Eslam Montaser was born in Dakahlia, Egypt in 1985. He received a
B.Sc in Statistics and Computer science in 2006 from the Department
of Mathematics, Mansoura University, Egypt. He also received the
M.Sc degree in Statistics and Computer science in 2007 from the
Department of Mathematics, Mansoura University, Egypt. He also
received the M.Sc degree in Mathematical engineering in 2013 from
the Department of Mathematics, Universidad Carlos Il de Madrid,
Spain. He is pursuing a Ph.D. in Control Engineering, Robotics, and
Industrial Informatics at the Universitat Politecnica de Valéncia, Spain.

He worked in the Tecnologia UCM research group in 2014 at the Universidad Complutense de
Madrid, Spain. He also worked in the PMMCRG research group under the supervision of Prof.
Ali Cinar at the lllinois Institute of Technology, Chicago, IL, the United States of America for
doctoral stay in 2017. Currently, he working in the artificial pancreas and technologies for
diabetes (Tecnodiabetes) research group under the supervision of Prof. Jorge Bondia at the
Universitat Politécnica de Valencia, Spain.

His research interests include stochastic modeling in type 1 diabetes, statistical pattern
recognition, time series analysis, machine learning, biostatistics, big data analysis, biomedical
applications, and predictive modeling of physiological systems.

Stochastic Seasonal Models for Glucose Prediction in Type 1 Diabetes January 2020

Eslam Montaser

Qv Poy %

IO

UNIVERSITAT
POLlTECNIC/\
DE VALENCIA

.;’6‘0

Ph.D. Dissertation

Stochastic Seasonal Models for Glucose
Prediction in Type 1 Diabetes

Author:

Eslam Montaser
Supervisors:

Prof. Jorge Bondia

Dr. José Luis Diez

January 2020



UNIVERSITAT
POLITECNICA
DE VALENCIA

PhD in Automation, Robotics and Computer Science for Industry
DOCTORADO EN AUTOMATICA, ROBOTICA E INFORMATICA INDUSTRIAL

PHD DISSERTATION

Stochastic Seasonal Models for
Glucose Prediction in Type 1
Diabetes

Author: D. Eslam Montaser Roushdi Ali
Supervisors: Prof. Dr. Jorge Bondia Company

Dr. José Luis Diez Ruano

Department of Systems Engineering and Control
DEPARTAMENTO DE INGENIERIA DE SISTEMAS Y AUTOMATICA

January 2020






This work has been supported by the Spanish Ministry of Economy
and Competitiveness (MINECO) under the FPI grant BES-2014-069253
and projects DPI12013-46982-C2-1-R and DPI2016-78831-C2-1-R. Moreover,
with relation to this grant, a short stay was done at the end of 2017 at the
Illinois Institute of Technology, Chicago, United States of America, under
the supervision of Prof. Ali Cinar, for four months from 01/09/2017 to
29/12/2017.






To my late father, my inspiration and the one who gave me every
opportunity to realize my dreams.

To my family and my wife and all those who supported me through the
University years.

iii






Acknowledgements

Alhamdulillah, first and foremost, I would like to praise and thank Allah
SWT, for His greatness, mercifulness and for giving me the strength to
accomplish this thesis.

I wish to express my sincere thanks to all the people who directly or
indirectly contributed and supported the development of the thesis. It is
very difficult to mention them all, but I want everyone to know that I am
deeply thankful.

I would like to express my sincere gratitude to my supervisors Prof. Dr.
Jorge Bondia and Dr. José Luis Diez. I thank Jorge for the continuous sup-
port and encouragement of my research during the last four years, for his
great patience, motivation, guidance, confidence, and immense knowledge
in many fields. His right vision for solving the complex problems during
my doctoral study. I could not have imagined having a better supervisor
for my dissertation. To José Luis, thanks for your academic support, valu-
able contributions, guidance, encouragement, endless help, and creative and
comprehensive advice. I have learned a lot from them, especially the spirit
of teamwork in order to achieve the work’s objectives.

Particular thanks go to all the members of our research group, especially,
Juanfer, Ivan, Vanessa, and Clara, for their friendship, support, and kind
endless help. I also thank Dr. Paolo Rossetti, for his clinical suggestions
concerning my research, encouragement, and generous advice. As well, 1
thank Frank and Yadira for their friendship, kind help and co-operation
throughout my study period.

I would also like to thank all the members of Prof. Cinar’s research
group, especially, Prof. Ali Cinar, for his hospitality, cooperation, and sup-
port during my short stay at the Illinois Institute of Technology (IIT). As
well, Dr. Mudassir Rashid, for his suggestions, and cooperation during my
stay in Chicago.

Last but not least, I would like to thank my family for supporting and
encouraging me throughout writing this thesis and my life in general. My
deepest recognition goes to my beloved parents, especially to my late father
who helped me in any imaginable way to achieve my goals and dreams. They
have been an inexhaustible source of love and inspiration all my life. As well,
to my mother, thanks for your support, encouragement, sacrifice, and love.
My special thanks go to my wife, for her great patience, understanding,
supporting, and encouragement, without which it would have been difficult
to complete this thesis. As well, I thank my beloved son, who puts a smile
on my face every day. This smile was a high support and powerful for me
to complete this thesis, hoping that the effort of these years may offer him
a more plentiful life in the coming years.



vi

Finally, I would like to extend my deepest gratitude to my family, friends,
and all the people who care about me and about whom I care.

Thank you all!

Eslam Montaser
Valencia, Spain
January 2020






viii
Abstract

Diabetes is a significant global health problem, one of the most serious non-
communicable diseases after cardiovascular diseases, cancer and chronic res-
piratory diseases. Diabetes prevalence has been steadily increasing over the
past decades, especially in low- and middle-income countries. It is estimated
that 425 million people worldwide had diabetes in 2017, and by 2045 this
number may rise to 629 million. About 10% of people with diabetes suffer
from type 1 diabetes, characterized by autoimmune destruction of the -cells
in the pancreas, responsible for the secretion of the hormone insulin. With-
out insulin, plasma glucose rises to deleterious levels, provoking long-term
vascular complications. Until a cure is found, the management of diabetes
relies on technological developments for insulin replacement therapies. With
the advent of continuous glucose monitors, technology has been evolving to-
wards automated systems. Coined as “artificial pancreas”, closed-loop glu-
cose control devices are nowadays a game-changer in diabetes management.
Research in the last decades has been intense, yielding a first commercial
system in late 2017 and many more are in the pipeline of the main med-
ical devices industry. However, as a first-generation device, many issues
still remain open and new technological advancements will lead to system
improvements for better glycemic control outputs and reduced patient’s bur-
den, improving significantly the quality of life of people with type 1 diabetes.

At the core of any artificial pancreas system is glucose prediction, the
topic addressed in this thesis. The ability to predict glucose along a given
prediction horizon, and estimation of future glucose trends, is the most im-
portant feature of any artificial pancreas system, in order to be able to take
preventive actions to entirely avoid risk to the patient. Glucose prediction
can appear as part of the control algorithm itself, such as in systems based
on model predictive control (MPC) techniques, or as part of a monitoring
system to avoid hypoglycemic episodes. However, predicting glucose is a
very challenging problem due to the large inter- and intra-subject variabil-
ity that patients suffer, whose sources are only partially understood. These
limits models forecasting performance, imposing relatively short prediction
horizons, despite the modeling technique used (physiological, data-driven or
hybrid approaches). The starting hypothesis of this thesis is that the com-
plexity of glucose dynamics requires the ability to characterize clusters of
behaviors in the patient’s historical data naturally yielding to the concept
of local modeling. Besides, the similarity of responses in a cluster can be
further exploited to introduce the classical concept of seasonality into glu-
cose prediction. As a result, seasonal local models are at the core of this
thesis. Several clinical databases including mixed meals and exercise are
used to demonstrate the feasibility and superiority of the performance of
this approach.






Resumen

La diabetes es un importante problema de salud mundial, siendo una de
las enfermedades no transmisibles mas graves después de las enfermedades
cardiovasculares, el cancer y las enfermedades respiratorias crénicas. La
prevalencia de la diabetes ha aumentado constantemente en las ultimas
décadas, especialmente en paises de ingresos bajos y medios. Se estima
que 425 millones de personas en todo el mundo tenian diabetes en 2017,
y para 2045 este nimero puede aumentar a 629 millones. Alrededor del
10% de las personas con diabetes padecen diabetes tipo 1, caracterizada por
una destruccién autoinmune de las células S en el pancreas, responsables de
la secrecion de la hormona insulina. Sin insulina, la glucosa plasmatica au-
menta a niveles nocivos, provocando complicaciones vasculares a largo plazo.
Hasta que se encuentre una cura, el manejo de la diabetes depende de los
avances tecnolégicos para terapias de reemplazo de insulina. Con la llegada
de los monitores continuos de glucosa, la tecnologia ha evolucionado hacia
sistemas automatizados. Acunados como “pancreas artificial”, los disposi-
tivos de control de glucosa en lazo cerrado suponen hoy en dia un cambio de
juego en el manejo de la diabetes. La investigacion en las ultimas décadas
ha sido intensa, dando lugar al primer sistema comercial a fines de 2017,
y muchos més estan siendo desarrollados por las principales industrias de
dispositivos médicos. Sin embargo, como dispositivo de primera generacion,
muchos problemas aun permanecen abiertos y nuevos avances tecnologicos
conducirdn a mejoras del sistema para obtener mejores resultados de control
glucémico y reducir la carga del paciente, mejorando significativamente la
calidad de vida de las personas con diabetes tipo 1.

En el centro de cualquier sistema de pancreas artificial se encuentra la
prediccién de glucosa, tema abordado en esta tesis. La capacidad de prede-
cir la glucosa a lo largo de un horizonte de prediccién dado, y la estimacién
de las tendencias futuras de glucosa, es la caracteristica méas importante
de cualquier sistema de pancreas artificial, para poder tomar medidas pre-
ventivas que eviten por completo el riesgo para el paciente. La prediccién
de glucosa puede aparecer como parte del algoritmo de control en si, como
en sistemas basados en técnicas de control predictivo basado en modelo
(MPC), o como parte de un sistema de supervisién para evitar episodios
de hipoglucemia. Sin embargo, predecir la glucosa es un problema muy
desafiante debido a la gran variabilidad inter e intra-sujeto que sufren los
pacientes, cuyas fuentes solo se entienden parcialmente. Esto limita las
prestaciones predictivas de los modelos, imponiendo horizontes de prediccién
relativamente cortos, independientemente de la técnica de modelado uti-
lizada (modelos fisiol6gicos, basados en datos o hibridos). La hipdtesis de
partida de esta tesis es que la complejidad de la dindmica de la glucosa re-
quiere la capacidad de caracterizar grupos de comportamientos en los datos
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histéricos del paciente que llevan naturalmente al concepto de modelado lo-
cal. Ademads, la similitud de las respuestas en un grupo puede aprovecharse
aun mas para introducir el concepto clésico de estacionalidad en la prediccion
de glucosa. Como resultado, los modelos locales estacionales estan en el
centro de esta tesis. Se utilizan varias bases de datos clinicas que incluyen
comidas mixtas y ejercicio para demostrar la viabilidad y superioridad de
las prestaciones de este enfoque.
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Resum

La diabetis és un important problema de salut mundial, sent una de les
malalties no transmissibles més greus després de les malalties cardiovascu-
lars, el cancer i les malalties respiratories croniques. La prevalenca de la
diabetis ha augmentat constantment en les ultimes decades, especialment
en paisos d’ingressos baixos i mitjans. S’estima que 425 milions de per-
sones a tot el mén tenien diabetis en 2017, i per 2045 aquest nombre pot
augmentar a 629 milions. Al voltant del 10% de les persones amb diabetis
pateixen diabetis tipus 1, caracteritzada per una destruccié autoimmune
de les cel-lules B en el pancrees, responsables de la secrecié de I'hormona
insulina. Sense insulina, la glucosa plasmatica augmenta a nivells nocius,
provocant complicacions vasculars a llarg termini. Fins que es trobi una
cura, el maneig de la diabetis depén dels avencgos tecnologics per a terapies
de reemplacament d’insulina. Amb l'arribada dels monitors continus de glu-
cosa, la tecnologia ha evolucionat cap a sistemes automatitzats. Encunyats
com “pancrees artificial”, els dispositius de control de glucosa en llag tancat
suposen avui dia un canvi de joc en el maneig de la diabetis. La investi-
gaci6 en les ultimes decades ha estat intensa, donant lloc al primer sistema
comercial a finals de 2017, i molts més estan sent desenvolupats per les prin-
cipals industries de dispositius medics. No obstant aix0, com a dispositiu de
primera generacié, molts problemes encara romanen oberts i nous avencgos
tecnologics conduiran a millores del sistema per obtenir millors resultats de
control glucemic i reduir la carrega del pacient, millorant significativament
la qualitat de vida de les persones amb diabetis tipus 1.

Al centre de qualsevol sistema de pancrees artificial es troba la prediccié
de glucosa, tema abordat en aquesta tesi. La capacitat de predir la glucosa al
llarg d’un horitz6 de prediccié donat, i ’estimacié de les tendencies futures de
glucosa, és la caracteristica més important de qualsevol sistema de pancrees
artificial, per poder prendre mesures preventives que evitin completament
el risc per el pacient. La prediccié de glucosa pot apareixer com a part de
I’algoritme de control en si, com en sistemes basats en técniques de control
predictiu basat en model (MPC), o com a part d’un sistema de supervisié
per evitar episodis d’hipoglucemia. No obstant aixo, predir la glucosa és un
problema molt desafiant degut a la gran variabilitat inter i intra-subjecte que
pateixen els pacients, les fonts només s’entenen parcialment. Aixo limita les
prestacions predictives dels models, imposant horitzons de prediccio relativa-
ment curts, independentment de la técnica de modelatge utilitzada (models
fisiologics, basats en dades o hibrids). La hipotesi de partida d’aquesta tesi
és que la complexitat de la dinamica de la glucosa requereix la capacitat de
caracteritzar grups de comportaments en les dades historiques del pacient
que porten naturalment al concepte de modelatge local. A més, la simili-
tud de les respostes en un grup pot aprofitar-se encara més per introduir
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el concepte classic d’estacionalitat en la prediccié de glucosa. Com a resul-
tat, els models locals estacionals estan al centre d’aquesta tesi. S’utilitzen
diverses bases de dades cliniques que inclouen menjars mixtes i exercici per
demostrar la viabilitat i superioritat de les prestacions d’aquest enfocament.
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Part 1

Thesis scope and objectives



Chapter 1

Diabetes and the artificial
pancreas

The chapter starts in Section 1.1 with an explanation of the glucose-insulin
regulatory system in healthy individuals. Then an overview of diabetes
mellitus, types, complications, and a description of the main glucose distur-
bances that affect glucose regulation is presented. Section 1.2 introduces the
artificial pancreas system, the latest technology for glucose control in type
1 diabetes consisting in a closed-loop glucose control system, with a first
commercial system in 2017 and which is changing the paradigm of glucose
management. Finally, the stages of artificial pancreas development to make
it more reliable are described.

1.1 Glucose regulation

Glucose is an energy-rich monosaccharide sugar that is broken down within
the body cells to produce Adenosine Triphosphate (ATP), a molecule that
stores and transports chemical energy within cells. Glucose is considered to
be a primary source of energy for every cell in the body. In spite of that,
many organs can use fat and the building blocks of protein (i.e., amino
acids) as the source of energy when the blood glucose (BG) level is too low,
except the brain and nervous system that consume exclusively glucose to be
able to work well [15].

In a healthy person, BG level is typically maintained in a very nar-
row range (fasting BG of 70-100 mg/dL and post-meal glucose of 120-140
mg/dL, returning to baseline after 2 hours) [15]. Insulin and glucagon are
the hormones produced in the pancreas that have opposite actions as shown
in Fig. 1.1, composing the so-called glucose-insulin regulatory system (neg-
ative feedback loop). These hormones are secreted by the endocrine cells in
the islets of Langerhans in the pancreas. At least four cell types have been
identified in the islets of Langerhans: a-cells, S-cells, d-cells, and pancreatic
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polypeptide cells (Table 1.1). The majority of the islet cells are [S-cells,
making up 65-80% of islet mass, and are concentrated in the anterior head,
body, and tail of the pancreas [16]. Glucagon and insulin are secreted by
pancreatic a- and [-cells, respectively.

After a meal intake, BG rises to a high level, since carbohydrates (CHOs)
in the food are converted into glucose and absorbed into the bloodstream.
This increase in BG induces production of insulin by the pancreas via §-cells.
Insulin metabolic effects include [17, 15]: (1) increase of rate of glucose up-
take from the bloodstream by the cells, by promotion of glucose transporters
into the cells membrane; (2) the promotion of glycolysis (i.e., a process that
breaks down glucose in order to produce cellular energy), increasing the cel-
lular utilization of glucose as an energy source; (3) the promotion of glycoge-
nesis by converting glucose into glycogen (a glucose aggregate molecule) for
storage in the liver and skeletal muscle cells; (4) the inhibition of lipolysis to
release energy. These effects of insulin lead to a BG level in a normal range.

High blood v Low blood
glucose Pancreas glucose

Muscles 7 @l

| Liver
and < =
adipose \ Insulin Glucagon
cells

Normal blood glucose

Figure 1.1: The glucose-insulin regulatory system.

On the other side, when the BG level goes low due, for instance, to
physical activity or between meals, glucagon is secreted by the a-cells, with
an opposite effect than insulin. Glucagon has an effect on many different
cells of the body, such as adipose tissue and kidney, but the main effect is
on the liver cells. Glucagon effects include [17, 15]: (1) conversion of stored
glycogen in the liver cells into glucose and its release into the bloodstream to
increase BG and prevent glucose levels from falling too low; (2) stimulation
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‘ Hormone H Site of production H Summary of action ‘
Insulin Pancreatic islets Stimulates cells to take up glucose
(B-cells) from the blood and so lowers BG
Glucagon Pancreatic islets Stimulates hepatocytes to release
(a-cells) glucose into the blood and so raises BG
Somatostatin Pancreatic islets Reduces gut motility and further
(6-cells) absorption of nutrients
Adrenaline Adrenal medulla Mobilises glycogen and suppresses
(Epinephrine) the release of insulin
Growth Pituitary Decreases liver glucose uptake and
hormone stimulates gluconeogenesis
(i.e., new glucose formation)
Cortisol Adrenal glands Stimulates glycogenolysis (i.e., glycogen breakdown)
(cortex) and mobilizes amino acids and ketone bodies

Table 1.1: Summary of the action of principal hormones that are involved in the
glucose regulation system in the body.

of gluconeogenesis, i.e., the production of new glucose from lactic acid and
other metabolites. In addition to glucagon, there are other hormones that
can increase BG levels (the so-called counterregulatory hormones) such as
epinephrine (also known as adrenaline), cortisol and growth hormone [15,
18, 19]. A summary of actions is presented in Table 1.1.

1.1.1 Diabetes overview

Diabetes mellitus (DM) is a very common chronic metabolic disease. De-
scribed initially in the Egyptian papyrus Ebers in 1500 BC, it results from
both genetic predisposition and environmental risk factors and is character-
ized by disorders of the metabolism of CHO, fat, and protein, which are
caused by the loss of endogenous secretion of insulin from the pancreatic
B-cells, insulin action, or both [20, 21]. According to the national diabetes
statistics report in 2017, diabetes affects 30.3 million people in the United
States (9.4% of the US population). More alarming, an estimated 84.1 mil-
lion more American adults have pre-diabetes. Over half of new diagnosed
diabetes cases were in adults 45-64 years old, and nearly 16% of adults di-
agnosed with diabetes were smokers, nearly 90% were overweight, and more
than 40% were physically inactive [22].

Statistically, according to the Diabetes Atlas in 2017, diabetes affects
more than 425 million people, of which one-third are people older than 65
years, and it is expected that the number of people with diabetes may rise to
629 million in 2045 as shown in Fig. 1.2. The disease and its complications
had a cost of at least USD 727 billion in terms of healthcare expenses in 2017
[1]. Clinically, glycated hemoglobin (“HbAlc” or just “Alc”) can be used
as a diagnostic test for diabetes, where HbAlc is a surrogate of the average
level of BG over the past 2 to 3 months (life period of the red blood cells).
The normal range for the HbAlc level for healthy people is between 4% and
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5.6%. An HbAlc level between 5.7% and 6.4% indicates pre-diabetes. An
HbAlc level of 6.5% means that diabetes is present, so the target HbAlc
level for people with diabetes is usually less than 7% as the recommendation
of the American Diabetes Association [23, 20].

North America Middle East
& Caribbean & North Africa Europe

2045
67 million

58mittion
2017

increase

16%

East Asia

increase
15% T

183 minion

Western
Pacific

Figure 1.2: IDF regions and global projections for the number of people with diabetes
(20-79 years), 2017-2045 [1].

1.1.2 Types of diabetes

According to the American Diabetes Association (ADA), the most common
forms of DM are type 1 diabetes, type 2 diabetes, and gestational
diabetes [20], which are described next.

Type 1 diabetes

Type 1 diabetes mellitus (T1D) is an immune-mediated chronic disease due
to the destruction of S-cells in the pancreatic islets of Langerhans. As a
consequence, insulin secretion is reduced to a very low level (down to 10%
of normal). About 5-10% of people with diabetes have T1D, which gener-
ally develops in childhood and adolescence (thus it is also called “juvenile
diabetes”). However, it also can develop in adults. It has a rapid onset and
can make the affected person very sick very quickly. Once the BG level goes
above the normal range (> 180 mg/dL), the kidneys start to release glucose
into the urine. The symptoms of T1D include increased thirst, weight loss,
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extreme hunger, and mood changes. Patients with T1D need exogenous in-
sulin administration for survival because nothing is secreted. Therefore, it
is also called insulin-dependent DM (IDDM). Patients with T1D are more
susceptible to other autoimmune diseases such as Hashimoto’s thyroiditis,
myasthenia gravis, celiac, and autoimmune hepatitis [24].

Type 2 diabetes

Type 2 diabetes mellitus (T2D) is the most common type of diabetes: about
90% to 95% of people with diabetes have T2D. It more often develops
in adults, but children can be affected. Once known as adult-onset, it is
characterized by insulin resistance and relative lack of insulin. T2D occurs
more often in people who have family members with diabetes and have
high blood pressure. Obese people (>20% of the ideal body weight) have
insulin resistance, so they are most susceptible to T2D [25]. In contrast
to T1D, the pancreas is able to produce insulin; however, the cells of the
body (i.e., muscles, liver and fat) are inoperative at absorbing the insulin
and cannot regulate glucose well. The common symptoms of T2D include
increased thirst and frequent urination, and weight loss. Over time, the
number of B-cells starts to decrease. This may require more medications
in order to increase the insulin sensitivity and eventually, injected insulin
could be needed like in patients with T1D. T2D is also called non-insulin
dependent DM (NIDDM). Patients with T2D are susceptible to increase
the risk of heart disease, macrovascular disease, peripheral vascular disease
and stroke [26, 27].

Gestational diabetes

Gestational diabetes (GD) is a temporary condition that occurs during preg-
nancy. GD is caused by not enough insulin to meet the extra needs in the
pregnancy period. The regulation of glucose metabolism during pregnancy
is complex, where the body produces different types of hormones such as
estrogen and progesterone during the pregnancy to allow the extra glucose
and nutrients in the body to reach the unborn baby. These hormones make
the body insulin-resistant (i.e., decreased insulin sensitivity). It is estimated
that between 3-20% of pregnant women develop GD, depending on their risk
factors (i.e., overweight, and polycystic ovarian syndrome). GD is typically
developing between the 24" and 28" weeks of pregnancy. GD is divided
into two classes: class 1 is controlled through a good diet system, and class
2 is controlled through insulin or oral medications to control their condition.
Children of mothers with GD have an increased risk of developing obesity,
higher blood pressure, heart disease, and T2D [28, 29]. Therefore, good
control of BG is an absolute must to protect the baby [30].
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1.1.3 Diabetes complications

Diabetes complications are serious health problems that can happen when
BG levels are out of normal range a long period of time. Diabetes compli-
cations may be disabling or even life-threatening because of late diagnosis
and wrong management. Diabetic complications, both acute and chronic,
account for the morbidity and mortality due to this relentless disease [31, 32].

Acute complications

Acute complications are short-term problems that can happen at any time.
The major acute complications are the hyperglycemic and hypoglycemic emer-
gencies. Hyperglycemia is a complex metabolic condition characterized
by abnormally high levels of BG (> 180 mg/dL). The symptoms and the
first signs of hyperglycemia include frequent urination, increased thirst, and
drowsiness and lethargy. Hyperglycemic emergencies include:

e Diabetic ketoacidosis (DKA), fundamentally in patients with T1D,
but also may occur in patients with T2D. DKA is the most common
acute complications of diabetes, and is characterized by elevated hy-
perglycemia (BG > 250 mg/dL), high levels of ketones in serum or
urine and acidosis.

e Hyperosmolar hyperglycemic state (HHS), primarily in patients
with T2D. HHS is the most serious acute complications of diabetes,
and is characterized by severe hyperglycemia (BG > 600 mg/dL), hy-
perosmolality (osmolality > 320 mOsm/kg), and signs of dehydration
in the absence of ketoacidosis. HHS is associated with a significant
morbidity and higher mortality than DKA, with a reported mortality
for patients with HHS in the range 10% to 20%, which is approximately
10 times higher than the mortality rate for patients with DKA.

Hypoglycemia is a condition caused by a very low level of BG, and
there are three levels of hypoglycemia as follow [33]:

e Level 1 (L1) mild hypoglycemia (54-70 mg/dL).
e Level 2 (L2) moderate hypoglycemia (< 54 mg/dL).

e Level 3 (L3) severe hypoglycemia that characterized by altered men-
tal /physical statues requiring external assistance for recovery (often
below 40 mg/dL).

The symptoms of hypoglycemia include shakiness, sweating, blurred or dou-
ble vision, seizure, and nervousness. If untreated, hypoglycemia may lead
to unconsciousness, coma, and potentially the patient can die [34].
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Chronic complications

Chronic complications are long-term problems that can expand gradually
with the time, and can lead to significant damage. The most common
chronic complications related health problems are [35, 31]:

e Macrovascular complications: affect large blood vessels of the
heart, brain, and legs.

e Microvascular complications: affect small blood vessels, causing
problems in the eyes (retinopathy), kidneys (nephropathy), feet, and
nerves (neuropathy).

Diabetes can also affect other parts of the body, including the digestive
system, the skin, sexual organs, and gum disease and other mouth problems.
The Diabetes Control and Complications Trial (DCCT), in 1993 [36], and
the UK Prospective Diabetes Study (UKPDS), in 1998 [37], have demon-
strated that a good glycemic control decreases diabetic complications, and
therefore can reduce morbidity and higher mortality rates due to the disease.

1.1.4 Insulin therapy in type 1 diabetes

&
N
DY
i B
Isolation of insulin. Hagedorn Recombinant Basal insulin analogues
Banting & Macleod protamine- human insulin
retarded
insulin NPH
Time @ ‘@
Animal insulin preparations Lente® insulin series

Insulin Novo

Pl | ENTE®

B ooie 1o

Figure 1.3: The history of insulin therapy [2].

This thesis focuses in T1D, where absence of insulin secretion requires
insulin replacement therapies. In 1921-22, Dr. Frederick Banting, Professor
John Macleod, and medical student Charles Best carried out many experi-
ments on the pancreas in animals, especially dogs, in Toronto, Canada, in
order to isolate the secretions from the islet cells which led to the discov-
ery of insulin as a possible treatment for diabetes [2, 3]. It was considered



CHAPTER 1. DIABETES AND THE ARTIFICIAL PANCREAS 9

to be one of the greatest medical breakthroughs in history, with the award
of the Nobel Prize to Banting and Macleod in 1923. Then, a slow-acting
formulation was developed in the late 1940s, neutral protamine Hagedorn
(NPH) insulin. In 1977, recombinant DNA techniques were used to pro-
duce synthetic “human” insulin, which distinct from insulin derived from
animals, through the biotechnology firm Genentech, to enable production of
large amounts of insulin. The first human insulin was marketed both by Eli
Lilly and Novo in 1982. Then, rapid-acting insulin analogs were introduced
in the 1990s and long-acting basal analogs in the early 2000s as shown in
Fig. 1.3.

Breakfast Lunch Dinner

Bolus Bolus Bolus
Plasma
Insulin
Basal infusion
F, SR IL L L e

4:00 8:00 12:0 16:00 20:0 24:00 4:00 8:00
§ b g

' Denotes time of insulin injection

T

Figure 1.4: Physiological basis of the basal/bolus insulin regimen. Modified from

/3.

In the insulin therapy for T1D, patients are treated with daily injections
more than once a day depending on the size of a meal, and meal frequency.
Patients should be testing their BG levels before each injection for adjusting
the insulin dose. The size of the insulin doses must be taken very carefully.
Too little insulin leads to rising their BG levels (hyperglycemia), leaving
them at risk over time for complications. In contrast, too high doses lead
to low BG (hypoglycemia). There are two common types of insulin: basal
insulin and bolus insulin, in order to maintain an optimal BG level, “repli-
cating” the insulin system in the healthy body as closely as possible. It must
be remarked that the insulin system does not exist as an isolated system in
the human body, but this engineering abstraction helps us to understand
the complexity of the glucose homeostasis. Basal insulin regulates the BG
levels in between meals, and bolus insulin is extra units of insulin to manage
the BG levels after a meal, as shown in Fig. 1.4. There are many types of
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Type Brand Onset Peak Duration
Name
Rapid- Humalog || 10-30 min || 30 min-3 h 3-5h
acting Novolog
Apidra
Short- Regular || 30 min-1 h 2-5h Up to
acting (R) 12 h
Intermediate- NPH 1.5-4 h 4-12 h Up to
acting (N) 24 h
Long- Lantus 0.8-4 h Minimal Up to
acting Levemir peak 24 h

Table 1.2: Pharmacokinetics of different insulin types for people with diabetes.

insulin available with different characteristics [38] as displayed in Table 1.2,
where insulin analogues are classified according to their duration of action as
rapid-acting (e.g., Humalog, Novolog), short-acting (e.g., Regular actrapid),
intermediate-acting (e.g., NPH, Lente), and long-acting insulins (e.g., Lan-
tus, Levemir). The onset (onset of action) is the time before insulin reaches
the bloodstream, the peak (peak effect) is the time when insulin is most
effective, and the duration defines for how long insulin is having an effect.

1.1.5 Challenges to glycemic control

In a healthy person, the BG levels stay within a normal range by the glucose
homeostasis. However, with diabetes, the BG level can rise higher or go lower
than normal. Many factors can affect glycemic control (Fig. 1.5) such as:
meal intake with more/fewer CHOs than usual, mismatched insulin doses
due to poor estimations of CHOs content in the meal, psychological stress,
physical activity, besides the metabolic reaction for each individual giving
rise to high intra-patient variability [39].

Meals

Meals are a major challenge to BG control. The BG (glycemic) response to
a meal is the effect that a meal has on BG levels after consumption. Many
factors influence glycemic response to food including the nutritional compo-
sition, gastric emptying rate, absorption rate, and other physiologic effects
[40]. Normally, BG levels increase after a meal, as a result of absorbing
digestible CHO from the intestine into the bloodstream. Automatically, the
pancreas detects this rise in BG and starts to secrete insulin and then BG
level returns gradually to fasting levels within a short period of time. More
than that, a cephalic phase exists in healthy individuals, where insulin is
secreted in anticipation from the stimulus in the mouth [41].
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Figure 1.5: Some external factors that affect the blood glucose level.

Particularly, the important problem for people with diabetes is how to
reduce the size and duration of rises in BG after meals. Glucose from some
foods is absorbed more rapidly than other foods, where dietary fats cause a
delay in the absorption process of glucose from CHO, and fiber, especially
soluble fiber, cause a slow nutrient absorption and flattens post-meal BG
level response [42, 43]. Protein and CHO in a meal cause a reduction of the
increase in BG levels and increase insulin secretion [44]. There are different
measures that have been developed in order to define the effect of food on
the glycemic response such as the glycemic index (GI) and the glycemic
load (GL) [45]. Jenkins et al. developed the glycemic index in 1981, in
order to measure the effect of CHOs on postprandial glycemic responses [46].
According to the Food and Agriculture Organization (FAO) and the World
Health Organisation (WHO), patients with diabetes are recommended to
substitute high GI foods with low GI alternatives to help optimize glycemic
control [47].

Physical activity

Physical activity (PA) is an important part of any diabetes management
plan due to its influence on different BG responses. Physical activity has
a significant impact on BG levels in patients with DM, especially T1D, de-
pending on the exercise type (aerobic, anaerobic, mixed), form (continuous
or intermittent), intensity (light, moderate, vigorous) and duration (short,
moderate, long), besides the physical fitness level and degree of stress of the
patient [9, 48]. Regular PA has a significant benefit on insulin sensitivity,
improves the blood lipid profile, reduces the risk of heart disease and stroke,
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increases muscular strength, and prevents cardiovascular disease (CVD) [49].
The American College of Sports Medicine (ACSM) has published a guide-
line for PA prescription in T1D [50]. The American Diabetes Association
(ADA) and ACSM recommend patients with T1D to keep BG level above
100 mg/dL before, during, after exercise of all types, and below 250-300
mg/dL, and the practice of exercise at an intensity of 40-60% of their max-
imal oxygen consumption (VOsmax) for 5-7 days/week for a duration of
20-45 minutes [51, 50].

Many experiments demonstrate the effective role of physical activity in
body’s fuel metabolism, which leads to different glucose responses [52, 48,
53, 54]. Continuous exercise of moderate intensity causes a decline in BG
level (Fig. 1.6) due to enhanced insulin sensitivity and accelerated glucose
consumption by muscle cells [55, 56], whereas high-intensity exercise (~ 15
min at 80% VOymax) can raise the BG level during the exercise and pro-
longed hyperglycemia during recovery due to the release of stress hormones
(e.g., adrenaline) [57, 58].

Hyperglycaemia

. Tag Swimming Track cycling
Anaeroblc. Sprinting Gymnastics Ice hocking
Short duration Diving Dodge ball Volleyball
High intensity

Lacrosse Field hockey Running
Basketball Skiing (downhill)  (middle distance)
Football Rowing
Tennis (middle distance)
Skating
. In-Line skating Jogging
Aerobic Brisk walking Cycling

Longer duration
lower intensity

Hypoglycaemia

Figure 1.6: The effectiveness of different exercises in diabetes. Modified from [/].

Psychological stress

Psychological stress is typically broken down into two categories: acute stress
and chronic stress. Acute psychological stress is short-term stress and it is
a normal part of everyday life. Acute psychological stress is a result of an
immediate reaction to sudden unexpected events such as a traffic jam, traffic
accident, and loss of job. The stress sources can be physical, like infection or
serious illness. Alternatively, they can be mental, like problems in a job, and
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health. Chronic psychological stress is long-term stress, as a result of unre-
solved problems, begins to increase, and lasts for a prolonged period of time
such as low social economic status, social isolation, and continual problems
in married life. During stressful situations, glucagon and adrenaline levels
rise and insulin level goes down, and the liver cells release more glucose in
the bloodstream. In the same time, the body tissues like muscle and fat
are less sensitive to insulin, as a result of high levels of growth hormone
and cortisol. Thus, providing more glucose in the bloodstream. Therefore,
psychological stress can cause a significant and prolonged increase in the BG
level, and in this case, more insulin is required to lower BG level into the
optimal range during stressful situations [59, 60].

Dual-lumen catheter

] Insulin Glucose
o Y solution solution
Heparinized l
saline
Pump
Computer
Continuous ool[ce
glucose <o)
monitoring —
system

Figure 1.7: Schematic diagram of the bedside-type artificial endocrine pancreas [5].

1.2 Closed-loop glucose control in type 1 diabetes

In a healthy individual, glucose is regulated by glucose homeostasis (closed-
loop feedback system). In people with T1D, in the absence of insulin, the
closed-loop will not be completed. Therefore, one of the technological solu-
tions is a closed-loop control system for glucose regulation to emulate the
body’s natural ability to infuse insulin. Another way to achieve this would
be a clinical solution via the pancreas transplant, but this operation depends
on the immune response, that may lead to rejecting the foreign organ. Pro-
fessor E Perry McCullagh proposed the concept of an implantable artificial
endocrine pancreas in 1959, an endocrinologist at The Cleveland Clinic, as
a first attempt to create a closed-loop control system for people with T1D
[5]. In 1974, Albisser et al. [61, 62], and Pfeiffer et al. [63], were the first to
successfully use the artificial endocrine pancreas in a clinical study, which
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Figure 1.8: Timeline of diabetes technology [6].

led to the emergence of the first commercial device that mimics an artifi-
cial pancreas, a bedside-type artificial endocrine pancreas (Fig. 1.7): the
Biostator (Miles Laboratory Inc., Elkhart, IN, USA). In 1977, by Clemens
et al. [64], the Biostator system was developed, a glucose controlled insulin
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Figure 1.9: Closed-loop artificial pancreas system.

infusion system (GCIIS) for hospital use. After that, advanced algorithms
were used to improve the artificial endocrine pancreas through several re-
searchers such as Shichiri et al., 1983 [65], Salzsieder et al., 1985 [66], and
Fischer et al., 1990 [67]. After this development, the artificial endocrine
pancreas became known as “artificial pancreas” (AP) in the clinical re-
search of diabetes. Therefore, the AP is a new ray of hope and a road map
for people with diabetes, especially T1D, after a long struggle over the past
century (Fig. 1.8).

1.2.1 The artificial pancreas

As previously reported, an artificial pancreas is a closed-loop control system
for glucose regulation to be able to mimic a healthy pancreas to reduce the
burden of multiple daily injections of insulin. Therefore, the AP has the
potential to transform the lives of people with diabetes, particularly, T1D.
The common components of most AP systems are: a continuous glucose
monitor (CGM), an insulin pump, and a control algorithm (Fig. 1.9), which
determines automatically the required insulin dose based on information
received from the CGM for every 5 minutes [68, 69]. The main aim of all
AP systems is to compute the “optimal” insulin dose, to be applied through
the insulin pump, which keeps BG level in normal range (70-180 mg/dL) as
much as possible, without causing hypoglycemia.

