,z,x))) = F(2", 2/, z)
unifies with F(a, b, y) and we obtain an arc from (11.5) to (11.4), thus obtaining the
existing cycle {(11.5)-(11.4)}

[

Note that Proposition 53 also provides a way to estimate the set NHT ;p: if
t € NHT,;p, then REN*(CAP*(#*)) and u unify for some u — v € P . In the
following, our presentations of N'H7; » in the examples are computed in this way.

Example 59 (Continuing Example 42) Since REN*(CAP#(F(x,x))) = F(x,x) and
F(c(y),y) do not unify we conclude (and this can easily be implemented) that the
ICS-dependency graph for the CS-TRS (R, u) in Example 42 contains no cycles.

n

12

Usable Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pairs approach is that, since the variables in the right-hand side of
the dependency pairs are in normal form, the rules which can be used to connect
contiguous dependency pairs are usually a proper subset of the rules in the TRS.
This leads to the notion of usable rules [AGO0, Definition 32| which simplifies the
proofs of innermost termination of rewriting. We adapt this notion to the context-
sensitive setting.

Definition 60 (Basic usable CS-rules) Let R be a TRS and p € Mg. For any
symbol f let Rules(R, f) be the set of rules of R defining f and such that the left-
hand side | has no proper p-replacing R-redex. For any term t, the set of basic
usable rules Ug(R, u,t) is as follows:

UO(Rv ", T
Uo(R, 1, f

6]
Rules(R, f)U U Uo(R/, u,t;) U U Ug(R, 1)
i€n(f) I—reRules(R,f)

where R'= R — Rules(R, f). Consider now a TRS P. Then, Uy(R,u, P) =
U Uo(R,p,r). Obviously, Uy(R, i, P) C R for all TRSs P and R.

l—reP

—~—

i1, tn))

Interestingly, although our definition is a straightforward extension of the classical
one (which just takes into account that p-rewritings are possible only on p-replacing
subterms), some subtleties arise due to the presence of non-conservative rules.

Basic usable rules Ug(R, i, P) in Definition 60 can be used instead of R when
dealing with innermost (P, R, u)-chains associated to p-conservative TRSs P pro-
vided that Uy(R, i, P) is also p-conservative. This is proved in Theorem 64 below.
First, we need some auxiliary results.

Proposition 61 Let R be a TRS and p € Mg. Let t,s € T(F,X) and o be a
substitution such that s = o(t) and Vx € Var*(t), o(x) € NF,(R). If s —; s by
applying a rule | — r € R, then there is a substitution o’ such that s’ = o'(t') for
t' =t[r], and p € Pos's(t).

52 12. Usable Rules

Proof. Let p € Pos*(s) be the position of an innermost redex s|, = 6(I) for some
substitution #. Since s = o(t) and for all replacing variables in ¢, we have o(x) €
NF,(R), it follows that p is a non-variable (replacing) position of t. Therefore,
p € Pos'z(t). Since s = o(t), we have that s = o(¢)[0(r)], and since p € Pos'z(t),
by defining o’(z) = o(z) for all x € Var(t) and o(z) = 0(x) for all z € Var(r) (as
usual, we assume Var(t) N Var(r) = @), we have s’ = o'(t[r],). n

The following proposition states that an innermost u-rewrite step by applying
a conservative rule makes the set of u-replacing variables of the contractum will be
instantiated to pu-normal forms.

Proposition 62 Let R be a TRS and p € Mg. Lett,s € T(F,X) and o be a
substitution such that s = o(t) and Yz € Vart(t), o(x) € NF,(R). If s —; ' by
applying a conservative rule | — r € R, then there is a substitution o’ such that
s =o' (t') fort' =tlr],, p € Pos's(t) and Yz € Vart(t'), o'(x) € NF,(R).

Proof. By Proposition 61, we know that ¢’, as in Proposition 61, satisfies s’ = o'(t')
for 6 as in Proposition 61 and some p € Posx(t). Since s, is an innermost -
replacing redex, we have that Vy € Var*(l), 6(y) € NF,(R). Since the rule | — r
is conservative, Vart(r) C Vart(l), hence Yz € Var*(r), o'(z) € NF,(R). Since
Vart(tr],) € Vart(t) UVart(r), we have that Vo € Var#(t'), o'(z) € NF,(R). m

Now, we prove that in an innermost p-rewrite sequence starting from a term
instantiated with a p-normalized substitution, the only rules that can be applied
are the usable rules (if they are p-conservative).

Proposition 63 Let R be a TRS and pn € Mg. Lett,s € T(F,X) and o be a
substitution such that s = o(t) and Vo € Var*(t), o(z) € NF,(R). If Uy(R, u,t)
is conservative and S = 81 SR i S2 SRui Roui Sn T Roui Sng1 = U for some
n >0 then s; —uyRput) i Si+1 for alli, 1 <i <mn.

Proof. By induction on n. If n = 0, then s = o(t) = u, it is trivial. Otherwise, if
51 R 52 (_ﬁ%,u,i u, we first prove that the result also holds in s; < ,; s2. By
Proposition 61, s; = o(t), and sy = o'(t') for ¢’ = t[r], is such that s;|, = 6(!) and
$a|p, = 0(r) for some p € Posx(t). Thus, root(l) = root(t|,) and by Definition 60, we
can conclude that | — r € Uy(R, i, t). By hypothesis, Ug(R, p,t) is conservative.
Thus, [— r is conservative and by Proposition 62, so = o'(t') and Vz € Var*(t'),
o'(xz) € NF,(R). Since t' = t[r|, and root(t|,) = root(l), we have that Uy(R, u,t') C
Uo(R, i, t) and (since Uy(R, u, t) is conservative) Ug(R, i, t') is conservative as well.
By the induction hypothesis we know that s; —u,r) ui Sit1 for all 7, 2 <7 < n.
Thus we have s; —u, (R u0)ui Si+1 for all 4, 1 <4 < n as desired.

[

The following theorem formalizes a processor to remove pairs from P by using
the previous result and p-reduction pairs.

53

Theorem 64 Let R = (F,R) and P = (G, P) be TRSs and pu € Mz g. Let (Z,7)
be a p-reduction pair such that

1. P and Uy(R, u, P) are conservative,
2. Up(R,pu,P) CZ and P C 2 U 7,
Let P—={u— v € P |uv}. Then, the processor Procyr given by

v J AP =P, Uo(R, 11, P), p1,4)} if (1) and (2) hold
Procun(P. R, 1) = { {(P,R, p,1)} otherwise

18 sound.

Proof. We proceed by contradiction. Assume that there is an infinite minimal
innermost (P, R, u)-chain A, but that there is no infinite minimal innermost (P —
P, Ug(R, i, P), pt)-chain. Due to the finiteness of P, we can assume that there is
Q C P such that A has a tail B

! !
o(ur) —ou 0 B t1 r i 0(us) =g 0 Bty Sr i o(ug) —gu 0 BF -

for some substitution o, where all pairs in Q are infinitely often used, and, for all
i > 1, since all u; — v; € P are conservative u; — v; € Qg, then t; = o(v;) and
o(u;) € NF,(R), this implies that Vo € Var#(v;), o(x) € NF,(R) and by Proposition
63 the sequence can be seen as:

! !
o(u1) =gy ©° E;ﬂz b1 UG (Ru,P) i o(u2) —gu° Eﬁ t2 = Uo (R, P) i o(us) —gu o EEL T

Furthermore, by minimality, o(v;) is innermost (R, p)-terminating for all ¢ > 1.
Since w; (2 U) v; for all w; — v; € Q@ C P, by stability of 2 and 1, we have
o(u;) (2 U J)o(v;) for all i > 1. No pair u — v € Q satisfies that u J v. Otherwise,
we get a contradiction by considering that since all pairs in P are conservative,

we have that u; — v; € Qg. Then, t; = o(v;) ‘—!>UO('R7/L77D)7M7; o(uiy1) and t; 2
o(uit1). Since we have o(u;) (2 U J) o(v;) = o(v;) = t; , by using transitivity of
2 and compatibility between 2 and 1, we conclude that o(u;) (2 U 3) o(uiy1)-
Since u — v occurs infinitely often in B, there is an infinite set Z C N such that
o(u;) 3 o(ui41) for all i € Z. And we have o(w;) (2 U) o(u;41) for all other
u; — v; € Q. Thus, by using the compatibility conditions of the p-reduction pair,
we obtain an infinite decreasing J-sequence which contradicts well-foundedness of
7. Therefore, @ C (P — Po). Since NF,(Uo(R, 1, P)) 2 NF,(R), we have that
o(u;) € NF,(Ug(R, i, P)). By Proposition 63, innermost (R, p)-termination of
o(v;) implies innermost (Ug(R, i, P), pv)-termination of o(v;) for all # > 1. Hence,
B is an infinite minimal innermost (P — P—, Uy(R, i, P), pt)-chain, thus leading to
a contradiction.

|

54 12. Usable Rules

Unfortunately, dealing with nonconservative pairs, considering the basic usable CS-
rules does not ensure a correct approach.

