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NOTATION

Symbol Meaning
const(x) A constant function onx, i.e., a function

thatdoes notdepend onx
pr(· · · ) The actual unknow probability distribution
pθ(· · · ) We outline the fact that the probability is not the

actual probability but a model that depends uponθ

p(· · · ) The probabilities depicted in this way are already
a model parameter

A := B This symbol is used to stress that A is modelled
as B

δ(a, b) Stands for the Kronecker delta function, i.e.,1 if
and only ifa = b, and0 otherwise

For denoting probability distributions throughout the thesis, we identify values
and random variables whereas it entails no confusion. For instance, instead of

pr(Ω = ω) (1)

we use
pr(ω) (2)

Since identifying the valueω and the random variableΩ does not has any negative
effect, we will henceforth take the latter notation, i.e. Eq. (2).
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PRELIMINARIES
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Chapter 1. Preliminaries

SEVERAL topics are reviewed in this chapter. Some of them might seem too basic
to be reviewed, however, in the following chapters, these basic concepts are ex-
tended. For instance, the review of the statistical patternrecognition theory may

seem too trivial for the level assumed to the reader, howeverchapter 3 is mainly focused
on the basis of statistical pattern recognition.

The organisation of the current chapter is as follows. Firstly, in section 1.1, we review
the basic concepts of statistical pattern recognition. This statistical pattern recognition
review requires the analysis of several related topics. We start reviewing thestatistical
modellingin subsection 1.1.1. Afterwards, it is necesary to select the training criterion
which is reviewed in subsection 1.1.2. One of the most outstanding criterion is themaxi-
mum likelihood (ML)criterion which is covered in subsection 1.1.3.

Once the fundamental theory is reviewed in section 1.1, the following sections are
focussed on statistical pattern recognition tasks. In section 1.2, themachine translation
problem is analysed from a statistical point of view. This statistical review covers several
mainstream statistical models such asalignment word based modelsin subsection 1.3.1,
or phrase-based modelsin subsection 1.3.2. Since the automatic evaluation of machine
translation systems is a problem by itself, subsection 1.3.3 is devoted to review the main
automatic evaluation metrics. In section 1.4, the problem of text classificationis trackled
under the scope of pattern recognition.

Finally, the scientific contributions of the thesis are briefly enumerated in section 1.5.

1.1 Statistical Pattern Recognition

A pattern recognition problem consists in classifying eachpossible input or object, sayx ∈
X, into one class, sayω, from the set of all possible classes, i.e.Ω. Examples of pattern
recognition problems include text classification, speech recognition, image classification,
face recognition, machine translation, etc.

A classification system is characterised by theclassification function

c : X ⇒ Ω (1.1)

In the eighties, the most popular approaches to most of the pattern recognition prob-
lems were rule-based. Rule-based approaches define a huge set of rules based on the
knowledge engineers and domain experts in order to build theclassification system. The
main problem of these approaches is the definition of hand-crafted rules and their main-
tenance. In the nineties, the rule-based approach was replaced by inductive approaches,
which manly involvedstatistical methods. These approaches have numerous advantages:

• The classification function is learnt from the observation of a set of preclassified
documents by an inductive process.

• The same inductive process can be applied to generate different classifiers for dif-
ferent domains and applications. This fact introduces an important degree of au-
tomation in the construction of ad-hoc classifiers.

• The maintenance task is significantly simplified, since it only requires to retrain the
classifier with the new working conditions.

• The existence of off-the-self software to train classifiersrequires less skilled man
power than for constructing expert systems.

2 JAF-DSIC-UPV



1.1. Statistical Pattern Recognition

• The accuracy of classifiers based on inductive techniques competes with that of
human beings and supersedes that of knowledge engineering methods in several
tasks such as text classification, speech recognition.

Several methodologies can be applied to define the classification function, arising the
necessity of comparing among them. In order to sort the systems, theclassification error
rate (CER)is defined as the percentage of misclassifications performedby the system.

The performance of a classification function is usually measured as a function of the
classification error. However, there are problems in which all the classification errors do
not have the same repercussions. Therefore, a function thatranks each kind of error should
be provided. Theloss function,l(ωp|x, ωc), evaluates theloss in which the classification
system incurs when classifying the objectx into the classωp, knowing that the correct
class isωc. If a 0–1 loss function is provided, then the optimal system minimises the
classification error rate.

Taking into account the loss function definition, we define the risk of the system when
classifying an objectx, the so-calledconditional risk givenx, as the expected value of the
loss function according to the posterior class probabilitydistribution

R(ωp|x) =
∑

ωc∈Ω

l(ωp|x, ωc) pr(ωc|x) (1.2)

Usually, we want to compare system risks independently of any specific objectx.
Using the conditional risk, we define thethe global risk[?] as the contribution of all objects
to the classifier performance. The global risk is defined as follows

R(c) = Ex[R(c(x)|x)] =

∫

X

R(c(x)|x) pr(x)dx (1.3)

whereR(c(x)|x) is the conditional risk givenx, as defined in 1.3.
In practice, the global risk can rarely been calculated. However, using the law of great

numbers for a given test set,T = (xn, ωn)
N

n=1, i.i.d. according topr(ω, x), the global risk
can be approximated by

R̄T (c) =
1

N

N
∑

n=1

l(c(xn)|xn, ωn) (1.4)

The approximation of the global risk using a test set as in previous Eq. (3.6) is called
empirical riskon the test setT .

The classification error rate corresponds to the0–1 loss function defined as follows

l(ωp|x, ωc) =

{

0 ωp = ωc

1 otherwise
(1.5)

In this case the conditional risk simplifies to

R(ωp|x) = 1 − pr(ωp|x) (1.6)

and the empircial risk is

R̄T (c) =
1

N

N
∑

n=1

δ(c(xn), ωn) (1.7)

whereδ is a function which is equal to1 if both parameters are equal and0 otherwise.

JAF-DSIC-UPV 3



Chapter 1. Preliminaries

Our aspiration it to design the classification function thatminimises the global risk.
Since minimising the conditional risk for each objectx is a sufficient condition to minimise
the global risk, without loss of generality, the optimal classification rule, namelyminimum
Bayes’ risk, is the one that minimises the conditional risk for each object

ĉ(x) = arg min
ω∈Ω

R(ω |x) (1.8)

Assuming the0–1 loss function, and using the simplification of the conditional risk in
Eq. (1.7)

ĉ(x) = arg max
ω∈Ω

pr(ωp |x) (1.9)

This last equation is well-known and usually assumed to be optimal for all the cases be-
cause a0-1 loss function is being assumed.

1.1.1 Statistical modelling

In Eq. (1.9) theclass-posterior probabilityis used in order to find the optimal class, al-
though this probability is unknown but in simulated experiments. If we knew such prob-
ability, then we could define the best classifier for this framework, the so-calledBayes
classifier, and its CER would be the minimum possible CER, the so-calledBayes error or
Bayes CER.

Since the posterior probability in Eq. (1.9) has to be approximated with a model, a
common preliminar approach is to use the Bayes’ theorem in Eq. (1.9) yielding

c(x) = arg max
ω

{pr(ω |x)} = arg max
ω

{pr(ω)pr(x |ω)} (1.10)

where the posterior probability is substituted by two probabilities: the class priorpr(ω),
and the class posteriorpr(x |ω). If the actual probabilities are known, then both Eqs. (1.10)
and (1.9) are equivalent. However, the last Eq. (1.10) typically yield better approximations
on real systems provided that actual probabilities are modelled.

Since we are focused, on approximation of actual probabilities, most of the modelli-
sation techniques are based on statistics. Typically, classical or frequentist statistics are
applied, producing a classification of the models in two categories

• Parametric models:where the actual probabilities are modelled according to any
statistical distribution, such as the normal distribution, or the beta distribution.

• Non-parametric models:where the actual probability is decomposed using statisti-
cal equivalences and afterwards modelled directly.

1.1.2 Training criterion

In order to train a parametric model, theoptimalset of parameters, saŷθ must be found.
Although it might seem simple, the word “optimal” in previous definition requires a way to
compare different parameter setsθ. Therefore, appropriateness depends upon a criterion
which is summarised in thecriterion function (C). Given a criterion function, the optimal
set of parameters,̂θ, is determined by

θ̂ = arg max
θ∈Θ

{C(θ)} (1.11)

4 JAF-DSIC-UPV



1.1. Statistical Pattern Recognition

Often the criterionC(θ) cannot be mathematically calculated, and then a sample,D =
{x1, . . . , xn}, is needed in order to approximate the criterion

θ̂ = argmax
θ∈Θ

{C(θ; D)} (1.12)

Nevertheless expression in Eq. (1.11) is used indistinctlyof whether a sample is needed or
not.

It is important to remark the difference between the loss function defined in section 1.1
and the training criterion defined in the current section. The former defines the best way to
build a system for given probability functions, whereas thelatter determines the best way
to obtain the optimal parameter set according to our criterion.

There are several well-known and studied criteria such as maximum likelihood estima-
tion (MLE), maximum a posteriori probability (MAP) or minimum mean energy (MME).
We focus on the former, the wide-spread MLE.

1.1.3 Maximum likelihood estimation (MLE)

The maximum likelihood estimation (MLE) criterion is one ofthe most wide-spread crite-
ria which has a well-founded motivation. There is a well-founded motivation for the use
of the MLE. In principle, it can be argued that since we are interested in the actual prob-
ability distribution, we should minimise the “distance” (in terms of the Kullback-Leibler
divergence) between model and the actual distribution, that is

θ̂ = arg min
θ∈Θ

{KL(pr||pθ)} (1.13)

whereKL(pr|| pθ) is the Kullback-Leibler distance between the model and the actual prob-
ability, defined as

KL(pr||pθ) =

∫

X

pr(x) log pr(x)dx −

∫

X

pr(x) log pθ(x)dx (1.14)

Plugging previous Eq. (1.14) into Eq. (1.13) yields

θ̂ = arg max
θ∈Θ

{
∫

X

pr(x) log pθ(x)dx

}

(1.15)

Since Eq. (1.16) is typically unfeasible to solve, by means of a sampleD = {x1, . . . , xn}
and the law of great numbers, it can be approximated by

θ̂ = argmax
θ∈Θ

{LL(θ)} = argmax
θ∈Θ

{

∑

n

log pθ(xn)

}

(1.16)

with the definition of thelog-likelihood function (LL)

LL(θ) =
∑

n

log pθ(xn) (1.17)

Therefore, minimising the divergence between the actual probability distribution and
the model yields the log-likelihood function as the criterion function, i.e.C(θ) = LL(θ).
This criterion is named after the log-likelihood function and is so-calledmaximum likeli-
hood (ML)criterion.

JAF-DSIC-UPV 5



Chapter 1. Preliminaries

In summary, given an independent and interchangeable sample D = {x1, . . . , xN},
the MLE consist in solving the following maximisation

θ̂ = argmax
θ∈Θ

{
∑

n

log pθ(xn)} (1.18)

Maximum likelihood estimation typically leads to the intuitive solution of the relative fre-
quencies.

The maximum likelihood estimation has been a core techniquein pattern recogntion.
However, there is a little confusion in the bibliografy around the MLE term. In princi-
ple, the MLE is an statistical technique to estimate the optimal set of parameters for a
given probability distribution. In pattern recogntion, itis usually refered to estimate the
probabilitypr(x, ω) using the following expression

θ̂ = argmax
θ∈Θ

{
∑

n

log pθ(xn |ωn) + log pθ(ωn)} (1.19)

instead of the class posterior probability

θ̂ = argmax
θ∈Θ

{
∑

n

log pθ(ωn |xn)} (1.20)

which is usually understood in statistical bibliografy.
The MLE have several desirable properties:

• The MLE is asymptotically unbiased

• The MLE is asymptotically efficient, i.e., asymptotically,no unbiased estimator has
lower mean squared error than the MLE

• The MLE is asymptotically normal. As the number of samples increases, the dis-
tribution of the MLE tends to the Gaussian distribution withthe actual value as a
mean and covariance matrix equal to the inverse of the Fisherinformation matrix.

There are some regularity conditions which must be satisfiedto ensure this behaviour:

• The first and second order derivatives of the log-likelihoodfunction must be defined

• The Fisher information matrix must not be zero, and must be continuous

• The maximum likelihood estimator is consistent

Although, the MLE is asymptitically unbiased, the MLE is biased in practice for
“small” datasets. The term small depends on the ratio of the dataset size to the number
of parameter. In pattern recognition, this problem is very common and it is known as the
over-training problem. The over-training problem is restated in pattern recognition as the
fact that the learnt set of parameters is very specialised for the training data, and hence,
little probability remains to be distributed among the unseen data.

The typical approach to alleviate this problem is to resort to a smoothing technique.
A smoothing technique distorts the optimal set of parameters, θ̂, in order to obtain a
“smoothed” version of them,̃θ. Several of the smoothing techniques are heuristically
inspired and make the optimal solution to loose all its theoretical properties.

In chapter 2, we propose a novel smoothing techniques that makes the smoothed vector
to retain the desirable properties of the maximum likely estimates, and also to avoid the
over-training associated to MLE.

6 JAF-DSIC-UPV



1.2. Machine translation

1.2 Machine translation

In this section we review state-of-the-art applications and approaches in the field ofma-
chine translation (MT). On the one hand, current MT technology is focused on three main
applications:

• Fully-automatic MT in limited domains like weather forecast [LGLL05], hotel re-
ception desk [ABC+00a], appointment scheduling, etc.

• Post-editing for CAT, understanding by post-editing the human amendment of au-
tomatic translations produced by an MT system.

• Understandable rough translation in which the aim is to allow a human to decide
whether the translated text includes relevant information. For instance, this is used
for document finding purposes or user assistance in softwaretroubleshooting.

On the other hand, state-of-the-art MT approaches can be classified according to the
level of analysis of the source sentence before translating:

• The interlingua approach consists in transforming the source sentence to a language
independent semantic representation, the so-called interlingua, and translating that
interlingua expression into the desired target language. The major drawback of this
approach is its demanding knowledge resources to representsuch language indepen-
dent information. Further details of this approach can be found in [N+92, NM92,
A+93].

• The transfer approach decomposes the translation process into three steps:

Analysis. The source sentence is syntactically and semantically parsed to some
abstract representation.

Transfer. A transformation from the source representation into the target represen-
tation is performed.

Generation. The final translation is generated from the target representation ob-
tained in the previous step.

A review of transfer-based systems is presented in [HS92].

• The direct approach refers to the word-by-word translationfrom the source sen-
tence into the target sentence. Under this approach we find example-based MT and
statistical MT:

Example-based MT. This approximation deals with the translation of new sen-
tences by analysing, using different matching criteria, similar sentences pre-
viously translated. See [Som99] for a review of example-based MTa.

Statistical MT. A statistical model is inferred from translation examples and the
translation process is derived from a statistical decisiontheory perspective.
This thesis is mainly devoted to the statistical approximation to MT that will
be further studied in the next section.

aAlso known as memory-based MT [Bow02, Som03]

JAF-DSIC-UPV 7



Chapter 1. Preliminaries

1.3 Statistical MT

The goal of MT is the automatic translation of a source sentencex into a target sentencey,

x = x1 . . . xj . . . xJ xj ∈ X

y = y1 . . . yi . . . yI yi ∈ Y

wherexj andyi denote source and target words, andX andY , the source and target
vocabularies respectively.

In statistical MT, this translation process is usually presented as a statistical pattern
recogntion problem where given a source sentencex, the optimal target sentencêy is
searched according to

ŷ = argmax
y

pr(y |x) (1.21)

wherep(y |x) is the probability fory to be the actual translation ofx. Note that Eq. (1.21)
is simply the adoption of the Bayes’ optimal classification rule in Eq. (1.9) into the machine
translation scope.

