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Adaptive Calibration Algorithm for Plasma Glucose
Estimation in Continuous Glucose Monitoring
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Abstract—Minimally or noninvasive continuous glucose mon-
itors estimate plasma glucose from compartments alternative to
blood, and may revolutionize the management of diabetes. How-
ever, the accuracy of current devices is still poor and it may partly
depend on low performance of the implemented calibration al-
gorithm. Here, a new adaptive calibration algorithm based on
a population local-model-based intercompartmental glucose dy-
namic model is proposed. The novelty consists in the adaptation of
data normalization parameters in real time to estimate and com-
pensate patient’s sensitivity variations. Adaptation is performed to
minimize mean absolute relative deviation at the calibration points
with a time window forgetting strategy. Four calibrations are used:
preprandial and 1.5 h postprandial at two different meals. Two
databases are used for validation: 1) a 9-h CGMS Gold (Medtronic,
Northridge, USA) time series with paired reference glucose values
from a clinical study in 17 subjects with type 1 diabetes; 2) data
from 30 virtual patients (UVa simulator, Virginia, USA), where
inter- and intrasubject variability of sensor’s sensitivity were sim-
ulated. Results show how the adaptation of the normalization pa-
rameters improves the performance of the calibration algorithm
since it counteracts sensor sensitivity variations. This improvement
is more evident in one-week simulations.

Index Terms—Artificial pancreas, calibration algorithm (CA),
CGMS accuracy, type 1 diabetes.

I. INTRODUCTION

LTHOUGH results are not completely conclusive, many
A studies indicate that continuous glucose monitoring
(CGM) contributes to a better and tighter glucose control in
patients with type 1 diabetes [1]. Moreover, accurate and robust
continuous glucose sensing is a “conditio sine qua non” for the
development of the artificial pancreas. For this reason research
on CGM is an increasing area of interest. However, the perfor-
mance of current CGM devices has yet great margins of im-
provement [2], [3]. Indeed, regulatory agencies have authorized
the use of CGM only as an adjunctive tool for diabetes man-
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agement and not in substitution of intermittent capillary blood
glucose measurements (SMBGQG), which still is the mainstay of
home diabetes management.

A review of calibration algorithms (CA) used up to date for
CGM can be found in [4]. Commercially available CGM devices
use linear regression approaches [5], lacking the required accu-
racy especially in the hypoglycemic range. Several works [6],
[7] have raised the hypothesis, either in small retrospective stud-
ies or in simulations, that the consideration of dynamic models
(e.g., Kalman filters) may help improving accuracy.

In [8], a new CA for the improvement of CGM accuracy
was presented. It was based on a set of weighted and added
local models (LMs), having the advantage of describing local
behaviors, when present, as compared to previous methodolo-
gies. For the proper identification and application of this new
CA, a normalization of the inputs is required, as they might be
of a different nature and magnitude. Population normalization
(PN) parameters were used in this case, omitting the effects of
patient-specific sensor sensitivity.

It is expected that the normalization of the electrical and glu-
cose signals using individualized parameters significantly in-
creases accuracy, since specific information of patient-to-sensor
sensitivity will be included in the population model [7]. How-
ever, this requires an estimation of statistical properties of the
sensor’s current intensity and the glucose concentration signals
for the patient when the resulting models are applied during
real-time CGM operation.

To overcome this problem, an adaptive scheme is presented
in this paper estimating new patient’s normalization parameters
in real time. Estimation is done through a minimization of the
mean absolute relative deviation (MARD) at calibration points
(capillary glucose) with a time window forgetting strategy. Four
calibrations are daily used: preprandial and 1.5 h postprandial at
two different meals. The method is validated with a retrospective
clinical study and simulated data to emulate interpatient sensor
variability and intrapatient sensitivity decay over seven days.

Results show how the adaptation of normalization parameters
improves the performance of the CA with population parame-
ters, since adaptation counteracts satisfactorily sensor sensitivity
variations.

II. METHODS

A. Principles of the Local-Model-Based CA

The CA is based on a dynamic model that describes the re-
lationship between plasma glucose concentration and the signal
from the sensor [9], which is representative of interstitial glu-
cose (IG). A local-model-based (LMB) structure is considered

2168-2194/$31.00 © 2013 IEEE
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Fig. 1. Block diagram of the LMB CA.

to build this dynamic model, as described in detail in [10], where
it was applied to general benchmarks. The application to CGM
was first described in [8], where the CA in Fig. 1 was proposed.