Glucose monitoring

Typically, patients use two main methods to measure BG levels daily to
make correct therapeutic decisions: capillary BG measurements and CGM.
In the 1970s, capillary BG monitoring was first used as a monitoring tool
for diabetic patients, by using glucometers, to give a guide to BG levels
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at a specific moment in time. Capillary BG monitoring, also called self-
monitoring of BG (SMBG), has been used for decades [70]. It has many
advantages over venous blood samples: it requires a little amount of blood,
it measures whole BG not only BG in plasma, as opposed to the venous
test, and it can be tested quickly and in an easy way [71].

A CGM system works through needle sensors that are inserted under
the skin, in the subcutaneous adipose tissue, to access the interstitial fluid
(ISF). Then, a sensor measures glucose every few minutes and transmits
the information wirelessly to a monitor in real time. Monitoring BG levels
in real time and continuously can help people with diabetes to make more
informed decisions throughout the day about how to balance several factors
influencing BG level such as meal intake and physical activity. In the recent
years, flash glucose monitoring (FGM) has been introduced in the market,
where the glucose data curve is sent only when the patient manually “scans”
the sensor. However, since FGM is not suitable for an AP systems, it will
not be discussed here.

The important advantages of CGM systems over SMBG include:

1. The BG measurements are performed continuously every few minutes
while SMBG is only done a few times every day.

2. CGMs can reduce the risks of hypoglycemia and hyperglycemia.

3. CGMs can improve the HbAlc level over time to a larger extent [72].

Whilst, the disadvantages of CGM systems include [73, 74]:

1. CGM systems must be calibrated with SMBG data 2 to 4 times per day
as a reference. However, some systems that do not require calibration
have recently appeared on the market.

2. The accuracy of the BG measurements is variable and dependent on
the calibration significantly.

3. CGM systems monitor glucose changes in ISF and not in blood, but
glucose levels in ISF lag temporally BG values in the range of 3-12
min.

4. Glucose sensors have an approximately a 6-month expiration from
the date of manufacture, but the sensor inside the patient has to be
changed every 3 to 7 days depending on the glucose monitor model,
and nowadays CGM sensors are expensive.

CGM accuracy is measured through the Mean Absolute Relative Devia-
tion (MARD), which consists in the average relative error between the sensor
and a reference glucose value obtained at the same time, and is defined as



CHAPTER 1. DIABETES AND THE ARTIFICIAL PANCREAS 17

n
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MARD := — ;
where n is the number of samples, CGM; indicate to the sensor BG reading
at time ¢, and Y S7; is the reference BG reading at time ¢. Lower MARD val-
ues indicate better CGM performance. The main aim is to develop “smart”
CGM systems able not only to detect hypo- or hyperglycemic episodes, but
also to make predictions based on trends that would allow the patient to
gain more time to take action to avoid risky events [75].

In 2016, the U.S. Food and Drug Administration (FDA) approved the
use of Dexcom G5 Mobile (DG5M) CGM with a MARD of 9% for the
management of diabetes in individuals age 2 years and older. DG5M is
officially the first approved CGM system through FDA, to use without a
confirmatory SMBG value to replace traditional BG testing for diabetes
treatment decisions (non-adjunctive use) [76]. Other devices have followed,
like Abbott Freestyle Libre (a FGM system), Senseonics Eversense (an im-
plantable subcutaneous CGM) and the Dexcom G6 that received FDA
approval in March 2018. Dexcom and Verily are expected to launch the G7
CGM system in 2020 with better specifications (e.g., much thinner, more
affordable, and continuosly communicating with smartphones) [77].

CGM; -YSI,
YSI;

, (L1)

Insulin pump

An insulin pump is a device that delivers a continuous subcutaneous infusion
of insulin 24 hours a day. It consists of a pump reservoir filled with insulin,
a computer chip to control the insulin dose, and an infusion set with a small
battery, that is designed to administer insulin subcutaneously through a
needle or cannula inserted under the skin, usually on the abdomen. The
insulin pump, also known as a continuous subcutaneous infusion of insulin
(CSII), appeared for research purposes at the first time in 1976 by Pickup
and Keen [78, 79]. At that time, the size of the CSII was as big as a back
bag and over time, technology has developed, nowadays CSII becoming small
size and easy to use.

Over time, the number of people with diabetes using CSII is increasing,
according to the FDA, who reported that about 375,000 adults with T1D in
the US used CSII in 2007, an increase of 245,000 over the number in 2002
[80]. The American Association of Diabetes Educators (AADE) recommends
using CSII in the following cases [81]:

e Patients who suffer from wide unpredictable fluctuations in BG levels.
e Patients with severe hypoglycemia and HbAlc level greater than 7%.

e Patients who have hypoglycemic episodes that require assistance or
that interfere with work or school.
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CSII has several advantages such as: increased flexibility in lifestyle
compared to patients on multi-injection therapy, precise insulin delivery and
safety options to stop overdosage, suitable for individuals whose meal times
are unpredictable, who achieve generally tighter BG control, reducing wide
fluctuations in BG, resulting in a better HbAlc. CSII disadvantages include:
infusion sets may cause skin infections, DKA can occur rapidly if the pump
malfunctions, as short-acting insulin is the only form given or the insulin
is inactivated by heat exposure, and they are expensive [82]. Currently,
modern pumps feature an insulin-on-board (IOB) calculation, corresponding
to the current active insulin or insulin remaining from the previous insulin
delivered. IOB can prevent insulin from stacking, therefore can reduce the
risk of overdosing, and reduce the risk of hypoglycemia [83].

Control algorithms

Control algorithms are the brain of the AP to keep the BG level in the target
range and preventing patients from hypoglycemia. Several approaches have
been tested to design such a control algorithm including model predictive
control (MPC), proportional-integral-derivative control (PID), fuzzy logic
control (FL) and H,, control among others [84, 85, 86, 87, 88]. The main
input to all control algorithms is the signal error, which results from the
difference between the desired BG level and the CGM readings.

The main difficulty for glucose control algorithms is the delayed action
of insulin since both glucose measurement and insulin delivery is done in
the subcutaneous tissue. Besides, there is a substantial variability of insulin
pharmacokinetics between individuals. Furthermore, several factors lead to
varying insulin sensitivity of a patient [89, 90]. The inaccuracy of the CGMs
has to be considered when designing control algorithms, especially at lower
and rapid fluctuation BG readings.

Glucose control algorithms should contain more options to avoid the risk
of hypoglycemia such as: calculating the IOB to take the delayed action of
insulin into account, using algorithms to predict hypoglycemia thus send-
ing out alert messages to the patient and stopping insulin infusion [91, 92].
Furthermore, manual announcements such as announcement of meals or
exercise, are often parts of control algorithms to be able to minimize post-
prandial hyperglycemia and prevent hypoglycemia. Regarding the safety
issues, the security alarm is a major challenge in glucose control algorithms;
it must be able to detect any critical state to prevent patients from risk.

1.2.2 State of development

Rapid progress has been made through last years in the development of AP
systems compared with the first closed-loop control system, Kadish 1964
[93, 94]. Currently, several research groups worldwide are developing the
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AP systems, either single hormone (insulin delivery alone) or dual hormone
(bihormonal) using insulin and glucagon to mimic the real pancreas and min-
imize the burden of BG management [95]. The use of insulin-only or insulin
and glucagon in AP systems each has its own advantages and disadvantages
[96]. In many studies, dual-hormone systems have been proven to be su-
perior to single-hormone systems, especially, in preventing hypoglycemia in
response to meals and exercise [97, 98].

Several clinical studies have established the efficacy and safety of both
insulin only [99, 100, 101] and dual-hormone APs [97, 102, 103]. These
clinical studies have proved that AP systems can improve glycemic control,
improve HbAlc level, and therefore prevent long-term complications of di-
abetes. Weisman et al. [104] demonstrated this improvement through a
metanalysis of clinical outcomes in outpatient studies comparing AP sys-
tems with open-loop therapy in adults and children with T1D. The use of
AP systems lead to an increase in target BG range by 12.59%, approximately
equal to 3-h per day. Besides that, HbAlc could be reduced by a minimum
of 0.3% when using AP systems, although HbAlc was assessed in only two
studies. In addition, the use of AP systems further reduced hypoglycemia
and the burden of disease management [104].

Besides the control algorithms, additional modules have been developed
to make the AP system more reliable. Meal detection modules [105, 106, 107]
are capable to detect the meal intake automatically without any interaction
of the user in order to determine the early insulin bolus to prevent potential
hyperglycemia. Exercise modules [4, 108] are applied to AP systems to
detect exercise and change therapy to prevent potential hypoglycemia during
the exercise and recovery periods. IOB modules [109, 110] are developed to
estimate the size of insulin that is still active in the body to avoid insulin
stacking that causes hypoglycemia. Hypoglycemia early alarm modules [111,
112, 113] are able to warn from potential hypoglycemia, gaining more time
to take action to avoid hypoglycemia.

In 2017, the FDA approved Medtronic MiniMed 670G hybrid closed-
loop control system as the first commercialized product available in the
market today. The approval came after evaluated data for the MiniMed
670G from a clinical trial that involved 124 participants with T1D with
mean age 37.8 years, for 3 months after a 2-week run-in period [114]. The
MiniMed 670G still needs patient’s manual interaction, announcing meals
and exercise. This is just the first step, therefore, paving the way for further
studies and experiments to reach the best, and to increase the marketing
capacity of AP systems.



Chapter 2

Thesis objectives

2.1 Glucose prediction in the artificial pancreas

The recent commercialization of the first artificial pancreas, the Medtronic
MiniMed 670G hybrid (semi-automatic) closed-loop glucose control system,
is only a first step towards a fully automatic control system and several
challenges still remain open. One of the main challenges, that can leverage
better control and supervision systems, is to obtain better models for the
prediction of future BG levels as an integral part of artificial pancreas sys-
tems. The ability to predict glucose along a given prediction horizon (PH),
and estimation of future glucose trends, is the most important feature of any
AP, in order to be able to take preventive actions to entirely avoid risk to
the patient. Glucose prediction can appear as part of the control algorithm
itself, such as in systems based on MPC techniques [115, 116, 117], or as part
of a monitoring subsystem to avoid hypoglycemic episodes [118, 119, 120].

However, accurate glucose prediction poses many challenges, as a result
of the effect of many factors on glucose dynamics such as meal intake, in-
sulin action, physical activity, stress, and inter- and intra-patient variability.
Therefore, ideally, prediction of BG should use many inputs; certainly BG
measurements by the CGM sensor, but also estimated ingested CHOs and
infused insulin play a major role, besides physical activity as measured by
biometric sensors (e.g., galvanic skin response, heart rate variability, skin
temperature, energy expenditure).

The generation of risk alerts is the most immediate application of glucose
prediction to creating safer control algorithms by allowing the patient to take
appropriate therapeutic actions, e.g., snack to counterbalance hypoglycemia,
or applying correction insulin boluses to deal with hyperglycemia, based on
the predicted BG value [121, 122, 123].

20
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2.2 General objective

The modeling error in glucose prediction of available type 1 diabetes models
is large, specially for large prediction horizons and under disturbances. This
is due to the large intra-patient variability and the unavoidable free-living
changing conditions. Therefore, the challenge of improving the accuracy
and prediction horizon of the current state of the art models is going to
be addressed in this work then being the main objective of the thesis the
“development of new techniques for identifying individualized pa-
tient glucose prediction models in type 1 diabetes”.

2.3 Specific objectives

Estimation of future BG concentrations is a critical task for diabetes man-
agement, in order to save diabetic people from diabetes complications. An
accurate prediction of glycemia can be used for early hypoglycemic and hy-
perglycemic alarms. In addition, adjustments of insulin amount/rate is a
major aim of the AP systems, and is guided by glycemia predictions. Fur-
thermore, predicted glucose values can be used for detecting the abnormal
behavior of the patient or the AP system.

The goal of the first sub-objective of this thesis is to improve cur-
rent models by developing better stochastic models from available
historical CGM data of a patient and use the models developed
to predict the future BG variations. This sub-objective involves the
analysis of CGM glucose concentration data collected from patients, as well,
the inter- and intra-individuals variability.

Glucose-insulin dynamics exhibits great variability from individual to in-
dividual. As well, the metabolism of individuals with diabetes differs from
the metabolism of healthy individuals. Furthermore, metabolic changes re-
sulting from illness, stress or changes in insulin sensitivity may also cause
critical variations in glucose-insulin dynamics within the same individual.
Therefore, the models developed should be able to capture the dynamic char-
acteristic of diabetic people behavior, and also inter- and intra-individuals
variability in the BG homeostasis.

Several external disturbances such as meal consumption and physical
activity also cause large BG fluctuations, especially, in postprandial periods
and after exercise. Therefore, the postprandial period is the most chal-
lenging period, due to the presence of many external factors that affect the
behavior of patients, such as the meal intake and amount of insulin. Changes
in exercise habits, and the physiological variability of the patient also lead to
huge variations. A reliable model for BG prediction should also perform ef-
ficiently under such conditions without demanding any a priori disturbance
announcement or information.
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In order to cope to all these sources of variability, this thesis will explore
the CGM data driven development of personalized stochastic models such
as stochastic seasonal time series models. Therefore, time series analysis
techniques with seasonality variation, with success in other areas, are going
to be explored. Seasonal phenomena may stem from various factors, such as
weather and holidays, which affects many business and economic activities
like tourism, and custom events like Christmas. In seasonality, the mean of
the observations is not constant but instead develops according to a cyclical
pattern. For example, in the monthly temperatures time series in Europe,
the mean temperature is not constant since it varies by month, but for
the same month in different years, we can expect a constant average value.
Hence, seasonality in postprandial periods or nocturnal periods should be
explored.

The proposed stochastic seasonal model can simplify current diabetes
management, where this model can be used to provide early hypoglycemia
and hyperglycemia alarms and also can be used as a guide for their daily
insulin dose and associated adjustments. This model could capture the dy-
namic characteristic of the patient behavior and it can be able to predict BG
concentrations for larger PH. The glucose prediction through the proposed
stochastic seasonal model in the sub-objective 1 could be improved by using
exogenous inputs such as insulin infusion and physical activity.

However, the best results of seasonal models appear when similar behav-
iors are considered. On the other hand, when a nonlinear complex system is
very difficult to model, a common approach is to divide the complex mod-
eling problem into simpler modeling subproblems. Therefore, the concept
of local modeling comes to solve this problem and the glucose prediction
seasonal model can be improved when similar glycemic behaviors are used
(e.g., similar postprandial periods). Then, Sub-objective 2 copes with the
development of stochastic seasonal local models, and subsequently
integrate them to have a better glucose prediction.

In order to do so, similarity measures techniques will be explored to reach
the similarity required in the concept of seasonality. Clustering time series
techniques can obtain similar groups (clusters) of glycemic behaviors as a
basis of seasonality. Therefore, clustering techniques can be used to reach
similar groups of glycemic behaviors before applying the seasonal modeling.
The system complexity is divided into a set of simpler systems through local
seasonal models (i.e., a family of stochastic seasonal models), and a global
model could be obtained by integrating these local models.

Once a suitable technique for accurate glucose prediction with large pre-
diction horizon is available, it must be tested under free living conditions,
and used for control and/or supervision. Sub-objective 3 will deal with
this task, where a framework for the use of the stochastic seasonal
prediction models methodology under free-living online conditions
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must be developed. Seasonality conditions does not exist naturally in real
data, and prediction models could only be used in normal life by enforcing
the concept of seasonality. In real life, periods have different lengths in the
same daily events (e.g., the meal-to-meal time can have a different duration
each day) and it must be fixed for using seasonality. Once this problem
is solved, the prediction model can be used to design an online monitor-
ing system that informs the patient of the BG prediction, how much can
he/she trust in the prediction, or whether an abnormal behavior is being
detected. That may help subjects with diabetes to mitigate the effects of
the glycemic control variability in a safe/robust way in case of presence of
meal intake/exercise/unknown situations. The long-term complications of
diabetes could then be reduced by the patient taking actions to keep BG
concentrations within the narrow range (i.e., 70-180 mg/dL).

Summarizing, three sub-objectives have been devised in order to reach
the main objectives of the thesis of developing new techniques for identifying
individualized patient glucose prediction models in type 1 diabetes:

1. Development of methods for the accurate and long term prediction of
glycemia through personalized stochastic seasonal time series models
using real-time CGM data.

2. Improve the methodologies by stochastic seasonal local models, and
subsequently integrate them to have a better glucose prediction, in
order to cope better with variability and allow seasonality techniques.

3. Design the framework for the use of the previous techniques under free
living conditions, including the design of a monitoring system provid-
ing in real time to the patient: an accurate glucose prediction with
an associated confidence measure, and warning alarms when detecting
anomalous states.
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State of the art
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Chapter 3

Glucose prediction in type 1
diabetes

As previously stated, accurate glucose prediction is key for a good diabetes
management, either in decision-aid systems for optimizing insulin therapy
or automatic systems like the artificial pancreas. However, it remains a
big challenge due to the great variability of the glycemic response in T1D
individuals. This chapter reviews the different modeling approaches in lit-
erature for glucose prediction, with special emphasis in the analysis of the
achieved prediction performance. The chapter starts in Section 3.1 with the
main challenges of glucose prediction and the factors that affect glycemic
response and, therefore, glycemic control. Section 3.2 displays the main
categories of glucose prediction models such as physiological models, data-
driven models and hybrid models, which will be reviewed in Sections 3.3,
3.4 and 3.5, respectively. This chapter ends with an analysis in Section 3.6
of the current performance limitations in glucose prediction, motivating the
approach followed in this thesis.

3.1 Challenges of blood glucose prediction

BG prediction in people with T1D is a research problem that has been
widely studied since the availability of CGM time series data, especially in
combination with insulin pump therapy (see the recent review [124] and
references therein). As stated in Section 2.1, prediction of future BG levels
is an integral part of AP systems, either as part of the control algorithm
itself such as in MPC control and hypoglycemia mitigation modules, or as
part of supervision systems. However, glucose prediction has shown to be
challenging mainly due to the large inter- and intra-individual variability
exhibited by T1D patients and the complexity of disturbances like meals
and exercise.

25
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3.1.1 Inter- and intra-individual variability

As an illustration, Fig. 3.1(a) shows the response of two different patients
to a same 60 g CHO meal in open loop therapy and Fig. 3.1(b) the response
of a same patient to the same experiment in two different days. Data are
extracted from the study CLOSEDLOOP4MEALS (NCT02100488), per-
formed by the research group at Hospital Clinic de Barcelona and Hospital
Clinico Universitario de Valencia, where 20 patients underwent 4 mixed
meal studies, two in open loop and two in closed loop [7]. Despite a pre-
vious insulin feedback phase to bring the patients about the same glucose
value before the meal at ¢ = 0, variability of responses is significant, both
inter- and intra-individual. Remark that in the case of Fig. 3.1(b), the same
meal and insulin is supplied, whereas in Fig. 3.1(a), basal and bolus insulin
settings are according to each patient’s standard therapy optimized prior to
the study. This illustrates the difficulty experienced by patients to achieve
a good glucose control.

Clearly, it can be stated from clinical practice that “each patient has its
own diabetes”, which is reflected into a wide range of insulin requirements
in the T1D population. In [125], a retrospective analysis of age-related
variability in insulin needs during 3-week 24-h closed-loop glucose control
is performed. A cohort of 20 young children (1-6 years old), 21 children
(7-12 years old), 15 adolescents (13-17 years old) and 58 adults (> 18 years
old) were included. Total insulin delivery at each age group was 0.9+0.21,
1.014+0.21, 0.94+0.19 and 0.62+0.15 U/Kg/day leading to percentages of
time in range 70-180 mg/dL of 70.5+7.4, 65.24+6.2, 69.2+6.9 and 69.0+9.6,
respectively. The coefficient of variation of insulin delivery was statistically
significantly higher in young children compared with adults, with a mean
difference of 10.7 percentage points at night and 6.4 percentage points dur-
ing the day, as well as compared to adolescents, with a mean difference of
10.2 percentage points at night and 7.0 percentage points during the day.
In terms of glucose prediction, this means that model individualization will
be needed to cope with large inter-individual variability. Thus, model com-
plexity and its identifiability properties will be significant for a successful
model individualization.

Regarding the large intra-individual variability suffered by patients, its
sources are not fully understood. This is an important challenge to glucose
prediction, since information from all these disturbances won’t be available.
Key players in intra-individual variability are the variability of subcutaneous
insulin absorption [126, 127], changes in insulin sensitivity due to circadian
rhythms and external stimuli [128, 129] and premenstrual periods in women
[130], besides the highly variable glycemic effect of meals and exercise.

An intra-individual variability of 27% was reported for time-to-peak
plasma insulin concentration in an insulin aspart pharmacokinetic study
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Figure 3.1: Illustration of inter-individual and intra-individual variability to a 60 g
mized meal response in open loop therapy. Data extracted from the study Closed-
loop4meals (NCT02100488) [7].

[126], of which, nearly 40% was attributed to variations in depth of cannula
insertion, insulin site age and local tissue perfusion. In [131], a significant
effect of lypohypertrophia is reported with a 3- to 5-fold increment of the
coefficient of variance of the area-under-the-curve of plasma insulin after an
insulin injection in lypohypertrophic adipose tissue as compared to normal
adipose tissue, reaching up to 65%. This damage of the adipose tissue con-
sists in an abnormal mass of fat under the skin and appears when an infusion
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set is located repeatedly at the same place. Its prevalence ranges from 28%
to over 64%, depending on the country [131].

Circadian rhythms consist in 24-h cycles in behavioral and physiolog-
ical processes, anticipating and adapting to environmental changes [129].
The circadian system regulates the daily rhythm of glucose metabolism. A
higher insulin sensitivity at breakfast than dinner has been demonstrated
in healthy individuals [132]. In [90], the existence of such circadian pattern
in T1D was addressed. In contrast to healthy individuals, patterns of in-
sulin sensitivity in T1D showed to be specific of the individual, not being
possible an extrapolation to the T1D population. In average, the opposite
pattern was found, with lower insulin sensitivity at breakfast than lunch and
dinner. Based on these data, in [89, 133], seven possible classes of insulin
sensitivity circadian variability were considered for its representation in a
T1D simulator.

Many other secondary factors may contribute to variability. Caffeine
and fatty food intake, weight gain, and illnesses could lead to an increase
in BG levels. In contrast, aging, intense periods of concentration, and some
medications are factors that could lower BG levels. Alcohol consumption
and impaired digestion could lead to unpredictable glycemic deviation [134].

3.1.2 Postprandial response

Glycemic response to a meal is affected by many factors, aside the CHO
content which is the only input considered in standard insulin therapy and
in hybrid closed-loop systems. In [135], the impact of fat, protein and GI on
postprandial glucose response in T1D is analyzed, revealing that all these
factors modify the postprandial glucose pattern. It is concluded a late hy-
perglycemic effect of fat and consistent indication of higher insulin needs
for high-fat/protein meals compared to low-fat/protein with identical CHO
content. In [8], postprandial glycemic patterns of a low glycemic load (LG)
and a high glycemic load (HG) meal, matched in CHOs (121 g), were ana-
lyzed using tracer experiments to estimate glucose absorption from the meal.
LG resulted in a slower and sustained elevation of plasma glucose with an
unpronounced peak within 153+104 min, whereas HG showed a clearer and
earlier peak at 98+29 min. Meal absorption of both meals presented differ-
ent patterns, with absorption of LG continuing beyond the 8-h duration of
the study and the one of HG being completed within 6 hours (see Fig. 3.2).
The LG meal resulted in at least 15% higher apparent bioavailability of
CHOs. In [136] the effect of consuming white rice versus pasta with high
or low protein, matched in the CHO contents, was studied, showing higher
postprandial peak and area under the curve of rice than pasta. No statistical
difference between the two kinds of pasta was found.
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Figure 3.2: Average meal rate of glucose appearance of a low glycemic load (LG)
and a high glycemic load (HG) meal matched in carbohydrates. Adapted from [8].

3.1.3 Exercise response

Another challenge to diabetes management, including the AP, is exercise
[9]. Regular physical activity is beneficial to health. However, it is also a
source of glucose fluctuations which will change depending on the type of
exercise, intensity and duration. Fig. 3.3 represents different typical exercise
modalities and their glycemic impact in individuals with and without T1D.
In healthy individuals, a reduction of insulin secretion happens at the onset
of exercise, which together with an increase of counterregulatory hormones
balance the increased glucose disposal. Only in vigorous intensity aerobic
exercise and brief high intensity anaerobic exercise (like a sprint), a rise
in glucose will happen which is later corrected by an increase in insulin
secretion. However, these mechanisms are not possible in T1D. Moderate
intensity aerobic exercise will tend to produce hypoglycemia due to the
impossibility of reducing portal insulin concentration at the onset of exercise
and the acceleration of insulin absorption provoked by exercise, among other
factors. High variability and even unpredictability is observed in the case of
T1D.

Of especial relevance is moderate aerobic exercise, due to the increased
risk of hypoglycemia. Indeed, in [137], a drop of 68 mg/dL is reported in
a 40-min continuous treadmill walking exercise session, despite an insulin
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Figure 3.3: Blood glucose and typical hormonal responses to different types and
intensities of exercise in individuals with and without T1D. “Cats” stands for
“cathecolamines”. Modified from [9]

pump shut off at the start of exercise, which is the most aggressive action
a single hormone AP can do for an unannounced exercise. Such an impact
would result in hypoglycemia unless the patient has a high enough glucose
concentration prior to exercise.

In [9], different hurdles are identified related to exercise and the devel-
opment of the AP, of which the following can be extrapolated to glucose
prediction:

e Exercise comes in a variety of forms and intensities, yielding to highly
variable (from 2 to 10-fold) increase of BG turnover rates during ex-
ercise.

e Exercise effects change from person to person and from day to day.

In order to cope with this high variability, additional signals sensing exercise
might be necessary for a more accurate glucose prediction. In [138], an
analysis of relevant signals from a wearable device (SenseWear© physical
activity monitor, Body Media, Pittsburgh, PA, USA) for a variety of exercise
types is investigated from 26 clinical experiments. Seven exercise types are
tested: exercise stress test, treadmill exercise, treadmill exercise-interval
training, bike exercise, weight lifting, exercise with workout video, maximal
resistance training and submaximal resistance training. Measurement of
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skin temperature is found to be relevant in 6 out of the 7 types of exercises,
followed by energy expenditure and heart rate. Galvanic skin response was
found to be the most important variable during treadmill exercise-interval
training and maximal resistance training sessions.

Despite all these challenges, the most important feature that must be
available in an AP system (any diabetes management in general) is the
ability to minimize hypoglycemic episodes, accurately determine a correct
amount of insulin according to the different meals intake, ability to generate
alerts before BG problems, which must be adjustable for different clinical
practices, and usability [75, 139]. Thus, the development of models that are
effective enough to characterize key physiological aspects in T1D is needed
[140]. An effective prediction model should capture the dynamic charac-
teristics of the patient’s behavior in face of insulin (and glucagon when
applicable) delivery and external disturbances such as meals and exercise,
at least, which determine the inputs that may be available from devices
or information provided manually by patients (the so-called “patient’s an-
nouncement”).

3.2 Categories of prediction models

Prediction models can be classified into three categories (see Fig. 3.4): phys-
iological models, data-driven models, and hybrid models [124, 141], which are
described next.

BG prediction models

4 $
m Data-driven

Figure 3.4: Categories of prediction models.

$

Physiological models

Physiological models are mathematical dynamic models that approximate
the behavior of an actual physiological system. Therefore, these models
require a priori knowledge on physiology, in our case the regulatory mech-
anisms of glucose and other metabolites. These models try to capture the
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dynamics of glucose-relevant variables within various systems in the body
(e.g., the process of converting CHO intake to glucose in the blood and then
its interaction with many organs within the body such as liver and mus-
cle). They are usually compartmental models as shown in Fig. 3.5, since
they are generated by dividing the body into homogeneous compartments
representing the distribution of glucose and insulin in various organs [142].
A glucose-insulin physiological model able to deal with main events in a pa-
tient’s daily life necessarily needs sub-models describing CHO digestion and
absorption, subcutaneous insulin absorption and ezxercise [143]. Expected
inputs to these models include an estimation of CHO intake, insulin deliv-
ered by the insulin pump, and exercise information, such as signals from a
wearable if available or manual descriptive information from the patient.
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CHO absorption
—
Insulin action
m —>| Exercise model | =—————> and kinetics BG(t)
Exft) model
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Figure 8.5: Block diagram of a glucose-insulin physiological model.

These models can be classified into two types according to their com-
plexity. The first type is minimal models characterized by the few number
of parameters and equations that describe the main components of the sys-
tem’s functionality, focused on representing the crucial processes of glucose
metabolism and insulin action. The second type is mazximal or comprehen-
sive models, which include all the available physiological knowledge about
the system’s functionality. However they suffer from an excess of parame-
ters raising indentifiability issues if model personalization is pursued. These
models are used to build simulators for in silico experiments to assess con-
trollers and treatment strategies, demonstrating matching between in silico
and clinical results at a population level [69].
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Data-driven models

Data-driven models, also referred to as empirical dynamic models, are black
box models developed from input /output data without considering any phys-
iological knowledge (Fig. 3.6). Therefore, there is not the need to know how
the physiological mechanisms led to the emergence of input/output behav-
ior. Despite these models cannot be used to explain the mechanisms of the
glucose-insulin regulatory system, they can provide good predictions about
BG future dynamic behavior [141].
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Figure 3.6: Block diagram of an artificial neural network as an example of data-
driven model.

Usually, the output of these models is the future BG values, while the
input data can be a diversity of information that can influence the BG levels
such as previously measured BG values, food composition (e.g., amount
of CHOs), exercise, insulin therapy, body temperature, heart rate, energy
expenditure, etc. Furthermore, these models are often supported by a big
family of techniques such as time series models, fuzzy logic models, support
vector models, and artificial neural network (ANN) models, among others
[141].

Data-driven models are characterized by many advantages such as [141]:

e they need minimal user input,
e they can be developed in a short time,
e easy implementation of controllers,

which make them more attractive than physiological models for our purpose.
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Hybrid models

Hybrid models typically use physiological models to provide inputs for a
data-driven model to predict the BG value or to indicate BG problems like a
risk of hypoglycemia as shown in Fig. 3.7. The data-driven model component
in these models captures the relationship between the physiological model’s
output and future BG outcomes [124]. It is expected that integration of
partial physiological knowledge will lead to increased prediction accuracy of
the overall model, although this would depend on the quality of the fitting
of such model components, whose outputs can be unmeasurable such as
glucose absorption rate from a meal model, for instance, unless complex
tracer experiments are carried out.
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IV — | seisemode ——~ sty
Ex(t)
. Subcutaneous
Emp

insulin
absorptlon model

Figure 3.7: Block diagram of a hybrid model.

A review of how the different approaches have been used for prediction
and estimation in the context of the AP follows. It is out of the scope of
this review to present all models reported in the literature, which is vast.
Good reviews in this sense are the ones in [69, 141, 124], and the reader is
referred to them and references therein.

3.3 Physiological models

3.3.1 Minimal model based approaches

Bergman minimal model originated in 1979 [144] to describe the intravenous
glucose tolerance test (IVGTT), which aims at analyzing how the body me-
tabolizes glucose. Glucose is infused intravenously and plasma glucose and
insulin concentration are measured before and after such infusion. Then, the
model is fitted to data to get key parameters such as insulin sensitivity. As
a model “to measure”, no subcutaneous insulin absorption or meal ingestion
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is considered. Taking this into consideration, the model is described as

X(t) = —p2X(t) +p3(I(t) — ) (3.1)
GO = ~n+ XG0 + Gy + (32
It comsists in a second order non-linear model relating plasma insulin
concentration I(¢) (input) and plasma glucose concentration G(t) (output).
Insulin effect, X (t), is modeled with a first-order system representing a
lagged action of insulin. Plasma glucose concentration, G(t), is inhibited by
glucose itself and insulin effect. A constant hepatic glucose production p; Gy
drives the system to equilibrium for a basal insulin concentration ;. Finally,
the term Ug(t)/Vg describes the intravenous glucose infusion (or glucose
rate of appearance from the meal when a meal model is interconnected).
Parameters pi, po and p3 are kinetic parameters. Parameter p; is called
“glucose effectiveness” and it represents glucose auto-inhibition. Insulin
sensitivity is computed as ps/pa.

Due to its simplicity and identifiability properties, Bergman model (or
equivalent model formulations) is widely used outside its original scope,
in combination with a subcutaneous insulin pharmacokinetic and a CHO
absorption model. An example is the so-called “Identifiable Virtual Patient”
(IVP) model [145], with equations
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Ra(t) = VolZ (3.3)
Isc(t) = —Isfl(t) + “;i{(tl) (3.4)
Ity = —Ig) + Isfz(t) (3.5)
Ig(t) = —polp(t) +p2SiI(t) (3.6)
G(t) = —(GEZI+ Ip(t)G(t)+ EGP + Ru(t) (3.7)

CHO absorption is described as the explicit impulse response of a sec-
ond order linear system with double pole at —1/t,,42¢, to the impulse input
D¢ /Vgd(t), where D¢ is the CHO intake and Vg is the glucose volume
of distribution. Thus, R4(t) represents a concentration rate, instead of a
mass rate. Parameter Ag is the CHO bioavailability, that is, the fraction
of CHO in the meal that will finally reach blood. The mass-rate version
of this model originates in the Hovorka model, which is described in the
next Section. Insulin action and glucose metabolism are equivalent to the
Bergman model, with the difference that plasma insulin I(t) is considered,
instead of its deviation with respect to basal insulin I,. State Ig(t) and pa-
rameter GEZI (Glucose Effectiveness extrapolated to Zero Insulin) are thus
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equivalent to X (¢) and pi, respectively, with the change in its meaning due
the above difference. Parameter EGP is equivalent to p;Gp and describes
the hepatic glucose production. The subcutaneous insulin pharmacokinetic
model consists in a second order linear model with time constants 71 and
7. Parameter K is insulin clearance, that is, how much volume of plasma
is cleared of insulin per unit time.

Several extensions of the Bergman model have appeared in literature in-
cluding the effects of free fatty acids (FFA) [146], exercise [147], counterreg-
ulatory response [148] and glucagon PK/PD in the context of dual-hormone
AP systems [149].

Regarding its use in the AP domain, minimal models have been used in
MPC formulations and state and disturbance observers. In [150], an MPC
controller is designed based on the Bergman minimal model as part of para-
metric programming algorithms. The generation of an explicit relationship
between the constrained optimal control profile and the current BG con-
centration is addressed. As well, in [151], an MPC controller is designed
based on the Bergman minimal model, which is tested in simulation using a
19-state nonlinear model as virtual patient (Sorensen model [152]). In this
study, a meal disturbance was applied in order to test the system’s distur-
bance rejection performance. The authors demonstrate the efficiency of the
estimation-based MPC strategy, despite the plant-model mismatch.

In [153], the Bergman minimal model is used in combination with differ-
ent filters (symmetric Unscented Kalman Filter, Extended Kalman Filter,
simplex Unscented Kalman Filter, and the Particle Filter) in order to esti-
mate plasma insulin concentration. Endogenous insulin secretion was also
considered since data from non-diabetic individuals was used. Lie deriva-
tives [154] were used for evaluating observability and linear interpolation was
applied to get glucose measurements in a time grid of 1 min. The designed
observers were validated against IVGTT data in non-diabetic individuals
using RMSE as performance metrics. The symmetric Unscented Kalman
Filter exhibited better results than the Extended Kalman Filter, with an
RMSE value of 10.277 mU/L versus 13.533 mU/L, respectively.

A Luenberger observer [155] is designed in [156] using the Bergman min-
imal model for the estimation of remote insulin and plasma insulin compart-
ments. Disturbances were represented in the form of an exogenous glucose
infusion rate. Results were tested in closed-loop simulations with a linear-
quadratic (LQ) controller.

In [157], the IVP model (i.e., extended minimal model with meal absorp-
tion and subcutaneous insulin infusion) is used as an initial white-box model
for the formulation of stochastic differential equation-based grey-box mod-
els (SDE-GBs) with diffusion. Clinical data from 4 T1D patients were used
for parameter estimation. In addition, the likelihood-ratio test was used
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for determining the optimal SDE-GB. Variation in the “time to peak meal
response” parameter was tracked. The results obtained demonstrated that
the use of SDE-GB instead of ordinary differential equations (ODEs) can
provide a meaningful improvement in uncorrelated errors and prediction.

In [158], a modified version of the Bergman minimal model is used in
the context of a meal detection algorithm. An Unscented Kalman Filter
was developed for state and parameter estimation. The estimated rate of
appearance of glucose was used to detect a meal and trigger meal boluses.
This algorithm (IMA-APv2) was tested in both simulated and clinical envi-
ronments, with 14 experiments on 7 T1D patients. The authors successfully
demonstrated the ability of this algorithm to decrease the number and in-
tensity of hypoglycemia in individuals with T1D without any intervention
or manual input from individuals.