The so-calledsearch problemis to compute a target sentenceŷ for which this proba-
bility is maximum. Applying Bayes’ theorem we can reformulate Eq. (1.21) as

ŷ = arg max
y

pr(x |y)pr(y) (1.22)

where the termp(y |x) has been decomposed into atranslation modelpr(x |y) and a
language modelpr(y). Intuitively, the translation model is responsible for modelling the
correlation between source and target sentence, but it can also be understood as a mapping
function from target to source words. While the language modelpr(y) represents the well-
formedness of the candidate translationy [?]. It should be noted that the termpr(x) has
been intentionally omitted in the denominator of Eq. (1.22), since it is constant for a given
x when maximising overy.

Note that we are looking the statistical MT as a specific instance of a classification
problem where:

• The object to be classified is the sentencex to be translated.

• The set of possible classes are the set of possible sentencesin the target language
y ∈ Y ⋆.

• The prior probability distribution is the language modelpr(y).

• The conditional probability distribution is the translation modelpr(x |y).

Therefore, under this point of view the decision rule statedin Eq. (1.21) is optimal
under the assumption of azero-oneloss function. In statistical MT, the zero-one loss
function is better known assentence error rate(SER)b and considers that there is an error
if the translation given by the system̂y is not identical to the reference translation.

In conclusion, by applying Eq. (1.21) we are minimising the probability of error using
SER as a loss function. However, the SER measure provides a rough and superficial eval-
uation of the translation quality of a translation system and it is rarely used in favour of
other more popular evaluation measures likeword error rate(WER) andbilingual evalu-
ation understudy(BLEU) [PRWZ01]. These evaluation measures, further explored in this

bSER in statistical MT is equivalent to CER in classification tasks.

8 JAF-DSIC-UPV



1.3. Statistical MT

thesis, suggest the usage of alternative loss functions, and therefore different decision rules
that are closer to actual evaluation measures employed in statistical MT. We will focus on
this idea in chapter 3.

The search problem presented in Eq. (1.22) was proveded to bean NP-complete prob-
lem [Kni99, UM06]. However various research groups have developed efficient search
algorithms by using suitable simplifications and applying optimisation methods. Starting
from the IBM work based on a stack-decoding algorithm [BPP96] over greedy [B+94,
WW98, G+01] and integer-programming [G+01] approaches to dynamic-programming
search [GVC01, TN03].

Nevertheless, most of the current statistical MT systems present an alternative modeli-
sation of the translation process different from that presented in Eq. (1.21). The posterior
probability is modelled as a log-linear combination of feature functions [ON04] under the
framework of maximum entropy [BPP96]

ŷ = arg max
y

M
∑

m=1

λmhm(x, y) (1.23)

whereλm is the interpolation weight andhm(x, y) is a function that assigns a score to the
sentence pair(x, y). We will get into deeper detail in chapter 3.

Under this framework Eq. (1.22) can be seen as a special case where

h1(x, y) = log pr(x |y) (1.24)

h2(x, y) = log pr(y) (1.25)

andλ1 = λ2 = 1.
Most of state-of-the-art statistical MT systems are based on bilingual phrases [CB+07].

These bilingual phrases are sequences of words in the two languages and not necessarily
phrases in the linguistic sense. The phrase-based approachto MT is further explored in
Section 1.3.2.

Another approach which has become popular in recent years isgrounded on the inte-
gration of syntactic knowledge into statistical MT systems[Wu96, YK01, GK04, Lin04,
DP05]. This approach parses the sentence in one or both of theinvolved languages, defin-
ing then, the translation operations on parts of the parse tree. In [Chi07], Chiang constructs
hierarchical transducers for translation. The model is a syntax-free grammar which is learnt
from a bilingual corpus without any syntactic information.It consists of phrases which can
contain sub-phrases, so that a hierarchical structure is induced.

The third main approach, which is currently investigated instatistical MT, is the mod-
elling of the translation process as a finite-state transducer [ABD00, BR95, CV04a, KN04,
M+06]. This approach solves the translation problem by estimating a language model on
sentences of extended symbols derived from the associationof source and target words
coming from the same bilingual pair. The translation transducer is basically an acceptor
for this language of extended symbols.

1.3.1 Statistical word-based translation systems

A great variety of statistical translation models have beenproposed since the IBM article
was initially published [B+90, B+93]. In that article, the translation of a source sentence
x into a target sentencey, is carried out usingalignmentsbetween words, i.e. a target
wordyi is aligned to the set of target wordsai = {j1, . . . , jl}, if the target word is directly

JAF-DSIC-UPV 9



Chapter 1. Preliminaries

generated as translation of the source word groupxj1 , . . . , xjl
. This model requires the use

of a hidden variable model since the alignments are typically never seen in training

pr(y |x) =
∑

a1

· · ·
∑

aI

pr(I |x)pr(y, aI
1 |x, I) (1.26)

whereai is the alignment vector that designs which source words are aligned with thei-th
target wordxi, i.e.

aj ⊆ {1, . . . , I} (1.27)

and wherepr(I |x) is a length distribution which is usually uniformly modelled, and there-
for ignored.

Some constraints are usually added to the alignment setsaI
1, such as thecoverage

constraintthat requires all the source words to be in at least one alignment set. However,
these constrains are practically motivated.

The complete probability model in Eq. (1.26),pr(y, aI
1 |x), can be decomposed left

to right as

pr(y, aI
1 |x, I) =

∏

i

pr(ai |x, ai−1
1 , yi−1

1 , I)pr(yi |x, ai
1, y

i−1
1 , I) (1.28)

where two probabilities are used:

• The alignment probabilitypr(ai |x, ai−1
1 , yi−1

1 )

• The dictionary probabilitypr(yi |x, ai
1, y

i−1
1 )

Different alignment models were proposed in [BPPM93] basedon this idea, although
only 2 models where directly modelled by parametrising the probabilities in Eq. (1.28).
These two models constrained the cardinality of the alignment sets to1 or 0, that is to
say each source word can be aligned to either one word or no word. In order to simplify
notation, we redefine the alignment variables since each aligment is composed of one word.
Therefore, se say thatai = j if the target wordyi is “aligned” to the source wordxj , where
j can be any source position ({1, . . . , J}) or 0 indicating thatyi is not aligned to any word.
In order to represent the void alignment, a NULLword is introduced at the beginning of
x, i.e. x = x0x1 · · ·xJ wherex0, the so-called NULLword, stands for the non-alignment
event.

IBM model 1

The IBM model 1, the first of the IBM models, is basically defined as a statistical bilingual
dictionary. The aim of the IBM model 1 typically is to initi the trainning of superior
IBM models. Another interesting property of the IBM model 1 is the concavity of its
log-likelihood function, and therefore the uniqueness of amaximum value of this function
under non-degeneratedc initialisation.

The IBM model 1 [BPPM93] makes the following assumptions

• The alignment probability is uniform, i.e.

pr(ai |x, ai−1
1 , yi−1

1 , I) := p(ai) =
1

J + 1
(1.29)

cStarting point in which none of the initial parameter valuesis zero.
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1.3. Statistical MT

• The dictionary probability depends only on the aligned word, i.e.

pr(yi |x, ai
1, y

i−1
1 , I) := pr(yi |xai

) (1.30)

where the following normalisation constraint must be verified
∑

b

p(b | a) = 1 forall source worda (1.31)

Taking into account the assumptions in Eqs. (1.29), and (1.30), the model probability
is given by

pr(y |x) :=
J
∑

a1=0

· · ·
J
∑

aI=0

∏

i

1

J + 1
p(yi |xai

) (1.32)

Simply reordering previous equation we obtain

pr(y |x) :=
∏

i

J
∑

j=0

1

J + 1
p(yi |xj) (1.33)

Since the model is a hidden variable model, the EM algorithm [?] is used to estimate
the parameter set:Θ = {p(b | a) | b ∈ Y , a ∈ X}.

The IBM model 1 has been widely employed in different applications of statistical MT,
cross-lingual information retrieval and bilingual TC due to its simplicity and applicability
of its parameter values.

In statistical MT, the IBM model 1 has traditionally been an important ingredient
in applications such as the alignment of bilingual sentences [Moo02], the alignment of
syntactic tree fragments [DGP03], the segmentation of bilingual long sentences for im-
proved word alignment [NCV03], the extraction of parallel sentences from comparable
corpora [MFM04], the estimation of word-level confidence measures [UN07] and serves
as inspiration for lexicalised phrase scoring in phrase-based systems [?, Koe05]. Further-
more, it has also received attention to improve its nonstructural problems [Moo04].

IBM model 2

The IBM model 2 is an extension of the IBM model 1 where the alignment probability
is not uniformly is modelled. Specifically, the IBM model 2 parametrises the aligment
probability as follows

pr(ai |x, ai−1
1 , yi−1

1 , I) := p(ai | i, I, J) (1.34)

where the following normalisation constraint must be verified
∑

j

p(j | i, I, J) = 1 (1.35)

Taking into account the assumptions in Eqs. (1.34), and (1.30), the model probability
is given by

pr(y |x) :=
∏

i

∑

j

p(j | i, I, J) p(yi |xj) (1.36)

Note that analogously to the model 1 we have exchanged the products and the sums in
previous equation.

Since the model is a hidden variable model, the EM algorithm is used to estimate the
parameter set,{p(b | a), p(j | i, I, J)}. In order to train this model, firstly, some iterations
of the IBM model 1 are performed obtaining good dictionary estimates. Afterward a re-
training is performed using the EM update equations for the IBM model 2.
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Chapter 1. Preliminaries

1.3.2 Statistical phrase-based translation systems

The basis of the mainstream and better statistical machine translation models are based
on the so-called phrase-based models. In this section we review several proposed phrase-
based models

Generative phrase-based models

In this section, we outline an example of generative phrase-based model that will serve
us to present the problems faced by this approach, and to motivate the introduction of
heuristically estimated phrase-based systems in the next section.

Let (x, y) be a pair of source-target sentences, we introduce the conventional condi-
tional probabilityp(y |x) for the translation model. Let assume thatx has been divided
into T phrases or segments; and so hasy. We further assume that each source phrase
has been generated by just one of the target phrase. Letµ = {µ0, µ1, . . . , µT } and
γ = {γ0, γ1, . . . , γT } be the segment boundary variables for the source and target sen-
tences, respectively. An additional variablea is necessary for mapping each source phrase
to one target phrase. Finally, a generative model can be seenasa full exploration of all
possible bilingual segmentation ofx andy and all possible alignment between them,

pr(y |x) =

min(|x|,|y|)
∑

T=1

∑

µ

∑

a

∑

γ

pr(y, a, µ, γ, T |x) (1.37)

where

pr(y, a, µ, γ, T |x) =pr(T |x)pr(µ |T, x)pr(γ |µ, T, x)

pr(a |µ, γ, T, x)pr(y |aµ, γ, T, x)
(1.38)

The Eq (1.38) can be understood as a generation process where

1. Firstly, we decide on the number of segmentsT ,

2. we split the source sentences by means of the source segmentationµ,

3. afterwards, we define the output segmentation withγ given the source phrases, and

4. we align the source phrases with the target segments with the alignment variablea,

5. and finally, we generate the output phrases given all the previous information

The last probability in Eq. (1.38),pr(y |a, µ, γ, T, x) is usually modelled depending
only in the reoredered source phrasesx̂

T
1 , so that the translation process can be decom-

posed left to right

pr(y |aµ, γ, T, x) :=
T
∏

t=1

p(ŷt | x̂t) (1.39)

whereŷ
T
1 stands for the target phrases.

The estimation of a phrase-based model as that presented above is a cumbersome prob-
lem that possess not only computational efficiency challenges, but also overwhelming data
requirements. One of the main difficulties that phrase-based models have to cope with is
the problem of the bilingual segmentation. In the model proposed above, this segmentation
is explained by the hidden variablesT , µ andγ, which leads us to a large combinatorial
number of possible segmentations to explore. Furthemore, the other main bottleneck that
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1.3. Statistical MT

phrase-based models have is to explore all the possible aligments between the source and
target phrases. As can be guessed, these problems are further aggravated with the length of
the source and target sentence. Despite this obstacle, there have been several proposals for
phrase-based models, from the joint probability model [MW02, BCBMOK06], over the
HMM phrase-based models [DB05, AFJC07] to the statistical GIATI model [AFJCC08].

However, the most popular approach to the development of phrase-based systems has
been the log-linear combination of heuristically estimated phrase-based models [?, ON04],
since these systems offer similar or even better performance than those based on generative
phrase-based models [DGZK06].

Heuristic phrase-based models

The heuristic estimation of phrase-based models is grounded on the Viterbi alignments
computed as a byproduct of word-based alignment models. TheViterbi alignment is de-
fined as the most probable alignment given the source and target sentences and an estima-
tion of the model parametersθ,

â = argmax
a

pθ(a |x, y) (1.40)

can also rewritten
â = arg max

a

pθ(x, a | y). (1.41)

The conventional alignments, for instance those provided by IBM models, disallow the
connection of a source word with more than one target word. This unrealistic limitation
negates the common linguistic phenomenon in which a word in one language is translated
into more than one word in another language. To circumvent this problem, alignments
are not only computed from the source language to the target language, but also from the
target language to the source language. Doing so, we can reflect the fact that a single word
is connected to more than one word.

Once the Viterbi alignments have been computed in both directions, there exist dif-
ferent heuristic algorithms to combined them [?, ON03]. These algorithms range from the
intersection of both alignments in which we have high precision, but low recall alignments,
to the union in which we have low precision, but high recall. In between, there are algo-
rithms like the refined method [ON03] and thegrow-diag-final[?] that starting from the
intersection, heuristically add additional alignment points taken from the union. This is a
previous step, before extracting bilingual phrases, to construct a phrase-based system.

Bilingual phrase extraction is based on the concept ofconsistencyof a bilingual phrase
(x, y) (derived from a bilingual segmentation) with a word alignment a. Formally,

(x, y) consistent witha ⇔ ∀xj ∈ x : (xj , yi) ∈ a −→ yi ∈ y ∧

∧ ∀yi ∈ y : (xj , yi) ∈ a −→ xj ∈ x ∧

∧ ∃xj ∈ x, yi ∈ y : (xj , yi) ∈ a (1.42)

basically Eq. (1.42) means that a bilingual phrase is consistent if and only if, all the words
in the source phrase are aligned to words in the target phrase, and there is at least one word
in the source phrase aligned to a word in the target phrase.

Given the definition of consistency, all bilingual phrases (up to a maximum phrase
length) that are consistent with the alignment resulting from the symmetrisation process
are extracted.

dThis process is also known as symmetrisation.
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Chapter 1. Preliminaries

The next step is to define functions that assign a score or a probability to a bilingual
phrase in isolation or as part of a sequence of bilingual phrases in a given segmentation.
These score functions are seamlessly integrated in a log-linear fashion under the maximum
entropy framework.

The most commonly used score functions are the direct and inverse phrase translation
probability estimated as a relative frequency

pd(x | y) =
count(x, y)
∑

x

count(x, y)
pi(y |x) =

count(x, y)
∑

y

count(x, y)
(1.43)

as well as the direct and inverse lexical translation probability inspired in the M1 model [?,
CL07]. Other score functions are related to reordering capabilities, such as the distance-
based reordering model [ON04] and the lexicalised reordering model [K+05]. Additional
score functions are phrase and word penalty to control the length of the translated sentence.

The weight of each score function in the log-linear combination is adjusted on a
development set with respect to a predefined criterion, usually BLEU. There are two
popular techniques in statistical MT to carry out this process, minimum error rate train-
ing [Och03] and minimum Bayes risk [KB04]. Furthermore, themost common approach
to the decoding process in log-linear models is the well-known multi-stack decoding al-
gorithm [Koe04, ON04]. The Moses toolkit [K+07], that implements an instantiation of
this type of multi-stack decoding algorithms, will be used throughout this thesis to define
a baseline reference.

1.3.3 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperativedue to the high cost of human
made evaluations. Also the need of rapid assessment of the translation quality of an MT
system during its development and tuning phases is another reason for the usage of auto-
matic metrics. These metrics are employed under the assumption that they correlate well
with human judgements of translation quality. This arguable statement must be considered
bearing in mind the low inter-annotator agreement on translation quality [CB+07]. This
fact makes automatic evaluation an open challenge in MT.