Example 65 Consider again the TRS R:

b — c(b)
f(c(@),z) — 1(,0)
together with p(f) = {1} and u(c) = @. There are two non-conservative ICS-DPs
(note that pf(F) = u(f) = {1}):

F(c(z),z) — F(z,x)
Flc(z),z) — =

and only one cycle in the ICS-DG:

{Flc(z),z) — F(z,2)}

Note that Uy(R, u,F(x,x)) = @. Since this ICS-DP is strictly compatible with,
e.g., an LPO, we would conclude the innermost u-termination of R. However, this
system is not innermost p-terminating:

f(b,b) < £(c(b),b) —; £(b,b) ;- -
n

The problem is that we have to take into account the special status of variables in
the right-hand side of a nonconservative ICS-DP. Instances of such variables are not
guaranteed to be p-normal forms. For this reason, when a cycle contains at least
one nonconservative pair, we have to consider the whole set of rules of the system.

Furthermore, conservativeness of Ug(R, 1, P) cannot be dropped either since we
could infer an incorrect result as shown by the following example.

Example 66 Consider the TRS R:

b — c(b)
f(c(x),2) — f(glz),z)
glz) — =

together with p(f) = {1} and u(g) = p(c) = @. There is only one conservative

cycle:
{F(c(z), =) — F(g(z),)}

having only one usable (but non-conservative!) rule g(x) — = This is compatible
with the p-reduction pair induced by the following polynomial interpretation:

55

[z, y) =0 lef(x)=2+1 [gllx) =z [Fllz,y) ==

However the system is not innermost p-terminating:
£(c(®),b) —i £(g(d),b) —; £(b,b) —; £(c(b),b) —---

Nevertheless, Theorem 64 is useful to improve the proofs of termination of innermost
CSR as the following example shows.

Example 67 Consider again the TRS R in example 1. The system contains three
cycles in the ICS-DG:

{SEL(s(y), cons(z,xs)) — SEL(y,zs)}
{MINUS(s(x),s(y)) — MINUS(z,y)}
{QUOT(s(z),s(y)) — QUOT(minus(z,y),s(y))}

The first two cycles can be solved by using the subterm processor (see [AGLOS]).
However, without the notion of usable rules, the last one is difficult to solve. The
cycle is u-conservative and the obtained usable rules are also u-conservative:

minus(z,0) — x

and
minus(s(z),s(z)) — minus(z,y)

According to Theorem 64, the cycle can be easily solved by using a polynomial
interpretation:

y) = w 0 = 0
(@) = z+1 [QUOT)(z,y) = «

56

12. Usable Rules

13

Narrowing Transformation

The starting point of a proof of termination is the computation of the estimated
dependency graph followed by the use of the SCC processor (Theorem 50). The es-
timation of the graph can lead to overestimate the arcs that connect two dependency
pairs.

Example 68 Consider the following example [Luc06, Proposition 7]:

£(0) — cons(0,£(s(0)))
£(s(0)) — £(p(s(0)))
p(s(z)) — =
together with u(f) = u(p) = u(s) = p(cons) = {1} and u(0) = @. Then,
DP(R, 1) (see [AGL06, AGL0O7, AGLO8]) consists of the following pairs:

F(s(0)) — F(p(s(0))) (13.1)
F(s(0)) — P(s(0)) (13.2)

The estimated CS-dependency graph [AGL06, AGL0O7, AGL0S8| contains one cy-
cle: {(13.1)}. Note, however, that this cycle does not belong to the CS-dependency
graph because there is no way to p-rewrite F(p(s(0))) into F(s(0))! n

As already observed by Arts and Giesl for the standard case [AGO00], in our case the
overestimation comes when a (noncollapsing) pair u; — v; is followed in a chain by
a second one u;y; — v;+1 and v; and u;; are not directly unifiable, i.e., at least
one p-rewriting step is needed to p-reduce o(v;) to o(u;41). Then, the p-reduction
from o(v;) to o(ui1) requires at least one step, i.e., we always have o(v;) —g .
0(v;) =% 0(uir1). Then, v} is a one-step p-narrowing of v; and we could require
w; J v} (which could be easier to prove) instead of u; J v;. Furthermore, we could
discover that v; has no p-narrowings. In this case, we know that no chain starts
from o(v;).

58 13. Narrowing Transformation

According to the discussion above, we can be more precise when connecting two
pairs © — v and ' — v in a chain, if we perform all possible one-step pu-narrowings
on v in order to develop the possible reductions from o(v) to o(u’). Then, we obtain
new terms vy, ..., v, which are one-step p-narrowings of v using unifiers 6; (i.e.,
v~ Vi) for i € {1,... n}, respectively. These unifiers are also applied to the
left-hand side u of the pair u — v. Therefore, we can replace a pair u — v by all its
(one-step) p-narrowed pairs 61(u) — vy,..., O,(u) — vy,

As in [AG00, GTSF06], a pair u — v € P may only be replaced by its narrowings
if the right-hand side v does not unify with any left-hand side u’ of a (possibly
renamed) pair v’ — v’ € P (note that this excludes pairs u — v with v € X).
Moreover, the term v must be linear. We need to demand linearity instead of (the
apparently more natural) p-linearity (i.e., something like “no multiple u-replacing
occurrences of the same variable are allowed”).

Example 69 Consider the following TRS which is used in [AG00] to motivate the
requirement of linearity:

f(s(z)) — £(g(z,2))
g(0,1)) — s(0)
o — 1

We make it a CS-TRS by adding a replacement map p given by u(£f) = u(s) = {1},
w(g) = {2}. The only cycle in the CS-DG consists of the pair

F(s(x)) — Flg(z, v))-

If linearity of the right-hand sides is not required for narrowing CSDPs, then it
will be removed since F(g(z,x)) and the (renamed version of) the left-hand side
F(s(2')) do not unify, thus, there are no p-narrowings. However the system is not
p-terminating:

£(s(0)) — £(g(0,0)) — £(g(0,1)) — £(s(0)) ...

The problem is that the p-reduction from o(F(g(x,z))) to o(F(s(2'))) takes place
‘in ¢’ and therefore it cannot be captured by p-narrowing. Note that F(g(z,x)) is
“u-linear”.]

Another restriction to take into account when p-narrowing a noncollapsing pair
u — v is that the p-replacing variables in v have to be p-replacing in u as well
(this corresponds with the notion of conservativeness). Furthermore, they cannot
be both pu-replacing and non-u-replacing at the same time. This corresponds to the
following definition.

Definition 70 (Strongly Conservative [GLUO08|) Let R be a TRS and pn € Mg.
A rulel — v is strongly pu-conservative if it is p-conservative and Var*(1)NVar#(l) =
Vart(r) N Vark(r) = @.

59

The following result shows that, under these conditions, the set of CSDPs can
be safely replaced by their p-narrowings.

Theorem 71 (Narrowing processor) Let R = (F,R) and P = (G, P) be TRSs
and p € Mryg. Let u — v € P be such that

1. u — v is strongly conservative,
2. v linear, and
3. for all v’ — v € P (with possibly renamed variables), v and v’ do not unify.

Let Q= (P —{u—v}hH)U{u — v | v — v is a p-narrowing of u — v}. Then, the
processor Proc,q. given by

QR)Y if (1), (2), and (2) hold
Procue(P, R, ;1) = { {(P,R,u,t)} otherwise

1$ sound and complete.

Proof.

We have to prove that there is an infinite minimal (P, R, i, t)-chain iff there is
an infinite minimal (Q, R, y1, t)-chain. The proof of this theorem is analogous to the
proof of [GTSF06, Theorem 31], which we adapt here. For the first direction, we
prove that given a minimal (P, R, p,t)-chain “... u; — v,u — v,uy — vy,...”,
there is a p-narrowing v’ of v with the mgu 6 such that “... u; — vy,0(u) —
V' ug — wy,...” is also a minimal (Q, R, i, t)-chain. Hence, every infinite minimal
(P, R, i1, t)-chain yields an infinite minimal (Q, R, u, t)-chain.

