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NOTATION

Symbol | Meaning

const(x) | A constant function om, i.e., a function
thatdoes nodepend one

pr(-++) | The actual unknow probability distribution
pe(--+) | We outline the fact that the probability is not the
actual probability but a model that depends upo
p(---) | The probabilities depicted in this way are already
a model parameter

A := B | This symbol is used to stress that A is modelled
as B

0(a,b) | Stands for the Kronecker delta function, i.kif
and only ifa = b, and0 otherwise

-

For denoting probability distributions throughout thedise we identify values
and random variables whereas it entails no confusion. Btamee, instead of

pr(2=w) )
we use
pr(w) 2

Since identifying the value and the random variable does not has any negative
effect, we will henceforth take the latter notation, i.e.. E).
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PRELIMINARIES
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Chapter 1. Preliminaries

EVERAL topics are reviewed in this chapter. Some of them might seenbasic
to be reviewed, however, in the following chapters, thesgcheoncepts are ex-
tended. For instance, the review of the statistical patecognition theory may

seem too trivial for the level assumed to the reader, howevapter 3 is mainly focused
on the basis of statistical pattern recognition.

The organisation of the current chapter is as follows. First section 1.1, we review
the basic concepts of statistical pattern recognition.s ®tatistical pattern recognition
review requires the analysis of several related topics. &g seviewing thestatistical
modellingin subsection 1.1.1. Afterwards, it is necesary to seleetrdining criterion
which is reviewed in subsection 1.1.2. One of the most onthtey criterion is thanaxi-
mum likelihood (MLXxriterion which is covered in subsection 1.1.3.

Once the fundamental theory is reviewed in section 1.1, ¢fleviing sections are
focussed on statistical pattern recognition tasks. Ini@edt.2, themachine translation
problem is analysed from a statistical point of view. Thaistical review covers several
mainstream statistical models suchalignment word based modseils subsection 1.3.1,
or phrase-based models subsection 1.3.2. Since the automatic evaluation of imach
translation systems is a problem by itself, subsectior8lis3devoted to review the main
automatic evaluation metrics. In section 1.4, the probléitext classifications trackled
under the scope of pattern recognition.

Finally, the scientific contributions of the thesis are fliyienumerated in section 1.5.

1.1 Statistical Pattern Recognition

A pattern recognition problem consists in classifying eaassible input or object, saye
X, into one class, say, from the set of all possible classes, if&. Examples of pattern
recognition problems include text classification, spe@zognition, image classification,
face recognition, machine translation, etc.

A classification system is characterised by ¢hessification function

c: X =Q (1.1)

In the eighties, the most popular approaches to most of ttierpaecognition prob-
lems were rule-based. Rule-based approaches define a hugkrsées based on the
knowledge engineers and domain experts in order to buildlssification system. The
main problem of these approaches is the definition of haaftexdt rules and their main-
tenance. In the nineties, the rule-based approach wascesply inductive approaches,
which manly involvedstatistical methodsThese approaches have numerous advantages:

e The classification function is learnt from the observatidraset of preclassified
documents by an inductive process.

e The same inductive process can be applied to generateatiffelassifiers for dif-
ferent domains and applications. This fact introduces goonant degree of au-
tomation in the construction of ad-hoc classifiers.

e The maintenance task is significantly simplified, since Iy@aquires to retrain the
classifier with the new working conditions.

e The existence of off-the-self software to train classifieguires less skilled man
power than for constructing expert systems.
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1.1. Statistical Pattern Recognition

e The accuracy of classifiers based on inductive techniquegetes with that of
human beings and supersedes that of knowledge engineestipds in several
tasks such as text classification, speech recognition.

Several methodologies can be applied to define the clagmficanction, arising the
necessity of comparing among them. In order to sort the systtheclassification error
rate (CER)is defined as the percentage of misclassifications perfobméae system.

The performance of a classification function is usually meas as a function of the
classification error. However, there are problems in whitkha classification errors do
not have the same repercussions. Therefore, a functiorethies each kind of error should
be provided. Théoss function)(w,|z, w.), evaluates théossin which the classification
system incurs when classifying the objegcinto the classv,, knowing that the correct
class isw.. If a 0—1 loss function is provided, then the optimal system minimitiee
classification error rate.

Taking into account the loss function definition, we definerilsk of the system when
classifying an object, the so-calleconditional risk givere, as the expected value of the
loss function according to the posterior class probabdisgribution

R(wplz) = Y wplz,we) pr(welz) (1.2)
weEeN

Usually, we want to compare system risks independently gfspecific objecte.
Using the conditional risk, we define ttige global risk ?] as the contribution of all objects
to the classifier performance. The global risk is defined hevis

R@=&WMMM=AEMMMMMW (1.3)

whereR(c(x)|x) is the conditional risk giver, as defined in 1.3.

In practice, the global risk can rarely been calculated. el@x, using the law of great
numbers for a given test s&t,= (mn,wn)f:[:l, i.i.d. according t@, (w, x), the global risk
can be approximated by

N
RT(C) = N Z 1(C(mn)|mnawn) (14)

The approximation of the global risk using a test set as iwvipus Eq. (3.6) is called
empirical riskon the test set'.
The classification error rate corresponds toGhe loss function defined as follows

0 wy,=uw

1 c) = P N 15

(@pla, we) {1 otherwise (1.5)
In this case the conditional risk simplifies to

R(wplz) =1 — pr(wp|x) (1.6)
and the empircial risk is
N
. 1
Rr(c) = N;é(c(mn),wn) (1.7)

whered is a function which is equal to if both parameters are equal amdtherwise.
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Chapter 1. Preliminaries

Our aspiration it to design the classification function thmimises the global risk.
Since minimising the conditional risk for each objeds a sufficient condition to minimise
the global risk, without loss of generality, the optimalsddication rule, namelgninimum
Bayes' risk is the one that minimises the conditional risk for each abje

¢(x) = argmin R(w | ) (1.8)
weN
Assuming the0—1 loss function, and using the simplification of the conditibrisk in
Eq. (1.7)
¢(x) = argmax p,(wp | ) (1.9)
weN
This last equation is well-known and usually assumed to hiengp for all the cases be-
cause d@-1 loss function is being assumed.

1.1.1 Statistical modelling

In Eq. (1.9) theclass-posterior probabilitys used in order to find the optimal class, al-
though this probability is unknown but in simulated expents. If we knew such prob-
ability, then we could define the best classifier for this femnark, the so-calledayes
classifier and its CER would be the minimum possible CER, the so-c&kegkes error or
Bayes CER

Since the posterior probability in Eq. (1.9) has to be appnexed with a model, a
common preliminar approach is to use the Bayes’ theorem i{Z£9) yielding

c(z) = arg max {pr(wlz)} = arg max {p,(W)pr(z|w)} (1.10)

where the posterior probability is substituted by two ptuliiges: the class priop,.(w),
and the class posteripr.(z | w). If the actual probabilities are known, then both Egs. (1.10
and (1.9) are equivalent. However, the last Eq. (1.10) sipigield better approximations
on real systems provided that actual probabilities are hexie

Since we are focused, on approximation of actual probagslimost of the modelli-
sation techniques are based on statistics. Typicallysidalsor frequentist statistics are
applied, producing a classification of the models in two gaties

e Parametric modelswhere the actual probabilities are modelled according o an
statistical distribution, such as the normal distributionthe beta distribution.

e Non-parametric modelswvhere the actual probability is decomposed using statisti-
cal equivalences and afterwards modelled directly.

1.1.2 Training criterion

In order to train a parametric model, thptimal set of parameters, s#ymust be found.
Although it might seem simple, the word “optimal” in previdefinition requires a way to
compare different parameter sés Therefore, appropriateness depends upon a criterion
which is summarised in theriterion function (). Given a criterion function, the optimal
set of parameterﬁ, is determined by

6 = argmax {C(0)} (1.12)
0cO
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1.1. Statistical Pattern Recognition

Often the criterionC(0) cannot be mathematically calculated, and then a saniple;

{x1,...,x,}, 1S needed in order to approximate the criterion
6 = argmax {C(0; D)} (1.12)
0c®

Nevertheless expression in Eq. (1.11) is used indistirdtiyhether a sample is needed or
not.

Itis important to remark the difference between the lossfion defined in section 1.1
and the training criterion defined in the current sectiore fidimer defines the best way to
build a system for given probability functions, whereaslttter determines the best way
to obtain the optimal parameter set according to our cateri

There are several well-known and studied criteria such ad&mamn likelihood estima-
tion (MLE), maximum a posteriori probability (MAP) or miniam mean energy (MME).
We focus on the former, the wide-spread MLE.

1.1.3 Maximum likelihood estimation (MLE)

The maximum likelihood estimation (MLE) criterion is onetb& most wide-spread crite-
ria which has a well-founded motivation. There is a wellfidad motivation for the use
of the MLE. In principle, it can be argued that since we arer@sted in the actual prob-
ability distribution, we should minimise the “distanceh (ierms of the Kullback-Leibler
divergence) between model and the actual distributionisha

6 = argmin {KL(p.||pe)} (1.13)
0cO

whereKL(p,|| pg) is the Kullback-Leibler distance between the model and e prob-
ability, defined as

KL(p [pe) = /X p () log pr () dz — /X po(@)logpe()dz  (114)

Plugging previous Eq. (1.14) into Eq. (1.13) yields

0 = arg max {/ pr(x) 1ogpg(w)dw} (1.15)
0coO X

Since Eq. (1.16) is typically unfeasible to solve, by medressampleD = {x1,...,x,}
and the law of great numbers, it can be approximated by

6 = argmax {LL(6)} = arg max {Z logpg(mn)} (1.16)
0cO 0cO n
with the definition of thdog-likelihood function [.1)

LL(0) = > logpe (@) (1.17)

Therefore, minimising the divergence between the actuahaility distribution and
the model yields the log-likelihood function as the criterifunction, i.e.C(68) = LL(8).
This criterion is named after the log-likelihood functiomdais so-callednaximum likeli-
hood (ML)criterion.

JAF-DSIC-UPV 5



Chapter 1. Preliminaries

In summary, given an independent and interchangeable sathpt {x1,...,zx},
the MLE consist in solving the following maximisation

6 = arg maX{Z log pe(xn)} (1.18)
oco 4

Maximum likelihood estimation typically leads to the irttué solution of the relative fre-
guencies.

The maximum likelihood estimation has been a core technigpattern recogntion.
However, there is a little confusion in the bibliografy anouithe MLE term. In princi-
ple, the MLE is an statistical technique to estimate therogtiset of parameters for a
given probability distribution. In pattern recogntionjstusually refered to estimate the
probabilityp,. (x,w) using the following expression

0 = argmax{) _log po (@ |wn) +log pe(wn)} (1.19)
bce0

instead of the class posterior probability
6 = arg max{Zlogpg (Wn |@n)} (1.20)
6c®

which is usually understood in statistical bibliografy.
The MLE have several desirable properties:

e The MLE is asymptotically unbiased

e The MLE is asymptotically efficient, i.e., asymptoticalfyy unbiased estimator has
lower mean squared error than the MLE

e The MLE is asymptotically normal. As the number of sampleseases, the dis-
tribution of the MLE tends to the Gaussian distribution witie actual value as a
mean and covariance matrix equal to the inverse of the Fisf@mmation matrix.

There are some regularity conditions which must be satisfiethsure this behaviour:
e The first and second order derivatives of the log-likelihbotttion must be defined
e The Fisher information matrix must not be zero, and must lngiicoous
e The maximum likelihood estimator is consistent

Although, the MLE is asymptitically unbiased, the MLE is &&a in practice for
“small” datasets. The term small depends on the ratio of #tas®t size to the number
of parameter. In pattern recognition, this problem is vesnmon and it is known as the
over-training problem. The over-training problem is réstiain pattern recognition as the
fact that the learnt set of parameters is very specialisethfotraining data, and hence,
little probability remains to be distributed among the wersdata.

The typical approach to alleviate this problem is to resom smoothing technique.
A smoothing technique distorts the optimal set of paranseferin order to obtain a
“smoothed” version of themd. Several of the smoothing techniques are heuristically
inspired and make the optimal solution to loose all its tk&oal properties.

In chapter 2, we propose a hovel smoothing techniques thesihe smoothed vector
to retain the desirable properties of the maximum likelyneates, and also to avoid the
over-training associated to MLE.
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1.2. Machine translation

1.2 Machine translation

In this section we review state-of-the-art applicationd approaches in the field ofia-
chine translation (MT)On the one hand, current MT technology is focused on three ma
applications:

e Fully-automatic MT in limited domains like weather foretfiSGLL05], hotel re-
ception desk [ABC 00a], appointment scheduling, etc.

e Post-editing for CAT, understanding by post-editing thenan amendment of au-
tomatic translations produced by an MT system.

e Understandable rough translation in which the aim is tonalohuman to decide
whether the translated text includes relevant informatkor instance, this is used
for document finding purposes or user assistance in softn@ubleshooting.

On the other hand, state-of-the-art MT approaches can Bsifital according to the
level of analysis of the source sentence before transtating

e The interlingua approach consists in transforming the@msentence to a language
independent semantic representation, the so-calledingea, and translating that
interlingua expression into the desired target language.rifiajor drawback of this
approachis its demanding knowledge resources to reprasemtanguage indepen-
dent information. Further details of this approach can hmébin [NT92, NM92,
ATO3].

e The transfer approach decomposes the translation protedbiee steps:

Analysis. The source sentence is syntactically and semanticallyegatis some
abstract representation.

Transfer. A transformation from the source representation into thgetiarepresen-
tation is performed.

Generation. The final translation is generated from the target reprasent ob-
tained in the previous step.

A review of transfer-based systems is presented in [HS92].

e The direct approach refers to the word-by-word translaffom the source sen-
tence into the target sentence. Under this approach we fendge-based MT and
statistical MT:

Example-based MT. This approximation deals with the translation of new sen-
tences by analysing, using different matching criterimilsir sentences pre-
viously translated. See [Som99] for a review of examplesdad T2

Statistical MT. A statistical model is inferred from translation examplesl ghe
translation process is derived from a statistical decisimory perspective.
This thesis is mainly devoted to the statistical approxiameto MT that will
be further studied in the next section.

#Also known as memory-based MT [Bow02, Som03]

JAF-DSIC-UPV 7



Chapter 1. Preliminaries

1.3 Statistical MT
The goal of MT is the automatic translation of a source ser@erinto a target sentengg

T=2x1...Zj...2J .%'jEX

Yy=vy1...Yi-..-yr Yy €Y

wherex; andy; denote source and target words, aKdandY’, the source and target
vocabularies respectively.

In statistical MT, this translation process is usually prded as a statistical pattern
recogntion problem where given a source sentencthe optimal target sentendgis
searched according to

§ = argmax p,(y| ) (1.21)
Yy
wherep(y | x) is the probability fory to be the actual translation ef Note that Eq. (1.21)
is simply the adoption of the Bayes’ optimal classificatioleiin Eq. (1.9) into the machine
translation scope.

The so-calledearch problenis to compute a target sentengdor which this proba-

bility is maximum. Applying Bayes’ theorem we can reforntel&q. (1.21) as

y = argmax p,(z|y)pr(y) (1.22)
Yy

where the termp(y | ) has been decomposed intdranslation modeb, (x| y) and a
language modepb,.(y). Intuitively, the translation model is responsible for retithg the
correlation between source and target sentence, but itsama understood as a mapping
function from target to source words. While the languageehpdy) represents the well-
formedness of the candidate translatypfi?]. It should be noted that the terpp (x) has
been intentionally omitted in the denominator of Eq. (1,2®)ce it is constant for a given
x when maximising ovey.