In this thesis, we mainly use two conventional translation evaluation metrics, WER and
BLEU, although other measures like METEOR [BL05] and translation edit rate (TER) [S+06]
are becoming more and more popular.

The WER metric [A+00, C+04] is defined as the minimum number of word substi-
tution, deletion and insertion operations required to convert the target sentence provided
by the translation system into the reference translation, divided by the number of words of
the reference translation. It can also be seen as the ratio ofthe edit distance between the
system and the reference translation, and the number of words of the reference translation.
This metric will allow us to compare our results to previous work on the same task. Even
though the WER metric can value more than 1.0, it will be expressed as a percentage as
it is commonly presented in the SMT literature. The WER metric can also be evaluated
with respect to multiple references, however, in this thesis, we have a single reference
translation at our disposal.

The BLEU score [PRWZ01] is the geometric mean of the modifiede precision for dif-
ferent order ofn-grams (usually from unigram up to4-grams) between the target sentence

eThe number of occurrences of a word in a target sentence is limited to that of this word in the
reference translation.
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1.4. Text classification

and the reference translation, multiplied by an exponential brevity penalty (BP) factor that
penalises those translations that are shorter than the reference translation. Although some
voices have been raised against BLEU as the dominant evaluation methodology over the
past years [CBOK06], it is still a reference error measure for the evaluation of translation
quality in MT systems. We take BLEU as a percentage ranging from0.0 (worst score) to
100.0 (best score).

1.4 Text classification

The problem of text classification is stated as the problem ofdetermining which document
categoryc a given documentw belongs to. This problem can be reformulatted as a pattern
recognition problem where the documents are the objects to classify and the document
categories,{1, . . . , C}, are the set of classes. Using the optimal Bayes’ rule for theCER
loss depicted in Eq.(1.9), the following rule is obtained

ĉ(w) = arg max
c∈{1,...,C}

pr(c)pr(L | c)pr(w | c, L) (1.44)

where we have decomposed the posterior probabilitypr(c |w) into 3 different factors:
a prior class probability pr(c), a length modelpr(L | c), and a document probability
pr(w | c, L).

The legnth model in Eq. (1.44) is usually assumed to be constant and then, the classi-
fication rule is simplified to:

ĉ(w) = argmax
c∈{1,...,C}

pr(c)pr(w | c, L) (1.45)

where the prior class probability is used modelled in a non-parametric fashion

pr(c) := p(c) (1.46)

The document probability is more difficult to model, however, the Naive Bayes as-
sumption is often assumed. The Naive Bayes assumption considers that there is no rela-
tionship between words, that is to say, that the probabilityof each wordd in a document is
only dependent on the document category or class,c,

pr(w | c, L) := pr(w | c) :=

L
∏

l=1

p(wl | c) (1.47)

Thenaive Bayestext classifier has long been a core technique in informationretrieval
and, more recently, it has attracted significant interest inpattern recognition and machine
learning [Lew98].

The naive Bayes assumption in text classification has the advantage of greatly sim-
plifying maximum likelihood estimation of unknown class-conditional word occurrence
probabilities. Although the simplicity of this assumptionit yields surprisingly good re-
sults [?, ?].

As stated above, the Bayes rule is the optimal decision when we consider CER as
evaluation metric. However, this is only the case under the assumption that we know the
real probability distributions forpr(c) andpr(w | c, L). In practise, we can only compute
approximations of these probability distributions.
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Apart from those classifiers based on the statistical PR approach, different types of
classifiers have been used in TC, including regression methods [FP94, IDLA95, LG94,
SHP95], decision trees, neural networks [Mit96], incremental or batch methods for learn-
ing linear classifiers [SHP95, WPW95, DKR97, NGL97], classifier ensembles, including
boosting methods [SS00], and support vector machines [Joa98]. While all these techniques
still retain their popularity, it is fair to say that in recent years support vector machines and
boosting have been the two dominant learning methods in TC. This fact is mainly due to
their superiority on the Reuters task, which is one of the reference task in TC, however
their performance is similar to that of other TC techniques in other tasks. The interested
reader is referred to [Seb02] for an excellent review in TC.

1.5 Scientific contributions

The objective of this thesis is focused on statisctical pattern recognition. More precisely,
the contributions of this thesis imply two basic research lines of statistical pattern recogni-
tion: model estimation and loss function.

1. Constrained domain maximum likelihood estimation.Constrained domain max-
imum likelihood estimation (CDMLE), is a modification of themaximum likelihood
estimation criterion. This modification yields an already smoothed optimal param-
eter set, and avoids the need of an additional smoothing step. Furthermore, the
CDMLE retains the good theoretical properties that MLE verifies.

2. Loss function. We expand the usual CER loss in pattern recogntion by researching
other more general loss functions. Specifically, two families of loss functions are
analysed. Specially appealing is the family which is a tradeoff between generalisa-
tion and computational time.
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Chapter 2. Constrained Domain Maximum Likelihood Estimation

A LMOST all statistical pattern recognition systems are built using probability dis-
tributions despite actual distribution functions are never known in real tasks.
In order to approximate such distributions a statistical model is often defined.

Each statistical model is characterised by a probability function parametrised with a set of
parametersθ ∈ Θ.

In this framework, the question of which the actual distribution is can be restated as
finding the optimal parameter set. Since the training data isassumed to have been gener-
ated by the probability model, this data should be very likely. One of the most spreaded
criterium to select the set of parameters is maximum likelihood estimation (MLE). This
criterum finds the most likely set of parameters, that is to say, the parameter set that gives
the most probability to the training data.

One of the most important problems of this approach is that byselecting the parameters
that give maximum likelihood (ML) to the training data, the model is over-trained, that is
to say that the model memorises the data without enough levelof generalisation. Note
that this results follows from the fact that the actual set ofparameters will not give the
highest probability to the trainning data. The over-training shortcoming is often alleviated
by “smoothing the maximum likelihood parameters”, i.e., bywisely disturbing the ML set
of parameters. This smoothing is a heuristic process which could be even more complex
than finding the optimal set of parameters.

Smoothing the MLE makes the disturbed optimal parameter setnot to hold most of
the desirable theoretical properties of the MLE. In this chapter, instead of “smoothing” the
ML set of parameters, we “smooth” the domain itself, i.e. we apply some constraints into
the parameter domain avoiding the over-trained parameters. Specifically, we constraint
the multinomial distribution. The selection of this distribution is motivated because its
simplicity and success when applied to real text classification problems.

2.1 Introduction

Most of the pattern recognition systems are based into the optimal Bayes’ rule (see sec-
tion 1.1 and section 3.2). This rule makes use of the posterior class probabilitypr(ω|x).
Provided that the actual posterior probability is not available in real tasks, it is approxi-
mated by a modelpθ(ω|x) which is characterised by a set of parameters,θ ∈ Θ.

The selection of the optimalθ depends on the function criterium. As reviewed in
section 1.1.3, maximum likelihood estimation (MLE) is one of the most widespread tech-
niques. This criterium finds the set of parametersθ̂ that maximises the likelihood function
which is defined in section 1.1.3. One of the most important flaws of this criterium is that
it tends to over-fit the parameters to the training data at theexpense of reserving small
probabilities or even zero probability to the remaining data. This over-training problem is
often due to the ratio of the number of parameters to the training size, roughly speaking
the data is scarce for what the model needs to learn.

In order to alleviate the over-fitting problem, it is a commonapproach to distort the
optimal parameter set̂θ obtaining a non-overfitted version of the optimal parameterset,θ̃.
However, on the one hand, several smoothing techniques are heuristic techniques based on
practical observation. For instance, such is the case of theinterpolate smoothing in which
the optimal vector̂θ is usually interpolated with a uniform distribution. On theother
hand, some of the smoothing techniques are based on statistical methods. The maximum
a posteriori estimation or the leaving-one-out estimationare examples of such smoothing
methods.
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2.2. Karush-Kuhn-Tucker Conditions

In this chapter, we propose a method to avoid the scarce data derived problems such
as over-training. Instead of smoothing the optimal solution obtained by MLE, we support
the idea of constraining the domain of the parameters,Θ, before maximising them. In this
way, the optimal set of parameters is smoothed in the optimisation of the parameters itself
provided that there is no possible over-trained set of parameters in the domain. Even more,
the optimal set of parameters obtained from the constraineddomain retains the properties
of the MLE whilst the classical smoothed set of parameters does not.

We apply the idea ofconstrained domain maximum likelihood estimation(CDMLE) to
the multinomial probability distribution. This probability is used in several pattern recog-
nition problems, such as text classification [MN98, JN02, VNJV04] or image classifica-
tion.Specifically, we study how to avoid over-training in the text classification context.

The chapter is organised as follows. Firstly in the following section 2.2, some ba-
sic convex optimisation theory is revised. In section 2.3, the multinomial distribution is
introduced reviewing the classical MLE of such probabilitydistribution. The proposed
constrained maximum likelihood estimation is analysed forthe multinomial distribution in
section 2.4. Section 2.5 is devoted to the application of ourconstrained approach to the text
classification problem. In section 2.6, the experimental behaviour of our approximation is
evaluated in both synthetic and real data. Concluding remarks are gathered in section 2.7.

2.2 Karush-Kuhn-Tucker Conditions

In section 1.1.2 we have analysed that in order to obtain the optimal set of parameters ac-
cording to our criterion, it is needed to optimise Eq. (1.12). Almost all the optimisation
problems derive from Eq. (1.12), are subject at least to somenormalisation constraint. In
order to solve those optimisation problems with constraints it is used theconvex optimisa-
tion theory [BV04].

A typical example of a complex optimisation is the following. We want to solve the
following equation

θ̂ = argmax
θ∈Θ

{C(θ; D)} (2.1)

subject to

P1(θ) = 0

. . .

PN (θ) = 0

(2.2)

In order to solve the previous optimisation theLagrangian functionmust be defined

L(θ, λ) = C(θ; D) −
∑

n

λn Pn(θ) (2.3)

where aLagrangian multiplier(λn) is defined for each constraintPn.
Theory states that, solving Eq. (1.12), subject to Eq. (2.2)is equivalent to solving the

following problem
θ̂ = argmax

θ∈Θ

{max
λ

L(θ, λ)} (2.4)

Therefore, the optimal point must verify the following property

∇L(θ, λ)|
θ̂,λ̂

= 0 (2.5)
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Chapter 2. Constrained Domain Maximum Likelihood Estimation

rising up a linear system from which the value ofθ̂ can be worked out.
The previous optimisation example is typically known as anequality constrained pro-

gram. Through this chapter, however, we solve some optimisationproblems which also
include inequality constraints. In order to solve problemswith inequality constraints the
Karush-Kuhn-Tucker (KKT)conditions are needed. The problem is now stated as the equal-
ity constraints but with the additional inequality constraints, i.e. solving Eq. (2.1) subject
to Eq. (2.2) and to

Q1(θ) ≤ 0

. . .

QM (θ) ≤ 0

(2.6)

In this case, the Lagrangian function is defined as

L(θ, λ, µ) = −C(θ; D) +
∑

n

λn Pn(θ) +
∑

m

µm Qm(θ) (2.7)

Solving Eq. (1.12) subject to Eq. (2.2) and to Eq. (2.6) is thesame than solving

θ̂ = arg min
θ∈Θ

min
λ,µ

L(θ, λ, µ) (2.8)

The KKT necessary conditions for a point(θ, λ, µ) to be a maximum point are

∇θ L(θ, λ, µ)|
θ̂,λ̂,µ̂

= 0 (2.9)

P1(θ) = 0 (2.10)

. . .

PN (θ) = 0

µ1 Q1(θ) = 0 (2.11)

. . .

µM QM (θ) = 0

µ1 ≥ 0 (2.12)

. . .

µM ≥ 0

Q1(θ) ≤ 0 (2.13)

. . .

QM (θ) ≤ 0

It is worth noting that the KKT conditions arenecessaryconditions but not sufficient
conditions. That is to say that a maximum point must verify them, but not all points that
verify them are a maximum point. An additional condition must be verified in order to
check whether a point that verifies the KKT conditions is optimal or not. This condi-
tion states that the Hessian of the Lagrangian function mustbe positive at a maximum
point [BV04]. Once the possible optimal points are given then checking if the latter suf-
ficient and necessary condition is verified is a simple mathematical exercise. However, in
most of the cases if the characterisation or form of the solution is unique, then the solution
is necessarily the maximum (if it exists).

The KKT conditions often provide just a characterisation ofthe solution, but not a
procedure to obtain it. Anyway, once the form of the solutionis known, it is often possible
to define an efficient algorithm that obtains such a solution.
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2.3. The Multinomial distribution

2.3 The Multinomial distribution

In this section we review the maximum likelihood estimation(MLE) for the multinomial
distribution as well as some generic and simple smoothing techniques for this distribution.
Afterwards, we introduce the constrained maximum likelihood estimation algorithm.

We say that aD-dimensional random vector of natural numbersx ∈ N
D follows

a multinomial distribution of parameter vectorθD
1 and lengthL if its probability mass

function is expressed as follows,

pθ(x|L) =

(

L
x

) D
∏

d=1

θxd

d (2.14)

where
D
∑

d=1

θd = 1 (2.15)

and with
(

L
x

)

=
L!

∏D

d=1 xd!
(2.16)

The basis of the multinomial distribution is the existence of D (classes of) events,
d = 1, · · · , D, and thatxd is the count of the events belonging to the class of eventsd. The
events are assumed to be independent one of the other. For instance, the classical example
of an experiment that follows a multinomial distribution isthe following. There areD
bags each full of differently coloured balls. If we extractL balls with replacement, then
the vector that counts extracted balls of each colour, follows a multinomial distribution.
Another outstanding example is the probability of a text with naive Bayes assumption.
Assuming that the words appearing in a document are not related one to another, then if
the vocabulary hasD words and the length of the documents isL, the word count vector
follows a multinomial distribution (see section 2.5 for mathematical details).

The remaining of this section is focused on the multinomial training. The multinomial
training refers to the problem of deciding a criterion and a method to compute thêθ that
has generated a i.i.d. sample,D = {xn}N

n=1. As stated in section 2.1, we focus the study
on the MLE criterion.

2.3.1 Maximum likelihood training

The likelihood criterion consist in maximising the so-calledlikelihood functionfor a given
sample,D = {xn}N

n=1. Since the logarithm is a increasing function, maximising the
likelihood function, is equivalent that maximising its logarithmic version, the so-called
log-likelihood (LL)(see 1.1.3). Specifically, in the multinomial case the LL simplifies to

LL(θ; D) =
∑

n log

(

L
x

)

+
∑

n

∑

d xnd log θd (2.17)

= const(θ) +
∑

n

∑

d xnd log θd (2.18)

Therefore, the maximum likelihood estimate is expressed as

θ̂ = argmax
θ

∑

n

∑

d

xnd log θd (2.19)

subject to the normalisation constraint in Eq. (2.15).
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Chapter 2. Constrained Domain Maximum Likelihood Estimation

In order solve the previous optimisation is necessary to make use of convex optimi-
sation techniques. Specifically, the Lagrange multipliersare specially useful for this case
(see section 2.2). In this case the Lagrangian function is

L(θ, λ) = LL(θ) + Λ(θ, λ) (2.20)

with

Λ(θ, λ) = −λ

(

∑

d

θd − 1

)

(2.21)

The maximum vector of parameters must verify that the partial derivative of the La-
grangian functionL(· · · ) depicted in Eq. (2.20) is equal to 0 in that point. The partial
derivatives are the following

∂ L(θ, λ)

∂θd

=
∑

n

xnd

θd

− λ (2.22)

∂ L(θ, λ)

∂λ
=
∑

d

θd − 1 (2.23)

Constraining Eqs. (2.22), and (2.23) to0 and working out the value ofθd yields the fol-
lowing solution,

θ̂d =
Nd

N
(2.24)

with Nd being the occurrences in the training data of events of classd, i.e.