An estimation of plasma glucose is computed from a weighted
sum of local estimations given by a set of LMs obtained after
data clusterization

G(@) = Y WLM(@) = Y Vil@) - LM(@) ()

i=1

where G is the plasma glucose estimation, # € R is the input
vector composed of current and past values of sensor’s current
intensity and past glucose estimations (additional input signals
may be considered in advanced configurations), ¢ is the number
of LMs (LM;), and V;: R — [0, 1] are the validity functions
describing the regions (clusters) represented by each LM. Each
LM is independent and valid regionally, in order to obtain an
interpretable global model (GM). The structure of each LM is
chosen to be linear while the validity functions are chosen to
be hypergaussian functions [11]. Then, the final equation of the
model is

C
o =Y (eé((frm,>Tz_,,,:<frn”>>

i—1
X (B4, Z + Bo, )) ()

The resulting model is thus described by the following set
of parameters: regression coefficients of the linear models
(ﬂ_;- =[Gy, 51511 D, and means () and variances (¥,,) of the
hypergaussian validity functions, all of them defined for each
LM;.

When the identified structure is applied, if the current input
vector & is not highly represented by at least an LM (e.g., no LM
exist with a validity degree higher than 0.85), the value of the
estimation is set to the previous value, for its correct application.

Finally, glucose estimation given by the model is corrected
every time a new calibration point (capillary glucose) is intro-
duced, updating past values.

Local models (and their validity functions) need to be iden-
tified a priori from population data. Global optimization al-
gorithms are used for the minimization of a cost index where
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Fig. 2. Block diagram of the ACA.

global and local errors are considered. The reader is referred
to [8] and [10] for the details.

The normalization strategy selected in this case makes vari-
ables 1) sensor’s intensity signal and 2) plasma glucose concen-
tration have null mean and unity variance. For this, mean and
variance (m and o) of original signals are required. Population
(PN) or individualized (IN) normalization parameters can be
used. Remark that in either case, population model parameters
are considered, since a GM can describe better the dynamical
behavior of the set of patients (with any normalization), and
therefore it can be used for interpretation of results. In this case,
it is well known that each sensor can have different sensitivity to
changes in glucose concentration. Thus, IN is expected to per-
form better than PN since sensitivity information is included.
Yet, the application of the CA after identification to a new pa-
tient is not possible since IN parameters for the new patient are
not known beforehand.

B. Adaptive CA

A way to compute the individual parameters for inputs nor-
malization is thus needed during CGM operation. Here, an adap-
tive algorithm is proposed to compute these parameters using in-
formation from the input and calibration points (SMBG). Thus,
starting from population values, the parameters to normalize a
new patient’s data are progressively found online by minimizing
the error between the estimated glucose output and the actual
one known for the calibration samples (fe;10,). In this case, the
function chosen to measure the error is the MARD which is
a common measurement of the error in current monitors. The
four parameters my, o7, m¢, and o7 are updated simultane-
ously considering them as a vector (pmi;,) defined at each time
instant k.

Fig. 2 shows the block diagram of the adaptive calibration
algorithm (ACA), where normalization/denormalization blocks
are tuned in real time.

The technique used for this adaptation is the steepest descent
strategy based on the gradient optimization techniques [12].
This is based on the computation of the gradient (O fo,ror /Opmt)
at each iteration for a small change in the normalization param-
eters (positive and negative) and the posterior update of these
parameters based on the direction where the objective function
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Equation (3) shows how the adaptation depends on an ad-
ditional parameter o which is the adaptation step and varies
depending on the value of the gradient. This step and its adap-
tation thresholds are experimentally set such that it permits a
fast convergence to the optimal parameters but not too large, as
it would cause oscillations on the adapted parameters. In this
case, the parameter starts at o = 0.001. The more negative the
A forvor / ferror (RelDF), the higher the «v considered at discrete
intervals, approximately doubling its value at each interval. An
upper limit of o = 0.01 is considered. For positive values of
RelDF, « is reduced up to o« = 1 x 1077, stopping adaptation.
On the other hand, to approximate the gradient the finite
difference approximation is used

8ferr01' ~ ferror (pfflk + Apm) - ferror (p',ﬁk - Ap'f?b)
opm 2Apm

where each component of (4) is computed by varying each
parameter in pm independently by a magnitude Apm.