Note that we are looking the statistical MT as a specific imztaof a classification
problem where:

e The object to be classified is the senterd® be translated.

e The set of possible classes are the set of possible sentenitestarget language
yeY™r

e The prior probability distribution is the language mogg{y).
e The conditional probability distribution is the transtatimodel, (x | y).

Therefore, under this point of view the decision rule stateéq. (1.21) is optimal
under the assumption of zero-oneloss function. In statistical MT, the zero-one loss
function is better known asentence error rat¢SERY and considers that there is an error
if the translation given by the systeinis not identical to the reference translation.

In conclusion, by applying Eq. (1.21) we are minimising thekability of error using
SER as a loss function. However, the SER measure providegga and superficial eval-
uation of the translation quality of a translation systerd ans rarely used in favour of
other more popular evaluation measures likagd error rate (WER) andbilingual evalu-
ation understudyBLEU) [PRWZO01]. These evaluation measures, further exqaldn this

PSER in statistical MT is equivalent to CER in classificatiaaks.

8 JAF-DSIC-UPV



1.3. Statistical MT

thesis, suggest the usage of alternative loss functiodshamefore different decision rules
that are closer to actual evaluation measures employedtistatal MT. We will focus on
this idea in chapter 3.

The search problem presented in Eq. (1.22) was provededan N€&-complete prob-
lem [Kni99, UMO06]. However various research groups haveettjed efficient search
algorithms by using suitable simplifications and applyipgimisation methods. Starting
from the IBM work based on a stack-decoding algorithm [BARS&r greedy [B 94,
WW98, G+01] and integer-programming [@1] approaches to dynamic-programming
search [GVCO01, TNO3].

Nevertheless, most of the current statistical MT systerasgint an alternative modeli-
sation of the translation process different from that pnésgin Eq. (1.21). The posterior
probability is modelled as a log-linear combination of teatfunctions [ONO4] under the
framework of maximum entropy [BPP96]

M
Y = arg max Z Amhm (2, Y) (1.23)
v m=1
where),, is the interpolation weight antd,,, (x, y) is a function that assigns a score to the
sentence paifx, y). We will get into deeper detail in chapter 3.
Under this framework Eq. (1.22) can be seen as a special dasew

hi(z,y) = logpy(z|y) (1.24)
ha(z,y) = log p(y) (1.25)

and/\l =X =1

Most of state-of-the-art statistical MT systems are basdailmgual phrases [CB07].
These bilingual phrases are sequences of words in the twoidgres and not necessarily
phrases in the linguistic sense. The phrase-based apptadth is further explored in
Section 1.3.2.

Another approach which has become popular in recent yegrsisided on the inte-
gration of syntactic knowledge into statistical MT systefwai96, YKO1, GK04, Lin04,
DPO05]. This approach parses the sentence in one or both ofutbleed languages, defin-
ing then, the translation operations on parts of the paege tn [Chi07], Chiang constructs
hierarchical transducers for translation. The model isdissyfree grammar which is learnt
from a bilingual corpus without any syntactic informatidinconsists of phrases which can
contain sub-phrases, so that a hierarchical structureliscied.

The third main approach, which is currently investigatestatistical MT, is the mod-
elling of the translation process as a finite-state transdi#B D00, BR95, CV04a, KN04,
M+06]. This approach solves the translation problem by esimga language model on
sentences of extended symbols derived from the associatisaurce and target words
coming from the same bilingual pair. The translation traresa is basically an acceptor
for this language of extended symbols.

1.3.1 Statistical word-based translation systems

A great variety of statistical translation models have bgeposed since the IBM article
was initially published [B 90, B¥93]. In that article, the translation of a source sentence
x into a target sentencg, is carried out usinglignmentsbetween words, i.e. a target
wordy; is aligned to the set of target words = {j1, ..., ji }, if the target word is directly

JAF-DSIC-UPV 9



Chapter 1. Preliminaries

generated as translation of the source word grayp. . ., z; . This model requires the use
of a hidden variable model since the alignments are typicedler seen in training

pr(ylw):Z"'Zpr(llw)pr(yva{|wal) (126)

wherea; is the alignment vector that designs which source wordslayeesl with thei-th
target wordz;, i.e.
a; C{1,...,I} (1.27)

and where, (I | z) is a length distribution which is usually uniformly modellend there-
for ignored.

Some constraints are usually added to the alignmentagetsuch as theoverage
constraintthat requires all the source words to be in at least one akgriset. However,
these constrains are practically motivated.

The complete probability model in Eq. (1.26),(y, a! | ), can be decomposed left
toright as

pr(y,af =, 1) = [[prai |z 0l g7t Dpe(yi | 2,0, 957 1) (1.28)

where two probabilities are used:

e The alignment probability,(a; |z, a' ™', y' ™)

e The dictionary probability, (y; | z, a}, v’ ™)

Different alignment models were proposed in [BPPM93] bamethis idea, although
only 2 models where directly modelled by parametrising the proibas in Eq. (1.28).
These two models constrained the cardinality of the aligntrsets tol or 0, that is to
say each source word can be aligned to either one word or na. vilrorder to simplify
notation, we redefine the alignment variables since eaghalnt is composed of one word.
Therefore, se say that = j if the target wordy; is “aligned” to the source word;, where
J can be any source positiofll(, . . ., J}) or 0 indicating thaty; is not aligned to any word.
In order to represent the void alignment, aiN.word is introduced at the beginning of
x,i.e.x = xoxy - - - x5 Wherexg, the so-called NLLword, stands for the non-alignment
event.

IBM model 1

The IBM model 1, the first of the IBM models, is basically defirees a statistical bilingual
dictionary. The aim of the IBM model 1 typically is to initi ¢htrainning of superior
IBM models. Another interesting property of the IBM modelslthe concavity of its
log-likelihood function, and therefore the uniqueness ofaximum value of this function
under non-degenerateiitialisation.

The IBM model 1 [BPPM93] makes the following assumptions

e The alignment probability is uniform, i.e.

1—1 1—1
(a; |z, ’ ) =pla;) = —— 1.29
pr(a;|x,ay ", y7 7, 1) = pla;) 71 (1.29)

“Starting point in which none of the initial parameter valigzero.

10 JAF-DSIC-UPV



1.3. Statistical MT

e The dictionary probability depends only on the aligned waed

pr(yil @ al, 4y ) = pr(yi | 2a,) (1.30)
where the following normalisation constraint must be vedfi
> p(bla)=1  forall source word (1.31)
b

Taking into account the assumptions in Eqgs. (1.29), andf1tBe model probability

is given by
pr(y| o) : Z ZHHlpyzu) (1.32)

a1=0 ar=0 1

Simply reordering previous equation we obtain

pe(y|): IZIJZOJprA z) (1.33)

Since the model is a hidden variable model, the EM algoritAhis[used to estimate
the parameter se® = {p(b|a)|be Y, a € X}.

The IBM model 1 has been widely employed in different appiares of statistical MT,
cross-lingual information retrieval and bilingual TC duweits simplicity and applicability
of its parameter values.

In statistical MT, the IBM model 1 has traditionally been anpiortant ingredient
in applications such as the alignment of bilingual sentsrido002], the alignment of
syntactic tree fragments [DGPO03], the segmentation ofdpilal long sentences for im-
proved word alignment [NCVO03], the extraction of parallengences from comparable
corpora [MFMO04], the estimation of word-level confidenceasgres [UNO7] and serves
as inspiration for lexicalised phrase scoring in phrassetiasystems?] Koe05]. Further-
more, it has also received attention to improve its nontiratproblems [Moo04].

IBM model 2

The IBM model 2 is an extension of the IBM model 1 where theratignt probability
is not uniformly is modelled. Specifically, the IBM model 2rpmetrises the aligment
probability as follows

pr(az|ma ayll ! I) —p(az|ZIJ) (134)
where the following normalisation constraint must be vedifi
> p(ili,T) =1 (1.35)
J

Taking into account the assumptions in Eqgs. (1.34), and§1tBe model probability
is given by

pr(y|z) = HZPJIZIJ (il z;) (1.36)

Note that analogously to the model 1 we have exchanged tloupi®and the sums in
previous equation.

Since the model is a hidden variable model, the EM algorithomsied to estimate the
parameter sep(b|a),p(j|i,I,J)}. In order to train this model, firstly, some iterations
of the IBM model 1 are performed obtaining good dictionarijreates. Afterward a re-
training is performed using the EM update equations for Bid model 2.

JAF-DSIC-UPV 11



Chapter 1. Preliminaries

1.3.2 Statistical phrase-based translation systems

The basis of the mainstream and better statistical machamslation models are based
on the so-called phrase-based models. In this section viewreeveral proposed phrase-
based models

Generative phrase-based models

In this section, we outline an example of generative phkesed model that will serve
us to present the problems faced by this approach, and tovatetihe introduction of
heuristically estimated phrase-based systems in the aetibs.

Let (x, y) be a pair of source-target sentences, we introduce the otomal condi-
tional probabilityp(y | «) for the translation model. Let assume thahas been divided
into T' phrases or segments; and so lasWe further assume that each source phrase
has been generated by just one of the target phrase.ulLet {ug, u1,...,pur} and
v = {v,7,-.-,yr} be the segment boundary variables for the source and teeget s
tences, respectively. An additional variablés necessary for mapping each source phrase
to one target phrase. Finally, a generative model can beasaifull exploration of all
possible bilingual segmentation #fandy and all possible alignment between them

min(||,|y|)

pryle) = > Y>> pey.apy.T|w) (1.37)
T=1 p a v

where

pr(y,a,p, v, T |x) =p,(T'|z)pr (0| T, x)pr (v | 0, T, )
(1.38)
pr(alp,y, T, ®)pr(y|ap,, T, x)
The Eq (1.38) can be understood as a generation process where
Firstly, we decide on the number of segméhts
we split the source sentences by means of the source segdioep,
afterwards, we define the output segmentation witiiven the source phrases, and

we align the source phrases with the target segmentshathlignment variable,

g DN PR

and finally, we generate the output phrases given all tbeiquis information

The last probability in Eq. (1.38},(y | a, i, v, T, x) is usually modelled depending
only in the reoredered source phrasl%s so that the translation process can be decom-

posed left to right
T

pr(ylap,y, T, @) == [ [ p(G: | 2:) (1.39)

t=1

whereg}f stands for the target phrases.

The estimation of a phrase-based model as that presentee iglzocumbersome prob-
lem that possess not only computational efficiency chaéienut also overwhelming data
requirements. One of the main difficulties that phrase-thasedels have to cope with is
the problem of the bilingual segmentation. In the model pemal above, this segmentation
is explained by the hidden variabl&s i and~, which leads us to a large combinatorial
number of possible segmentations to explore. Furthemiogeyther main bottleneck that

12 JAF-DSIC-UPV



1.3. Statistical MT

phrase-based models have is to explore all the possiblmaitits between the source and
target phrases. As can be guessed, these problems are agtjravated with the length of
the source and target sentence. Despite this obstacle lthee been several proposals for
phrase-based models, from the joint probability model [MAVBCBMOKO6], over the
HMM phrase-based models [DB05, AFJCO07] to the statistid&lTGmodel [AFJCCO08].

However, the most popular approach to the development @isghbased systems has
been the log-linear combination of heuristically estindgibrase-based modefz PN04],
since these systems offer similar or even better performtran those based on generative
phrase-based models [DGZKO6].

Heuristic phrase-based models

The heuristic estimation of phrase-based models is gralindethe Viterbi alignments
computed as a byproduct of word-based alignment models.Vitagi alignment is de-
fined as the most probable alignment given the source anettsegtences and an estima-
tion of the model parameteés

4 = argmax pg(a|x,y) (1.40)

can also rewritten
4 = argmaxpg(z,a|y). (1.41)
a

The conventional alignments, for instance those provigd@&M models, disallow the
connection of a source word with more than one target words Whrealistic limitation
negates the common linguistic phenomenon in which a wors\@language is translated
into more than one word in another language. To circumvaatptoblem, alignments
are not only computed from the source language to the taaiggtiage, but also from the
target language to the source language. Doing so, we caatrfiefact that a single word
is connected to more than one word.

Once the Viterbi alignments have been computed in both tilines, there exist dif-
ferent heuristic algorithms to combfhthem [?, ON03]. These algorithms range from the
intersection of both alignments in which we have high piieaisbut low recall alignments,
to the union in which we have low precision, but high recatl.between, there are algo-
rithms like the refined method [ONO3] and theow-diag-final[?] that starting from the
intersection, heuristically add additional alignmentrgsitaken from the union. This is a
previous step, before extracting bilingual phrases, tstant a phrase-based system.

Bilingual phrase extraction is based on the concepbokistencyf a bilingual phrase
(Z,7) (derived from a bilingual segmentation) with a word aligne Formally,

(z,7) consistent witlu & Vz; € T: (xj,y;) €a — y; EGA
N Yy €7 (x),y:) Ea—x; ET N
A v €7,y €7 (5,y:) €a (1.42)

basically Eg. (1.42) means that a bilingual phrase is ctergisf and only if, all the words
in the source phrase are aligned to words in the target pfandahere is at least one word
in the source phrase aligned to a word in the target phrase.

Given the definition of consistency, all bilingual phrasap {0 a maximum phrase
length) that are consistent with the alignment resultimgrfithe symmetrisation process
are extracted.

9This process is also known as symmetrisation.
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Chapter 1. Preliminaries

The next step is to define functions that assign a score ortzapility to a bilingual
phrase in isolation or as part of a sequence of bilingualggwén a given segmentation.
These score functions are seamlessly integrated in anegilfashion under the maximum
entropy framework.

The most commonly used score functions are the direct amatsephrase translation
probability estimated as a relative frequency

o count (T, )
pa(T|7) =

@ |7) count (T, y)
ey i xTr) =
> count(Z, ) Py

Y count(T, ) (1.43)

Yy
as well as the direct and inverse lexical translation praityamspired in the M1 model?,
CLO7]. Other score functions are related to reordering lodigias, such as the distance-
based reordering model [ON04] and the lexicalised reongamodel [K"05]. Additional
score functions are phrase and word penalty to control tiggheof the translated sentence.

The weight of each score function in the log-linear combarais adjusted on a
development set with respect to a predefined criterion, llysBaEU. There are two
popular techniques in statistical MT to carry out this ps;eninimum error rate train-
ing [Och03] and minimum Bayes risk [KB04]. Furthermore, thest common approach
to the decoding process in log-linear models is the wellwmanulti-stack decoding al-
gorithm [Koe04, ONO4]. The Moses toolkit [K07], that implements an instantiation of
this type of multi-stack decoding algorithms, will be ushtbughout this thesis to define
a baseline reference.

1.3.3 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperadive to the high cost of human
made evaluations. Also the need of rapid assessment ofahsgldtion quality of an MT
system during its development and tuning phases is anathson for the usage of auto-
matic metrics. These metrics are employed under the asgamthat they correlate well
with human judgements of translation quality. This argeathtement must be considered
bearing in mind the low inter-annotator agreement on teditsl quality [CB~07]. This
fact makes automatic evaluation an open challenge in MT.

In this thesis, we mainly use two conventional translatizal@ation metrics, WER and
BLEU, although other measures like METEOR [BLO5] and tratish edit rate (TER) [S06]
are becoming more and more popular.