Nd =
∑

n

xnd (2.25)

andN the total number of outcomes

N =
∑

d

Nd (2.26)

Despite of the optimality of the solution in Eq. (2.24), it isusuallysmoothedas com-
mented in section 2.1. In this specific distribution, the motivation of the smoothing can be
seen in an example. For instance, if in our data, one of the countsNd is equal to0, i.e.
in the training no ball from thed bag is extracted (or thed-th word in the vocabulary is
not observed in the data); then the MLE parameter isθd = 0. This implies that if we see
another dataset, then the simple fact of extracting just oneball of this bag (or an occurrence
of d-th word of the vocabulary) makes the model to give0 probability to this dataset. This
undesirable property can be avoided by means of the smoothing.

A popular smoothing method for (2.24) consists of simply adding a “pseudo-count”
δ > 0 to everyNd count leading to the following smoothed vector

θ̃d =
Nd + δ

∑

d′(Nd′ + δ)
(2.27)

with δ = 1 as the default value. This method is sometimes referred to asLaplace smooth-
ing [MN98].

Alternatively, as done in the context ofstatistical language modellingfor speech
recognition, we may use the idea ofabsolute discountingto avoid null estimates [JN02,
VNJV04]. Instead of using artificial pseudo-counts, we gain“free” probability mass by
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2.4. Constrained domain maximum likelihood

discounting a small constant to every count associated witha seenevent (positive count).
The gained probability mass is then distributed among events in accordance with agener-
alised distributionsuch as theuniformdistribution,

βd =
1

D
(2.28)

or whatever distribution depending ond. Depending on the set of events that receives the
gained probability mass, we distinguish betweenback-offandinterpolation. Back-off only
considers unseen events:

θ̃d =























Nd − b
∑

d′ Nd′

if Nd > 0

M
βd

∑

d′:Nd′=0 βd′

if Nd = 0

(2.29)

where the probability mass gained in classc is:

M =
b |{d′ : Nd′ > 0}|
∑

d′≥1 Nd′

(2.30)

and the discountb is restricted to the interval(0, 1). In contrast, interpolation distributes
the gained probability mass among all events:

θ̃d = max

{

0,
Nd − b
∑

d′ Nd′

}

+ M βd (2.31)

where0 < b ≤ 1.

2.4 Constrained domain maximum likelihood

As discussed in the introduction (see 2.1), smoothed parameters are no longer optimal in
terms of maximum likelihood and thus we cannot attribute to them the desirable properties
of maximum likelihood estimators. In this work, we advocatethe reduction of the set of
feasible parameter estimates, that is, the use of additional constraints on it. In particular,
we focus our interest in conventional MLE naive Bayes training constrained to probability
estimates not smaller than a predefined non-negative constant ǫ. That is, we are interested
in the maximisation of (2.17) subject to the normalisation constraint in Eq. (2.15), and also
subject to

θd ≥ ǫ (d = 1, . . . , D) (2.32)

whereǫ is the minimum probability of extracting a ball of any bag (0 ≤ ǫ ≤ 1
D

), or
alternatively, the minimum occurrence of any word of the vocabulary in any document.
Obviously, this is not a value we intend to learn from the data, but a meta-parameter to
restrict the set of feasible estimates to “conservative” values. If we chooseǫ = 0, we do
not move from conventional training. On the contrary, ifǫ = 1

D
, the only solution is to

set all word probabilities toǫ. In general, the more training data, the smallerǫ should be
chosen.
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2.4.1 Characterisation of the solution

Maximisation of (2.17) subject to constraints (2.15) and (2.32), is a convex (concave max-
imisation) problem with differentiable objective and constraint functions, for which we can
find a global maximum using theKarush-Kuhn-Tucker(KKT) conditions (see section 2.2).
The Lagrangian function is

L(θ, λ, µ) = −L(θ) + Λ(θ, λ) + Φ(θ, µ) (2.33)

with

Λ(θ, λ) = λ

(

∑

d

θd − 1

)

(2.34)

and with
Φ(θ, µ) =

∑

d

µd (ǫ − θd) (2.35)

and whereλ andµd are Lagrange multipliers associated with constraints (2.15) and (2.32),
respectively(d = 1, . . . , D). The KKT conditions for a point̂θ, λ̂, µ̂ to be a global maxi-
mum are

∇θL(θ,λ, µ)
∣

∣

θ̂,λ̂,µ̂
= 0 (2.36)

∑

d

θ̂d = 1 (2.37)

θ̂d ≥ ǫ (d = 1, . . . , D) (2.38)

µ̂d(ǫ − θ̂d) = 0 (d = 1, . . . , D) (2.39)

µ̂d ≥ 0 (d = 1, . . . , D) (2.40)

From Eqs. (2.36), (2.37), (2.38), (2.39), and (2.40) immediately follows that, the opti-
mal vector of parameters cannot be computed in closed-form.From (2.36), we have

θ̂d =
1

λ̂ + µ̂d

Nd (d = 1, . . . , D) (2.41)

but now we cannot rewritêλ+µ̂d in terms of word counts to arrive at a closed-form solution
like (2.24). Instead, by some straightforward manipulations, we arrive at the following
characterisation

θ̂d =

{

ǫ if ϑd ≤ ǫ

ϑd if ϑd > ǫ
(d = 1, . . . , D) (2.42)

where

ϑd =
Nd
∑

d′:ϑd′>ǫ

Nd′

(1 − M) (d = 1, . . . , D) (2.43)

with
M = |{d′ : ϑd′ ≤ ǫ}| ǫ (2.44)

The idea behind this characterisation is as follows. First note that we distinguish between
“rare” events, in the sense that we assign a probability of exactly ǫ to them (d : ϑd ≤ ǫ),
and “frequent” events, which have probability greater thanǫ (d : ϑd > ǫ). The probability
mass allotted to rare events is simply their number timesǫ and is denoted byM in (2.44).
The remaining probability mass,1 − M , is distributed among frequent events in accor-
dance with (2.43), which is simply a normalisation of event counts as in the conventional
case (2.24). Thus, generally speaking, we proceed as in the conventional case, but using
only the probability mass not assigned to events that are below the threshold ofǫ.
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2.4.2 The algorithm

The above characterisation does not tell us how to partitionevents into rare and frequent,
not even if such a partition exists. Nevertheless, it can be easily shown that a solution exists
and can be found iteratively. The basic algorithm consists in first assuming that the set of
rare events is empty,R(0) = ∅; and then, in iterationk (k = 1, 2, . . .), the new set of rare
events,R(k), is obtained fromR(k−1) by addition of each eventd,

R(k) = R(k−1) ∪ {d} (2.45)

which is not inR(k−1) but it is actually rare according to our criterion of not having a
probability greater thanǫ,

ϑ
(k−1)
d ≤ ǫ (2.46)

where

ϑ
(k−1)
d =

Nd
∑

d′ 6∈R(k−1)

Nd′

(1 − M (k−1)) (2.47)

with
M (k−1) = |R(k−1)| ǫ (2.48)

At the end of iterationk, the algorithm assures that condition (2.46) is satisfied for all words
in R(k). This condition may be also satisfied by words not inR(k) though, in general, it
will not be satisfied by most of them.

As R0 is empty,M (0) is zero and the initial probability estimates,ϑ
(0)
d , are exactly

those obtained in the conventional MLE case (2.24). Therefore, in the first iteration, we
use conventional probability estimates to distinguish between rare and frequent events. Part
of the probability mass assigned to frequent events is transferred to rare events for them to
arrive atǫ. The remaining probability mass is redistributed according to (2.47) and, as it
is smaller than that distributed before the transference, it may well happen that a frequent
event becomes a new rare event. If it happens, a new iterationis carried out; otherwise, the
algorithm stops and returns the desiredθ̂d, as characterised by (2.42).

A detailed description of the basic algorithm described above is given in algorithm 2.1.
GivenD, the training data andǫ, it returnsθ̂d andd, as characterised by Eqs.(2.42)-(2.44).
After computation of event counts (lines14–17), the optimal CDMLE solution is obtained
iteratively (lines18–34). Initially, no events are considered rare (R := ∅) andθ̂d is com-
puted for all words as in the conventional case (during the first iteration of the loop in lines
20–34). If an eventd is found such that̂θd ≤ ǫ (line 25), thend is added toR and a new
iteration is executed; otherwise, no transfers toR are carried out and the algorithm stops.

2.4.3 Algorithm correctness and complexity

Let d be a non-rare event in iterationk − 1 (d 6∈ R(k−1)) for which (2.46) holds. Then, it
follows that

1 −
ǫ

1 − M (k−1)
≤ 1 −

Nd
∑

d′ 6∈R(k−1) Nd′

(2.49)

and, rearranging terms,

1 − M (k−1) − ǫ
∑

d′ 6∈R(k−1) Nd′ − Nd

≤
1 − M (k−1)

∑

d′ 6∈R(k−1) Nd′

(2.50)
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Algorithm 2.1 The CDMLE algorithm.
1 Declarations:
2 Input:
3 D // number of events

4 x1, . . . ,xN // N training samples

5 ǫ : 0 ≤ ǫ ≤ 1

D
// minimum event occurrence probability

6 Output:
7 {θ̂d} // solution as characterised by Eqs.(2.42)-(2.44)

8 Variables:
9 {Nd} // event counts

10 R′, R // previous and current set of rare events

11 S′, S // previous and current sum of non-rare event counts

12 M ′,M// previous and current rare event probability mass

13 Method:
14 for d := 1 to D do Nd := 0 endfor
15 for n := 1 to N do
16 for d := 1 to D do Nd := Nd + xnd endfor
17 endfor // event counts computed

18 R := ∅; S := 0; M := 0
19 for d := 1 to D do S := S + Nd endfor
20 repeat // main loop

21 R′ := R; S′ := S; M ′ := M; transfers := false

22 for d := 1 to D do
23 if d 6∈ R′ then
24 θ̂d := Nd

S′ · (1 − M ′)

25 if θ̂d ≤ ǫ then
26 θ̂d:=ǫ // d has minimum probability

27 R := R ∪ {d} // d is a new rare event

28 S := S − Nd

29 M := M + ǫ
30 transfers := true

31 endif
32 endif
33 endfor
34 until not transfers

As d 6∈ R(k−1) but satisfies Eq. (2.46), the algorithm addsd to the set of rare events in
iterationk, R(k) = R(k−1) ∪ {d}. Using this updated set of rare events, Eq. (2.50) can be
rewritten as

1 − M (k)

∑

d′ 6∈R(k) Nd′

≤
1 − M (k−1)

∑

d′ 6∈R(k−1) Nd′

(2.51)
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from which we have, for any eventd′′ ∈ R(k),

ϑ
(k)
d′′ ≤ ϑ

(k−1)
d′′ (2.52)

by multiplying each side of Eq. (2.51) byNd′′ . From Eq. (2.52) and the fact thatϑ
(k−1)
d′′ ≤ ǫ

for all d′′ ∈ R(k), it follows thatϑ(k)
d′′ ≤ ǫ for all d′′ ∈ R(k). This means that, in iterationk,

eventd becomes rare while all rare words in the previous iteration remain rare. Algorithm
correctness follows from this result.

The time complexity of the CDMLE algorithm depends on the case. In the best case,
no event transfers are done in the repeat-until loop and the algorithm works exactly as the
conventional naive Bayes training (without parameter smoothing). More precisely, after
the first repeat-until iteration, a second iteration is needed for the algorithm to check that
no transfers to the set of rare words are carried out. Then, inthe best case, its time com-
plexity isΩ(ND). On the other hand, the repeat-until loop is executedD times in the worst
case, and thus the algorithm hasO(ND + D2) time complexity. However, in practice, the
repeat-until loop is expected to iterate only a few times. Therefore, the computational be-
haviour of the CDMLE algorithm is expected to not differ significantly from conventional
naive Bayes training.

The previous discussion about the complexity of the CDMLE algorithm only applies
to a direct implementation of it, such as that given in algorithm 2.1. However, it is straight-
forward to derive a refined implementation ofO(ND + D log D) time complexity. The
idea behind this refinement is to apply Eq. (??) in non-decreasing order of occurrence
probability, as estimated in the conventional case. That is, in iterationk, the next event
d to be considered in Eq. (2.45) must have minimum occurrence probability, as given in
Eq. (2.24), among all non-rare events. It can be easily checked that, if condition (2.46)
does not hold ford, then it will not hold for any other non-rare event and, therefore, the
optimal CMLE solution will have been found.

2.5 Text Classification

In previous section we have introduced a novel smoothing technique for the multinomial
distribution, although we have not applied it in practice. In this section we review the ap-
plication of the multinomial distribution to the context oftext classification. Recall from
section 1.4, that given the document classc and lengthL, the naive Bayesassumption
states that the probability of occurrence of a wordw does not depend on its position or
other words in the document. In spite of being completely unrealistic, the naive Bayes
assumption in text classification has the advantage of greatly simplifying maximum likeli-
hood estimation of unknown class-conditional word occurrence probabilities.

We denote the class variable byc = 1, . . . , C, the word variable byd = 1, . . . , D, and
a document of lengthL by wL

1 = w1w2 · · ·wL. The joint probability of occurrence ofc,
L andw may be written as:

pr(c, L, w) = pr(c), pr(L) pr(w | c, L) (2.53)

where we have assumed that document length does not depend onthe classc.
Given the classc and the document lengthL, the probability of occurrence of any

particular documentwL
1 can be greatly simplified by making the so-callednaive Bayes

or independence assumption:the probability of occurrence of a wordwl in wL
1 does not

depend on its positionl or other wordswl′ , l′ 6= l,

pr(w
L
1 | c, L) :=

∏L

i=1 p(wi | c) (2.54)
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Since word order is not important we can redefine the conditional probability in Eq. (2.54),
in terms of the number of occurrence of each vocabulary wordd,

pr(x(wL
1 ) | c, L) = pr(x

D
1 | c, L) :=

(

L
x

)

∏D

d=1 θxd

cd (2.55)

whereθcd is the parameter that corresponds to the probability of occurrence of the thed-th
word of the lexicon in a document of the classc, and wherexd is the number of times the
d-th word,vd, occurs into the documentwL

1

xd =
L
∑

i=1

δ(vd, wi) (2.56)

It is worth noting that the conditional text occurrence probability p(xD
1 | c, L) in Eq. (2.55)

follows a multinomial distribution.
Finally, the prior probability of a class is modeled by a parameter,

pr(c) := πc (2.57)

the document length distribution is assumed uniform, i.e.

pr(L) :=
1

L
(2.58)

with L being the maximum document length.
Plugging everything into the classification Bayes rules in Eq. (1.10) yields

c(wL
1 ) = c(xD

1 ) = arg maxc pπ(c) pθ(x | c) (2.59)

= argmaxc πc

∏D

d=1 θxd

cd (2.60)

Note that the constant terms onc have been removed in the last step.
In order to train the naive Bayes classifier for a given sample, D = {(xn, cn)}N

n=1,
with the maximum likelihood criterion the following optimisation problem must be solved

(θ̂, π̂) = argmax
θ,π

{LL(θ, π)} = argmax
θ

{LL(θ) + arg max
π

LL(π)} (2.61)

subject to the following normalisation constraints
∑

d

θcd = 1 c = 1, . . . , C (2.62)

∑

c

πc = 1 (2.63)

and with the definitions

LL(θ, π) =
∑

n

log pπ(cn) + log pθ(xn | cn) (2.64)

LL(π) =
∑

n

log pπ(cn) (2.65)

LL(θ) =
∑

n

log pθ(xn | cn) (2.66)

(2.67)
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As suggested in Eq. (2.61) the optimisation can be slitted into two different optimisa-
tion problems. The first problem optimisesπ subject to Eq. (2.63), i.e.

π = argmax
π

LL(π) (2.68)

The second optimisation maximisesθ subject to Eq. (2.62), i.e.

