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Abstract 

Potential step voltammetry is used to characterize the resistive and capacitive 

properties of electrochemical systems. Within those systems, electrochemical 

processes are modeled by means of equivalent circuits (ECs). In this study, we 

established and experimentally validated algebraic expressions describing the 

electrical response of those ECs. We then analyzed the features that allow 

significant differentiation between the ECs. Finally, we have proposed a method 

to graphically visualize and analyze the electrical response of the circuit to a 

potential step sequence. The application of this method to real electrochemical 

systems will allow us to not only identify the electrochemical processes taking 

place in an experiment but to also assess parameters such as the double layer 
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capacitance, the solution resistance, and the polarization resistance of the redox 

process. 

 

Keywords: potential step voltammetry, modeling, equivalent circuits. 

 

1. Introduction 

The study of interfacial activity in metal-solution systems is of great interest due 

to its potential applications in science and technology. Some examples include 

the optimization of the capacitive deionization process of water [1], improvement 

in the design of electrolytic capacitors for storing energy, improvement in 

techniques employed in the electropolishing of metal surfaces (electronic tongue 

treatment) [2], [3], and environmental applications such as electrocatalytic carbon 

dioxide reduction [4]. 

However, despite the practical importance of these fields of application and all 

the effort dedicated to them, advances in the last 50 years have uncovered 

theoretical and practical difficulties [5]. Even so, studies on the interfacial 

phenomenon have not lost momentum, and several authors, such as Delahay [6], 

Devanathan [7], Parsons [8], and Schmickler [9] have worked to expand our 

knowledge and improve the basic elements of these systems. 

The first model was established by Helmholtz who, when studying electrolytic 

solutions, proved that the electrical behavior of the metal-solution interface was 

similar to that of electrical capacitors. Therefore, he proposed that the interfacial 

response in these systems could be modeled with this type of electrical 

component [10]. Between 1910 and 1913, Gouy and Chapman developed and 
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proposed the “diffuse layer model,” in which they argued that the capacitive 

effects were due to the metal interacting with the statistical distribution of charge 

caused by electrostatic interactions and thermal agitation. Unfortunately, neither 

of the two theoretical models fit the measured values with acceptable precision. 

In 1924, Stern proposed the electrical “double layer model,” which was the result 

of combining the Helmholtz rigid layer model with the Gouy-Chapman diffuse 

layer model. Stern proposed that the double layer would behave similarly to two 

capacitors connected in series.  

 

Scientists are exploring new methodologies for modeling the theoretical behavior 

of the interfacial region such as those based on ab initio [11] quantum mechanics 

or on density-functional theory (DFT). Both of these models have been used to 

study the adsorption processes of typical anions such as Cl-, SO4-2, or PO4-3, 

whose distributions depend on the electric potential applied. These anions are 

adsorbed on specific areas of the metal surface and are separated by solvent 

molecules, although occasionally some cations such as K+ or Na+ adsorb on 

those surfaces [12]. This type of theoretical calculation helps us understand the 

ion-solvent-electrode interactions and therefore expands our knowledge on 

interfacial processes and their theoretical basis. 

In recent years, a large part of our work has been dedicated to the study of the 

electronic tongue based on pulse voltammetry and its application to different 

areas of technological interest such as, for example, quality control of water, 

drinks, and food. In a recent study we discussed the importance of the geometric 

design of measuring cells and the electropolishing of electronic tongue electrodes 

[13], [14] to implement automatic “on-line” control systems. Despite the efforts of 
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different research groups to fit the intensity values obtained in voltammetric 

electronic tongue measurements to existing equivalent circuits [15], [16], 

according to our experience there are still some discrepancies that could be 

overcome by making some modifications to these equivalent circuits. As a 

consequence of those recent results, we present this paper, in which we outline 

an approach to modeling the metal-solution interface. 

 

2. Experimental 

For all subsequent analyses, the modeled electrochemical system will consist of 

an electrochemical cell with an inert electrolyte solution, where two electrodes 

made of the same material are inserted (e.g. two Au electrodes). If there is a 

significant difference in their surfaces, it makes it so the working electrode (e.g. 

a microelectrode) is ideally polarizable while the counter electrode is not.  

 

2.1 Potential step sequence design 

The behavior of the systems was studied when a sequence of potential steps 

𝑣𝑣(𝑡𝑡) was applied. A graph of such sequence is depicted in Fig. 1. The open-circuit 

potential (OCP) is marked as 𝑉𝑉0, and this is the initial potential. The amplitude of 

all subsequent potential steps is denoted as Δ𝑉𝑉𝑗𝑗, and 𝑡𝑡𝑗𝑗 is the time at which each 

step happens. The overpotential value corresponding to each step is referred to 

as 𝜂𝜂𝑗𝑗. Both the potential steps and the overpotential values are illustrated in 

Figure 1. Apart from the definitions of Δ𝑉𝑉𝑗𝑗 and 𝜂𝜂𝑗𝑗 given in Figure 1, note that the 

following relations are also true: 
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Figure 1. Potential steps sequence diagram and relationship between the overpotential and 

potential values. 

 

• Each potential step can be expressed as the difference between the 

following overpotential and the one prior to it: 

Δ𝑉𝑉𝑗𝑗 = 𝜂𝜂𝑗𝑗 − 𝜂𝜂𝑗𝑗−1  (1)  

• Each overpotential value can be calculated as the cumulative sum of the 

previous potential steps: 

𝜂𝜂𝑗𝑗 = �Δ𝑉𝑉𝑘𝑘

𝑗𝑗

𝑘𝑘=1

   
(2)  

 

We employed potential step voltammetry to experimentally validate the algebraic 

expressions obtained for the electrical response of each one of the equivalent 
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circuits. Six circuits with different values for resistors and capacitors were 

evaluated for each EC. 

In most cases, the basic prerequisite we required of the potential step sequence 

design was that after applying a complete potential step cycle, the net charge 

accumulated in the system had to be zero or negligible. This could be 

accomplished if the charge started from an initial OCP and returned to the same 

value at the end, while the intermediate steps had symmetrical potential and time 

duration. On the other hand, the step duration had to be long enough for the 

exponentially decaying terms to vanish before the next potential was applied. The 

duration of the potential steps Δ𝑡𝑡 = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1 was evaluated based on the time 

constant of the system (𝑅𝑅s𝐶𝐶dl or 𝑅𝑅s𝑅𝑅p
𝑅𝑅s+𝑅𝑅p

𝐶𝐶dl, depending on the models). The pattern 

sequence designed included four potential steps, distributed symmetrically with 

respect to the OCP (𝑉𝑉0) value. The following steps were employed: the sweep 

started at 𝑉𝑉0 and, once the duration of the pulse Δ𝑡𝑡 had passed, the following 

potential step was applied while recording the variation in current intensity. After 

a time, again equal to Δ𝑡𝑡, the cell returned to 𝑉𝑉0 and stayed for another time 

interval, Δ𝑡𝑡. The third potential step was applied in the direction opposite to the 

first one. Last, another potential step was applied to return the cell to the OCP 

value. Thus, the values of the variables referred to in Figure 1 were as follows: 

𝑡𝑡𝑗𝑗 = 𝑗𝑗Δ𝑡𝑡       𝑗𝑗 = 1, 2, 3, 4 (3)  

𝜂𝜂1 = Δ𝐸𝐸    𝜂𝜂2 = 0    𝜂𝜂3 = −Δ𝐸𝐸    𝜂𝜂4 = 0 (4)  

Δ𝑉𝑉1 = Δ𝐸𝐸    Δ𝑉𝑉2 = −Δ𝐸𝐸    Δ𝑉𝑉3 = −Δ𝐸𝐸    Δ𝑉𝑉4 = Δ𝐸𝐸 (5)  

We repeated each of the scans five times and averaged the measurements 

obtained before employing those numbers in later calculations. To study the 
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reproducibility of the measurements, the basic potential step sequence proposed 

can be sequentially repeated twice, hence making the total number of potential 

steps equal to eight. 