The WER metric [Ar00, Ct04] is defined as the minimum number of word substi-
tution, deletion and insertion operations required to eohthe target sentence provided
by the translation system into the reference translatimed by the number of words of
the reference translation. It can also be seen as the ratieeddit distance between the
system and the reference translation, and the number ofsvadittie reference translation.
This metric will allow us to compare our results to previousrkvon the same task. Even
though the WER metric can value more than 1.0, it will be ezpee as a percentage as
it is commonly presented in the SMT literature. The WER neetén also be evaluated
with respect to multiple references, however, in this thesie have a single reference
translation at our disposal.

The BLEU score [PRWZ01] is the geometric mean of the modifpgdcision for dif-
ferent order ofi-grams (usually from unigram up tbgrams) between the target sentence

®The number of occurrences of a word in a target sentence itetino that of this word in the
reference translation.
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1.4. Text classification

and the reference translation, multiplied by an exponknt&vity penalty (BP) factor that
penalises those translations that are shorter than theenefe translation. Although some
voices have been raised against BLEU as the dominant eiaiuaethodology over the
past years [CBOKOG6], it is still a reference error measurdte evaluation of translation
quality in MT systems. We take BLEU as a percentage rangimg .0 (worst score) to
100.0 (best score).

1.4 Text classification

The problem of text classification is stated as the probledetérmining which document
category a given documeni belongs to. This problem can be reformulatted as a pattern
recognition problem where the documents are the objecttassify and the document
categories{1,...,C?}, are the set of classes. Using the optimal Bayes’ rule foClER

loss depicted in Eq.(1.9), the following rule is obtained

é(’w) = argmax pp (C)pr (L | C)pr (w | ¢, L) (144)
ce{1,...,.C}

where we have decomposed the posterior probabhility | w) into 3 different factors:
a prior class probability p,-(c), a length modeb,.(L|c), and a document probability
pr(w]ec, L).

The legnth model in Eq. (1.44) is usually assumed to be cohatad then, the classi-
fication rule is simplified to:

¢(w) = argmax pp(c)pr-(w]c,L) (1.45)
ce{1,...,.C}

where the prior class probability is used modelled in a narametric fashion

pr(c) :=p(c) (1.46)

The document probability is more difficult to model, howewie Naive Bayes as-
sumption is often assumed. The Naive Bayes assumptiondaysghat there is no rela-
tionship between words, that is to say, that the probalofigach word! in a document is
only dependent on the document category or class,

L

pr(w]c, L) :=p.(w]|c) = Hp(wl | ¢) (1.47)
1=1

Thenaive Bayesext classifier has long been a core technique in informagaieval
and, more recently, it has attracted significant intereggittern recognition and machine
learning [Lew98].

The naive Bayes assumption in text classification has thardgdge of greatly sim-
plifying maximum likelihood estimation of unknown classrditional word occurrence
probabilities. Although the simplicity of this assumptidryields surprisingly good re-
sults P2, 7.

As stated above, the Bayes rule is the optimal decision whertansider CER as
evaluation metric. However, this is only the case under #sigption that we know the
real probability distributions fop,.(¢) andp,.(w | ¢, L). In practise, we can only compute
approximations of these probability distributions.
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Chapter 1. Preliminaries

Apart from those classifiers based on the statistical PRoagpr, different types of
classifiers have been used in TC, including regression rdstffeP94, IDLA95, LG94,
SHP95], decision trees, neural networks [Mit96], incretakar batch methods for learn-
ing linear classifiers [SHP95, WPW95, DKR97, NGL97], cliesiensembles, including
boosting methods [SS00], and support vector machines@Jo@fhile all these techniques
still retain their popularity, it is fair to say that in redgrears support vector machines and
boosting have been the two dominant learning methods in 1. fact is mainly due to
their superiority on the Reuters task, which is one of thenegice task in TC, however
their performance is similar to that of other TC techniquesther tasks. The interested
reader is referred to [Seb02] for an excellent review in TC.

1.5 Scientific contributions

The objective of this thesis is focused on statiscticalgrattecognition. More precisely,
the contributions of this thesis imply two basic researohdiof statistical pattern recogni-
tion: model estimation and loss function.

1. Constrained domain maximum likelihood estimation.Constrained domain max-
imum likelihood estimation (CDMLE), is a modification of theaximum likelihood
estimation criterion. This modification yields an alreadyo®thed optimal param-
eter set, and avoids the need of an additional smoothing $tepthermore, the
CDMLE retains the good theoretical properties that MLE fiesi

2. Loss function. We expand the usual CER loss in pattern recogntion by resiegrc
other more general loss functions. Specifically, two fasilof loss functions are
analysed. Specially appealing is the family which is a tedfdeetween generalisa-
tion and computational time.
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Chapter 2. Constrained Domain Maximum Likelihood Estioati

LMOST all statistical pattern recognition systems are built ggirobability dis-
tributions despite actual distribution functions are nméugown in real tasks.
In order to approximate such distributions a statisticatieids often defined.
Each statistical model is characterised by a probabilibcfion parametrised with a set of
parameterd € ©.

In this framework, the question of which the actual disttiba is can be restated as
finding the optimal parameter set. Since the training dagsssimed to have been gener-
ated by the probability model, this data should be very yik&ne of the most spreaded
criterium to select the set of parameters is maximum lileelih estimation (MLE). This
criterum finds the most likely set of parameters, that is {Q e parameter set that gives
the most probability to the training data.

One of the most important problems of this approach is thatlscting the parameters
that give maximum likelihood (ML) to the training data, thedel is over-trained, that is
to say that the model memorises the data without enough tdvgeneralisation. Note
that this results follows from the fact that the actual sepafameters will not give the
highest probability to the trainning data. The over-tragnshortcoming is often alleviated
by “smoothing the maximum likelihood parameters”, i.e. vogely disturbing the ML set
of parameters. This smoothing is a heuristic process whacifiddbe even more complex
than finding the optimal set of parameters.

Smoothing the MLE makes the disturbed optimal parametenaeto hold most of
the desirable theoretical properties of the MLE. In thisatkg instead of “smoothing” the
ML set of parameters, we “smooth” the domain itself, i.e. Wwplg some constraints into
the parameter domain avoiding the over-trained parametepecifically, we constraint
the multinomial distribution. The selection of this dibtition is motivated because its
simplicity and success when applied to real text classifingiroblems.

2.1 Introduction

Most of the pattern recognition systems are based into thiemapBayes’ rule (see sec-
tion 1.1 and section 3.2). This rule makes use of the postelass probability, (w|x).
Provided that the actual posterior probability is not aali in real tasks, it is approxi-
mated by a modely (w|x) which is characterised by a set of parametérs, ®.

The selection of the optima depends on the function criterium. As reviewed in
section 1.1.3, maximum likelihood estimation (MLE) is orfelee most widespread tech-
niques. This criterium finds the set of parametgthat maximises the likelihood function
which is defined in section 1.1.3. One of the most importamtsilaf this criterium is that
it tends to over-fit the parameters to the training data atettpense of reserving small
probabilities or even zero probability to the remainingaddthis over-training problem is
often due to the ratio of the number of parameters to theitrgisize, roughly speaking
the data is scarce for what the model needs to learn.

In order to alleviate the over-fitting problem, it is a commapproach to distort the
optimal parameter sé obtaining a non-overfitted version of the optimal paramsé¢/6.
However, on the one hand, several smoothing technique®arestic techniques based on
practical observation. For instance, such is the case ahtbgolate smoothing in which
the optimal vecto® is usually interpolated with a uniform distribution. On theher
hand, some of the smoothing techniques are based on sdtistethods. The maximum
a posteriori estimation or the leaving-one-out estimatiomexamples of such smoothing
methods.
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2.2. Karush-Kuhn-Tucker Conditions

In this chapter, we propose a method to avoid the scarce @ataed problems such
as over-training. Instead of smoothing the optimal sotutbtained by MLE, we support
the idea of constraining the domain of the paramet®@tdefore maximising them. In this
way, the optimal set of parameters is smoothed in the opdtinis of the parameters itself
provided that there is no possible over-trained set of patars in the domain. Even more,
the optimal set of parameters obtained from the constraioethin retains the properties
of the MLE whilst the classical smoothed set of parametees chot.

We apply the idea afonstrained domain maximum likelihood estimatiGDMLE) to
the multinomial probability distribution. This probalbliis used in several pattern recog-
nition problems, such as text classification [MN98, JN02,JVR4] or image classifica-
tion.Specifically, we study how to avoid over-training irttext classification context.

The chapter is organised as follows. Firstly in the follogvisection 2.2, some ba-
sic convex optimisation theory is revised. In section 2h&, multinomial distribution is
introduced reviewing the classical MLE of such probabitiigtribution. The proposed
constrained maximum likelihood estimation is analysedtiermultinomial distribution in
section 2.4. Section 2.5 is devoted to the application ofoustrained approach to the text
classification problem. In section 2.6, the experimenthby@ur of our approximation is
evaluated in both synthetic and real data. Concluding rkesrene gathered in section 2.7.

2.2 Karush-Kuhn-Tucker Conditions

In section 1.1.2 we have analysed that in order to obtain piienal set of parameters ac-
cording to our criterion, it is needed to optimise Eq. (1.12)most all the optimisation
problems derive from Eq. (1.12), are subject at least to soonmalisation constraint. In
order to solve those optimisation problems with consteaiins used theonvex optimisa-
tion theory [BVO04].

A typical example of a complex optimisation is the following/e want to solve the
following equation

6 = argmax {C(0; D)} (2.1)
6coe
subject to
P1(60) =0
(2.2)
Pn(6) =0

In order to solve the previous optimisation thegrangian functiormust be defined

L(8,X) =C(6;D) = > X, P, (0) (2.3)

where alLagrangian multiplier(),,) is defined for each constraiht, .
Theory states that, solving Eq. (1.12), subject to Eq. (.Bjuivalent to solving the
following problem

6 = argmax{max L(0,\)} (2.4)
0co A
Therefore, the optimal point must verify the following pesty

VL(0.A)g5=0 (2.5)
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Chapter 2. Constrained Domain Maximum Likelihood Estioati

rising up a linear system from which the valueoéan be worked out.

The previous optimisation example is typically known aggnality constrained pro-
gram Through this chapter, however, we solve some optimisgiiablems which also
include inequality constraints. In order to solve problesith inequality constraints the
Karush-Kuhn-Tucker (KKTgonditions are needed. The problem is now stated as the-equal
ity constraints but with the additional inequality consits, i.e. solving Eq. (2.1) subject
to Eg. (2.2) and to

Q(0) <0
. (2.6)
Qun(0) <0
In this case, the Lagrangian function is defined as
LOXp) =—CO:;D)+ > MPr(0)+ > 1mQ,,(0) (2.7)
Solving Eq. (1.12) subject to Eq. (2.2) and to Eq. (2.6) isshmme than solving
6 = arg minmin £(6, A, 1) (2.8)
c® Ap

The KKT necessary conditions for a poiit, A, 1) to be a maximum point are

Vg E(@, )\, H)|é,5\,ﬂ =0 (2.9)
P1(0) = (2.10)
Pn(0) :'é)
p1Q(0) =0 (2.11)
pn Qpr(0) =0
p1 >0 (2.12)
pn =0
Q:(0) <0 (2.13)
Qu () <0

It is worth noting that the KKT conditions arecessarygonditions but not sufficient
conditions. That is to say that a maximum point must verifgnth but not all points that
verify them are a maximum point. An additional condition mhe verified in order to
check whether a point that verifies the KKT conditions is mati or not. This condi-
tion states that the Hessian of the Lagrangian function rbagpositive at a maximum
point [BV04]. Once the possible optimal points are givemtlebecking if the latter suf-
ficient and necessary condition is verified is a simple matt@al exercise. However, in
most of the cases if the characterisation or form of the snius unique, then the solution
is necessarily the maximum (if it exists).

The KKT conditions often provide just a characterisatiorthaf solution, but not a
procedure to obtain it. Anyway, once the form of the solui®known, it is often possible
to define an efficient algorithm that obtains such a solution.
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2.3. The Multinomial distribution

2.3 The Multinomial distribution

In this section we review the maximum likelihood estimat{®LE) for the multinomial
distribution as well as some generic and simple smoothictytigues for this distribution.
Afterwards, we introduce the constrained maximum liketil@stimation algorithm.

We say that aD-dimensional random vector of natural numberss N? follows
a multinomial distribution of parameter vectéf and lengthL if its probability mass
function is expressed as follows,

D

L o
po(z|L) = < . > 1105 (2.14)
d=1
where
D
> ba=1 (2.15)
d=1
and with I
< L ) S (2.16)
r [T4=1 za!
The basis of the multinomial distribution is the existenéelb(classes of) events,
d=1,---,D,and that is the count of the events belonging to the class of evénise

events are assumed to be independent one of the other. Eordasthe classical example
of an experiment that follows a multinomial distributiontrse following. There areD
bags each full of differently coloured balls. If we extrdcballs with replacement, then
the vector that counts extracted balls of each colour, idla multinomial distribution.
Another outstanding example is the probability of a texthwitiive Bayes assumption.
Assuming that the words appearing in a document are noerklate to another, then if
the vocabulary ha® words and the length of the documentd.isthe word count vector
follows a multinomial distribution (see section 2.5 for imamatical details).

The remaining of this section is focused on the multinonahing. The multinomial
training refers to the problem of deciding a criterion andettmd to compute thé that
has generated a i.i.d. sample,= {z,,}_,. As stated in section 2.1, we focus the study
on the MLE criterion.

2.3.1 Maximum likelihood training

The likelihood criterion consist in maximising the so-edllikelihood functiorfor a given
sample,D = {z,}Y_,. Since the logarithm is a increasing function, maximisihg t
likelihood function, is equivalent that maximising its Exithmic version, the so-called
log-likelihood (LL)(see 1.1.3). Specifically, in the multinomial case the LLlifres to

LL(O; D) =3, log < i ) +> 0, i Tnalogby (2.17)
=const(0) + >, > Tnalogba (2.18)
Therefore, the maximum likelihood estimate is expressed as
0 = arg max Tnalogl 2.19
ge ; ; alogtq ( )

subject to the normalisation constraint in Eq. (2.15).
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Chapter 2. Constrained Domain Maximum Likelihood Estioati

In order solve the previous optimisation is necessary toemade of convex optimi-
sation techniques. Specifically, the Lagrange multiplegesspecially useful for this case
(see section 2.2). In this case the Lagrangian function is

L(6,\) =LL(O) + A0, \) (2.20)
with

)= -\ (Z 04 — 1) (2.21)
d

The maximum vector of parameters must verify that the padaivative of the La-
grangian functionZ(- - -) depicted in Eqg. (2.20) is equal to 0 in that point. The partial
derivatives are the following

LB, N Tnd
—a0. Z e (2.22)
ac 0 A Zed—1 (2.23)

Constraining Egs. (2.22), and (2.23)@@and working out the value df; yields the fol-

lowing solution,
Ng

g = ~ (2.24)
with N, being the occurrences in the training data of events of daiss.
Nd = and (225)
andN the total number of outcomes
N = Z Ny (2.26)
d

Despite of the optimality of the solution in Eq. (2.24), itusuallysmoothedis com-
mented in section 2.1. In this specific distribution, the iwadion of the smoothing can be
seen in an example. For instance, if in our data, one of thatsdy, is equal to0, i.e.
in the training no ball from the bag is extracted (or thé-th word in the vocabulary is
not observed in the data); then the MLE parametdyis- 0. This implies that if we see
another dataset, then the simple fact of extracting jusbatief this bag (or an occurrence
of d-th word of the vocabulary) makes the model to giverobability to this dataset. This
undesirable property can be avoided by means of the smapthin

A popular smoothing method for (2.24) consists of simplyiagd “pseudo-count”
0 > 0to everyN, count leading to the following smoothed vector

é o Nd+6
d Zd/(Nd’+6)

with 6 = 1 as the default value. This method is sometimes referred tapiace smooth-
ing [MN98].