θ̂ = argmax
θ

LL(θ) (2.69)

Recall that this last optimisation problem can be decomposed intoC multinomial indepen-
dent trainings by

LL(θ) =
∑

c

∑

n:cn=c

log pθc
(xn | c)

=
∑

c

LLc(θc)
(2.70)

whereθc = (θc1, · · · , θcD) and withLLc(θc) defined as

LLc(θc) =
∑

n:cn=c

log pθc
(xn | c) (2.71)

Finally, this leads toC optimisation problems as follows

θ̂c = arg max
θc

LLc(θc), c = 1, . . . , C (2.72)

Conventional convex optimisation techniques as discussedin section 2.2 yields the
solution to the first problem

π̂c =
Nc

N
(2.73)

whereNc is the number of samples with the class tagcn equal to c andN is the total
amount of samples.

The latter optimisation problem can be decomposed intoC, multinomial trainings. If
conventional MLE is applied then the solution is

θ̂cd =
Ncd

Nc

(2.74)

whereNcd stands for occurrences of thed-th word in documents of the classc. Note that
Eq. (2.74) is the MLE for a multinomial distribution depicted in Eq. (2.24) with the training
restricted to those documents in classc.

Conventional MLE also implies the smoothing of the multinomial vector of parameters
for each classc and each wordd, θcd. The very same techniques discussed in section 2.3
are usually applied [JN02, VNJV04]. Specifically, interpolation and back-off are often
used with a generalised smoothing distributionβd , that can be uniform as in Eq.(2.28),
unigram

βd =

∑

c Ncd
∑

c′

∑

d′ Nc′d′

(2.75)

In order to apply CDMLE, we only need to apply algorithm 2.1 for each classc sepa-
rately, in the same way that the conventional training can bedecomposed intoC, multino-
mial trainings each with a different training extracted from the full training.
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Figure 2.1: Results on the exponential simulated data. In Column 1, a sam-
ple of 1000 elements is plotted for valuesε = 0.2 andε = 0.8 top-down,
respectively. Thex-axis plots the words indexesd whilst they-axis plots its
respective parameter,θd.

2.6 Experiments

In order to deeply study the properties of our proposed method, two sets of experiments
were carried out. The former set of experiments consists in simulated data that allows us
to draw some interesting properties regarding our proposal. The latter experiment set were
carried out on real text classification data.

2.6.1 Simulated experiments

One of the most interesting things of the constrained domainmaximum likelihood estima-
tion algorithm 2.1 is that it resembles the uniform linear interpolation smoothing. In this
section we analyse the resemblances and differences between CDMLE and linear interpo-
lation.

In the simulated data we have fix the multinomial parameter vector θ, and then we
know the actual distribution. The performed simulation were three:

• A exponential parameter vector:

θd ∝ exp(−
1

D
) (2.76)

• A parameter vector following the Zipf’s law for word occurrence:

θd ∝
1

D2
(2.77)
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Figure 2.2: Results on the3-steps simulated data. Columns represent dif-
ferent sample sizesN , and rows different values ofε. Thex-axis plots the
words indexesd whilst they-axis plots its respective parameter,θd.

• A parameter vector made up of three steps:

θd =











2 d ≤ D
3

1 D
3 < d ≤ 2D

3

0 2D
3 < d ≤ D

(2.78)

We compared the behaviour of two techniques: the conventional linear interpolation
smoothing and the CDMLE. In the former case the generalised smoothing distribution is

βd =
ε

D
(2.79)

In the latter case, theǫ value defined in the constraints in Eq.(2.32), has been fixed to

ǫ =
ε

D
(2.80)

In all the plots the experiments were repeated 100 times, in order to get an small
confidence interval. The confidence intervals were not plotted because they were very
small and disturb the plots.

In figure 2.1, the results on the exponential simulated data are plotted for several sam-
ple sizes andε values. The CDMLE solution is closer to the actual values than that of
linear interpolation, although all thed for which the constrain is active, are fixed toǫ. On
the other hand, the linear interpolation yields poor approximations to the actual param-
eters in comparison to the CDMLE. Nevertheless, the linear interpolation keeps the dis-
criminative power among different wordsd though differences are smaller in magnitude.
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Figure 2.3: Results on the Zipf’s law simulated data. Columns represent
different sample sizesN , and rows different values ofε. Thex-axis plots
the words indexesd whilst they-axis plots its respective parameter in loga-
rithmic scale,log θd.

Summarising, the CDMLE provides better approximations to the actual parameters at the
expense of making equal the “rare” words, while the linear interpolation obtains worse
approximations to the actual parameters but retains the qualitative difference among “rare”
words. This last stament, could make the difference in some scenarios. The best technique
depends on whether the “rare” words are nosy or are properly estimated by conventional
naive Bayes. This result is also supported by figures 2.2, and2.3, which are the analogous
plot for 3-steps data and Zipf’s law data, respectively.

2.6.2 Real data experiments

The proposed CDMLE approach was empirically compared to theusual practice of simply
smoothing relative counts, as described in Section 2.3.1. This comparison was carried on
four text classification data sets (tasks):Traveller, 20 Newsgroups, Industry SectorandJob
Category.

2.6.3 Datasets

TheTravellerdata set comes from alimited-domainSpanish-English machine translation
application for human-to-human communication situationsin the front-desk of a hotel. It
was semi-automatically built from a small “seed” data set ofsentence pairs collected from
traveller-oriented booklets by four persons; A, F, J and P, each of whom had to cater for
a (non-disjoint) subset of sub-domains. The20 Newsgroupscorpus is a collection of ap-
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Table 2.1: Basic information on the data sets used in the experiments. (Sin-
gletonsare words that occur once;Class n-tonsrefers to words that occur in
n classes exactly.)

Job Industry
Category Sector

Type of documents job titles web pages
Number of documents 131 643 9 629
Running words 11 221K 1 834K
Avg. document length 85 191
Vocabulary size 84 212 64 551
Singletons (Vocab %) 34.9 41.4
Classes 65 105
Class 1-tons (Vocab %) 49.2 58.7
Class 2-tons (Vocab %) 14.0 11.6

20 Traveller
Newsgroups (English)

Type of documents newsgroups sentences
Number of documents 19 974 8 000
Running words 2 549K 79K
Avg. document length 128 10
Vocabulary size 102 752 391
Singletons (Vocab %) 36.0 4
Classes 20 23.0
Class 1-tons (Vocab %) 61.1 74.9
Class 2-tons (Vocab %) 12.9 18.3

proximately20, 000 newsgroup documents, partitioned (nearly) evenly across 20 different
newsgroups. We used the original version of this data set as provided by [Ren01], in which
document headers are discarded but the "From:" and "Subject:" header fields are retained.
The Industry Sectoris a collection of web pages from different companies, divided into a
hierarchy of classes. In our experiments, however, we "flattened" this structure, assigning
each document a class consisting of the whole path to the document in the hierarchy tree.
TheJob Categorydata set consist of job titles and descriptions, also organised in a hierar-
chy of classes. This corpus contains labelled and unlabelled samples and only the former
were used in our experiments. Table 2.1 contains a summary with the basic information on
these data sets. For further details on them, see [ABC+00, Ren01, McC02, VNJV04].

Therainbowtoolkit [McC98] was used for the preprocessing of all data sets butTrav-
eller. We used html skip for web pages and elimination of UU-encoded segments for
newsgroup messages. We did not use stoplist removal, stemming or vocabulary pruning by
occurrence count.

2.6.4 Results

Figure 2.4 shows the results obtained in each data set. The proposed CDMLE algorithm is
compared to:
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Table 2.2: Summary of the best results obtained for the4 corpora and for all
the smoothing techniques.

Job Industry 20 Traveller
Category Sector News (English)

Laplace 33.2 38.9 15.0 3.3
AD+1gBO 34.0 38.0 14.9 3.3
AD+1gI 34.2 37.8 14.8 3.3
CDMLE 33.0 38.6 15.3 3.1

1. Laplace:conventional training and Laplace smoothing,

2. AD+1gBO:conventional training and absolute discounting with unigram back-off,
and

3. AD+1gI: as (2) with unigram interpolation.

Each classification technique considered has its own test-set error rate curve as a function
of the discountb:

1. Laplace:b refers toδ in Eq. (2.27)

2. AD+1gBO or 1gI:b has its usual meaning, as defined in Eq. (??), and

3. CDMLE: ǫ is defined fromb asǫ = 10−10 b · 1
D

in the Traveller data set andǫ = b· 1
D

in the other data sets.

Each plotted point corresponds to an average error rate obtained from30 random splits in
which 80% documents were used for training while the remaining20% were held out for
testing. Error rate estimates have an approximate95% confidence interval of[E% ± 1%]
bur for Job Category of which interval is[E% ± 0.4%].

From the results in Fig. 2.4, it is clear that the CDMLE algorithm performs similarly to
the other techniques. In comparison with Laplace, CDMLE provides slightly better results
and more stable (flat) error curves in all data sets but 20 Newsgroups. In these data sets,
it is indeed much better than Laplace when, as usual with Laplace, the discount factor is
simply set to one. In the case of 20 Newsgroups, however, Laplace seems to be a bit better
than CDMLE.

In comparison with absolute discounting (AD+1gBO and AD+1gI), it can be said that
there is no superiority of one over the other. In Traveller and Job category, the CDMLE
algorithm provides better rates than absolute discounting, but the contrary can be observed
in the other two data sets. All in all, this is a comparativelygood result for CDMLE since,
in contrast to absolute discounting with unigram back-off/interpolation, CDMLE does not
take advantage of the unigram distribution (2.75) to obtainreliable class-independent word
probability estimates. Clearly, this estimates can be usedto replace (2.32) by better, word-
dependent domain constraints.

A summary of the best results obtained in the experiments is given in Table 2.2. The
CDMLE algorithm obtains better results than Laplace and absolute discounting in Job Cat-
egory and Traveller. However, absolute discounting is better than Laplace and the CDMLE
algorithm in Industry Sector and 20 Newsgroups. Note that these differences are significant
only to a limited extent.

As said in Section 2.4.3, the time complexity of the CDMLE algorithm isΩ(CND)
in the best case andO(CND + CD2) in the worst case. More precisely, the difference
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Figure 2.4: Results obtained in theTraveller, 20 Newsgroups, Industry sec-
tor andJob categorydata sets. Each plot shows the classification error rate as
a function of the discount parameterb, for the four classification techniques
considered (Laplace, AD+1gBO, AD+1gI andCDMLE).

between these two cases arises from the number of repeat-until iterations executed (lines
20–34 in Fig. 2.1), which may vary from2 to D. To study this in the average case, the
number of repeat-until iterations was recorded in each CDMLE algorithm execution. On
average, it was exactly2 in the Traveller and 20 Newsgroups data sets, that is, as in the
best case. On the other hand, it was only of2.5 iterations for Industry Sectors and3.2 for
Job category. Therefore, as expected, the repeat-until loop iterates only a few times. That
is, in practice, the computational behaviour of the CDMLE algorithm might be considered
almost the same as that of conventional naive Bayes training.
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2.7 Conclusions

In this work, conventional naive Bayes training with parameter smoothing has been re-
stated as a constrained maximum likelihood estimation problem for which an optimal,
iterative algorithm has been proposed. The general idea behind our contribution is to avoid
parameter estimates that can cause over-fitting while retaining the properties of maximum
likelihood estimators. Empirical results on four real textclassification tasks have shown
that the proposed algorithm provides results similar to those of conventional training and
parameter smoothing, with almost the same practical computational requirements.

It is worth noting, however, that smoothing methods have been continuously improved
over the years, while our proposal is completely new and thus, there is still room for sig-
nificant improvements. For instance, the parameter domain might be better adjusted by
redefining the constantǫ introduced in Eq.(2.32) and making it dependent on both the class
c and the wordd.

We think that the proposed approach and technique are very promising. In general,
the idea behind of the proposed approach can be applied to many maximum likelihood
estimation problems in pattern recognition. For instance,it can be easily applied to EM-
based maximum likelihood estimation of finite mixture models. For these models, it is
unclear how to use parameter smoothing in the M step without affecting the EM behaviour.
Instead, constrained maximum likelihood estimation can beused without any side effect.
Also, this constrained approach might be useful in the case of training criterium other than
maximum likelihood such as discriminative training [JVN07].

The theory and experimental results in this chapter yield one publication in an interna-
tional conference:

• J.Andrés-Ferrer and Alfons Juan. Máxima versoimilitud con dominio restringido
applicada a clasificación de textos. InProceedings of “Campus Multidisciplinar en
Percepción e Inteligencia”, CMPI-06, pages: 791–803, Albacete, Spain July 10-14,
2006.

and a publication in a journal is pending:

• J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihood esti-
mation for naive Bayes text classification.Pattern Analysis and Applications (PAA).
Pending
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“ Life’s most important questions are, for the most part, nothing but probability problems.
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Chapter 3. The loss function in statistical pattern recognition

BAYES’ DECISION RULE is the foundation of statistical pattern recognition. This
well-known rule is obtained by the minimisation of the classification risk. It is
not possible to know the exact loss in which a classification system will incur.

Therefore, we compute the risk in which a system is “expected” to incur based upon our
“loss” criteria. This criteria is formalised by theloss function. By means of the the loss
function we measure the penalty of incorrectly classifyingan object, depending upon some
a priori preferences or costs. In practice, however, neither costs nor preferences are given
but for the correct/incorrect criteria. So the system only incurs in a constant loss if an
object is misclassified. Thereby, the minimisation of the risk yields the intuitive concept of
minimising the classification error rate (CER).

The loss associated to each error is a very important matter since the system decisions
highly depends on it. The classification error rate is not thebest risk to minimise in all the
classification problems, although it may seem to be. One simple example is when system
misclassification imply economic consequences. So, if classifying an object into a wrong
class has a different economic loss depending on the object,the correct class or/and the
proposed wrong class, so must the loss function have it. Otherwise, we can end with a
waste system.

During this chapter, we assume that we have a good approximation to the actual prob-
ability distributions or even the actual distributions themselves. We focus our analysis on
the way to build the optimal classification system with the best possible estimation or ap-
proximation to the probability distributions. Hence, we are not dealing with the training
criteria but with the decoding criteria.

Along this chapter we cover all the outlined aspects of the loss function from a statisti-
cal point of view. We explore the theoretical advantages anddrawbacks of the most general
loss functions. Afterwards by constraining this general loss, we analyse simpler and faster
loss functions. Finally, we apply the developed theory to statistical machine translation in
order to study the proposed theory in a real task.

3.1 Introduction

Statistical pattern recognition is a well-founded discipline that solve many practical classi-
fication problems. A classification problem is stated as the problem of choosing to which
class a given object belongs. LetX be the domain of the objects that a classification sys-
tem might observe; andΩ the set of possible classes ({ω1, ω2, . . . , ωC}) to which an object
may belong to. A classification system is characterised by a function that maps each object
to one class, the so-calledclassification function (c : O → Ω) [DHS00].

The performance of a classification system is usually measured as a function of the
classification error. However, there are problems in which all the classification misclassifi-
cations do not have the same repercussions. Therefore, a criteria that ranks these mistakes
should be provided. Theloss function,l(ωp|x, ωc), evaluates theloss in which the clas-
sification system incurs when classifying the objectx into the classωp, knowing that the
correct class isωc [DHS00]. It is well known that, if a0–1 loss function is provided, then
the optimal system minimises the classification error rate [DHS00].

This chapter is mainly dedicated to design loss functions that should improve system
performance while keeping the simplicity of0–1 optimal classification system. In [RSN05]
complex classification rules were analysed using ametric loss function. There are other
works that analyse the most general loss functions, for instance [UN04]. However, we
focus on other loss functions which are not restricted by themetric requirements at the
expense of ignoring the class proposed by the system, i.e.ωp.
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3.2. Bayes Decision Theory

The remainder of the chapter is organised as follows. In section 3.2 pattern recognition
problems are analysed from a decision theory view. In section 3.3, we introduce statistical
machine translation as a case of study. Finally, concludingremarks are summarised in
section 3.4.

3.2 Bayes Decision Theory

A classification problem is an instance of a decision problem(DP). From this point of view,
a classification problem is composed of three different items:

1. A set ofObjects(O) the system might observe and has to classify.

2. A set of classes (Ω = {ω1, . . . , ωC , . . .}) in which the system has to classify each
observed objectx ∈ O.

3. A Loss function, l(ωp|x, ωc), used to weight the classification actions. This function
evaluates the loss of classifying an observed objectx into a class,ωp ∈ Ω, knowing
that theoptimal classfor the objectx is ωc ∈ Ω.