Estimation of normalization parameters is only possible when
reference information is available. Thus, every time a new cali-
bration point is available, normalization parameters are updated
according to (3), as depicted in Fig. 3. It is important to consider
the influence of the sensor’s sensitivity variations with time [13].
It is well known that sensor sensitivity is different for each pa-
tient, but also within the sensor’s life time. Although the patterns
of variation of sensitivity are not yet well known, a reduction
of about 20-50% over time during the sensor’s lifespan (six to
seven days in current commercial CGM) has been reported [14],
[15]: following a smooth increase of sensitivity during the first
24-48 h (as the postinsertion hemorrage is readsorbed [14]),
there is a steep decrease due to the sensor fouling and other
biological processes. Thus, the MARD will only be computed
for a time window W including the last w calibration points, in
order to estimate pr that best fits to the sensor sensitivity of a
specific time interval. Thus, the final cost function for adaptation
is defined as

“

Gsusa,—(Gp)

Gsmpa;

TSMBG,

ZTSMBG[ W

ferror -

where Ts\pg, is the time instant of the ith calibration point,
GswmBa, is the ith calibration point glucose value, and G p 1s
the denormalized plasma glucose estimation.

With this adaptive scheme, the population model identified
with IN can be applied to a new patient. Remark that adaption
is carried out only on normalization parameters, counteracting

&)

w

different sensor sensitivities, but the same population dynamics
is considered for all patients. Furthermore, the sensor sensi-
tivity variations over time can also be counteracted, reducing
the deterioration of the model response. Convergence time to
the optimal patient’s parameters, computational constraints, and
performance under suboptimal normalization parameters will be
analyzed in Section III.

C. Datasets

Two datasets were used to validate the ACA.

1) Data From a Clinical Study: Seventeen patients with type
1 diabetes were recruited at Dr. Josep Trueta Hospital (Girona,
Spain). Subjects’ characteristics were (mean =+ std): age (years)
26.8 + 4.9; sex (F/M) 8/9; BMI 24.5 + 3; HAlbc (%) 8.5 £
2.3; and diabetes duration (years) 15 & 5.5. Patients were asked
to wear CGMS Gold (MiniMed CGMS MMT-7102; Medtronic,
Northridge, CA, USA). The device, which uses a retrospective
CA and provides plasma glucose estimates every 5 min, was
calibrated with SMBG at least three times per day, following
manufacturer’s instructions.

Each patient underwent a 9-h in-hospital study, where plasma
glucose was measured by means of a Glucose Analyzer II
(Beckman Instruments, Brea, CA, USA). Samples were taken
every 15 min for 2 h after each meal and every 30 min otherwise.

To perform the model identification, plasma glucose measure-
ments were interpolated using a cubic method every 5 min (sam-
ple period of CGMS Gold readings). Thus, a total of 1719 paired
points were obtained. Because plasma glucose and CGMS Gold
readings were obtained at different times, CGMS Gold readings
were interpolated to the gold standard reference time vector to
match both vectors in time.

Some gold standard samples (14 samples in 5 patients) were
incorrectly measured (spiky values below 40 mg/dL). In this
case, they were interpolated with the other signal samples to
avoid gold standard outliers.

2) In Silico Study: As data with simultaneous CGM and
gold standard measurements for the sensor’s lifetime are not
available, the validation was complemented with an in silico
study. To generate one week’s data, the FDA-accepted UVa
simulator was used [16]. CGM devices do not measure directly
blood glucose (BG), but the sensor’s current signal reflects IG,
with variations of sensor sensitivity as already described. Since
both IG and BG are available in the simulator, sensor’s operation
can be emulated.

The sensor sensitivity variations were reproduced following
the model found in [7]. Among the diverse set of curves that
follows this stochastic model, one that changes accordingly to
the expected decay with time was chosen and scaled randomly
per patient to have variations in the range [20, 50]%, as shown
in Fig. 4.

To generate one-week data, IG signal coming from the simula-
tor was converted to intensity (/) measurements (I = 5; - IG),
following these indications.

1) A different sensor sensitivity .S; was considered for each

patient. This sensitivity was taken randomly in the range
[0.09, 0.24], obtained from the ratio of the glucose gold
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standard and sensor’s current intensity averages for the 17
patients of the previously described clinical study.