Alternatively, as done in the context statistical language modellingpr speech
recognition we may use the idea @hbsolute discountingp avoid null estimates [JNO2,
VNJVO04]. Instead of using artificial pseudo-counts, we ddiae” probability mass by

(2.27)
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discounting a small constant to every count associatedastienevent (positive count).
The gained probability mass is then distributed among evierdaccordance with gener-
alised distributionsuch as theniformdistribution,

Ba= 5 (2.28)

or whatever distribution depending dn Depending on the set of events that receives the
gained probability mass, we distinguish betwbank-offandinterpolation Back-off only
considers unseen events:

Ng—10

if Ng >0
~ Ya Nar ‘
04 = (2.29)
Ba :
M—=——— ifN;=0
Zd’:Nd/:O Bar
where the probability mass gained in class:
b |{d : Ny > 0}

M:

SN (2.30)

and the discount is restricted to the intervdD, 1). In contrast, interpolation distributes
the gained probability mass among all events:

Ng—10
2w Nav

6, = max {o, } + M By (2.31)

where0 < b < 1.

2.4 Constrained domain maximum likelihood

As discussed in the introduction (see 2.1), smoothed paeamare no longer optimal in

terms of maximum likelihood and thus we cannot attributdntant the desirable properties
of maximum likelihood estimators. In this work, we advoctte reduction of the set of

feasible parameter estimates, that is, the use of additimmatraints on it. In particular,

we focus our interest in conventional MLE naive Bayes tragrgonstrained to probability

estimates not smaller than a predefined non-negative ctrstihat is, we are interested
in the maximisation of (2.17) subject to the normalisationgtraint in Eq. (2.15), and also
subject to

Og > ¢ (d=1,...,D) (2.32)

wheree is the minimum probability of extracting a ball of any ba@ € ¢ < %), or
alternatively, the minimum occurrence of any word of thealmdary in any document.
Obviously, this is not a value we intend to learn from the data a meta-parameter to
restrict the set of feasible estimates to “conservativdties If we choose = 0, we do
not move from conventional training. On the contrary = %, the only solution is to
set all word probabilities te. In general, the more training data, the smatlshould be
chosen.
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2.4.1 Characterisation of the solution

Maximisation of (2.17) subject to constraints (2.15) an822, is a convex (concave max-
imisation) problem with differentiable objective and ctragt functions, for which we can

find a global maximum using th€arush-Kuhn-TuckefKKT) conditions (see section 2.2).
The Lagrangian function is

with
A(O,)) =\ (Z 04 — 1) (2.34)
d

and with
®(0, 1) =Y pa (€ — 6a) (2.35)
d

and where\ andp, are Lagrange multipliers associated with constraintsi{zahd (2.32),
respectively(d = 1, ..., D). The KKT conditions for a poin@, A, i to be a global maxi-
mum are

ng(o,x,u)yéym =0 (2.36)
> ba=1 (2.37)

d
bg>¢ (d=1,...,D) (2.38)
fa(e—0) =0 (d=1,...,D) (2.39)
fg>0  (d=1,...,D) (2.40)

From Egs. (2.36), (2.37), (2.38), (2.39), and (2.40) imratay follows that, the opti-
mal vector of parameters cannot be computed in closed-ferom (2.36), we have

A 1
Og = —
A+ fid
but now we cannot rewritieﬂld in terms of word counts to arrive at a closed-form solution

like (2.24). Instead, by some straightforward manipulatiowe arrive at the following
characterisation

N, (d=1,...,D) (2.41)

. € if 9g <e
0, = - d=1,...,D 2.42
¢ {ﬁd t9,>c ) (2.42)
where
9 —L(l—wf) (d=1 D) (2.43)
d Z N e .
d' 9 g >€
with
M =|{d 9y <e}|e (2.44)

The idea behind this characterisation is as follows. Fiosethat we distinguish between
“rare” events, in the sense that we assign a probability at#ye to them ¢ : ¥4 < ¢),
and “frequent” events, which have probability greater théa : 7, > €). The probability
mass allotted to rare events is simply their number tinasd is denoted by/ in (2.44).
The remaining probability mas$,— M, is distributed among frequent events in accor-
dance with (2.43), which is simply a normalisation of evemiiruts as in the conventional
case (2.24). Thus, generally speaking, we proceed as irotineentional case, but using
only the probability mass not assigned to events that abible threshold of.
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2.4.2 The algorithm

The above characterisation does not tell us how to partéiemnts into rare and frequent,
not even if such a partition exists. Nevertheless, it caraiséyeshown that a solution exists
and can be found iteratively. The basic algorithm consisfg$t assuming that the set of
rare events is emptyz(?) = §; and then, in iteratioft (k = 1,2, ...), the new set of rare
events,R(*), is obtained fromR(*~1) by addition of each event,

R® = RE=D  {q} (2.45)

which is not inR*~1) but it is actually rare according to our criterion of not hayia
probability greater than,

9 < (2.46)
where N
9% _ d 1 — pk—1) 2.47
d Z Nd’ ( ) ( )
d/gR(k—U
with
ME=D — | RE=1)| ¢ (2.48)

Atthe end of iteratiork, the algorithm assures that condition (2.46) is satisfiedlfavords
in R(®). This condition may be also satisfied by words nofift) though, in general, it
will not be satisfied by most of them.

As R is empty, M is zero and the initial probability estimate%(o), are exactly
those obtained in the conventional MLE case (2.24). Theeefa the first iteration, we
use conventional probability estimates to distinguisivieen rare and frequent events. Part
of the probability mass assigned to frequent events isfiearesl to rare events for them to
arrive ate. The remaining probability mass is redistributed accaydn (2.47) and, as it
is smaller than that distributed before the transfereniaeay well happen that a frequent
event becomes a new rare event. If it happens, a new iteliatearied out; otherwise, the
algorithm stops and returns the desifgdas characterised by (2.42).

A detailed description of the basic algorithm describedvalis given in algorithm 2.1.
Given D, the training data ané it returnsf,; andd, as characterised by Eqs.(2.42)-(2.44).
After computation of event counts (linéd—17), the optimal CDMLE solution is obtained
iteratively (lines18—34). Initially, no events are considered rat (= ) andd, is com-
puted for all words as in the conventional case (during tiseifieration of the loop in lines
20-34). If an eventd is found such thaf; < e (line 25), thend is added taR and a new
iteration is executed; otherwise, no transfergtare carried out and the algorithm stops.

2.4.3 Algorithm correctness and complexity

Let d be a non-rare event in iteratidn— 1 (d ¢ R(*—1)) for which (2.46) holds. Then, it
follows that

€ Na
l1-— <l = 2.49
1= ME=1 = > agro—n Nar (2.49)
and, rearranging terms,
1—ME=D - 1—ME=1D
€ < (2.50)

Zd’QR(k’l) Nd/ - Nd o Zd/gR(k—l) Nd/
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Algorithm 2.1 The CDMLE algorithm.
1 Decl arati ons:

2 I nput:

3 D /1 number of events
4 xi,..., TN /1 N training sanples
5 EIOSES% // mnimmevent occurrence probability
6 Qutput:

7 {éd} /1 solution as characterised by Egs. (2.42) (2.44)
8 Vari abl es:

9 {Ny} 11 event counts

10 R/,R I/ previous and current set of rare events

11 S/,S /1 previous and current sumof non-rare event counts

12 M’ M/ previous and current rare event probability mass

13 Met hod:

14 for d:=1to D do Ny:=0 endfor

15 for n:=1to N do

16 for d:=1to D do Ny:= Ng+ x,q endf or

17 endf or /1 event counts conputed
18 R:=0; S:=0;, M:=0

19 for d:=1to D do S:=5+ Ny endfor

20 repeat // main | oop
21 R =R, §":=85;, M :=M, transfers:= false

22 for d:=1to D do

23 if d¢ R then

24 éd::A%-(l—M/)

25 if 6;<e then

26 éd:ze /1 d has mini num probability
27 R:=RU{d} I/ dis a newrare event
28 S:=85- Ny

29 M:=M +e€

30 transfers := true

31 endi f

32 endi f

33 endf or

34 until not transfers

As d ¢ R*=Y but satisfies Eq. (2.46), the algorithm adti® the set of rare events in
iterationk, R*) = R*~1 U {d}. Using this updated set of rare events, Eq. (2.50) can be
rewritten as
1—M® 1—ME=D
<

Zd’&R(k) Nd/ o Zd/gR(k—l) Nd/

(2.51)
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from which we have, for any event € R(*),
0 <ol (2.52)

by multiplying each side of Eq. (2.51) by,;». From Eq. (2.52) and the fact th&f}lf,_l) <e

forall @’ € R®), it follows thatd\;) < eforall @” € R™®). This means that, in iteratidn
eventd becomes rare while all rare words in the previous iterat@nain rare. Algorithm
correctness follows from this result.

The time complexity of the CDMLE algorithm depends on theecds the best case,
no event transfers are done in the repeat-until loop andlgfugitnm works exactly as the
conventional naive Bayes training (without parameter dimag). More precisely, after
the first repeat-until iteration, a second iteration is meefibr the algorithm to check that
no transfers to the set of rare words are carried out. Thetheibest case, its time com-
plexity isQ2(N D). On the other hand, the repeat-until loop is execiideéanes in the worst
case, and thus the algorithm h@éN D + D?) time complexity. However, in practice, the
repeat-until loop is expected to iterate only a few timeser€fore, the computational be-
haviour of the CDMLE algorithm is expected to not differ siggantly from conventional
naive Bayes training.

The previous discussion about the complexity of the CDMLdgo&thm only applies
to a directimplementation of it, such as that given in alponi 2.1. However, it is straight-
forward to derive a refined implementation@f N D + D log D) time complexity. The
idea behind this refinement is to apply EQ?Y in non-decreasing order of occurrence
probability, as estimated in the conventional case. Thahigerationk, the next event
d to be considered in Eqg. (2.45) must have minimum occurrenaegbility, as given in
Eqg. (2.24), among all non-rare events. It can be easily atbdhkat, if condition (2.46)
does not hold foel, then it will not hold for any other non-rare event and, tiere, the
optimal CMLE solution will have been found.

2.5 Text Classification

In previous section we have introduced a novel smoothinignigcie for the multinomial
distribution, although we have not applied it in practice tHis section we review the ap-
plication of the multinomial distribution to the context it classification. Recall from
section 1.4, that given the document clasand lengthL, the naive Bayesassumption
states that the probability of occurrence of a wardloes not depend on its position or
other words in the document. In spite of being completelyealistic, the naive Bayes
assumption in text classification has the advantage oflgraatplifying maximum likeli-
hood estimation of unknown class-conditional word ocaureeprobabilities.

We denote the class variable by 1,..., C, the word variable by = 1,..., D, and
a document of length, by wf = wyw, - - -w. The joint probability of occurrence of
L andw may be written as:

pr(c,L,w) :pr(c)vpr(L)pr(wlcv L) (253)

where we have assumed that document length does not depémel dass:.

Given the clasg and the document length, the probability of occurrence of any
particular documentv? can be greatly simplified by making the so-calleaive Bayes
or independence assumptiotite probability of occurrence of a word, in wf does not
depend on its positiohor other wordsu;/, I’ # 1,

pr(wi|e L) =TI, plw;|c) (2.54)
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Since word order is not important we can redefine the conditiprobability in Eq. (2.54),
in terms of the number of occurrence of each vocabulary word

pelatwl)[e.D) = plaP e.)i= (1 )12, 04 (2.55)

wheref. 4 is the parameter that corresponds to the probability of weoge of the thd-th
word of the lexicon in a document of the classnd wherez, is the number of times the
d-th word,v4, occurs into the documemlL

L
Tq = 25(1&1,11%) (2.56)
i=1

It is worth noting that the conditional text occurrence abttity p(z? | ¢, L) in Eqg. (2.55)
follows a multinomial distribution.
Finally, the prior probability of a class is modeled by a paeter,

pr(c) == e (2.57)

the document length distribution is assumed uniform, i.e.

1
(L) == = 2.58
pr(L) = 5 (2.58)
with £ being the maximum document length.
Plugging everything into the classification Bayes rulesdn @&.10) yields
c(wi) = c(zy’) = argmax,p.(c) po(x|c) (2.59)
= argmax, 7. [ [, 6% (2.60)

Note that the constant terms ofave been removed in the last step.
In order to train the naive Bayes classifier for a given sample= {(x,,, c,)}Y

n=11

with the maximum likelihood criterion the following optisation problem must be solved

(0, #%) = argmax{LL(0, 7)} = arg max{LL(0) 4+ arg max LL(7)} (2.61)
6, 2] ™

subject to the following normalisation constraints

> ba=1 c=1,....C (2.62)

d
d =1 (2.63)

and with the definitions

LL(0,7) =Y 10gpr(cn) + log pg(@n | cn) (2.64)
LL() = ) "logpy(cn) (2.65)
LL(6) = > logpg(an | cn) (2.66)
(2.67)
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As suggested in Eq. (2.61) the optimisation can be slittealtino different optimisa-
tion problems. The first problem optimisessubject to Eq. (2.63), i.e.

7 = arg max LL() (2.68)

T

The second optimisation maximis@subject to Eq. (2.62), i.e.

6 = argmax LL(6) (2.69)
)

Recall that this last optimisation problem can be decompoge C' multinomial indepen-
dent trainings by

LLO) =Y > logpe, (zn|c)

¢ nicp=c

(2.70)
= LL(6.)
wheref. = (0.1, -- ,0.p) and withLL.(6.) defined as
LLc(6:) = Y logpg, (n|c) (2.71)
Finally, this leads t@' optimisation problems as follows
0. = argmaxLL.(0.), c¢=1,...,C (2.72)

BC

Conventional convex optimisation techniques as discussegction 2.2 yields the
solution to the first problem

e = — (2.73)

where N, is the number of samples with the class tagequal to ¢ andV is the total
amount of samples.
The latter optimisation problem can be decomposeddnitmultinomial trainings. If
conventional MLE is applied then the solution is
A ch
Ocqg = N (2.74)
whereN,., stands for occurrences of tdeth word in documents of the class Note that
Eq. (2.74) is the MLE for a multinomial distribution depidtm Eq. (2.24) with the training
restricted to those documents in class
Conventional MLE also implies the smoothing of the multinakaector of parameters
for each clasg and each word, .4. The very same techniques discussed in section 2.3
are usually applied [JNO2, VNJVO04]. Specifically, inter@idn and back-off are often
used with a generalised smoothing distributin, that can be uniform as in Eq.(2.28),

unigram
_ Zc ch
20 2o Newr
In order to apply CDMLE, we only need to apply algorithm 2.t éach class sepa-

rately, in the same way that the conventional training caddsmmposed int@’, multino-
mial trainings each with a different training extractednfréhe full training.