Recall that a classification system is characterised by the classification function, which
maps each object to one class [DHS00]

c : O → Ω (3.1)

Therefore, when an objectx ∈ O is observed in a classification system, the system
should choose the “correct” class from all possible classes.

Taking this framework into account, we define the risk of the system when classifying
an objectx, the so-calledconditional risk givenx, as

R(ωp|x) =
∑

ωc∈Ω

l(ωp|x, ωc) · pr(ωc|x) (3.2)

Note that the conditional risk is the expected value of the loss function,l(ωp|x, ωc), with
respect to the probability distribution,pr(ω|x).

Using the conditional risk, we define thethe global risk[DHS00] as the contribution
of all objects to the performance of classifiers, i.e.

R(c)=Ex[R(c(x)|x)]=

∫

X

R(c(x)|x) · pr(x)dx (3.3)

whereR(c(x)|x) is the conditional risk givenx, as defined in Eq. (3.3).
Our aspiration it to design the classification function thatminimises the global risk.

Since minimising the conditional risk for each objectx is a sufficient condition to minimise
the global risk, without loss of generality, the optimal classification rule, namelyminimum
Bayes’ risk, is the one that minimises the conditional risk, i.e.

ĉ(x) = argmin
ω∈Ω

R(ω|x) (3.4)

Therefore, depending which loss function the system designis based on, there is a different
optimal classification rule.

The algorithms that perform the minimisation in previous Eq. (3.4), are often called
decoding algorithmsor search algorithms. Analogously, the problem of designing an algo-
rithm that perform such minimisation is calledthe decoding problemor the search problem.

JAF-DSIC-UPV 49



Chapter 3. The loss function in statistical pattern recognition

Throughout this chapter we focus on the way of building the optimal classification
system with the best possible model. We do not intend to discuss about which training
criteria, method or algorithm is better for improving the system performance. Instead,
we deal with the following stage of the system design. Once wehave the best possible
approximation to the actual probability distributions, weanswer the question of which the
best decoding strategy is.

In practice, we also need to compare between systems. In order to do so, we need to
compare the global risk of those systems. The global risk in Eq. (3.3), can be understood
as the expected loss with respect to the object-class joint probability distribution

R(c) =

∫

X

∑

ω∈Ω

l(c(x)|x, ω)pr(ω, x)dx (3.5)

with pr(ω, x) = pr(ω|x)p(x). Thefore, using the law of great numbers for a given test
set,T = (xn, ωn)

N

n=1, i.i.d. according topr(ω, x), the global risk can be approximated by

R̄T (c) =
1

N

N
∑

n=1

l(c(xn)|xn, ωn) (3.6)

We call this approximation theempirical riskon the test setT .
The question of which the best loss function is, does not havea unique and general

answer. The classical and most common approach is to consider that each misclassifica-
tion has the same impact. Therefore, a priori we distinguishtwo sorts of actions: wrong
classification (loss of1) and correct classification (zero loss), i.e.,

l(ωp|x, ωc) =

{

0 ωp = ωc

1 otherwise
(3.7)

This function is called the0–1 loss function.
Minimising the risk when the loss function is the0–1 loss function, is equivalent to

minimise the classifying errors. When Eq. (3.7) is used, theminimum Bayes’ risk in
Equation (3.4) can be simplified yielding the well-known optimal Bayes’ classification
rule [DHS00]:

c(x) = arg max
ω∈Ω

p(ω |x) (3.8)

wherex is the object to be classified, andω denotes one class fromΩ.
However, while the0–1 loss function is adequate for many problems with a small set

of classes, there are problems where a more appropriate lossfunction should be defined.
For example, if the system classifies diseases, it may be worse to classify an ill person
as a healthy one than vice-versa. Another important exampleis the case in which the set
of classes is large, or even infinite (but still enumerable).In such a case, as the set of all
possible classes is huge, it is not appropriate to penalise all wrong classes with the same
weight. In other words, since it is impossible to define a uniform distribution when the
number of classes is infinite, it does not make sense to define auniform loss function in
the infinite domain because there are objects that are more probable than others, and the
error will be increased if the system fails in probable objects. Instead of using the0–1
loss function, it would be better to highly penalise the domain zones where the probability
is high. In this way, the system will avoid mistakes on probable objects at the expense
of making mistakes on unlikely objects. Consequently, the error will be decreased since
unlikely objects occur fewer times in comparison with probable objects. Note that we are
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dealing with infinite enumerable sets in this example, and, therefore, this is a classification
problem and not a linear regression problem. An example of this idea is plotted at Fig. 3.1

The most general loss function that can be defined makes use ofthe three variables:
the object to classifyx, the proposed classωp and the correct classωc. In general, it is
useless to define a non-zero loss function when the proposed class and the correct class are
equal. Therefore, we define theerror functionǫ(x, ωp, ωc) as the value of the loss function
whenωp 6= ωc. For each error function we define a loss function in the following way

l(ωp|x, ωc) =

{

0 ωp = ωc

ǫ(x, ωp, ωc) otherwise
(3.9)

The error function must verify the following finiteness property,
∑

ωc∈Ω

pr(ωc|x) ǫ(x, ωp, ωc) < ∞ (3.10)

The optimal Bayes’ classification rule corresponding to theprevious loss function in
Eq. (3.9) is

c(x) = argmin
ωp∈Ω

∑

ωc 6=ωp

pr(ωc|x) ǫ(x, ωp, ωc) (3.11)

The previous classification rule in Eq. (3.11), has a great disadvantage. In order to
classify an object we have to perform the minimisation whichalso implies a sum over all
classes. If we compare the rules in Eq. (3.11), and the rule inEq. (3.8), it is clear that in
the former case, the cost is higher since the sum over all possible correct classes should be
performed. This sum is not important if the number of classesis small, however, in several
appealing language problems such as statistical machine translation or speech recognition
the number of classes is huge or even infinite (enumerable). In those cases, the sum inside
the minimisation could be even unfeasible.

The loss functions in Eq. (3.9) and in Eq. (3.7) represent twoextremes of the loss
function possibilities. On the one hand, the0–1 loss function yields the simplest and
fastest classification rule. On the other hand, the general loss function in Eq. (3.11), is the
most general loss but also the slowest one.

There is another category of loss functions which representa trade-off between com-
putational cost and generality. This category is characterised by the property of ignoring
the proposed classωp in the error function. Therefore, if we define the following loss
function,

l(ωp|x, ωc) =

{

0 ωp = ωc

ǫ(x, ωc) otherwise
(3.12)

then the optimal classification rule is

c(x) = arg min
ωp∈Ω

∑

ωc 6=ωp

pr(ωc|x) ǫ(x, ωc) (3.13)

Applying some basic arithmetic operations to the classification rule in previous Eq. (3.13),
the classification rule is significantly simplified, i.e.,

c(x) = arg minωp∈Ω

∑

ωc 6=ωp
pr(ωc|x) ǫ(x, ωc) (3.14)

c(x) = argminωp∈Ω{−pr(ωp|x) ǫ(x, ωp) + S(x)} (3.15)

c(x) = argminωp∈Ω{−pr(ωp|x) ǫ(x, ωp)} (3.16)

c(x) = argmaxωp∈Ω pr(ωp|x) ǫ(x, ωp) (3.17)

JAF-DSIC-UPV 51



Chapter 3. The loss function in statistical pattern recognition

with S(x) =
∑

ω∈Ω ǫ(ω, x)pr(ω|x).
By comparing Eqs. (3.17) and (3.8), we conclude that the costis almost the same, but

for the computation ofǫ(x, ωp). Actually, all the constant error functions, i.e.ǫ(x, ωp) =
c, lead to the same classification rule than the0–1 loss function in Eq. (3.8). Therefore, the
0–1 loss function is the simplest error function of this category. If we compare Eqs. (3.17)
and (3.11) it can be seen that the former is fastest that the latter. Assuming that the cost of
computing the error functions,ǫ(·) andpr(ω|x) is constant we classify loss functions into
two categories:

• The most general loss function depicted in Eq. (3.9) which has an asymptotic cost
of O(|Ω|2).

• The loss functions that drop the dependence on the proposed class defined as in
Eq. (3.12), which has an asymptotic cost ofO(|Ω|).

Analysing the Eq. (3.12), the question of which the best error function is, raises imme-
diately. The answer is not too clear, and it depends on the task and problem for which we
are designing the classification system. For instance, if the number of classes is huge or
even infinite, a good approximation is to use the probabilitydistribution over the classes,
i.e. ǫ(x, ωc) = pr(ωc). Figure 3.1 plots this idea. Note that since there are classes in the
domain with a small probability of occurrence, it is uselessto uniformly distribute the loss.
For instance, let assume thatωh is the most probable class and thatωl is one of the less
probable classes. If the loss of classifying an objectx into the classωl although it belongs
to ωh, and vice-verse, is the same, then the system could always fail in classifying objects
that belong to the classωh. Since the classωh is more probable, the system will fail more
times than if the loss of misclassifying object of the classωh were the highest. This idea is
analysed into detail for the statistical machine translation problem in section 3.3.

According to previous argument, if the loss wereǫ(x, ωc) = pr(ωc, x) then we should
expect that the system would work even better. The difference between the marginal proba-
bility and the joint probability is that we can modify the loss on the correct class depending
on each object. Obviously, this refines the accuracy of the the loss in order to agree with
the frequency of occurrence.

A more general approach can be used for mixing different models and information
sources. It consists in defining an additional training stepto optimise a parametrised loss
function. We start by defining a family of error functions,Υ, and identifying each function
in the family with some vector of parameters, sayλ. Then, we use another function criteria,
sayC(ǫλ(x, ωc)), in order to range between the classification systems. Afterwards, with
the help of an optimisation method, either theoretical or practical, the vectorλ is optimised.
In practice, this can be used to approximate a generic error functionǫ(x, ωc, ωp) with a
fastest error function that drops the dependence on the proposed class, i.e.ǫλ(x, ωc). In
this way, we design a fast classification rule, that approximate our real classification risk.
In order to perform the minimisation, a validation set is typically used. This idea is further
explored in section 3.3.3 under the view of statistical machine translation.

3.3 Statistical Machine Translation

In this section, we propose and analyse different loss functions which are eligible for sub-
stituting the0–1 loss function in pattern recognition problems. Since, thissubstitution is
specially appealing when the set of classes is infinite, we focus on the real scenario of
statistical machine translation (SMT) [BPPM93].
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Figure 3.1: Difference of using a0–1 loss function (on the left) and an
approximation to the true class probability as the loss function (on the right)
when using a loss function of the sort of Eq. (3.12). The left-scale of the y
axis shows a possible actual probability over the target sentences. The right-
scale of the y axis shows the value of the loss function when a mistake is
made. Finally, the x axis is an infinite enumeration of the infinite enumerable
set of possible target sentences (or classes).

Statistical machine translation consists in finding the translationy of a source sentence
x. SMT is a specific instance of a classification problem where the set of possible classes is
the set of all the possible sentences that might be written ina target language, i.e.Ω = Y ∗,
whereY is the target lexicon. Likewise, the objects to be classifieda are sentences of a
source language, i.e.x ∈ X∗, whereX is the source lexicon.

Typically, the SMT systems are based on the Bayes’ classification rule for the0–1 loss
function depicted in Eq. (3.8). Usually, the class posterior probability is decomposed using
Bayes’ theorem into two probabilities,

ŷ = ĉ(x) = arg max
yp∈Y ∗

{

pr(x|yp)pr(yp)
}

(3.18)

Previous Eq. (3.18) is known as theinverse translation rule (ITR)since the translation
probability,pr(x|yp), is defined in an inverse way, i.e. we define a probability distribution
over the source sentencex which is the information that is “given” to the system. On
the other hand, a direct model distributes the probability among the target sentencesy

conditionally to the given informationx.
Equation (3.18) implies that the system has to search the target stringŷ that max-

imises the product of both, the target language modelpr(y) and the inverse translation
modelpr(x|y). Nevertheless, using this rule implies, in practice, changing the distribution
probabilities as well as the models through which the probabilities are approached. This
is exactly the advantage of this approach, as it allows the modelling of the direct transla-
tion probabilitypr(y|x) with two models: an inverse translation model that approximates
the direct probability distributionpr(x|y); and a language model that approximates the
language probabilitypr(y).

This approach has a strong practical drawback: the search problem. This search is
known to be an NP-hard problem [Kni99, UM06]. However, several search algorithms

aIn this context to classify an objectx in the classωc is a way of expressing thatωc is the
translation ofx.

JAF-DSIC-UPV 53



Chapter 3. The loss function in statistical pattern recognition

have been proposed in the literature to solve this problem efficiently [B+90, WW97,
AO+99, G+01, Jel69, GVC01, TN03].

Another drawback of the ITR, is that it is obtained using the0–1 loss function. As
stated in Sec. 3.2, this loss function is not particularly appropriate when the number of
classes is huge as occurs in SMT problems. Specifically, if the correct translation for the
source sentencex is yc, and the hypothesis of the translation system isyp; then using
the0-1 loss function (Eq. (3.7)) has the consequence of penalisingthe system in the same
way, independently of which translation the system proposes yp and which the correct
translationyc is.

3.3.1 General error functions

As stated above, the most generic loss functions depicted inEq (3.9), produce minimisa-
tions which have a quadratic cost depending on the size of theset of classes. Machine
translation is a classification problem with a huge set of classes. Hence, the most generic
loss functions yield difficult search algorithms. There aresome works that have already
explored this kind of loss functions [UN04, RSN05].

The more appealing application of this loss functions is theuse of a metric loss func-
tion [RSN05]. For instance, in machine translation one widespread metric is the WER
(see Section 1.3 for a definition), since the loss function inEquation (3.12) depends on
both, the proposed translation and the reference translation, the WER can be used as loss
function [UN04]. Nevertheless, due to the high complexity,the use of these quadratic loss
functions, is only feasible in constrained situations liken-best lists [KB04].

3.3.2 Simplified error functions

The search algorithms generated by the classification rule in Eq. (3.12) have the same
asymptotic cost than0–1 loss function, at the expense of dropping the dependence on the
proposed class. As stated in section 3.2, a more suitable loss function than the0–1 loss, is
obtained using as the error function the target sentence probability, ǫ(x,yj) = pr(yj),

l(yp|x,yc) =

{

0 yp = yc

pr(yc) otherwise
(3.19)

This loss function seems to be more appropriate than the0-1. This is due to the fact that
if the system makes an error translating a set of source sentences, this loss function tries
to force the system to fail in the source sentencex whose correct translationbyc is one of
the least probable in the target language. Thus, the system will fail in the least probable
translations, whenever it gets confused; and therefore, the Global Riskwill be reduced.

The associated Bayes’ rule for loss function in Eq. (3.19) is

ŷ(x) = arg max
yp∈Y ∗

{

pr(yp|x)pr(yp)
}

(3.20)

Previous Eq. (3.20) is known as thedirect translation rule (DTR)since the translation
probability,pr(yp|x), is defined in an direct way. The direct translation rule was heuristi-
cally introduced into the scope of machine translation in order to alleviate the search prob-
lem by many of the current SMT systems [OTN99, ON04a, KOM03, Zen08]. Note that

bHere lies the importance of distinguishing between the translation proposed by the systemyp

and the correct translationyc of the source sentencex.
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the DTR was introduced as an heuristic version of the ITR in Eq. (3.18), wherepr(x|y) is
substituted bypr(y|x). This rule allows an easier search algorithm for some of the transla-
tion models. Although the DTR has been widely used, its statistical theoretical foundation
has not been clear for long time, as it seemed to be against theBayes’ classification rule.
As stated above, the direct translation rule is obtained as the Bayes’ optimal classification
rule if the loss function in Eq.(3.19)is used.