If “... u; — v1,u — v,uy — vy,...” is a minimal (P, R, y, t)-chain, then there
is an substitution ¢ such that for all pairs s — ¢ in the chain,

1. if s — t € Pg, then o(t) is p-terminating and it p-reduces to the instantiated
left-hand side o(s’) of the next pair s’ — ¢’ in the chain

2. if s = t = s — x € Py then, o(x) has a p-replacing subterm sy, o(x)>,so such
that s} is y-terminating and it g-reduces to the instantiated left-hand side o (s')
of the next pair s’ — ¢’ in the chain; furthermore, there is 5 € NHT (R, 1)
such that sy = 0y(5p) for some substitution 6.

Assume that o is a substitution satisfying the above requirements and such that the
length of the sequence o(v) —% , o(u2) is minimal.

Note that the length of this p-reduction sequence cannot be zero because v
and us do not unify, that is, o(v) # o(ug). Hence, there is a term ¢ such that
0(v) =rpu q =%, 0(uz). We consider two possible cases:

60

13. Narrowing Transformation

1. The reduction o(v) —x,, ¢ takes place within a binding of o, i.e., there is a

term r, a p-replacing variable position p € Posh.(v), and a p-replacing variable
x € Vart(v) such that v|, = z, ¢ = o(v[r],) and o(x) —x,, r. Since v is linear,
x occurs only once in v. Thus, ¢ = ¢/(v) for the substitution ¢’ with o’(z) = r
and o'(y) = o(y) for all variables y # z. As we assume that all occurrences of
pairs in the chain are variable disjoint, o’(x) behaves like o for all pairs except
u — v. We have o(z) —% , 0'(z) for all z € X'. Since u — v is strongly
conservative we also have o(u) —% , 0'(u) because all occurrences of = in u
must be p-replacing. Hence, if u; — v; € Pg we have

o'(v1) = o(v1) =R, o(u) =%, o' (u)
and if u; — v; € Py, then there is sy € T (F, X) such that

o'(v1) = o(v1) >, 5 3§ R 0(U) =%, o' (u)

and, in both cases,
0'(v) = q =R, o(u2) = o' (ug).

Note that, by minimality and because u — v € Pg, o(v) is (R, u)-terminating
and, since 0(v) —g, ¢, the term ¢ is (R, pr)-terminating as well. Therefore,
o'(x) = qis (R, p)-terminating and ¢’ satisfies the two conditions above. Since
the length of the sequence o'(v) <% , 0'(ug) is shorter than the sequence
o(v) <%, o(uz), we obtain a contradiction and we conclude that the u-
reduction o(v) <=, ¢ cannot take place in a binding of o.

. The reduction o(v) —x, ¢ ‘touches’ v, i.e., there is a nonvariable position

p € Pos'z(v), and a rewrite rule | — r € R such that o(v|,) = p(l), for some
substitution p and

o(v) = a(v)o(vlp)ly = o)D)y == o()p(r)l, = q

Since we can assume that variables in [are fresh, we can extend o to behave
like p on variables in [. Thus, o(l) = o(v|,), i.e, [and v|, unify and there is a
mgu 6 and an substitution 7 satisfying o(x) = 7(0(x)) for all variables z. We
have that v g-narrows to 6(v)[0(r)], = v' with unifier . Again, we can extend
o to behave like 7 on the variables of (u) and v’. Therefore, if u; — v, € Pg
we have
o(v1) =, o(w) = 7(0(u)) = o(0(u))
and if u; — v; € Py, then there is s; € T (F, X) such that

o(v1) = 0(2) By 51 81 =R, 0(u) = 7(0(w) = 0 (6(u))

o(v') = 7(v) = 7(0(0)[T(0(r)]p = o(v)lo(r)]p = o(v)[p(r)lp = ¢ =%, 7 (u2)

(13 7

ooy up — vy, 0(u) — v uy — vy, .. is also a minimal chain.

61

The other side is also analogous to the ‘completeness’ part of [GTSF06, Theorem

31]. If “... ug — vy, 0(u) — V' ug — vg,...” is an infinite minimal (Q, R, u, t)-chain

where v’ is a one-step p-narrowing of v using the mgu 6, then “... u; — v, u —

v, us — Vg, ...” is an infinite minimal (P, R, p,t)-chain. There is a substitution o

such that
o(v1) =g, o(0(u)) if uy — v € Pg, and
o(v1) = o(x) >, s and s —ru00) ifu — v € Py
Finally, we also have
a(v') R 0(Uz).

Since the variables in the pairs are pairwise disjoint, we may extend o to behave
like o(0(x)) on x € Var(u) then o(u) = o(f(u)) and therefore

o(v1) =g, o(u) if uy — v, € Pg, and
o(v1) >, 51 and s —ru o) ifu — v €Py

Moreover, by definition of y-narrowing, we have §(v) —x , v'. This implies that
o(0(v)) —r, o(v') and since o(v) = o(f(v)), we obtain

0(0) =R o (V) =R, ().

13 7

Hence, “... ,u; — vi,u — v,us — vy,...” is a minimal (P, R, p, t)-chain as well.
n

Example 72 (Continuing Example 68) Since the right-hand side of pair (13.1) in
Example 68 does not unify with any (renamed) left-hand side of a pair (including
itself) and it can be p-narrowed at position 1 (notice that p(f)={1}) by using the
rule p(s(z)) — x, we can replace it by its p-narrowed pair:

F(s(0)) — F(0)

The p-narrowed pair does not form any cycle in the estimated narrowed ICS-
dependency graph and p-termination is easily proved now.]

The following example shows that strongly conservativeness cannot be dropped

for the pair u — v to be py-narrowed. This requirement was not taken into account
in [AGLO7, Theorem 5.3].

Example 73 Consider the following TRS R:

c(e(z)) — d(z,x)

a — e(a)

62 13. Narrowing Transformation

and P consisting of the following pair:
F(d(z,z)) — F(c(z))

together with p(c) = p(d) = u(F) = {1} and p(e) = &. There is an infinite
(P, R, i1, t)-chain as follows:

F(c(a)) —ruFlcle(a))) —ruF(d(a,2)) —p,Flc(a) —rpu -

Since F(c(z)) does not unify with any left-hand side of another pair, we can p-narrow
the pair in P. We obtain P’ consisting of the py-narrowed pair

F(d(e(x), e(x))) — F(d(z, z))

No infinite (P’, R, , t)-chain is possible now.
Note that P is p-conservative, but it is not strongly p-conservative (the variable
x is both p-replacing and non-p-replacing in F(d(z, z))). n

Of course, p-narrowing can also be used in proofs of innermost termination of
CSR. In the standard setting, when using narrowing for proving innermost ter-
mination we do not require that the right-hand side of the dependency pair to be
narrowed is linear since the involved substitution ¢ is normalized. However, in the
context-sensitive setting, if the pair to be y-narrowed is not strongly p-conservative,
we can not ensure that the variables on the right-hand side are p-normalized so we
also have to demand linearity. When dealing with innermost narrowing in context-
sensitive rewriting we can drop the linearity condition if the pair to be pg-narrowed is
strongly conservative since all p-replacing variables in the right-hand side of a pair
are instantiated to p-normal form and p-reductions can not take place on them.

Theorem 74 (Innermost Narrowing processor) Let R = (F,R) and P = (G, P)
be TRSs and pn € Mgy g. Let uw — v € P be such that

1. w— v is strongly conservative,

2. for all v — v € P (with possibly renamed variables), v and v’ do not unify
or they unify by some mgu 0 such that one of the terms 6(u) or O(u') is not a
pw-normal form.

Let Q= (P —{u—v}hH)U{u — v | v — v is a p-narrowing of u — v}. Then, the
processor Proc,,.,. given by

[QR i (1), and (2) hold
Procimar (P, R, 1) = { {(P,R,u,i)} otherwise

1s sound and complete.

63

Proof.

We have to prove that there is an infinite minimal innermost (P, R, u, i)-chain
iff there is an infinite minimal innermost (Q, R, p, 7)-chain. We prove that for every
minimal innermost (P, R, u,i)-chain “... uy — vy, u — v,uy — vg,...”, there is
an innermost p-narrowing v’ of v with the mgu 6 such that “... u; — vy,0(u) —
V', ug — vg,...” is also a minimal innermost (Q, R, , i)-chain.

” is a minimal innermost (P, R, u,7)-chain,
then there is an substitution ¢ such that for all pairs s — ¢ in the chain,

If “...,u; — v, u — v, Uy — Vo, ..

1. if s — t € Pg, then o(t) is p-terminating and it p-reduces innermost to the
instantiated left-hand side o(s’) of the next pair & — ¢’ in the chain

2. if s = t = s — x € Py then, o(x) has a p-replacing subterm sy, o(x)>,so such
that sg is p-terminating and it u-reduces to the instantiated left-hand side o (')
of the next pair s’ — ¢’ in the chain; furthermore, there is 5 € NHT (R, 1)
such that sy = 0y(So) for some substitution 6.