Ba (2.75)
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Figure 2.1: Results on the exponential simulated data. In Column 1, a sam
ple of 1000 elements is plotted for values= 0.2 ande = 0.8 top-down,
respectively. The:-axis plots the words indexeswhilst they-axis plots its
respective parametet;.

2.6 Experiments

In order to deeply study the properties of our proposed ntkttveo sets of experiments
were carried out. The former set of experiments consistanunlated data that allows us
to draw some interesting properties regarding our propds$e latter experiment set were
carried out on real text classification data.

2.6.1 Simulated experiments

One of the most interesting things of the constrained dommarimum likelihood estima-
tion algorithm 2.1 is that it resembles the uniform lineaempolation smoothing. In this
section we analyse the resemblances and differences be@®eLE and linear interpo-
lation.

In the simulated data we have fix the multinomial parametetor®d, and then we
know the actual distribution. The performed simulationevémee:

e A exponential parameter vector:

1
Bq x exp(—ﬁ) (2.76)
e A parameter vector following the Zipf’s law for word occuniee:
1
0,4 o 7 (2.77)
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Figure 2.2: Results on th&-steps simulated data. Columns represent dif-
ferent sample sized, and rows different values ef Thexz-axis plots the
words indexeg whilst they-axis plots its respective parametgy,

e A parameter vector made up of three steps:

2 d< 2
_ D D
ba=41 L <d<2P (2.78)
0 22<d<D

We compared the behaviour of two techniques: the convesitiorear interpolation
smoothing and the CDMLE. In the former case the generalisexbthing distribution is

Ba = — (2.79)
In the latter case, thevalue defined in the constraints in Eq.(2.32), has been fixed t
€= — (2.80)

In all the plots the experiments were repeated 100 timesrderao get an small
confidence interval. The confidence intervals were not @ibtiecause they were very
small and disturb the plots.

In figure 2.1, the results on the exponential simulated detplatted for several sam-
ple sizes and values. The CDMLE solution is closer to the actual values tthet of
linear interpolation, although all théfor which the constrain is active, are fixed¢oOn
the other hand, the linear interpolation yields poor appnations to the actual param-
eters in comparison to the CDMLE. Nevertheless, the linetrpolation keeps the dis-
criminative power among different wordsthough differences are smaller in magnitude.
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Figure 2.3: Results on the Zipf’'s law simulated data. Columns represent
different sample sized/, and rows different values af The z-axis plots

the words indexeg whilst they-axis plots its respective parameter in loga-
rithmic scalejog 6.

Summarising, the CDMLE provides better approximationddctual parameters at the
expense of making equal the “rare” words, while the line&geripolation obtains worse
approximations to the actual parameters but retains thi&afiwe difference among “rare”
words. This last stament, could make the difference in saeeaios. The best technique
depends on whether the “rare” words are nosy or are propstipated by conventional
naive Bayes. This result is also supported by figures 2.22ahdvhich are the analogous
plot for 3-steps data and Zipf’s law data, respectively.

2.6.2 Real data experiments

The proposed CDMLE approach was empirically compared tosiial practice of simply
smoothing relative counts, as described in Section 2.3his domparison was carried on
four text classification data sets (task&)aveller, 20 Newsgroupdndustry SectoandJob
Category

2.6.3 Datasets

TheTravellerdata set comes fromlanited-domainSpanish-English machine translation
application for human-to-human communication situationthe front-desk of a hotel. It
was semi-automatically built from a small “seed” data seteftence pairs collected from
traveller-oriented booklets by four persons; A, F, J andaéheof whom had to cater for
a (non-disjoint) subset of sub-domains. T2@& Newsgroupsorpus is a collection of ap-
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Table 2.1: Basic information on the data sets used in the experimedis- (
gletonsare words that occur onc€jass n-tonsefers to words that occur in

n classes exactly.)

Job Industry
Category Sector

Type of documents job titles web pages
Number of documents 131643 9629
Running words 11221K 1834K
Avg. document length 85 191
Vocabulary size 84212 64 551
Singletons (Vocab %) 34.9 414
Classes 65 105
Class 1-tons (Vocab %) 49.2 58.7
Class 2-tons (Mocab %) 14.0 11.6

20 Traveller

Newsgroups (English)

Type of documents newsgroups sentences
Number of documents 19974 8000
Running words 2549K 79K
Avg. document length 128 10
Vocabulary size 102 752 391
Singletons (Vocab %) 36.0 4
Classes 20 23.0
Class 1-tons (Vocab %) 61.1 74.9
Class 2-tons (Vocab %) 12.9 18.3

proximately20, 000 newsgroup documents, partitioned (nearly) evenly acrosiifferent
newsgroups. We used the original version of this data setmasded by [Ren01], in which
document headers are discarded but the "From:" and "Subljeetder fields are retained.
TheIndustry Sectors a collection of web pages from different companies, didithto a
hierarchy of classes. In our experiments, however, we éftall" this structure, assigning
each document a class consisting of the whole path to thengerciin the hierarchy tree.
The Job Categoryata set consist of job titles and descriptions, also osgahin a hierar-
chy of classes. This corpus contains labelled and unlabs#ienples and only the former
were used in our experiments. Table 2.1 contains a summémtiva basic information on
these data sets. For further details on them, see [AB; Ren01, McC02, VNJVO04].

Therainbowtoolkit [McC98] was used for the preprocessing of all data batTrav-
eller. We used html skip for web pages and elimination of UU-endosisgments for
newsgroup messages. We did not use stoplist removal, stegronivocabulary pruning by
occurrence count.

2.6.4 Results

Figure 2.4 shows the results obtained in each data set. Dpegped CDMLE algorithm is
compared to:
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Table 2.2: Summary of the best results obtained for ¢heorpora and for all
the smoothing techniques.

Job Industry 20  Traveller

Category Sector News (English)
Laplace 33.2 38.9 15.0 3.3
AD+1gBO 34.0 38.0 14.9 3.3
AD+1gl 34.2 37.8 14.8 3.3
CDMLE 33.0 38.6 15.3 3.1

1. Laplace:conventional training and Laplace smoothing,

2. AD+1gBO: conventional training and absolute discounting with uaigback-off,
and

3. AD+1gl: as (2) with unigram interpolation.

Each classification technique considered has its own &tstreor rate curve as a function
of the discount:

1. Laplace:b refers tod in Eq. (2.27)
2. AD+1gBO or 1gl:b has its usual meaning, as defined in E2§)(and

3. CDMLE: ¢ is defined fromb ase = 1071°%. L in the Traveller data set amd= b- 5
in the other data sets.

Each plotted point corresponds to an average error raténebtérom30 random splits in
which 80% documents were used for training while the remairgfg were held out for
testing. Error rate estimates have an approxiraéfe confidence interval ofE% + 1%]
bur for Job Category of which interval [£% =+ 0.4%).

From the results in Fig. 2.4, itis clear that the CDMLE algfom performs similarly to
the other techniques. In comparison with Laplace, CDMLE/tes slightly better results
and more stable (flat) error curves in all data sets but 20 Newsps. In these data sets,
it is indeed much better than Laplace when, as usual withdagplthe discount factor is
simply set to one. In the case of 20 Newsgroups, howevergcaeems to be a bit better
than CDMLE.

In comparison with absolute discounting (AD+1gBO and ADRligcan be said that
there is no superiority of one over the other. In Travelled dab category, the CDMLE
algorithm provides better rates than absolute discounbuithe contrary can be observed
in the other two data sets. All in all, this is a comparativgbpd result for CDMLE since,
in contrast to absolute discounting with unigram backiatrpolation, CDMLE does not
take advantage of the unigram distribution (2.75) to ohtaliable class-independent word
probability estimates. Clearly, this estimates can be tseeplace (2.32) by better, word-
dependent domain constraints.

A summary of the best results obtained in the experimentivéngn Table 2.2. The
CDMLE algorithm obtains better results than Laplace andhits discounting in Job Cat-
egory and Traveller. However, absolute discounting issé¢tian Laplace and the CDMLE
algorithmin Industry Sector and 20 Newsgroups. Note thegdtdifferences are significant
only to a limited extent.

As said in Section 2.4.3, the time complexity of the CDMLEaithm isQ(CN D)
in the best case an@(CND + CD?) in the worst case. More precisely, the difference
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Figure 2.4: Results obtained in thEraveller, 20 Newsgroupdndustry sec-

tor andJob categorylata sets. Each plot shows the classification error rate as
a function of the discount parametgrfor the four classification techniques
consideredl(aplace AD+1gBQO, AD+1gl andCDMLE).

between these two cases arises from the number of repdhitenations executed (lines
20-34 in Fig. 2.1), which may vary from to D. To study this in the average case, the
number of repeat-until iterations was recorded in each CEMIgorithm execution. On
average, it was exactly in the Traveller and 20 Newsgroups data sets, that is, asin th
best case. On the other hand, it was onlg &fiterations for Industry Sectors a2 for
Job category. Therefore, as expected, the repeat-ungiliterates only a few times. That
is, in practice, the computational behaviour of the CDML§oaithm might be considered
almost the same as that of conventional naive Bayes training
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2.7 Conclusions

In this work, conventional naive Bayes training with paréanesmoothing has been re-
stated as a constrained maximum likelihood estimation Iproldfor which an optimal,
iterative algorithm has been proposed. The general ideiadbelr contribution is to avoid
parameter estimates that can cause over-fitting whileniatathe properties of maximum
likelihood estimators. Empirical results on four real teldssification tasks have shown
that the proposed algorithm provides results similar te¢haf conventional training and
parameter smoothing, with almost the same practical coatipngl requirements.

It is worth noting, however, that smoothing methods havelmeatinuously improved
over the years, while our proposal is completely new and, tthese is still room for sig-
nificant improvements. For instance, the parameter domaghtrbe better adjusted by
redefining the constaatintroduced in Eq.(2.32) and making it dependent on both fideesc
c and the word/.

We think that the proposed approach and technique are vergiping. In general,
the idea behind of the proposed approach can be applied tg marimum likelihood
estimation problems in pattern recognition. For instaitcean be easily applied to EM-
based maximum likelihood estimation of finite mixture madeFor these models, it is
unclear how to use parameter smoothing in the M step withitedting the EM behaviour.
Instead, constrained maximum likelihood estimation canded without any side effect.
Also, this constrained approach might be useful in the casaiaing criterium other than
maximum likelihood such as discriminative training [JVNO7

The theory and experimental results in this chapter yielurblication in an interna-
tional conference:

e J.Andrés-Ferrer and Alfons Juan. Maxima versoimilitud con dominio restrdt
applicada a clasificacion de textos.Rroceedings of “Campus Multidisciplinar en
Percepcion e Inteligencig CMPI-06, pages: 791-803, Albacete, Spain July 10-14,
2006.

and a publication in a journal is pending:

e J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihood est
mation for naive Bayes text classificatidPattern Analysis and Applications (PAA)
Pending
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Chapter 3. The loss function in statistical pattern rectigmi

AYES' DECISION RULEIs the foundation of statistical pattern recognition. This
well-known rule is obtained by the minimisation of the clfisation risk. It is
not possible to know the exact loss in which a classificatiystiesn will incur.

Therefore, we compute the risk in which a system is “expédieéhcur based upon our
“loss” criteria. This criteria is formalised by tHess function By means of the the loss
function we measure the penalty of incorrectly classifyangbject, depending upon some
a priori preferences or costs. In practice, however, neithsts nor preferences are given
but for the correct/incorrect criteria. So the system onlgurs in a constant loss if an
object is misclassified. Thereby, the minimisation of tis& siields the intuitive concept of
minimising the classification error rate (CER).

The loss associated to each error is a very important maties the system decisions
highly depends on it. The classification error rate is notathst risk to minimise in all the
classification problems, although it may seem to be. Onelsieyample is when system
misclassification imply economic consequences. So, ikifldag an object into a wrong
class has a different economic loss depending on the obfertorrect class or/and the
proposed wrong class, so must the loss function have it. r@tbe, we can end with a
waste system.

During this chapter, we assume that we have a good apprdrimtatthe actual prob-
ability distributions or even the actual distributionsriselves. We focus our analysis on
the way to build the optimal classification system with theth@ossible estimation or ap-
proximation to the probability distributions. Hence, we aot dealing with the training
criteria but with the decoding criteria.

Along this chapter we cover all the outlined aspects of tks fanction from a statisti-
cal point of view. We explore the theoretical advantagesthad/backs of the most general
loss functions. Afterwards by constraining this genera$|ave analyse simpler and faster
loss functions. Finally, we apply the developed theory &istical machine translation in
order to study the proposed theory in a real task.

3.1 Introduction

Statistical pattern recognition is a well-founded disiciplthat solve many practical classi-
fication problems. A classification problem is stated as tioblem of choosing to which
class a given object belongs. L&t be the domain of the objects that a classification sys-
tem might observe; ard the set of possible class€gf, wo, . . . ,wc}) to which an object
may belong to. A classification system is characterised lbyatfon that maps each object
to one class, the so-callethssification functiond: © — Q) [DHSO00].

The performance of a classification system is usually measas a function of the
classification error. However, there are problems in whitthe classification misclassifi-
cations do not have the same repercussions. Thereforéedacthat ranks these mistakes
should be provided. Thi®ss function](w,|x,w.), evaluates théossin which the clas-
sification system incurs when classifying the objednto the classv,, knowing that the
correct class i), [DHSO00]. It is well known that, if @0—1 loss function is provided, then
the optimal system minimises the classification error rBtd$00].

This chapter is mainly dedicated to design loss functioas should improve system
performance while keeping the simplicity@f1 optimal classification system. In [RSNO5]
complex classification rules were analysed usingedric loss function There are other
works that analyse the most general loss functions, foant& [UNO4]. However, we
focus on other loss functions which are not restricted byntigtric requirements at the
expense of ignoring the class proposed by the systemy,i.e.
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3.2. Bayes Decision Theory

The remainder of the chapter is organised as follows. In@est2 pattern recognition
problems are analysed from a decision theory view. In se@i8, we introduce statistical
machine translation as a case of study. Finally, concludamgarks are summarised in
section 3.4.

3.2 Bayes Decision Theory

A classification problem is an instance of a decision prokBR). From this point of view,
a classification problem is composed of three differentgtem

1. A set ofObjects(O0) the system might observe and has to classify.

2. A set of classesSY = {w1,...,w¢,...}) in which the system has to classify each
observed object € O.

3. AlLoss functionl(w, |z, w.), used to weight the classification actions. This function
evaluates the loss of classifying an observed ohjdnto a classw, € €2, knowing
that theoptimal clasdor the objectr is w. € Q.

Recall that a classification system is characterised byl#ssification function, which
maps each object to one class [DHS00]

c:0—Q (3.1)

Therefore, when an objeat € O is observed in a classification system, the system
should choose the “correct” class from all possible classes

Taking this framework into account, we define the risk of thetam when classifying
an objectr, the so-calledonditional risk givene, as

R(wplz) = Z Wwple, we) - pr(wele) (3.2)

weEN

Note that the conditional risk is the expected value of thss lunction](w, |z, w.), with
respect to the probability distributiop, (w|x).

Using the conditional risk, we define tiige global riskfDHS00] as the contribution
of all objects to the performance of classifiers, i.e.

R(C):Em[R(C(w)lw)]:LR(C(w)lw) - pr(@)de (3.3)

whereR(c(x)|x) is the conditional risk giver, as defined in Eq. (3.3).