Since the DTR uses the target language probability as the error function, it should
work better than the ITR, from a theoretical point of view. Nevertheless, the statistical
models employed for approximate the translation probabilities may not be good enough.
Thus, the model error, could be more important than the advantage obtained from the use
of a more appropriate loss function. Therefore, it seems a good idea to use the direct rule
in the equivalent inverse manner so that the translation system will be the same and then
these asymmetries will be reduced. By simply applying the Bayes’ theorem to Eq. (3.20),
we obtain the equivalent rule:

ŷ = argmax
y∈Y ∗

{

pr(y)2p(x|y)
}

(3.21)

The difference between the Eq (3.20) and Eq (3.21) measure the asymmetries of the trans-
lation models as well as the error in the modelling.

Nevertheless, this last approach assumes that the languagemodel is a very good ap-
proximation to the actual probability distribution, due tothe fact that the direct weight
has passed from the direct translation modelpr(y|x) to the language model. Whether the
direct model or the inverse model is better for the translation task depends on the model
properties and the best estimation that can be achieved for the selected model with the
finite sample that we have for training.

As stated in section 3.2 a refined loss function is designed using the joint probability
as the error function,ǫ(x,yj) = pr(x,yj),

l(yp|x,yc) =

{

0 yp = yc

pr(x,yc) otherwise
(3.22)

which leads to:
ŷ = argmax

y∈Y ∗

{pr(x,y)pr(y|x)} (3.23)

Depending on how we model probabilities in Eq. (3.23), several optimal classification
rules are obtained. Specially if the joint probability (p(x,y)) is modelled with an inverse
translation probability plus a target language probability, then, theinverse and direct trans-
lation rule (I&DTR), is obtained

ŷ = argmax
y∈Y ∗

{pr(y)pr(x |y)pr(y |x)} (3.24)

The interpretation of this rule is a refinement of the direct translation rule. In this case, if
the system makes a mistake, then it is done in the least probable pairs (x,y) in terms of
p(y,x).

3.3.3 Approximation to general error functions

As stated in section 3.2, the loss functions of the kind in Eq.(3.12), are faster than the
general loss functions depicted in Eq. (3.9). The former loss function sacrifices the use of
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the proposed translation in order to speed the search process. Unfortunately, the automatic
evaluation metrics used to rank the translation systems require both, the proposed and the
correct translation. Therefore, with the fastest loss functions we are not able to minimise
the evaluation metrics, which in principle is what we expectfrom our best system. How-
ever, by defining a family of simple error functions depending on a parametric vector, say
λ, we are able to approximate the evaluation metric, such as the BLEU.

One way to define this general error function is to use a set of features,fk(x, yc), that
depend on both the source sentence and its correct translation. Then we define the error
function

ǫλ(x, yc) =

K
∏

k=1

fk(x, yc)
λk (3.25)

If our actual evaluation error function is

ǫ(x, yp, yc) = 1 − BLEU(yp, yc) (3.26)

then using a validation setD = {(xn, yn)}N
n=1 we can use any optimisation algorithm

to minimise our actual error function in Eq. (3.26). For instance, the maximum entropy
algorithm [BPP96] is typically applied to find the optimal parameter vectorλ,

The error function defined in Eq. (3.25) leads to the following classification rule

ŷλ(x) = arg max
yc∈Y ∗

pr(yc|x)
K
∏

k=1

fk(x, yc)
λk (3.27)

Note that we can always extend the vector of parameters lambda,λ, and the feature vector,
f , by adding the conditional probability,pr(yc|x) as a new featurec. Therefore, the
classification rule expressed in terms of the extended feature vector,f̄ and the extended
parametric vector̄λ is

ŷλ̄(x) = arg max
yc∈Y ∗

K
∏

k=1

f̄k(x, yc)
λ̄k (3.28)

If we apply the logarithm to the previous Eq. (3.28) we obtainthe equivalent expression

ŷλ̄(x) = arg max
yc∈Y ∗

K
∑

k=1

λ̄k log f̄k(x, yc) (3.29)

Inspired by Eq. (3.29), a more general error function can be defined to approximate
the actual error function in Eq. (3.26)

ǫ(x, yc) =

K
∑

k=1

λkhk(x, yc) (3.30)

with h(x, yc) being the feature vector analogous tof (x, yc). Note that if we define
h(x, yc) = log f (x, yc), then Eq. (3.30) is logarithmically equivalent to Eq. (3.25).

cIn the case that there existed a feature, sayfl(·) which already is the conditional probability,
then the new feature vector remains the same and the new parameter vector is the previous one but
for the componentl which is increase by one, i.e.̄λl = λl + 1.
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Again following an analogous process we can define the extended feature vector̄f and
the extended parameter vectorλ̄ obtaining the classification rule

ŷλ̄(x) = arg max
yc∈Y ∗

K
∑

k=1

λ̄kh̄k(x, yc) (3.31)

Although we have introduced above the feature vector, we have not yet covered which
are the typical features used in the state-of-the-art systems. Typical features range among [ON04a,
M+06] the followings:

• Direct translation models:a typical feature is to use a direct translation model

hk(x, y) = pθ(y|x) (3.32)

The most used models are the IBM model 1 and the phrase-based models.

• Inverse translation models:a typical feature is to use a inverse translation model

hk(x, y) = pθ(x|y) (3.33)

The most used models are the IBM model 1 and the phrase-based models.

• Joint translation models:a typical feature is to use a stochastic finite transducer,

hk(x, y) = pθ(x, y) (3.34)

• An n-gram language model:that is to say

hk(x, y) = pθ(y) (3.35)

• Word bonus:it is a well know problem of then-gram language models that they
give more probability so short sentences. Additionally, the translation models tend
to distribute the probability among ill-formed sentences as the length of the sen-
tence increases [BPPM93]. Therefore, in order to keep the translation systems from
always producing poor translations because of trying to shorten them, the following
feature is used

hk(x, y) = exp(|y|) (3.36)

Most of the state of the art systems use this idea, although they present it as if it
were a log linear model [ON04a, M+06]. Specifically, if in Eq. (3.8) we model the direct
probability as a log linear model

pλ(y|x) =
1

pλ(x)
exp(

K
∑

k=1

λkhk(x, y)) (3.37)

with

pλ(x) =
∑

y∈Y ∗

exp(

K
∑

k=1

λkhk(x, y)) (3.38)
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then using the model in Eq. (3.37) in the rule in Eq. (3.8) we obtain the following rule

ŷλ(x) = argmax
y∈Y ∗

1

pλ(x)
exp(

K
∑

k=1

λkhk(x, y)) (3.39)

ŷλ(x) = argmax
y∈Y ∗

exp(

K
∑

k=1

λkhk(x, y)) (3.40)

ŷλ(x) = arg max
y∈Y ∗

K
∑

k=1

λkhk(x, y) (3.41)

Note that if you compare Eqs. (3.41) and (3.31) they are equivalent.
Although the log-linear explanation of the process yields the same classification rule,

it is not satisfactory in the sense that the log-linear modelin Eq. (3.37) in never trained in
its full form, i.e., it is only trained in the form of classification rule (3.41) to minimise the
general loss function in Eq. (3.26). Additionally, this view presents the log-linear model in
Eq. (3.37) as an hyper-model because most of the used features are probability models by
themselves.

3.3.4 Experiments

The aim of this section is to show experimentally how the theory stated in this work can
be used to improve the performance of a translation system. Therefore, the objective is
not to obtain a competitive system, but rather to analyse thepreviously stated properties in
practice.

In order to analyse the theory, we have used two set of experiments. For the former
set we use a semi-synthetic corpora and a simple translationmodel, the IBM model II (see
section 1.3.1). For the latter, two real tasks are used whilst the translation models used were
the state-of-the-art phrase-based models (see section 1.3.2). Through both experiments a
n-gram language model is used to approximate the language probability distributions, i.e.
pr(y). Specifically, the language model were trained using a5-gram model obtained with
the SRILM toolkit [Sto02].

Similarly to [G+01], we defined two error measures:search error andmodel error.
These error measures are inspired on the idea that when a SMT system proposes a wrong
translation, it is due to of one of the following reasons: either the suboptimal search algo-
rithm has not been able to find a good translation or the model is not able to make up a
good translation, and hence it is impossible to find it. A translation error is asearch error
(SE)if the probability of the proposed translations is less thana reference translation; oth-
erwise it is amodel error, i.e., the probability of the proposed translations is greater than
the reference translation. Although a model error always has more probability than the
reference translation, this does not excludes the fact thata much better translation maybe
found.

In order to evaluate the translation quality, we used the following well-known auto-
matically computable measures:word error rate (WER), bilingual evaluation understudy
(BLEU), position independent error rate (PER), andsentence error rate (SER).

3.3.5 Corpora

Three different corpora were used for the experiments that were carried out in this chapter:
Eutrans-I (Tourist), Europarl and Xerox.
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Test Set Train Set
Spa Eng Spa Eng

sentences 1K 170K
avg. length 12.7 12.6 12.9 13.0
vocabulary 518 393 688 514
singletons 107 90 12 7
running words 12.7K 12.6K 2193K 2206K
perplexity 3.62 2.95 3.50 2.89

Table 3.1: Basic statistics of the Spanish-English TOURIST task.

Table 3.1 summarises some of the statistics of the Tourist corpus [ABC+96]. The
Spanish-English sentence pairs correspond to human-to-human communication situations
at the front-desk of a hotel which were semi-automatically produced using a small seed
corpus compiled from travel guides booklets.

Table 3.2 shows some statistics of the Europarl corpus [Koe05]. Specifically, this is the
version that was used in the shared task of the NAACL 2006 Workshop on SMT [NAA06].
Europarl corpus is extracted from the proceedings of the European Parliament, which are
written in the different languages of the European Union. There are different versions
of the Europarl corpus depending on the pair of languages that are used. In this work,
only the English-Spanish version was used. As can be observed in Table 3.2, the Europarl
corpus contains a great number of sentences and large vocabulary sizes. These features are
common to other well-known corpora described in the literature.

Table 3.2: Statistics of the Europarl corpus

Spanish English

Training
Sentences 730 740
Running Words 15 725 136 15 222 505
Vocabulary 102 885 64 122
Avg. sentence length 21.5 20.8

Test
Sentences 3 064
Running Words 91 730 85 232
Perplexity 102 120

Table 3.3 some statistics of the Xerox corpus [Ato01]. This corpus involves the trans-
lation of technical Xerox Manuals from English to Spanish, French and German, and vice-
versa. In this work, only the English-Spanish version was used. As can be observed in
Table 3.3, the Xerox corpus contains a considerable number of sentences and medium-size
vocabularies.

Word Based Translation experiments

In this section, the IBM Model 2 [BPPM93] is used to approximate the translation proba-
bility distributions. Together with the IBM Model 2 [BPPM93], its corresponding search
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Table 3.3: Statistics of the Xerox corpus

Spanish English

Training
Sentences 55761
Running Words 752607 665400
Vocabulary 11051 7957
Avg. sentence length 13.5 11.9

Test
Sentences 1125
Running Words 10106 8370
Perplexity 35 47

algorithms are used to carry out the experiments in this section. This choice was motivated
by several reason. Firstly, the simplicity of the translation model allows us to obtain a good
estimation of the model parameters. Secondly, there are several models that are initialised
using the alignments and dictionaries of the IBM model 2. Finally, the search problem can
be solved exactly using dynamic programming for the case of the direct translation rule
depicted in Eq. (3.20).

In order to train the IBM Model 2 we used the standard toolGIZA++ [Och00]. We re-
implemented the algorithm presented in [GVC01] to perform the search process in trans-
lation for the ITR. Even though this search algorithm is not optimal, we configured the
search parameters in order to minimise the search errors, sothat most of the errors should
be model errors. In addition, we implemented the corresponding version of this algorithm
for the DTR and for the I&DTR. All these algorithms were developed by dynamic pro-
gramming. For the I&DTR, we implemented two versions of the search: one guided by
the direct model (a non-optimal search algorithm, namely I&DTR-D) and the other guided
by the inverse translation model (which is also non-optimalbut more accurate, namely
I&DTR-I).

In order to have an experimentation as close as possible to a theoretical scenario, we
selected the Spanish-English TOURIST task (see section 3.3.5). The parallel corpus con-
sisted of171, 352 different sentence pairs, where1K sentences were randomly selected
from testing, and the rest (in sets of exponentially increasing sizes:1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and170K sentences pairs) for training. All the figures show the confi-
dence interval at 95%.

Figure 3.2 shows the differences in terms of the WER among allthe mentioned forms
of the DTR: “IFDTR” (Eq. 3.21), and “DTR” (Eq. 3.20). Since the IBM Model 2 (in its
direct version) tries to provide very short translations, we implemented a normalised length
version of the DTR. In the figure this normalised version is referred “DTR-N”. Note the
importance of the model asymmetry in the obtained results. The best results were the ones
obtained using the inverse form of the DTR. This behaviour isnot surprising, since the
only mechanism that the IBM Model 2 has to ensure that all sources words are translated
is a length distribution and the length distribution usually allows the model to ommit the
translation of a few words. Anyway, the “DTR” and “DTR-N” performed worse than the
ITR (Table 3.4).

Figure 3.3 shows the results achieved with search algorithms base on the most impor-
tant rules. All the I&DTR obtain similar results to the ITR. Nevertheless, the non-optimal
search algorithm guided by the direct model (“I&DTR-D”) wasan order of magnitude
faster than the more accurate one (“I&DTR-I”) and the “ITR”.The inverse form of the
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Figure 3.2: Asymmetry of the IBM Model 2 measured with the respect to
the WER for the TOURIST test set for different training sizes.
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Figure 3.3: WER results for the TOURIST test set for different training sizes
and different classification rules.

DTR (“IFDTR”) behaved similarly to these, significantly improving the results reported
by DTR. There are no significant differences between the rules analysed in terms of WER.
However, the execution times were significantly reduced by the direct guided search in
comparison with the other searches. Table 3.4 shows these execution times and the figures
with the maximum training size.

The different search algorithms (based on loss functions) do not convey a significant
improvement in WER in Figure 3.3. Note that the loss functiononly evaluates the SER,
i.e. the loss function minimises the SER, and does not try to minimise the WER. Thus,
changing the loss function, does not necessarily decrease the WER.
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Table 3.4: Translation quality results with different translation rules for
TOURIST test set for a training set of170K sentences. Where T is the time
expressed in seconds and SE stands for the percentage ofsearch errors.

Model WER SER BLEU SE T
I&DTR I 10.0 49.2 0.847 1.3 34
I&DTR D 10.6 51.6 0.844 9.7 2
IFDTR 10.5 60.0 0.837 2.7 35
ITR 10.7 58.1 0.843 1.9 43
DTR N 17.9 74.1 0.750 0.0 2
DTR 30.3 92.4 0.535 0.0 2

In order to check this hypothesis, Figure 3.4 shows the analogous version of Figure 3.3
but with SER instead of WER. It should be noted that as the training size increases, there
is a difference in the behaviour between the ITR and both I&DTR. Consequently, the use
of these rules provides better SER, and this difference becomes statistically significant
as the estimation of the parameters becomes better. In the case of the inverse form of the
DTR (“IFDTR”), as the training size increases, the error tends to decrease and approximate
the ITR error. However, the differences are not statistically significant and both methods
are equivalent from this point of view.
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Figure 3.4: SER results for the TOURIST test set for different training sizes
and different classification rules.

In conclusion, there are two sets of rules: the first set is made up of IFDTR and ITR,
and the second is composed by the two versions of the I&DTR. The first set reports worse
SER than the the second set. However, the I&DTR guided with the direct model (“I&DTR-
D”) has many good properties in practice. Note that for real tasks and state-of-the-art
system it is expected that the behaviour of the rules correspond to the result obtained with
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Table 3.5: The results of translation quality obtained using the proposed
variety of loss functions with the Europarl test set.