2) A degradation of this sensitivity was considered following
the perturbations shown in Fig. 4 and scaled randomly for
each patient within the range [20, 50]% for each patient.

Thirty patients (adults) were considered for this in silico study,

generated from the ten adults available in the educational ver-
sion of the simulator and the procedure described previously
to assign the sensor’s sensitivity (every patient was studied
three times with “different sensors”). A period of one week was
simulated with three meals per day: breakfast (7 A.M.), lunch
(12 P.M.), and dinner (18 P.M.). The meals were similar for all
patients and days, with variations up to 40%. Four calibrations
were considered per day (preprandial and 1.5 h postprandial for
breakfast and dinner). To emulate glucometer accuracy, a vari-
ation of £10% (uniform distribution) was introduced to the BG
samples generated by the simulator.

D. Validation Tests

The following validation tests were performed.

1) Performance of the IN and the adaptive scheme against
CGMS Gold from the clinical database. A leave-one-
patient-out-cross-validation was carried out. Population
LMs were identified for the set of patients except one, and
the CA was applied to this one to check its performance.
This was repeated so that every patient was included once
into the validation set. This is equivalent to k-fold cross-
validation with k equal to the number of patients.

2) Performance of the IN and the adaptive scheme from in
silico data. In this case, population LMs were identified for
the whole set of patients considering the data from the first
day. The algorithm was then validated on different data
from days 2 to 7 subjected to sensor sensitivity variations.

3) Additional experiments were run in the in silico study
to check the performance of the ACA under different
situations.

a) First of all a convergence study was carried out, as
well as the performance analysis under a limitation
of the computation time (suboptimality condition).

b) Second, performance under measurement noise in
the intensity signal was checked.

c¢) Finally, a comparison of the performance of several
calibration strategies including deviations in timing
and missing data was done.

ISO criteria' and MARD were computed for the overall and
hypoglycemia ranges as performance indicators. In all cases, the
statistical analysis of the results was performed with ANOVA
for repeated measures with Bonferroni adjustments for post hoc
comparisons.

E. Further Considerations

Henceforth, I will refer to current intensity signal while G
refers to glucose in plasma. G refers to the glucose estimation of
the GM. Subindex i refers to the ith LM, k is the kth time sample,
and c refers to the number of LMs. Finally, the suffix N will
refer to normalized signals Iy, G, and G ~ . The parameters
of the model (and LMs) were already described in Section II-A.

As the model is recursive, a calibration is needed at the begin-
ning of the computation. Thus, at time k = 1 Gy was replaced
by Gy. As clinical data available for each patient vary between
7 and 9 h, it makes sense to introduce another calibration, as
usually patients take a calibration every 6 h. This calibration
was introduced for all patients just before dinner (7 P.M.) where
all of them have a point from the glucometer. As this point was
taken at equilibrium conditions, the differences between this
measurement and BG were minimal.

III. RESULTS
A. Clinical Study

1) Individual Normalization: The model identified in [8]
was not directly applicable to the clinical study data, since
PN was used there. Besides, healthy subjects were studied.
However, the model structure identified in [8] (& = [In Ink-1
C;’N ©—1], abbreviated as IIG) was considered as the starting point
in this study for the identification of the IN model. Other struc-
tures (increasing the order of / and/or G signals) were checked,
yet results did not reveal significant differences. For this reason,
according to the parsimonious principle, the IIG structure was
chosen.

Table I, columns N1 and N2, shows the performance of the
IN model for ¢ = 2 and ¢ = 1, respectively, for a leave-one-
out cross-validation, considering IN parameters for the patient
in the validation set are known. Remark that this is an ideal
condition and results obtained are a “best-case performance”
for these data. A paired #-test between N1 and N2 showed no
significant difference (p = 0.23). Some overmodeling seems to
appear with ¢ = 2 in these data. If the histogram of sensor’s
sensitivity is studied in dataset 1 and compared with the Gluco-
day 3-h clamp data used in [8] (see Fig. 5), distributions with
different modalities are obtained. This may explain the better
performance of just one LM with the CGMS Gold, as compared

SO criteria for glucose estimations defines that a measurement is correct
if the difference with the reference value (Gr) is smaller than 15 mg/dL for
values under 75 mg/dL or smaller than 20% for G over 75 mg/dL.
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TABLE I
RESULTS: % OF WELL-ESTIMATED SAMPLES ACCORDING TO ISO CRITERIA
AND MARD, BOTH FOR THE WHOLE AND HYPOGLYCEMIC RANGES