Our aspiration it to design the classification function thrimises the global risk.
Since minimising the conditional risk for each objeds a sufficient condition to minimise
the global risk, without loss of generality, the optimalsddication rule, namelgninimum
Bayes' risk is the one that minimises the conditional risk, i.e.

¢(x) = argmin R(w|x) (3.4)
weN
Therefore, depending which loss function the system désigased on, there is a different
optimal classification rule.
The algorithms that perform the minimisation in previous Bj4), are often called
decoding algorithmsr search algorithmsAnalogously, the problem of designing an algo-
rithm that perform such minimisation is calldte decoding problemr the search problem
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Chapter 3. The loss function in statistical pattern rectigmi

Throughout this chapter we focus on the way of building thénog@l classification
system with the best possible model. We do not intend to dsabout which training
criteria, method or algorithm is better for improving thesm performance. Instead,
we deal with the following stage of the system design. Oncéhaue the best possible
approximation to the actual probability distributions, aresswer the question of which the
best decoding strategy is.

In practice, we also need to compare between systems. Intorde so, we need to
compare the global risk of those systems. The global riskgn(&3), can be understood
as the expected loss with respect to the object-class jodfigbility distribution

/ Z )|z, w)p,(w, x)de (3.5

weN

with p,(w, z) = p,(w|x)p(x). Thefore, using the law of great numbers for a given test
set,T = (x,, wn)fj:l, i.i.d. according t,.(w, x), the global risk can be approximated by

Rr(c =N Z c(xn)|xn, wn) (3.6)

We call this approximation thempirical riskon the test set'.

The question of which the best loss function is, does not laangique and general
answer. The classical and most common approach is to cortkEteeach misclassifica-
tion has the same impact. Therefore, a priori we distingtighsorts of actions: wrong
classification (loss of) and correct classification (zero loss), i.e.,

0 wp=uwc

) (3.7)
1 otherwise

Wwplz,we) = {

This function is called th®&-1 loss function

Minimising the risk when the loss function is tide-1 loss functionis equivalent to
minimise the classifying errors. When Eq. (3.7) is used, rtiieimum Bayes’ risk in
Equation (3.4) can be simplified yielding the well-known iopl Bayes’ classification
rule [DHSOQ]:

c(x) = argmaxp(w | x) (3.8)
weN

wherez is the object to be classified, anddenotes one class frofa

However, while thé)—1 loss function is adequate for many problems with a small set
of classes, there are problems where a more appropriatéuloson should be defined.
For example, if the system classifies diseases, it may beeworslassify an ill person
as a healthy one than vice-versa. Another important exammphe case in which the set
of classes is large, or even infinite (but still enumerable)such a case, as the set of all
possible classes is huge, it is not appropriate to pendlise@ng classes with the same
weight. In other words, since it is impossible to define a amif distribution when the
number of classes is infinite, it does not make sense to defiméf@m loss function in
the infinite domain because there are objects that are mobaple than others, and the
error will be increased if the system fails in probable otjednstead of using the-1
loss function, it would be better to highly penalise the donzanes where the probability
is high. In this way, the system will avoid mistakes on prdbatbjects at the expense
of making mistakes on unlikely objects. Consequently, tinerewill be decreased since
unlikely objects occur fewer times in comparison with prolesobjects. Note that we are
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dealing with infinite enumerable sets in this example, amekgfore, this is a classification
problem and not a linear regression problem. An exampleisidea is plotted at Fig. 3.1
The most general loss function that can be defined makes ube tfiree variables:
the object to classify, the proposed class, and the correct class.. In general, it is
useless to define a non-zero loss function when the propdessiand the correct class are
equal. Therefore, we define tkeor functione(z, w,, w.) as the value of the loss function
whenw, # w.. For each error function we define a loss function in the foiliy way

0 Wy =W
1 ,We) = P ¢ 3.9
Wple,we) {e(m,wp,wc) otherwise (39
The error function must verify the following finiteness peoty,
Z Pr(welx) (e, wp, we) < 0o (3.10)
weEN

The optimal Bayes’ classification rule corresponding toghevious loss function in

Eq.(3.9)is
¢(x) = argmin Z pr(welz) e(x, wp, we) (3.11)
wp€Q) Werwp

The previous classification rule in Eq. (3.11), has a gresddliantage. In order to
classify an object we have to perform the minimisation wratdo implies a sum over all
classes. If we compare the rules in Eq. (3.11), and the rutin(3.8), it is clear that in
the former case, the cost is higher since the sum over alligesorrect classes should be
performed. This sum is not important if the number of clagsemall, however, in several
appealing language problems such as statistical maclainslation or speech recognition
the number of classes is huge or even infinite (enumerahbl¢hoke cases, the sum inside
the minimisation could be even unfeasible.

The loss functions in Eq. (3.9) and in Eq. (3.7) represent éxivemes of the loss
function possibilities. On the one hand, thel loss function yields the simplest and
fastest classification rule. On the other hand, the genesalflinction in Eq. (3.11), is the
most general loss but also the slowest one.

There is another category of loss functions which represérade-off between com-
putational cost and generality. This category is char@edrby the property of ignoring
the proposed class,, in the error function. Therefore, if we define the followirms$
function,

Hwpla,we) = 3 wp = We (3.12)
e(x,w.) otherwise
then the optimal classification rule is
¢(x) = argmin Z pr(we|x) e(x, we) (3.13)

wp€EN Wokwp

Applying some basic arithmetic operations to the clasgificarule in previous Eq. (3.13),
the classification rule is significantly simplified, i.e.,

c(x) = argmin, cq Z%#wp pr(we|x) e(x, we) (3.14)
c(x) = argmin, co{—pr(wplz) (@, wp) + S(z)} (3.15)
c(x) = argmin,, co{—pr(wp|z) €(x, wp)} (3.16)
c(x) = argmax,, co Pr(wplx)e(@,wp) (3.17)
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with S(z) =3 cq e(w, T)pr (wle).

By comparing Egs. (3.17) and (3.8), we conclude that theis@dtmost the same, but
for the computation of(x, wy,). Actually, all the constant error functions, i€z, w,) =
¢, lead to the same classification rule than@he loss function in Eq. (3.8). Therefore, the
0-1 loss function is the simplest error function of this catggdfrwe compare Egs. (3.17)
and (3.11) it can be seen that the former is fastest that tteg.|Assuming that the cost of
computing the error functions(-) andp, (w|x) is constant we classify loss functions into
two categories:

e The most general loss function depicted in Eq. (3.9) whichdraasymptotic cost
of O(|Q?).

e The loss functions that drop the dependence on the propdassl @defined as in
Eq. (3.12), which has an asymptotic cost(fQ?|).

Analysing the Eg. (3.12), the question of which the bestrdtnaction is, raises imme-
diately. The answer is not too clear, and it depends on thkeatiad problem for which we
are designing the classification system. For instancegiftimber of classes is huge or
even infinite, a good approximation is to use the probabidiggribution over the classes,
i.e. e(x,w.) = pr(w.). Figure 3.1 plots this idea. Note that since there are classthe
domain with a small probability of occurrence, it is usel@ssniformly distribute the loss.
For instance, let assume that is the most probable class and thatis one of the less
probable classes. If the loss of classifying an objettto the classy; although it belongs
towy,, and vice-verse, is the same, then the system could alwiwys ¢assifying objects
that belong to the class;,. Since the classy, is more probable, the system will fail more
times than if the loss of misclassifying object of the clagsvere the highest. This idea is
analysed into detail for the statistical machine transfagiroblem in section 3.3.

According to previous argument, if the loss wefe, w.) = p,(w., ) then we should
expect that the system would work even better. The diffexéetween the marginal proba-
bility and the joint probability is that we can modify the $osn the correct class depending
on each object. Obviously, this refines the accuracy of thddbs in order to agree with
the frequency of occurrence.

A more general approach can be used for mixing different nsoaied information
sources. It consists in defining an additional training stepptimise a parametrised loss
function. We start by defining a family of error functiofs, and identifying each function
in the family with some vector of parameters, sayThen, we use another function criteria,
sayC(ex(x,w.)), in order to range between the classification systems. \idtets, with
the help of an optimisation method, either theoretical acfical, the vectoA is optimised.

In practice, this can be used to approximate a generic enrmtibne(xz, w.,w,) with a
fastest error function that drops the dependence on thepealclass, i.ecx(x,w.). In
this way, we design a fast classification rule, that apprexéour real classification risk.
In order to perform the minimisation, a validation set isitgtly used. This idea is further
explored in section 3.3.3 under the view of statistical nraetranslation.

3.3 Statistical Machine Translation

In this section, we propose and analyse different loss fanstwhich are eligible for sub-
stituting the0-1 loss function in pattern recognition problems. Since, thibstitution is
specially appealing when the set of classes is infinite, veeismn the real scenario of
statistical machine translation (SMT) [BPPM93].
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Figure 3.1: Difference of using @-1 loss function (on the left) and an
approximation to the true class probability as the losstiondon the right)
when using a loss function of the sort of Eq. (3.12). The $efile of the y
axis shows a possible actual probability over the targeesees. The right-
scale of the y axis shows the value of the loss function whenstake is
made. Finally, the x axis is an infinite enumeration of theniitéienumerable
set of possible target sentences (or classes).

Statistical machine translation consists in finding thesfationy of a source sentence
x. SMT is a specific instance of a classification problem wheeeset of possible classes is
the set of all the possible sentences that might be writtartamget language, i.€2 = Y'*,
whereY is the target lexicon. Likewise, the objects to be classifa@ sentences of a
source language, i.& € X ™, whereX is the source lexicon.

Typically, the SMT systems are based on the Bayes’ clasifiteule for the0—1 loss
function depicted in Eq. (3.8). Usually, the class postagsiobability is decomposed using
Bayes’ theorem into two probabilities,

¥ = é(x) = argmax {pr(x|yp)pr(yp)} (3.18)
y,€Y"

Previous Eq. (3.18) is known as tliveverse translation rule (ITR¥ince the translation
probability,p.(x|y,,), is defined in an inverse way, i.e. we define a probabilityritistion
over the source sentenaewhich is the information that is “given” to the system. On
the other hand, a direct model distributes the probabilitpag the target sentencgs
conditionally to the given informatioa.

Equation (3.18) implies that the system has to search tlyettatringy that max-
imises the product of both, the target language medéy) and the inverse translation
modelp, (x|y). Nevertheless, using this rule implies, in practice, clagthe distribution
probabilities as well as the models through which the prditials are approached. This
is exactly the advantage of this approach, as it allows theetling of the direct transla-
tion probabilityp,-(y|x) with two models: an inverse translation model that apprates
the direct probability distributiop,.(x|y); and a language model that approximates the
language probability,(y).

This approach has a strong practical drawback: the seaodfigm. This search is
known to be an NP-hard problem [Kni99, UM06]. However, salaearch algorithms

4n this context to classify an object in the classw. is a way of expressing that. is the
translation ofx.
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have been proposed in the literature to solve this probldinieftly [BT90, WW97,
AOT99, G"01, Jel69, GVCO01, TNO3].

Another drawback of the ITR, is that it is obtained using thé loss function. As
stated in Sec. 3.2, this loss function is not particularlprapriate when the number of
classes is huge as occurs in SMT problems. Specificallygittrrect translation for the
source sentence is y., and the hypothesis of the translation systeny,js then using
the0-1 loss function (Eg. (3.7)) has the consequence of penalttemgystem in the same
way, independently of which translation the system propgseand which the correct
translationy.. is.

3.3.1 General error functions

As stated above, the most generic loss functions depictéd, i¢8.9), produce minimisa-
tions which have a quadratic cost depending on the size ofehef classes. Machine
translation is a classification problem with a huge set cfs#a. Hence, the most generic
loss functions yield difficult search algorithms. There soene works that have already
explored this kind of loss functions [UN04, RSNO5].

The more appealing application of this loss functions isube of a metric loss func-
tion [RSNO5]. For instance, in machine translation one wtead metric is the WER
(see Section 1.3 for a definition), since the loss functio&duation (3.12) depends on
both, the proposed translation and the reference trans|atie WER can be used as loss
function [UNO4]. Nevertheless, due to the high complesxttg use of these quadratic loss
functions, is only feasible in constrained situations likbest lists [KBO4].

3.3.2 Simplified error functions

The search algorithms generated by the classification rukqi. (3.12) have the same
asymptotic cost thafi—1 loss function, at the expense of dropping the dependendeeon t
proposed class. As stated in section 3.2, a more suitatgddastion than thé—1 loss, is
obtained using as the error function the target sentendmpility, e(x,y;) = p-(y;),

0 Yp = Ye
Wyplx,ye) = {pr (s.) otherwise (3.19)
This loss function seems to be more appropriate thattheThis is due to the fact that
if the system makes an error translating a set of sourcerseggethis loss function tries
to force the system to fail in the source senteraghose correct translatig,. is one of
the least probable in the target language. Thus, the sysiéfaivin the least probable
translations, whenever it gets confused; and therefoegstbbal Riskwill be reduced.
The associated Bayes' rule for loss function in Eq. (3.19) is

Y(x) = arg max {pr (yp|x)pT(yp)} (3.20)
Y,EY*
Previous Eq. (3.20) is known as th&ect translation rule (DTR}ince the translation
probability,p, (y,|x), is defined in an direct way. The direct translation rule wasrtsti-
cally introduced into the scope of machine translation bteoto alleviate the search prob-
lem by many of the current SMT systems [OTN99, ONO4a, KOMO3@8]. Note that

PHere lies the importance of distinguishing between theslegion proposed by the systeyn
and the correct translatign. of the source sentence
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the DTR was introduced as an heuristic version of the ITR in(Bq8), wherey,.(x|y) is
substituted by,.(y|x). This rule allows an easier search algorithm for some ofrtesta-
tion models. Although the DTR has been widely used, itssttatil theoretical foundation
has not been clear for long time, as it seemed to be againBayes’ classification rule.
As stated above, the direct translation rule is obtaineti@8ayes’ optimal classification
ruleif the loss function in E¢(3.19)is used

Since the DTR uses the target language probability as tlee mction, it should
work better than the ITR, from a theoretical point of view. idgheless, the statistical
models employed for approximate the translation prob#slimay not be good enough.
Thus, the model error, could be more important than the gdgerobtained from the use
of a more appropriate loss function. Therefore, it seemsoa gitea to use the direct rule
in the equivalent inverse manner so that the translatiotesysvill be the same and then
these asymmetries will be reduced. By simply applying thgeBatheorem to Eq. (3.20),
we obtain the equivalent rule:

y = argmax {p,(y)’p(x|y)} (3.21)
yeyYy*
The difference between the Eq (3.20) and Eq (3.21) measem@symmetries of the trans-
lation models as well as the error in the modelling.

Nevertheless, this last approach assumes that the languadg is a very good ap-
proximation to the actual probability distribution, duettee fact that the direct weight
has passed from the direct translation mgg€l|x) to the language model. Whether the
direct model or the inverse model is better for the transtatask depends on the model
properties and the best estimation that can be achievedhéosdlected model with the
finite sample that we have for training.