We experimented with several amplitudes Δ𝐸𝐸 for the potential steps in order to 

test the analytical reproducibility of the equivalent circuits studied. 

 

2.2 Equivalent circuits measurements 

All the measurements were performed in a Faraday cage with the aim of 

electrically shielding the system. For the validation studies on the various 

equivalent circuit models proposed, we used standard resistors and capacitors. 

Resistive and capacitive elements were assembled without soldering (by 

inserting the component in a breadboard). Although the values indicated in the 

paper are the nominal values of the components, the values used in the 

calculations were obtained using a FLUKE 28 II multimeter. 

The equipment used to perform the potential step voltammetry assays were the 

Autolab PGSTAT 100 and a potentiostat FRA-Plus-Mini, which has previously 

been described in the literature [16].  

 

 

 

3. Theory 

3.1 General structure of the equivalent circuit 

Equivalent circuits are useful in electrochemical studies in order to understand 

and interpret, and later to predict the behavior of the systems [17]. Using them 

allows us to obtain an electrical response similar to that of the electrochemical 
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system that is being studied when a voltammetric or a specific amperometric 

boost is applied.  

Figure 2 shows the general structure of the equivalent circuit of an 

electrochemical system. The left-most voltage generator represents the 

sequence of potential steps forced upon the system, that is, the function 𝑣𝑣(𝑡𝑡) in 

Figure 1. The electrochemical system itself comprises a battery providing a 

continuous voltage 𝑉𝑉0 equal to the OCP, and a linear circuit whose composition 

will depend on the specific theoretical models for the interfacial processes being 

studied, though it usually includes discrete electrical components: resistors, 

inductors, capacitors, etc. Note that the inclusion of the battery is necessary if the 

OCP is to be modeled, since a purely linear circuit cannot account for this effect. 

 

Figure 2. General structure of the equivalent circuit of an electrochemical system. 

 

3.2 Faradaic and non-Faradaic processes  

Electrodic processes are traditionally classified as either Faradaic or non-

Faradaic. The current in non-Faradaic processes is associated with electric 

charging and discharging processes at interfacial regions. For these physical 

processes, the transported charge depends on the magnitude of the potential 
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step applied (Δ𝑉𝑉𝑗𝑗) [18]. This is an important factor that must be taken into account 

when attempting to carry out an accurate study of the double electric layer and 

its electrochemical properties. 

On the other hand, Faradaic processes are associated with electron transfer 

through the metal-solution interface, so redox processes occur. The electrokinetic 

model of Butler and Volmer established the basis for the theoretical model of this 

type of current exchange. According to their model, the current transferred is a 

function of the overpotential (𝜂𝜂𝑗𝑗) applied. 

Given that both phenomena can and usually do take place simultaneously in 

electrodic processes, it would be logical that any mathematical model that tries 

to accurately interpret the electrochemical behavior of these systems would 

include not only the potential step difference but also the overpotential applied. A 

general equation for this is the following: 

 

𝑖𝑖𝑗𝑗(𝑡𝑡) = 𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡� + 𝑖𝑖F�Δ𝑉𝑉𝑗𝑗 , 𝜂𝜂𝑗𝑗; 𝑡𝑡�   (6)  

 

Where 𝑖𝑖𝑗𝑗(𝑡𝑡) is the total current that goes through the system at any time 

between the jth and (j+1)th voltage steps; 𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡� is a function that models the 

non-Faradaic component of such current; and 𝑖𝑖F�Δ𝑉𝑉𝑗𝑗 , 𝜂𝜂𝑗𝑗; 𝑡𝑡� is the function that 

models the Faradaic component. 

Eq. 3 can also be written as a function of overpotentials: 

𝑖𝑖𝑗𝑗(𝑡𝑡) = 𝑖𝑖NF�𝜂𝜂𝑗𝑗 − 𝜂𝜂𝑗𝑗−1; 𝑡𝑡� + 𝑖𝑖F�𝜂𝜂𝑗𝑗−1, 𝜂𝜂𝑗𝑗; 𝑡𝑡�   (7)  

However, this aspect is not usually taken into account in fundamental theoretical 

models or in the most commonly used equations in electrochemistry because the 
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theoretical modeling of electrochemical processes is truly complex. This difficulty 

is the main reason why for this type of study it is ideal to find a situation in which 

only one process type (Faradaic or non-Faradaic) is the dominant one. For 

example, in some transient analysis techniques such as voltammetry and 

polarography, the signal is not recorded during the first moments of measuring in 

order to minimise the weight of non-Faradaic currents that appear mainly at the 

beginning of the transient. 

In many cases, the simplifications used to address the modeling of 

electrochemical processes allow us to achieve results that are consistent with the 

experimental data. Unfortunately, there is a negative side to this type of 

simplification, since it does not allow us to obtain a global vision of the process. 

Electrochemical techniques are usually dynamic. Therefore, if the simultaneous 

existence of Faradaic and non-Faradaic processes is not taken into account, we 

may misinterpret the electrochemical behavior of the systems or miscalculate 

their properties. 

 

3.3 Modeling non-Faradaic electrochemical processes with equivalent circuits 

To analyze what happens in the electrode-solution system when an electrical 

boost is applied, we can use the diagram shown in Figure 3, where the two 

branches involved in an electrodic system are shown. These branches are: 

1. The electronic branch, which goes from the equipment that generates the 

current signal through a conductor wiring to the electrodes. 

2. The ionic branch, which is associated with the solution where the current 

movement is in parallel (according to Kohlrausch’s law of independent 
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migration of ions). For this reason, the number of branches for the ionic 

conduction depends on the number of different existing ions. 

If a potential difference is applied to this system, ions begin to migrate toward the 

electrodes in order to compensate for the electrical charge gradient created. 

Capacitance phenomena and Faradaic processes are found in the region 

between the electrodes and the solution. The movement of charge between the 

solution and the interfacial regions will not stop until electrostatic equilibrium is 

achieved with respect to the imposed electric field. 

 

Figure 3. Diagram for the interpretation of non-Faradaic processes, when a direct current is 

applied between two electrodes. 

 

In Figure 3, the discontinuous lines parallel to the electrodes represent the 

approximation limit of anions and cations to the electrode surface. The distance 

from these electrical double layers to each electrode depends on the type of ion 

and its ionic radius, and on the solvation and temperature of the system. The total 
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charge accumulated at the interface between the working and counter electrodes 

allows the electrical capacity of the system to be calculated. If we know the 

electrical potential of each electrode in the final steady state. 

On the other hand, the independent migration principle of Kholrausch requires at 

least two resistors in parallel to be inserted, one associated with the movement 

of cations in the solution and the other with the anions.  

 

3.3.1 Randles Equivalent Circuit 

Figure 4-A shows the Randles equivalent circuit, which can be used when 

working with potential steps to explain the non-Faradaic processes shown in 

Figure 3. This circuit corresponds to the “linear circuit” block in Figure 2. The 

electrical conduction from the ions contained in solution is associated with Rs+ 

and Rs- resistance, while the interfacial electrical properties of the working and 

counter electrodes are associated with capacitors Cdl+ and Cdl-. 