CASES
CGMS p
Gold NI N2 Mi value
All range
77.4 ] 87.14T ] 89.067 | 78.13
IS0 (%) (14.58) | (16.69) | (14.82) | (13.77) 0.008
15.1 11.59 9.82 12.72
MARD (%) (5.43) (10.7) (4.09) (4.22) 0.12
Hypoglycemic range
71.9 89.71 92.21 85.07
0]
IS0 (%) (28.09) | (12.99) | (13.9) (29.3) 0.13
21.6 12.33 11.7 14.67
MARD (%) (16.62) | (4.67) 4.56) | (13.22) 0.09

Mean (standard deviation). Case N1 is the IIG structure, with ¢=2 and known
individual normalization (IN). Case N2 is the IIG structure with ¢=1 and known
IN. Case M1 is IIG structure with c=1, plus the adaptive scheme (ACA with four
calibrations) for the unknown IN. Tp<0.05 versus CGMS Gold.
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Fig. 5. Histogram of order of magnitude of sensor’s sensitivity for Glucoday
(bimodal) and CGMS Gold (unimodal).

to previous results with the Glucoday device. However, data are
not rich enough for conclusive results and further studies should
be carried out to check this fact.

For this reason, in this study just one LM will be considered
(plus its validity function) for further studies.

2) Adaptive Calibration Algorithm: This refers to the appli-
cation of the identified model for IN to a new patient, where the
vector of normalization parameters pmi is unknown. pm was
initialized using the mean of the individual parameters of the
population used for the identification of the model, according
to a leave-one-out cross-validation. After initialization, param-
eters were adapted to minimize the difference of the glucose
estimation and the reference measurements (calibrations). It is
important to mention that although the optimization is done us-
ing only calibration points, the performance has to be tested on
the full set of gold standard data.

Several studies were carried out using different calibration
strategies and different number of calibrations. All calibration

strategies employed a realistic number of calibrations (3—4 per
day). Finally, the one with best results and feasibility for the
patients was to use a total of four calibrations per day, plus an
initial calibration for the algorithm (for the start-up). The four
calibrations were taken at preprandial (just before they eat) and
1.5 h postprandial times for lunch and dinner. Finally, 15 patients
were considered, as two patients did not have information for
lunch time. The structure considered here was IIG with just
one LM, column N2 in Table I. Results are shown in Table I,
column M1. The time allowed for the optimization was 10 s
between samples for a processor running at 2.67 GHz, which is
equivalent to 5 min in a conventional 100 MHz microprocessor.

For case M1, in addition to MARD and ISO measures, the
continuous glucose error grid analysis [17] was also computed.
For the overall range, 92.18% of the samples were accurate read-
ings, 4.61% were benign errors, and only 3.21% were erroneous
estimations. For the original monitor, the results were, respec-
tively, 93.09%, 2.26%, and 4.65% (large number of erroneous
readings). Graphical results are depicted in Fig. 6. Since the
ISO criteria is more restrictive (78.13% versus 92.18% for our
algorithm), in next case studies, only the ISO and the MARD
will be considered for performance evaluation.

As an illustration, Fig. 7 shows the glucose output profile of
the ACA as compared to reference glucose and CGMS Gold for
Patient 3.

B. In Silico Study

1) Adaptive Calibration Algorithm: The clinical data avail-
able consist of around 9 h per patient, and the full performance
of the adaptive scheme cannot be tested. For this reason, the
proposed ACA was fully tested with one-week in silico data
and a larger population of 30 patients.

The use of longer time data allows us to check different
aspects of the algorithm: first, convergence of the parameters and
second, the performance in face of the variations of sensitivity
over time.

The model structure applied was the same as in the clinical
data case, i.e., IN, IIG structure and ¢ = 1, Table II column
Y1. The population model identified for the first day was tested
the following days (2 to 7), emulating CGM operation. Four
calibrations were made per day, at preprandial and 1.5 h post-
prandial times for breakfast and dinner, plus an extra calibration
for the first day for the start-up of the algorithm. The time al-
lowed for the optimization was 1 s between samples, which in
a processor running at 2.67 GHz is equivalent to 5 min in a
conventional 10 MHz microprocessor. A window of four cali-
brations (w = 4), corresponding to one day, was considered to
do the optimization for the parameters’ adaptation, according
to (5), since the studies of different w showed that this was the
window’s length with best performance.