As stated in section 3.2 a refined loss function is designadyuke joint probability
as the error functiory(x,y;) = pr(x,y;),

0 Yp = Y
1 c) = p 3.22
(volx,ye) {pr(x, y.) otherwise (3.22)
which leads to:
y = argmax {p,(x,y)p-(y|x)} (3.23)
yeY *

Depending on how we model probabilities in Eq. (3.23), seMaptimal classification
rules are obtained. Specially if the joint probabilip(x, y)) is modelled with an inverse
translation probability plus a target language probahiliten, thenverse and direct trans-
lation rule (I&DTR), is obtained

y = argmax {p,(y)p, (x| y)p- (v | )} (3.24)

The interpretation of this rule is a refinement of the direghs$lation rule. In this case, if
the system makes a mistake, then it is done in the least pipabs &, y) in terms of

p(y,%).

3.3.3 Approximation to general error functions

As stated in section 3.2, the loss functions of the kind in Bql2), are faster than the
general loss functions depicted in Eqg. (3.9). The formes fasction sacrifices the use of

JAF-DSIC-UPV 55



Chapter 3. The loss function in statistical pattern rectigmi

the proposed translation in order to speed the search ddesortunately, the automatic
evaluation metrics used to rank the translation systemsineeqoth, the proposed and the
correct translation. Therefore, with the fastest loss fions we are not able to minimise
the evaluation metrics, which in principle is what we exgfegin our best system. How-
ever, by defining a family of simple error functions depegdim a parametric vector, say
A, we are able to approximate the evaluation metric, sucheaBItftU.

One way to define this general error function is to use a setaitifesf;(z, y.), that
depend on both the source sentence and its correct tramsldthen we define the error
function

K
(z,y.) H (@,y.)" (3.25)
If our actual evaluation error function is
E(.’I}, Yp> yc) =1- BLEU(yp7 yc) (326)

then using a validation séd = {(x,,y,,)}Y_, we can use any optimisation algorithm
to minimise our actual error function in Eq. (3.26). For arste, the maximum entropy
algorithm [BPP96] is typically applied to find the optimalrpeeter vectoA,

The error function defined in Eq. (3.25) leads to the follogvitassification rule

N

Yy () = argmax p,(y |z) H (x,y,)" (3.27)
Y €Y

Note that we can always extend the vector of parameters lambdnd the feature vector,
f, by adding the conditional probability,.(y.|x) as a new featuré. Therefore, the
classification rule expressed in terms of the extended featector, f and the extended

parametric vectoA is
K

95 (x) = argmax H fr(x yc) (3.28)
Y.€Y” k=1

If we apply the logarithm to the previous Eq. (3.28) we obth#equivalent expression

K

yx(z) = argmaxZ)\k log fr(z,y.) (3.29)
Y €Y k=1

Inspired by Eg. (3.29), a more general error function candfendd to approximate
the actual error function in Eq. (3.26)

e(z,y,) Z)\khk (z,y.) (3.30)

with h(z,y.) being the feature vector analogous f¢x,y.). Note that if we define
h(x,y,.) =log f(x,y,), then Eq. (3.30) is logarithmically equivalent to Eq. (3.25

°In the case that there existed a feature, fdy) which already is the conditional probability,
then the new feature vector remains the same and the new gigravector is the previous one but
for the component which is increase by one, i.e; = \; + 1.
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Again following an analogous process we can define the ertbfediture vectof and
the extended parameter vecfoobtaining the classification rule

K
U5 (x) = arg maxz Mehi(z,y,) (3.31)
YeEYT p

Although we have introduced above the feature vector, we hatyet covered which
are the typical features used in the state-of-the-artsyst@ypical features range among [ONO4a,
M+06] the followings:

e Direct translation modelsa typical feature is to use a direct translation model

hi(x,y) = po(y|z) (3.32)

The most used models are the IBM model 1 and the phrase-bastzisn

Inverse translation models typical feature is to use a inverse translation model

hi(z,y) = po(x|y) (3.33)

The most used models are the IBM model 1 and the phrase-bas#zisn

Joint translation modelsa typical feature is to use a stochastic finite transducer,

h’k (.’13, y) = Pe (.’13, y) (334)

An n-gram language modethat is to say

hi(z,y) = po(y) (3.35)

Word bonus:it is a well know problem of the:-gram language models that they
give more probability so short sentences. Additionallg, ttanslation models tend
to distribute the probability among ill-formed sentencedlz length of the sen-
tence increases [BPPM93]. Therefore, in order to keep #mskation systems from
always producing poor translations because of trying totehdhem, the following
feature is used

hi(x,y) = exp(|yl) (3.36)

Most of the state of the art systems use this idea, although phesent it as if it
were a log linear model [ONO04a, M6]. Specifically, if in Eq. (3.8) we model the direct
probability as a log linear model

K
PA(Ie) = o e (o) (337)
with
K
pa@) = > exp(d>_ Mh(,y)) (3.38)
yey* k=1
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then using the model in Eq. (3.37) in the rule in Eq. (3.8) wawbthe following rule

K
1
Yy (x) = argmax —— exp Aphi(x,y 3.39
K
I (x) = argmaxexp(Y_ Ahi(,y)) (3.40)
yey” k=1
K
Yy(x) = arg maxz Ahi (2, y) (3.41)
yeyYr o

Note that if you compare Eqgs. (3.41) and (3.31) they are edgri.

Although the log-linear explanation of the process yieldsdame classification rule,
it is not satisfactory in the sense that the log-linear maué&lq. (3.37) in never trained in
its full form, i.e., it is only trained in the form of classifiion rule (3.41) to minimise the
general loss function in Eq. (3.26). Additionally, thiswipresents the log-linear model in
Eq. (3.37) as an hyper-model because most of the used feag@robability models by
themselves.

3.3.4 Experiments

The aim of this section is to show experimentally how the thestated in this work can
be used to improve the performance of a translation systelmerefore, the objective is
not to obtain a competitive system, but rather to analysetbeiously stated properties in
practice.

In order to analyse the theory, we have used two set of expatsn For the former
set we use a semi-synthetic corpora and a simple translaioaiel, the IBM model Il (see
section 1.3.1). For the latter, two real tasks are used Wthiggranslation models used were
the state-of-the-art phrase-based models (see sectidt).1Through both experiments a
n-gram language model is used to approximate the languagalpitity distributions, i.e.
p-(y). Specifically, the language model were trained usifigggam model obtained with
the SRILM toolkit [Sto02].

Similarly to [GT01], we defined two error measuresearch error andmodel error
These error measures are inspired on the idea that when a @tEnsproposes a wrong
translation, it is due to of one of the following reasonsheitthe suboptimal search algo-
rithm has not been able to find a good translation or the madebi able to make up a
good translation, and hence it is impossible to find it. A $tation error is aearch error
(SE)if the probability of the proposed translations is less thaaference translation; oth-
erwise it is amodel error i.e., the probability of the proposed translations is tgethan
the reference translation. Although a model error alwaysare probability than the
reference translation, this does not excludes the facttinatich better translation maybe
found.

In order to evaluate the translation quality, we used thimfohg well-known auto-
matically computable measuresord error rate (WER)bilingual evaluation understudy
(BLEU), position independent error rate (PER)ndsentence error rate (SER)

3.3.5 Corpora

Three different corpora were used for the experiments tlea¢warried out in this chapter:
Eutrans-I (Tourist), Europarl and Xerox.
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Test Set Train Set
Spa Eng Spa Eng
sentences 1K 170K

avg. length 127 126 129 13.0
vocabulary 518 393 688 514

singletons 107 90 12 7
running words 12.7K  12.6K 2193K 2206K
perplexity 3.62 2.95 3.50 2.89

Table 3.1: Basic statistics of the Spanish-EnglisbdrisTtask.

Table 3.1 summarises some of the statistics of the Tourigtuso[ABC+96]. The
Spanish-English sentence pairs correspond to humans@higommunication situations
at the front-desk of a hotel which were semi-automaticattydpiced using a small seed
corpus compiled from travel guides booklets.

Table 3.2 shows some statistics of the Europarl corpus [Bpb&pecifically, this is the
version that was used in the shared task of the NAACL 2006 ¥fag on SMT [NAAO6G].
Europarl corpus is extracted from the proceedings of theggan Parliament, which are
written in the different languages of the European Union.er€hare different versions
of the Europarl corpus depending on the pair of languagdsatfeaused. In this work,
only the English-Spanish version was used. As can be oldérvable 3.2, the Europarl
corpus contains a great number of sentences and large Vapabizes. These features are
common to other well-known corpora described in the literat

Table 3.2: Statistics of the Europarl corpus

Spanish|  English
Sentences 730740
Training Running Words 15725136| 15222505
Vocabulary 102885 64122
Avg. sentence length 215 20.8
Sentences 3064
Test Running Words 91730 85232
Perplexity 102 120

Table 3.3 some statistics of the Xerox corpus [Ato01]. Tlhigpas involves the trans-
lation of technical Xerox Manuals from English to Spanisterich and German, and vice-
versa. In this work, only the English-Spanish version waesdusAs can be observed in
Table 3.3, the Xerox corpus contains a considerable nunflsentences and medium-size
vocabularies.

Word Based Translation experiments

In this section, the IBM Model 2 [BPPM93] is used to approxiente translation proba-
bility distributions. Together with the IBM Model 2 [BPPM®3ts corresponding search
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Table 3.3: Statistics of the Xerox corpus

Spanish [ English

Sentences 55761
Training Running Words 752607| 665400
Vocabulary 11051 7957
Avg. sentence length 13.5 11.9

Sentences 1125
Test Running Words 10106 8370
Perplexity 35 47

algorithms are used to carry out the experiments in this@ecthis choice was motivated
by several reason. Firstly, the simplicity of the translatmnodel allows us to obtain a good
estimation of the model parameters. Secondly, there asralawnodels that are initialised
using the alignments and dictionaries of the IBM model 2alynthe search problem can
be solved exactly using dynamic programming for the casé@fdirect translation rule

depicted in Eq. (3.20).

In order to train the IBM Model 2 we used the standard B2 A++ [Och00]. We re-
implemented the algorithm presented in [GVCO01] to perfdne $earch process in trans-
lation for the ITR. Even though this search algorithm is nptimal, we configured the
search parameters in order to minimise the search errotBasmost of the errors should
be model errors. In addition, we implemented the corresipgneersion of this algorithm
for the DTR and for the I&DTR. All these algorithms were dey@td by dynamic pro-
gramming. For the I&DTR, we implemented two versions of tkarsh: one guided by
the direct model (a non-optimal search algorithm, nameT&-D) and the other guided
by the inverse translation model (which is also non-optitnl more accurate, namely
I&DTR-I).

In order to have an experimentation as close as possiblehtecadtical scenario, we
selected the Spanish-EnglisloTRIST task (see section 3.3.5). The parallel corpus con-
sisted of171, 352 different sentence pairs, whei& sentences were randomly selected
from testing, and the rest (in sets of exponentially indregasizes:1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and 170K sentences pairs) for training. All the figures show the confi
dence interval at 95%.

Figure 3.2 shows the differences in terms of the WER amonp@lnentioned forms
of the DTR: “IFDTR” (Eq. 3.21), and “DTR” (Eg. 3.20). SincegdhBM Model 2 (in its
direct version) tries to provide very short translations,implemented a normalised length
version of the DTR. In the figure this normalised version iemed “DTR-N". Note the
importance of the model asymmetry in the obtained resulie. Gest results were the ones
obtained using the inverse form of the DTR. This behaviourdas surprising, since the
only mechanism that the IBM Model 2 has to ensure that alleesiwords are translated
is a length distribution and the length distribution usyalllows the model to ommit the
translation of a few words. Anyway, the “DTR” and “DTR-N" germed worse than the
ITR (Table 3.4).

Figure 3.3 shows the results achieved with search algosithese on the most impor-
tant rules. All the I&DTR obtain similar results to the ITReMertheless, the non-optimal
search algorithm guided by the direct model (*I&DTR-D") was order of magnitude
faster than the more accurate one (“I&DTR-I") and the “ITRhe inverse form of the
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Figure 3.2: Asymmetry of the IBM Model 2 measured with the respect to
the WER for the DURISTtest set for different training sizes.
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Figure 3.3: WER results for the DURIST test set for different training sizes
and different classification rules.

DTR (“IFDTR") behaved similarly to these, significantly imgving the results reported
by DTR. There are no significant differences between thesraalysed in terms of WER.
However, the execution times were significantly reducedhgydirect guided search in
comparison with the other searches. Table 3.4 shows theseaitton times and the figures
with the maximum training size.

The different search algorithms (based on loss functiong)at convey a significant
improvement in WER in Figure 3.3. Note that the loss functoity evaluates the SER,
i.e. the loss function minimises the SER, and does not tryitomise the WER. Thus,
changing the loss function, does not necessarily decrbas¢/ER.
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Table 3.4: Translation quality results with different translationasi for
TOURISTtest set for a training set df70K sentences. Where T is the time
expressed in seconds and SE stands for the percentagarch errors

Model WER SER BLEU SE T
I&DTR | 10.0 49.2 0.847 1.3 34
I&DTRD 106 516 0.844 9.7 2
IFDTR 105 60.0 0837 2.7 35

ITR 10.7 58.1 0.843 19 43
DTR N 179 741 0.750 0.0 2
DTR 303 924 0535 00 2

In order to check this hypothesis, Figure 3.4 shows the goaleversion of Figure 3.3
but with SER instead of WER. It should be noted that as thaitrgisize increases, there
is a difference in the behaviour between the ITR and both I&QDTonsequently, the use
of these rules provides better SER, and this differencermhescstatistically significant
as the estimation of the parameters becomes better. In sieeo€dhe inverse form of the
DTR (“IFDTR"), as the training size increases, the errodieto decrease and approximate

the ITR error. However, the differences are not statidiicgignificant and both methods
are equivalent from this point of view.

70

SER

60

A,

50 |

L4

40 1 1 1 1 1 1 1
1000 2000 4000 8000 16000 32000 64000 128000

Training Size

Figure 3.4: SER results for the @URIST test set for different training sizes
and different classification rules.

In conclusion, there are two sets of rules: the first set isemgmof IFDTR and ITR,
and the second is composed by the two versions of the I&QD TR fift set reports worse
SER than the the second set. However, the I&DTR guided wéldirect model (“I&DTR-
D”) has many good properties in practice. Note that for raak$ and state-of-the-art
system it is expected that the behaviour of the rules coore$fo the result obtained with
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Table 3.5: The results of translation quality obtained using the psmgo
variety of loss functions with the Europarl test set.

Spanish— English

Rule Formula BLEU WER PER
ITR - (X]y)pr(y) 0.2681 61.138 45.24
DTR pr(y[%)p: (¥) 0.2060 61.057 48.8¢

I&DTR  p.(y|x)p-(x|y)p-(y) | 0.2813 58.988 43.34
IFDTR pr(x[y)[pr ()] 0.2223 62.460 48.3(

English— Spanish

O

Rule Formula BLEU WER PER
ITR pr(X[y)pr (y) 0.2567 60.734 45.87
DTR pr(y]%)pr (3) 0.1988 62.043 51.3]

~N— i o—T——Co

I&DTR  p,(y|x)p-(x|y)p-(y) | 0.2606 59.441 45.17
IFDTR pr(x|y)[p-(y))]? | 0.2148 62.685 49.3]

the smallest corpus size, where no significant differentseamong the systems in terms
of SER.

Phrase-based translation experiments

In order to perform translation experiments, different RBddels (for the two tasks con-
sidered) were estimated. The training of these models wamréed out in the following
way:

e First, a word-level alignment of all the sentence pairs ia ttaining corpus was
carried out. This alignment was performed for the Spanisksglish and English-
to-Spanish directions, using a standard GIZA++ [OchOOhing, with the standard
training schema®25314°,

e Then, a symmetrisation of both alignment matrices was,luslhg the HoT toolkit[OGVCO05].
Specifically, the refined symmetrisation method was usedjahjl

e Finally, a phrase-based model was estimated, using tfae Toolkit [OGVCO05].