 

Figure 4. Randles equivalent circuits proposed to study the electrochemical behavior of non-

Faradaic systems in solution when applying direct current between two electrodes. (A) Typical 

EC (B) Simplified EC and (C) Reduced EC. 
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It is common to use a simplified equivalent circuit (Figure 4-B) where the parallel 

resistors (Rs+ and Rs-) have been replaced by their equivalent resistance Rs: 

1
𝑅𝑅s

=   
1
𝑅𝑅s+

+
1
𝑅𝑅s−

 (8)  

However, it is even more common to use a reduced equivalent circuit (Figure 4-

C), where the capacitors associated with the cathode and anode have been 

replaced by an equivalent capacitor, Cdl: 

1
𝐶𝐶dl

=   
1
𝐶𝐶dl+

+
1
𝐶𝐶dl−

 (9)  

The theoretical modeling for the reduced Randles circuit response shown in 

Figure 4-C leads to Eq. 10, which gives the current intensity through the RC 

system caused by a potential step between the two electrodes (see section I in 

the appendix): 

𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡� =
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl 

(10)  

 

  

  

3.3.2 Stern equivalent circuit 

The Randles equivalent circuit has been used to analyze experimental data by 

applying the Helmholtz model as well as the Gouy Chapman model but it has not 

provided satisfying results. Stern suggested that poor fit between experimental 

data and simulations using the previous models (Figure 4) is due to the simplicity 

of these models. Aiming to solve those problems, he suggested that each of the 
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electrodes’ charged regions (Helmholtz and Gouy Chapman) acted as a 

capacitor in series with respect to the electrode surface. According to this 

suggestion, when non-specific adsorption of ions occurs, the total double-layer 

capacity formed by the outer Helmholtz plane and the diffuse layer results in the 

following equation: 

1
𝐶𝐶dl

=   
1
𝐶𝐶H

+
1
𝐶𝐶GC

 (11)  

Where Cdl represents the electrical double layer capacitance, CH the outer 

Helmholtz plane capacitance, and CGC the Gouy-Chapman diffuse layer 

capacitance. Accordingly, the reduced Randles equivalent circuit (Figure 4-C) is 

modified by inserting two capacitors in series, to obtain the Stern model (Figure 

5). 

The introduction of the double condenser proposed by Stern into the basic 

Randles circuit, leads back to the equivalent circuit presented in Figure 4-B, as 

long as the following relationship between the capacitors forming the electrical 

double layer is true: 

1
𝐶𝐶𝑑𝑑𝑑𝑑

=
1

𝐶𝐶𝑑𝑑𝑑𝑑+
+

1
𝐶𝐶𝑑𝑑𝑑𝑑−

=
1
𝐶𝐶𝐻𝐻+

+
1

𝐶𝐶𝐺𝐺𝐺𝐺+
+

1
𝐶𝐶𝐻𝐻−

+
1

𝐶𝐶𝐺𝐺𝐺𝐺−
 (12)  

 

 

Figure 5. The Reduced equivalent circuit proposed by Stern to study non-Faradaic 

electrochemical behavior in a solution by applying potential steps between two electrodes. 



15 

 

The equivalence between Randles and Stern models implies that the Stern model 

cannot provide any improvement with regards to fitting experimental data.  

 

3.3.3 Equivalent circuit for a binary salt system 

Based on the Helmholtz rigid layer model, we know that when the electrolyte 

solution studied contains two different salts (which are inert from the redox point 

of view), its reduced equivalent circuit has to have two capacitors in parallel. 

These capacitors are associated with the mixed interface formed by the two types 

of ions that are in direct contact with the metal surface, both on the cathode and 

anode. If the number of different ion species is greater than two, it would be 

necessary to use more capacitors in parallel. 

 

 

Figure 6. Reduced equivalent circuit (Rs1-Cdl1)//(Rs2-Cdl2) proposed to study the non-Faradaic 

electrochemical behavior of a binary salt solution, by applying direct current between two 

electrodes. 
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Figure 6 shows two types of ions (i.e., of a different size or charge) physisorbed 

on the metal interface due to the electrical field, and in random order. If the ions 

are ordered by size, two different charge levels are clearly established and 

arranged in a Helmholtz-type configuration, in parallel. The diagram also includes 

the resistances (Rs), associated with the ion transport for each type of salt present 

in the system. Therefore, the reduced equivalent circuit corresponding to a binary 

salt system must be similar to that shown in this figure. 

 

Since the circuit consists of two parallel branches equal to that of Figure 4-C and 

the same potential step is applied to both branches, the current response can be 

modeled as the sum of two currents in the same way as in Eq. 10: 

𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡� =
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s1

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s1𝐶𝐶dl1

 
+
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s2

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s2𝐶𝐶dl2

  
(13)  

where Rs1 and Rs2 are the values of the resistance associated with ion transport 

and the capacitors (Cdl1 and Cdl2) are associated with the interfacial capacitance 

of each salt in Farads. 

 

3.4 Modeling electrochemical Faradaic processes with equivalent circuits 

Just as two different cases were presented to study non-Faradaic processes, two 

possible cases to model Faradaic electrochemical processes can also be 

considered. The first one is a simple system, where only one redox electrode 

process occurs at the working electrode, while the second model presents a 

system with two electrode processes that can occur simultaneously. Extending 

this model for n electroactive species would allow us to interpret the behavior of 
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complex systems such as, for example, multicomponent systems studied using 

electronic voltammetric tongues. 

 

3.4.1 Simple Faradaic Systems 

The simplest equivalent circuit used for the study of Faradaic electrodic 

processes is shown in Figure 7. The figure represents a reduced equivalent 

circuit, similar to that shown in Figure 4-C, but with a parallel resistance (Rp) added 

to the capacitor associated with the electrical double layer. 

 

Figure 7. Reduced equivalent circuit Rs-(Rp//Cdl) employed to model Faradaic processes when a 

potential step between two electrodes is applied. 

 

The solution to the differential equation in this model is formed by three terms 

(see section II in the appendix). The first two are associated with the Faradaic 

currents that cross the interface because of the resistance (Rp); these include one 

constant term depending on the overpotential and one decaying term which is a 

function of the potential step. The third term is associated with the non-Faradaic 

current accumulated in the Cdl capacitor, and it is a decaying term whose 

amplitude is a function of the potential step too: 
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𝑖𝑖F�Δ𝑉𝑉𝑗𝑗 , 𝜂𝜂𝑗𝑗; 𝑡𝑡� + 𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡�

=
𝜂𝜂j

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
−

Δ𝑉𝑉j
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl +

Δ𝑉𝑉𝑗𝑗
𝑅𝑅s

𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(14)  

 

3.4.2 Binary Faradaic systems 

A binary Faradaic system is formed by two species (1 and 2) that can be oxidized 

or reduced at the electrode surface. Both processes are independent of one 

another, and may take place at the same time if the conditions of the electric 

potential applied are appropriate. The equivalent circuit diagram intended for 

application in this type of process consists of two models (see Figure 7) in 

parallel, as shown in Figure 8. 

 

Figure 8. Reduced equivalent circuit (Rs1-(Rp1//Cdl1))//(Rs2-(Rp2//Cdl2)) proposed for the study of 

systems with dual Faradaic processes and continuous current. 

 
From Eq. 14 it is easy to demonstrate that when a potential step is applied, the 

Faradaic current that passes through this equivalent circuit or, in general, one 
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with a larger number N of branches in parallel (in a similar diagram) results in the 

following: 

𝑖𝑖F�Δ𝑉𝑉𝑗𝑗 , 𝜂𝜂𝑗𝑗; 𝑡𝑡� + 𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡�

= ��
𝜂𝜂𝑗𝑗

𝑅𝑅p𝑛𝑛 + 𝑅𝑅s𝑛𝑛
−

Δ𝑉𝑉𝑗𝑗
𝑅𝑅p𝑛𝑛 + 𝑅𝑅s𝑛𝑛

𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅p𝑛𝑛+𝑅𝑅s𝑛𝑛
𝑅𝑅p𝑛𝑛𝑅𝑅s𝑛𝑛𝐶𝐶dl𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s𝑛𝑛

𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅p𝑛𝑛+𝑅𝑅s𝑛𝑛
𝑅𝑅p𝑛𝑛𝑅𝑅s𝑛𝑛𝐶𝐶dl𝑛𝑛�  

(15)  

where the subscript n refers to each branch of the system. 

 

3.5 Mixed Faradaic and non-Faradaic systems 

One of the most common situations found in electrochemical studies is a system 

with two different soluble ionic compounds, with the first one being an inert salt 

from a redox point of view, while the second one is an active redox component. 