3.3.2 Medium complexity models

The most representative medium complexity model in literature is Hovorka
model [115, 159], which consists in a 7-th order non-linear model given by
the equations
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CHO digestion and absorption are described by the impulse response of a
second order linear model, with input Dg the amount of CHO in the meal,
and output the glucose rate of appearance in blood, Ug(t). Subcutaneous
insulin pharmacokinetics is a 3-rd linear model, with «(¢) the insulin infusion
from the pump and states S1(t) and Sa(t) representing mass of insulin along
subcutaneous tissue, with transport time constant t,,q.7. Insulin rate of
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appearance in blood is S2(t)/tmazr1, that, once converted to concentration
rate by dividing by the insulin distribution volume V7, enters the first-order
kinetic equation defining plasma insulin concentration, I(t). Parameter k. is
the fractional elimination rate. Plasma insulin exerts three actions, following
a first-order dynamics (representing a “remote” action): Xi(t) is the effect of
insulin on glucose distribution/transport, Xa(t) the effect on glucose disposal
(it promotes glucose entering muscle and adipose tissue cells) and X3(¢) the
effect endogenous glucose production (it inhibits glucose production by the
liver). Constants kq;, ¢ = 1,2,3, are kinetic constants and ky;/kq; are the
insulin sensitivities for each effect. Finally, states Q1(t) and Q2(t) represent
the glucose mass in plasma and interstitial tissue, respectively. Transport
of glucose between both compartments happens at rates ki and X;i(t),
depending on the direction. Besides these transport flows, glucose from
the meal, Ug(t), and hepatic glucose production EGPy(1 — X3(t)), with
EGP, the production extrapolated to zero insulin, are input flows to the
plasma compartment; insulin-independent consumption (mainly by brain),
F§,(t), and renal glucose elimination, Fr(t) are output flows. For the sake
of simplicity, the reader is referred to [115] for the definition of F§;(t) and
Fr(t). Regarding the interstitial compartment, aside the inter-compartment
transport, glucose uptake by muscle and adipose tissue, X5 (t)Q2(t) is an
output flow. Plasma glucose concentration (model output) is finally given
by Q1(t)/Ve, where Vg is the glucose distribution volume.

Hovorka model is the basis of the AP system developed by the Hovorka’s
team at University of Cambridge (Florence system), based on a non linear
MPC controller. This system has been extensively evaluated in clinical trials
[160]. The system includes a Kalman filter to update two model parame-
ters: (1) a glucose flux quantifying model misspecification; and (2) CHO
bioavailability [161]. Competing models in a stochastic framework to get
the best possible explanation of sensor data are used, with models differing
in the rate of subcutaneous insulin absorption and action, as well as CHO
absorption.

As well, in [162], a Hovorka model based Extended Kalman Filter is
built for real-time estimation of plasma insulin concentration from CGM
measurements. Estimation of uncertain pharmacokinetic parameters (i.e.,
the fractional elimination rate from plasma, k., and time-to-maximum in-
sulin absorption, t,,4.7) is also considered, with an state extension. An in
silico study comprising 100 T1D subjects was carried out for evaluation, as
well as clinical data from 12 T1D subjects who underwent four mixed meal
studies each. In this case, actual plasma insulin measurements were used to
analyze the observer performance. The obtained results demonstrated that
this approach may be helpful to increase the efficiency and safety of control
algorithms for the AP system, as compared to using a population model to
compute, for instance, insulin-on-board.
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In line with the previous work, in [163], the Hovorka model is used in
combination with different estimation techniques (continuous-discrete Ex-
tended Kalman Filter, Unscented Kalman Filter and Moving Horizon Esti-
mator) in order to perform a real-time estimation of plasma insulin concen-
tration. Moreover, the effect of meal intake, Ug, is considered as a time-
varying model parameter and also estimated, together with k. and ¢,,4.1, as
in [162], to cope with intra-individual variability. These three parameters
are included as extended states in the Hovorka model. Partial least-squares
(PLS) models are used based on the demographic information (e.g., height,
weight, HbAlc, and total daily insulin dose) of each subject to determine
suitable initial values for these unknown model parameters.

In [107], the Hovorka model is used as an in silico subject in order to
develop and test a closed-loop AP system based on an MPC controller.
A new procedure for “human-friendly” identification is proposed by using
multisine inputs to estimate appropriate model parameters.

In [143], modal interval analysis [164] is applied for computing tight en-
velopes of glucose concentration for the prediction of postprandial glucose
under parametric uncertainty using the Hovorka model. This approach was
compared with Monte Carlo simulations, demonstrating a guarantee of the
inclusion of the actual response into the computed envelopes, with a much
less computational effort. However, only some specific parameters of the
Hovorka model were considered uncertain in this study (i.e., insulin sensi-
tivities, glucose absorption, and food intake). In contrast, in [165], monotone
systems techniques are used to compute glucose concentration envelopes of
the Hovorka model considering uncertainty in all the parameters and initial
conditions.

3.3.3 Maximal models

The most representative maximal model in AP research is Dalla Man model
[166], developed originally for healthy subjects and later adapted to T1D
[167]. This model is the core of the UVA-Padova T1D simulator [168, 133]
accepted by the FDA in USA as a substitute of animal trials. This simulator
is extensively used in the field for in silico studies of new controllers. Along
time, the model in [166, 167] has been refined incorporating new features
like nonlinearities happening during hypoglycemia and glucagon PK/PD
[168], and later a better representation of insulin sensitivity intra-patient
variability and intradermal and inhaled insulin absorption [89, 133]. Here,
for the sake of brevity, only the model in [166, 167] will be described in detail,
as well because only in its simplest version this model has been used as part
of MPC AP systems. Differences with Hovorka model will be highlighted.

Dalla Man model in [166, 167] is described by the following equations:
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Qsto(t) = Qstor1(t) + Qsto(t) (3.18)
Qstor(t) = —kgriQstor () + DS (t) (3.19)
Qsto2(t) = —kempt(Qsto(t)) Qsto2(t) + KgriQstor (1) (3.20)
qut(t) = —kapsQqut(t) + kempt (Qsto(t)) Qsto2(t) (3.21)
Fabs Qgut (t
Ry — D) oz
Iei(t) = —(ka+ ka1)Lse1(t) + TIR(t) (3.23)
La(t) = kalse1(t) — kazlsea(t) (3.24)
Rai(t) = korlser(t) + kaoIsen(t) (3.25)
L(t) = —(m1+ma)L(t) +maly(t) (3.26)
I,(t) = —(ma+ma)L(t) +miL(t) + Rai(t) (3.27)
I,(t
I(t) = ’;é) (3.28)
L(t) = —k(L(t)—I@) (3.29)
Ii(t) = —ki(Ia(t) — i(t)) (3.30)
EGP(t) = kp — kpGpy(t) — kpsla(t) (3.31)
X(t) = —pawX(t)+pw((t)— 1) (3.32)
Vino + Vinz X (1)) G (t
Ual) = e ) S D (353
Gp(t) = EGP(t)+ Ru(t) — Uii(t) — E(t) — k1Gp(t) + kaGy(t)
Gi(t) = —Uig(t) + k1Gp(t) — kaGy(t) (3.34)
o = % (3.35)
Va

Meal absorption is represented by state variables Qs02(t), Qsto2(t) and
Qgut(t), denoting liquid and solid phase in the stomach and gut compart-
ment, respectively. The gastric emptying rate is represented by the non-
linear function kepmpe(-) (see [167] for its explicit expression), which intends
to mimic the impact of fat in gastric emptying. As compared to Hovorka
model, equation (3.8), now meal absorption is nonlinear. Subcutaneous
insulin absorption and kinetics also differ. In Dalla Man model subcuta-
neous insulin absorption is represented by state variables Ig.1(t) and Ise2(t),
with ITR(t) the exogenous insulin infusion rate. As compared to Hovorka
model, equations (3.9)-(3.10), now insulin from both compartments reach
the plasma, I,(t), at a rate R4;(t). Dalla Man model also represents insulin
at the liver, I;(t), where insulin hepatic extraction happens. The rest of
equations in Dalla Man model represent glucose kinetics. States G,(t) and
Gy(t) are equivalent to Q1(t) and Q2(t) in Hovorka model. The main dif-
ference observed is that, whereas in Hovorka model three effects of insulin
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are considered (glucose transport, hepatic production and peripheral glu-
cose uptake), in Dalla Man model no effect of insulin on glucose transport
among plasma and peripheral tissues is considered. Effect on the inhibition
of hepatic glucose production is represented by EGP(t), where insulin acts
with a lag represented by the two-compartmental system given by I;(¢) and
I;(t). Effect of insulin on the promotion of peripheral glucose uptake is rep-
resented by U,4(t), which in this case follows a Michaelis-Menten dynamics
with a lag represented by X (¢). Variables U;;(t) and E(t) represent insulin-
independent glucose uptake (which is constant) and renal glucose excretion,
which is modeled similarly to Hovorka model (the reader is referred to [166]
for its expression).

Models of such complexity suffer from identifiability issues which makes
model personalization a hurdle. Despite this, an MPC AP system based on a
linearization of the Dalla Man model is proposed in [116]. A mean linearized
model is used, and a single aggresiveness factor in the cost index is used
for individualization [169]. A Kalman filter is also used for state estimation
using a linear model. In [170], the authors propose a model individualization
based on average linearized models for four virtual subpopulations classified
according to insulin-to-CHO ratios ranges. None of these publications report
information on the quality of the predictions in the MPC controller with
clinical data.

3.4 Data-driven models

Recent studies have considered an assortment of linear Empirical Dynamic
Models (EDM) identified from in silico and, more significantly, from clinical
data, which is our interest. Linear EDM include AR, ARMA, ARX, and
ARMAX models, among others (see Chapter 4, Section 4.2). These models
may be more attractive than physiological models for capturing the glucose
dynamic behavior due to the advantages stated in Section 3.2.

3.4.1 AR and ARMA models

The AR and ARMA models without exogenous variables assume that future
BG concentration can be expressed as a linear function of previous BG mea-
surements without any prior information (e.g., meal or insulin information).
Reifman et al. [171] proposed a time-invariant (i.e., constant parameter) AR
model of order 10 (i.e., AR(10)). The model was identified on CGM data
of nine T1D subjects collected over a continuous 5-day period, with a sam-
pling time of 1 min. The model parameters were optimized using regularized
least squares (LS) and the quality of predictions was assessed through: (1)
the RMSE and (2) the continuous glucose error grid analysis (CG-EGA)
(see Appendix A), considering PH until 120 min. Both subject-specific and
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cross-subject models were evaluated obtaining comparable results, for exam-
ple, for a 30-min PH, the CG-EGA for subject-specific models yield 97.6 to
100.0% of data in the clinically acceptable zones A and B, with an average
RMSE of 22.3 mg/dL, whereas the CG-EGA for cross-subject models yield
95.8 to 99.7% of data in zones A and B, with an average RMSE of 24.8
mg/dL.

Gani et al. [172] identified 30th-order AR models, AR(30), from CGM
data with 1-min sampling time from 9 T1D subjects for approximately 5
consecutive days. Three cases were considered: (a) scenario 1, in which raw
glucose data were used to obtain unregularized AR coefficients; (b) scenario
2, in which glucose data were smoothed before computing unregularized AR
coefficients; and (c) scenario 3, in which smoothing and regularization were
used to generate regularized AR coefficients. The model parameters were
determined by using least squares and the models were assessed on different
PHs in terms of RMSE and time lags. Only scenario 3 guaranteed accurate
predictions and a clinically acceptable time lag until 60-min PH, i.e., an
average RMSE of 12.6 mg/dL was reported for a 60-min PH and average
lag of 12.3 min. The first two scenarios displayed undesirable accuracy and
large time lags.

Sparacino and colleagues [173] identified a lst-order time-varying AR
model based on data from 28 T1D subjects wearing a microdialysis system
with a 3-min sampling time for 48 consecutive hours, in normal daily life
conditions. The model parameters were estimated at each time step using
recursive least squares (RLS). They demonstrated the feasibility of pre-
dicting hypoglycemic events 20-25 min ahead in time, considering a 30-min
PH. A median RMSE ranging from 18.33 to 20.32 mg/dL, depending on
the selection of a forgetting factor, was reported for that PH.

Low-order AR and ARMA models were considered by Eren-Oruklu and
associates [174] considering PHs up to 30 minutes. Two different databases
were used: one formed by 22 healthy hospitalized individuals, and the
other one formed by 14 T2D subjects in free daily life conditions. Both
databases consist of glucose concentration data were monitored with the
Gold™ CGMS® system, with a 5-min sampling time, for 48 consecutive
hours. The model parameters were estimated using weighted RLS. A sum
of squares of glucose prediction error (SSGPE) ranging between 10.32 and
12.55 mg/dL was reported, depending on the study, for a 30-min PH.

3.4.2 ARX and ARMAX models

Extension of AR and ARMA models is widely used in order to exploit CGM
and other available information like insulin infusion and other input signals
(exogenous variables), leading to ARX and ARMAX models as introduced
in Section 4.2. This allows to better capture the genuine patterns in CGM
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behavior and improve the prediction accuracy and PH.

Finan and colleagues [175, 176] evaluated ARX models from simulated
and clinical ambulatory data from 9 T1D, with 5-min sampling time. Each
dataset spanned 2 to 8 days. Insulin pump information and CHO quantity
of meals were used as exogenous variables in the models. The authors con-
cluded that 60 minutes was a maximum achievable PH in terms of model
prediction accuracy. An average RMSE of 26, 34, and 40 mg/dL was re-
ported for 30-, 45-, and 60-min PH, respectively [177]. This corresponds to
an improvement of 9%, 5%, and 5%, respectively, compared to a zero-order-
hold (ZOH) predictor. Castillo et al. [178] identified a time-varying ARX
model based on data from 15 T1D subjects. A CGM data was monitored
using a FreeStyle Navigator CGM device with a 1-min sampling time, for 76
hour. Meal and insulin information were used as exogenous variables in the
model. The model parameters were estimated recursively using a normalized
least mean squares (NLMS) algorithm and exploiting a physiological gain
adaptation rule. The quality of predictions was assessed by the CG-EGA in
different glycemic ranges, considering PH up to 50 min.

Eren-Oruklu and associates [179] identified a time-varying multivariate
ARMAX model, with exogenous variables including meal intake, lifestyle in-
formation, and PA with seven signals to describe the activity of all subjects
and emotional conditions: energy expenditure (EE), average longitudinal ac-
celeration (LA), transverse acceleration peaks, transverse acceleration mean
of absolute difference, near-body temperature (BT), heat flux (HF) and
galvanic skin response (GSR). The model based on data from 5 T2D sub-
jects under free-living conditions. Glucose was monitored with the MMT-
7012 Medtronic CGM sensor for about 24 days, with 5-min sampling time.
The physiological signals were measured with the body monitoring system
SenseWear Pro3 (BodyMedia Inc., Pittsburgh, PA). The model parameters
were identified online using the weighted RLS method with a change de-
tection strategy in case of severe glycemic disturbance. A mean absolute
percentage error (MAPE) of 4.24 % was reported for 30-min PH. Further-
more, the authors also preliminarily evaluated the ability of the ARMAX
model of detecting hypoglycemia.

Turksoy and colleagues [180] proposed an ARMAX model with an alarm
algorithm for prediction of hypoglycemia and prevention of its occurrence,
with exogenous inputs including IOB, and physical activity information (i.e.,
EE, GSR). The model and the alarm algorithm were tested on data of 14
T1D subjects. Glucose concentration was monitored with the iPro CGM
device, with 5-min sampling time, while the physiological signals were mon-
itored with the SenseWear Pro3 armband system. A Savitzky-Golay filter
and a Kalman filter were used to reduce noise in the dataset. An RMSE
of 1.86, 7.18, 18.55, and 48.94 mg/dL was reported for 5-, 15-, 30-, and
60-min PH, respectively. The prediction error was decreased significantly,



CHAPTER 3. GLUCOSE PREDICTION IN TYPE 1 DIABETES 44

when physical activity information was added to the model as exogenous
inputs. Furthermore, the ARMAX model exhibited the ability to predict
the hypoglycemic episodes successfully with satisfactory results.

A variety of linear and nonlinear time-series models were evaluated by
Stahl and Johansson [181] from clinical data from one subject, with non-
uniform and sparse sampling (fingerstick measurements) with spline inter-
polation, in order to produce a short-term BG predictors for up to two-hour-
ahead BG prediction. However, many difficulties were met not achieving the
required accuracy.

3.4.3 Other empirical models

On the other side, another popular approach in the empirical modeling for
glucose prediction is the application of artificial intelligence and machine
learning techniques [182] such as ANN models and support vector regression
(SVR) models, among many others.

In [183], a latent variable (LV)-based statistical analysis was proposed to
model glucose dynamics and predict BG concentrations for T1D subjects.
The authors identified the proposed model based on simulated data from
10 T1D virtual subjects, in an scenario of 7 days with a sampling time of
5 min, and also based on clinical data from 7 T1D subjects. In this case,
CGM data were monitored with the Dexcom SEVEN PLUS device (5-min
sampling time). CGM, meal and insulin information were used as inputs
to the model. In this study, the proposed model (LVX) was compared with
time-invariant AR and ARX models and also with a latent variable based
only on CGM data. The RMSE and CG-EGA were used for evaluating
the prediction accuracy. On simulated and clinical data, the LVX model
proved to be superior to other reference methods. An average RMSE of 8.6,
and 14.0 mg/dL was reported for 30-, and 60-min PH, respectively in silico
subjects. As well, an average RMSE of 11.1, 18.7, 24.4, and 29.2 mg/dL was
reported for 15-, 30-, 45-, and 60-min PH, respectively in clinical subjects.

In [184], an ANN model was used in parallel with a first-order polynomial
extrapolation algorithm to describe the nonlinear and the linear components
of glucose dynamics. The proposed model was evaluated on 15 T1D subjects
for short-time glucose prediction. CGM data, the glucose rate of appearance
after a meal, and the information of CHO intake were used in the proposed
model. The obtained results have shown satisfying prediction errors, with
an RMSE of 14.0 mg/dL for 30-min PH.

In [185], an ANN model was applied for online predicting future BG
levels from CGM data. The evaluation of the proposed prediction algorithm
was performed using data from the Guardian Real-Time and the FreeStyle
Navigator CGM Systems. The Guardian dataset includes data from nine
T1D subjects, while six T1D subjects were monitored using the FreeStyle
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Navigator. The results obtained have shown that the prediction accuracy
is better with Guardian than the FreeStyle Navigator. An average RMSE
of 9.7, 17.5, and 25.1 mg/dL was reported for 15-, 30-, and 45-min PH,
respectively for the Guardian system. An average RMSE of 10.4, 19.5, and
29.1 mg/dL was reported for 15-, 30-, and 45-min PH, respectively for the
FreeStyle Navigator system. In [186], nonlinear regression was performed
in a reproducing kernel Hilbert space through the approximate linear de-
pendency kernel recursive least-squares (KRLS-ALD) algorithm in order to
achieve a sparse model structure. Several feature sets were used such as
CGM data, CHO intake estimates, insulin regime, and physical activity.
Fifteen T1D subjects were used to evaluate the proposed glucose prediction
model under free-living conditions. An RMSE of 4.0, 10.5, 18.8, 25.8, and
31.8 mg/dL was reported for 5-, 15-, 30-, 45-, and 60-min PH, respectively.

In [187], several prediction algorithms (AR, extreme learning machine
(ELM), and SVR methods) were combined by using adaptive weights in-
versely proportional to the prediction error of each model used. Ten T1D
subjects were used for testing the methodology. Subjects were monitored
either with the Dexcom SEVEN PLUS or with a Medtronic CGM device
(both with 5-min sampling time). The RMSE, the relative error, the EGA
and the J index [188] were used to assess the prediction accuracy. The com-
bined model performed better than the individual algorithms. For instance,
the RMSE of the AR, ELM, and SVR methods and the proposed combined
model were 26.1, 20.5, 50.9 and 19.0, respectively for 30-min PH.

The deep learning network also has been applied to the glucose prediction
problem. In [189], a consecutive model with one long-short-term memory
(LSTM) layer, one bidirectional LSTM layer, and many perfectly connected
layers was applied for predicting future BG levels. The proposed approach
was identified on CGM data of 20 T1D subjects. An RMSE of 11.63, 21.73,
30.22, and 36.92 mg/dL was reported for 15-, 30-, 45-, and 60-min PH,
respectively.

In [190], an online adaptive ANN model was proposed for a compar-
ison study with AR, and ARX models. The proposed model was identi-
fied/evaluated on 23 T1D subjects under sensor-augmented pump therapy.
The obtained results showed that the prediction accuracy of the ANN model
were better than the AR and ARX models: RMSE of 11.9, 18.9, and 26.1
mg/dL was reported for 15-, 30-, and 45-min PH, respectively for the ANN
model. As well, a feedforward NN model was proposed in [191] for predict-
ing the future BG levels with a PH of 75 min. However, they reported big
prediction errors, with an RMSE of 43.09 mg/dL for 75-min PH. In [192],
a recurrent neural network (RNN) model was proposed for short-term pre-
dictions of glucose levels. Data from four T1D children were used for the
development and testing of the proposed model. An RMSE of 13.65 mg/dL
was reported for 5-min PH. An Extended Kalman Filter identified state-
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space model, as a non-optimal solution to nonlinear problems, is associated
with a higher MAPE regarding 30-min PH [193]. Although, RNN models
are characterized by the universal approximator of dynamical systems but
it is difficult to use in online applications due to their high complexity of
the training algorithm and non-convex objective function.

3.5 Hybrid models

Hybrid models use a physiological model followed by a data-driven model for
glucose prediction or as a signal of BG problems, as stated before. According
to the review in [124], Dalla Man meal model is considered to be the most
popular model for integrating meal glucose absorption into hybrid models,
followed by the Lehmann and Deutsch model [166, 194]. The most popular
model for insulin kinetics, when information about insulin therapy is used,
is Berger model [195], followed by the Dalla Man. In addition, ANN models
are the most common data-driven components in hybrid models for glucose
prediction.

In [196], an adaptive hybrid model is proposed for BG prediction by inte-
grating helpful generic physiological features into a machine learning model.
The modified Lehmann and Deutsch glucose absorption model was used for
this proposal together with a SVR model. Data from 5 T1D subjects with
their daily events such as insulin boluses and meals were used in this study.
The experimental results in this study demonstrated a significant improve-
ment in RMSE computation when incorporating physiological features into
an SVR model. An RMSE of 19.5, and 35.7 mg/dL was reported for 30-,
and 60-min PH, respectively.

In [178], a linear model with physiological input signals is used for ap-
proximating the glucose-insulin system in order to improve the BG predic-
tion in T1D patients. The Dalla Man meal model, with Verdonk plasma
insulin model [197], and an ARX model were used for this purpose. The
model was tested on data of 15 T1D subjects. CGM data and exogenous
inputs (insulin doses information and the CHO intake) were used in the
model. The NLMS algorithm with a variable gain were used for coefficients
estimation. The experimental results have shown satisfying performance
through the FIT value until 45-min PH, and also through the CG-EGA
analysis. The percentage of clinically accurate predictions that lead to be-
nign errors is 97.35% at hypoglycemia, 99.8% at euglycemia and 98.55% at
hyperglycemia.

In [198], a personalized hybrid glucose-insulin metabolism model is de-
veloped for T1D patients. The personalized model is based on the combined
use of the Dalla Man glucose absorption model and Dalla Man insulin ab-
sorption model and a Self Organizing Map (SOM). The model was evaluated
using data of 12 T1D subjects (CGM and insulin pump information, as well
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as the time and amount of CHOs ingested). The predictive performance of
the model was evaluated for a 30- and 60-min PH. The RMSE, the correla-
tion coefficient (CC) and the CG-EGA were used to measure the accuracy
of glucose prediction. An RMSE (mean + standard deviation (SD)) of 14.10
4+ 4.57 and a CC of 0.94 4+ 0.02 were reported for 30-min PH. An RMSE
of 23.19 4+ 6.40 and a CC of 0.84 + 0.05 were reported for 60-min PH.
Regarding the CG-EGA analysis, for 30-min PH, a high percentage of BG
predictions were accurate readings. For 60-min PH, most of the BG predic-
tions were accurate readings in the euglycemia and hyperglycemia ranges
while most erroneous errors were reported in the hypoglycemia range.

In [199], a short-term prediction model based on time-series modeling is
proposed for improving glucose prediction. The Dalla Man glucose absorp-
tion model together with a jump NN model is used for this study. CGM data
of 10 T1D subjects and ingested CHOs information were used for evaluating
this model. RMSE, time gain (TG) [188] and energy of the second-order
differences (ESOD) [173] were used for the assessment of prediction accu-
racy. For a 30-min PH, an average RMSE of 16.6 mg/dL, average time gain
of 18.5 min and average ESOD of 9.6 are reported. The use of a hybrid
configuration improved the prediction as compared to the previous work by
the authors using neural networks [184].

3.6 Prediction performance analysis

Despite the widespread use of physiological models in MPC formulations,
observers, and other components in the AP, data on performance of the
models involved are scarce, if any. Besides, model identifiability is key for
a successful model personalization, which is a must due to the large inter-
subject variability. Even in simpler models like the IVP (see Section 3.3.1),
problems can be found such the need of measurements not available in clin-
ical practice like plasma insulin, aside glucose. This enforces the considera-
tion of population values in a subset of model parameters, which might not
represent well inter-subject variability, yielding to a compromise in model
accuracy. The above applies as well to hybrid models, where physiologi-
cal models’ output correspond to signals not available, like plasma insulin
(unless in a lab setting) or meal glucose absorption rate.

In addition, current physiological models do not represent well impor-
tant aspects of a patient’s daily life, like meals with a variety of nutritional
compositions and more especially exercise. In these cases, data-driven mod-
els can be more suited to capture the input-output data without the need of
physiological knowledge. Indeed, data-driven models have shown satisfying
results for predicting BG during and after exercise using physical activity
signals as inputs [200, 180].
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Thus, in this thesis, our investigation will focus on data-driven models for
glucose prediction, especially linear empirical dynamic models, which were
reviewed in Section 3.4. Table 3.1 summarizes the performance reported in
literature for such models, which will serve to highlight the needed improve-
ments that will be addressed in this thesis. Only results with clinical data
are considered.

The most common PHs evaluated are 5, 15, 30, 45 and 60 min, with
punctual studies for 75 min and 90 min. Mean(SD) values of RMSE for
these common PHs are: 6.5(6.28) mg/dL for 5 min; 9.06(1.74) mg/dL for
15 min; 15.63(5.33) mg/dL for 30 min; 21.21(4.33) mg/dL for 45 min and
30.69(10.31) mg/dL for 60 min (see Fig. 3.8).
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Figure 3.8: BG modeling error (RMSE) versus PH for the different literature meth-
ods.

In this thesis, the development of new modeling strategies to increase
prediction accuracy and extend the prediction horizon will be addressed.
As stated before, the focus will be put on linear empirical dynamical models
or stochastic time series. Our hypothesis is that an appropriate management
of variability will lead to a clustering problem characterizing local behaviors
and the exploitation of historical similar data, which can be formalized by
the concept of “seasonal local models”. The next two chapters will be thus
devoted to a review of stochastic time series modeling and clustering time
series. Then, the main contributions of this thesis will be presented.
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Study Method Inputs Database | PH RMSE
(min) (mg/dL)
Reifman et al. [171] AR CGM data 9 T1D 30 22.3
60 324
Gani et al. [172] AR CGM data 9 T1D 30 1.8
60 12.6
90 28.8
Sparacino et al. [173] AR CGM data 28 T1D 30 18.78
45 34.64
Finan et al. [177] ARX CGM data, insulin, meal 9 T1D 30 26
45 34
60 40
Turksoy et al. [180] ARMAX CGM data, insulin on board, 14 T1D 5 1.86
energy expenditure, galvanic 15 7.18
skin response 30 18.55
60 48.94
Zhao et al. [183] Latent variable- CGM data, insulin, meal 7 T1D 15 11.1
based model without or 30 18.7
with extra inputs 45 24.4
(LV, LVX) 60 29.2
Zecchin et al. [184] Feed-Forward NN CGM data, glucose rate of 15 T1D 30 14.0
and first-order appearance after a meal
polynomial model
Zecchin et al. [199] Jump neural CGM data, glucose rate of 20 T1D 30 16.6
network model appearance after a meal
Pérez-Gandia et al. [185] Feed-Forward NN CGM data 9 T1D 15 9.7
30 17.5
45 25.1
Georga et al. [186] KRLS-ALD CGM data, CHO, insulin, 15 T1D 5 4.0 (1.8%* )
Physical activity 15 10.5 (5.2%* )
30 18.8 (10.0%* )
45 | 25.8 (14.3%" )
60 | 31.8 (18.0%* )
Wang et al. [187] AR, ELM, and SVR CGM data 10 T1D 30 19.0
Qingnan et al. [189)] RNN with LSTM CGM data 20 T1D 15 11.63
and Bi-LSTM 30 21.73
45 30.22
60 36.92
Bunescu et al. [196] Adaptive hybrid CGM data 5 T1D 30 19.5
60 35.7
Zarkogianni et al. [198] Hybrid model CGM data, insulin, CHO 12 T1D 30 14.1
60 23.19
Wang et al. [193] Time-varying state- CGM data 5 T1D 30 20.31%*
space model FIR modeling of subcutaneous
Extended Kalman insulin absorption and meal
Filter absorption
Pappada et al. [191] Feed-Forward NN CGM data, insulin, nutrition, 17 T1D 75 43.09
Lifestyle/Emotional Factors,
time
Daskalaki et al. [190] Online adaptive CGM data, insulin pump 23 T1D 15 11.9
RNN infusion rate 30 18.9
45 26.1
Mougiakakou et al. [192] RNN CGM data, insulin, CHO 4 T1D 5 13.65

Table 3.1: BG modeling error of different literature methods.
expressed as MAPE (%).

*

indicates error



Chapter 4

Stochastic time series
modeling

Stochastic time series models are an alternative approach for glucose pre-
diction, other than physiological models. Characteristics of stochastic time
series models can increase the ability to accurately predict glucose and,
therefore, can help in achieving improved glycemic control in people with
diabetes when used in a monitoring system or an artificial pancreas frame-
work. This chapter introduces linear empirical dynamic models, or stochas-
tic time series models, which will be relevant for glucose prediction. Section
4.1 explains the basic concepts of time series modeling. Section 4.2 displays
different types of linear time series models; then the importance of exoge-
nous variables is discussed, and how to deal with them. Section 4.3 describes
the methodology used for building appropriate models.

4.1 Preliminary concepts

A stochastic process is a statistical phenomenon that develops in time ac-
cording to some probabilistic laws. It is composed of an indexed collection
of a random variables ordered in time {X;,t € T}, where T is a given
time span. A time series is a realization or an example (sample function)
from a certain stochastic process. Thus, time series can be defined as an
chronologically-ordered sequence of successive measurements (observations),
{Xi,t € Ty, Ty C T}, done typically over time ¢ [201, 202].

A time series may be univariate or multivariate. In a univariate time
series there is only one time-dependent variable, such, for example, data
collected from a CGM sensor measuring the BG levels every 5 minutes.
A multivariate time series has more than one time-dependent variable (i.e.,
multiple variables vary over time). Therefore, each variable has some depen-
dency on other variables, which are called predictor or explanatory variables.
This dependency is used for predicting future values. An example is data

50
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collected from a CGM sensor, together with physiological data collected
from biometric sensors such as heart rate, skin temperature and galvanic
skin response.

A time series can be either discrete or continuous. A discrete time series
is obtained when the measurements are typically taken at successive equally
spaced points in time, such as hourly, daily, weekly, monthly or yearly time
separations. A continuous time series is obtained when the measurements
are taken continuously over some time interval. Any time series, in general,
is supposed to be affected by some or all of the following components: trend,
cyclical fluctuations, seasonal variations, and irregular variations. However,
these components can be characterized from the observed data set, when
analyzing the time series data. There are many different examples of time
series in different fields like engineering, science, sociology, and economics
as shown in Fig. 4.1 to Fig. 4.3.

320
—_ ‘ —e— CGM data for specific postprandial periods for a patient of T1D
-
T 280
(=]
E
c
2 240
[
€
8
2 200
o
o
(]
g 160
o
3
o
B 120
o
]
80

100 200 300 400 500 600

Number of observations

Figure 4.1: CGM time series data for specific postprandial periods for a person with
T1D.

Time series analysis is the use of statistical methods to analyze time se-
ries data and extract meaningful statistics facts and other characteristics of
the data. Many objectives can be satisfied by analyzing a time series, which
they can all be classified as descriptive, explanatory, predictive, or control
[203]. For example, time series analysis can be used in several domains for
forecasting such as statistics, finance, geophysics, and meteorology. More-
over, it can be used for signal detection and estimation in signal processing
and control engineering field.

A simple way to describe a stochastic process {X;,t € T} is through
its first- and second-order moments. The first-order moment corresponds to
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Figure 4.2: Time series for the population of the U.S.A. at ten-year intervals,
1790 — 1980.
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Figure 4.8: Time series for the Wolfer sunspot numbers, 1770 — 1869.

the expectation function, and the second-order moment to the autocovariance
function (ACVF), which are defined next:

e The expectation function, px(t), is defined for all ¢ by

px () = E(Xy). (4.1)

where E denotes the expected value of the random process X;.
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e The variance function o% (t) is defined for all ¢ by

0% (t) = Var(X;) = E(X?) — E(X)2. (4.2)
e The autocovariance function yx(t, s) is defined as
vx (t,s) = Cov(Xy, Xs)
= E|(X; — px (1)) (Xs — px(s)) (4.3)
=E(Xy X)) — pps Vt,s €T.

Obviously, from (4.3), it follows that 0% is a special case of the ACVF when
t = s. Therefore, through the ACVF, which measures the degree of second-
order variation between two data points in a random process (i.e., time
series) at two different times (e.g., ¢,s), it can be known how observations
are related to each other in time, that is, the key aspect in any time series.
In contrary, the ag( alone is not enough to assign the second-order moments
of a sequence of random variables [204].

Stationary processes forms the basis for a massive proportion of time
series analysis methods. Thus, stationarity is the most vital and common
assumption in time series techniques. The basic idea of stationarity is that
the statistical properties controlling the process do not change with time
(Fig. 4.4), i.e., the mean and the variance of the implied process are constant
and the ACVF depends only on the time difference |t — s|, which will be
referred as lag, k. A stationary stochastic process can be of two types:
strictly (strong or complete), and weakly (covariance) stationary process
[202, 205).

I t t

Stationary time series on-Stationary time serie:

Figure 4.4: Stationary and non-stationary time series.

A time series {X;} is said to be a strictly stationary if it satisfies the
following properties:

a The ()l“l [)]()bab]llly dlSlllb lll()“ ()f Xt],.. . 7th f()l a“y Sel ()f llllleS
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{ X102 X, }, that is, shifting the time origin by an amount & has
no effect on the joint distributions. That means that the joint distribu-
tion only depends on the “difference” k, not on the time (¢1,...,t,).

(b) The expected value of the time series is constant over time, and not a
function of time:

E(Xt) = E(Xik) = pt = puyk = p Vit k.
(¢) The variance of the time series is constant over time (homoscedasticity):
Var(Xy) = Var(Xpr) = 0% (t) = o%(t + k) = 0% Vt, k.

(d) The ACVF is not constant, does not depend on time, but on the time
difference (h = |t — s|):

Cov(Xy, Xs) = Cov(Xpak, Xsak) = vx(t,8) =vx(t+ k, s+ k)
=yx[t—s|=vx|t+k—s—k|=, Vs, t, k.

(e) The autocorrelation function (ACF) is also not constant, does not de-
pend on time, but on the time difference (time interval):

Corr(Xy, Xs) = Corr(Xoak, Xsik) = px(t,8) = px(t + k,s + k)
= px|t—s|=px|t+k—s—k|=pn Vst k.

A time series {X;} is said to be a weakly stationary (i.e., stationary in
wide sense) if it satisfies the following properties:

(a) The expected value is constant over time:
E(X:) =p < oo Vi
(b) The variance is constant over time:
Var(X,) = o? V.

(c) The ACVF is a function of the time difference only, i.e., the ACVF only
depends on k, the distance between observations:

Cov(Xy, Xiqr) = v Vit k.

(d) The ACF is a function of the time difference only.

Cov(Xy, X,
Corr(X¢, Xpvg) = ov(Xp, Xy k) :%:pk vt, k.

B \/Var(Xt)\/Var(XH_k) Yo
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Clearly, for a weakly (second-order) stationary process, the autocovariance
function v, and the autocorrelation function pg, have the following proper-
ties:

1. v0 = Var(Xy).
2. PO = 1.
3 vkl <05 okl < 1.

4. They are even functions and symmetric about the lag k& = 0, i.e.,
Yo =7V-k and pp = p_j k.

5. They are positive semidefinite in the sense that

n n
Z Z ;Y- = 0,

i=1 j=1
and
n n
Z Z 0Pyt —t; = 0,
i=1 j=1
for any set of times {t1,...,t,} and any real numbers {aq,...,ay}.

Strict stationarity is too strict for time series data in normal life applica-
tions. Therefore, whenever using the term “stationary” this shall mean
weakly (second-order) stationary, unless otherwise indicated, and the fol-
lowing statement from [206] is sometimes quoted:

“Experience with real-world data, however, soon convinces one that both
stationarity and Gaussianity are fairy tales invented for the amusement of
undergraduates.”

The process {X;} is said to be a purely random process if it consists of
a sequence of uncorrelated random variables from a fixed distribution with
the following properties:

1. E(X;) =0 V.
2. Var(X;) = 0% < oo Vt.

3. Cov(Xy, Xpyp) = =0 Vi, k#0.

Such a sequence is indicated to as white noise, with mean 0 and variance
0%, and can be written by the notation {X;} ~ WN(0,0%). Therefore, a
white noise process {X;} is a stationary process with the ACVF

o2 k=0,
Te=19 o
{0 k#0,



CHAPTER 4. STOCHASTIC TIME SERIES MODELING 56

and the ACF
1 k=0,
Pk = { 0 k#0.
If the random variables in the sequence are independent and identically dis-
tributed (i.i.d. or iid or IID), with mean 0 and variance 0% (i.e., strictly
white noise), then it can be written by the notation {X;} ~ ITD(0,0%).
Moreover, every I1D(0,0%) sequence is WN(0,0%) but not conversely. If
a process {X;} is Gaussian (i.e., the distribution functions of {X;} are all
multivariate normal), uncorrelated implies independence. Therefore, Gaus-
sian white noise is just i.i.d. N(0,0%). White noise processes are beneficial

in many situations and play a significant role as basic building blocks for
more complicated processes such as moving average processes [202, 205].