3. all instantiated left-hand sides are py-normal forms w.r.t. (R, u)

Assume that o is a substitution satisfying the above requirements and such that the
length of the sequence o(v) —% , o(u2) is minimal.
Note that o(v) # o(uz). Otherwise o would unify v and uy, where both, u and
vy are pi-normal forms, hence, there is a term ¢ such that o(v) =g i ¢ =% i o(u2).
The reduction o(v) <—x,; ¢ cannot take place within a binding of o because
u — v is strongly conservative. Hence, o(u) would not be a p-normal form which
violates the last condition for ¢. In the innermost case, we do not have to demand
linearity since p-replacing variables in v come from being replacing in u (strongly
conservative) and they are instantiated to g-normal forms and no one can be reduced
in v. The remainder of the proof is completely analogous to the noninnermost case.
]

Example 75 Consider again the TRS (R,u) in Example 69. The only CS-DP in
the existing cycle can be removed since it does not unify with other (renamed) CS-
DP and has no p-narrowing. Since the CS-DP is strongly conservative we do not
require that the right-hand side is linear. So the system is easily proved innermost
p-terminating thanks to the innermost py-narrowing transformation.

]

64

13. Narrowing Transformation

14

Simplifying monotonicity
requirements for innermost
(-termination

In the innermost setting, matching substitutions are always normalized. For this
reason, in an innermost sequence t; ﬂq ty E)i e ﬂi t,+1 starting at root position
(i.e., p1 = A), every redex t;|,. for j > 1 comes from a defined symbol introduced
after applying a rule [, — 7 in a previous step k < j. Hence the set of arguments
which are reduced can be handled by looking for defined symbols in right-hand sides
of the involved rules [— r.

In [AGO00], Arts and Giesl already noticed that in the treatment of innermost
chains, monotonicity requirements for the reduction pairs can be weaker. In [Fer05]
Fernandez defines the notion of usable arguments for a function symbol when proving
innermost termination. The idea is that, in innermost sequences, some arguments
are not relevant for proving termination.

Example 76 Consider the following TRS R:

— f(z,g(x))
— g(x)

Any innermost sequence starting at root position does not take into account the
first argument of £ nor the argument of g. The reason is that since an innermost
redex is an argument normalized redex, that means that all variables (e.g. x) of
the applied rule are normalized and cannot be reduced. Only the second argument
g(x) of £ in the right-hand side of the first rule could be innermost reduced after
applying it.
|

Definition 77 (Usable arguments [Fer05], Definition 3) Let R = (F, R)= (CY
D, R) be a TRS and P a set of pairs of terms s.t. for allu — v € P, u is argument
normalized with respect to R. The set of usable arguments for a function symbol
f € F with respect to R and P is defined as UA(f,R,P) ={1 <k <ar(f)|Iu—

66 14. Simplifying monotonicity requirements for innermost p-termination

v e PUU(R,P), Ip,p’ € Pos(v) s.t. root(v|y) = f, root(v],) € D, p'.k < p,
u v}

Considering those usable arguments could be helpful in proofs of innermost ter-
mination since they impose weaker monotonicity requirements. For instance, when
using polynomial orderings, we can use even negative or rational coefficients for
interpreting the symbols that do not need to be monotonic.

As Fernandez noticed, the set of usable arguments can be seen as a replacement
map which specifies the arguments to be reduced. In her approach, proving the u-
termination of a TRS R implies the innermost termination of R if u(f)=UA(f, R, R)
for all f € F where R only contains rules such that all left-hand sides are argument
normalized.

Corollary 78 ([Fer05], Corollary 11) Let R be a TRS and u(f) = UA(f,R, R)
for every f € F where R' C R contains all rules | — r € R such that | is argument
normalized. If R is p-terminating, then R is innermost terminating.

This observation is very useful since now, all techniques for proving termi-
nation of CSR can be used for proving innermost termination. Several meth-
ods and techniques for proving termination of CSR have been developed so far
[GM04, AGL06, Luc06, AGL07].

14.1 Usable arguments for CSR

Following Fernéndez’s ideas, in the innermost context-sensitive setting (for a given
replacement map p) we could relax monotonicity requirements by taking into ac-
count that reductions only take place on p-replacing positions of the right-hand
sides of the rules which are rooted by a defined symbol. We adapt Fernandez’s ideas
to CSR. In sharp contrast to the unrestricted case, we need to take into account
that in innermost CSR a redex does not need to be argument normalized. Only
argument p-normalization can be assumed. Thus, non-u-replacing subterms may
contain redexes that can be reduced later on if they come to a replacing position.

Proposition 79 A CS-TRS (R,) is innermost p-terminating iff R’ is innermost
p-terminating, where R’ C R contains all rules | — r € R such that | is argument
p-normalized.

Proof. Trivial since the only rules that can be applied in innermost p-reductions
are those whose the left-hand sides are argument p-normalized as we have shown in
the definition 24 of ICS-DPs. []

14.1. Usable arguments for CSR 67

In the following, we assume that all CS-TRS (R, i) are argument p-normalized,
i.e., for all rule [— r in R, [is argument p-normalized. Proposition 79 ensures that
this entails no lack of generality regarding our research on innermost termination of
CSR.

The straightforward adaptation of Fernandez’s criterion to CSR yields the fol-
lowing definition: the usable CS-arguments for a function symbol f € F are those
arguments with a p-replacing subterm rooted by a defined symbol in some right-
hand side of a pair or usable rule.

Definition 80 (Basic usable CS-arguments) Let (R,pn) = ((CW D, R), i) be a
CS-TRS and P be a set of pairs of terms s.t. for all u — v € P, u is argument
p-normalized. The basic usable CS-arguments for a function symbol f € F are
defined as UA,(f,R,P)={i € u(f) | IJu—vePUULNR,uP), Ip,p € Pos"(v)
s.t. root(v|y) = f, root(v|,) € D, pi <p, uth, vy}

Note that the replacement map given by p'(f) = UA,(f,R,P) for all f € F is
more restrictive than p: p/(f) C p(f) for all f € F.
The following proposition is the context-sensitive version of [Fer05, Lemma 5].

Proposition 81 Let (R,u) be a CS-TRS and P be a set of pairs of terms s.t. for
allu — v € P, u is argument p-normalized and P U Uy(R, i, P) is p-conservative.

>A
Let 1 —r € PUUWR, 1, P) be such that o(r) —y (g .p) t for some term t and

substitution o s.t. o(l) is argument p-normalized . If t|, is an innermost p-redez,
then for all p'.k < p, we have that k € UA,,(root(t|y), R, P).

Proof. By induction on the length n of the rewriting sequence. If n = 0, then
o(r) = t. Then, since o(l) is argument p-normalized, it follows that for all z €
Vart(l),o(x) € NF,(R). Since the rule [— r is conservative (that is Var#(r) C
Var#(l)), we have that for all z € Var#(r),o(x) € NF,(R). It follows that p is a
nonvariable (u-replacing) position of r, i.e. p € Pos’z(r). Thus, root(r|,) € D and
the result follows by Definition 80.

If n > 0, then there is a term s such that o(r) i,* s and s LAn t at some
p-replacing position ¢q. By the induction hypothesis, every p-replacing position of
the term t above, which equal or disjoint to ¢ satisfies the result and we only have
to prove it for innermost redexes t|, s.t. ¢ < p, it is say, we have to prove that

k € UA,(root(t|y),R,P), forall ¢ < p'.k < p. If s f>—A>; t, then s|, = o'(l') and
tl, = o'(r'), for some rule I" — 1" € Uy(R, , P) and substitution o’ s.t. o'(I') is
argument p-normalized. This implies that every innermost redex of ¢|, occurs at a
position p” € Pos”(r') s.t. root(r'|,,) € D (since the rule ' — 1’ is conservative
we have that for all x € Var*(r’),o(x) € NF,(R)) and " 1%, 7’|, (otherwise, o' (I’)
would not be an innermost redex of s. By definition, when p” > A, p'.k < p”,
k € UA,(root(t|q,), R,P) which is equivalent to what we needed to prove (k €
UA, (root(t|y),R,P), for all ¢ < p'.k < p). [

68 14. Simplifying monotonicity requirements for innermost p-termination

Corollary 78 suggests that innermost p-termination could be proved by using a
p'-reduction ordering for y given by p/(f) = UA,(f,R,P) for all f € F. This is
true for u/-conservative CS-TRSs, as the following theorem shows.