Table II shows the results for the adaptation algorithm (col-
umn Y?2). Results are compared with the application of the
identified model when no adaptation of parameters is done, col-
umn Y3. Performance is drastically improved with adaptation,
both for ISO and MARD in the whole glucose range and hypo-
glycemia, with statistical significance.
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Fig. 7. Estimation samples of glucose (black line) using the ACA with four

calibrations (blue) for Patient 3. Comparison with reference glucose (red-dotted)
and estimations from CGMS Gold (green). Each sample is synchronized with
CGMS (5 min).

TABLE II
RESULTS: % OF WELL-ESTIMATED SAMPLES ACCORDING TO ISO CRITERIA
AND MARD, BOTH FOR THE WHOLE AND HYPOGLYCEMIC RANGES

Identification Validation
Y1 Y2 [ Y3 p
All range
99.97 90.61 60.28
IS0 (%) ©.11) 7.94) | @7.7) || <0000
1.76 9.13 18.73
MARD (%) (0.44) 2.8) 9.03) < 0.0001
Hypoglycemic range
100 87.55 63.38
IS0 (%) ©) (11.93) | @744) | 0%
1.27 13.11 17.66
MARD (%) 0.13) @) (7.28) 0.038

Mean (standard deviation). All results are for 30 patients. Case Y1 is the model
indentification’s results for IIG structure with c=1 and known individual normalization
(IN). Case Y2 is the application of identified Y1 to days 2 to 7 with adaptive scheme.
Case Y3 is the application of Y1 to days 2 to 7 with no parameters’ adaptation.
Identification results Y1 are not considered for the ANOVA test.

Fig. 8 shows the comparison of the one-week performance of
both estimations for a sample patient.

2) Convergence and Suboptimal Performance: Additional
in silico experiments were performed to study the robustness
of the ACA. In the first place, the parameter’s convergence was
studied and it was found that the optimum value was not reached

R-EGA

Estimated Rate [mg/dl/min]

-2 0 2
Reference rate [mg/dl/min]

(Left) comparison of rate-EGA (R-EGA) graphics for the original monitor used and (right) proposed ACA algorithm for its basic configuration, case M 1.

for some patients. For this reason, a study of the performance
of the ACA when the computation time is limited (suboptimal-
ity conditions) was carried out. Indeed, power management in
commercial monitors constrains the available computation time
in such adaptive schemes. Table III shows in columns Z1 and Z2
the performance when the computation time is limited to one
and four samples (5 and 20 min), respectively, from the time
a new calibration is performed, with a processor of 10 MHz.
Column Z3 shows the performance when computation time is
limited to just one sample (5 min) after a calibration, with a
microprocessor of 100 MHz. Z1 showed a statistically signifi-
cant degradation of performance. For the rest of configurations,
72 and Z3, no statistical difference was found with the uncon-
strained case Y2. Thus, even under suboptimality, the adaptation
is feasible. Based on these results, the next experiments were
done under the configuration Z3.

3) Noisy Current Intensity Measurements: To check the ro-
bustness of this algorithm, two aspects were checked. One was
the introduction of some noise in the current measurements. To
see a realistic value for this noise, a frequency study of the cur-
rent signals of the CGMS Gold monitor was performed. After
filtering the low frequencies, a noise signal remained with an
amplitude between 3% and 8%. For this reason, a random noise
of 5% was incorporated to the I signal. Performance of the
application of the model identified for day 1 with the adaptive
scheme to the rest of the days (2 to 7) is shown in column V1.

4) Calibration Strategy Including Deviations in Timing and
Missing Data: The second aspect to check the robustness of
the ACA is to modify the calibration strategy used. Several
cases were studied, as shown in Table V, trying to represent
different realistic scenarios. The requirements of this system is
to have between three and four calibrations per day, in pre- and
postpandrial times. Results show that some missing postpandrial
calibrations or the modification of the time of calibration do
not imply a significant degradation of the performance of this
algorithm.

IV. DISCUSSION

Results in Table I, columns N1 and N2, show a clear perfor-
mance improvement of the IN method with respect to the CGMS
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Estimation of samples of glucose (black line) using the ACA with four calibrations and w = 4 for Patient 23. Comparison with reference glucose

(red-dotted) and nonadaptive CA (blue). Each sample is synchronized with CGMS (5 min).