For any stationary stochastic process {X;}, with E(X;) = u for all ¢, the
real numbers {X}l), Xél), e ,X:(Fl)} could be one possible result of a sample
of length T of this process. Therefore, {Xt(l)} would be just one realization
of this stochastic process. In practice (i.e., time series applications), only a
unique realization of each time series (random variable) is available. This
implies that it is not possible to estimate p by computing the sample mean
(ensemble average) of any random variable by

1 i
¥ x, (4.4)

i=1

X =

where the X(’s are different realizations of the random variable. Instead,
the sample mean is computed by a time average as follows

1 T
X = T;Xt. (4.5)

The stationary process {X;} is said to be ergodic for the mean if (4.5)
converges in probability to E(X;) as T' gets large (i.e., X % 1), and ergodic
for the second moments if

1 T

T % (Xt — ) (X — 1) 5 s (4.6)
t=kt1

Alternatively, this can also be written as i 2 Yk, Where A, is the lag k
sample autocovariance, and is defined as
1 I
A = Tt_kz;l(xt - X)Xy —X) for k=0,1,...,T —1, (4.7)
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and the same with ACF, pi TS Pk, Where pg, is the lag k sample autocorre-
lation, and is defined as

pr=25 v, (4.8)

A~

70
The plot of i versus k times lags, is called the correlogram, and it can be
useful as an indicator of nonstationarity. Besides that, if the autocovariance
v, for a stationary process {X;}, satisfy

o
>l < o0, (4.9)
k=0

then {X;} is ergodic for the mean [207].

4.2 Linear time series models

In order to design time series models, a clarification of the structure of the
variation in the time series is needed, arising many questions such as:

e What are the main characteristics (descriptive statistics, persistence,
and autocorrelation) of the time series?

e How can the time series be modeled, and how can the dynamic pattern
of a real time series be found?

e How to forecast future events based on previous information in the
time series, and how to derive hidden insights to make informed decision-
making in a real time series?

Wold’s decomposition theorem [208] represents the main tenet of linear
time series models. Moreover, it has a vital role in time series analysis, by
means of the ability to linearly forecast any stationary process, through the
weighted average of past forecast errors. According to Wold’s decomposition
theorem, any zero-mean stationary process {X;}, can be expressed as the
sum of two mutually uncorrelated processes, a deterministic part (i.e., the
optimal linear combination of past observations of the process {X;}), and a
stochastic part, which can be represented as an infinite moving-average pro-
cess (i.e., MA(00)). Therefore, the stationary process {X;} can be written
as follows

Xy = A + By, (4.10)

where A; is linearly deterministic, and B; is an indeterministic (stochastic)
process that can be written as a linear combination of lags of a white noise
process &;:

By =) e, (4.11)
=0

where
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Lo =1, 3252 9* < oo,

2. {e1} ~WN(0,02),

3. {;} and {e;} are unique,
4. E(Aies) =0 Vi, s,

5. Cov(es, Ar) =0 Vs, t.

Furthermore, the stationary process {X;}, is called purely nondeterministic
(stochastic) if Ay = 0. There are two common sub-groups of linear processes:
the autoregressive (AR), and the moving average (MA) processes [207].

4.2.1 Autoregressive (AR) process

Autoregressive (AR) processes are one of the most useful processes used
in time series modeling. AR process models are created with a property
that the observation at time ¢ is a linear combination of observations at
times ¢t — 1, — 2,...,t —p. An AR process model that depends on p past
observations is called an AR model of degree p, denoted by AR(p), and it
satisfies the following stochastic difference equation

p
Xi=c+ ) ¢:iXiiter (4.12)

=1

where ¢; are the parameters of the model, ¢, # 0, e, ~ WN(0,02), and

c= (1 - Zp: gi)i),u, (4.13)
i=1

where p is the unconditional mean of the process. Moreover, it can be shown
that an AR(p) model is stationary and ergodic provided that the roots of
the characteristic equation

P(2) =1— 12— paz® — ... — ¢pzP =0, (4.14)

lie outside the unit circle. Therefore, a necessary condition for stationarity
is that |¢1 + @2 + ... + ¢p| < 1, otherwise, the time series {X;} will exhibit
sinusoidal behavior. The presentation of time series models is simplified
using lag (back-shift) operator notation. In lag operator polynomial nota-
tion, 27" X; = X;_,,, for any time series {X;}. Therefore, by using the lag
(back-shift) operator (271), the equation of an AR(p) can be written as

Pz )Xy =cte = Xp=p+P(z e, (4.15)

where

ﬁb(z_l) =(1- 1zt — oz - — dpzP),
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is the AR operator, and hence,

Pz =(¢(z") T =L+ iz oz 2+,

is an infinite-degree lag operator polynomial, with Z;io || < oco. From
(4.13), the equation of the AR(p) model (4.12) can be written as

X —p=01(Xem1 —p) + ...+ Op(Xy—p — 1) + &1, (4.16)

The ACVF of the AR(p) process is found by multiplying both sides of (4.16)
by (X¢—x — p), and taking expectations

e = { GP1Vk—1 + P2 Y2+ ..+ PpY—p for k>0, (4.17)
G171+ P2+ ...+ Py +o2 for k=0. '

The ACF of the AR(p) process is found by dividing (4.17) by 7o to obtain

Pk = P1Pk—1 + P2pr—2+ ... + bppr—p for k>0. (4.18)

Specifying (4.18) for k = 1,...,p, a system of p equations is obtained that
connect the first p autocorrelations with the parameters of the process. This
system of equations is called Yule- Walker equations [209, 210, 201].

The partial autocorrelation function (PACF), is an important tool for
identifying the order p of the AR models. The partial autocorrelation at
lag k is the autocorrelation between X; and X;_j after removing any linear
dependence on X1, Xa,...,X¢ r11. The PACF is based on estimating the
sequence of AR models in consecutive orders:

Y, = oY1 +en
Y; $21Yi—1 + $22Y; o + €24

Yi = Y1+ Yo+ ..+ OpnYeok + €k, (4.19)

where Y; = X; — p, the coefficients ¢rr for £k = 1,...,p are called partial
autocorrelation coefficients of order k, and their sequence form the PACF. In
practice, they are not derived in this way but, through the ACF as follows:
multiply (4.19) by Y;_x, take expectations and divide by the variance of Y;.
By repeating the same operation with Y;_1,Y;_o,...,Y;_j, successively, the
following set of k equations is obtained (Yule-Walker) [209, 210]:

p(1) = ¢r1+ dr2p(l) +... + drrp(k — 1)
p(2) = ¢rp(l)+ dr2+ ...+ drpp(k —2)

p(k) = dmplk—1)+ grap(k —2) + ... + Ppk.
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By using Cramer’s rule, the coefficients ¢ can be defined as

Prk = j:;j((]\]\g, (4.20)
where
1 p(1) p(1)
No| @) 1 P2
p(k—=1) p(k—2) p(k)
and
1 p(1) p(k—1)
we | P 1 p(k —2)
pk—1) plk—2) ... 1

Thus, for an AR(p) model, the first p partial autocorrelation coefficients
are non-zero, and the rest are zeros for lags greater than the order of the
AR model [201]. Moreover, Cramer rule also can be used for estimating the
coeflicients ¢, by replacing pi in the Yule- Walker equations by its estimate
pr from (4.8). The estimated coefficients, ékk, are then called the sample
partial autocorrelation coefficients of order k. Besides Cramer’s rule, there
are many methods for estimating the coefficients qgkk like Durbin’s method
[211] and Pagano’s technique [212]. The sample PACF of an AR(p) process
has many properties such as [213]:

° gﬁpp converges to ¢, as the sample size T" goes to infinity.

° (ﬁkk converges to zero for all & > p.

° ékk from lag (p+1) onwards are approximately normally independently
distributed with variance 1/T" [214].

4.2.2 Moving average (MA) process

A Moving Average (MA) model has the property that the observation at
time ¢ is a linear combination of past stochastic errors, also called shocks or
innovations, at times t — 1,t —2,...,t —¢q. A time series {X;} is said to
follow a moving average process of order g or MA(q) process if

q
Xy=c+ > i, (4.21)
=0

where 6; are the parameters of the model, 6y = 1, 0, # 0, &, ~ WN(0, 02),
and c is the unconditional mean of {X;}. An MA(g) model is always sta-
tionary because it is a finite linear combinations of a white noise sequence.
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Furthermore, it is invertible if all of the roots of the MA characteristic poly-

nomial
0(z) =14 012+ 022" + ... 40,27 = 0, (4.22)

lie outside the unit circle. Moreover, the equation of an MA(q) (4.21) can
be written by using the lag notation as

X, = p+0(z Ve, (4.23)

where 0(z71) = (1 + 01271 + 02272 + ... + 0,279) is the MA operator. By
using (4.21), the moments of an MA(q) process are:

e The expectation of an MA(q) process is

E(X) = p+ > 0B ) = (4.24)
=0

e The variance of an MA(q) process is

Yo =E(X; — p)? = E(ﬁ: eiet_i)Q' (4.25)
i—0

Since the ¢’s are uncorrelated, the variance is

q
0=ot+ Y 6o
=1 (4.26)

q
=oZ(1+) _07).
i=1
e The ACVF of an MA(q) process is
q q
T =E [(Z 9i€t—i)(z eift—k—z’)}
i=0 i=0

=E { i 9k+i6i5?7k7i] ,
i=0

because all the terms involving the expected value of different €’s are
zero because of the WN assumption. Thus,

o? Zg:_(lf 0:0pr; for k=1,2,.... ¢, (4.28)
0 for k> gq. '

(4.27)

V& =
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Dividing (4.28) by 7o yields the ACF of the MA process

14+, 67

Do 00 for =1,2
sz{ or 2,04, (4.29)

for k> gq.

Therefore, an MA(q) process is stationary for any value of §;. Moreover, the
process is also ergodic for the first moment since Y % |yi| < oo. If & is
also Gaussian then the process is ergodic for all moments.

4.2.3 Mixed autoregressive moving average (ARMA) pro-
cesses

An ARMA process is a linear combination of two linear processes (i.e., AR,
MA), to produce a more sophisticated linear process. A time series, { X;}, is

said to follow an autoregressive moving average process of order p, ¢, denoted
as ARMA(p,q), if

p q
Xi=c+ Z ¢ Xe—; + Z Oier_, (4.30)
i=1 i=0

or, in lag operator notation,
" NXi=c+0z Ny = Xp=p+v(z Ve, (4.31)
where &, ~ WN(0,02) and

6(z71)
¢(z71)

is a rational, infinite-degree lag operator polynomial. The unconditional
mean of the ARMA(p,q) process is given by

Yz = =14z + oz 24+..),

An ARMA model can be written in terms of deviations from the mean
as follows

P q
Xe—p= Z Gi(X—i — p) + Z Oics—i. (4.32)
i=0 i=0
By multiplying both sides of (4.32) by (X;_r — u) and taking expectations,
the ACVFs are ,
Ve =Y itk for k> (q+1), (4.33)
i=1
and hence,

p
pr=_ ¢ipr—i for k> (q+1). (4.34)
=1
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Therefore, after ¢ lags the ACVF and ACF follow the p-th order homoge-
neous difference equation controlled by the AR parameters (i.e., they follow
the pattern of the AR component). Moreover, the ACF of an ARMA pro-
cess tails off after lag ¢, as in an AR process, which depends only on the AR
parameters in the model. Note that (4.33) does not hold for k < ¢, thus, the
ARMA process will have more complicated ACVF's in the range 1 < k < ¢
compared to the corresponding AR process [207].

4.2.4 Autoregressive integrated moving average (ARIMA)
processes

If d is a nonnegative integer, then a process {X;} is said to follow an Inte-
grated ARMA process, denoted by ARIMA (p,d,q), if

ViX, = (1-2714X,, (4.35)
is a causal ARMA (p,q) process, where

VX =(1-2HX, =X — Xy,

is the backward difference operator. “Differencing” by V operator, is an
excellent way of handling and transforming a nonstationary series to a sta-
tionary one. In general, an ARIMA process can be written as follows

p(zHVIXy = ¢+ 0(z ey, (4.36)

where ¢ is the constant term defined in the AR process, ¢(z) and 6(z)
are polynomials of degrees p and g, respectively, ¢(z) # 0 for all |z| < 1,
and {g;} ~ WN(0,02). The letter ‘I’ in an ARIMA acronym stands for
integrated and d denotes the number of differencing operators. In practice,
d is usually a small number (d = 0, 1 or 2). If d = 0, then {X;} is a
stationary ARMA process; it is called an integrated ARMA process of order
zero and is denoted as X; ~ I(0) [202].

4.2.5 Seasonal ARIMA processes

Given d and D nonnegative integers, a process {X;} is said to follow a
seasonal ARIMA process, denoted by SARIMA (p, d, q)(P, D, Q)s, if the dif-
ferenced series

Y; = VPVvix,, (4.37)
is a causal ARMA process defined by

bp(z NPp(27*)Y; = c+ 0,(27 1O (2 %), (4.38)
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where
d)p(z_l) = 1—rz b=z 2— ... — Ppz P,
Pp(27%) = 1—-P 275 —Poz7 2 — ... — Dp,z T3,
0,271 = 146127 +0272+ ...+ 0,279,
Og(27%) = 14 0.27° + 9272 + ...+ Ogs2~ 9,

are polynomials in z~1 of degree p, ¢, P, Q. Moreover, p is the order of
the non-seasonal AR component, P is the order of the seasonal AR (SAR)
component, ¢ is the order of the non-seasonal MA component, @ is the order
of the seasonal MA (SMA) component, s is the seasonal length (i.e., time
span of repeating seasonal pattern), d is the non-seasonal integration order,
D is the seasonal integration order (i.e., number of seasonal differences,
where Vo Xy = (1 — 279Xy = Xy — Xy_), and g, ~ WN(0,02). Remark
that V5 # V. Furthermore, c is the constant term that is defined in the
AR process [202].

The process {X;} is causal if and only if ¢,(z) # 0 and ®p(z) # 0 for
|z| < 1. In practice, a SARIMA model can also be defined as a regression
with seasonal ARIMA errors, giving rise to the formulation

VSDVdXt = c+ w,
$p(zNOp(z " )wr = 0g(271)Oq(z ")t

where w; is the disturbance series.

(4.39)

4.2.6 Processes with exogenous variables

The main aim of using exogenous variables in time series models is to im-
prove the fit and prediction performance of the chosen model. However, the
qualitative characteristics and method of generation of an exogenous vari-
able are not specified by the model builder. There exist different approaches
for integrating exogenous variables into a model. Denoting as E; the exoge-
nous variable, a term 7, (2 ') E; is commonly added to the right-hand-side of
(4.15), (4.31), (4.36), and (4.38), respectively, yielding the so-called ARX,
ARMAX, ARIMAX, or SARIMAX models depending on the considered

structure, where
(2 =m0 +mzt F. T (4.40)

is the exogenous polynomial in z~! of degree 7, yielding to a finite-impulse-
response (FIR) filter. In practice, as in many programs such as Matlab, R,
and Eviews, exogenous variables are considered as ezxplanatory variables into
a linear regression model with a stochastic error process of certain structure.
For instance, a SARIMAX model can be expressed in the form

VIVIXy = c+n(z7)E 4wy,

Pp(z NPz wr = 0,(271)Og(z7%)er. (4.41)
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The model (4.41) can be expressed as SARIMAX(p,d, q,7)(P, D, Q)s.

The main question that frequently appears in time series models with
exogenous variables is “how to determine the exogenous variables that cor-
relate well with the endogenous variable and can be useful in the forecasting
given a number of lags?”. There are many ways to address this question
like the Granger causality (GC) test. The GC (or “G-causality”), is a sta-
tistical concept to examine causality between two time series in terms of
predictability [215, 216]. The main idea behind the GC is that time series
X; “Granger causes” time series Y; (i.e., X; — Y;) if lagged values of X,
contains useful knowledge (significantly) that increases the accuracy of the
prediction of Y; with respect to a forecast considering only lagged values of
Y;. The mathematical formulation of the GC test is based on linear regres-
sion modeling of stochastic processes. Let X;, Y; be two stationary time
series. A simple causal model can be written as an AR process. Consider

L
Yi=ea+) aYeitet, (4.42)
=1

as a restricted regression model, and

L L
Yi=co+ Z ;Y + Z BiXi—i + eat, (4.43)
i—1 i—1

as an unrestricted regression model, with L the maximal time lag. The time
series X; Granger-causes time series Y; if (4.43) is statistically significantly
better than (4.42) (i.e., if any or all of 31, ..., 81, are statistically significant).
In the GC test, the null hypothesisis Hy: 1 = P2 = ... =061 =0, i.e., Xy
does not Granger-cause Y;. By using the ordinary least squares regression
(OLS!) and conduct an F-test of the null hypothesis

(RSSk — RSSyr)/J

B = T RSSuR/(T — k)

~ Fir_p, (4.44)

where RSSi = Zthl e1t?, RSSyr = Zthl £9t2, J is the number of restric-
tions, T is the number of observations in the time series, and k is number of
explanatory variables in the unrestricted regression (including the constant).
If the test statistic (F-value) is greater than the critical F-value then the
hypothesis is rejected; otherwise, it is accepted. If the null hypothesis is
rejected in both directions (i.e., Xy — Y;, Y3 — X3), then there is a feedback
relation between both time series. In order to choose the lag length in the
GC test, Akaike Information Criterion (AIC) or Schwarz Bayesian Criterion
(SBC) can be examined to reach the optimal lag [217, 218].

The cross-correlation function (CCF) is another way to determine whether
one series “causes” changes in another [219]. The CCF between two time
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series helps to identify the nature of the relationship and how they are cor-
related in time. The cross-covariance function of two jointly stationary
processes {X;} and {Y;} is

vxy (k) = E[(Xeqpr — px)(Ye — py)] Yk, (4.45)

where vxx (k) = vx(k), 7xv (k) # vxv(=k) (i.e., vxy (k) is not an even
function), but vxy (k) = vy x(—k). Therefore, the cross-correlation function
of jointly stationary processes {X;} and {Y;} is defined as follows
1xy (F)
7x(0)7v(0)

This function has many properties such as

pr(k) = Vk. (4.46)

(a) pxv (k) = pyx(—k),
(b) lpxy (k)| <1,

(¢) pxx(k) = px(k), i.e., pxy (k) and yxy (k) are generalizations of ACVF,
and ACF.

The CCF is estimated by the sample cross-correlation function
Yxy (k)

BEES L — (4.47)
Ax (0)%y (0)

pxy (k) =

where

(/T) Yy (Xt = px) Ve —py) k<O,

Through a plot of the sample CCF, a leading or lagging relation between
time series can be identified. The time series X; leads time series Y;, if there
are one or more Xy, with k negative, which are predictors of Y, whilst X
lags Yy, if there are one or more Xy, with k positive, which are predictors
of Y;.

xy (k) = { (1/T) S F (X — ) (Yegr — piy) k>0,

4.3 The strategy of building models

The main aim of time series models is to capture reality and high accuracy
in future predictions. In time series modeling, the most crucial steps are to
identify and construct a model based on the available dataset by a specific
methodology. Box-Jenkins methodology is the widest method for building
time series models, proposed by the statisticians George Box and Gwilym
Jenkins [220, 221]. It indicates a set of procedures for identifying, estimating,
and checking time series models within the class of ARIMA models and
as well seasonal ARIMA models as shown in Fig. 4.5. Therefore, finding
suitable models for any time series is a non-trivial assignment. There are
five steps to building a good model through the Box-Jenkins methodology:
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(1) Checking for stationarity or non-stationarity and differencing the data,
if necessarys;

Identifying and selecting an appropriate model structure;
Estimating the parameters of the chosen model;
Diagnostic checking of the chosen model (Is the model adequate?); and

Forecasting, and re-identifying a new model if necessary.

. . Is it sta- No Difference
Time series data - > ] o .
tionary’ DR series

Yes

Model
identification

|

Parameter
estimation

|

Diagnostic
checking

—

Is the
model
adequate?

Re-
identification No

J Yes

Figure 4.5: Steps for building a good model through Box-Jenkins methodology.

4.3.1 Stationarity test

A popular assumption in many time series techniques is that the time se-
ries data is stationary. Thus, the main question in this step is “Is the time
series stationary?”. There are two ways to approach this question. The
first one is a graphical procedure, i.e., to examine the time series plot or
examine the ACF(py) plot. If the ACF decreases to zero linearly and slowly
(slow-decaying), then the series is non-stationary. The second way is a test
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procedure, i.e., by using a unit root test, which is able to determine whether
a time series data is stationary or not, as well as whether the series con-
tains a deterministic or stochastic trend (i.e., the shocks have permanent or
transitory effects). There are several tests for this purpose such as Phillips-
Perron test, KPSS test, Dickey-Fuller test, and an augmented Dickey-Fuller
test [222, 221]. The commonly used test for a unit root is the augmented
Dickey-Fuller (ADF) test, proposed by the statisticians David Dickey and
Wayne Fuller [223]. The ADF test is similar to the original Dickey-Fuller
test, but the main difference between the two tests is that the ADF is used
for larger and more complex time series models with unknown orders in
order to accommodate general ARMA (p,q) models. Therefore, the original
Dickey-Fuller test is a special case of the ADF test [224, 223].

One of the main factors affecting the stationarity of the time series is
seasonal variations and the trend over time. They affect the value of the
time series at different times. If the time series {X;} is not stationary, it
can be transformed into a stationary one by means of:

(1) Differencing: Taking differences is one possible way to obtain a sta-
tionary time series. Differencing is typically performed to get rid of the
non-constant mean of a series and as well for removing the stochastic
trend from the series. Mathematically, differencing can be defined as in
(4.35). The effect of differencing d times can be calculated by expanding

the corresponding polynomial in 2! as

d
VIX;=(1-21)X =) <d> (=1)'X;4, (4.48)

. 1
=0

where d indicates the number of differencing transformations required
by the time series to obtain a stationary series. Usually, one difference
(d =1) is enough to get a stationary time series.

(2) Seasonal differencing: Taking seasonal difference is a popular way to
remove a seasonal effect from the time series. Mathematically, a seasonal
difference of order D is defined as

vhx, =1 -2Px,

where s refers to the seasonal period, D takes positive integer values.
Typically, D = 1 or 2 is sufficient to obtain seasonal stationarity.

(3) Transformation: Transformation methods are used to stabilize the
non-constant variance of a series (e.g., a series whose variance increases
linearly with the mean) and also can suppress large fluctuations in the se-
ries. Common transformation methods include power transform, square
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root, cube root, and logarithm transform. In general, each of these trans-
formation methods is a member of the family of Box-Cox transforma-
tions [225]:

[ (XP =D/ ifEA#£0,
e { logt(Xt) ifA=0. (4.49)

where the parameter X\ is to be set by the analyst. Therefore, differ-
ent values of A yield different transformation methods. Popular choices
of the parameter A are: A = 0, which corresponds to a logarithmic
transformation, and A = 1/2, which corresponds to a square-root trans-
formation. If the variance of the series seems to increase quadratically
with the mean, the logarithmic transformation is a suitable choice. If
the variance increases linearly with the mean, the square-root transfor-
mation is a suitable choice.

4.3.2 Model identification

Once the stationarity problem has been handled through different tech-
niques in the first step, the next step is to identify and select the ade-
quate model from the linear time series family models (e.g., ARIMA, and
SARIMA). Therefore, from the first step, appropriate values for d or D in
ARIMA(p,d, q) or SARIMA(p,d, q)(P, D,Q)s models can be chosen, based
on the results of the stationary test. The main question that arises in this
step is “How to choose suitable values for p, and q or P, and @ for a
given series?”. Besides that, “how to select/determine the most satisfactory
ARIMA or SARIMA model to represent a time series?”.

Applying a specific model to some real or simulated time series, it is a
difficult task and not trivial. Usually, a raw time series data is split into two
sets. The first one represents a training set, which is used for identifying
and constructing the desired model, and the second one represents the test
set, which is used to test the adequacy of the model (e.g., train 80% of the
data and test the other 20%). In addition, the leave-one-out cross-validation
(LOOCYV) technique can be used as an ideal way for handling short time
series, where the problem lies in how to split a dataset (Fig. 4.6). LOOCV
is used as well for assessing how the results of the model will generalize to
the independent dataset, and to estimate the accuracy of the performance
of the predictive model.

The sample ACF and PACF are efficient tools for model identification
(Fig. 4.7). An appropriate choice for the orders of p, ¢, P and @ can be
obtained by matching the sample ACF(p;,) and sample PACF(¢y) of the
original time series (or transformed and differenced series when necessary)
with the characteristic behavior of the theoretical ACF and PACF for MA
process, AR process, mixed processes, and seasonal mixed processes, as
shown in Table 4.1 and Table 4.2. In practice, a minimum of 7' = 50
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Figure 4.6: Leave-one-out cross-validation (LOOCYV) strategy.

‘ Process H ACF H PACF
AR(p) Tails off as exponential decay Cuts off after lag p
or damped cycle (sine wave)
MA(q) Cuts off after lag ¢ Tails off as exponential decay
or damped cycle (sine wave)
ARMA(p,q) Tails off after lag (¢ — p) Tails off after lag (p — q)
White noise No spike No spike

Table 4.1: Characteristics of theoretical ACF and PACF for specific non-seasonal
ARMA models.

observations need to be available in order to determine an appropriate model
and T'/4 to calculate the number of sample lag-k autocorrelations and partial
autocorrelations [205].

In practice as well, identification of the perfect orders p, q, P and @ of
the desired model is difficult, especially, in the SARIMA model, because the
sample ACF and PACF in real time series data rarely exhibit simple pat-
terns. To overcome this problem, several different models can be identified
with different orders, and then distinguish among all models by using an
information criterion like Akaike information criterion (AIC) or Bayesian
information criterion (BIC), also known as the Schwarz criterion [217, 218].
AIC and BIC can be defined as follows

AIC(M) = —2logL(M) + 2K (M), (4.50)

BIC(M) = —2logL(M) + K (M)log(T), (4.51)
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’ Process H ACF* H PACF~
AR(P) Tails off at seasonal lags Cuts off after lag P
MA(Q) Cuts off after lag @@ Tails off at seasonal lags
ARMA(P,Q) || Tails off at seasonal lags || Tails off at seasonal lags

Table 4.2: Characteristics of theoretical ACF and PACF for pure SARMA models.
*The values at nonseasonal lags are zero.
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Figure 4.7: The sample ACF and sample PACF of an stationary time series. The
blue horizontal lines represent the 5% critical values at £1.967/T, which are used
to test whether or not the ACFs and PACFs are significantly different from 0.

where L(M) is the likelihood function of the parameters in model M eval-
uated at the MLE (Maximum Likelihood Estimators), 7" is the number of
observations, and K is the total number of parameters estimated. A good
model is the one that has minimum AIC or BIC between all the other models
M [217, 218].
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One of the basic ideas in the model building is to keep the model as
simple as possible. Besides that, a good statistical fit to the time series
data is desired. Therefore, keeping the number of model parameters to a
minimum (i.e., parsimonious model) is the better choice when building the
model depending on the measures of fit, which compares the quality of a
set of models (e.g., AIC, BIC), in order to reach a fit model and adequate
data description. In practice, one of the key features of the ARMA or
SARMA model is that it is able to represent an observed time series with
less parameters than AR or MA models; thus, it is characterized by the
parsimonious principle in model building [201].

4.3.3 Model estimation

After a tentative model has been specified, the next step is to estimate the
model parameters from the time series data. There are many approaches to
fit ARIMA or SARIMA models such as non-linear/linear least squares es-
timation (NLSE/LSE), generalized method of moments (GMM), Bayesian
estimation (BE), Kalman filtering through state-space models, and maxi-
mum likelihood estimation (MLE). Model estimation is a quite complicated
non-linear estimation problem, which can be solved by efficient algorithms
depending to the statistical program used. However, all these estimation
techniques do not perform equally [207, 226].

Because of its many attractive properties (e.g., consistency, asymptotic
normality, and asymptotic optimality), the mazimum likelihood estimation
(MLE) approach has been used for estimation unknown parameters in the
ARIMA or SARIMA models as the most popular approach to parameter
estimation. One of the main advantages of MLE is that it uses all of the
information in the data in order to answer the following question:

“Which parameter values generate a greater probability for the observed
data?”

The likelihood function L is the joint density function of the data, but
treated as a function of the unknown parameters 8. Given the observed
data Xl, XQ, cen ,XTI

L(X|B) = L(X7, X1-1,..., X1|B). (4.52)

Therefore, L is a function of the unknown parameters 8 in the model with
the observed data held fixed. The MLE is a method of estimating the
unknown parameters of a model, given observations, and its estimates are
the values of the parameters that maximize this likelihood function:

Brire = arg max L(X|B). (4.53)

In most cases it is easier to work with the natural logarithm of L, given by

LogL(X|B) = I(X|B). (4.54)
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This function is commonly referred to as the log-likelihood. Since the loga-
rithm is a monotonic transformation the values that maximize L(X|B) are
the same as those that maximize [(X|8), that is

Buvr = argmax L(X|B) = argmax (X B), (4.55)

but the log-likelithood is computationally more convenient. The ,B is the
parameter vector that maximizes the probability for the observed sample
X1, Xa,..., Xp. Thus, the MLE satisfies the so-called likelihood equations,
which are obtained by differentiating {(X|8) with respect to each of the
unknown parameters of the vector 8 and setting the derivatives to zero.

ol(X|B)
oB
In many applications of ARMA or SARMA models the conditional likeli-

hood function is an alternative to the exact likelihood function. In that case,
the first p observations of a Gaussian ARMA or SARMA process are de-

= 0. (4.56)

terministic and are equal to its observed values {X,,,..., X1}. The residual
g¢ is a Gaussian white noise (i.e., &, ~ 4.i.d.N(0,02)), computed from the
previous initial values of e;_; for i = 1,...,p, with g = 0, for t < p. The log-

likelihood function for this setting has the following form, with 8 = (8, 02),
where B’ is the transposed vector of the unknown parameters 8, and o2 is
the variance of the innovations.

S8

1(8) = 3 (T ~ plog2n — 5(T — pllogo? ~ 0 (a57)
where .
SB) =Y («(B)) (4.58)
t=p+1

denotes the sum of squares function, and the notation £,(8’) confirms that ;
is no longer a disturbance, but a residual which depends on the value taken
by the variables in /. Maximizing the log-likelihood function with respect
to B’ is equivalent to minimizing the conditional sum of squares function
S(B). Using the condition (4.56), this leads to

L a(e
Z 5,5 =0. (4.59)
t=1 aﬁl

Thus, the MLE of the vector 8’ can be obtained by minimizing (4.58), which
yields an approximate MLE of B’. Furthermore, the MLE of the parameter

o2 can be obtained by

g = . (4.60)
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4.3.4 Diagnostic checking

Once a model has been fit, the next step is determining whether the identi-
fied and estimated model is adequate. Hence,

“how to check the appropriateness of the fitted model?”

In particular, the residuals should be small, without systematic or pre-
dictable patterns (i.e., white noise). Moreover, independence, normality,
and homoscedasticity (literally, the same variance) should be achieved for
the residuals. Therefore the adequacy of the selected model is evaluated by
performing assorted statistical tests on the residuals or errors, such as:

(i) Graphical procedure: examining ACF and PACF plots for the resid-
uals to test the presence of any significant spikes in the confidence in-
terval (i.e., the spikes are within the confidence limits) indicating that
the residuals seem to be uncorrelated (Fig. 4.8).

Residuals analysis
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Figure 4.8: The sample ACF and sample PACF of the residuals. The blue horizontal
lines represent the 5% critical values at £1.96v/T and are used to test whether or
not the ACFs and PACFs are significantly different from 0.

(ii) Formal testing procedure: testing the randomness at each distinct
lag by using the portmanteau test of Ljung and Box, which is a statis-
tical test for testing the goodness of fit of the model and is a modified
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version of the Boz-Pierce test [227, 228]. The Ljung-Bozx @ (LBQ) test
examines m autocorrelations of the residuals and is defined as

Q(m)=T(T+2)

(4.61)

where pg(€) is the sample ACF of the estimated residuals at lag k, T is
the sample size, and m is the number of lags being tested. In the LBQ
test, the null hypothesis is rejected (i.e., the model does not exhibit
lack of fit) if

Q(m) > xi_o..,

where x3_ a,v 18 the chi-square distribution table value with v degrees
of freedom and significance level «. For instance, when the LBQ test
is applied to the residuals of an ARIMA (p,q) model, the degrees of
freedom v must be equal to m — p — q.

(iii) Normality test procedure: testing the normality of the residuals,
by using the Jarque-Bera (JB) test, proposed by Carlos Jarque and
Anil K. Bera [229]. The JB test is a goodness-of-fit test of whether the
residuals follow a normal distribution and is defined as

(K —3)°

JB:%(SQJr -

)~ (4.62)

where S, K, and T denote the sample residual skewness, the sam-
ple residual kurtosis, and the sample size, respectively. S and K are

defined as LT
_ s m2imfr (4.63)
~3 T .9\3/2° ’
7 (% Zz‘:ﬁ%) /
. T .
_ M4 _ %ZiZI 8? (4 64)

o GELE)”
where fi3 and ji4 are the estimates of third and fourth central moments,
respectively, and 6 is the estimate of the second central moment (i.e.,
the variance). Under the assumption of normality, S has an asymptotic
normal distribution with mean 0 and variance 6/7. The case of K is
the same, but with mean 0 and variance 24/7T. The test statistic (JB)
is compared to a chi-squared distribution with 2 degrees of freedom.
Normality is rejected if the JB value is greater than the chi-squared
value.

If the tentative model is inadequate, a new model must be re-identified (step
2) in order to build a most adequate model. On the contrary, if the tentative
model passes the diagnostic tests, then the model is fitted to be used for
forecasting.
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4.3.5 Forecasting

Once a model has been fitted to the training data (in-sample period), the
next step is to use this model for forecasting. In this case, validation data
(out-sample period) are used to evaluate forecasting performance [230]. Al-
though the fitted model is required to generate forecasts, the best-fitted
model does not necessarily give us the best forecasting. The good forecasts
capture the truthful patterns and dynamic characteristic, which exist in the
training set, but do not replicate past episodes that will not happen again.
The ability to forecast an event (episode) depends on many factors including:

(i) How much data are available in the training set for the model identi-
fication/selection and parameters estimation?

(i) How well do we understand the factors that contribute to it?

The forecasts of the time series Xy, can be defined as
Xr(h) = Xpynr = E(X7in| X, Xro1, .., X1), (4.65)

where (X7, Xp_1,...,X1) represent the previous observations in the train-
ing period up to time T. XT+h|T is the conditional expectation of Xy
given the information available at time T, and it denotes the h-step ahead
forecast (i.e., the forecasted value Xrp.j), where h is a positive integer re-
ferred to as the prediction horizon (PH). Therefore, there are 3 types of
forecasting based on the prediction horizon (h): short-term, medium-term,
and long-term forecasts.

Forecast accuracy measures

Of relevance are the accuracy measures used to assess the forecasting per-
formance of the model, which are addressed here. The forecast error is the
difference between the actual and forecast value, stated as an absolute value
or as a percentage. It can be defined as e; = A; — F;, where A; denote the
it actual observation and Fj is a forecast of A;. There are several statistical
measures that used to measure the accuracy of the forecasting such as:

1. Mean Squared Error (MSE). The mean squared error (MSE) or
mean squared deviation (MSD), is a popular measure for forecasting
errors and its variance, and can be computed as

1 n
MSE := — § ef. (4.66)
n
=1

Where n is the number of observations for a given time period. MSE
penalizes a forecast much more for large errors than it does for small
errors because all errors are squared. In addition, it is more sensitive
to outliers due to the squared function.
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2. Root Mean Squared Error (RMSE). The root mean squared error
(RMSE) or root mean squared deviation (RMSD), is the square root
of calculated MSE. Therefore, it is computed as follows

1 n
RMSE = |~ > 2 =VMSE, (4.67)
=1

3. Mean Absolute Error (M AE). The mean absolute error (MAE) or
mean absolute deviation (MAD), is the average of the absolute forecast
errors, as given by

1 n
MAFE = — il- 4.6
a2l (4.68)

MAE displays the magnitude of the overall error, but is not sensitive
to outliers.

4. Mean Absolute Percentage Error (MAPE). The mean abso-
lute percentage error (MAPE) or mean absolute percentage deviation
(MAPD), is the average of the absolute percentage errors of forecasts.
MAPE is computed as

n
MAPE := 100
n

€;

Al

(4.69)

=1

MAPE is independent of the scale of measurement and easy to inter-
pret, but does not penalize extreme errors.

5. Theil inequality coefficient (UI). The Theil inequality coefficient
(UI) is a normalized measure of the total forecast error, and can be
computed as follows

Ur = RMSE (4.70)

1nA2 1nF2‘

A value of 0 for UI indicates perfect forecast, while a value of 1 corresponds
to maximum inequality or negative proportionality between the actual and
forecast values [231].



Chapter 5

Clustering time series

Complexity of factors affecting glucose response in T1D suggests the ex-
ploration of clustering techniques and local modeling approaches aiming at
better characterizing scenarios with similar responses. This chapter intro-
duces techniques for time series clustering, applications to local modeling
and a survey of related work in the field of diabetes. The chapter starts in
Section 5.1 with a definition of clustering time series data, then explains the
difference between the two categories of clustering algorithms, and the im-
portance of clustering time series techniques in different domains with some
examples. Section 5.2 displays different similarity measures to clarify which
similarity measure is appropriate to use in the clustering process. Section 5.3
explains different approaches to time series clustering, and how to handle
with the dataset. Section 5.4 determines which clustering algorithm should
be used for time series clustering, and introduces different cluster validity
indices to determine the number of clusters in the dataset. Section 5.5 clari-
fies the effective role of clustering techniques for local models in order to deal
with complex systems. Section 5.6 displays some applications of clustering
techniques in T1D.

5.1 Clustering time series data

Over the past two decades, the idea of discovering hidden information in
datasets has been widely explored, due to the tremendous growth in data
size and communication technology. This discovery has mainly been focused
on data mining, classification and clustering techniques [232, 233].