Theorem 82 A p-conservative CS-TRS (R,) is innermost p-terminating if there
is a p'-reduction ordering = s.t. R C =, where for all symbol f € F, (/(f) =
UA,(f,R,R).

Proof. By contradiction. Assume that R is not innermost p-terminating. By the
argument of size minimality, there is a infinite innermost p-rewrite sequence with
the first step at position A: s; <= s9 < 83 < -+ (without loss of generality). By

Proposition 81 (where we let P = R), every step s; <>—A>; sj41 at position p satisfies
that p'.k < p, k € UA,(root(s;|,), R,P). Since R C > and > is stable and p/-
monotonic, s; > s;j1; holds. Therefore, there is an infinite ~-decreasing sequence of
terms S; = Sg = - -+ > S, = --- which contradicts the well-foundedness of >.

]

Since p-reduction orderings characterize termination of CSR we have the follow-
ing corollary.

Corollary 83 Let R be a p-conservative TRS for u € Mg. Let i/ be given by
W(f) = UALf, R, R) for every f € F. If R is innermost ' -terminating, then R
1S 1nnermost p-terminating.

Example 84 Consider the TRS R :

f(a,b,x) f(z,x,x)

—
—
—

(oY

together with p(f) = {1,3}. According to [AGL06, AGL07, AGLO08] there is only
one CS-DP:

F(a,b,z) — F(z,z,x)

In the CS-DG (see [AGL06, AGLO07, AGLO§]), the context-sensitive dependency
pair forms a cycle. However, by using p/(f) = UA,(f,R,P) for every f € F we
obtain p/(f) = &. Now, the pair does not form a cycle thus easily concluding the
(/-termination of R and, by Corollary 83, the innermost u-termination of R.]

This fact is important since now, all techniques for proving termination of C'SR can
be used to prove termination of innermost CSR for p-conservative systems. The
following example shows that p-conservativeness cannot be dropped in Theorem 82
and Corollary 83.

14.2. Relaxing monotonicity with CS-DPs 69

Example 85 Consider again the TRS R in Example 84 but now together with
wu(f) = {1,2}. If we try to apply Corollary 83 to prove innermost p-termination of
R, we obtain p/(f) = @ and (as discussed in Example 84) the CS-dependency graph
has no cycle thus concluding the innermost p-termination of R. However,R is not
innermost p-terminating:

f(a,b,c) —if(c,c,c) —if(a,c,c) —if(a,b,c) —---

Note that the first rule of R is not p-conservative now.]

14.2 Relaxing monotonicity with CS-DPs

Fernandez’s criterion was also adapted to deal with proofs of termination of rewriting
using dependency pairs, what allows us using reduction pairs instead of reduction
orderings in proofs of termination.

In previous chapters, we have shown how to prove innermost termination of CSR
by using ICS-DPs. Now, we can adapt the use of CS-usable arguments to be applied
in proofs of innermost p-termination with ICS-DPs. We do that by providing a new
processor for dealing with innermost p-termination problems

Theorem 86 Let R = (F,R) and P = (G,P) be TRSs and 1 € Mgyg. Let
pp(f) = UAL(f,R,P) for all f € FUG and (2,) be a pp-reduction pair such
that

1. P and Uy(R, p, P) are p-conservative,
2. Up(R,pu,P) CZ and P C 2 U 3,
Let P—={u— v € P |uJv}. Then, the processor Procg., given by

N — {(P - P:IaU()(Ra,uaP)nuP?i)} Zf (1) and (2) hold
Procp.-(P, R, u,i) = { {(P, R, 1)} otherwise

18 sound.

Proof. We have to prove that every infinite minimal innermost (P, R, ut)-chain in-
troduces an infinite minimal innermost (P —P—, Ug(R, p, P), pip)-chain. We proceed
by contradiction. Assume that there is an infinite minimal innermost (P, R, u)-chain
A, but that there is no infinite minimal innermost (P — P—, Ug(R, i, P), p)-chain.
Due to the finiteness of P, we can assume that there is @ C P such that A has a
tail B

! !
o(u1) —ou 0 Bh t1 —rpuio(ug) —ou 0Bty =i o(ug) =g, 0B -

70 14. Simplifying monotonicity requirements for innermost p-termination

for some substitution o, where all pairs in Q are infinitely often used, and, for
all i > 1, since all u; — v; € P are conservative u; — v; € Qg, then t; = o(v;) such

that for all ¢ > 0, o(u;) is argument p-normalized and o(v;) is innermost (R, u)-
>A
terminating. By Proposition 63 and 81, every innermost step in the sequence ¢; —7

o(u;y1) is performed at a up-replacing position by means of a conservative rule in
UO (Ru 2 7))

! !
O'(u1) ;)Q,,up © IZ/ﬁJf’P tl <—>U0(R7'U'7,P)nu737i U(UQ) (—>Q7N73 © EE’/P t2 (_)UO(R7N7P)7MP73 U(u3> =

Since w; (2 U O) v; for all u; — v; € @ C P, by stability of 2 and 1, we have
o(u;) (2 UD0)o(v) for all i > 1.

No pair v — v € Q satisfies that v 3 v. Otherwise, we get a contradic-
tion by considering that since all pairs € P are conservative u; — v; € Qg, then

ti = o(v;) ;UO(R,H,p),W,i o(uir1) and t; 2 o(u;1). Since we have o(u;) (2 U O
)o(v;) = o(v;)) = t; , by using transitivity of 2 and compatibility between 2
and 1, we conclude that o(u;) (2 U J) o(uiy1). Since u — v occurs infinitely
often in B, there is an infinite set Z C N such that o(u;) 3 o(u;41) for all
i € Z. And we have o(u;) (Z U 3) o(uiq1) for all other u; — v; € Q. Thus,
by using the compatibility conditions of the p-reduction pair, we obtain an infi-
nite decreasing —-sequence which contradicts well-foundedness of 7. Therefore,
Q C (P — P=). Since up C p and NF,,(Uo(R,p,P)) 2 NF,(R), we have that
o(u;) € NF,,(Uo(R, 1, P)). By Proposition 63, innermost (R, pt)-termination of
o(v;) implies innermost (U (R, i, P), p)- termination of o(v;) for all ¢ > 1 and by
Proposition 81, innermost (Ug(R, i, P), p)-termination of o(v;) implies innermost
(Uo(R, 1, P), pip)-termination, so we get that innermost (R, p1)-termination of o (v;)
implies innermost (Uy(R, i, P), p)-termination. Hence, B is an infinite minimal
innermost (P — P—, Ug(R, i, P), p)-chain, thus leading to a contradiction.

[

Corollary 83 can be generalized to (certain) non-u-conservative CS-TRSs thanks
to Theorem 86 and the results for proving innermost termination of CSR in [AL07a].
Now, for a given CS-TRS (R, 1) that satisfies the conditions of Theorem 86, we can
prove its innermost p-termination by relaxing pu-monotonicity requirements for each
cycle.

Example 87 Consider the following TRS R:

f(s(z)) — f()

g(cons(0,y)) — g(y)

f(cons(s(z),y)) — s(y)
h(cons(z,y)) — h(g(cons(z,y)))

14.2. Relaxing monotonicity with CS-DPs 71

together with u(f) = p(s) = pu(cons) = p(h) = {1} and u(g) = @. Note that R is
not p-conservative due to the third rule. The set of CS-DPs consists of the following
ones:

F(s(z)) — F(x)
G(cons(0,y)) — G(y)
F(cons(s(z),y)) —
H(cons(z,y)) — (g(conS(ﬂc,y)))
H(cons(z,y)) — G(cons(z,y)))

The CSDP H(cons(z,y)) — H(g(cons(z,y))) could be y-narrowed and we obtain
a new pair H(cons(0,y)) — H(g(y)) There are three cycles in the ICS-DG:

{F(s(z)) — F(2)},
{G(cons(0,y)) — G(y)},
{H(cons(0,y)) — H(g(y))}

Although the system is not p-conservative, all the obtained cycles (and the corre-
sponding sets of basic CS-usable rules) are. The first cycle can be solved by applying
subterm criterion (see [AGLO08]). The second one can be oriented using a polyno-
mial interpretation where [G](x) = x, [cons](x,y) =y + 1 and [0] = 0 (note that the
set of basic CS-usable rules is empty for this cycle). For the last cycle, we have to
take into account the (u-conservative) basic CS-usable rule g(cons(0,y)) — g(y).
However it can be solved by using the following interpretation:

Hl(z) =z [cons|(z,y) =z [g](x) =0 [n)(z)=0 [o]=1

14. Simplifying monotonicity requirements for innermost p-termination

15

Experiments

We have implemented the techniques described in the previous chapters as part of
the tool MU-TERM [Luc04]. In order to evaluate the techniques which are reported
in this paper we have made some benchmarks. We have considered the examples
in the Termination Problem Data Base (TPDB, version 3.2) available through the
URL:

http://www.lri.fr/~marche/tpdb/

15.1 Proving termination of innermost CSR: Di-
rect techniques vs. transformations

Although there is no special TPDB category for innermost termination of CSR (yet)
we have used the TRS/CSR directory in order to test our techniques for proving
termination of innermost CSR. The TPDB v3.2 contains 90 examples of CS-TRSs.
In order to evaluate our direct techniques in comparison with the transformational
approach of [GM02b, GM04, LucOlal, where termination of innermost CSR for a
CS-TRS (R, p) is proved by proving innermost termination of a transformed TRS
R, where © specifies a particular transformation (see [GM02a, GM02b] for a survey
on this topic), we have transformed the set of examples by using the transformations
that are correct for proving innermost termination of CSR: Giesl and Middeldorp’s
correct transformations for proving termination of innermost CSR, see [GMO02b],
although we use the ‘authors-based’ notation introduced in [Luc06]: GM and C
for transformations 1 and 2 for proving termination of CSR introduced in [GMO04],
and iGM for the specific transformation for proving termination of innermost CSR
introduced in [GMO02b]. Then we have proved innermost termination of the set of
examples with AProVE [GST06], which is able to prove innermost termination of
standard rewriting. The results are summarized in Table 15.1 and 15.2. Further
details can be found here:

http://www.dsic.upv.es/~balarcon/MasterThesis/benchmarks/InnermostCSR.html

These are the first known benchmarks comparing not only transformational tech-
niques vs. direct (DP-based) techniques, but also the existing correct transforma-
tions for proving innermost termination of CSR among them. They show that, quite

74 15. Experiments

ICS-DPs | Transformations
YES score 70 44
YES average time | 3.2 sec. 5 sec.

Table 15.1: Comparative in proofs of termination of innermost CSR

C | GM | iGM
YES score | 24 | 41 30

Table 15.2: Comparing transformations for proving termination of innermost CSR

surprisingly, the iGM transformation (which is in principle the more suitable one
for proving innermost termination of CSR) obtains worse results than GM (in the
average).

From the results in Table 15.1, it is clear that using transformations for prov-
ing termination of innermost CSR makes few sense after introducing the ICS-DP
framework.

15.2 Proving innermost termination of rewriting
as termination of CSR

We have implemented the use of Corollary 78 for proving innermost termination of
rewriting as termination of CSR (this was one of the main results in Ferndndez’s
paper). The relevance of this result in practice had not been tested yet as no
implementation of Ferndndez’s results was available (to our knowledge). In order
to evaluate it, we have considered the examples used in the innermost category
of the 2006 termination competition!, which are part of the TPDB. There are 69
examples, 66 of them are known to be innermost terminating. With Ferndndez’s
criterion (Corollary 78) MU-TERM succeeds in 32 examples (success rate of 48.5%).
This is acceptable if we think that (except for AProVE, which succeeds in the 100%
of the examples) the success rate for all other participants in this category is around
20%. However, we have also implemented the use of (standard) dependency pairs
for proving innermost termination (according to [AG00, Theorem 37]) together with
the narrowing refinement (we call this tool MU-TERM iDPs) and we are able to prove
39 examples, including all examples solved with Fernandez’s criterion. Moreover,
we have included Fernandez’s criterion as a technique to be applied when trying to
solve a cycle in the innermost termination proof (see [Fer05], Theorem 9). There
are two news approximations: when MU-TERM has to solve a cycle, the first version

"http://www.lri.fr/~marche/termination-competition/2006

15.3. Proving innermost termination of CSR: relaxing monotonicity requirements75

MU-TERM Ferndndez | MU-TERM iDPs [AGOO0]
YES score 32 39
YES average time 0.03 sec. 0.03 sec.

Table 15.3: Summary of benchmarks for innermost termination of rewriting

MU-TERM Fer. cycle-based | MU-TERM Fer. cycle-based (only)
YES score 38 37
YES average time 0.04 sec. 0.79 sec.

Table 15.4: Summary of benchmarks for innermost termination of rewriting (based
on cycles)

uses Fernandez’s criterion and if it fails then it tries to solve it in the usual way,
that is, without any replacement map (tool MU-TERM Ferndndez cycle-based). The
second one tries to force MU-TERM to solve the cycle with Fernandez’s criterion; No
other option is allowed (tool MU-TERM Fernandez cycle-based only). In both cases
the results obtained are similar. With the previous implementation of MU-TERM
(MU-TERM iDPs) we solve 39 examples and with these two configurations we obtain
better results than with Corollary 78; however, they do not improve the performance
of MU-TERM iDPs. The results are summarized in Tables 15.3 and 15.4.

Therefore, it seems that using Corollary 78 to prove innermost termination of
rewriting is not as good idea (at least with the considered set of examples) since we
loose some examples due to a too restrictive new replacement map and the average
time is the same. In the case of applying it to cycles, we obtain better results but
no essential improvement since we also loose some examples.

Full details for the benchmarks summarized in Table 15.3 can be found here:

http://www.dsic.upv.es/~balarcon/MasterThesis/Fer/benchmarks/FerInnermost.htm
In the following URL:
http://www.dsic.upv.es/~balarcon/MasterThesis/Fer/Innermost/benchmarks.html

more information can be found regarding the benchmarks summarized in Table
15.4. All this shows that we do not obtain any real improvement over the basic
technique of dependency pairs for proving innermost termination at least for the set
of considered examples.

15.3 Proving innermost termination of CSR: re-
laxing monotonicity requirements

For our experiments about proving termination of innermost CSR by means of a
new replacement map which imposes less monotonicity requirements we have used

76 15. Experiments

the set of examples mentioned in Section 15.1 . Since Corollary 83 only applies
to conservative systems, we restrict the attention to the 27 conservative examples.
We solve all of them with an average time of 0.025 seconds (MU-TERM Fernandez).
Further details can be found here:

http://www.dsic.upv.es/~balarcon/MasterThesis/Fer/benchmarks/FerICSR.html

On the other hand, we have also implemented the use of Theorem 86 to deal
with nonconservative systems. We have compared the same configurations ex-
plained above: the first one (MU-TERM Ferndndez cycle-based) tries to solve each
p-conservative cycle (with associated p-conservative usable rules) by using CS-usable
arguments as the new replacement map. If it fails then uses the normal configu-
ration of MU-TERM (MU-TERM ICS-DPs). The second one only applies CS-usable
arguments on cycles when searching for a compatible p-reduction pair (MU-TERM
Fernandez cycle-based only). All these versions of MU-TERM succeed over the same
70 examples, the same number of examples that we had already solved using the
innermost version of the context-sensitive dependency pairs. The time average rates
has no exhibit substantial differences. Further details can be found here:

http://www.dsic.upv.es/~balarcon/MasterThesis/Fer/iCSR/benchmarks.html

15.4 Transforming CS-dependency pairs

We have also implemented both g-narrowing and innermost gy-narrowing in MU-TERM.
Due to the possibility of performing an unbounded number of narrowing steps, the
p-narrowing transformation could be infinite (this also happens in the standard ap-
proach). In order to implement the transformation, we have chosen to use one-step
p-narrowing only if the (innermost) context-sensitive dependency graph obtained
has less cycles and arcs than the original one. One of the best advantages of using
p-narrowing lies in the possibility of dismissing some CS-DPs if the right-hand sides
do not unify with any left-hand side of another (possible renamed) CS-DP and they
have no p-narrowings. In fact, MU-TERM 4.4 which run in the 2007 termination
competition already implements these features. MU-TERM was the winner of the
context-sensitive category after solving 68 examples out from 90. Two of the tested
examples require the y-narrowing transformation to obtain a proof (as also happens
in Example 68).

16

Conclusions

The results of this thesis are revised and extended versions of the results published
in [ALO7a, ALO7b, AL08, AEFG+08].