Usually, an inert background salt is used to reduce the solvent resistance and to 

ensure that the transport of the active redox agent is controlled mainly by 

diffusion. In this case, the equivalent circuit related to the electrochemical system 

would be similar to that shown in Figure 9. If we apply a potential difference, the 

inert electrolyte, which is associated with the non-Faradaic branch (formed by Rs1 

y Cdl1 in series), will transport a non-Faradaic charge (Q1nF), while the 

electroactive salt associated with the Faradaic branch will transport a fraction of 

the non-Faradaic charge (Q2nF). The Q2nF will be accumulated in Cdl2, and so will 

a Faradaic charge (Q2F) that passes through the polarization resistance (Rp2).  
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Figure 9. Reduced equivalent circuit (Rs1-Cdl1))//(Rs2-(Rp2//Cdl2)) proposed to study mixed 

Faradaic and non-Faradaic systems. 

 

The mathematical model that corresponds to the electrical behavior of the 

previous equivalent circuit results from the sum of Eq. 10 and Eq. 14: 

𝑖𝑖F�Δ𝑉𝑉𝑗𝑗 , 𝜂𝜂𝑗𝑗; 𝑡𝑡� + 𝑖𝑖NF�Δ𝑉𝑉𝑗𝑗; 𝑡𝑡�

=
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s1

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s1𝐶𝐶dl1 +

𝜂𝜂j
𝑅𝑅𝑝𝑝2 + 𝑅𝑅𝑠𝑠2

−
Δ𝑉𝑉j

𝑅𝑅𝑝𝑝2 + 𝑅𝑅𝑠𝑠2
𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝2+𝑅𝑅𝑠𝑠2
𝑅𝑅𝑝𝑝2𝑅𝑅s2𝐶𝐶dl2

+
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s2

𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝2+𝑅𝑅𝑠𝑠2
𝑅𝑅𝑝𝑝2𝑅𝑅s2𝐶𝐶dl2 

(16)  

 

4. Results and discussion 

4.1 Equivalent circuit models for non-Faradaic processes 

4.1.1 Analysis of potential step sequences in an Rs-Cdl system 

The current intensity response for the whole duration of the pulse sequence of 

the RS-Cdl system can be obtained from Eq. A.9: 

Cdl1

Cdl2

Rs2

Rs1

Rp2

+ -v(t) - V0
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𝑖𝑖𝑗𝑗(𝑡𝑡) =
1
𝑅𝑅𝑠𝑠
�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

         𝑡𝑡𝑗𝑗 < 𝑡𝑡 ≤ 𝑡𝑡𝑗𝑗+1  
(17)  

To study the dynamic response in RC systems when the potential step sequence 

described by Eqs. 14 to 16 is applied, it can be more convenient to analyze the 

charge variations accumulated in the capacitor than to try to make a direct 

analysis of the variations in current intensity. After applying a potential step Δ𝑉𝑉𝑗𝑗, 

the charge (qj) stored in the capacitor (Cdl) can be calculated as in Eq. A.26: 

𝑞𝑞𝑗𝑗(𝑡𝑡) = 𝐶𝐶dl𝜂𝜂𝑗𝑗 − 𝐶𝐶dl𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

 
(18)  

Another interesting way to analyze the electrical response of RC networks to a 

potential step sequence is to calculate the natural logarithm for the absolute value 

of intensity. From Eq. 17: 

log 𝑖𝑖𝑗𝑗(𝑡𝑡) = − log𝑅𝑅s −
𝑡𝑡 − 𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl

+ log��Δ𝑉𝑉𝑗𝑗𝑒𝑒
−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl

𝐽𝐽

𝑗𝑗=1

� 
(19)  

For sufficiently long voltage steps, the last term in Eq. 19 can be approximated 

by Δ𝑉𝑉𝑗𝑗: 

log 𝑖𝑖𝑗𝑗(𝑡𝑡) = − log𝑅𝑅s −
𝑡𝑡 − 𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl

+ logΔ𝑉𝑉𝑗𝑗 = log �
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s
� −

𝑡𝑡 − 𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl

 (20)  

Figure 10 shows the electrical response of the RS-Cdl network to the pulse 

sequence obtained from the experimental measurements and from the 

application of the algebraic expressions. The duration of each potential step is 

Δ𝑡𝑡 = 20 ms while the amplitude is Δ𝐸𝐸 = 1 V. 

Figure 10-A shows the difference between the experimental and theoretical 

transient current. Although by visual inspection a good match between 
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experimental data and theoretical values is observed, due to the sharp transition 

at the beginning of each pulse and the low current values at the end, the 

quantitative validation of this fitting is highly affected by the noise. 

 

Figure 10. Experimental data of the electrical response of an Rs-Cdl network (Cdl=3 µF and Rs=1 

kΩ) to the potential step sequence (Δt=20 ms and ΔE=1 V). (A) Transient current (B) 

Accumulated charge (C) Logarithm of the transient current (points in the first interval 𝒕𝒕 < 𝒕𝒕𝟏𝟏 have 

been omitted because of the erratic values obtained when the measured current was close to 

zero and therefore affected by electrical noise processes). 

 

Figure 10-B shows the charge stored in the capacitor as a function of time. It is 

noteworthy that the charge limit is 3 µC and the discharge is practically complete 

after each of the cycles. The charge signal allows more convenient quantitative 
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evaluation of the fitting between the experimental data and the theoretical values 

(Eq. 18) than the current signal. Table 1 shows the fitting of the normalized root 

mean square error (NRMSE) obtained for the six configurations tested for this 

EC. The NRMSE for this study is defined as the root mean square error (RMSE) 

normalized to the root mean square value of the signal (RMS). 

 

Table 1. Experimental validation of the algebraic expression of the accumulated 

charge for different Rs-Cdl circuits 

EC ΔV 

(V) 

Δt 

(ms) 

Rs 

(Ω) 

Cdl 

(µF) 

NRMSE 

(%) 

1 0.3 2 60 3 2.07 

2 0.3 2 100 1 4.35 

3 0.3 10 100 10 2.75 

4 0.3 100 100 100 2.53 

5 1 20 1000 3 3.46 

6 1 300 1000 39 3.19 

EC ΔV 

(V) 

Δt 

(ms) 

Rs 

(Ω) 

Cdl 

(µF) 

NRMSE 

(%) 

1 0.3 2 60 3 2.07 

2 0.3 2 100 1 4.35 

3 0.3 10 100 10 2.75 

4 0.3 100 100 100 2.53 

5 1 20 1000 3 3.46 
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6 1 300 1000 39 3.19 

 

For all the ECs the NRMSE is below 5%. Considering the signal noise and the 

limited accuracy of the equipment used to apply and measure signals, these low 

NRMSE values prove that Eq. 18 is suitable for interpreting the electrical behavior 

of RC systems and could be used to experimentally obtain the values of Rs and 

Cdl in real electrochemical non-Faradaic systems. 

Figure 10-C shows the natural logarithm for the absolute value of intensity as a 

function of time in milliseconds.  

Consistent with Eq. 20, the graph in Figure 10-C consists of a set of parallel lines 

starting from a value near -7, since  ln � 1
1000

� ≈ −6.9 (recall that for this 

experiment Δ𝐸𝐸 = 1 V and 𝑅𝑅𝑠𝑠 = 1 kΩ). The slope of each line, − 1
𝑅𝑅s𝐶𝐶dl

, can be 

used to estimate the time constant of the system.  

Taking into account the results shown in Figure 10, the potential pulses 

composing the sequence defined by Eqs. 14 to 16 can be divided into two groups. 

The first one, or “excitation steps,” causes the capacitor to become charged, and 

the second group, or “relaxation steps,” is where the behavior of the system is 

dominated by the discharge of the capacitor. Therefore, the potential steps 

corresponding to overpotential transitions from 0 to 1 V and from 0 to -1 V are 

excitation steps, while the steps corresponding to transitions from 1 V to 0 and 

from -1 V to 0 are relaxation pulses. The initial null overpotential can be 

considered a neutral point of charge. 