With respect to the decoding process, we implemented oupbhwase-based decoder.
Specifically, the decoder implements dr algorithm which is very similar to that de-
scribed in the literature [G01, OGVCO03] for single-word models. The decoder was
adapted to deal with the different translation rules (orieajantly, the different loss func-
tions) proposed here. These decoders verbatim the unknowdswo the output, since our
model is not fine-grained and its basic units are words.

Tables 3.5 and 3.6 show the translation quality measurebhéEuroparl and Xerox
tasks, respectively, for the different loss functions @sgd in section 3.2. The DTR and
FIRTD behaves similarly. As expected, the D&ITR obtains fiest performance. The
differences between the FIRTD and the DTR (which are thaxalét equivalent) are not
too great, so the under-performance of the DTR comparedhathTR is not due to model
asymmetries. If the translations given by the DTR are coegarith the ITR, it can be
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Table 3.6: Translation quality results obtained, using the proposedety
of loss functions, with the test set of Xerox task.

Spanish— English

Rule Rule (Search Alg.) | BLEU WER PER
ITR pr(X[y)pr (¥) 0.617 25.9 17.4
DTR pr(¥1%)pr (¥) 0.590 27.0 18.9

I&DTR  p.(y|x)p,(x|y)p-(y) | 0.616 25.9 17.5
IFDTR pr(x|y) [ (7)) 0.606 26.2 18.9

English— Spanish

Rule Rule (Search Alg.) | BLEU WER PER
ITR pr(X|y)pr (¥) 0.636 25.6 18.5
DTR pr(¥1%)p, (3) 0.628 26.0 19.1]

I&DTR  p,(y|x)p(x|y)p-(y) | 0.646 25.1 18.1
IFDTR pr(x|y) [0 (7)) 0.628 26.2 19.9
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Figure 3.5: The WER results obtained for the Europarl test set (Spanish t
English) with the length of the reference sentences résttio be less than
the value of ther-axis.

observed that the DTR tends to generate shorter transtafidnis result is expected since
the error function of the DTRy,(y), is modelled using a-gram language model, and it
is well-known thatn-gram language models give more probability to short setgrthat
is to say, the resulting systems tends to shorten transtatio
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Figure 3.6: The BLEU results (on the left y-scale) and the brevity pgnalt
(BP) of BLEU score (on the right y-scale) obtained for thedparl test set
(Spanish to English) with the length of the reference saggsmestricted to
be less than the value of theaxis.

Tables 3.5 and 3.6 show that the theoretically expecteéaser of the translation per-
formance in terms of WER and BLEU, is apparently not achideedhe DTR and both
corpora. Although in the Xerox corpus the improved perfanoesfor the DTR is achieved,
the differences between the systems are not very high. Hewwiégures 3.5 and 3.6 show
that, in fact, the DTR rule outperformsthe ITR, but also jdeg shorter translations. Note
that the longer the sentences are the worsdtheity penalty (BP) of the BLEU scoig
and consequently the worse the BLEU is (Fig. 3.6). Note th&ig. 3.5, the DTR incurs
in a WER which is in all cases smaller than the WER performetB Again this is due
to then-gram model which is used to model the language model, i.e. the &rnwtion
of the DTR. The I&DTR had the same brevity penalty problemyéeer, in this case the
problem was not so important since the rule includes therga/anslation model, which
counteracts the problem.

Table 3.7 shows some translations obtained using both DERTR. As can be seen,
DTR tends to produce shorter translations than ITR, whiplically produces more trans-
lation errors. For instance, in the first sentertbe, European agendg translated athe
agencyusing the DTR; this is due to the fact that although the fishgtation is more
precise, the language model (the loss function for the DTRjes the second as a more
probable sentence. Oppositely, the DTR correctly tragshatistin the first sentence but
the ITR translates it ashould Most of the common mistakes shared for both rules are
syntactic errors, although semantic errors can be foundels

In conclusion, the DTR and I&DTR, obtain better results veitiort sentences due to a
bias in the language model, although the precision of suttesees is better. Nevertheless,
the I&DTR is not dramatically affected by an increase in thatence length. As future
work, we intend to solve the language model bias to shoresestin some way, perhaps
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Table 3.7: Differences between some translation examples obtained us
DTR and ITR. Bold words highlight the differences betweea tio pro-
posed translations. &¥ stands for the reference translation.

REF: secondly , the European agency must be completely independe

DTR: secondly , thegency mustbetotally independent
ITR : secondly , the&european agency shoulde completelyindependent .

REF: itis crucial for consumers to accept the euro .

DTR: itis crucial that consumet® acceptthe euro .
ITR : itis crucial that consumeacceptance othe euro .

REF: i am reluctant to go further on trade or to advise further action trade or investment .

DTR: i am reluctant to go further trade or advigether steps trade or investment .
ITR : i am reluctant to go furthesn trade orto adviseadditional efforts on trade or investment

by introducing a length normalisation in the loss functiomothe models.

3.4 Conclusions

The analysis of the loss function is an appealing issue. &helts of analysing different
loss functions range from allowing to use metric loss fumtdisuch as BLEU, or WER; to
proving the properties of some outstanding classificatibesrsuch as the direct translation
rule, the inverse translation rule or even the maximum @ytrale. For each different error
functione(x,y;, yx) in the general loss function of Eq. (3.9), there is a diff¢x@stimal
Bayes’ rule. The point of using one specific rule is an heiarasd practical issue.

An interesting focus of study is the use of metrics such as BL& WER; as the
loss function. Nevertheless due to the high complexitys ly feasible on constrained
situations liken-best lists.

The work developed over this chapter is focused on the stifidtyse functions that
have a linear complexity and that are outstanding due toiiistl or practical reasons.
This work explores the direct translation rule, the invdragaslation rule, and the direct
and inverse translation rule. In this sense, we have prdwdieoretical approach based
on decision theory which explains the differences and resmmses between the Direct
and the Inverse Translation rules. We have also given itsigto the practical differences
of these two rules, which are widely used. For instance, ttiésretical frame predicts
an improvement (in terms of SER), an improvement that haa begfirmed in practice
for simple words models. In conclusion, according to theegkpental results, the DTR
outperforms the ITR when short sentences are provided teytem.

The proposed modifications to thel loss function depicted in Eq. (3.12) can handle
the intuitive idea of penalising a wrong action based on #percussions of the correct
action. For instance, if the correct translatigp, of a source sentence, is a very unlikely
sentence, failure in the translation of such a sentencetignmumrtant. Oppositely, failure
in the translation of a likely sentence is an important niistdt is important to note the
fact that the proposed loss functions cannot handle significases. For example, it is not
the same to make an incorrect translation due to grammanseéhran to make an incorrect
translation due to semantic errors. In order to take int@astsuch cases, it is necessary
to work with general loss functions of the sort in Eq. (3.9 piée of its cost. However, the
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idea of penalising the mistakes proportionally to the philitst of the correct translation
can also be used in case of dealing with more complicatedidaciules and, eventually,
with more complicated search algorithms.

Note that though we have focused our analysis to error fanstivhich are a prob-
ability distribution, the error function(-) does not necessary have to be a probability
distribution. This idea brings up the question of which testdoss function is. For in-
stance, a confidence measure could even be used to defindwsrctions. Maybe the
growing of the loss function should better be not lineal wiite probability. In this sense
more interesting loss functions could be obtained usingrination theory. For instance,
we can penalise the system by tleenaining information That is, if we knewp,.(z, y),
then the information associated with a target sentgnagould be— log(p,(x,y.)). The
remaining information, or the information that the systeas kearnt when it fails is given
by —log(1 — p.(x,y.)), leading to the the error function

e(x,y.) = —log(l — p(z,y.)) (3.42)

Figure 3.7, shows the remaining information of a probapfiiinction. Note that the re-
maining information has a singularity afi.e. if the system has not been able to learn a
sure event, which has probability ©f then the loss is infinity. Note that this loss can be
defined for any probability such as(y) orp,.(z, y).
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Figure 3.7: Difference between the remaining information and the proba
bility as error functions.

Another very interesting research line is derived from agpnating complex loss
functions in Eq. (3.9) with simple loss functions in Eq. B.1Although, many of the state-
of-art SMT systems indirectly make use of this idea, as a®alyn section 3.2 (page 58),
this idea can be exploited significantly in order improveghstems.

The part of the theory and the word-based results obtainéusrchapter were pub-
lished in two international conferences:

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Andlisis tedrico s@wedglas
de traduccidn directa e inversa en traduccion automattedistica. IrProceedings
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of “Campus Multidisciplinar en Percepcion e InteligenciZCMPI-06, pages: 855—
867, Albacete, Spain July 10-14, 2006.

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Combining translatiodets in
statistical machine translation. Rroceedings of the 11th International Conference
on Theoretical and Methodological Issues in Machine Tratigh, TMI-07, pages:
11-20, Skovde, Sweden September 7-9, 2007.

The phrase-based results obtained in this chapter werespatlin the following jour-
nal:

e J.Andrés-Ferrer, D. Ortiz-Martinez, |. Garcia-Varea, F. Casacuberta. @nube
of different loss functions in statistical pattern recdgmi applied to machine trans-
lation. Pattern Recognition Letter&/olumen 29, pages: 1072-1081, 2008.
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Chapter 4. Conclusions

4.1 Summary

This thesis is mainly focused on two pattern recongnitigmeass: the MLE estimation
and the loss function. On both research lines, we have peaposw methods that have
shown a similar or even better practical performance thassatal methods. In theory, the
advantages of the proposed methods are very appealing.

In chapter 2, conventional naive Bayes training with pat@msmoothing has been
restated as a constrained domain maximum likelihood estm@&DMLE) problem for
which an optimal, iterative algorithm has been proposede @éneral idea behind our
contribution is to avoid parameter estimates that may causefitting while retaining the
properties of maximum likelihood estimators. Empiricauks on four real text classifi-
cation tasks have shown that the proposed algorithm previekults similar to those of
conventional training and parameter smoothing, with alnttes same practical computa-
tional requirements.

The work developed over chapter 3 is focused on the studyneaitiloss functions
that are outstanding due to historical or practical reasdiés work explores the direct
translation rule, the inverse translation rule, and thedliand inverse translation rule.
In this sense, we have provided a theoretical approach b@aselbcision theory which
explains the differences and resemblances between thetlind the Inverse Translation
rules. We have also given insights into the practical déffexes of these two widely used
rules. For instance, this theoretical frame predicts arravgment (in terms of SER), that
has been confirmed in practice for simple words models. Irtlosion, according to the
experimental results, the DTR outperforms the ITR whentsbemtences are provided to
the system.

The analysis of the loss function is an appealing reseaneh Tihe results of analysing
different loss functions range from allowing to use metoigd functions such as BLEU, or
WER,; to proving the properties of some outstanding clasdifia rules such as the direct
translation rule, the inverse translation rule or even ttglinear classification rule. For
each different error functioa(x,y;,yx), there is a different optimal Bayes' rule. The
point of using one specific rule is an heuristic and pracigsle.

The proposed modifications to thel loss function discussed in chapter 3 handle the
intuitive idea of penalising a wrong action based on thenessions of the correct action.
For instance, if the correct translatiay,, for a given source sentence,is a very unlikely
sentence; a failure in the translation of such a sentencetigmportant. Oppositely, a
failure in the translation of a likely sentence is an impottanistake. It is important to
note the fact that the proposed linear loss functions cahaotlle significant cases. For
example, it is not the same to make an incorrect translatientd grammar errors than
to make an incorrect translation due to semantic errorsrdardo take into account such
cases, itis necessary to work with general loss functiospitieits cost. However, the idea
of penalising the mistakes proportionally to the corregh$iation probability can also be
used in case of dealing with more complicated decision raek with more complicated
search algorithms.

4.2 Scientific publications

The constrained maximum likelihood estimation technicnedysed in chapter 2, yield one
publication in an international conference:

e J.Andrés-Ferrer and Alfons Juan. Maxima versoimilitud con dominio restridt
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4.3. Future work

applicada a clasificacion de textos.Rroceedings of “Campus Multidisciplinar en
Percepcion e Inteligencia'CMPI-06, pages: 791-803, Albacete, Spain July 10-14,
2006.

and a publication in a journal is pending for acceptance:

e J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihood est
mation for naive Bayes text classificatidPattern Analysis and Applications (PAA)
Pending

The theory and ideas developed in chapter 3 were publishiebiiternational con-
ferences:

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Andlisis tedrico s@wedglas
de traduccidn directa e inversa en traduccion automattedistica. IrProceedings
of “Campus Multidisciplinar en Percepcidn e InteligencidCMPI-06, pages: 855—
867, Albacete, Spain July 10-14, 2006.

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Combining translatiotets in
statistical machine translation. Rroceedings of the 11th International Conference
on Theoretical and Methodological Issues in Machine Tratish, TMI-07, pages:
11-20, Skovde, Sweden September 7-9, 2007.

and in the following journal:

e J.Andrés-Ferrer, D. Ortiz-Martinez, |. Garcia-Varea, F. Casacuberta. @nute
of different loss functions in statistical pattern recdgm applied to machine trans-
lation. Pattern Recognition Letter&/olumen 29, pages: 1072-1081, 2008.

4.3 Future work

We think that the CDMLE approach proposed in chapter 3 is peoynising. In general,
the idea behind of the proposed approach can be applied tg marimum likelihood
estimation problems in pattern recognition. For instaitoegn be easily applied to EM-
based maximum likelihood estimation of finite mixture madeFor these models, it is
unclear how to use parameter smoothing in the M step withiedting the EM behaviour.
Instead, constrained maximum likelihood estimation candesd without any side effect.
Also, this constrained approach might be useful in the c&saiaing criterium other than
maximum likelihood such as discriminative trainirig.[

On the other hand, the extensions to the loss function that baen covered in chap-
ter 3 are very promising as well. Note that though we havededwur analysis to error
functions which are a probability distribution, the erran€tione(-) does not necessary
have to be a probability distribution. This idea brings up tjuestion of which the best
loss function is. For instance, a confidence measure coulddetto define error functions.
Maybe the growing of the loss function should better be matdi with respect to the prob-
ability. In this sense more interesting loss functions ddg obtained using information
theory. For instance, we can penalise the system byetimaining information That is,
if we knewp, (x, y), then the information associated with a target sentgnogould be
—log(p-(x,y,)). The remaining information, or the information that theteys has learnt
when it fails is given by- log(1 — p,(z,y.)), leading to the the error function

e(x,y,.) = —log(l - p(z,y,.)) (4.1)
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Note that the remaining information has a singularity ate. if the system has not been
able to learn a sure event, which has probability,dhen the loss is infinity. Note that this

loss can be defined for any probability suctpagy) orp,.(z, y).
Another very interesting research line is derived from agpnating complex loss

functions in Eq. (3.9) with simple loss functions in Eq. B.1Although, many of the state-
of-art SMT systems indirectly make use of this idea, as a®alyn section 3.2 (page 58),

this idea can be exploited significantly in order improvesiistems.
Finally, an interesting focus of study is the use of metrioshsas BLEU, or WER; as

the loss function. Nevertheless due to the high complegitgrently it is only feasible on
constrained situations like-best lists.
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