Theoretical contributions. We have investigated the structure of infinite in-
nermost context-sensitive rewrite sequences starting from minimal innermost non-
p-terminating terms (Theorem 23). This knowledge has been used to provide an
appropriate definition of innermost context-sensitive dependency pair (Definition
24), and the related notion of innermost chain (Definition 27). We have proved
that it can be used to characterize innermost p-termination (Theorems 35 and 39).
We have provided a suitable adaptation of Giesl et al.’s dependency pair framework
to CSR by defining appropriate notions of CS-termination problem (Definition 43)
and CS-processor (Definition 46). In this setting we have described a number of
sound and (most of them) complete CS-processors which can be used in any practi-
cal implementation of the ICSDP-framework. In particular, we have introduced the
notion of (estimated) innermost context-sensitive (dependency) graph (Definitions
49 and 54) and the associated CS-processor (Theorem 50). We have also shown how
to automatically prove innermost p-termination by means of the ICS-dependency
graph (Theorem 50). We have formulated the notion of basic usable rules showing
how to use them in proofs of innermost termination of CSR (Definition 60, Theo-
rem 64) Narrowing context-sensitive dependency pairs has also been investigated. It
can also be helpful to simplify or restructure the dependency graph and eventually
simplify the proof of (innermost) termination (Theorems 71 and 74). We have also
shown how to relax monotonicity requirements for proving innermost termination
of context-sensitive rewriting. We have adapted Fernandez’s approach [Fer05] to be
used for proving innermost termination of context-sensitive rewriting (Theorems 82

and 86).

Applications and practical impact. We have implemented these ideas as part
of the termination tool MU-TERM [AGIL07, Luc04]. The implementation and prac-
tical use of the developed techniques yield a novel and powerful framework which
improves the current state-of-the-art of methods for proving termination of CSR.

78 16. Conclusions

Actually, ICS-DPs were an essential ingredient for MU-TERM in winning the context-
sensitive subcategory of the 2007 competition of termination tools.

Up to our contributions, no direct method has been proposed to prove termina-
tion of innermost CSR. So this is the first proposal of a direct method for proving
termination of innermost CSR. We have extended Arts and Giesl’s approach to prove
innermost termination of TRSs to CSR (thus also extending [AGL06, AGL07]). Our
benchmarks show that the use of ICS-DPs dramatically improves the performance
of existing (transformational) methods for proving termination of innermost CSR.

Future work. As remarked in the introduction, we aim at applying all previous
developments to deal with termination of Maude programs. Since its computational
mechanism can be thought of as kind of “context-sensitive call by value”, we believe
that our research is a essential contribution to the development of tools for proving
termination of Maude programs. However, a lot of further work is necessary before
being able to achieve this main goal.

[AEFG+08]

[AGO0]

[AGILO7]

[AGLO6]

[AGLO7]

[AGLOS]

[ALO7a]

[ALO7h]

Bibliography

B. Alarcon, F.Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas,
P. Schneider-Kamp, and R. Thiemann. Improving context-sensitive
dependency pairs. In I. Cervesato, H. Veith and A. Voronkov, editors,
Proc. of 15th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR’08, LNAI 5330:636—651,
Doha, Qatar. Springer-Verlag, 2008.

T. Arts and J. Giesl. Termination of Term Rewriting Using Depen-
dency Pairs. Theoretical Computer Science, 236(1-2):133-178, 2000.

B. Alarcén, R. Gutiérrez, J. Iborra, and S. Lucas. Proving Termi-
nation of Context-Sensitive Rewriting with MU-TERM. FElectronic
Notes in Theoretical Computer Science, 188:105—-115, 2007.

B. Alarcén, R. Gutiérrez, and S. Lucas. Context-Sensitive Depen-
dency Pairs. In S. Arun-Kumar and N. Garg, editors, Proc. of XXVI
Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTETCS 06, LNCS 4337:297-308, Kolkata, In-
dia. Springer-Verlag, 2006.

B. Alarcén, R. Gutiérrez, and S. Lucas. Improving the Context-
Sensitive Dependency Graph. FElectronic Notes in Theoretical Com-
puter Science, 188:91-103, 2007.

B. Alarcén, R. Gutiérrez, and S. Lucas. Context-Sensitive De-
pendency Pairs. Technical Report DSIC 11/10/08 (72 pages). De-
partamento de Sistemas Informaticos y Computacién, Universidad
Politécnica de Valencia, Spain, July 2008.

B. Alarcén and S. Lucas. Termination of Innermost Context-Sensitive
Rewriting Using Dependency Pairs. In B. Konev and F. Wolter, edi-
tors, Proc. of 6th International Symposium on Frontiers of Combining
Systems, FroCoS’ 07, LNAI 4720:73-87, Springer-Verlag, Berlin, 2007.

B. Alarcon, S. Lucas. Dependency pairs for termination of inner-
most context-sensitive rewriting. In E. Pimentel, editor, Proc. of
VII Spanish Conference on Programming and Computer Languages,
PROLE’07, pages 223-232, 2007.

80

16. Bibliography

[ALOS]

[BMOG]

[BNOg]

[Bor03]

[CDEL*07]

[Der04]

[DLMM*04]

[DLM*08]

[Fer05]

[FGJMS5]

[FNO7]

B. Alarcén, S. Lucas.

Using Context-Sensitive Rewriting for Proving Innermost Termina-
tion of Rewriting. In J. M. Almendros and M. J. Suarez, editors,
Proc. of VIII Spanish Conference on Programming and Computer
Languages, PROLE’08, FElectronic Notes in Theoretical Computer
Science, to appear, 2008.

R. Bruni and J. Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science 351(1):386-414, 2006.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

C. Borralleras. Ordering-based methods for proving termination au-
tomatically. PhD Thesis, Departament de Llenguatges i Sistemes
Informatics, Universitat Politecnica de Catalunya, May 2003.

Clavel, M., F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C. Talcott. All About Maude — A High-Performance Logical
Framework. LNCS 4350, 2007.

N. Dershowitz. Termination by Abstraction. In B. Demoen and V. Lif-
schitz, editors, Proc. of 20th International Conference on Logic Pro-
gramming, ICLP’04, LNCS 3132:1-18, Springer-Verlag, Berlin, 2004.

F. Duran, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Prov-
ing Termination of Membership Equational Programs. In Proc. of
2004 ACM SIGPLAN Symposium on Partial Fvaluation and Pro-
gram Manipulation, PEPM’0/, pages 147-158, Verona, Italy. ACM
Press, 2004.

F. Duran, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Prov-
ing Operational Termination of Membership Equational Programs.
Higher-Order and Symbolic Computation, 21(1-2):59-88, 2008.

M. L. Fernandez. Relaxing monotonicity for innermost termination.
Information Processing Letters 93(3):117-123, 2005.

K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Princi-
ples of OBJ2. In Conference Record of the 12th Annual ACM Sym-
posium on Principles of Programming Languages, POPL’85, pages
52-66, ACM Press, 1985.

K. Futatsugi and A. Nakagawa. An Overview of CAFE Specification
Environment — An algebraic approach for creating, verifying, and
maintaining formal specification over networks — In Proc. of Ist
International Conference on Formal Engineering Methods, 1997.

16.0. Bibliography 81

[GAO02]

[GL02]

[GLUOS]

[GMO02a]

[GMO2b]

[GMO4]

[Gra9b)|

[Gra96]

[GTS04]

[GSTO6]

J. Giesl, T. Arts, and E. Ohlebusch. Modular Termination Proofs for
Rewriting Using Dependency Pairs. Journal of Symbolic Computa-
tion, 34(1):21-58, 2002.

B. Gramlich and S. Lucas. Simple Termination of Context-Sensitive
Rewriting. In B. Fischer and E. Visser, editors, Proc. of III ACM
SIGPLAN Workshop on Rule-Based Programming, RULE’02, pages
29-41, New York, United States of America. ACM Press, 2002.

R. Gutiérrez, S. Lucas, and X. Urbain. Usable Rules for Context-
Sensitive Rewrite Systems. In A. Voronkov, editor, Proc. of the 19th

International Conference on Rewriting Techniques and Applications,
RTA’08, LNCS, 5117:126-141, Springer-Verlag, Berlin, 2008.

J. Giesl and A. Middeldorp. Innermost termination of context-
sensitive rewriting. Aachener Informatik-Berichte (AIBs), RWTH
Aachen, 2002. http://citeseer.ist.psu.edu/giesl02innermost.html

J. Giesl and A. Middeldorp. Innermost termination of context-
sensitive rewriting. In M. Ito and M. Toyama, editors, Proc. of
6th International Conference on Developments in Language Theory,
DLT’02, LNCS 2450:231-244, Springer-Verlag, Berlin, 2003.

J. Giesl and A. Middeldorp. Transformation techniques for context-

sensitive rewrite systems. Journal of Functional Programming,
14(4):379-427, 2004.

B. Gramlich. Abstract Relations between Restricted Termination and
Confluence Properties of Rewrite Systems, Fundamenta Informaticae,
24:3-23, 1995.