Figure 11 illustrates the electrical response for the same Rs-Cdl system but with 

a step time of only 5 ms. Experimental and theoretical data fit consistently by 

visual inspection for all three signals. 
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Figure 11. Experimental data of the electrical response of an Rs-Cdl network (Cdl=3 µF and Rs=1 

kΩ) to the potential steps sequence (Δt=5 ms and ΔE=1 V). (A) Transient current (B) 

Accumulated charge (C) Logarithm of the transient current. 

 

The main differences between Figure 10-A and Figure 11-A are related to the 

peak intensity. In Figure 10-A, the peak intensity remains practically constant 

while in Figure 11-A it varies significantly because of the reduced pulse duration, 

which means that the capacitor does not reach its steady state, neither fully 

charged nor fully discharged, before the application of each potential step. On 

the other hand, it should be emphasized that when working with two electrodes, 

the obtained function i(t) relates the intensity directly to time as well as to the 

overpotential applied (Eq. 17). 
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Figure 11-B shows the experimental and theoretical (Eq. 18) data fitting of the 

charge stored in the capacitor as a function of time. As mentioned previously, in 

this case the value of the charge in the capacitor is not zero at the end of the 

relaxation pulses. 

When the logarithm of the current is plotted (Figure 11-C) the start and end points 

for the parallel lines are now different for each pulse. 

 

4.1.2 Response of the equivalent circuit in binary systems (Rs1-Cdl1)//(Rs2-Cdl2) 

The electrochemical intensity-time and charge-time responses of a binary system 

modeled by two parallel RC branches can be derived from Eqs. 10 and 18: 

𝑖𝑖𝑗𝑗(𝑡𝑡) =
1
𝑅𝑅s1

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s1𝐶𝐶dl1�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖

𝑅𝑅s1𝐶𝐶dl1

𝑗𝑗

𝑖𝑖=1

+
1
𝑅𝑅s2

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s2𝐶𝐶dl2�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖

𝑅𝑅s2𝐶𝐶dl2

𝑗𝑗

𝑖𝑖=1

 

(21)  

𝑞𝑞𝑗𝑗(𝑡𝑡) = (𝐶𝐶dl1 + 𝐶𝐶dl2) 𝜂𝜂𝑗𝑗 − 𝐶𝐶dl1𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s1𝐶𝐶dl1�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖

𝑅𝑅s1𝐶𝐶dl1

𝑗𝑗

𝑖𝑖=1

− 𝐶𝐶dl2𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s2𝐶𝐶dl2�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖

𝑅𝑅s2𝐶𝐶dl2

𝑗𝑗

𝑖𝑖=1

 

(22)  

Figure 12 illustrates the electrical response of an (Rs1-Cdl1)//(Rs2-Cdl2) circuit. 

Although the graph morphology for the transient current (Figure 12-A) and the 

accumulated charge (Figure 12-B) for this binary system is very similar to the 

case of simple systems, the behavior of the log 𝑖𝑖𝑗𝑗(𝑡𝑡) signal (Figure 12-C) presents 

a clear difference. The decreasing segments have two different slopes: the slope 

of the first part is inversely proportional to min(𝑅𝑅s1𝐶𝐶dl1,𝑅𝑅s2𝐶𝐶dl2), while it is 
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inversely proportional to max(𝑅𝑅s1𝐶𝐶dl1,𝑅𝑅s2𝐶𝐶dl2) for the second part. Note that all 

the peaks in the graph have the same amplitude, which corresponds to a situation 

in which Δ𝑡𝑡 ≫ max(𝑅𝑅s1𝐶𝐶dl1,𝑅𝑅s2𝐶𝐶dl2). Therefore, the current logarithm signal can 

be used to identify the type of processes taking place in a non-Faradaic 

experiment. 

 

Figure 12. Experimental data of the electrical response of an (Rs1-Cdl1)//(Rs2-Cdl2) network 

(Cdl1=10 µF, Cdl2=10 µF, Rs1=3200 Ω and Rs2=180 Ω) to the potential steps sequence (Δt=100 

ms and ΔE=1 V). (A) Transient current (B) Accumulated charge (C) Logarithm of the transient. 

 

Good agreement between experimental and theoretical data for the algebraic 

expression of the accumulated charge (Eq. 22) was obtained as shown in Table 

2. 
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Table 2. Experimental validation of the algebraic expression of the accumulated 

charge for different (Rs1-Cdl1)//(Rs2-Cdl2) circuits 

EC ΔV 

(V) 

Δt 

(ms) 

Rs1 

(Ω) 

Cdl1 

(µF) 

Rs2 

(Ω) 

Cdl2 

(µF) 

NRMSE 

(%) 

1 1 200 200 100 500 39 2.92 

2 1 100 1000 10 500 10 4.70 

3 1 200 1000 10 500 39 3.02 

4 1 200 1000 10 500 100 2.73 

5 1 100 3200 10 180 10 3.16 

6 0.5 500 3200 10 180 100 3.09 

 

4.2 Equivalent circuit model for Faradaic processes   

The validity of Eq. 14, which is associated with the reduced equivalent circuit 

shown in Figure 7, is demonstrated by fitting the experimental data obtained from 

a set of electrical circuits. Figure 13 shows this typical behavior characteristic of 

Rs-(Rp//Cdl) systems. The morphology of the intensity-time curve has differential 

features with respect to the same representations of the current response in non-

Faradaic systems (Figure 10 and Figure 11). In this case, an anodic and 

cathodic residual current remains in pulse pairs 1 and 3, but not in the even 

pulses. 
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Figure 13. Experimental data for the electrical response of an Rs-(Rp//Cdl) network (Cdl=10 µF, 

Rs=6200 Ω and Rp=47 kΩ) to the potential steps sequence (Δt=500 ms and ΔE=0.5 V). (A) 

Transient current (B) Accumulated charge (C) Logarithm of the transient currents (points in the 

first interval 𝒕𝒕 < 𝒕𝒕𝟏𝟏 have been omitted because of the erratic values obtained when the 

measured current was close to zero and therefore affected by electrical noise processes). 

 

The plot of the integrated current for the sequence of potential steps shows a 

typical morphology, clearly different from the morphology presented for the 

integral charge curve in pure Rs-Cdl and (Rs1-Cdl1)//Rs2-Cdl2) non-Faradaic circuits. 

This morphology is described by Eq. A.30: 
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𝑞𝑞𝑗𝑗(𝑡𝑡) =
𝜂𝜂𝑗𝑗�𝑡𝑡 − 𝑡𝑡𝑗𝑗�
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

+
Δ𝑡𝑡

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�𝜂𝜂𝑖𝑖

𝑗𝑗−1

𝑖𝑖=1

+
𝜂𝜂𝑗𝑗𝑅𝑅𝑝𝑝2𝐶𝐶dl

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�
2

−
Δ𝑉𝑉𝑗𝑗𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2 𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(23)  

The reason is that the first term in Eq. 23 implies a linear dependence between 

transferred charge and time for a single pulse (j=1). When this linear term appears 

due to a potential step with positive overpotential 𝜂𝜂j (the first step in Figure 13), 

it cannot be compensated by merely applying a null-overpotential step (second 

step). Particularizing Eq. 23 for 𝜂𝜂1 > 0 and 𝜂𝜂2 = 0 would result in: 

𝑞𝑞2(𝑡𝑡) =
0 ⋅ �𝑡𝑡 − 𝑡𝑡𝑗𝑗�
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

+
Δ𝑡𝑡

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
𝜂𝜂1 +

0 ⋅ 𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2

+
η1𝑅𝑅𝑝𝑝2𝐶𝐶dl

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�
2 𝑒𝑒

−�𝑡𝑡−𝑡𝑡𝑗𝑗�
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl

=
Δ𝑡𝑡

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
𝜂𝜂1 +

η1𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2 𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(24)  

which tends to a non-zero constant value. Compensation of the transferred 

charge would require the application of a potential step with opposite amplitude 

−𝜂𝜂1 (third step) followed by an additional step returning to OCP. In Eq. 24, the 

last term is dominant when 𝑡𝑡 ≳ 𝑡𝑡𝑗𝑗, which implies that the behavior of Figure 13-

B is almost an exponential decay at the beginning of each pulse. However, as t 

grows, the first term (linear) becomes dominant, which is also apparent by the 

end of each pulse in Figure 13-B. 
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Figure 14. Experimental data of the charge transferred during the potential step transient. It is 

noteworthy that the charge limit depends on Rp and that the discharge is practically complete 

after each of the four potential steps. 