As mentioned previously in Section 4.1, a time series is defined as a
sequence of measurements indexed in time order. Most often, the measure-
ments are made at regular time intervals. Time series is the most com-
mon type of dynamic data, appearing naturally in a variety of different
domains, such as statistics, signal processing, pattern recognition, economet-
rics, weather forecasting, earthquake prediction, control engineering, among

78
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many others. They pose some challenging issues, due to the direct manip-
ulation of continuous, high dimensional datasets in a dynamic way, which
is extremely difficult. Besides forecasting, which was addressed in Chap-
ter 4, time series analysis can also be used for clustering and classification
applications in data mining and machine learning fields.

Clustering, also called cluster analysis, or unsupervised classification, is
the task of an unsupervised grouping of a dataset (unlabeled patterns, ob-
servations, tuples, transactions or feature vectors) into groups (clusters) so
that the similar objects will be in the same cluster and objects in different
clusters are quite distinct [233]. Application of clustering techniques is im-
portant when no labeled data are available regardless of whether the data
are binary, categorical, numerical, interval, ordinal, temporal, image, multi-
media, or mixtures of the above data types. Clustering plays a key role in
discovering and extracting beneficial knowledge from large databases. Time
series data clustering has been used in diverse problem domains:

e Financial markets: In financial markets, the stocks data represent
time series, which continually change with time. Cluster analysis of
such time series can provide many insights into the trends in the data
like determining structural (dis)similarities in economic processes for
economic forecasting.

e Medical science: Various types of medical data such as the electroen-
cephalography (EEG) readings and CGM measurements are in the
form of time series. Cluster analysis of such time series can provide a
comprehension of the common patterns in the data. Moreover, com-
mon characteristics from these patterns can be extracted and linked
to different types of diseases or warning from long complications.

e Farth science: Several applications are found in earth science, such
as temperature and pressure studies. Cluster analysis of such time
series can provide information about the common climactic trends in
the data for climatic forecasting.

In general, clustering algorithms can be classified into two categories:
hard clustering and fuzzy clustering, which are described next.

Hard clustering

Hard (crisp) clusters mean non-overlapping (un-nested) clusters: the data
points (objects, patterns) are partitioned into distinct clusters, where each
data point (object, pattern) belongs to one and only one cluster.

Mathematically, in hard clustering, algorithms assign a group label L; €
{1,2,...,k}, to each data point (object) x;, to identify its cluster group,
where k is the number of clusters. Each object is assumed to belong to one
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and only one cluster. Therefore, the result of hard clustering algorithms can
be represented by a k x n matrix

U1l U192 oo Uln
U221 U22 ... Un

v=|". T . (5.1)
U1 Up2 ... Ukn

where n represents the number of data points (objects), k represents the
number of clusters, each row describes a cluster j, each column corresponds
to a data point ¢, U = [u;;] is a partition matrix, and u;; may only take a
value of either 0 or 1. If a data point (object) ¢ belongs to cluster j, then
u;j = 1. Otherwise, u;; = 0. Therefore, u;; satisfies the following natural
conditions:

wiy €{0,1}, Vie{l,...,n}, Vie{l,... k}, (5.2)

k
Zuij = 1, \V/’i, (53)
j=1

> uy >0, V. (5.4)
=1

Condition (5.3) provides that data point ¢ may only belong to one cluster
(i.e., only one entry may take the value of 1 within any certain column). To
satisfy condition (5.4), there must be no empty clusters (i.e., each row must
contain an entry of value 1).

Fuzzy clustering

In fuzzy (soft) clustering, the assumption is relaxed so that data points
(objects, patterns) belong to more than one cluster, and associated with
each data point (object, pattern) is a set of membership levels/degrees.

Mathematically, the result of fuzzy clustering algorithms can also be
represented by a k X n matrix U, as defined in the hard clustering, but with
the following relaxed restrictions:

ui; €[0,1], Vie{l,...,n}, Vje{l,... k}, (5.5)
k
D uy =1, Vi, (5.6)
j=1

> ui >0, V. (5.7)
=1
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Aspects to consider in time series clustering include the selection of a dis-
tance measure for the characterization of (dis)similarly, the prototype ex-
traction function, the appropriate choice of the clustering methodology and
the clusters evaluation for a right number of clusters. Time series clustering
will depend on whether the whole series, a sub-sequence or particular time
points are to be clustered. As a result, a time series is sought that effec-
tively epitomize the important characteristics of all series in a given cluster,
which must be similar to each other. This series is the so-called prototype
series (or average series or centroid), which contains useful information for
a specific cluster. All these aspects will be reviewed next.

5.2 Similarity and distance measures

Mathematically, let be two time series X and Y vectors of length n, and x;
and y; the i*" values of X and Y, respectively. Then, X and Y are defined
as similar if and only if D(X,Y) < €, where D(X,Y’) is a distance measure
characterizing (dis)similarity between X, Y and e is a specified threshold
value.

Comparison of time series is widely used in several research domains
and many applications. Similarity measures are fundamental to solve many
pattern recognition problems like in clustering and classification problems.
Therefore, distance measures are one of the cornerstones of any time series
clustering algorithm, in order to compare the (dis)similarity between the
pairwise time series. However, it is not simple to derive a method that can
measure the similarity of time series efficiently due to the characteristics of
time series data, which are naturally noisy and include outliers and shifts,
besides the high dimensionality. So, a key question is “which similarity
measure is most appropriate to use?”. The choice of the similarity measure
depends on whether similarity in time, similarity in shape or structural
similarity is sought [232].

5.2.1 Similarity in time

Similarity in time is defined as the similarity between pairwise time series
data based on the similarity at each time step. Lj,-norm distance is the
most common measure of similarity that reflects similarity in time [233]. As
a distance metric, L,-norm fulfills the properties of non-negativity, identity,
symmetry, and triangle inequality. This distance is a strict metric that can
only compare pairwise time series of the same length. The L,-norm distance
(also referred as Minkowski distance) is defined as follows

n 1/17
=1
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where p is the order of Minkowski distance. Therefore, there are many
different distances derived from the Minkowski distance depending on the
order value (p):

e Euclidean Distance: Euclidean distance (i.e., straight line distance)
is the most often used distance/metric in many applications. It is a
special case of the Minkowski distance when p = 2 (La-norm) and it
is defined as:

(5.9)

e Manhattan Distance: The Manhattan distance/metric was named
based on the grid-like layout of the streets of the New York borough
of Manhattan (i.e., city block distance). It is a special case of the
Minkowski distance when p =1 (L;-norm) and it is defined as:

AX,Y) = (Z i yi\> . (5.10)

=1

e Maximum Distance: Maximum distance (i.e., Chebyshev distance
or Tchebychev distance) is defined to be the absolute maximum value
of the distances between the coordinates of a pair of time series (ob-
jects). It is a special case of the Minkowski distance when p = oo
(Loo-norm) and it is defined as:

n 1/p

— 1 P — o

d(X,Y) pli)lgo (Zlh:z il > Orgaél\:nl Yil. (5.11)
1=

5.2.2 Similarity in shape

The time of occurrence of the time series is not important when similarity
in shape is sought. The concept of similarity in shape is based on the
similarities between subsequences of the pairwise time series or their common
trends. Therefore, similarity in time can be considered as a special case of
similarity in shape. Adequate measures of similarity in shape are elastic
measures like the dynamic time warping (DTW) measure.

DTW measure stems from the context of sound processing [234], and it
is one of the most proper algorithms for measuring the similarity between
different time series with irregular lengths. DTW replaces the one-to-one
time point comparison that is used in Euclidean distance (ED), with a many-
to-one (and vice-versa) comparison (see Fig. 5.1). However, DTW does
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not fulfill the triangle inequality condition, and thus, it is not a proper
mathematical metric or distance function. Despite this, it has the main
feature of allowing the recognition of similar shapes and it is widely used
[235].

ED DTW

Figure 5.1: Illustrative example of the measure of similarity between two time se-
ries: (left) Euclidean distance (lock-step) measure; (right) Dynamic Time Warping
measure (elastic).

DTW is computed as follows. Given two time series X = {x1,zo,...,2,}
and Y = {y1,y2,...,ym} of length n and m, respectively, the following n x
m matrix is constructed

d(z1,y1) d(w1,y2) ... d(T1,Ym)
D d($2:a y1) d(w2,y9) § 7 (5.12)
d(xna yl) d(xna ym)

where D; j = d(z4,y;), with 1 <i <mn and 1 < j < m is typically the
ED between the data points of the time series under comparison. The DTW
objective is to compute the warping path W = {wy,ws, ..., wg,...,wx} of
neighboring elements in matrix D, with max(n,m) < K < m+n — 1, such
that it minimizes the following function:

DTW(X,Y) = min (5.13)

The warping path is a contiguous set of matrix elements which defines a
mapping between X and Y that satisfies the following constraints:

1. Boundary conditions: w; = (1,1) and wg = (m,n), where K is
the length of the warping path, so the first and the last element of the
warping path are in diagonally opposite corners of the matrix.

2. Continuity: if w; = (a,b) then w;—1 = (a’,b'), where a —a’ <1 and
b—b' < 1. Therefore, cells of the matrix denoted by adjacent elements
of the warping path must be neighbours.
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3. Monotonicity: if w; = (a,b) then w;—1 = (a/,'), where a —a’ > 0
and b — b > 0. Therefore, the warping path must be monotonically,
non-decreasing along the time axis.

In practice, the DTW distance between two time series can be calculated
through an O(n?) dynamic programming [236] to prevent the construction
of the whole matrix. Define (i,j) to be the cumulative distance. Then

’Y(Zh]) = d(xu y]) + mln{’)/(z - 17] - 1) 7'.)/(Z - 17]) 77(%] - 1) } (514)

5.2.3 Structural similarity

One of the most important components in any time series is a stochastic
persistence component, that is present in several time series domains like
economic time series. Therefore, it is important to consider this component
when defining the similarity between different time series. This component
can be captured by modeling it by stochastic models like ARMA models.

Structural similarity is characterized from measures on the parameters
of a fitted model to each time series. If parameters of two models are close,
then the corresponding time series have a large probability to behave in a
similar way. The most common modeling methods for this objective are
Hidden Markov Models (HMM) [237] and ARMA process [238]. Such a
similarity measure can be used to extract information about the dynamic
behavior of the time series from others belonging to the same cluster [239].
This approach is considered to be appropriate for long time series, not for
short time series [240].

5.3 Approaches to time series clustering

Time series clustering approaches have been divided into three main cate-
gories as shown in Fig. 5.2 depending upon whether they dealing directly
with raw time series data without modification, indirectly with features
vectors of lower dimension extracted from the raw time series data, or indi-
rectly with a number of models parameters built from the raw time series
data [241, 242].

5.3.1 Raw-data-based approaches

In raw-data-based approaches, the clustering algorithm is directly applied
on raw time series data without any pre-treatment, or changes in the original
data. The main modification is replacing the distance or similarity measures
for static data with a suitable one for time series, and minor transforma-
tions (if necessary) like normalization of the raw data. Raw-data-based ap-
proaches are relatively simple and generally lead to high dimensional spaces.
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Time Series

Clustering
Approaches

( Raw-data-based ) ( Feature-based ) ( Model-based )

Original dataset Extracting features ~ (1) Modeling
* Clusters * Clusters | Modeling (Coeffi-
* Cluster centers * Cluster centers cients/Residuals)

¥

(2) Discretization

¥

Model parameters

* Clusters
N
* Cluster centers

Figure 5.2: Time series clustering approaches.

It can be applied in the time or frequency domain. L,-norm distance is the
simplest and most widely used method in these approaches. Moreover, the
DTW measure is also widely used in the case of varying lengths of the time
series (Fig. 5.3). However, this kind of method will not apply when the
size of the time series data is too large and data is highly noisy. Clustering
the DNA microarray raw data and functional magnetic resonance imaging
(fMRI) for brain activity are some known applications in these approaches
in order to detect similar regions of activation [243, 244].

Similarity measures e.g., L,
Bazs distance, and Dynamic Time
K y
pasad Warping Distance (DTW).
Similarity measures e.g., Piece-
Feature- wise Aggregate Approximation
based (PAA), and Symbolic aggre-
gate approximation (SAX).
Similarity measures e.g., Hidden
Model- | proikoy Model(HMM), Time series
pazad Bitmaps, and ARMA Models.

Figure 5.3: Time series clustering approaches with similarity measures.
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5.3.2 Feature-based approaches

Due to the characteristics of the time series, in the feature-based approaches,
the raw time series is converted into a feature vector of a lower dimension.
Therefore, it is necessary to find an appropriate data representation to sim-
plify the dimension of the time series data and to reduce the computational
and storage cost [245].

Different feature-based representations have been explored depending on
statistical measures like the mean, standard deviation, skewness, and kurto-
sis of the time series [246]. Moreover, there are several common methods for
these approaches such as spectral decomposition through Discrete Fourier
Transform (DFT) [247], Discrete Wavelet Transform (DWT) [248], Singu-
lar Value Decomposition (SVD) [249], Piecewise Aggregate Approximation
(PAA) [250], and Symbolic Aggregate Approximation (SAX) [251].

The methods for the extraction of features are generic in nature, however,
the extracted features are usually application-dependent. That is, not a sin-
gle set of features works well for all applications. For example, the extracted
features from the fMRI time series include cross-correlation measures in or-
der to match brain regions with similar activation patterns [252, 253]. This
feature is not necessarily appropriate for another application. The advan-
tages of feature-based approaches are that they are less sensitive to missing
values and they can handle time series of different lengths. However, they
have the disadvantage that sometimes it loses significant information of the
original data after transformation and reduction.

5.3.3 Model-based approaches

Model-based approaches represent a time series in a stochastic manner. The
basic idea of this approach is to model the time series first by stochastic
models such as Markov models and Hidden Markov model (HMM) [254, 255],
statistical models, time series bitmaps [256], and Auto-Regressive Moving
Average (ARMA) [238, 257], among others. Then clustering is applied to the
model parameters, and different statistical information like fitting residual.

The advantage of model-based approaches is that they can handle time
series which are noisy and with high dynamic changes with time. However,
they have the disadvantage that the process is too complicated, requiring
firstly to reach a good fit model and then extract a useful statistical infor-
mation or model parameters for time series clustering.

5.4 Time series clustering algorithms

As mentioned previously, there are many different ways of measuring the
similarity of time series data. Therefore, there are many different ways



CHAPTER 5. CLUSTERING TIME SERIES 87

Partitioning

Hierarchical

Clustering Algorithms Density-based

Grid-based

Model-based

Figure 5.4: The major clustering algorithms.

to cluster the time series data into groups (clusters), each having different
application areas. A time series clustering algorithm must answer to the
following questions:

e Which data points belong to which cluster?
e How many clusters are there in a dataset?

There is no single answer to these questions, but many depending on the sim-
ilarity measure, the clustering algorithm and the clustering validity indices
used. An understanding of both the clustering problem and the clustering
technique is required in order to apply an appropriate algorithm to a given
problem.

The main properties of clustering algorithms include the ability to work
with a high dimensional dataset, ability to get similar groups (clusters) of
mixed shapes, ability to handle with a different types of attributes (features,
variables, component, fields, dimensions), and the ability to handle with
outliers [14]. The major clustering algorithms can be classified into five
categories: partitioning, hierarchical, density-based, grid-based and model-
based methods (Fig. 5.4). Traditionally, clustering algorithms are based
on two common techniques known as hierarchical (nested) clustering and
partitional (un-nested) clustering, based on the characteristics of the clusters
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generated (i.e., depending on the type of structure imposed on the data)
[258].

5.4.1 Hierarchical clustering

Hierarchical clustering (HC) is one of the oldest and common clustering
methods. HC is a method for transforming a similarity /proximity matrix for
different data points (objects) into a set of nested clusters that are organized
as a hierarchy/tree shape and can be visualized by a “dendrogram”. HC
methods are classified into agglomerative (bottom-up) and divisive (top-
down) (see Fig. 5.5):

e Agglomerative hierarchical clustering (AHC): It is a bottom-up
approach that starts with each data point in its own cluster (singleton)
and recursively merges the most similar (closest) pair of clusters until
only a single cluster remains.

e Divisive hierarchical clustering (DHC): It is a top-down ap-
proach that starts with all the data points in one cluster, recursively
partitioning the cluster into the most proper smaller clusters, until
each cluster consists of one data point.

Distance

Figure 5.5: Agglomerative (AHC) and divisive (DHC) hierarchical clustering.
Adapted with modifications from [10].

In practice, agglomerative clustering is most common than divisive clus-
tering [14, 258]. AHC algorithms include the concept of measuring and com-
paring distances between clusters for merging the similar or closest clusters
up to a stopping criterion and an optimal number of clusters in the hierarchi-
cal technique. To do so, there are many important measures to determine
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the cluster distance such as single-linkage, average-linkage and complete-
linkage (the so-called linkage metrics in the AHC literature [14]), which are
reviewed next:

1. Single-linkage metric (SLM): It is one of the most known cluster
distance for cluster amalgamation, and it is also known as connect-
edness, minimum method, or nearest neighbour cluster distance. In
SLM, the distance d between two clusters, C7 and Cs, is defined as
the minimum distance (i.e., shortest distance) between the clusters
objects, t.e.:

d(C1, C2) = dpin (C1,C2) = mingec, yec, d (z,y) . (5.15)

If the data depend on the similarities, the distance, in this case, is
equal to the greatest similarity between the clusters objects.

2. Average-linkage metric (ALM): The distance d between two clus-
ters, C1 and (5 is defined as the average distance between clusters
objects, t.e.:

d(C1,C2) = davg (C1,C2) = |C1H N Z Z d(z,y) (5.16)

zeCh yelCs

where |C;| is the size of cluster i. ALM does not impose a structure
on the clustering effect.

3. Complete-linkage metric (CLM): It is one of the most popular
measures for cluster distance, and it is also called the diameter, max-
imum method, or furthest neighbour cluster distance. In CLM, the
distance d between two clusters, C7 and Cy is defined as the maxi-
mum (greatest) distance between the clusters objects, i.e.:

d (Cla 02) = dmaz (Ch 02) = MaXgzcCy,yels d (JJ, y) . (517)

Therefore, CLM produces compact clusters with a small maximum
distance between any two objects of the cluster, where objects within
a specific cluster are supposed to be close to each other and outlying
objects are not integrated.

All of the above linkage metrics can be derived through the Lance-
Williams dissimilarity update formula [259]. If objects ¢ and j are agglomer-
ated into cluster C;UC}, then we must simply specify the new (dis)similarity
between the cluster and all other clusters C. The formula is
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’ Advantages H Disadvantages
Embedded flexibility regarding The time complexity of at least
the extent of granularity O(n?logn) is required, where n

represents the number of data points:
not suitable for large datasets

Ease of handling any form of They are static, i.e., objects assigned
similarity or distance to a specific cluster cannot transition
to another cluster
Applicability to various Very sensitive to noise
attribute types and outliers
Easy to implement The vagueness of selecting
the right stopping criteria
There is no need to be specified The undeniable fact that most

the number of clusters in advance || hierarchical algorithms do not revisit

Table 5.1: Advantages and disadvantages of the hierarchical clustering [14].

where o, o, 3, and «y define the agglomerative criterion. In the case of
the SLM, using o; = a; = 1/2, f =0, and v = —1/2 yields to

o 1. 1. . 1 . )
d(/LU.]uk) = §d(lvk)+§d(jvk) - §’Y|Cl(2,k¢) _d(j’k)|7

which, can be rewritten as

d(iuj, k) :min{d(i,k),d(j,k)}.

Due to the need to structure taxonomies, HC methods are popular in
many fields like social and biological sciences. Moreover, HC algorithms have
many advantages like implementation in an easy way and ease of handling
any form of similarity measures [14]. In contrast, it has disadvantages such

as sensitivity to noise and outliers, and not being suitable for large datasets
(Table 5.1).

5.4.2 Partitional clustering

Partitional clustering (PC) method, is one of the most popular clustering
algorithms. It consists in a partition process of data points (objects) into
subsets of disjoint clusters (un-nested clusters) without a hierarchical struc-
ture, in an attempt to retrieve natural groups that exist in the data. Fur-
thermore, to increase the valuation value of clustering, each subset (cluster)
optimizes a clustering criterion, which can be local or global. A global cri-
terion represents the partition clusters according to the similarity between
different prototypes, whilst a local criterion represents the partition clusters
via the local structure of the data such as high-density areas [258].
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Given a data set of N points (patterns) in a d-dimensional metric space,
a PC method partitions the data points into K clusters of data (N > K).
That is, it classifies the data into K clusters by achieving the following
requirements: (i) each cluster contains at least one point, and (ii) each point
belongs to exactly one cluster or more rely on the partition types. There
are two types of PC methods: hard (crispy) partitional clustering (HPC),
and fuzzy (soft) partitional clustering (FPC).

Hard partitional clustering (HPC)

As mentioned previously, in hard clustering, each data point strictly belongs
to one and only one cluster. One of the most widely used algorithms of HPC
is the K-means algorithm that solve the clustering problem in a simple and
easy way [260]. K-means make exactly K different clusters of the greatest
possible distinction from N unlabeled data points (objects) based on fea-
tures/attributes of the data. The partition by K-means is carried out by
minimizing the sum of squares of the distance (typically the ED) between
data points and the corresponding cluster centroid (prototype), where the
centroid is (typically) the mean of the data points in the cluster.

Mathematically, the main aim of the K-means algorithm is to minimize
the total intra-cluster variance, i.e., the squared error function:

kK n

J=3"3" 12— |2, (5.19)

j=1i=1

where || xgj ) cj ||? is a distance measure between data points :cf and the
cluster centroid ¢, and n represents the number of data points in Gt cluster.
The algorithm consist of the following steps:

1. Place K points into the space represented by the data points that are
being clustered. These points represent initial cluster centroids.

2. Assign each data point to the cluster that has the closest centroid.

3. When all data points have been assigned, recompute the positions of
the K centroids.

4. Repeat Steps 2 and 3 until convergence (centroids no longer move and
none of the cluster assignments change). This makes a partition of the
data points into clusters from which the metric to be minimized can
be calculated.

This algorithm needs to specify the number of clusters a priori. There-
fore, different initial partitions can produce different final clustering. Be-
sides, the algorithm can converge to local minima. Therefore, the result
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found by this algorithm is not necessarily the most optimal one. That is one
of the drawbacks of this method, besides the fact that it can only handle
numerical features and it is highly sensitivity to outliers. Nevertheless, the
computational time in this method is faster and can produce tighter clusters
as compared to HC methods [261].

Fuzzy partitional clustering (FPC)

Especially in time series clustering, it is very difficult to determine to which
cluster a data point belongs to exactly. Moreover, in practice and real-life
applications, clusters may overlap, and data points may belong partially to
more than one cluster, which is the main problem in HPC methods. In
FPC methods, one data point belongs to more than one cluster based on
its membership value/degree, which is defined as the degree of likelihood of
one data point belonging to several clusters. The sum of membership values
of each data point to all clusters is equal to one. In several applications,
the FPC methods have been demonstrated to be better methods than HPC
when dealing with discrimination of similar structures [262] and datasets
with significant outliers [263].

The most widely used method in the FPC methods is the Fuzzy C-means
algorithm (FCM). FCM is a fuzzified version of the K-means algorithm,
developed by Dunn in 1973 and improved by Bezdek in 1981 [264, 265].
FCM attempts to find the most characteristic point that characterizes each
cluster, which can be considered as the centroid of the cluster and, then,
it determines the membership degree of each data point to each cluster.
To this end, FCM algorithm partitions data points into ¢ > 1 clusters by
minimizing the following objective function:

C n
Tm(U V5 X) =Y 0> uftdy (wp, i), (5.20)
i=1 k=1

where X = {z1,z2,...,2,} denotes the unlabeled data points (objects)
of size n, V. = (11,12, ...,V.) is a vector of unknown cluster centers (proto-
types), v; € R%, and U = [u], i = {1,2,...,¢}, k ={1,2,...,n} is the par-
tition matrix, where u;, € [0,1], Y 5w = 1, Vkand 0 < Y ) uip < n Vi,
d is a distance function (ED function between k" data points and i** cluster

center) and m € [1,00) is the fuzziness parameter.

FCM algorithm consists in the following steps:
1. Compute the fuzzy membership, u;, using:
1
c d?k m—1
i ()
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2. Compute the fuzzy centers, ¢;, using:

n m
¢ = 2ok=1 kT (5.22)

D k1 Ul
3. Repeat the last two steps until the minimum of the objective function
Jm is achieved or || U™*! — U' ||< B, where 3 is the termination
criterion between 0 and 1, whereas [ are the iteration steps.

The lower the value of 8 the better the results, but at the expense
of a more number of iterations, which increases the computational time
required by this algorithm. This is one of the main drawbacks of this method.
However, FCM has the main advantage that it gives the best results for
overlapped data points, and it is more robust against outliers. Therefore, it
is considered comparatively better than HPC algorithms.

FCM Clustering of incomplete data

The FCM algorithm is a useful technique for clustering real-dimensional
data, but it cannot be directly applied to incomplete data (missing data),
since all data is required to compute the cluster prototypes (centroids) and
the distance measures. There are different strategies for adapting the orig-
inal FCM algorithm to missing/incomplete data, which are reviewed next
[266]. Some previous definitions follow.

Let X = {x1,x9,...,2,} be an incomplete data set in s-dimensional real
space; Xw = {z € X|z is a complete datum } be the whole-data subset
of X; Xp = {xjk for 1 <j <s,1 <k <n|the value for X, is present
in xp for 1 < k < n} be the set of the available feature values; and
Xy =A{xjr =7 for 1< j <s,1<k < n|the value for x;;, is missing from
xp for 1 <k <n} be the set of the missing feature values.

FCM algorithm can be adapted to missing data as follows:

1. Whole data strategy FCM (WDSFCM). The whole data strategy
(WDS) is a simple technique for clustering incomplete data, if the pro-
portion of incomplete data is small, i.e., approximately, no less than
75% of complete data items are present in the data set. This algo-
rithm simply deletes all incomplete data and applies the original FCM
algorithm on the complete data subset Xy (complete-case analysis).
Then, the prototypes and the memberships of the data vectors in Xy
can be computed via an alternate optimization of (5.21) and (5.22).
Afterwards, the cluster membership for each incomplete data item can
be estimated by using a nearest-prototype classification scheme based
on the partial distances.



CHAPTER 5. CLUSTERING TIME SERIES 94

2. Partial distance strategy FCM (PDSFCM). The partial distance
strategy (PDS) is a popular strategy to FCM clustering of incomplete
data proposed by Dixon [267], which uses the partial distance function
for measuring the distances between two data items. The PDS algo-
rithm is applicable to the case where the proportion of missing values
is larger. In contrast to the WDS method, the PDS algorithm ignores
the missing feature values in X, and use all available feature values
in Xp to cluster incomplete data. The partial distance between the
incomplete item and cluster prototype is thus defined as

S

S
Dik = I—k Z(Xjk — Vji)2ljk7 (523)
j=1
where
. 0 if Xk € X,
L = { 1 if xj, € Xp, (5:24)

for 1 < j <s 1<k<mn,and Ity = % Iy;. Hence, the PDS
version of FCM algorithm (PDSFCM), can be obtained by making
two modifications of the original FCM algorithm:

e Calculate d;; in (5.21) for incomplete data according to (5.23)
(i.e., replace d;, with D).

e The cluster prototypes are then updated as follows

n mr. .
> k=1 YindjkXk

PYRRTY T for 1<i<el<j<s (5.2
= (2

Vj'i =

3. Optimal completion strategy FCM (OCSFCM). The optimal
completion strategy (OCS) is one of the most effective techniques for
clustering incomplete data. The main idea of this technique is to
compute the missing values in X, as additional variables. Therefore,
the clustering objective function (5.20) of the original FCM is rewritten
as follows

c n

Tm(U Vi Xor) =Y 0> ufbdy (i), (5.26)
=1 k=1

Zeroing the gradient of J,,, with respect to the missing features values
of z;, leads to

c my,..
Di=1 YikVii for 1<j<s1<k<n. (5.27)

Xip =
J c m
D i1 Uik
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By this manner, the missing values are imputed by the weighted means
of all cluster centers during each iteration.

4. Nearest prototype strategy FCM (NPSFCM). The nearest pro-
totype strategy (NPS) can be considered as a simple modification of
the OCS algorithm. The idea is to replace the missing value by the
corresponding feature value of the nearest cluster prototype during
each iteration, yielding to the following expression

x() =\, Dy = min{Diy, Doy, ..., D}, (5.28)

to update the missing values based on the D;; between the incomplete
datum and the prototype at each iteration [ =1,2,....

5.4.3 Cluster validity indices

Important features for a good clustering method/algorithm are the ability to
generate clusters which maximize inter-cluster distances (good separation)
while minimizing intra-cluster distances (high homogeneity) and achieving
high connectedness between neighboring data points (patterns). This sub-
section addresses questions such as “how many clusters are there in the
data?” (patterns existence) and “how good are the partitions?” (quality of
clustering). The number of clusters is usually determined by cluster validity
indices (CVIs) [233]. In general, a CVI is an important matter in clustering
analysis, in order to determine the quality of clustering [268]. Therefore, an
optimal number of clusters can be decided based on the largest or smallest
CVI value, depending on the validity indices.

A CVI represents two indicators, namely compactness and separation.
Compactness indicates the concentration of data points (pattern) in a spe-
cific cluster, and it is measured by the distance between each data point
(pattern) and its centroid (prototype) in the same cluster. The smaller the
distance, the better the compactness of the cluster. Separation indicates the
degree of separation between clusters, and it is measured by the distance be-
tween cluster centroids (prototypes). In this case, the largest the distance,
the stronger the separation of clusters. Therefore, the balance between the
two indicators is important for designing the CVIs [269].

A review of CVIs used in different clustering contexts is presented next.

Cluster validity indices for HC

To determine the optimal number of clusters in the data points by the HC
algorithms, there are four validity indices which have to be used simultane-
ously at each step [270, 271]:
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e Root-mean-square standard deviation (RMSSTD) of the new cluster.
e Semi-partial R-squared (SPR).
e R-squared (RS).

e Distance between two clusters (CD).

The root mean square standard deviation (RMSSTD) index is a sta-
tistical evaluation method used to measure the homogeneity within clusters
at each step of a HC algorithm. RMSSTD is the pooled standard deviation
of all the attributes/features within each cluster. At any hierarchical step,
larger values of RMSSTD indicate that the clusters are not well separated
(less homogeneity). When a new clustering scheme is formed at a given step
in the HC algorithm, this is an indication of worsening. Whilst, the lower the
value of RMSSTD, the better the separation of clusters (high homogeneity).

The sum of squares of the data points D in a d-dimensional space is
defined as

n d

SS = (wi—9*=) > (x -9 (5.29)
=1

i=1 j=1

where 7 is the mean of the data points. Along with this, some additional
symbolism used is:

e 55, The sum of squares within a cluster.
e S5Sp: The sum of squares between clusters.

e SS;: The total sum of squares of the whole data set (i.e., SS; =
SSy 4+ SSy)

Then the RMSSTD is given by

SS, \2

_ Zf:l Zmeci Z;'l:l(lij _ Nij)2 1/2
B d(n — k)

(5.30)

9

where ;5 is the 4t component of p; which is the mean of points in Cj,
1.€.,

1
= D
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At any hierarchical step, in order to form a new cluster through the
merging process, the SPR index is defined as the difference between the
pooled S5, of the new cluster and the sum of pooled S5,’s of clusters linked
for obtaining a new cluster (loss of homogeneity), divided by the S'S; for the
whole data set. Therefore, SPR measures the loss of homogeneity after
merging the two clusters at a given step in the HC algorithm. If the SPR
value is zero (i.e., the loss of homogeneity equal zero) then the new cluster
obtained through the merging process is from two perfectly homogeneous
clusters. While, if the SPR value rises then the new cluster is obtained
through merging two heterogeneous clusters.

The RS index of the new cluster obtained through the merging process
is the ratio of S5y to SS;. Therefore, this index is used to measure the
degree of difference between clusters (i.e., (dis)similarity measure). If the
value of RS is close to zero, that indicates no difference between clusters or
a non-significant difference. On the other hand, when RS value is close to
1, there is an indication of a significant difference between clusters. The RS
index is given by

_8S,
RS = 35,
88— 5SSy
- SS, (5.31)

d _ k d
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> i Zj=1(37ij — ;)

Finally, the distance between two clusters CD, is an index to measure
the (dis)similarity between two clusters that are merged at a given step in
the HC algorithm. Therefore, this index depends on the linkage metric that
is used to measure the distance (i.e., SLM, ALM, CLM). Using the above
four indices, the number of clusters in HC algorithms can be determined.

Cluster validity indices for HPC

The most commonly used validity indices in the HPC algorithms (i.e., K-
means algorithm) are:

e Dunn’s Index (DI): The main aim of this index is to reach the op-
timal number of clusters, which is characterized by the most compact
and well-separated clusters (i.e., maximizing inter-cluster distances
and minimizing intra-cluster distances) [272]. The Dunn’s index is
defined as

DI:min{ min ( G, Gy) )} (5.32)

1<i<e | 1<j<e,j#i \ maxi<p<e A(Ch)
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where d(C;,Cj) = mingec, yec; d(z,y) defines the distance between
clusters C; and Cj (inter-cluster distance); A(C}) represents the diam-
eter (diam) of cluster Cj (intra-cluster distance), where diam(Cy) =
max, yec, d(x,y), and c is the number of clusters. By this index, the
number of clusters that maximizes DI is taken as the optimal number
of clusters.

e Davies-Bouldin Index (DBI): It is the average similarity between
each cluster and its most similar one [273]. The DBI is defined as

c {A(Ci) +A(C)) } (5.33)

1

DBI = -

c ; 13%%# d(C;, Cj)
where 7,5 are indices of clusters which come from the same partitioning,
d(C;,Cy), A(C;), A(Cj) and ¢ are defined as the DI index. Contrary
to the DI index, DBI must be minimized to derive the optimal number
of clusters.

Cluster validity indices for FPC

There are two categories of CVlIs for the FPC algorithms. The first category
only uses the membership values, u;;, from the membership matrix (U). On
the other hand, the second category uses both the original dataset and the
membership values, therefore, geometrical properties of the original data are
taken into account besides the fuzzy degrees of membership.

Validity indices involving only the membership values
Commonly used CVIs in this category are the partition coefficient index
(PCI) and partition entropy index (PEI) proposed by Bezdek [274]:

e The partition coefficient index (PCI): It evaluates the compact-
ness by measuring the amount of overlap between clusters. The PCI
is defined as

c n 2
PCI = PCI|p . = 2zt 2= Lk (5.34)

n

where ¢ and n are the number of clusters and data set respectively,
and u;y, is the membership degree of data point x; in the fuzzy cluster
¢i- The PCI takes values in the range 1/¢ < PCI < 1. Therefore,
the optimal number of clusters (c¢) is achieved when the PCI value is
maximized. Moreover, a high PCI value indicates a good compactness
of a cluster.



CHAPTER 5. CLUSTERING TIME SERIES 99

e The partition entropy index (PEI): Bezdek proposed the PEI
based upon the logarithmic form of the PCI; therefore, the PEI is
defined as

c n

1
PEI = PEI|y)c=—— DD g log, (ui k), (5.35)
=1 k=1

where a € (1, 00) is the base of the logarithm, w;;, log, u;; = 0 whenever
u;x, = 0. The PEI takes values in the range 0 < PE < log,(c), where
¢ is the number of clusters. Contrary to the PCI, the optimal number
of clusters c is achieved when the PEI value is minimized.

There are many drawbacks of this category of CVIs such as devoiding of
connection to the geometrical properties of the data set and the monotonic
increasing tendency when increasing the number of clusters. Besides, the
data set is difficulty to handle when there is overlapping between clusters.

Validity indices involving the membership values and the orig-
inal data set

In this category, the CVIs take the geometrical properties (i.e., the struc-
ture) of the original data into account besides the membership values in
order to avoid the disadvantages of the first category. Common CVIs in this
category are:

e The Xie-Beni index (XBI): Xie and Beni proposed XBI as an
index of fuzzy partitions. It consists in the ratio of total compactness
(C) to the separation (S) of the fuzzy partition (i.e., ratio of the total
variation of the partition and the centroids (U, V') and the separation
of the centroids) and it is defined as

C C N, || ak— v |
xpr= G = izt 2 v | 2 - I, (5.36)
S n(mingz; || vi —v; |?)

Therefore, the optimal number of clusters ¢ is obtained by finding the
fuzzy partition with the lowest XBI [275].

e Compose Within and Between Scattering index (CWBI): It
was proposed by Rezaee et al. [276], as an index of fuzzy c-partitions
in order to assess the average compactness and separation of fuzzy
partitions and reach the optimal number of clusters (¢). The CWBI
is defined as

CW BI = aScat(c) + Dis(c), (5.37)
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where « is a weighting factor to counterbalance both terms in an ap-
propriate manner which equals a distance functional Dis(cpax), where
Cmax Tepresents the maximum number of input clusters; and Scat(c)
indicates the average scatter (variation) for ¢ clusters (i.e., measures
the compactness of the clustering), which is defined as

e iz o) |
[E{C.ON .

where || z ||= (z7.2)"/?; 6(X) denotes the variance of data (pattern)
set, which is defined as

Scat(c) =

(5.38)

1 n B n o
—ka—x x:kﬂ; Vo, € X,

3

while, o(v;) denotes the fuzzy variation of cluster ¢, which is defined
as

1 n
vi) =~ > wik(wn
k=1

Therefore, the smaller the value of Scat(c), the better the compactness
of the clustering. On the other hand, the distance function Dis(c)
measures the total scattering separation between clusters, which is
defined as

-1

) D N C C
Dis(c)= == (D lvi—wll] . (5.39)
j=1

min i—1
where Dpax = max{|| v; — v ||}, Dmin = min{|| v; —v; ||}, 4, j €
{2,3,...,c}. The smaller the value of Dis(c), the better the separation
of clusters. Therefore, the optimal number of clusters ¢ is obtained by
finding the fuzzy partition with the lowest value of the CWBI.