TABLE III
RESULTS: % OF WELL-ESTIMATED SAMPLES ACCORDING TO ISO CRITERIA
AND MARD, BOTH FOR THE WHOLE AND HYPOGLYCEMIC RANGES

Reference CASES
Y2 71 \ 72 \ 73 p
All range
90.61 85.567 | 88.76 89.59
(¥
IS0 (%) (7.94) (14.44) | (9.92) | (9.38) 0.03
9.13 10.457 9.59 9.35
[
MARD (%) (2.8) (3.99) | (3.06) | (2.92) 0.0013
Hypoglycemic range
87.55 87.82 88.34 88.26
o7
150 (%) (11.93) | (1051 | (1047) | (1039) || 2
13.11 12.86 12.79 12.71
MARD (%) 4 (3.72) | (3.69) | (3.66) 0.17

Mean (standard deviation). All results are for 30 patients. Case Z1 is the ACA when
computation time is limited to 5 min (one sample) with 10 MHz microprocessor.
Case Z2 is the same as Z1 with a limitation of 20 min (four samples). Case Z3 is the
same as Z1 but with 100 MHz microprocessor. p<0.05 versus reference Y2.

Gold? (statistically significant for the whole glycemic range).
This confirms the influence of interpatient sensor variability.
Contrary to Glucoday clamp data in [8], no significant differ-
ence was found between ¢ = 2 and ¢ = 1. This is suspected to
be due, as already stated, to the unimodal distribution of sen-
sor’s sensitivities in CGMS Gold data as compared to Glucoday.
However, more clinical studies are needed to get conclusive re-
sults. For ¢ = 1, a MARD below 10% is obtained when the
whole glycemic range is considered, reaching a MARD reduc-
tion of about 35% with respect to the CGMS Gold. Regarding
the hypoglycemic range, the improvement is even better, with
a MARD reduction of 46% reaching values of about 11.7%.
This was expected, as interpatient sensitivity variations were

ZFor the clinical study, the monitor used by the patients is chosen as reference
to compare the performance of the proposed algorithms since this measure
can be analyzed objectively with no need of implementing other CA which
sometimes are not feasible due to the data used in a new study.

TABLE IV
RESULTS: % OF WELL-ESTIMATED SAMPLES ACCORDING TO ISO CRITERIA
AND MARD, BOTH FOR THE WHOLE AND HYPOGLYCEMIC RANGES

Reference || Noisy meas.
73 Vi1 p
All range
89.59 90.31
150 (%) (9.38) (7.16) 0.32
9.35 9.4
MARD (%) (2.92) 2.51) 0.79
Hypoglycemic range
88.26 85.37
150 (%) (10.39) (11.02) 0.012
12.71 13.02
MARD (%) (3.66) (329 0.53

Mean (standard deviation). All results are for 30 patients. Case V1 is application
to days 2 to 7 with parameters’ adaptation of the identified model for day 1 with
IN when a noise of 5% is introduced in the current signal.

compensated by individualizing the normalization parameters,
eliminating thus a confounder of the dynamics between com-
partments. But this case is ideal, since IN parameters are con-
sidered to be known. Thus, this performance is not attainable in
practice and it must be considered as an upper limit of what can
be achieved.

When the ACA is applied to IN parameters, improvement
can still be observed as shown in Table I, column M1. The
clear limitation of the clinical data used due to its short duration
and scarcity of capillary measurements to carry out the adap-
tation must be taken into account. Nevertheless, the adaptive
scheme manages to decrement the MARD about 2.3% (16%
reduction with respect to CGMS Gold) during the first day and
four calibrations per patient. Improvement is more evident in
the hypoglycemic range, with a reduction of around 32% in the
MARD, depending on the model considered. Obviously, with
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TABLE V
RESULTS: % OF WELL-ESTIMATED SAMPLES ACCORDING TO ISO CRITERIA
AND MARD, BOTH FOR THE WHOLE
AND HYPOGLYCEMIC RANGES