B. Gramlich. On Proving Termination by Innermost Termination.
Proc. 7th Int. Conf. on Rewriting Techniques and Applications Proc.
of RTA 96, LNCS 1103:93-107, Springer-Verlag, Berlin, 1996.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency
Pair Framework: Combining Techniques for Automated Termination
Proofs. In F. Baader and A. Voronkov, editors, Proc. of XI Inter-
national Conference on Logic for Programming Artificial Intelligence
and Reasoning, LPAR’04, LNAI 3452:301-331, Montevideo, Uruguay.
Springer-Verlag, 2004.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Auto-
matic Termination Proofs in the Dependency Pair Framework. In U.
Furbach and N. Shankar, editors, Proc. of Third International Joint

82

16. Bibliography

[GTSF06]

[GWM+-00]

[HMO4]

[HMO5]

[HMO7]

[HPW92]

[Luc96|

[Luc9g|

[LucOlal

[Luc01b]

Conference on Automated Reasoning, [JCAR’06, LNAI 4130:281-
286, Springer-Verlag, Berlin, 2006. Available at http://www-1i2.
informatik.rwth-aachen.de/AProVE.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and Improving Dependency Pairs. Journal of Automatic Reasoning,
37(3):155-203, 2006.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouan-
naud. Introducing OBJ. In J. Goguen and G. Malcolm, editors, Soft-
ware Engineering with OBJ: algebraic specification in action, Kluwer,
2000.

N. Hirokawa and A. Middeldorp. Dependency Pairs Revisited. In
V. van Oostrom, editor, Proc. of XV International Conference on
Rewriting Techniques and Applications, RTA’04, LNCS 3091: 249-
268, Aachen, Germany. Springer-Verlag, 2004.

N. Hirokawa and A. Middeldorp. Automating the Dependency Pair
Method. Information and Computation, 199:172-199, 2005.

N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Tech-
niques and features. Information and Computation, 205:474-511,
2007.

P. Hudak, S.J. Peyton-Jones, and P. Wadler. Report on the Func-
tional Programming Language Haskell: a non-strict, purely func-
tional language. Sigplan Notices, 27(5):1-164, 1992.

S. Lucas. Termination of context-sensitive rewriting by rewriting.
In F. Meyer auf der Heide and B. Monien, editors, Proc. of 23rd.
International Colloquium on Automata, Languages and Programming,
ICALP’96, LNCS 1099:122-133, Springer-Verlag, Berlin, 1996.

S. Lucas. Context-Sensitive Computations in Functional and Func-
tional Logic Programs. Journal of Functional and Logic Programming,
1998(1):1-61, 1998.

S. Lucas. Termination of Rewriting With Strategy Annotations. In
R. Nieuwenhuis and A. Voronkov, editors, Proc. of 8th International

Conference on Logic for Programming, Artificial Intelligence and Rea-
soning, LPAR’01, LNAI 2250:669-684, Springer-Verlag, Berlin, 2001.

S. Lucas. Termination of on-demand rewriting and termination of
OBJ programs. In Proc. of 3rd International Conference on Principles
and Practice of Declarative Programming, Proc. of PPDP’01, pages
82-93, ACM Press, 2001.

16.0. Bibliography 83

[Luc02]

[Luc04]

[Luc06]

[LMO8a)

[LMOSb)]

[McC60]

[NSEP92]

[Oh102]

[Thi07]

[TeRO3]
[Zan97]

S. Lucas. Context-Sensitive Rewriting Strategies. Information and
Computation, 178(1):293-343, 2002.

S. Lucas. MU-TERM: A Tool for Proving Termination of Context-
Sensitive Rewriting. In V. van Oostrom, editor, Proc. of XV Interna-
tional Conference on Rewriting Techniques and Applications, RTA’0/,
LNCS 3091:200-209, Aachen, Germany, 2004. Springer-Verlag. Avail-
able at http://zenon.dsic.upv.es/muterm.

S. Lucas. Proving Termination of Context-Sensitive Rewriting by
Transformation. Information and Computation, 204(12):1782-1846,
2006.

S. Lucas and J. Meseguer. Operational Termination of Membership
Equational Programs: the Order-Sorted Way. In G. Rosu, editor,
Proc. of the Tth International Workshop on Rewriting Logic and its
Applications, WRLA’08, Electronic Notes in Theoretical Computer
Science, to appear, 2008.

S. Lucas and J. Meseguer. Order-Sorted Dependency Pairs. In Proc. of
the 10th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, PPDP’08, ACM Press, pages
108-119, 2008.

J. McCarthy. Recursive Functions of Symbolic Expressions and their
Computations by Machine, Part 1. Communications of the ACM,
3(4):184-195, 1960.

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and
M.J. Plasmeijer. Concurrent Clean. In E.H.L. Aarts, J. Leeuwen, and
M. Rem, editors, Proc. of Parallel Architectures and Languages Fu-
rope, PARLFE’91, LNCS 506:202-219, Springer-Verlag, Berlin, 1992.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag,
2002.

R. Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD Thesis. Available as Technical Report AIB-2007-17,
RWTH Aachen University, Germany, 2007.

TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

H. Zantema. Termination of Context-Sensitive Rewriting. In
H. Comon, editor, Proc. of VII International Conference on Rewriting
Techniques and Applications, RTA’97, LNCS 1232:172-186, Sitges,
Spain. Springer-Verlag, 1997.

84

16. Bibliography

Related publications

. B. Alarcén, R. Gutiérrez, and S. Lucas.

Dependency Pairs for Context-Sensitive Rewriting.

Technical Report DSIC II/07/06 (24 pages). Departamento de Sistemas Informdticos y
Computacién, Universidad Politécnica de Valencia, Spain, 2006.

. B. Alarcén, R. Gutiérrez, and S. Lucas.

Context-Sensitive Dependency Pairs.

In S. Arun-Kumar and N. Garg, editors, Proc. of XXVI Conference on Foundations of
Software Technology and Theoretical Computer Science, FST&TCS’06, LNCS 4337: 297—
308, Kolkata, India. Springer-Verlag, 2006.

. B. Alarcén, R. Gutiérrez, and S. Lucas.
Towards a Dependency Pair Framework for Context-Sensitive Rewriting.

In P. Lucio, editor, Proc. of VI Spanish Conference on Programming and Computer Lan-
guages, PROLE’06, 1:77-86. Sitges, Spain, 2006. CIMNE Barcelona.

. B. Alarcén, R. Gutiérrez, J. Iborra and S. Lucas.
Proving Termination of Context-Sensitive Rewriting with MU-TERM.
Electronic Notes in Theoretical Computer Science, 188: 105-115, 2007.

. B. Alarcén, R. Gutiérrez, and S. Lucas.
Improving the Context-Sensitive Dependency Graph.
Electronic Notes in Theoretical Computer Science, volume 188, pages 91-103, 2007.

. B. Alarcén, R. Gutiérrez, and S. Lucas.

Improving Termination Proofs of Context-Sensitive Rewriting using Dependency Pairs.

In D. Hofbauer and A. Serebrenik, editors, Proc. of IX Workshop of Termination, WST’07,
pages 22-25, Paris, France, 2007.

. B. Alarcén, S. Lucas.

Dependency pairs for termination of innermost context-sensitive rewriting.

In E. Pimentel, editor, Proc. of VII Spanish Conference on Programming and Computer
Languages, PROLE’07, pages 223232, 2007.

. B. Alarcén and S. Lucas.

Termination of Innermost Context-Sensitive Rewriting Using Dependency Pairs.

In B. Konev and F.Wolter, editors, Proc. of 6th International Symposium on Frontiers of
Combining Systems, FroCoS’07, LNATI 4720: 73-87, Liverpool, United Kingdom. Springer-
Verlag, 2007.

. B. Alarcén, S. Lucas.
Using Context-Sensitive Rewriting for Proving Innermost Termination of Rewriting.

86

A. Related publications

10.

11.

In J. M. Almendros and M. J. Sudrez, editors, Proc. of VIII Spanish Conference on Pro-
gramming and Computer Languages, PROLE’08, Electronic Notes in Theoretical Computer
Science, to appear, 2008.

B.Alarcén, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Schneider-Kamp, R.
Thiemann.

Improving Context-Sensitive Dependency Pairs.

In I. Cervesato, H. Veith and A. Voronkov, editors, Proc. of 15th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’08, LNAI 5330:
636651, Doha, Qatar. Springer-Verlag, 2008.

B. Alarcén, R. Gutiérrez, and S. Lucas.

Context-Sensitive Dependency Pairs.

Technical Report DSIC II/10/08 (72 pages). Departamento de Sistemas Informéticos y
Computacién, Universidad Politécnica de Valencia, Spain. July, 2008.