5.5 Clustering and local modeling

5.5.1 Why local modeling?

Systems in biochemical and chemical engineering are characterized by noisy
data and significant complexity, uncertainty and nonlinearity [277], which
makes modeling a hard task. One solution to deal with this problem is
to divide a complex system into simpler subsystems that can be analyzed
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individually. Then a specific model for each subsystem can be identified to
approximate the complex system locally: the so-called local models. Their
combination by smooth interpolation yields to the complete global model.

There are several advantages of the local modeling approach, such as:

1. The possibility of getting several local models with a simpler structure
instead of a single complex model of the system, which may be benefi-
cial for enhancing the interpretability of the model [278] and dynamic
changes, and also the model accuracy.

2. The possibility of getting similar regions/patterns if there are several
local models and characterize them in search of similar dynamics and
similar characteristics. Therefore, the system response could be better
understood and explained with this approach.

There are many studies in which the local modeling has been successfully
applied for the modeling of complex systems. In [279], the local approxi-
mation approach was used to predict the future behavior of a chaotic time
series throughout state space. Despite the chaotic system (e.g., chaotic
time series) can show complex external behavior, local models have demon-
strated an accurate approximation of chaotic dynamical systems. As well,
local linear models have been used in many studies on time series prediction
problems and often exhibited more accurate predictions than global models
[280, 281]. In [282], local linear models based on an unsupervised neural
network algorithm, Kohonen self-organizing feature mapping (SOFM) have
been successfully used for modeling a non-linear time series (chaotic system).

In [283], local models have been employed with a nonlinear MPC con-
troller for a simulation study of a batch fermentation process. The local
models have been constructed to be valid during different parts of a batch
cycle. These models have proven that they can represent the whole batch cy-
cle in a simpler way than the global model. In [284], local models have been
used as local learning algorithms instead of training a complex system with
all data samples. These models have demonstrated their ability to improve
the performance of an optical character recognition problem in a simpler way
than the complex system. In [285], extended radial basis function (RBF)
networks have been used where each local model is represented as a linear
function of the input. This approach has been shown high success in control
problems. In addition, local models based on FPC algorithms have been
successfully applied in many studies in control problems [286, 287].

The multiple local dynamic models have been applied in calibration al-
gorithms for CGM systems in T1D for improving the description of the
complexity of the plasma glucose to interstitial glucose dynamics. This ap-
proach has demonstrated its efficiency in accuracy improvement of plasma
glucose estimations [288].
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5.5.2 Local modeling techniques

The main goal of local modeling is, firstly, to find a set of ¢ local models
in order to reduce the complexity of the system, and secondly, to combine
these models by smooth interpolation into a complete global model that
represents the output of the system [289]. As a result, each local model is
simpler than the global model and can be analyzed and interpreted individ-
ually. Each local model will be representative of some regions of the input
space with similar characteristics. The validity region of each local model
can be defined by a weighting factor in the range [0, 1] that indicates the
degree of the validity of each local model [290].

Thus, key concepts in local modeling are partition and interpolation
[291]. The greater the number of local models chosen, the easier it will
be for each of them. However, this property faces the so-called “curse of
dimensionality”. Regarding the interpolation, a smooth transition from one
local model to another may be needed as the system moves in its operating
space. Unexpected transitions between local models may give some hints on
the unkown underlying dynamics of a system. It could be used, for example,
for interpreting specific phenomena in some applications.

Partitioning of the modeling problem

There are several techniques for the identification of the local models of the
system such as:

1. The gain scheduling control or local model network (LMN) tech-
nique. The idea for using this approach is to find multiple local models
for the whole operating range of the controlled process. Then, these
models are smoothly combined by using the validity function to pro-
vide a global model of the system [292].

2. Fuzzy systems techniques that have proven to be a significant tool
for modeling complex systems. There are many examples of fuzzy
systems like rule-based fuzzy systems [293] and fuzzy linear regression
models [294]. For example, in rule-based fuzzy systems, a system can
be defined as a combination of “If~Then” rules with fuzzy relation or
fuzzy predicates. These fuzzy rules can be written in the form:

If antecedent proposition then consequent proposition,

where the antecedent is always a fuzzy proposition and composed of
linguistic variables. Depending on the structure of the consequent,
there are three main fuzzy models [295]:
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e Linguistic fuzzy model [293, 296]: both the antecedent and the
consequent are fuzzy propositions.

o Takagi-Sugeno fuzzy model (TS) [297, 298]: the antecedent is
a fuzzy proposition; the consequent is a crisp function (local
model).

o Fuzzy relational model [299]: one specific antecedent proposi-
tion to be correlated with many different consequent propositions
through a fuzzy relation.

3. Clustering techniques, as introduced earlier in this chapter, are
also a common technique for extracting local models from a complex
dataset as shown in Fig. 5.6. The output of the clustering techniques
to the systems modeling are distinct clusters, each cluster represents
a local model [300]. Therefore, similar data points/patterns are rep-
resented by the same local model. Thus, the final global model of the
whole dataset could be modeled by integrated all the local models.
The use of clustering has many advantages versus the other possible
techniques for local modeling such as:

e Clustering techniques find automatically clusters of similar be-
havior; therefore, it can be easier for interpreting the resulting
models.

e The automatic detection of similar clusters/groups by different
clustering techniques makes the final global model consists of the
best local model that adjusts the proposed structure.

e Clustering techniques are more flexible offering many possibilities
to define similarity measures according to the specific application.

Local models interpolation

Likewise, there are several techniques for local models interpolation. Besides
clustering, that is a technique devoted to partition, most of the local models
partitioning techniques have their own tools to ease the process from the
partitioning step to models integration. Of course, a different technique can
be used for partitioning and for integration, but most authors use the same
technique in both steps. Therefore, the two mainly used in literature are:

1. Once a set of models is defined by gain scheduling or local model
network technique (one for each predefined operating point), these
models can be smoothly combined by using a validity function whose
values are guided through a scheduling variable to provide a global
model of the system [291].
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Figure 5.6: Diagram of global model versus local models with clustering technique.

2. A fuzzy inference algorithm is needed to compute an output value
given an input value when fuzzy models are used. In the case of fuzzy
relational models models, fuzzy relational calculus (relational compo-
sition) can be used [301]. Fuzzy linguistic models can be rewritten as
fuzzy relational models or use the Max-Min Mamdani inference [296].
The output of a fuzzy model is a fuzzy value, but in many applications
a crisp output is desired and a defuzzification method must be used.
For example, Mamdani inference scheme often use center of grav-
ity defuzzification, whose extension when singletons are used in the
consequents can be applied as inference mechanism to Takagi-Sugeno
fuzzy models [302].

Both approaches are very similar if the ¢ local models available in LMN
and the consequents of the ¢ rules in TS have the same form LM; (for
example, any regression model), resulting in an integrated global model
GM:

C
GM = pi- LM;, (5.40)
i=1

where the combination of the sum and g can represent the models combi-
nation and the validity function in gain scheduling, or the inference process
in fuzzy models, respectively. The use of clustering in the partition step
gives some advantages, because the p needed for integration in (5.40) can
be directly related to the fuzzy membership functions obtained for each clus-
ter in the clustering process. Therefore, the models can smoothly combined
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by using the fuzzy memberships as validity or weighting functions to provide
a global model [303].

5.6 Clustering applications in type 1 diabetes

Machine learning is representing an important branch of artificial intelligence
and has been widely applied in T1D in order to identify glycemic patterns
and understand the input data so that it can make decisions and predictions
based on it. Nowadays, both types of machine learning algorithms (i.e.,
supervised and unsupervised learning) are used more than ever before, for
automatic analysis of high dimensional of the diabetic dataset.

Clustering is representing a common form of unsupervised learning as
stated before to discover the hidden structure of data and has been applied in
many studies in T1D. Clustering techniques were applied in [304] to identify
different BG behavior profiles of 10 T1D patients with different scenarios:
days without exercise, days with exercise without corrective actions, and
days with exercise with corrective actions (snacks before and after exercise
and basal insulin reduction). The normalized compression distance (NCD)
[305] was used as a metric of the similarity measure. The authors were able
to identify different BG behaviors on different days for a same patient, with
potential applications to better management of intra-patient variability for
an adequate BG control.

Clustering technique was also applied in [306] as a part of a clinical deci-
sion support system (CDSS), which combines a classifier of different glycemic
profiles with a predictor of BG levels. The clustering technique was used
for analyzing the data and building a classifier to identify different glycemic
profiles automatically. Therefore, the hybrid method in this study was based
on the use of a classifier together with search-based-method (i.e., grammati-
cal evolution method), to identify glycemic profiles in the first step and then
predicting glucose levels for each profile (i.e., local prediction). The profiles
were simulated through the UVA /Padova T1D simulator [168] yielding to
time series from historical data (CGM measurements, CSII, and CHO in-
take) of 20 T1D virtual patients. Also, NCD was used as a metric of the
similarity measure in the clustering algorithm. Although this approach was
not working in real-time (online) in this study, however, the feasibility of
identifying different BG profiles and generating personalize BG prediction
models through CDSS was demonstrated through simulated data. The ob-
tained results were reported as the mean of the performance metric (e.g.,
MSE) of the 20 profiled prediction models, without having to identify a
global model for the multiple prediction models due to good classification
results (99.7% classification success with the studied dataset). An average
MSE of 18.21, 22.20, 22.82 and 23.24 mg/dL was reported for 60-, 120-, 150-
and 180-min PH, respectively.
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In [307], cluster analysis was applied to identify different profiles of di-
abetes self-management. A sample of 156 youth (10-16 years) with T1D
and their maternal and paternal caregivers was used in this study. They
were administered a modified version of the diabetes self-management pro-
file (DSMP), which is a widely used, structured interview in order to assess
diabetes self-management behaviors. Cluster analysis was performed inde-
pendently by SPSS two-step cluster analysis [308] based on youth, maternal,
and paternal reports in order to classify subjects based on their profiles of
scores in five diabetes self-management areas (i.e., insulin administration,
meal planning, exercise, BG testing, and self-care adjustments). This study
demonstrated the feasibility of using a multi-component assessment for the
development of an experimentally derived classification of self-management
patterns. As well, an extended study on the identification of patterns of dia-
betes self-management in T1D was conducted in [309], where a sample of 239
youth (9-11 years) with T1D and their parent’s caregivers was used. HbAlc
was used as the indicator of glycemic control in this study. Two-step clus-
ter analysis was performed to classify different patterns of self-management.
This study successfully demonstrated that the different patterns are related
to glycemic control (HbAlc) in youth with T1D.

Clustering was also applied in Compositional Data Analysis (CoDA)
in order to identify groups of similar compositions, which were formed from
the discretization of daily glucose profiles into time spent in different glucose
ranges based on the different BG levels [310]. Data for 6 T1D patients for
eight weeks were expressed in coordinates, where CGM and CSII data were
used. Then the k-means algorithm was applied to the coordinates in order
to classify different daily profiles. This approach successfully demonstrated
the ability to classify the daily profiles/patterns into different groups that
reflect the behavior of the patient.

Classification technique is representing a common form of unsupervised
learning technique besides the regression and also has used recently in T1D
[182]. Classification technique was applied in [311] to classify and predict the
future postprandial glycemic status to adjust the meal insulin bolus dose.
In this study, the extreme gradient-boosted tree (XGB) algorithm [312] was
used in order to classify the expected postprandial glycemic status (i.e., hy-
perglycemia, euglycemia, or hypoglycemia). The algorithm was performed
based on the information of CSII, pre-prandial CGM measurements, and
CHO intake estimates for 100 virtual patients of T1D. The proposed al-
gorithm has shown good accuracy at classifying the postprandial glycemic
status. As well, the proposed algorithm has demonstrated its ability to im-
prove glycemic control and can be used for different purposes (e.g., glucose
alarms, decision support on insulin therapy).

Through previous studies, it is clear that the use of machine learning in
the diabetes field, especially in T1D, continuous to increase with time due to
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the increasing data size and its complexity. The use of clustering technique
in T1D has been demonstrated its ability to analyze and classify different
BG profiles/patterns, especially when using the simulation data. Further-
more, clustering algorithms play an effective and vital role in simplifying
complex systems. However, clustering a real/clinical diabetic dataset is still
a major challenge. Where this kind of data is characterized by high variabil-
ity and different glycemic responses, especially during exercises and stress.
Moreover, diabetic dataset under free-living conditions may have missing
data due to sensor or technical errors. In addition, choosing an appropriate
distance metric for measuring the similarity between different data points is
also a main challenge in the clustering algorithms.

In this thesis, clustering techniques will be used to analyze, classify, and
cluster different BG patterns of specific periods such as postprandial and
nocturnal periods of T1D individuals in the clinical and simulated dataset.
Clustering methods will be used to identify and cluster different glycemic
patterns as local behaviors for reducing the complexity of diabetes time-
series data. Local behaviors will then be used in modeling through seasonal
local models corresponding to each cluster. Where the similarity behaviors
represent the cornerstone of using a concept of seasonality in time series
dataset. Finally, by integrating the local models through an appropriate
method, the global model will be obtained to represent the whole data.
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Chapter 6

Seasonality and glucose
prediction

This chapter introduces the study of seasonal phenomena in CGM time se-
ries to build seasonal models for glucose prediction. The starting hypothesis
is that, under some similarity assumptions, seasonality properties can stem
from preprocessed CGM time series, that can be exploited to improve pre-
diction of key responses like postprandial response. The chapter starts in
Section 6.1 with the main rationale of this study. Section 6.2 describes the
experimental data and methodology used. Section 6.3 displays the results of
our study comparing seasonal and nonseasonal models in order to analyze
the effect of seasonality in the model prediction accuracy. Then the effect
of using exogenous inputs in both models is addressed. Section 6.4 displays
the conclusions and margins for further improvement.

6.1 Rationale

A CGM time series includes many dynamic phenomena, being one of the
challenges in their analysis to detect patterns that dominate the series behav-
ior. These patterns may vary over time, because of the glycemic variability,
which is one of the most challenging issues in the BG control of patients with
T1D, especially in the postprandial period and during exercise. Several fac-
tors can affect BG concentrations, such as the meal composition, the type,
duration and intensity of exercise, the amount of insulin infusion, changes in
insulin sensitivity (e.g., circadian hormone secretions, illness) and physiolog-
ical stress, among others. The glucose response is the result of the complex
interaction between all these variables. Therefore, it is rational to explicitly
take into account possible changes that could affect the CGM behavior, and
therefore, the glucose prediction.

As we have mentioned in Chapter 3, Section 3.3, linear time series mod-
els or linear EDMSs, also known as data-driven non-parametric models, have
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been widely used in the context of glucose prediction, especially in T1D.
Despite these models cannot explain the underlying physiology (i.e., they
cannot be used to demonstrate the mechanism of glucose-insulin metabolism
in detail), they are, however, more attractive than physiological models in
the sense that they are simple to implement, computationally cheap, and
can provide good predictions about future glucose behavior. EDMs are also
widely used in other domains such as business and economic time series. A
particular characteristic in these domains is seasonality, that is, the exis-
tence of regular patterns of changes and fluctuations that repeat periodically
[313].

This chapter explores the extension of the concept of seasonality for
glucose prediction with a proof-of-concept study. The main rationale is that
preprocessing of CGM time series (and available additional information)
may translate daily events into seasonal phenomena. For instance, glucose
concentration tends to peak and then decline in a characteristic way after a
meal intake in a particular scenario. In this case, a new preprocessed family
of time series can be built from the original CGM data by concatenating
postprandial periods (PPs) of fixed length where similarity of behaviors
is expected, according to some metrics, which would theoretically produce
seasonal time series as shown in Fig. 6.1. This allows for the application
of seasonal models that exploit this similarity for more accurate predictions
and longer prediction horizons.

wmoam o om ow omom -— ——
s bt

CGM time series Postprandial periods Distance measures SARIMA models

Figure 6.1: Diagram of seasonal CGM time series models.

6.2 Research Design and Methods

6.2.1 Clinical dataset
Study design and subjects

A subset of the data from the CLOSEDLOOP4MEAL study evaluating a
new closed-loop system was used for this study. Two closed-loop studies
were considered. The protocol was approved by the Ethics Committees of
the Clinic University Hospital of Valencia [7]. The study was designed as
an in-hospital approach fulfilling the regulatory conditions applied in Spain
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ID Duration of Diabetes BMI Gender | HbAlc
(year) (kg/m?) (%)
RAH 38.3 25.8 Female 8.2
MEBR 17.8 25.7 Female 6.9
LFB 13.5 27.7 Female 8.0
NAC 24 30.2 Female 8.1
CGG 17 26.0 Female 8.0
LBG 43 28.7 Female 8.4
MLL 20 31.8 Male 8.3
ACR 21 23.6 Female 7.1
JLS 21 29.6 Female 8.2
JMC 16 26.9 Male 8.2
Average 23.16 27.6 8 Female 7.94

2 Male

Table 6.1: Demographic information for subjects.

to this sort of projects before moving to at-home settings. Subjects were
eligible to participate if they were between 18 and 60 years of age, had a
diagnosis of T1D for at least 1 year, HbAlc between 6.0% and 8.5%, and
were on CSII for at least 6 months. Hypoglycemia unawareness was ruled
out using a validated questionnaire.

Overall, 10 subjects with T1D completed the clinical closed-loop (CL)
study. Table 6.1 shows the characteristics of the participants of the CL stud-
ies. Each subject underwent an in-hospital 8-h standardized mixed meal
test (60 g CHO) on two occasions of CL (CL1 and CL2). After a meal
announcement, an augmented bolus was given, followed by manual adjust-
ments of the basal rate every 15 min according to a CL controller. Patients
were instructed to wear a CGM device and follow a structured SMBG pro-
tocol during a 6-day period before the first meal test. Data from CGM
and SMBG were used to obtain individual estimated insulin sensitivity and
a pharmacokinetic/pharmacodynamic model resulting in the calculation of
the following parameters: insulin-to-CHO ratio, sensitivity factor, basal in-
sulin needs, and insulin-on-board (IOB).

Study devices

Insulin infusion was carried out with the Paradigm Veo® insulin pump
(Medtronic MiniMed, Northridge, CA) and CGM using Enlite-2 sensors®
(Medtronic MiniMed, Northridge, CA). Two CGM devices were inserted at
least 24 h before the meal tests, to improve performance and avoid miss-
ing data and problems related to sensor drift. For safety and regulatory
reasons, two sensors were used in this phase of development to ensure the
algorithm to be fed with the secondary CGM in case of sensor failure. In all
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subjects, calibration of CGM was performed using the Contour® Next Link
(Ascensia Diabetes Care Holdings AG, Basel, Switzerland, formerly Bayer).
Glucose concentrations were also measured every 15 min with a reference
method YSI 2300 Stat Plus Glucose Analyzer (YSI 2300; YSI Incorporated
Life Sciences, Yellow Springs, OH).

The CL system was based on a novel sliding mode reference conditioning
(SMRC) glucose controller built in a PC. Glucose values from the two CGM
devices were introduced manually every 15 min into the controller interface.
Manual operation greatly simplified regulatory approval of the system in
the first submission of this type of studies in Spain. The system defined a
primary and secondary CGM device automatically, based on an accuracy
analysis (absolute relative difference, ARD, from reference) before the start
of the CL controller. Only data from the primary CGM were used, except
in case of malfunction, resulting in an automatic switch to the secondary
CGM. Malfunction was defined as an ARD between the CGM reading and
the plasma glucose (PG) reference greater than 40% at one time point or
ARD greater than 30% in two consecutive periods. The insulin infusion
rate for the next 15-min time interval was calculated by the controller and
manually set by the attending physician/nurse.

The glucose controller used consists of a feed-forward action plus two
control loops [314, 7]:

(a) The feed-forward action is an augmented bolus calculated based on meal
announcement.

(b) The inner control loop is a PID-type controller designed to drive the
measured glucose to a target value. It is tuned from the insulin pump
settings.

(c) The outer control loop is based on SMRC and modulates the glucose
target value on the estimated IOB, minimizing the impact of controller
overcorrection resulting in late hypoglycemia. When the estimated IOB
is beyond prespecified limits, a high-frequency discontinuous signal is
generated and filtered inducing smooth changes in the target glucose
value so that IOB constraints are not violated. Thus, this outer loop
acts as a safety supervisory loop. The IOB estimation is calculated
using a previous population pharmacokinetic model [314]. Finally, the
IOB limit is estimated individually based on 1-week CGM data and
previous insulin pump settings. Compared to insulin feedback (IF), also
used in combination to PID controllers, SMRC is expected to induce an
early pump shut-off due to the augmented bolus administration with a
potential benefit in PP control, compared to a later effect by IF driven
by the estimated plasma insulin concentration.
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Mixed meal tests

Before the meal test, fasting subjects were admitted to the clinical research
unit at 08:00 AM. In a sitting position, two venous lines were prepared,
one for arterialized venous blood sampling and the other for insulin/glucose
infusion, if required. To ensure comparable metabolic conditions between
studies, where appropriate, subjects received an intravenous infusion of reg-
ular human insulin in a feedback manner, or glucose, to maintain PG at
90-100 mg/dL until the beginning of the studies. At 12:00 h (t=0), a stan-
dard mixed meal (530 Kcal, 60 g CHO, 45.3% CHO, 24.2% protein, 30.5%
fat) was consumed in 15-20 min. At the same time, insulin was administered
following the randomization protocol (CL), and PG was monitored for the
ensuing 8 h until the end of study at 20:00 h (time 480 min). If PG fell
below 70 mg/dL during two consecutive 15-min periods, oral glucose was
administered in fixed amounts of 15 g until recovery from hypoglycemia.
Despite meal size was controlled in this in-patient study, this didn’t pre-
vent the presence of high intra- and inter-individual variability. These were
measured by the coefficient of variance of the area under the curve for the
8-hour duration of the study (CV — AUCsy,), which was computed with the
trapezoidal Tule.

6.2.2 Data pre-processing

The above data set contained 20 8-h postprandial responses which were
concatenated to compose the CGM time series, as illustrated in Fig. 6.2.
This organization of the data can be carried out as long as the meal event is
known, which was assumed here. This is the case in current hybrid artificial
pancreas systems. As well, a fixed length of postprandial responses was
considered, which can be considered an ideal case. This limitation will be
addressed in Chapter 8.

The resulting CGM time series had a mean of 136.1 mg/dL, with a
standard deviation of 48.48 mg/dL. Despite the same meal was provided,
data exhibited high variability with postprandial peaks ranging from 304
mg/dL (P91) to 125 mg/dL (P42) and the incidence of hypoglycemia in
some patients (P11, P51, P52, P71, P101), two of them moderate hypo-
glycemia (P11, P101), according to CGM values. They were non-normally
distributed. Inter-individual variability measured by CV — AUCg, was
21.52%, whereas intra-individual variability was 9.17%. However, the latter
spanned from 3.22% (patient 6) to 18.67% (patient 9), i.e., the worst-case
intra-patient variability is close to the inter-patient variability. Since only
two studies per patient were available, intra-patient variability might be
underestimated.
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Figure 6.2: CGM time series resulting from the concatenation of twenty 8-h PPs
for a same 60g CHO meal. The notation P;; is used to name the different periods,
where i is the number of the patient, i € {1,...,10}, and j is the number of the
study per patient, j € {1,2}. Sampling period is 15 minutes, yielding 33 samples
per PP.

Euclidean distance between each pair of PPs was also computed to an-
alyze the similarity of time series (see Fig. 6.3), providing similar conclu-
sions. Patient 9 is the most dissimilar among studies (green box in P91-P92),
only exceeded by comparatively few yellow-red boxes outside the diagonal
(between-patient comparisons). P81, P82, and P91 were the most dissimilar
with the rest of periods (higher incidence of yellow-red boxes). Total basal
insulin infusion in the 8-h period ranged from 5.21U (P31) to 16.40U (P71).
An extended bolus computed from the patient’s insulin-to-CHO ratio and
open-loop basal infusion rate was also administered at meal time.

6.2.3 SARIMA and SARIMAX models

As mentioned previously, in an empirical dynamic model, an observation
at time ¢ is expressed as a linear combination of observations at times ¢ —
1,t —2,...,t — p (previous p measurements) by the AR component, and
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Figure 6.3: Similarity among PPs in the CGM time series as measured by the ED
between paired periods. Data is shown according to the color scale in the right.
White bozes in the diagonal indicate periods corresponding to a same patient.

as a linear combination of stochastic errors, also called shocks, at times
t,t—1,t—2,...,t—q by the MA component. In a SARIMA model, SAR and
SMA terms are added so that an observation at time ¢ depends on previous
observations and stochastic errors at times with lags that are multiples of
the seasonality period s. In the context of postprandial glucose prediction,
this means that the glucose prediction will depend not only on previous
measurements for that PP, but also on previous PPs in the time series.
Therefore, given a CGM time series {G¢|t = 1,2,...,k}, a SARIMA model
(4.39) can be expressed as

VOPviG, = c+uy,
dp(z7 PPz 5wy = Oy(z71)Oq(2%)ey,

where Gy is the glucose concentration at time ¢, wy is the disturbance series.

(6.1)

The exogenous signals that related well with a CGM time series data
were used in a SARIMA model to improve the fit and prediction performance
of the chosen model. Moreover, for capturing the dynamic characteristics
of CGM behavior. In many statistical packages such as R and Eviews,
exogenous variables are considered as explanatory variables into a linear
regression model with a stochastic error process of certain structure. In this
case, the SARIMAX model (4.41) can be expressed as
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VPVIG = c+n (2B 4wy,
Gp(z 1 )Pp(2 ") wy = Og(z71)Oq(2")er.

The Granger causality test was used to test the null hypothesis that the
endogenous variable (CGM) does not Granger-cause the dependent variables
(exogenous signals) and vice-versa (e.g., the lagged CSII values do not ex-
plain the variation in CGM pattern and vice-versa, according to the Granger
causality test).

(6.2)

6.2.4 Identification procedure

Box-Jenkins methodology was used for model building and evaluation (Chap-
ter (4), Section (4.3)). A LOOCV procedure was considered dividing data
into training and test sets (Fig. 4.6). In order to avoid data from a same
patient to appear both in training and test, data from the test patient was
excluded from the training set. This resulted in 18 PPs for training and 1
for test/validation, since two CL studies per patient were available. PPs in
the training set were randomly ordered at each run according to a random
sequence generator (http://www.random.org). A stationarity analysis was
first carried out with the unit-root test (ADF test). The backward-difference
operator V was applied to the time series as many times as necessary (inte-
gration order d) to remove nonstationarity, if present. The ACF and PACF
were used to identify the orders of the AR and MA terms (p and g, respec-
tively), as well as identifying seasonality (seasonally differencing the time
series with the operator V if necessary). The MLE was used for parameter
estimation. As well, the AIC was used for model selection. In this study,
Eviews software, version 9.5, was used; in this case, the AIC is defined as

AIC(M) = %(—QL(M) + 2K (M), (6.3)

where L is the value of the log-likelihood, K is the number of free parameters
in the model M, and n is the number of observations. Remark the scaling
by 1/n.

For diagnostic checking, ACF and PACF plots for the residuals were
analyzed to test the existence of any significant spikes in the confidence
interval, the LBQ test was used for testing randomness at each distinct lag
and the JB test was used to test the normality of the residuals. Finally,

accuracy of the model forecasting was measured with the following metrics:
MAE, RMSE, and MAPE.


http://www.random.org
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Forecasting measures SARIMA ARIMA
MAE (mg/dL) 34.56 (19.35)* | 47.72 (24.43)
RMSE (mg/dL) 40.02 (21.62)* | 55.02 (26.93)

MAPE (%) 22.02 (9.41)* | 30.01 (13.05)

Table 6.2: Performance of SARIMA and ARIMA models by the mean and standard
deviation, in parentheses, of different forecasting measures. *P < 0.05 in all cases.

6.3 Results

6.3.1 Without exogenous variables

Both SARIMA and ARIMA models were identified for each run in the cross-
validation. Fig. 6.4 shows the forecasting accuracy metrics for a 5-h PH for
both cases. A high PH was initially chosen to challenge the model. SARIMA
outperformed ARIMA in all metrics as shown in Table 6.2. In the following,
the analysis will be restricted to MAPE since the three measures provided
the same information.

920

T
- SARIMA models
80—

ARIMA models

MAE RMSE MAPE
Forecasting measures

Figure 6.4: Mean and standard deviation of forecasting measures (MAE (mg/dL),
RMSE (md/dL), MAPE (%)) for the 20-fold cross-validation and a 5-h PH. *P <
0.05.

Fig. 6.5 shows the obtained MAPE as the PH increases from 30 min to 5
hours, consistently outperforming SARIMA. The identified model structure
differed slightly between runs, with AR and MA orders up to 4. No time
series differentiation was needed for both ARIMA and SARIMA models.
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Figure 6.5: Mean and standard deviation of MAPE(%) for increasing values of the
PH. *P < 0.05.

Seasonality with lag 33 (the size of the PP) was obtained in all cases, as
expected. SAR and SMA orders were up to 2.

The best performing run was Run 4, with validation data P22. In this
case, inspection of the ACF revealed data were stationary (the trend had
a non-significant P value of 0.0877) and seasonal at lag 33 with a signif-
icant P value of 0.0000. Seasonally differenced data were stationary with
significant P value of 0.0001, so it was not necessary to take any difference.
Model SARIMA(4,0,4)(1,0, 1)33 was the most appropriate model, with AIC
7.9566. Table 6.3 shows the estimated model parameters using maximum
likelihood estimation. All spikes in the residuals ACF were within the sig-
nificance limits (white noise) as shown in Fig. 6.6. Table 6.4 shows the LBQ
test for testing randomness at each distinct lag, also demonstrating that the
residuals have no remaining autocorrelations. The tests for residual nor-
mality showed that the residuals were approximately normal (see Fig. 6.6).
A MAPE of 6.73% was obtained for training data. A similar fitting was
obtained for ARIMA, with MAPE 7.05%. Fig. 6.7 shows the prediction
performance using validation data for a 5-h PH. A MAPE of 6.62% and a
RMSE of 10.28 mg/dL were obtained for SARIMA. For ARIMA, predic-
tion metrics were worse with MAPE 9.39% and RMSE 14.39 mg/dL, as it
becomes apparent in Fig. 6.7.
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Parameter Value SE t-Statistic | P value
c 134.1109 | 14.70842 | 9.117968 | 0.0000
D1 3.124690 | 0.008934 | 349.7433 | 0.0000
b2 -3.783549 | 0.015602 | -242.5068 | 0.0000
o3 2.044158 | 0.015166 | 134.7894 | 0.0000
ol -0.399508 | 0.008156 | -48.98071 | 0.0000
D33 0.912586 | 0.056899 | 16.03866 | 0.0000
01 -1.827147 | 0.307422 | -5.943459 | 0.0000
0 1.124422 | 0.347364 | 3.237018 | 0.0013
03 -0.177478 | 0.087565 | -2.026818 | 0.0431
04 0.086584 | 0.056154 | 1.541905 | 0.1236
O33 -0.826937 | 0.078243 | -10.56878 | 0.0000
o? 157.4450 | 53.98418 | 2.916503 | 0.0037
Table 6.3: Model parameters for model SARIMA(4,0,4)(1,0,1)33 in best-

performing Run 4, following notation in (6.1). o? is the estimate of the error
variance from the MLE.

Lag 12 24 36 48
Q-Stat | 2.8661 10.575 21.358 30.513
P-Value | 0.239 0.719 0.723 0.801

Table 6.4: Ljung-Box Q (LBQ) test for the training residuals of Run 4 Model.
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Figure 6.6: Residuals analysis for model SARIMA(4,0,4)(1,0,1)33 in best-
performing Run /.
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Figure 6.7: Forecasting of models ARIMA(4,0,4), SARIMA(4,0,4)(1,0,1)s3,
ARIMAX(4,0,4,2) and SARIMAX(4,0,4,2)(1,0,1)33 for Run 4 considering a 5-h
PH.

6.3.2 With exogenous variables

The effect of considering CSII as exogenous variable for performance im-
provement was investigated. Future insulin infusion information can be
available in applications such as MPC, during the optimization process.
This analysis was carried out only for Run 4 as the best performing case,
challenging further improvement. Insulin infusion signal contained bolus
and basal infusion and was expressed in U per sampling period. Granger
causality test was applied to test the null hypothesis that CGM does not
“Granger cause” insulin infusion and vice-versa. The null hypothesis was
rejected with a significant P value of 0.0146. Therefore, inclusion of in-
sulin infusion into the model might improve performance. The order of the
exogenous polynomial was computed from the cross-correlation plot and
AIC, resulting in the model SARIMAX(4,0,4,2)(1,0,1)33 with AIC 7.9544.
Table 6.5 shows the estimated parameters for this model. The same proce-
dure was used to derive its non-seasonal counterpart resulting in the model
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Parameter Value SE t-Statistic | P value
c 131.3957 | 17.53808 | 7.492023 | 0.0000
o 1.059158 | 0.307175 | 3.448056 | 0.0006
N1 0.933659 | 0.376779 | 2.478004 | 0.0135
7o 0.223623 | 0.323739 | 0.678182 | 0.4979
o1 3.245163 | 0.006145 | 528.1297 | 0.0000
P2 -4.107178 | 0.007966 | -515.5566 | 0.0000
d3 2.356905 | 0.011389 | 206.9404 | 0.0000
D4 -0.50644 | 0.008237 | -61.48038 | 0.0000
P33 0.938280 | 0.042357 | 22.15150 | 0.0000
01 -2.004745 | 0.288557 | -6.947493 | 0.0000
0o 1.400848 | 0.376337 | 3.722324 | 0.0002
03 -0.275892 | 0.112957 | -2.442438 | 0.0149
04 0.043012 | 0.049410 | 0.870522 | 0.3844
Os3 -0.838930 | 0.066691 | -12.57943 | 0.0000
o? 154.4792 | 56.49393 | 2.734440 | 0.0064

Table 6.5: Model parameters for model SARIMAX(4,0,4)(1,0,1)33 in best-
performing Run 4, following notation in (6.2). o2 is the estimate of the error
variance from the MLE.

ARIMAX(4,0,4,2) with AIC 7.9952. In the forecasting period, a MAPE of
5.12% and a RMSE of 8.47 mg/dL were obtained for the SARIMAX model
for a 5-h PH, compared to 6.62% and 10.28 mg/dL for SARIMA, and 10.51%
and 16.17 mg/dL for ARIMAX. Differences among the behavior of the dif-
ferent models can be observed in Fig. 6.7. Finally, forecasting performance
as measured by MAPE and RMSE at different PHs is presented in Table
6.6. PHs of 30, 60, 120, 180, 240, and 300 minutes were considered.

6.4 Conclusions and margins for further improve-
ment

In this chapter, we investigated the concept of seasonality in CGM time
series for glucose prediction. Training data consisted in a collection of PPs
from different patients covering both early and late postprandial phases
(8 hours). Time between meals during the day is generally shorter. Noc-
turnal period was not represented by our data. However, PP has shown
to be much more challenging than nocturnal period for an AP. Both
CV — AUCgj, and ED (Fig. 6.3) showed large inter-individual variability and
a large range in intra-individual variability, with its worst-case represented
by inter-individual variability. Thus, the concatenated time series defines a
challenging scenario with a worst-case highly variable patient. Data variabil-
ity might be attenuated with the use of classification techniques, collecting
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similar enough postprandial responses into different datasets, with their cor-
responding prediction model.

A first-order seasonal AR and MA component was identified with sea-
sonality lag 33 in all SARIMA runs due to the concatenated nature of the
time series. In all runs, SARIMA outperformed ARIMA revealing a signif-
icant role of seasonality. 5-h PH average MAPE was reduced in 26.62%.
Considering individual runs, the improvement ranged from 6.3% (Run 7;
validation data P41) to 54.52% (Run 3; validation data P21). In the best
performing case, according to MAPE (Run 4), this reduction amounted to
29.45%. Prediction improvement by introducing seasonality also becomes
apparent from Fig. 6.7 The benefit of seasonality was consistent among dif-
ferent PHs, as illustrated in Fig. 6.5 and Table 6.6 for Run 4. Lower PHs
benefited more, with a MAPE reduction over 50% for PHs of 60 and 120
minutes, and over 40% for 180 min. In this case, MAPE was close to 6%
and RMSE below 10 mg/dL, doubling these values when seasonality was not
considered. In greater PHs benefit of seasonality is still observed, although
decreasing due to variability in the time series.

Consideration of CSII rate into the seasonal model further improved
performance for Run 4. Although analysis was limited to this case to re-
duce computational burden, remark it corresponds to the most challenging
situation for model improvement since SARIMA model for Run 4 has the
best prediction accuracy in the cross-validation study. SARIMAX improved
performance as compared to SARIMA with a 61.89% reduction in MAPE
(2.90% vs 7.61%) for 30-min PH to a 7.33% reduction at 2-h PH (5.86% vs
5.46%) and reductions over 20% for PHs over 180 min, as shown in Table
6.6. A RMSE below 10 mg/dL was obtained for all PHs. This means that
SARIMAX models might allow the increment of PHs in MPC-based AP
systems. Table 6.6 also shows that SARIMAX outperformed in all cases its
nonseasonal counterpart ARIMAX.

This is a proof-of-concept study and as such it has limitations. It is as-
sumed that mealtime is known, allowing for the construction of concatenated
time series with fixed-length PPs. However, to date, meal announcement is
a common component of AP systems and, otherwise, meal detection al-
gorithms are incorporated. Remark that although focus was put on PPs,
this approach can be applied to other fixed-length time series data subsets
representing characteristic scenarios where similarity is expected or learned
from classification techniques. Another limitation is the data used, which
did not correspond to a single patient, although inter-patient variability in
the data was representative of worst-case intra-patient variability defining
a challenging scenario. Collections of 18 PPs were used for model training
at each cross-validation run. Seasonal components of the identified models
were first or second order, which means that current meal depends, at most,
on the two previous similar meals, as well the glucose depends not only on
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current and previous measurements, but also on previous similar events, de-
pend on the SARIMA model structure. Thus, the length of the data used
is considered appropriate for this proof-of-concept study.