 

When the pulse duration is long enough, the plot of accumulated charge as a 

function of time allows us to graphically determine the value of the capacitance 

for the capacitor (Cdl), the Faradaic charge value transferred in the equivalent 

circuit, and the total resistance (Rs + Rp). Taking into account the exponentially 

decaying term in Eq. 24, the value of the capacitance is obtained according to 

Eq. 25: 

𝐶𝐶𝑑𝑑𝑑𝑑 =
𝑄𝑄
∆𝑉𝑉𝑐𝑐

=
𝑄𝑄
∆𝑉𝑉

∙ �1 +
𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝
�
2

 
(25)  

The value of Rs + Rp is obtained according to Eq. 14. The required parameters 

are the potential step, the pulse duration, and the Faradaic charge value obtained 

from Figure 14. 

 

Table 3 summarizes the NRMSE values obtained in the experimental validation 

of the algebraic expression of the accumulated charge (Eq. 23) for different Rs-

(Rp//Cdl) circuits. 
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Table 3. Experimental validation of the algebraic expression of accumulated 

charge for different Rs-(Rp//Cdl) circuits 

EC ΔV 

(V) 

Δt 

(ms) 

Rs 

(Ω) 

Cdl 

(µF) 

Rp (Ω) NRMSE 

(%) 

1 0.3 1000 100 1000 550 1.76 

2 0.3 2000 6200 100 4700 1.46 

3 0.3 800 100 100 4700 1.11 

4 0.3 500 6200 10 47000 2.44 

5 0.3 5000 6200 100 47000 2.72 

6 0.3 8000 6200 100 470000 3.85 

 

 

As for non-Faradaic circuits, the low NRMSE values validate the use of Eq. 23 to 

experimentally assess the value of Rs, Rp, and Cdl in Faradaic experiments. 

Figure 13-C shows the absolute value of the logarithm of the total current, for 

each of the transients versus time. The graph obtained shows a very different 

morphology compared to the plots associated with pure non-Faradaic processes 

(Figure 10). The peaks in Figure 10 are still observed, but those associated with 

excitation steps are preceded by segments with almost vertical slope, which can 

be noticed if the time resolution of measurements is appropriate. In the relaxation 

steps, the plot is not flat even when log 𝐼𝐼𝐽𝐽(𝑡𝑡) is less than -13. This is due to residual 

current effects, combined with electrical noise. 
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Therefore, the representation of charge versus time is very useful in order to 

calculate the resistance value in parallel (Rp). A disadvantage that could occur is 

that the zero current does not fit perfectly, causing a linear drift of the charge to 

take place (positive or negative depending on the offset value), although this 

effect can be easily compensated if detected. 

 

4.3 Equivalent circuit model for mixed Faradaic and non-Faradaic processes 

Figure 15 shows the transient current, accumulated charge and current logarithm 

signals for an (Rs1-Cdl1)//(Rs2-(Rp2//Cdl2)) network. 

 

 

Figure 15. Experimental data of the electrical response of an (Rs1-Cdl1)//(Rs2-(Rp2//Cdl2)) network 

(Cdl1=10 µF, Cdl2=100 uF, Rs1=1000 Ω, Rs2=6200 Ω and Rp2=3200 Ω) to the potential steps 

sequence (Δt=500 ms and ΔE=0.5 V). (A) Transient current (B) Accumulated charge (C) 

Logarithm of the transient current. 
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The experimental validation of the algebraic expression of the accumulated 

charge (a combination of Eq. 18 and Eq. 23) for different (Rs1-Cdl1)//(Rs2-

(Rp2//Cdl2)) networks is shown in Table 4. As for the previous systems, the low 

NRMSE values justify the use of the accumulated charge as a reliable tool to 

obtain the double layer capacitance, the solution resistance, and the polarization 

resistance in real electrochemical experiments. 

Table 4. Experimental validation of the algebraic expression of the accumulated 

charge for different (Rs1-Cdl1)//(Rs2-(Rp2//Cdl2)) circuits 

EC ΔV 

(V) 

Δt 

(ms) 

Rs1 

(Ω) 

Cdl1 

(µF) 

Rs2 

(Ω) 

Cdl2 

(µF) 

Rp2 

(Ω) 

NRMSE 

(%) 

1 0.5 200 100 10 560 100 3200 1.98 

2 0.5 10 560 3 100 10 3200 2.84 

3 0.5 700 1000 10 6200 100 3200 1.66 

4 0.5 500 1000 10 6200 100 3200 1.49 

5 0.5 1000 1000 100 1000 100 3200 1.46 

6 0.5 400 6200 10 1000 10 3200 0.68 

 

 

4.4 Proposed methodology 

Figure 16 shows the intensity-time response, the charge-time response, and the 

logarithm of the absolute value of intensity versus time for the most significant 

equivalent circuits. The plots show that Faradaic and non-Faradaic processes are 

easily distinguishable if they are compared by looking at the log 𝐼𝐼𝐽𝐽(𝑡𝑡) diagram. 
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Simple, double, or multiple non-Faradaic circuits have similar morphology (linear 

or piecewise linear with equal amplitude of current). Faradaic circuits have 

different currents for excitation and relaxation pulses, with a linear appearance in 

relaxation pulses and curvilinear morphology when the system is mixed (Faradaic 

+ non-Faradaic). 

 

 

Figure 16. Intensity-time, charge-time, and logarithm of the absolute value of intensity versus 

time responses for the same equivalent circuits. 
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Therefore, the response of a real electrochemical system to the proposed 

potential steps sequence can be used to identify the equivalent circuit that models 

the behavior of this system by means of a visual inspection of the log(i(t)) curve. 

Once the equivalent circuit has been identified, the algebraic expression of the 

accumulated charge for this EC can be employed to experimentally determine 

the values of the double layer capacitance (Cdl), the solution resistance (Rs), and 

the polarization resistance of the redox process (Rp). 

 

5. Conclusions 

We have proposed electric equivalent circuits to model different Faradaic and 

non-Faradaic electrochemical systems and have designed a potential pulse 

sequence in order to analyze the behavior of these ECs. The sequence has been 

conceived as a cycle so that a situation of null total accumulated charge is 

achieved when the time and amplitude parameters are appropriate. This allows 

electrochemical studies of the system to be performed with very low induced 

perturbation values. The algebraic expressions of the current and accumulated 

charge for each EC when this potential step sequence is applied have been 

obtained and validated with experimental measurements. A very good fitting was 

observed between the theoretical values and the experimental data for the 

accumulated charge.  

The morphology of the logarithm of the current versus time plot allows us to 

identify the different types of ECs. Hence, applying the proposed potential step 
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sequence to a real electrochemical system would enable the identification of an 

EC corresponding to the processes taking place in the system. Besides, the 

algebraic expression of the accumulated charge corresponding to the identified 

EC can be used to obtain the values of relevant parameters of the 

electrochemical system such as the double layer capacitance, the solution 

resistance, and the polarization resistance of the redox process. 