Spanish→ English
Rule Formula BLEU WER PER
ITR pr(x|y)pr(y) 0.2681 61.138 45.24
DTR pr(y|x)pr(y) 0.2060 61.057 48.89
I&DTR pr(y|x)pr(x|y)pr(y) 0.2813 58.988 43.34
IFDTR pr(x|y)[pr(y)]2 0.2223 62.460 48.30

English→ Spanish
Rule Formula BLEU WER PER
ITR pr(x|y)pr(y) 0.2567 60.734 45.83
DTR pr(y|x)pr(y) 0.1988 62.043 51.31
I&DTR pr(y|x)pr(x|y)pr(y) 0.2606 59.441 45.12
IFDTR pr(x|y)[pr(y)]2 0.2148 62.685 49.37

the smallest corpus size, where no significant difference exists among the systems in terms
of SER.

Phrase-based translation experiments

In order to perform translation experiments, different PBTmodels (for the two tasks con-
sidered) were estimated. The training of these models were carried out in the following
way:

• First, a word-level alignment of all the sentence pairs in the training corpus was
carried out. This alignment was performed for the Spanish-to-English and English-
to-Spanish directions, using a standard GIZA++ [Och00] training, with the standard
training scheme15253145.

• Then, a symmetrisation of both alignment matrices was built, using the THOT toolkit [OGVC05].
Specifically, the refined symmetrisation method was used [ON04b].

• Finally, a phrase-based model was estimated, using the THOT toolkit [OGVC05].

With respect to the decoding process, we implemented our ownphrase-based decoder.
Specifically, the decoder implements anA⋆ algorithm which is very similar to that de-
scribed in the literature [G+01, OGVC03] for single-word models. The decoder was
adapted to deal with the different translation rules (or equivalently, the different loss func-
tions) proposed here. These decoders verbatim the unknown words to the output, since our
model is not fine-grained and its basic units are words.

Tables 3.5 and 3.6 show the translation quality measures forthe Europarl and Xerox
tasks, respectively, for the different loss functions proposed in section 3.2. The DTR and
FIRTD behaves similarly. As expected, the D&ITR obtains thebest performance. The
differences between the FIRTD and the DTR (which are theoretically equivalent) are not
too great, so the under-performance of the DTR compared withthe ITR is not due to model
asymmetries. If the translations given by the DTR are compared with the ITR, it can be
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Table 3.6: Translation quality results obtained, using the proposed variety
of loss functions, with the test set of Xerox task.

Spanish→ English
Rule Rule (Search Alg.) BLEU WER PER
ITR pr(x|y)pr(y) 0.617 25.9 17.6
DTR pr(y|x)pr(y) 0.590 27.0 18.9
I&DTR pr(y|x)pr(x|y)pr(y) 0.616 25.9 17.5
IFDTR pr(x|y)[pr(y)]2 0.606 26.2 18.0

English→ Spanish
Rule Rule (Search Alg.) BLEU WER PER
ITR pr(x|y)pr(y) 0.636 25.6 18.5
DTR pr(y|x)pr(y) 0.628 26.0 19.1
I&DTR pr(y|x)pr(x|y)pr(y) 0.646 25.1 18.1
IFDTR pr(x|y)[pr(y)]2 0.628 26.2 19.0
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Figure 3.5: The WER results obtained for the Europarl test set (Spanish to
English) with the length of the reference sentences restricted to be less than
the value of thex-axis.

observed that the DTR tends to generate shorter translations. This result is expected since
the error function of the DTR,pr(y), is modelled using an-gram language model, and it
is well-known thatn-gram language models give more probability to short sentences, that
is to say, the resulting systems tends to shorten translations.
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(BP) of BLEU score (on the right y-scale) obtained for the Europarl test set
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be less than the value of thex-axis.

Tables 3.5 and 3.6 show that the theoretically expected increase of the translation per-
formance in terms of WER and BLEU, is apparently not achievedfor the DTR and both
corpora. Although in the Xerox corpus the improved performance for the DTR is achieved,
the differences between the systems are not very high. However, figures 3.5 and 3.6 show
that, in fact, the DTR rule outperforms the ITR, but also provides shorter translations. Note
that the longer the sentences are the worse thebrevity penalty (BP) of the BLEU scoreis
and consequently the worse the BLEU is (Fig. 3.6). Note that in Fig. 3.5, the DTR incurs
in a WER which is in all cases smaller than the WER performed byITR. Again this is due
to then-grammodel which is used to model the language model, i.e. the error function
of the DTR. The I&DTR had the same brevity penalty problem, however, in this case the
problem was not so important since the rule includes the inverse translation model, which
counteracts the problem.

Table 3.7 shows some translations obtained using both DTR and ITR. As can be seen,
DTR tends to produce shorter translations than ITR, which typically produces more trans-
lation errors. For instance, in the first sentence,the European agencyis translated asthe
agencyusing the DTR; this is due to the fact that although the first translation is more
precise, the language model (the loss function for the DTR) scores the second as a more
probable sentence. Oppositely, the DTR correctly translatesmustin the first sentence but
the ITR translates it asshould. Most of the common mistakes shared for both rules are
syntactic errors, although semantic errors can be found, aswell.

In conclusion, the DTR and I&DTR, obtain better results withshort sentences due to a
bias in the language model, although the precision of such sentences is better. Nevertheless,
the I&DTR is not dramatically affected by an increase in the sentence length. As future
work, we intend to solve the language model bias to short sentence in some way, perhaps
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Table 3.7: Differences between some translation examples obtained using
DTR and ITR. Bold words highlight the differences between the two pro-
posed translations. REF stands for the reference translation.

REF: secondly , the European agency must be completely independent

DTR: secondly , theagency mustbe totally independent

ITR : secondly , theEuropean agency shouldbecompletely independent .

REF: it is crucial for consumers to accept the euro .

DTR: it is crucial that consumersto acceptthe euro .

ITR : it is crucial that consumersacceptance ofthe euro .

REF: i am reluctant to go further on trade or to advise further action on trade or investment .

DTR: i am reluctant to go further trade or advisefurther steps trade or investment .

ITR : i am reluctant to go furtheron trade orto adviseadditional efforts on trade or investment .

by introducing a length normalisation in the loss function or in the models.

3.4 Conclusions

The analysis of the loss function is an appealing issue. The results of analysing different
loss functions range from allowing to use metric loss functions such as BLEU, or WER; to
proving the properties of some outstanding classification rules such as the direct translation
rule, the inverse translation rule or even the maximum entropy rule. For each different error
functionǫ(x,yj ,yk) in the general loss function of Eq. (3.9), there is a different optimal
Bayes’ rule. The point of using one specific rule is an heuristic and practical issue.

An interesting focus of study is the use of metrics such as BLEU, or WER; as the
loss function. Nevertheless due to the high complexity, it is only feasible on constrained
situations liken-best lists.

The work developed over this chapter is focused on the study of loss functions that
have a linear complexity and that are outstanding due to historical or practical reasons.
This work explores the direct translation rule, the inversetranslation rule, and the direct
and inverse translation rule. In this sense, we have provided a theoretical approach based
on decision theory which explains the differences and resemblances between the Direct
and the Inverse Translation rules. We have also given insights into the practical differences
of these two rules, which are widely used. For instance, thistheoretical frame predicts
an improvement (in terms of SER), an improvement that has been confirmed in practice
for simple words models. In conclusion, according to the experimental results, the DTR
outperforms the ITR when short sentences are provided to thesystem.

The proposed modifications to the0–1 loss function depicted in Eq. (3.12) can handle
the intuitive idea of penalising a wrong action based on the repercussions of the correct
action. For instance, if the correct translation,yc, of a source sentence,x, is a very unlikely
sentence, failure in the translation of such a sentence is not important. Oppositely, failure
in the translation of a likely sentence is an important mistake. It is important to note the
fact that the proposed loss functions cannot handle significant cases. For example, it is not
the same to make an incorrect translation due to grammar errors than to make an incorrect
translation due to semantic errors. In order to take into account such cases, it is necessary
to work with general loss functions of the sort in Eq. (3.9) despite of its cost. However, the
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idea of penalising the mistakes proportionally to the probability of the correct translation
can also be used in case of dealing with more complicated decision rules and, eventually,
with more complicated search algorithms.

Note that though we have focused our analysis to error functions which are a prob-
ability distribution, the error functionǫ(·) does not necessary have to be a probability
distribution. This idea brings up the question of which the best loss function is. For in-
stance, a confidence measure could even be used to define errorfunctions. Maybe the
growing of the loss function should better be not lineal withthe probability. In this sense
more interesting loss functions could be obtained using information theory. For instance,
we can penalise the system by theremaining information. That is, if we knewpr(x, y),
then the information associated with a target sentenceyc would be− log(pr(x, yc)). The
remaining information, or the information that the system has learnt when it fails is given
by− log(1 − pr(x,yc)), leading to the the error function

ǫ(x, yc) = − log(1 − p(x, yc)) (3.42)

Figure 3.7, shows the remaining information of a probability function. Note that the re-
maining information has a singularity at1, i.e. if the system has not been able to learn a
sure event, which has probability of1, then the loss is infinity. Note that this loss can be
defined for any probability such aspr(y) or pr(x, y).
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Figure 3.7: Difference between the remaining information and the proba-
bility as error functions.

Another very interesting research line is derived from approximating complex loss
functions in Eq. (3.9) with simple loss functions in Eq. (3.12). Although, many of the state-
of-art SMT systems indirectly make use of this idea, as analysed in section 3.2 (page 58),
this idea can be exploited significantly in order improve thesystems.

The part of the theory and the word-based results obtained inthis chapter were pub-
lished in two international conferences:

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Análisis teórico sobre las reglas
de traducción directa e inversa en traducción automática estadística. InProceedings
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of “Campus Multidisciplinar en Percepción e Inteligencia”, CMPI-06, pages: 855–
867, Albacete, Spain July 10-14, 2006.

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Combining translation models in
statistical machine translation. InProceedings of the 11th International Conference
on Theoretical and Methodological Issues in Machine Translation, TMI-07, pages:
11–20, Skovde, Sweden September 7-9, 2007.

The phrase-based results obtained in this chapter were published in the following jour-
nal:

• J.Andrés-Ferrer, D. Ortiz-Martínez, I. García-Varea, F. Casacuberta. On the use
of different loss functions in statistical pattern recognition applied to machine trans-
lation. Pattern Recognition Letters. Volumen 29, pages: 1072–1081, 2008.
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CHAPTER 4

CONCLUSIONS

“ Entities should not be multiplied beyond necessity” OCCAM’ S RAZOR
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Chapter 4. Conclusions

4.1 Summary

This thesis is mainly focused on two pattern recongnition aspects: the MLE estimation
and the loss function. On both research lines, we have proposed new methods that have
shown a similar or even better practical performance than classical methods. In theory, the
advantages of the proposed methods are very appealing.

In chapter 2, conventional naive Bayes training with parameter smoothing has been
restated as a constrained domain maximum likelihood estimation (CDMLE) problem for
which an optimal, iterative algorithm has been proposed. The general idea behind our
contribution is to avoid parameter estimates that may causeover-fitting while retaining the
properties of maximum likelihood estimators. Empirical results on four real text classifi-
cation tasks have shown that the proposed algorithm provides results similar to those of
conventional training and parameter smoothing, with almost the same practical computa-
tional requirements.

The work developed over chapter 3 is focused on the study of linear loss functions
that are outstanding due to historical or practical reasons. This work explores the direct
translation rule, the inverse translation rule, and the direct and inverse translation rule.
In this sense, we have provided a theoretical approach basedon decision theory which
explains the differences and resemblances between the Direct and the Inverse Translation
rules. We have also given insights into the practical differences of these two widely used
rules. For instance, this theoretical frame predicts an improvement (in terms of SER), that
has been confirmed in practice for simple words models. In conclusion, according to the
experimental results, the DTR outperforms the ITR when short sentences are provided to
the system.

The analysis of the loss function is an appealing research line. The results of analysing
different loss functions range from allowing to use metric loss functions such as BLEU, or
WER; to proving the properties of some outstanding classification rules such as the direct
translation rule, the inverse translation rule or even the log-linear classification rule. For
each different error functionǫ(x,yj ,yk), there is a different optimal Bayes’ rule. The
point of using one specific rule is an heuristic and practicalissue.

The proposed modifications to the0–1 loss function discussed in chapter 3 handle the
intuitive idea of penalising a wrong action based on the repercussions of the correct action.
For instance, if the correct translation,yc, for a given source sentence,x, is a very unlikely
sentence; a failure in the translation of such a sentence is not important. Oppositely, a
failure in the translation of a likely sentence is an important mistake. It is important to
note the fact that the proposed linear loss functions cannothandle significant cases. For
example, it is not the same to make an incorrect translation due to grammar errors than
to make an incorrect translation due to semantic errors. In order to take into account such
cases, it is necessary to work with general loss functions despite its cost. However, the idea
of penalising the mistakes proportionally to the correct translation probability can also be
used in case of dealing with more complicated decision rulesand, with more complicated
search algorithms.

4.2 Scientific publications

The constrained maximum likelihood estimation technique analysed in chapter 2, yield one
publication in an international conference:

• J.Andrés-Ferrer and Alfons Juan. Máxima versoimilitud con dominio restringido
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applicada a clasificación de textos. InProceedings of “Campus Multidisciplinar en
Percepción e Inteligencia”, CMPI-06, pages: 791–803, Albacete, Spain July 10-14,
2006.

and a publication in a journal is pending for acceptance:

• J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihood esti-
mation for naive Bayes text classification.Pattern Analysis and Applications (PAA).
Pending

The theory and ideas developed in chapter 3 were published intwo international con-
ferences:

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Análisis teórico sobre las reglas
de traducción directa e inversa en traducción automática estadística. InProceedings
of “Campus Multidisciplinar en Percepción e Inteligencia”, CMPI-06, pages: 855–
867, Albacete, Spain July 10-14, 2006.

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Combining translation models in
statistical machine translation. InProceedings of the 11th International Conference
on Theoretical and Methodological Issues in Machine Translation, TMI-07, pages:
11–20, Skovde, Sweden September 7-9, 2007.

and in the following journal:

• J.Andrés-Ferrer, D. Ortiz-Martínez, I. García-Varea, F. Casacuberta. On the use
of different loss functions in statistical pattern recognition applied to machine trans-
lation. Pattern Recognition Letters. Volumen 29, pages: 1072–1081, 2008.

4.3 Future work

We think that the CDMLE approach proposed in chapter 3 is verypromising. In general,
the idea behind of the proposed approach can be applied to many maximum likelihood
estimation problems in pattern recognition. For instance,it can be easily applied to EM-
based maximum likelihood estimation of finite mixture models. For these models, it is
unclear how to use parameter smoothing in the M step without affecting the EM behaviour.
Instead, constrained maximum likelihood estimation can beused without any side effect.
Also, this constrained approach might be useful in the case of training criterium other than
maximum likelihood such as discriminative training [?].

On the other hand, the extensions to the loss function that have been covered in chap-
ter 3 are very promising as well. Note that though we have focused our analysis to error
functions which are a probability distribution, the error functionǫ(·) does not necessary
have to be a probability distribution. This idea brings up the question of which the best
loss function is. For instance, a confidence measure could beused to define error functions.
Maybe the growing of the loss function should better be not lineal with respect to the prob-
ability. In this sense more interesting loss functions could be obtained using information
theory. For instance, we can penalise the system by theremaining information. That is,
if we knewpr(x, y), then the information associated with a target sentenceyc would be
− log(pr(x, yc)). The remaining information, or the information that the system has learnt
when it fails is given by− log(1 − pr(x,yc)), leading to the the error function

ǫ(x, yc) = − log(1 − p(x, yc)) (4.1)
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Note that the remaining information has a singularity at1, i.e. if the system has not been
able to learn a sure event, which has probability of1, then the loss is infinity. Note that this
loss can be defined for any probability such aspr(y) or pr(x, y).

Another very interesting research line is derived from approximating complex loss
functions in Eq. (3.9) with simple loss functions in Eq. (3.12). Although, many of the state-
of-art SMT systems indirectly make use of this idea, as analysed in section 3.2 (page 58),
this idea can be exploited significantly in order improve thesystems.

Finally, an interesting focus of study is the use of metrics such as BLEU, or WER; as
the loss function. Nevertheless due to the high complexity,currently it is only feasible on
constrained situations liken-best lists.
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