Despite the limitations of this study, seasonality has shown to be an im-
portant factor to improve model predictive power allowing for the significant
extension of PHs. Results reported in Section 6.3 allow us to conclude that
the SARIMA and SARIMAX models exhibit relatively higher forecasting ac-
curacy for larger PHs, giving results statistically comparable. The seasonal
models with exogenous inputs that relate well with the CGM measurements,
could help to improve the prediction accuracy and PH. Improvements of the
developed seasonal models would be achieved with longer experimental data
for model development, since the efficiency of the linear empirical dynamic
models is highly dependent on data used for the training set.

Positive results in this proof-of-concept encourage the research conducted
in the next two chapters, where the following open issues are addressed:

9

1. The classification of periods under scenarios yielding “similar” “enough”
glycemic responses to fully exploit the expected benefit of seasonal
models.

2. Adding more exogenous variables into the SARIMAX model allowing
to address prediction including exercise.

3. Getting rid of the limitation of fixed length time subseries to address
a real life scenario with variable length event-to-event data.



Chapter 7

Seasonal local models

This chapter introduces the study of classification of PPs under different
scenarios to yield similar enough glycemic responses to fully exploit the ex-
pected benefit of seasonal models. Different seasonal local models are then
identified for each group, whose predictions are integrated to yield a final
global BG prediction. The chapter starts in Section 7.1 with the main ratio-
nale of this study. Section 7.2 describes experimental data, materials, and
methodology used. Section 7.3 displays the results of our study regarding
clustering of different PPs, seasonal local modeling for each cluster, and lo-
cal models integration. Section 7.4 displays the conclusions and margins for
further improvement.

7.1 Rationale

An important task in T1D management is the prevention of hypo- and
hyperglycemia throughout the day and night, which requires high accuracy
BG predictions.

In Chapter 6, it was demonstrated that the use of seasonal time se-
ries models can lead to significant improvement in prediction accuracy and
PH. As well, we also demonstrated that CSII information might effectively
improve prediction performance. However, seasonal models like SARIMA
and SARIMAX require similar enough glycemic patterns in CGM histori-
cal data to obtain accurate models, which cannot be assumed in free-living

CGM data.

This chapter explores the possibility of preprocessing original CGM his-
torical data to obtain sets of similar glycemic profiles (clusters) useful for
SARIMA/SARIMAX model identification. As in Chapter 6, focus will be
put on PPs due to its impact in glycemic control. First of all, a time series
is built from experimental CGM data comprising meal and exercise events
by concatenating different PPs of fixed length. Similarity of PPs is not ex-
pected due to differences in meals and exercise sessions on different days
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and subjects. Therefore, a number of methods for clustering PPs are tested
to reach the needed PPs similarity for seasonal modeling. After clusters
gathering similar glucose responses are available, a SARIMAX local model
is built for each of them (considering insulin infusion rate and energy expen-
diture as exogenous variables). Finally, a global model for BG predictions
is obtained by integrating the local models.

7.2 Research Design and Methods

7.2.1 Details of procedures

Data from a clinical study conducted at University of Chicago was used.
Overall, 10 subjects with T1D completed 18 clinical CL experiments [11].
Table 7.1 shows the characteristics of the participants of the CL studies
through three different protocols. The study was explained well for each
subject, and informed consent was obtained accordingly the instructions in
the protocols. The subjects arrived at the Clinical Research Center (CRC)
of the University of Chicago at 07:00 AM on the first day of the experiment.
They wore their personal insulin pump, a CGM (Medtronic Guardian-Real
Time Continuous Glucose Monitor [Northridge, CA], or Dexcom G4 Plat-
inum [San Diego, CAJ) and a BodyMedia SenseWear Pro3 [Pittsburgh, PA]
armband reporting physical activity via energy expenditure (EE) and gal-
vanic skin response (GSR). CGM interstitial glucose values and physical
activity signals were sent to the AP every 5 minutes. All experiments were
performed over 60 hours. Each individual used their personal glucometer for
calibration of the CGM and for BG testing during physical activity. Sub-
jects calibrated the CGM at least twice each day according to manufacturer
instructions. The BG levels were obtained every 30 minutes for 60 hours, us-
ing a YSI (Yellow Spring Instruments) 2300 STAT PLUS glucose analyzer.
The YSI or SMBG measurements were collected only for safety purposes
and were not used in any parts of the algorithm for insulin dosing.

7.2.2 Meal protocol

Meals were provided to the subjects from the CRC Metabolic Kitchen over
the 60-hour period. The study diet consisted of a one-day menu of three
meals and one evening snack. Identical meals were provided each day of
the study. Breakfast provided 25% of calories, lunch 30%, dinner 35% and
evening snack 10%. The macronutrient composition of the diet was 40-
50% of calories from CHO, 20-30% from protein, and 30-35% from fat.
Food planning and analysis were completed using Food Processor SQL from
ESHA Research (Elizabeth Stewart Hands and Associates, Salem, OR). All
meals were prepared under supervision by a registered dietitian nutritionist
in the University of Chicago CRC Metabolic Kitchen. Breakfast, lunch,
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ID Age | Duration of Diabetes BMI Gender Race/Ethnicity
(year) (months) (kg/m?)

S1 21 136 23.68 Male White/non-Hispanic
S2 23 70 18.89 Male White/non-Hispanic
S3 26 194 26.28 Male White /non-Hispanic
S4 19 195 23.55 Female White/non-Hispanic
S5 24 206 23.39 Male African American
S6 24 124 25.5 Male White/non-Hispanic
S7 33 358 38.62 Female White /non-Hispanic
S8 22 129 23.75 Male White/non-Hispanic
S9 34 381 24.78 Male White/non-Hispanic

S10 25 209 25.48 Female White /non-Hispanic

Average | 25.1 200.2 25.39 7 Male | 9 White/non-Hispanic
3 Female 1 African American

Table 7.1: Demographic information for subjects.

dinner meals and evening snacks occurred at the same time each day, with
a variety of snacks based on individual food preferences.

7.2.3 Exercise protocol

Individuals completed two bouts of exercise per day, for three consecutive
days as shown in Fig. 7.1. Each bout of exercise was scheduled six hours
apart. Days 1 and 3 consisted of aerobic, moderate continuous training
(MCT), and resistance training (RT). MCT was specified with the heart
rate reserve method (HHR = [H R0 — HRyest] x % intensity desired +
HR,est) and consisted of a warm up period of 5 minutes, then 20 minutes
of 60-80% HRR and finally a 5 minute cool down. RT was leaded by rating
of perceived exertion (RPE) of 11-15 (6-20 point Borg Scale), with subjects
performing 3 sets of 10 repetitions on 4 exercises (leg extension, seated chest
press, seated row, and lat pulldown). Day 2 subjects first completed RT,
and then high intensity interval training (HIIT) (6 hours post RT). HIIT
training included a 5 minute warm up, followed by 3 minutes of treadmill
exercise at 60-70% HHR followed by 4 minutes at 80-90% HRR, this was
then repeated 3 times; such that 4 bouts of high intensity and 3 bouts of
lower intensity were completed for a total of 36 minutes.

MCT RT RT HIT

60-80% HRR » 11-15 RPE scale 11-15 RPE scale 5x 3 mins

20 mins. 4 exercises 4 exercises 60-80% HRR
4 x 4 mins
80-90% HRR

Figure 7.1: The exercises types in the study. Modified from [11].
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7.2.4 Closed-loop system

The multi-module multivariable adaptive artificial pancreas (MAAP) system
developed at Illinois Institute of Technology was used in this study [11]. The
system operates autonomously, without any manual inputs to be entered by
individuals. Insulin infusion is computed based upon CGM values and phys-
ical activity signals as shown in Fig. 7.2. The MAAP system is based upon
a generalized predictive control (GPC) algorithm. The BG concentration is
modeled by an ARMAX model with exogenous inputs GSR, EE, and BG
concentration. The appropriate insulin was given as a basal rate (U/h) in
the early experiments (S1-E1; S2-E1; S4-E1, E2; S5; S6-E1, E2; S7; S9;
S10-E1; see Fig. 7.3), and in the later experiments the GPC calculated in-
sulin boluses and the subject’s predefined standard basal rate were used. In
experiments where the basal rate of the subject was used as a baseline, the
controller relayed periods of pump suspension in the case that the rate was
too high, while it added small boluses in the case that the rate was too low.
Therefore, the basal rate was still adjusted and organized by the controller
based on the calculated needs of each subject in the experiment. Special-
ized modules were designed to improve the MAAP performance such as a
hypoglycemia early alarm (HEA) system, a meal detection (MD) algorithm,
and a hypoglycemia prediction and carbohydrate recommendation (H-CR)
algorithm. All presented clinical data utilized the HEA algorithm in which
CGM, IOB, and physical activity signals are used to predict hypoglycemia
25 minutes in advance. H-CR algorithm suggested an appropriate amount
of CHOs based on the current BG concentration and its rate of change to
prevent the potential hypoglycemia episode. MD algorithm administered
meal boluses based upon CGM measurements, a modified Bergman mini-
mal model and an unscented Kalman filter for state estimates. The modules
used in each experiment are shown in Fig. 7.3.

Feedback: Glucose Sensor Signal

—

//"‘rﬁ

Insulin Pump
———— Glucose
Sensor

)
[ ( - |
Controller il \-/\ C ‘)
AN N\ * \ ) -
- \'a Armband

Hypoglycemiaj
\rescue snack )
Armband Sensor Signals

Figure 7.2: MAAP general structure.
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Basal +HEA Basal +HEA+MD | Basal +H-CR+MD | Bolus+ H-CR+MD

S6

S9 | S8 | S7

Figure 7.3: MAAP control structure for each experiment. Notation: HEA (Hypo-
glycemia FEarly Alarm), MD (Meal Detection), H-CR (Hypoglycemia Prediction and
Carbohydrate Recommendation), Basal or Bolus (GPC Controlled Variable).

7.2.5 Statistical procedures

In order to analyze if different “clusters of PP glucose profiles” exist within
the data gathered in the experiments described above, three main hypothesis
were tested:

e clusters exist depending on the exercise type performed,
e clusters exist depending on the MAAP control structure,
e clusters exist depending on the PP glucose profiles (shapes).

PPs with a fixed length of 4h starting at mealtime were considered, inde-
pendently of the meal type. This ensured no interference with the next
meal, according to closed-loop controllers postprandial performance. These
PPs can be easily reorganized for the first two, but an automatic cluster-
ing algorithm is required for detecting similar PPs time profiles. The FCM
clustering algorithm presented in Section 5.4 could perform well this task in
a simple way.



CHAPTER 7. SEASONAL LOCAL MODELS 130

Variables (features) used to compare hypotheses and prove that clus-
ters really exist were: exercise type, exercise intensity, controller type, meal
composition (i.e., the percentage of calories from CHO, protein, and fat),
total insulin infused, average glucose concentrations, and the time spent
in different glycemic ranges (moderate hypoglycemia (< 54 mg/dL), mild
hypoglycemia (54 — 70 mg/dL), euglycemia (70 — 180 mg/dL), mild hyper-
glycemia (180 — 250 mg/dL), and moderate hyperglycemia (> 250 mg/dL)).

For the purpose of comparing the dissimilarity of the clusters, one-way
analysis of variance (ANOVA) was used to determine whether there is sta-
tistically significant differences (SSD) between mean values of the variables
characterizing clusters, and the Fisher’s Least Significant Difference (LSD)
post-hoc test was used to confirm SSD. A significance level of 5% (P-value
<0.05) was considered in all cases. The same analysis was performed, also in
our results, to determine SSD between the accuracy of the different modeling
approaches.

7.2.6 FCM clustering algorithm

FCM clustering attempts to find the most characteristic point representing
each cluster, which can be considered as the prototype or “centroid” of the
cluster and determines the membership grade of each data point (PP) to
each cluster. FCM algorithm was applied to our CGM data (i.e., 4-h PPs
extracted from CGM time series in this case) considering the Euclidean dis-
tance (ED) function between j* CGM time series and i‘" cluster prototype.
FCM partitions CGM data into ¢ > 1 clusters by minimizing the objec-
tive function J,, (5.20). Memberships are stored in the partition matrix
U=lugl,i=1,2,...,¢c, k =1,2,...,n, where uz, € [0,1], > 7 uip = 1,
Vk and 0 < >0 u, <n Vi

At each iteration, the fuzzy membership values wu;; where computed using
(5.21), and the fuzzy centers ¢; using (5.22). These steps were repeated until
the minimum objective function J,, value was achieved. In order to assess
the average compactness and separation of fuzzy partitions and reach the
optimal number of clusters (¢), the CWBI validity index was used.

7.2.7 Seasonal models with exogenous signals

As mentioned previously, a SARIMA model with exogenous inputs is an ex-
panded form of its nonseasonal counterpart ARIMAX model that includes
as new model components SAR and SMA terms. Given a CGM time se-
ries G(t) resulting from the concatenation of fixed-length PPs, a SARIMAX
model is expressed as (6.2). In practice, the AR, and MA coefficients can be
estimated by fitting an AR and MA model to the residual errors e(t) them-
selves. Thus, increasing the similarity between different glucose responses
leads to a better fitted model. The concatenation of PPs in the CGM time
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series will enforce seasonality with period s equal to the PP length. This
means that seasonal components of the model (SAR, SMA) will relate to
measured behavior in previous PPs, potentially leading to better glucose
predictions. If similar enough PPs are available as training set (i.e., PPs
that can be grouped into the same cluster), then a SARIMAX model can
be identified for each cluster ¢, leading to a set of local glucose estimations
(prediction) G;(¢) for i = {1,2,...,c}.

7.2.8 Models integration

Real time BG prediction G(t,) of a PP at time instant ¢, can be solved as
a crisp (hard) approach by selecting the C;’Z-(tp) prediction corresponding to
the cluster ¢ whose prototype v; is the closest (minimum distance) to the
glucose validation data available at time ¢,,. If the data to prototype distance
(typically Euclidean) is D;(t,), then:

G(tp) = Gm(tp) | m = arg lrgig D;(tp). (7.1)

A fuzzy approach can also be used, where the PP belongs partially (from 0
to 1) to all clusters and the BG prediction is computed by weighting the ¢
estimations by the fuzzy membership w;(t,) at time ¢, to each cluster i:

G(tp) = Zui(tp)éi(tp)a (7.2)
i=1

wilty) = SR (7.3)

D2(tp) m—1
Y (5i65)

Both approaches were tested in this work. Furthermore, the PP cluster
membership can be calculated using the PP data available at time ¢, (all
available samples from meal intake start), or using a subset of samples (the
most recent) in a given time window. The predictions in this study were
calculated from the moment the patient takes his/her meal, although there
is no real data before the meal (the concatenated time series does not have
this information, but if they were available the results presented in this work
could be further improved).

7.2.9 Validation procedure

The LOOCYV technique was used as a reliable approach for handling short
time series, as well for assessing whether results could be generalized to other
datasets. Clustering was performed over the whole set of PPs, resulting in
¢ clusters. Then, ¢ seasonal time series P;(t) were created by concatenating
those PPs assigned to each cluster (i.e., with similar profiles). For each
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P;(t) a PP was randomly taken (using the random sequence generator in
http://www.random.org) as validation set P (t), and the remaining data
was used as training set P (t).

The process was run four times resulting in four training (P (¢), PT%(t)-
, PT3(t), PT4(t)) and four validation (PY1(t), PY2(t), PY3(t), PY4(t)) sets
for each cluster. Regarding the exogenous variables, real values were used
in the training set while the mean of training values were used in the vali-
dation set (future exogenous variables values are not available in a real-time
case, unless specific applications such as the optimization process in MPC
control). Furthermore, the metrics used for model forecasting accuracy were

RMSE (mg/dL) and MAPE (%).

7.3 Results

The methods presented in the previous section were applied to the available
experimental data by following the diagram presented in Fig. 7.4. Firstly,
data was clustered and (four) training and validation sets are defined (Part
A); secondly, SARIMAX models were identified for each cluster (Part B);
and, finally, models were (crisp or fuzzy) integrated and validated (Part C)
using RMSE and MAPE.

7.3.1 Data clustering

Due to the nature of the experimental data, an analysis of the influence
of the exercise type and controller used on CGM profiles (consisting in 85
PPs) was performed, as well as automatic clustering, based in this case on
79 complete PPs, since 6 PPs with missing samples were excluded because
FCM is not directly applicable to incomplete data.

Exercise type clusters

First of all, the different PPs were manually organized in clusters based on
the different exercise type performed after that meal (including one without
exercise, after dinner: “No.EX”) with the aim of analyzing its effect on
CGM profiles. Results are presented in green rows in Fig. 7.5. It can be
observed that the average CGM value of different PPs is slightly higher in RT
and HIIT than in the MCT, and slightly higher also in No.EX with values
of 158.22, 143.84, 141.83 and 156.40 mg/dL, respectively (no SSD found,
p = 0.177). SSD is revealed between No.EX and all exercises sessions (i.e.,
MCT, RT, and HIIT) (p = 0.000) in most elements of meal composition (i.e.,
carbs, calories, protein, and fat). BG values are within the euglycemic range
for 77.55%, 68.00%, 73.47% and 67.42% of the time, respectively (no SSD
found, p = 0.410). In addition, BG values are in moderate hypoglycemia
for 1.17%, 1.09%, 2.04% and 1.89% of the time, respectively (no SSD found,


http://www.random.org
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p = 0.668), and in moderate hyperglycemia for 20.26%, 23.25%, 23.85% and
25.25% of the time, respectively (no SSD found, p = 0.876). However, SSD
is revealed between MCT, RT, and HIIT exercise sessions (p = 0.000) in
the area under the curve of the energy expenditure (AUCgg) variable. This
difference is expected, as the MCT is an entirely aerobic exercise versus the
HIIT having heart rate values in the anaerobic range for 39% of the time,
and RT is almost entirely anaerobic exercise.

Besides that, BG area under the curve (AUCp¢) has a negative corre-
lation with AUCEE in the MCT exercise sessions (r = —0.50) because this
exercise promotes BG reductions whereas RT and HIIT may promote de-
crease, increase or lead to stable BG depending on the duration and intensity
[315].

Control structure clusters

Secondly, PPs were reorganized based on the used MAAP control structure
(Fig. 7.3). Red rows in Fig. 7.5 show that average CGM value is higher
in (Basal+HEA) and (Basal+H-CR+MD) than in the (Bolus+H-CR+MD)
and (Basal+HEA+MD) control type, with values of 170.16, 167.77, 139.57
and 145.23 mg/dL, respectively, and there was SSD between them (p =
0.000). The same SSD pattern is revealed in BG values within the eug-
lycemic range for 58.16%, 80.20%, 56.99% and 75.71% of the time, respec-
tively (p = 0.000), in mild hyperglycemia for 29.87%, 16.63%, 35.16% and
21.84% of the time, respectively (p = 0.002), and in moderate hyperglycemia
for 11.04%, 1.43%, 8.01% and 1.63% of the time, respectively (p = 0.031).
However, BG values are in mild hypoglycemia for 0.83%, 2.40%, 0.47% and
1.02% of the time, respectively (no SSD found in this case, p = 0.108),
and in moderate hypoglycemia for 0.65%, 0.20%, 0.00% and 0.00% of the
time, respectively, (no SSD found, p = 0.527). As a secondary conclusion,
Bolus+H-CR+MD is revealed as the best MAAP module in all experiments.
The MD in the MAAP control structure improves the CGM measurements
and can keep CGM measurements in the euglycemic range (70-180 mg/dL).

Automatic clustering

Finally, FCM clustering algorithm was used for automatic classification of
PPs. As shown in Fig. 7.6 the best number of clusters to classify each PP
into a specific group is 4 clusters via FCM with the CWBI cluster validity
index. Blue rows in Fig. 7.5 show that average CGM values are higher in
cluster 1, cluster 2, and PPs without cluster (PPs with membership below
0.35) than in cluster 3 and 4 with values of 159.23, 184.67, 172.52, 136.68 and
131.30 mg/dL, respectively (SSD found, p = 0.000). The effect of different
exercise type on the glycemic behavior via AUCEE for each cluster is clear,
especially in cluster 2 and cluster 4 with SSD (p = 0.023). Furthermore,
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SSD is revealed between cluster 2 and cluster 4 (p = 0.006) in the total
amount of insulin. The meal intake and the exercise type are almost equal
between cluster 1 and cluster 3, but in this case the insulin sensitivity is an
important factor detected in the total amount of insulin, and there is SSD
between them (p = 0.022). Moreover, SSD is revealed between cluster 4
and cluster 1, and between cluster 4 and cluster 3 (p = 0.012, p = 0.007,
respectively) in the total amount of CHOs.
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Figure 7.6: The clustering classifications by FCM algorithm, 4 clusters is the best
number of clusters indicated by a CWBI validation indez.

Besides that, a negative correlation between the total amount of CHOs
and the total amount of insulin appears in cluster 3 (r = —0.42), as a result
of the slow absorption of the meal intake that would lead to a slow BG
decrease. In addition, different exercise type effectiveness is detected by
the mean difference time between the meal intake and the start time of the
exercise in cluster 3 is 2.38 hours, and in cluster 4 is 1.49 hours, with SSD
between them (p = 0.013). This is not the case for cluster 1 and cluster 2
(2.21 hours and 2.04 hours, respectively) where SSD between them was not
found (p = 0.840). As well, there is no SSD between cluster 3 and both
clusters 1 and 2 with p = 0.100 and p = 0.151, respectively.
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Clustering analysis

Although differences are detected when clustering PPs using exercise type or
control structure, the SSD between clusters results of the automatic cluster-
ing overcome the other approaches. Provided that the aim of the clustering
in this work is that PPs classified in the same cluster should have similar
behaviors or features, FCM objective function (with similarity defined as
the Euclidean distance of the PPs profiles) finds an optimal partition of the
dataset: SSD is found for all features as opposed to manual partition by ex-
ercise and controller types. Therefore, this approach is used in the following
as the previous step for seasonal model identification, provided that clusters
detected by FCM lead to clusters of PPs with similar behaviors helping in
the development of a family of seasonal local models for improved accuracy
and prediction horizon.

7.3.2 Model identification
Seasonal local models

Before model identification for each cluster, some previous work must be
done. First of all, the effect of considering exogenous variables for per-
formance improvement was studied, showing up that CSII, defined as the
addition of bolus and basal infusion expressed in U per sampling period, and
EE are relevant signals, as revealed by the Granger causality test, which is
applied to test the null hypothesis that CGM does not Granger cause CSII,
EE and vice-versa. Then, seasonality was studied and lag 49 (PPs size) was
obtained for all clusters, and SAR and SMA orders were up to 2. With all
this information available, a model for each cluster was identified through
the Boz-Jenkins methodology (Fig. 7.4, part B).

In the case of data sets PI1(t) (LOOCV RUN 1), the following model
structures were obtained:

e Cluster 1: SARIMAX (2,0,1,2)(2,1,1)49, with AIC 6.6063.

( )(2,1,1)
e Cluster 2: SARIMAX (4,0,2,2)(2,1,2)49, with AIC 6.7320.
e Cluster 3: SARIMAX (2,0,2,2)(2,1,2)49, with AIC 6.3191.
( )(2,1,1)

e Cluster 4: SARIMAX (4,0,2,2)(2,1,1)49, with AIC 7.378199.

All the above SARIMAX models incorporated EE and CSII as exogenous
variables of order 2. Fig. 7.7 shows the local glucose predictions Gl(t) for
i = {1,2,3,4}. In the most challenging scenario of a 3-h PH forecasting
period, a MAPE of 3.10% (RMSE of 6.96 mg/dL) is obtained for cluster
1, 4.78% (10.77 mg/dL) for cluster 2, 9.25% (15.76 mg/dL) for cluster 3,
and 8.07% (16.31 mg/dL) for cluster 4. Results for different PHs (15, 30,
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Figure 7.7: The local glucose predictions é(t) for each cluster for a 3-h PH.

60, 120, and 180 minutes) using the validation set P1(t) are presented in
Table 7.2.

Global seasonal model

For building a global seasonal model GSM, different strategies for integra-
tion of local models were tested here: the crisp approach in (7.1) with the
ED and the fuzzy approach in (7.2) using Memberships (M). The use of a
time window for the computation of the PP cluster membership was also
tested. A value of 15 minutes was found to be the most appropriate (la-
beled as EDy5 and M5 for the crisp and fuzzy strategy, respectively) and
the results in this case are also presented.

Table 7.3 shows the average MAPE (%) and RMSE (mg/dL) values of
GSM predictions through the different PPs validation data of the 4 clusters
found for RUN 1, as outlined in Fig. 7.4. Results for different PHs using
all the above explained online cluster membership calculation options are
presented. SSD is found between M and M;js5 at 45-min PH (p = 0.024),
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Cluster SARIMAX PH

Model 15 min | 30 min | 60 min | 120 min | 180 min

1 (2,0,1,2)(2,1,1)49 2.18 1.87 1.73 2.74 3.10
(4.21) (3.70) (4.60) (6.79) (6.96)

2 (4,0,2,2)(2,1,2)49 2.43 4.22 4.81 4.19 4.78
(3.69) (7.40) | (10.51) | (10.00) (10.77)

3 (2,0,2,2)(2,1,2)49 0.98 1.38 2.70 3.22 9.25
(1.19) (1.59) (4.81) (6.40) (15.76)

1 (4,0,2,2)(2,1,1)49 | 1.74 2.36 2.43 4.47 8.07
(2.85) | (4.81) | (5.64) | (7.11) | (16.31)

Table 7.2: Prediction accuracy of seasonal local models. Notation: prediction
accuracy results presented as MAPE % (RMSE mg/dL).

Membership PH

calculation 15 min | 30 min | 45 min | 60 min | 90 min

ED 3.57 5.07 6.54 7.85 10.51
(6.62) | (9.72) | (12.63) | (15.16) | (19.75)

ED; 3.62 4.87 6.06 7.17 9.44
(6.65) | (9.29) | (11.74) | (14.04) | (18.34)

M 3.34 4.73 6.05 7.21 9.07
(5.98) | (8.81) | (11.30) | (13.46) | (16.75)

M;; 2.94 3.80 | 5.41%T | 6.29%T | 8.667
(5.14) | (7.75) | (10.00) | (12.17) | (16.49)

Table 7.83: Prediction accuracy of GSM. Notation: prediction accuracy results
presented as MAPE % (RMSE mg/dL). * indicates SSD (p<0.05) with M and T
with ED.

and 60-min PH (p = 0.011). The use of the 15-min window through M;js;
is SSD when comparing with ED at PH bigger than 30-min PH (p = 0.012
for 45-min, p = 0.008 for 60-min, and p = 0.022 for 90-min), therefore, M5
could improve the worst case errors in the integration process.

Fig. 7.8 is included to illustrate the M5 integration process: four Gi (t)
are available at each instant and four memberships u; are also calculated.
It can be seen how memberships change with time and, therefore, weights
n (7.2) for G(t) 90-min-ahead prediction.

The previous results show the high accuracy for long PH, but extraction
of the optimal SARIMAX model structure from the identification data set for
each cluster is a time consuming task. Therefore, a more realistic approach
was tested for an online environment where human and/or computational
resources could be limited. In this new case, the model structure (model
orders, exogenous variables,...) identified for PI!(¢) was maintained (as it
was done in a pre-processing off-line step) and only model parameters were
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Figure 7.8: Local predictions att = 0, memberships at each time instant, and global
predictions att = 0, t = 60, and t = 90 by using M5 for a 90-min-ahead prediction.
Membership values at the above prediction times are highlighted by the symbol o.

re-identified using P12(t), P13(t), and PT%(t) (see part B of Fig. 7.4).

Mean results of this three suboptimal GSM predictions are presented
in Table 7.4 where, of course, higher prediction errors appear but results
are still good for all PHs. SSD is found between ED and EDq5 at 15-min
PH (p = 0.025), and 30-min PH (p = 0.040); and between M and M5 at
15-min PH (p = 0.000), 30-min PH (p = 0.000), and 45-min PH (p = 0.010).
Moreover, SSD is found between ED (ED;5) and M (M;5) at all PHs.

Table 7.5 summarizes the best (M5) and worst (ED) mean results of the
4 datasets (1 for optimal model structure, and 3 suboptimals) used. In this
way, the positive effect of the 15-min window appears by always improving
the worst case errors in the integration process (SSD always found). Predic-
tion accuracy of GSM overcomes all the literature approaches presented in
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Membership PH

calculation 15 min | 30 min | 45 min | 60 min | 90 min

ED 5.82 8.23 10.24 12.19 13.72
(9.24) | (12.79) | (19.64) | (22.17) | (25.75)

ED15 5.77* 8.93* 11.69 14.43 18.32
(8.71) | (11.99) | (21.80) | (24.79) | (29.83)

M 5.38* 7.78* 9.61* 11.20* | 13.35*
(7.68) | (10.28) | (16.29) | (18.61) | (22.36)

M;y; 4.64%* | 7.09%* | 879%* | 10.87 | 12.74*
(6.98) (9.99) | (15.70) | (19.29) | (21.82)

Table 7.4: Prediction accuracy of suboptimal GSM. Notation: prediction accu-
racy results presented as MAPE % (RMSE mg/dL). * indicates SSD (p<0.05) of
EDvsED5 or MusMys5, and * for EDvsM or EDy5vsM;s.

Membership PH
calculation | 15 min | 30 min | 45 min | 60 min | 90 min
ED 5.26 7.44 9.31 11.10 12.92
(8.58) | (12.03) | (17.89) | (20.42) | (24.25)
M5 4.21* 6.29* 7.95% 9.73* 11.72*
(6.52) (9.43) | (14.27) | (17.51) | (20.49)

Table 7.5: Summary of prediction accuracy results (all datasets mean). Notation:
prediction accuracy results presented as MAPE % (RMSE mg/dL). * indicates SSD
(p<0.05).

Table 3.1. Results obtained for the M5 membership calculation in Table
7.3 are specially remarkable. As well, Fig. 7.9 shows the difference between
GSM (i.e., Mj5) prediction errors and the BG modeling error (RMSE) with
a different PH of different literature methods.

7.4 Conclusions and margins for further improve-
ment

Physical activity has a significant impact on BG concentrations in patients
with T1D. However, in our data each exercise group had a mixture of glucose
responses and the total number of MCT, RT, and HIIT exercise sessions
was not balanced. As well, a mixture of glucose responses was found for the
Bolus+H-CR+MD control structure, despite being the best MAAP module
in all experiments. However, clusters gathering similar glucose profiles, as
required to gain the potential of seasonal models, were successfully found
by automatic clustering, using challenging CGM time series obtained from
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Figure 7.9: A comparison of the proposed model (My5) with those reported in the
literature through the blood glucose modeling error (RMSE) with different PHs,
where our prediction errors are marked by the black diamond.

AP experiments in T1D patients, including a variety of meals and exercise.

Increasing the similarity between different glucose responses in a clus-
ter lead to accurate local models, which is the main idea behind the use of
clustering techniques. SARIMAX seasonal local models were identified for
each cluster and, subsequently, used online by fuzzy integrating the differ-
ent available local predictions by means of an Euclidean-based distance to
cluster strategy. Results reported in Table 7.3 allow us to conclude that
the SARIMAX local models with exogenous inputs (CSII, EE) exhibit rel-
atively higher forecasting accuracy for larger PHs (3-h PH), giving results
statistically comparable. As well, the results reported in Table 7.4 allow us
to conclude that the GSM exhibits high prediction accuracy for larger PHs
(a 90-min-ahead prediction). Hence, the GSM overcomes BG forecasting
of the approaches found in literature, which were summarized in Table 3.1.

Once demonstrated the feasibility of seasonal local modeling through
clustering, challenges imposed by free-living data can be addressed, which
will be covered in the next Chapter. There, an extension of the work will
be carried out to deal with:
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1. Handling with longer experimental data for model development.

2. Dealing with missing data as a result of sensor errors or human errors,
especially when applying the FCM clustering technique or identify-
ing/building seasonal models.

3. Applying the GSM in daily normal life where PPs will have different
lengths (varying meal-to-meal time).



Chapter 8

Seasonality prediction under
free-living conditions

This chapter introduces the use of stochastic seasonal local models in normal
daily life for people with T1D. In order to do so, firstly, the data sets gen-
eration methodology for seasonal local modeling proposed in the previous
chapter is extended to be able to deal with data including variable length
PPs, nocturnal periods, and external user actions such are hypoglycemia
rescues. Secondly, the new framework provides online glucose predictions
for different PHs. The user can employ these glucose predictions taking into
account a confidence measure also provided at each time instant. Addition-
ally, and based on the available glucose prediction for PHs long enough to
take effective therapeutic actions, the framework provides a future patient
state and is able to detect abnormal behaviors.

The chapter starts in Section 8.1 with the main rationale of this proof of
concept. Section 8.2 describes experimental data and the methodology used
in the study. Section 8.3 shows the results of a global seasonal model inte-
grating different seasonal local models for online glucose prediction, patient
state forecasting and abnormal behavior detection. As well, displays a su-
pervision system to help the user for detecting the abnormal states. Section
8.4 summarizes the conclusions and highlights the future work for further
improvement of the proposed framework.

8.1 Rationale

Glucose prediction models can play an important role in future diabetes
management systems. As demonstrated previously in Chapter 7, they can
provide accurate estimates of future glucose values for large PHs. This can
be very helpful for people with diabetes if the PH is long enough to let
the subject with diabetes anticipate therapeutic decisions. Therefore, if an
accurate online prediction of BG concentration is possible then a complete

144
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supervision system based on these values can be devised. This supervision
system can provide the users not only the glucose predictions, but this real
time information can be processed to provide more specific information such
are: future patient glycemic status (e.g., hypo- and hyperglycemia), and ab-
normal behavior detection (e.g., pump malfunctioning, catheter obstruction,
etc.).

Despite SARIMA and SARIMAX models have demonstrated previ-
ously their effectiveness for glucose prediction in long PHs with high accu-
racy, they are data-hungry and require the existence of seasonality periods
with fixed lengths to be applied. Therefore, can these methods be applied in
normal life (free-living conditions with the support of CGM data) including
PPs or nocturnal periods with different and variable lengths?

The aim of this chapter is to explore the possibility of extension of the
seasonal local models based methodology presented in Chapter 7 to free-
living real-time online use, and the utilization of accurate glucose predictions
in a supervision system useful for the patients.

As a proof of concept, the methodology will be tested over 6 months of in
silico simulated data. First of all, original CGM historical data of different
full days, including PPs and nocturnal periods, will be preprocessed. The
long-term simulated data is partitioned into a set of “event-to-event” time
subseries, driven by meals and night periods, to enforce seasonality where
original PPs and nocturnal periods are in different lengths. Preprocessed
data is then clustered and, once sets of similar glycemic profiles (clusters)
useful for building seasonal models are available, a SARIMA local model is
built for each of them. Finally, the online BG prediction “global model”
is obtained by integrating “local models”.

A proposal of supervision system is also presented, where the available
glucose predictions and glycemic status estimations are, at each time in-
stant, stringed along with a newly defined “trust index” (based on the
real-time convexity of the fuzzy membership functions used for model inte-
gration) giving information about how much the estimation can be trusted.
Additionally, a “normality index” (based on real-time values of possibility
membership functions) giving information about how normal is the actual
behavior or if it is an abnormal situation.

8.2 Research Design and Methods

8.2.1 Data overview

A long-term period of six months data from a wvirtual patient is available.
The simulated data were generated using the average adult patient of an ex-
tended version of the UVA /Padova simulator [168] with variability sources,
and exercise was not considered. Three daily random meals of 40, 90 and



CHAPTER 8. SEASONALITY IN FREE-LIVING CONDITIONS 146

60 g at 7:00, 14:00 and 21:00 hours were considered, and variability sources
include: meal-size variability (£ 10%), meal-time variability (+ 20 min),
uncertainty in CHO estimation (uniform distribution between -30% and
+40%), meal absorption rate (kabs £+ 30%), CHO bioavailability (f + 10%),
insulin absorption model parameters (kq, ka1, kas + 30%), and insulin sen-
sitivity parameters (Vmx, Kp3 + 30%).

8.2.2 Data preprocessing

Once long-term (simulated) data is available from a patient, seasonality
must be enforced to apply the seasonal stochastic modeling techniques to
the identification data set (20% of available data is saved for validation).
Provided that the initial instant, duration, and final instant of the different
events considered in the available data (PPs and nocturnal periods) are
variable, the original time series data is partitioned into a set of “event-to-
event” time subseries, driven by event meals. Therefore, each time subseries
initial point is the time instant when the event (meal) starts and its final
point is the initial point of the next event. A special case is the (after)
dinner PPs where 6 hours fixed-length were considered. As well, the night
periods start at the last point of dinner PPs and finalizes at breakfast time.

Hence, each day provides four subseries with different lengths, and these
lengths change every day. In order to force seasonality, the period with the
maximum duration must be detected and its length stored in s. All the
other subseries duration must be fictitiously expanded to s, by adding “not
a number -NaN-” values after the last available value. In this way, all the
periods will have the same length (s) but most of them will have some NaNs
in the final positions of the time subseries.

The final preprocessing step is removing all those PPs that can be consid-
ered as abnormal. The proposed methodology is focused on finding models
representing the normal behavior of the patient. The periods considered as
abnormal in the available data are those affected by patients rescue actions
(CHOs ingestion) in the case of hypoglycemia. This rescue action greatly
modifies the expected postprandial profile and, therefore, the values affected
by this action will be deleted from the data set. In this case, the values af-
fected (and deleted) are all those in a PP after a rescue is performed, and
the whole PP after those with a rescue.

8.2.3 Time series clustering algorithm

The subseries generated in the preprocessing step come from PPs and noc-
turnal periods with original different lengths but filled with NaNs in order
to obtain subseries with the same length and, therefore, seasonality equal to
that length. Following the procedure explained in Chapter 7, the next step
is to cluster the subseries to find similar glycemic profiles useful for building
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seasonal models. However, standard clustering algorithms (such as FCM)
cannot be directly applied to time series with “missing values” (incomplete
data) because they are based on distance measures requiring all feature val-
ues of each data item. When distances are available, then the prototypes of
each cluster and the memberships can be calculated.