Ref. CASES
73 R1 ‘ R2 ‘ R3 ‘ R4 ‘ RS p
All range
89.59 90.46 90.56 | 89.64 | 89.73 89.94
150 (%) (9.38) (7.86) | (9.07) | (9.43) | (8.77) (8.4) 0.17
9.35 9.37 9.08 9.47 9.25 9.25
MARD (%) (2.92) (2.67) (2.9) (3.04) | 2.72) | (2.71) 0-34
Hypoglycemic range
88.26 86.58 86.03 | 90.93 | 87.16 87.31
o7
IS0 (%) (10.39) || (11.13) | (10.91) | (7.29) | (11.09) | (10.91) 0.12
12.71 12.92 13.08 | 12.157 | 1291 12.93
MARD (%) (3.66) (3.24) | (3.54) | (3.19) | (3.69) | (3.68) 0.005

Mean (standard deviation). All results are for 30 patients. Modification of calibration strategies.
Case R1 is the consideration of three premeal calibrations. Case R2 is consideration of two
preprandial and two postprandial (2PP) calibrations randomly at 1.5h+0.5h. Case R3 is the
consideration of 2PP calibrations with three postprandial calibrations randomly missing per
week (same ones for all patients). Case R4 is the consideration of 2PP calibrations with one
postbreakfast calibration missing per week (different days for different patients). Case RS is the
same as R4 but the missing calibration is postdinner. Tp<0.05 versus reference Z3.

just four calibrations it is difficult to converge to the optimal pa-
rameters and statistical significance was not reached. However,
this result points out that with availability of longer time data,
this adaptation would reach a more significant reduction in the
MARD, getting closer to N2. This justifies the in silico studies
performed for a full validation of the ACA performance.

For the one-week in silico data the identified model has good
performance during the first day (identification day), as shown
in Table II, column Y1. It must be considered that the use of
simulated patients makes much easier the identification task,
reaching MARD values of 1.76% which obviously must not be
expected with real data. The performance of the ACA, column
Y2, versus the application of the CA with no adaptation, column
Y3, improves when both CAs are applied for the rest of the
days (days 2-7). A reduction in the MARD of 51% is achieved
when adaptation is considered, as compared to no adaptation,
for the whole glycemic range. In the case of hypoglycemia, the
reduction reaches 26%.

Thus, results obtained with one-week in silico data indicate, as
well as the validation case with clinical data, that the ACA is ca-
pable of compensating sensor’s sensitivity variations (inter- and
intrapatient), as new information is considered for the adaptation
of normalization parameters allowing for the model adjustment
to the new patient characteristics. Statistical significance was
achieved in these results; see Table II.

It is important to mention that only 9 of the 30 in silico
patients present hypoglycemic events (results from randomly
simulated patients). This makes this population small to lead to
any conclusive analysis in this region in the statistical tests.

When power management issues are taken into account
and computation time is limited to just one sample interval
(5 min) with a 100-MHz microprocessor, or four samples inter-
val (20 min) with a 10-MHz microprocessor, results show that
the performance of ACA is similar to the unconstrained case.
This indicates that the proposed algorithm meets commercial
requirements for its implementation. Results are significantly
different when all cases are considered. This is due to the degra-

dation of results when the 10-MHz microprocessor is used and
only one iteration after calibration is allowed for computation,
which is the most restrictive case. If the other two cases (Z2
and Z3) are considered and compared to the “ideal” case Y2, no
significant differences are found.

In addition, when some perturbations with regard to the origi-
nal configuration are introduced (noise in the sensor’s measure-
ment), the proposed algorithms still performs well; see Table I'V.
This shows the robustness of the algorithm with expected and
possible changes in its daily application. Significant differences
are only present in the ISO criteria for the hypoglycemic region,
probably due to the small size of the population.

If different calibration strategies are tested (see Table V),
results are very similar to the reference case Z3, even when
deviations from the calibration timing or missing calibrations
are present. Results do not present significant differences in the
overall range. Only in the MARD of the hypoglycemic region
results differ significantly. Paired #-test between the reference
case and each calibration strategy indicates that the MARD in
this region is better for case R3. This makes sense since when
three postmeal calibrations are not introduced, less information
of hyperglycemia is considered and better estimation of the
hypoglycemic region is expected due to nonlinearities.

V. CONCLUSION

In conclusion, the performance of current CGM devices can
be improved with the incorporation of interstitial-plasma glu-
cose dynamics into the CA and adaptation of normalization
parameters, reaching a significant increase in CGM accuracy.
This is so even in the hypoglycemic range, where the lack of
accuracy is an evident problem. The promising results obtained
motivate further clinical studies with larger populations.
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