In the second part of this study, reversible electrochemical systems are evaluated 

using the proposed potential pulse signal and the validity of the described method 

is analyzed. 
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APPENDIX: Response of equivalent circuits 

This appendix contains the derivations of the responses of all equivalent circuits 

presented before a potential step. Unless otherwise stated, the following 

equations refer to times after 𝑡𝑡1 in Fig. 1, that is, they model the response to the 

first potential step. Given the linearity of these electrical models, the responses 

to all subsequent steps can be modeled as time-delayed versions of the response 

to the first step, multiplied by a constant. Note that, according to Fig. 2, the 

potential applied to the linear circuit model equals the potential applied to the 

overall electrochemical system 𝑣𝑣(𝑡𝑡), with the waveform depicted in Fig. 1, minus 

the OCP 𝑉𝑉0. 

 

I. RC circuit 

 

Considering the circuit in Fig. 5B, the voltage at the resistor is: 

 

𝑣𝑣𝑅𝑅 = 𝑅𝑅𝑠𝑠𝑖𝑖NF (A.1) 
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where the time dependence of current 𝑖𝑖NF and voltage 𝑣𝑣𝑅𝑅 has not been made 

explicit for simplicity. The voltage-to-current relation at the capacitor is given by: 

 

𝑖𝑖NF = 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

 (A.2) 

 

Since the resistor and capacitor are connected in series: 

 

𝑣𝑣 − 𝑉𝑉0 = 𝑣𝑣𝑅𝑅 + 𝑣𝑣𝐶𝐶 (A.3) 

 

Considering the three previous equations: 

 

𝑣𝑣 − 𝑉𝑉0 = 𝑅𝑅𝑠𝑠𝑖𝑖NF + 𝑣𝑣𝐶𝐶 = 𝑅𝑅𝑠𝑠𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝐶𝐶 (A.4) 

 

Therefore, the differential equation that describes the behavior of the circuit in 

Fig. 5B as a result of the first voltage step (𝑡𝑡1 < 𝑡𝑡) is: 

 

𝑉𝑉1 − 𝑉𝑉0 = 𝑅𝑅s𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝐶𝐶 (A.5) 

 

with the initial condition: 

 

𝑣𝑣𝐶𝐶(𝑡𝑡 ≤ 𝑡𝑡1) = 0 (A.6) 

 

The solution to Eq. A.5 is: 
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𝑣𝑣𝐶𝐶(𝑡𝑡) = (𝑉𝑉1 − 𝑉𝑉0) �1 − 𝑒𝑒
− 𝑡𝑡−𝑡𝑡1
𝑅𝑅s𝐶𝐶dl� = Δ𝑉𝑉1 �1 − 𝑒𝑒

− 𝑡𝑡−𝑡𝑡1
𝑅𝑅s𝐶𝐶dl� (A.7) 

 

Considering Eq. A.2: 

 

𝑖𝑖1 = 𝑖𝑖NF = 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

= Δ𝑉𝑉1𝐶𝐶dl
𝜕𝜕
𝜕𝜕𝜕𝜕 �

1 − 𝑒𝑒
− 𝑡𝑡−𝑡𝑡1
𝑅𝑅s𝐶𝐶dl� =

Δ𝑉𝑉1
𝑅𝑅s

𝑒𝑒
− 𝑡𝑡−𝑡𝑡1
𝑅𝑅s𝐶𝐶dl (A.8) 

 

The overall current resulting from the effect of all voltage steps applied before 

time t can thus be obtained as: 

𝑖𝑖𝑗𝑗 = �
Δ𝑉𝑉𝑖𝑖
𝑅𝑅s

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

         𝑡𝑡𝑗𝑗 < 𝑡𝑡 ≤ 𝑡𝑡𝑗𝑗+1  
(A.9) 

 

Note that all the additive terms in (A.9) vanish with time. In fact, if the duration of 

voltage steps is sufficiently greater than the time constant of the circuit 

�Δ𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 ≫ 𝑅𝑅𝑠𝑠𝐶𝐶𝑑𝑑𝑑𝑑�, then the current ij can be approximated by: 

  

𝑖𝑖𝑗𝑗 ≈
Δ𝑉𝑉𝑗𝑗
𝑅𝑅s

𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl         𝑡𝑡𝑗𝑗 < 𝑡𝑡 ≤ 𝑡𝑡𝑗𝑗+1  

(A.10) 

 

That is, the current intensity of this non-Faradaic branch depends on the last 

voltage step, as indicated by Eq. 3. 

II. RC circuit with a resistor in parallel with the capacitor 

 

Considering the circuit in Fig. 9, the voltage at the resistor Rs is: 
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𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑠𝑠(𝑖𝑖NF + 𝑖𝑖F) (A.11) 

 

The voltage-to-current relationship at the capacitor is given by: 

 

𝑖𝑖NF = 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

 (A.12) 

 

And at the parallel resistor, it is: 

 

𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑝𝑝𝑖𝑖F (A.13) 

 

 

Since 𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑣𝑣𝐶𝐶: 

 

𝑣𝑣𝑅𝑅𝑅𝑅
𝑅𝑅𝑠𝑠

=
𝑣𝑣𝐶𝐶
𝑅𝑅𝑝𝑝

+ 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

 (A.14) 

 

Additionally: 

𝑣𝑣 − 𝑉𝑉0 = 𝑣𝑣𝑅𝑅𝑅𝑅 + 𝑣𝑣𝐶𝐶 (A.15) 

 

Therefore, the differential equation that describes the behavior of the circuit in 

Fig. 9 as a result of the first voltage step (𝑡𝑡 > 𝑡𝑡1) is: 

 

𝑉𝑉1 − 𝑉𝑉0
𝑅𝑅𝑠𝑠

= 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

+ �
1
𝑅𝑅𝑠𝑠

+
1
𝑅𝑅𝑝𝑝
� 𝑣𝑣𝐶𝐶 

(A.16) 
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with the initial condition: 

 

𝑣𝑣𝐶𝐶(𝑡𝑡 ≤ 𝑡𝑡1) = 0 (A.17) 

 

The solution to Eq. A.16 with condition A.17 is: 

 

𝑣𝑣𝐶𝐶 = (𝑉𝑉1 − 𝑉𝑉0)
𝑅𝑅𝑝𝑝

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡1)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl �

= Δ𝑉𝑉1
𝑅𝑅𝑝𝑝

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡1)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl� 

(A.18) 

 

Consequently, the expressions for branch currents are: 

 

𝑖𝑖NF = 𝐶𝐶dl
𝜕𝜕𝑣𝑣𝐶𝐶
𝜕𝜕𝜕𝜕

= Δ𝑉𝑉1
𝐶𝐶dl𝑅𝑅𝑝𝑝
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝜕𝜕
𝜕𝜕𝜕𝜕
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡1)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl�

=
Δ𝑉𝑉1
𝑅𝑅s

𝑒𝑒
−(𝑡𝑡−𝑡𝑡1)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(A.19) 

 

𝑖𝑖F =
𝑣𝑣𝐶𝐶
𝑅𝑅𝑝𝑝

=
Δ𝑉𝑉1

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡1)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl� 

(A.20) 

 

and the intensity of the total current through the electrochemical system: 

 

𝑖𝑖1 =  𝑖𝑖F + 𝑖𝑖NF =
Δ𝑉𝑉1

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡1)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl�

+
Δ𝑉𝑉1
𝑅𝑅s

𝑒𝑒
−(𝑡𝑡−𝑡𝑡1)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(A.21) 
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Note that, according to Eq. A.21, it may seem that the Faradaic component of the 

current is proportional to the potential step Δ𝑉𝑉1, and it has no direct dependence 

on the overpotential 𝜂𝜂1, in contradiction to what is expressed in Eq. 3. However, 

if we build the solution for any time (𝑡𝑡𝑗𝑗 < 𝑡𝑡 < 𝑡𝑡𝑗𝑗+1) as a linear combination of the 

time-delayed responses corresponding to each step1, we get: 

 