In this case, it is impossible to delete incomplete CGM time series as an
option to deal with missing values because it would result in deleting most
data. However, instead of using the original FCM technique, the partial
distance strategy can be applied to FCM through a partial distance function
resulting in the so called PDSFCM algorithm. This algorithm is able to deal
with CGM incomplete data, and PDSFCM can be obtained by making two
modifications to the original FCM algorithm:

1. The partial distance between the incomplete CGM data point and
cluster prototype can be defined as (5.23).

2. The cluster prototypes are updated to each iteration by (5.25).

Therefore, PDSFCM partitions CGM data into ¢ > 1 clusters by minimizing
the objective function J,, (5.20) as FCM does but with the previous two
modifications.

The FCM-based clustering algorithms need the optimal number of clus-
ters (c¢) as an input. The adjusted XBI validity index is used in this study
instead of the CWBI used in Chapter 7. This is due to the easier adjustment
to handle missing data. The XBI showed good performance in the number
of clusters estimation for FCM, but (5.36) can not be directly used and
XBI must be also adjusted to be able to use incomplete data. The original
Euclidean distance has to be replaced again by the partial distances be-
tween the incomplete data points and the cluster prototypes. Including this
modification, XBI can be computed for CGM incomplete series as follows:

2 s>y (@r—va)*i
XBI — c_ D i1 2o Ui ijlsjll z‘kll 5
S n (ming; || vi —vj [|?)

with

P 1 if xp; is available,
M= 0 otherwise

where all terms have defined previously in Sections 5.4.2 and 5.4.3. The
optimal number of clusters ¢ corresponds to the lowest XBI value.
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8.2.4 SARIMA local models integration for online glucose
prediction

The approach for local modeling and local models integration will be the
same tested in Chapter 7, where the seasonal local modeling and the subse-
quent fuzzy approach for model integration has been proven its good perfor-
mance above the crisp approach, especially with a window of size 15 minutes
(Mis).

Therefore, once the ¢ (number of clusters) sets of similar enough CGM
time series (including PPs and nocturnal periods) with the same (enforced)
length are available as training sets thanks to the steps described in the
previous subsections, a SARIMA model with seasonality period s (equal to
the enforced time series period length) expressed as (6.1) can be identified
for each cluster 4, leading to a set of local models for glucose prediction G; (t)
fori={1,2,...,c}.

Local models integration for real-time BG prediction G(t,) for a desired
PH at time instant t, will be defined by the fuzzy approach, where the
available (CGM previous to t,) data belongs partially (from 0 to 1) to all
clusters and the BG prediction is computed through (7.2), by using the fuzzy
membership u;(t,) at time ¢, to each cluster i (7.3).

It must be remarked that after a period is finalized (i.e., the next pe-
riod /event is started), the whole period data is then appended as new data
in the cluster with the highest membership. It is not expected that the
profile of the modified data set changes too much provided that the aspect
of the new time series will be similar to the others in the cluster, but it is
fundamental to have this new series in the cluster as SARIMA models use
pre-sampling data (previous data of the same subset/cluster) for their pre-
dictions. Additionally, it would be interesting to have all these new series
stored in the cluster for an eventual online updating of the SARIMA models.

8.2.5 Supervision system and abnormal states detection

Based on the results of Chapter 7, the real-time BG prediction G(t,) is
expected to have low MAPE and RMSE errors for long PHs. Additionally,
more real-time information can be given to the user.

On the one hand, a prediction of the glycemic status of the patient can
be estimated at each time instant for a predefined PH. The glycemic status
will be based on the BG prediction for this PH combined with the standard
glycemia ranges defined, for example, in Fig. 7.5.

On the other hand, information can be provided about how similar the
present period trying to forecast is to the data base from which models being
used where identified. In order to do so, a trust index and a normality index
are defined.
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Figure 8.1: An illustrative example of an analysis of the fuzzy memberships series
for choosing the right local model for use in prediction.

The “trust index” is designed to give information about how much
the glucose estimation can be trusted. Provided that the glucose model is
a multimodel system, the idea behind the index is that we can rely more
on the model if one of the available models match perfectly the system.
Fuzziness is included to give robustness by the integration of the local models
when one of them is not enough to provide the best estimation, but the
ideal case is that the membership is one for one of the local models and
zero for the others. In order to check this mathematically in real-time, all
online estimated memberships for the clusters are ordered in descending
membership value and a new discrete-time series is created. Therefore, the
best case will be when the first value is one and zero the others (see series
2 in orange color in Fig. 8.1). However, the worst case will be when all
values are equal because it indicates that all the local models participate
equally to the glucose estimation (see series 1 in blue color in Fig. 8.1).
Mathematically, the property that can help in quantifying the differences is
discrete time series convexity: in the best case convexity is high, and very
low in the worst case. Hence, a discrete estimation of the series convexity
can be easily computed by taking the second differences of the discrete series
values. Finally, all terms in the second differences time series are summed
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up then giving one as a result in the ideal case, and zero in the worst case
(see trust index in the first subfigure of Fig. 8.2).
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Figure 8.2: An illustrative example of using the trust index in order to measure the
confidence of using a specific local model for prediction and the normality index in
order to determine whether the period trying to estimate is normal or not.

The “normality index” is designed to determine whether the period
trying to estimate is normal or not, in the sense that the behavior trying
to forecast is among (somewhere in the middle of) the past behaviors (and
then estimated by a single local model or a combination of them) or not
(i.e., beyond the past behaviors and then extrapolated by some or all the
models). The use of possibility memberships instead of fuzzy memberships
given by (5.21) can give some hints in this case. The possibility membership
uf) can be computed using:
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_ 1
L ()7

where uf), € [0,1], >0 jup <1, Vkand 0 < >}y up <n Vi, dis a
distance function (the Euclidean distance function between k' data points
and " cluster center) and m € [1,00) is the fuzziness parameter.

It can be observed that the difference between (5.21) and (8.2) is that
the values in the first are normalized with the sum of all the memberships.
It is very useful in the case of fuzzy membership use for model integration
by weighing different glucose estimations. However, if the period trying to
estimate is abnormal and far away from all the available local models, the
distance will be similar to all prototypes then resulting in all the member-
ships equal when (5.21) is applied. The same result is obtained when a
period trying to estimate is normal and just in the middle of the local mod-
els available. Nevertheless, if (8.2) is used the abnormal period will result
in very low membership for all the clusters. The sum of all those possibil-
ity memberships computed online provides a measure of the abnormality of
the period: the sum of the possibility memberships closer to zero the more
abnormal period (see normality index in the second subfigure of Fig. 8.2).

D
Ui

(8.2)

When abnormal behaviors appear the user must be aware of the ex-
trapolation being performed, and it will alert about an abnormal situation:
hardware problems, extreme hypoglycemia or hyperglycemia, or any behav-
ior beyond the past time series available for local models identification. The
abnormal behavior, detected by low values (the threshold is equal to two
after extensive simulations) like series 5 in the second subfigure of Fig. 8.2,
can provide alerts to the user and highlight the necessity of new models to
be learned due to new user behaviors.

8.2.6 Validation procedure

The six months available simulated data for the average adult patient of
the UVA /Padova simulator [168] with three meals per day and multiple
variability sources will be divided into two sets. The first 80% of the data
is used as a training set for building suitable models, and 20% of the data
is used for testing the prediction accuracy for these models with RMSE
(mg/dL) and MAPE (%) metrics in different PHs.

8.3 Results

The methods presented in the previous section can be applied online by
following the diagram presented in Fig. 8.3. The following subsections will
apply this methodology to the available 6 months data.
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8.3.1 Time series building

The long-term time series is preprocessed as explained in 8.2.2 resulting
in 648 event-to-event periods (including PPs, and nocturnal periods) with a
fixed length (enforced seasonality) of 100 observations, which is the length of
the original longest period. Those periods in which hypoglycemia appeared
and patients applied rescue actions have been excluded (from the rescue
time till the end) from the modeling process, as well as the next period,
since it will be affected by the rescue taken. These kind of periods can be
used subsequently as an example of abnormal behaviors, because they are
not included in the identification process and they should be different to any
available cluster/model.

The purpose of the exclusion process of these periods is to measure later
the ability of the algorithm to detect any abnormal status and raise a warn-
ing alarm for the patient to take the necessary corrective actions. Remark
that normality /abnormality is related here to a common/uncommon behav-
ior in the historical data. As far as only normal periods have been used in the
modeling process, those periods leading to hypoglycemia will be considered
abnormal time series.

8.3.2 Data clustering

PDSFCM clustering, in combination with the XBI cluster validity index for
number of clusters determination, is performed over the whole set of normal
periods, resulting in 9 clusters. Available periods are classified as shown in
Fig. 8.4. The profile of each cluster can be observed in the cluster prototypes
(see Fig. 8.5)

Once all periods are classified, 9 seasonal time series are created by
concatenating those periods assigned to each cluster (i.e., with similar pro-
files). Additionally, pre-sampling data (data before the period starts from
the CGM time series) is inserted for each concatenated period. This his-
torical data is needed by the models in a length depending on the models
orders. A length of five pre-sampling data is considered enough, provided
that models orders obtained in previous chapters were lower in the AR and
MA processes. The 9 long-term training series were obtained using the first
80% of the available data, and the remaining 20% is included in a long-term
validation time series. This concludes the PART A in Fig. 8.3.

8.3.3 Model identification

The PART B in Fig. 8.3 starts with the 9 time series available (including
80% of training data) with 100 samples plus 5 pre-samples per period, then
having a 105 enforced seasonality (periods size). The model for each clus-
ter is identified through a modified version of the Box-Jenkins methodology
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Figure 8.4: 9 clusters classification performed by PDSFCM algorithm.
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Figure 8.5: Cluster prototypes.
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Cluster SARIMA PH
Model 15 min | 30 min | 60 min | 120 min | 180 min | 240 min
1 (4,0,0)(1,0,1)105 8.15 7.50 6.92 4.19 3.40 3.07
(13.25) | (12.26) | (11.10) | (8.21) (6.90) (6.15)
2 (0,0,4)(0,1,2)105 3.30 3.66 2.32 2.64 2.43 2.71
(4.56) (5.21) | (3.90) (5.25) (4.91) (5.30)
3 (4,0,4)(2,0,1)105 4.26 4.06 4.16 4.22 3.76 4.54
(4.63) (4.62) | (6.25) (7.35) (6.60) (7.09)
4 (1,1,1)(0,1,0)105 3.22 2.70 3.00 3.32 4.10 3.50
(3.21) (3.01) | (3.10) (4.37) (5.23) (4.81)
5 (0,1,1)(1,0,1)105 0.62 0.91 1.16 1.29 1.51 1.37
(0.90) (1.10) | (1.81) (2.22) (2.52) (2.33)
6 (0,0,4)(2,0,1)105 | 8.00 6.20 4.11 2.77 3.20 2.50
(8.25) (7.13) | (5.26) (4.35) (4.70) (4.10)
7 (0,0,2)(1,1,0)105 3.11 2.71 2.80 2.61 2.56 3.70
(4.06) (3.60) | (4.23) (4.63) (4.62) (7.00)
8 (4,0,1)(0,0,1)105 2.07 1.72 3.23 3.10 3.31 4.00
(2.20) (2.00) | (4.01) (4.22) (5.40) (7.30)
9 (0,0,4)(1,0,0)105 0.60 1.64 2.07 1.60 1.68 1.56
(0.92) (2.54) | (2.80) (2.37) (2.40) (2.20)

Table 8.1: Prediction accuracy of seasonal local models, when using only one
event/period as validation example set. Notation: prediction accuracy results pre-
sented as MAPE % (RMSE mg/dL).

(Section 3.3) able to deal with incomplete series (including NaNs). In this
case, the residuals of missing values are not taken into account in the identi-
fication process. The appropriate SARIMA model structure and parameters
are identified for each cluster.

Table 8.1 shows the appropriate SARIMA model for each cluster with
the prediction accuracy results of the 4-hr PH. In the most challenging
scenario of a 4-h PH forecasting period, a MAPE of 3.07% (RMSE of 6.15
mg/dL) is obtained for cluster 1, 2.71% (5.30 mg/dL) for cluster 2, 4.54%
(7.09 mg/dL) for cluster 3, 3.50% (4.81 mg/dL) for cluster 4, 1.37% (2.33
mg/dL) for cluster 5, 2.50% (4.10 mg/dL) for cluster 6, 3.70% (7.00 mg/dL)
for cluster 7, 4.00% (7.30 mg/dL) for cluster 8, and 1.56% (2.20 mg/dL) for
cluster 9. Results for different PHs (15, 30, 60, 120, 180, and 240 minutes)
using only one event/period as validation set example are presented in Table
8.1. Fig. 8.6 shows the local glucose predictions Gz(t) for i ={1,2,...,9},
when using only one event/period as validation set of the 9 clusters.

8.3.4 Online forecasting validation

PART C in Fig. 8.3 is devoted to describe the online procedure proof of
concept and its validation. Table 8.2 shows the average MAPE (%) and
RMSE (mg/dL) values of GSM predictions through only one period/event
validation data of the 9 clusters. Table 8.3 shows the average MAPE (%) and
RMSE (mg/dL) values of GSM predictions through all the periods/events
validation data of the 9 clusters.
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Figure 8.6: The local glucose predictions G’(t) for each cluster for a 4-h PH, when
using only one event/period as validation example set of the 9 clusters.

The integration process is updated online for each validation period/event
in order to get the online BG prediction as follows:

1. Calculate the membership for the new period/event available data to
the nine clusters.

2. Combine the predictions (4-h PH) of the nine local models using the
memberships calculated in the previous step.

3. Repeat the process until the period is finished.

4. Add the finished period to the corresponding cluster (the highest mem-
bership) as seasonal pre-sampling.

5. Repeat the previous steps with the new period/event and calculate the
mean prediction error for the whole validation data set (129 periods).
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Membership PH
calculation 15 min | 30 min | 60 min | 120 min | 180 min | 240 min
M5 3.27 5.07 7.02 9.08 10.43 11.48
(5.11) (7.84) | (11.72) | (15.00) (17.45) (18.50)

Table 8.2: Prediction accuracy of GSM for only one period/event validation ex-
ample data of the 9 clusters. Notation: prediction accuracy results presented as
MAPE % (RMSE myg/dL).

Membership PH

calculation 15 min | 30 min | 60 min | 120 min | 180 min | 240 min

M5 4.10 5.95 8.43 11.32 13.65 13.97
(6.46) (8.95) | (13.39) | (18.61) (22.91) (23.81)

Table 8.3: Prediction accuracy of GSM for all periods/events validation data of the
9 clusters. Notation: prediction accuracy results presented as MAPE % (RMSE

mg/dL).

8.3.5 Supervision system validation and abnormal states de-
tection

In addition to the glucose predictions value, a normality index and a trust
index are provided to the user at each time instant as defined in 8.2.5. The
whole information available at each instant is: nine @Z(t) local estimations, a
global estimation through the M5 integration process, nine fuzzy member-
ships u;, a trust index, nine possibilistic memberships P;, and a normality
index. The fuzzy memberships change with time and, therefore, weights
in (7.2) for G(t) 120-min-ahead prediction in the following examples. As
well, the trust index is high (close to one) when a single model represents
the behavior for some time then giving confidence in the estimation. The
normality index, using for its calculation the changing with time possibilis-
tic memberships, is high (close to the number of clusters, nine in this case)
when a lot of the available models can represent the behavior and very low
(two or lower in this case) when none of them represent the behavior and,
therefore, an abnormal situation is presented.

Fig. 8.7 is included to illustrate graphically the whole information avail-
able at each instant for a case with medium MAPE. Four cases can be
devised in the plots with respect to trust index:

1. Changes in the local models used for global prediction make decrease
trust index (see the models change between 160 and 180 min., and the
effect on the trust index).

2. If the same local model is the mainly used for the global prediction,
then the trust index increases (see, for example, since 50 min. until
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Figure 8.7: An example of GSM to demonstrate the relation between predictions,
memberships, trust, and normality indexes. Local predictions at t = 0, memberships
at each time instant, and global predictions at t = 0, t = 60, and t = 120 by using
M5 for a 120-min-ahead prediction. Membership values at the above prediction

times are highlighted by the symbol o.

150 min. where model G4(t) can represent well the behavior).

3. When not only one but several models are used for the global predic-
tion, then the trust index decreases (see the beginning till 50 and from

the model change in 180 min. until the end).

4. In the case that only one model is used for the global prediction, then
the trust index increases (compare the period from 100 to 150 min.
where almost only one model is used to the period from 200 min. till

the end, where some models are used for the prediction).

In this example, it can be seen that in the possibilistic memberships at
least one model is close to one, then leading the normality index to values
always above two. Therefore, no abnormal behavior is devised. At the
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beginning and at the end (after 3 hours) a lot of the available models can
represent the behavior, so normality index value is high.

Integrated seasonal local models Gyt =0,
T

Membership ~ Glucose concentrations (mg/dL)

Trust index
°
@

Possibility

Normality index

Figure 8.8: An example of GSM with a big prediction error for showing the re-
lationship between predictions, memberships, trust, and normality indexes. Local
predictions at t = 0, memberships at each time instant, and global predictions at
t=0,t=060, and t = 120 by using M5 for a 120-min-ahead prediction. Member-
ship values at the above prediction times are highlighted by the symbol o.

Fig. 8.8 (high MAPE) and Fig. 8.9 (low MAPE) show two more examples
to illustrate the relationship between prediction errors, fuzzy memberships
and trust index. High values of the trust index must be related to low
MAPESs, and vice-versa. A simple comparative analysis of both plots con-
firms the approach correctness: the number of instant values of trust index
that are relatively high (above 0.7, for example) is bigger in the case of low
MAPE (more than 30 out of 50 points) than in the case of high MAPE
(about 10 out of 50), and trust index also take negative values in this case.

The four behavior cases identified in Fig. 8.7 can also be detected in
these two new figures, and the normality index values are also always high
although in one of the cases MAPE is high: the error can be big, but the
behavior can be considered normal.
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Figure 8.9: An example of GSM with a small prediction error for showing the
relationship between predictions, memberships, trust, and normality indexes. Local
predictions at t = 0, memberships at each time instant, and global predictions at t =
0, t =60, and t = 120 by using My for a 120-min-ahead prediction. Membership
values at the above prediction times are highlighted by the symbol o.

Although events/periods of hypoglycemia have been excluded in this
study in the identification process, these abnormal states could be detected
through the normality index. In the case of abnormal behavior time series
(PPs leading to hypoglycemia), the MAPE will be high as expected, since
this kind of abnormal behavior was not included for model identification
(in the training data). In order to study this case, 13 PPs with abnormal
behavior of 5 hours length have been used. A mean MAPE of 34.10% (RMSE
of 27.73 mg/dL) is obtained for 60-min PH from the time instant ¢ = 240
until the end. This is a very high value when compared to mean MAPE of
8.43% (RMSE of 13.39 mg/dL) for 60-min PH shown in Table 8.3.

A final Fig. 8.10 is included to illustrate how the system behaves in the
case of abnormal behaviors (i.e., the time series leading to hypoglycemia).
All the behaviors related to the trust index studied in the three previous



CHAPTER 8. SEASONALITY IN FREE-LIVING CONDITIONS 161

Integrated seasonal local models

el

Gt = 60)
e Gi(1 = 120)

Glucose concentration:

Gt = 180)
—— (1 = 240)

bership

sEszszzgz=

Trust index

Possibility

g e,

0 10 20 30 40
Seri

Normality index

Figure 8.10: An example of how the system behaves in the case of abnormal be-
haviors. Local predictions at t = 0, memberships at each time instant, and global
predictions at t = 0, t = 60, t = 120, ¢t = 180, and t = 240 by using My5 for
a 60-min-ahead prediction. Membership values at the above prediction times are
highlighted by the symbol o.

figures are also present here, and the trust index is very low in different
moments: when model changes are detected and also after time instant
t = 240. However, the abnormal state can be detected through the normal-
ity index, where the lower values below two (threshold where none of the
previously analyzed cases arrived) indicate an abnormal state as shown in
the last subfigure 5 Fig. 8.10. This means that no local model can represent
the behavior and therefore, an alarm for the user can be launched to take
actions before upcoming hypoglycemia (about 30 min. before).

Fig. 8.11 and Fig. 8.12 show two additional examples of different PPs
to illustrate the vital role of the normality index for detecting the abnormal
states not only hypoglycemia but it can detect both hypoglycemia and hy-
perglycemia. In order to confirm the good results of the normality index,
118 periods have been tested including normal and abnormal behaviors (not
used in the identification process but stored for this validation purpose).
The normality index has been calculated for all the PPs and they have been
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Figure 8.11: An example of detecting hypoglycemia through the normality indez.

classified into two groups: those whose normality index is always above 2
(normal) those that go below 2 (abnormal). These two groups of classifi-
cation lead to 66 normal periods and 52 abnormal periods. The Euclidean
distance has been used to measure the real similarity between each PP and
the prototypes of 9 clusters characterizing the identified models. The results
of the similarity are shown in Fig. 8.13 where it can be seen that the PPs
classified online (and in advance) by the normality index as abnormal, are
actually farther to the prototypes (i.e., learned behaviors and models) than
those classified as normal. Box plot in Fig. 8.14 highlights this difference
and both groups are SSD with p = 0.000.

8.4 Conclusions and margins for further improve-
ment

The concept of seasonality has demonstrated successfully its accuracy in the
BG prediction models for long PHs, but it is not directly applicable for the
use in the normal life. However, the concept of seasonality can be enforced in
normal life data then being very useful for developing BG prediction models
or for detecting abnormal behaviors of people with diabetes.
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Figure 8.12: An example of detecting hypoglycemia and hyperglycemia through the
normality index.

In this chapter, a proof of concept of how to apply the concept of sea-
sonality in normal life has been presented and validated by using a realis-
tic virtual patient under free-living conditions. PPs and nocturnal periods
with different lengths were extracted from CGM time series data and pre-
processed to fit the seasonality modeling approach. PDSFCM clustering, in
combination with the XBI cluster validity index, has been used to detect
the similarity between different periods, reach the best number of clusters,
and classify the periods in 9 clusters. As well, SARIMA local prediction
models have been used to identify a model for each cluster and a global
model resulted from the online fuzzy integration of the local models. The
model provided accurate predictions and has been augmented at each time
instant with a complete supervision system giving a value of the confidence
in the prediction (trust index) and a detection of future abnormal behaviors
through the normality index (for example, hypoglycemia or hyperglycemia
states).
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Figure 8.13: The similarity measure between the normal and abnormal group with
the prototypes of 9 clusters by using the Euclidean distance.
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Figure 8.14: Boxplot of the normal and abnormal group. * indicates SSD (p<0.05).

Results reported in Table 8.1 conclude that the SARIMA local models
exhibit relatively higher forecasting accuracy for larger PHs (4-h PH) with
lower prediction errors. As well, the results reported in Table 8.3 allow us
to conclude that the GSM exhibits high prediction accuracy for larger PHs
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(a 240-min-ahead prediction), therefore, GSM could be helpful to allow the
diabetic patients anticipate therapeutic decisions. As well, this study has
demonstrated the feasibility of using the trust index for measuring the con-
fidence in the estimation and for choosing the appropriate local prediction
model and the normality index for detecting the abnormal behavior/states
before the action occurs without using the abnormal behavior time series in
the model identification.



Chapter 9

Conclusions and Future work

This chapter introduces the conclusion of the research with some directions
for possible future work. Section 9.1 summarizes the main conclusions of the
thesis through the contributions presented in the previous chapters. Section
9.2 provides some ideas that coukd be developed to go beyond the objectives
of the thesis but serve the main objective. Section 9.3 displays the results
of the research through scientific publications in journals and conferences.

9.1 Conclusions

The tight monitoring of BG concentration is a very important and essen-
tial task in diabetes management for avoiding diabetes complications due to
hypo- and hyperglycemic episodes. The predictor’s models of BG concen-
trations for a long PH (e.g., 60-120 min ahead in time) might improve T1D
therapy by allowing the patient to tune the therapy based on BG future
values. As well, the long PH allows the patient to avoid or mitigate critical
events. The most important issue in the BG prediction is the “accuracy” of
the prediction of BG concentrations in every glycemic range that significant
in closed-loop applications based on MPC, and also in open-loop therapy to
allow plenty of time for diabetics to take correction action and anticipate
therapeutic decisions. This need links directly with the main objective of
the thesis: developing new techniques for identifying individualized patient
glucose prediction models in T1D.

In the last decade, there were several prediction methods proposed in
the literature based on glucose prediction models that use only CGM his-
tory data as inputs, and have been reviewed in Chapter 3. Recently, with
the technological progress and through many studies on the factors affecting
the BG behavior, assorted attempts of using also insulin, CHO and PA in-
formation have been proposed as exogenous inputs in these models. In order
to capture the dynamic characteristics of BG behaviors and improve pre-
diction accuracy away from the physiological aspects. The main problem of
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using exogenous variables in these models is the effects of these variables are
influenced by physiological delays and inter- and intra-individuals variabil-
ity. One of the most important BG predictive models is the linear empirical
models that have proven their effectiveness in BG prediction such as AR,
ARMA, ARX, and ARMAX models.

Linear time series models described in the literature perform better, in
terms of the average RMSE, for 5- and 15-min PH, as compared to the RNN
and nonlinear regression methods. However, the average RMSE increases
with large PHs as described in Chapter 4. The concept of seasonality
with a linear time series models has been proposed, so that the dynamic
characteristics of CGM behavior could be better captured. In this thesis, the
stochastic seasonal model (SARIMA) for predicting a patient’s future BG
concentrations has been developed by concatenating time series with fixed-
length PPs. In Chapter 6, it has been shown that BG concentrations can
be predicted using the recent history of CGM data only by using SARIMA
model where the inter-patient variability in the data was representative of
worst-case intra-patient variability defining a challenging scenario. As well,
BG concentrations can be predicted by using exogenous input (e.g., CSII)
by using SARIMAX model.

In Chapter 6, despite the limitations of the study deals with the the-
sis sub-objective 1, and seasonality has shown to be an important factor
to improve model predictive power allowing for the significant extension
of PHs. The seasonal models with exogenous inputs that relate well with
the CGM measurements could help to improve the prediction accuracy and
PH. Furthermore, SARIMA and SARIMAX models exhibit relatively higher
forecasting accuracy for larger PHs, giving results statistically comparable,
where a MAPE of 6.62% (RMSE 10.29 mg/dL), and a MAPE of 5.12%
(RMSE 8.47 mg/dL) are obtained for 5-hr PH forecasting period respec-
tively. In addition, SARIMA and SARIMAX models are proved highly
efficient in BG predicting superior to ARIMA and ARIMAX models.

SARIMA and SARIMAX models require similar enough glycemic pat-
terns in CGM historical data to obtain accurate models, which cannot be
assumed in free-living CGM data. Therefore, the classification of periods
under scenarios yielding similar enough glycemic responses is the best way
to fully exploit the benefit of seasonal models. The clustering techniques
revision performed in Chapter 5 has been used in Chapter 7 to fulfil
Sub-objective 2. It has been shown that automatic clustering of CGM
time series obtained from AP experiments in T1D patients, including meals
and exercise, finds different PPs time profiles and clusters are detected. In-
creasing the similarity between different glucose responses leads to a better
fitted model, that is the main idea of the use of clustering techniques in this
work (different PPs time profiles and clusters are detected).
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The local modeling approach reveals as a good approach (different mod-
els with a simpler structure), instead of a single complex model of the sys-
tem. Furthermore, the automatic detection of similar clusters/groups leads
to a good global model for the whole dataset through the best local model.
A SARIMAX seasonal model for each cluster (provided that PPs in the
same cluster are similar) can be determined and, subsequently, used online
by fuzzy integrating different available predictions by the Euclidean-based
distance to cluster. SARIMAX local models with several physiological mea-
surements from a multi-sensor body monitor worn on the arm and that
are known to have a significant effect of the whole-body fuel metabolism
could improve BG prediction accuracy. In addition, it can be concluded
that SARIMAX local models with exogenous inputs (CSII, EE) exhibit rel-
atively higher forecasting accuracy for larger PHs (3-h PH), giving results
statistically comparable.

In Chapter 7, it has also been shown that GSM overcomes BG fore-
casting of the approaches found in the literature and exhibits high prediction
accuracy for larger PHs (a 90-min-ahead prediction) with a MAPE of 8.66%.
Therefore, the long-term complications of diabetes can be reduced by using
online BG predictions through GSM, because the larger PHs through the
GSM could allow patients to take corrective actions. Hence, GSM can be
used to provide early hypoglycemia or hyperglycemia alarms. In addition,
PA has a significant impact on BG concentrations in patients with T1Dand,
therefore, PA needs more attention through diabetes management.

The final challenge in this research is how to apply the concept of sea-
sonality in the daily life, as stated in Sub-objective 3. A diabetic patient
has PPs or night (nocturnal) periods with different lengths. In Chapter
8, it has been shown that the concept of seasonality can be performed in
the normal daily life of diabetic people. Therefore, enforcing the concept of
seasonality in the normal life of diabetics is very useful for predictor mod-
els or detecting an abnormal behavior and, therefore, it is an important
advanced towards building a complete supervision system for the diabetes
management.

In Chapter 8, it has been shown through long-term (six-months) simu-
lated data from a virtual patient (without exercise) that the SARIMA local
models exhibit higher forecasting online accuracy under free living condi-
tions than other approaches in the literature, and for larger PHs (up to
240-min-ahead prediction). As well, the feasibility of using a trust index for
measuring the confidence in the estimation and a normality index for detect-
ing abnormal behavior/states has been tested. Therefore, this framework
can be used to provide, for example, early hypoglycemia or hyperglycemia
alarms in our case of study. Predicted BG values through the GSM can
also guide patients with their daily insulin dose decisions and adjustments.
Additionally, the GSM developed can be integrated with a model-based
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control algorithm to build fully automated AP systems.

9.2 Future work

The main objective of this work has been addressed, but some ideas have
raised during the research that are worth to mention. If more time would
have been available, experiments with real data could reinforce the pre-
liminary results presented here (especially in those cases where extensive
simulations have been used), but experimental studies are time consuming
and require lots of time and money, especially in the diabetes field.

Additionally, several open improvements on the proposed techniques
could be pursued in the future to serve the main objective of the thesis.
These improvements are not limited to data but rather to a deeper analy-
sis of particular mechanisms and new proposals to try different procedures.
The possible future work to be done is detailed as follows:

1. A larger number of diabetic patients are required for build-
ing a good stochastic seasonal model. The main problem found
throughout the work has been the few data available for building good
prediction models. Data from more patients, and more data for each
patient would lead to capture more dynamic characteristics of the BG
behavior.

2. Addition of exogenous inputs to SARIMA local modeling by
using clinical data. In order to improve the prediction accuracy
and increase the ability to capture the BG fluctuations more signals
are needed. The case of physical activity has been addressed, and
could be translated into real life using wearables, but it has not been
fully tested with the final proposal. Other exogenous inputs, such as
stress or other variables could also be considered.

3. Alternative fuzzy clustering techniques able to deal with miss-
ing CGM data. A fuzzy clustering approach, with good results, has
been used but other techniques, such are those based on cluster disper-
sion, should be tested to work with missing data and clusters/groups
with different dispersion in diabetic real datasets.

4. Extend the enforcing seasonality in the normal life concept to
all kind of periods/events. In order to measure the ability of the
techniques to detect hypoglycemic episodes, more experiments includ-
ing this kind of behavior must be done. In this work, hypoglycemia
has been considered as an abnormal behavior as a proof of concept in
the abnormal states detection through the online BG prediction.
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5. Include online improvement of the model. A dynamic fuzzy
clustering technique could be used to, after a big enough number of new
(i.e., abnormal up to this moment) periods are detected, to develop a
new cluster and a new local model for them.

6. Integrate GSM into control algorithms in AP systems. The
proposed GSM can be integrated with, for example, a MPC algorithm
for building a fully automated AP system.

7. Study the effect of using the concept of seasonality in non-
linear stochastic models. The concept of seasonality could be used
with non-linear stochastic models, such as seasonality with ANN mod-
els.

9.3 Publications

The following journal papers and conference abstracts have been published
or submitted during the scientific research work leading to this thesis:

9.3.1 Journal papers

1. Rossetti, P., Quiros, C., Moscardo, V., Comas, A., Giménez, M.,
Ampudia-Blasco, F.J., Leén, F., Montaser, E., Conget, 1., Bondia,
J., and Vehi, J. (2016). Closed-loop control of postprandial glycemia
using an insulin-on-board limitation through continuous action on glu-
cose target. Diabetes technology € therapeutics, 19(6), pp.355-362,
doi:10.1089/dia.2016.0443.

2. Montaser, E., Diez, J.L., and Bondia, J. (2017). Stochastic Seasonal
Models for Glucose Prediction in the Artificial Pancreas. Journal of
diabetes science and technology, 11(6), pp.1124-1131,
doi.org/10.1177/1932296817736074.

3. Montaser, E., Diez, J.L, Rossetti, P., Rashid, M., Cinar, A., and
Bondia, J. (2019). Seasonal Local Models for Glucose Prediction in
Type 1 Diabetes. Journal of Biomedical and Health Informatics,
doi:10.1109/JBHI.2019.2956704.

4. Montaser, E., Diez, J.L., and Bondia, J. (2019). Stochastic Seasonal
Models for Glucose Prediction in Type 1 Diabetes under Free-Living
Conditions. IEEE Transactions on Control Systems Technology, Sub-
mitted.
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9.3.2 Conference abstracts and posters

1. Rossetti, P., Quirds, C., Moscardo, V., Comas, A., Giménez, M.,
Ampudia-Blasco, F.J., Leén, F., Montaser, E., Conget, 1., Bondia,
J., and Vehi, J. (2016a). Better postprandial glucose control with a
new developed closed-loop control system as compared with open-loop
treatment in patients with type 1 diabetes, In 76th American Diabetes
Association Scientific Sessions, New Orleans, Louisiana, USA.

2. Quirés, C., Giménez, M., Rossetti, P., Moscardo, V., Comas, A.,
Ampudia-Blasco, F.J., Leén, F., Montaser, E., Conget, 1., Bondia,
J., and Vehi, J. (2016b). Better postprandial glucose control with a
new closed-loop system as compared with open-loop treatment in pa-
tients with type 1 diabetes, In Furopean Association for the Study of
Diabetes Annual Meeting, Munich, Germany.

3. Montaser, E., Diez, J.L., and Bondia, J. (2017). Stochastic sea-
sonal models for glucose prediction in type 1 diabetes, In 10th In-
ternational Conference on Advanced Technologies € Treatments for
Diabetes, Paris, France.

4. Diez, J.L, Montaser, E., Rashid, M., Cinar, A., and Bondia, J.
(2019). Fuzzy clustering based seasonal stochastic local modeling
framework for glucose prediction in type 1 diabetes, In 12th Inter-
national Conference on Advanced Technologies & Treatments for Di-
abetes, Berlin, Germany.
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Appendix A

Clarke error grid analysis

A.1 Clarke error grid analysis

Two types of accuracy are defined to measure the performance of a BG
meter: analytical accuracy and clinical accuracy. Analytical accuracy is a
quantitative method for determining BG meter accuracy through the dif-
ference between the BG meter value and the BG reference value. Clinical
accuracy is a qualitative method for determining BG meter accuracy in terms
of impact of wrong measurements in clinical decisions. Error grid analysis
is the accepted tool for clinical accuracy studies and is presented in this
Appendix.

Clarke Error Grid Analysis (EGA) [316, 317] was developed in 1987
by Clarke and colleagues at the University of Virginia. Then EGA became
one of the acceptable gold standards in order to quantify BG meter accuracy.
An error grid with five different zones (Fig. A.1) were defined as follows

1. Zone A contains points that are within 20% discrepancy between BG
meter values and reference BG values, “clinically accurate”;

2. Zone B contains pairs with greater than 20% discrepancy but would
not lead to inappropriate treatment, “benign errors”;

3. Zone C contains pairs with a discrepancy that may lead to errors
in treatment with low risk, therefore this values would command to
unnecessary treatment, “overcorrection errors”;

4. Zone D contains pairs with a discrepancy that may lead to erroneous
to detect hypo- or hyperglycemia, “failure to treat errors”; and

5. Zone E contains pairs with a discrepancy that may lead to confusing
the treatment of hypoglycemia for hyperglycemia and vice-versa (i.e.,
an inappropriate treatment), “erroneous treatment errors”.
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Figure A.1: The Clarke Error Grid Analysis for determining BG meter accuracy
with five different zones. Modified from [12].

EGA’s output is the percentage of data points that take place into each
zone describing the risk of wrong clinical decisions. While this was developed
to deal with glucometer data, the advent of CGM has raised criticisms of
not taking into account the rate/direction of change, leading to new error
grids by the same team such as the Continuous Glucose Error Grid Analysis,
which is described next.

A.2 Continuous glucose error grid analysis

The continuous glucose error grid analysis (CG-EGA) was developed
to overcome the disadvantage of EGA to determine the clinical accuracy of
CGM systems through point and rate/direction accuracy. The CG-EGA is
composed of two components: (a) rate error grid analysis (R-EGA) and (b)
point error grid analysis (P-EGA). Both components have a similar clinical
meaning to the original EGA as shown in Fig. A.2. Unlike the original EGA,
the CG-EGA deals with time-based characteristics of the CGM data. The
CG-EGA has the ability to evaluate pairs of reference and sensor readings
as a process in time through a bidimensional time series. It also can take
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into account the physiological time lag between glucose levels in blood and
ISF [317].
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Figure A.2: The continuous glucose error grid analysis (CG-EGA): (a) rate error
grid analysis (R-EGA) and (b) point error grid analysis (P-EGA) to quantify the
clinical accuracy of CGM systems with five different zones as the EGA. Adapted
from [13].
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