𝑖𝑖𝑗𝑗 = �
Δ𝑉𝑉𝑖𝑖

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�1 − 𝑒𝑒

−(𝑡𝑡−𝑡𝑡𝑖𝑖)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl� +

Δ𝑉𝑉𝑖𝑖
𝑅𝑅s

𝑒𝑒
−(𝑡𝑡−𝑡𝑡𝑖𝑖)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

= �
Δ𝑉𝑉𝑖𝑖

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑗𝑗

𝑖𝑖=1

+ �Δ𝑉𝑉𝑖𝑖 �
1
𝑅𝑅𝑠𝑠
−

1
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

� 𝑒𝑒
−(𝑡𝑡−𝑡𝑡𝑖𝑖)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

 

 

(A.22) 

The first term of the expression corresponds to the DC term of the resulting 

current, while the second one is a sum of exponentially decaying terms. The DC 

term can be simplified as: 

 

�
Δ𝑉𝑉𝑖𝑖

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑗𝑗

𝑖𝑖=1

= �
𝑉𝑉𝑗𝑗 − 𝑉𝑉𝑗𝑗−1
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑗𝑗

𝑖𝑖=1

=
𝑉𝑉𝑗𝑗 − 𝑉𝑉0 
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

=
𝜂𝜂𝑗𝑗  

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
 

(A.23) 

 

Therefore, the amplitude of the DC term is proportional to the overpotential. As 

for the sum of exponentially decaying terms, if the duration of voltage steps is 

sufficiently greater than the time constant of the circuit �Δ𝑡𝑡 = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1 ≫
𝑅𝑅𝑝𝑝𝑅𝑅𝑠𝑠𝐶𝐶𝑑𝑑𝑑𝑑
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠

�, 

then all terms except for the last one can be neglected: 

 
1 This approach is based on the linearity of the system model. 
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𝑖𝑖𝑗𝑗 ≈
𝜂𝜂𝑗𝑗

Rp + Rs
+ Δ𝑉𝑉𝑗𝑗 �

1
𝑅𝑅𝑠𝑠
−

1
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

� 𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(A.24) 

 

where the constant term and the negative term in the parenthesis correspond to 

the Faradaic current iF, and the positive term in the parenthesis corresponds to 

the non-Faradaic current iNF. As indicated by Eq. 3, the non-Faradaic current 

mainly depends on the last voltage step, while its Faradaic counterpart depends 

on both the last voltage step and the overpotential. 

 

III. Charge transferred across an RC circuit 

 

The charge (qj) stored in the capacitor (Cdl) of an RC circuit at any time between 

the jth and (j+1)th voltage steps can be calculated by integrating Eq. A.9: 

 

𝑞𝑞𝑗𝑗 = ��
Δ𝑉𝑉𝑖𝑖
𝑅𝑅𝑠𝑠

𝑒𝑒
−

𝜏𝜏−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dld𝜏𝜏

𝑡𝑡

𝑡𝑡𝑖𝑖

𝑗𝑗

𝑖𝑖=1

= −�Δ𝑉𝑉𝑖𝑖𝐶𝐶dl �𝑒𝑒
−

𝜏𝜏−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl�

𝑡𝑡𝑖𝑖

𝑡𝑡𝑗𝑗

𝑖𝑖=1

=

= 𝐶𝐶dl�Δ𝑉𝑉𝑖𝑖 �1 − 𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl�

𝑗𝑗

𝑖𝑖=1

 

(A.25) 

 

Note that this expression can be decomposed as the sum of a constant plus an 

exponentially decaying term: 
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𝑞𝑞𝑗𝑗 = 𝐶𝐶dl�Δ𝑉𝑉𝑖𝑖

𝑗𝑗

𝑖𝑖=1

− 𝐶𝐶dl�Δ𝑉𝑉𝑖𝑖𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

= 𝐶𝐶dl𝜂𝜂𝑗𝑗 − 𝐶𝐶dl𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl�Δ𝑉𝑉𝑖𝑖𝑒𝑒

−
𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖
𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

 

(A.26) 

 

And, for long enough voltage steps �Δ𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 ≫ 𝑅𝑅𝑠𝑠𝐶𝐶𝑑𝑑𝑑𝑑�: 

 

𝑞𝑞𝑗𝑗 ≈ 𝐶𝐶dl𝜂𝜂𝑗𝑗 − 𝐶𝐶dlΔ𝑉𝑉𝑗𝑗𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑗𝑗
𝑅𝑅s𝐶𝐶dl 

(A.27) 

 

IV. Charge transferred across an RC circuit with a resistor in parallel 

with the capacitor 

 

The total charge transferred across the circuit in Fig. 9 for times 𝑡𝑡𝑗𝑗 < 𝑡𝑡 < 𝑡𝑡𝑗𝑗+1 can 

be obtained by integration of Eq. A.22: 

 

𝑞𝑞𝑗𝑗 = � ��
Δ𝑉𝑉𝑖𝑖

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑗𝑗

𝑖𝑖=1

+ �Δ𝑉𝑉𝑖𝑖 �
1
𝑅𝑅𝑠𝑠
−

1
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

� 𝑒𝑒
−(𝜏𝜏−𝑡𝑡𝑖𝑖)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl

𝑗𝑗

𝑖𝑖=1

�d𝜏𝜏
𝑡𝑡

𝑡𝑡1
 

= ��
Δ𝑉𝑉𝑖𝑖

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
d𝜏𝜏

𝑡𝑡

𝑡𝑡𝑖𝑖

𝑗𝑗

𝑖𝑖=1

+ �Δ𝑉𝑉𝑖𝑖
𝑅𝑅𝑝𝑝

𝑅𝑅𝑠𝑠�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�
� 𝑒𝑒

−(𝜏𝜏−𝑡𝑡𝑖𝑖)
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dld𝜏𝜏

𝑡𝑡

𝑡𝑡𝑖𝑖

𝑗𝑗

𝑖𝑖=1

= �
Δ𝑉𝑉𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

𝑗𝑗

𝑖𝑖=1

+ �
Δ𝑉𝑉𝑖𝑖𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2 �1 − 𝑒𝑒
−(𝑡𝑡−𝑡𝑡𝑖𝑖)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl�

𝑗𝑗

𝑖𝑖=1

 

(A.28) 
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Note that the numerator of the first term is the integral of the voltage (compare 

the expression to the graph in Figure 1). It can also be expressed as a function 

of the overpotentials and the step duration Δ𝑡𝑡: 

 

𝑞𝑞𝑗𝑗 =
𝜂𝜂𝑗𝑗�𝑡𝑡 − 𝑡𝑡𝑗𝑗�
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

+
Δ𝑡𝑡

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�𝜂𝜂𝑖𝑖

𝑗𝑗−1

𝑖𝑖=1

+ �
Δ𝑉𝑉𝑖𝑖𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2 �1 − 𝑒𝑒
−(𝑡𝑡−𝑡𝑡𝑖𝑖)

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl�

𝑗𝑗

𝑖𝑖=1

 
(A.29) 

 

 For long step durations (�Δ𝑡𝑡 ≫ 𝑅𝑅𝑝𝑝𝑅𝑅𝑠𝑠𝐶𝐶dl
𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠

� Eq. A.29 can be simplified: 

𝑞𝑞𝑗𝑗 =
𝜂𝜂𝑗𝑗�𝑡𝑡 − 𝑡𝑡𝑗𝑗�
𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠

+
Δ𝑡𝑡

𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠
�𝜂𝜂𝑖𝑖

𝑗𝑗−1

𝑖𝑖=1

+
𝜂𝜂𝑗𝑗𝑅𝑅𝑝𝑝2𝐶𝐶dl

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�
2 −

Δ𝑉𝑉𝑗𝑗𝑅𝑅𝑝𝑝2𝐶𝐶dl
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠�

2 𝑒𝑒
−�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑅𝑅𝑝𝑝+𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝𝑅𝑅s𝐶𝐶dl 

(A.30) 
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